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Statistical Calculation of Strength of Reinforced Concrete Beams

Calcul statistique sur la résistance des poutres en béton armé

Statistisches Berechnungsverfahren fir die Festighkeit von Eisenbeton- Trigern

Arxe 1. JoHNSON,

Tekn. D., The Swedish State Committee for Building Research, Stockholm, Sweden

The deduction of equations for determining the strength of reinforced
~ concrete structures has hitherto been based on the assumption that the quan-
tities entering into these equations, e.g. the strength of concrete and the
strength of reinforcement, have definite values (the classic theory of cal-
culation). In principle, this assumption is incorrect since the observed values
of these quantities normally exhibit a certain dispersion (scatter, spread),
which influences the form of the equations. The present paper is a general.
study dealing with this effect of the dispersion in the quantities in question.
We introduce the notations listed in what follows.

the mean value and a single observed value of the ultimate moment
of the beam. ’
the ultimate moment causing tension failure. .
the mean value of, and the standard deviation in, the ultimaté"_
moment, causing tension failure. '

the ultimate moment causing compression failure. y
the mean value of, and the standard deviation in, the ultimate
moment causing compression failure. ' -
the strength of reinforcement.

the mean value of, and the standard deviation in, the strength of
reinforcement.

the strength of concrete.

the mean value of, and the standard deviation in, the strength of
concrete. ‘

the cross-sectional area of reinforcement.

the mean value of, and the standard deviation in, the cross-sectional
area of reinforcement.
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by

= modulus of elasticity of reinforcement.

the width of the beam.

= the mean value of, and the standard deviation in, the width of the
beam.

the distance from the centroid of the tension reinforcement to the
compression edge of the beam. |

, 8, = the mean value of, and the standard deviation in, the distance from
the centroid of the tension reinforcement to the compression edge
of the beam.

frequency function (the subscript m, indicates the frequency func-
tion of m,, ete.).

= distribution function.

normal frequency function.

= mnormal distribution function.

S o
@
o

fl

>
i

+ =
Il

S e
It

If a beam fails in bending, then a distinction may be drawn between two
types of failure, viz., tension failure and compression failure. These types of
failure are supposed to be clearly defined. We shall now study the actuai mean
strength of the beam (=m) with reference to the risk of failure of both these
types. For this purpose, it is necessary to integrate the probability of each
value of the strength multiplied by the corresponding value of the strength
(=z). In this calculation, we assume that m, and m, are statistically indepen-
dent of each other. This assumption is only approximately correct since both
m, and m, are influenced by A4, b, h and ¢,. An increase in any of these vari-
ables causes an increase both in m, and m,. In the case under consideration
A influences mainly m,, whereas b, A and o, influence mainly m,. On account
of the error in the approximation 7 calculated from Eq. (1) is slightly too
small. The difference between 7 calculated from Kq. (1) and 7 calculated
from the classical theory, cf. Eqs. (3a) and (3b), is therefore somewhat larger
than the real difference. This error is usually negligible. However, in the case
when the variation in % is great compared with the variation in the other
variables, the error can become appreciable. This case can be met with when
the effective depth of the structural member is small. On the above assump-
tions, the mean strength of the beam is

x.fmt( )[1_ ( ]dﬂ’)—i— .[xfmc [1— mt(x)]dx =
o0 ’ 1
=mt+mc"6[xfmt € ch(x)dx_ fwfmc(x)Fmt(x)dx ( )
. 0

m =

Ohﬁg

Eq. (1) differs from the classic method of calculation, in which the dis-
persion in the various quantities is disregarded. According to this method
m=my for m;<m, and m=m, for M, < (elastic and inelastic theories). In
order to estimate the magnitude of the deviation due to this difference, we
shall study some cases in what follows. For this purpose, we assume that m,
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and m, are distributed in accordance with the normal distribution. It is to be
observed, however, that the actual distribution of these quantities is not
exactly normal. As a rule, this distribution is somewhat negatively skew, cf.
ArNE L. Jomwsow, Strength, Safety and Economical Dimensions of Struc-
tures, Bulletin No. 22, Swedish State Committee for Building Research
(Bulletin No. 12, Division of Building Statics and Structural Engineering,
Royal Institute of Technology), Stockholm 1953. On the other hand, the effect
produced on the determination of the mean value % by a small deviation in
the form of the distribution is relatively slight. This case will therefore be
disregarded in what follows. Furthermore, in carrying out the integration, the
lower limit of the integrals in Eq. (1) is assumed to be = —o0. In normal
cases, the effect of this assumption on the final numerical result is completely
negligible. This assumption has been made here in order to ensure a formal
agreement with the tables available in print.

7y — A ——
m=m+m—m®(g)_m¢(é_t)_1/sz+sz ( : t) .
cre Va2 + 8,2 ¢ \Vs2+s2 B B Va2 + 8,2 (2)

To facilitate comparisons with calculations made by means of the classic

method, Eq. (2) is rewritten in the form

m =y, — By V82 +s.2 (3a)

m = mc_ﬁz ]/St2+802 (3b)
Moreover, we introduce

Mg — Ty = q Y52 8,2 (4)

Calculated numerical values of 8, and S, corresponding to various values of ¢
are given in Table 1. As may be seen from Table 1 and Egs. (3a) and (3b),
the deviation of the values of 7 calculated in accordance with the above
statistical theory from those computed in conformity with the classic theory
increases as the value of ¢ becomes smaller. The former and the latter theories
are in agreement only when s,=s,=0. The case where m,=m, (¢=0) is of
special interest, It corresponds to the case where the beams are said to be
provided with “balanced reinforcement’’. In this case, the difference between
the statistical and the classic theories reaches its maximum value.

Table 1. Numerical Values of Constants B, and B, in Hgs. (3a) and (3b)

—4 -3 -2 —1 0 1 2 3

B

(4,00001) [ (3,00038) | (2,00849) | (1,08331)| 0,39894 | 0,08331 | 0,00849 | 0,00038 | 0,00001

Ba

0,00001 | 0,00038 | 0,00849 | 0,08331 | 0,39894 |(1,08331) | (2,00849)  (3,00038)|(4,00001)
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In the deduction of Eq. (1), only the failure in bending (tension failure or
compression failure) has been taken into consideration. At the same time, the
failure in- shear or the failure of bond can also be taken into account in an
analogous manner. If the strength corresponding to each type of failure is
statistically independent of the strength referred to any other type of failure,
then the strength of a beam related to various types of failure can be expressed
in the general form

7= 2[ 1@ 11 -F,@)]de (5)

where the sum is extended over all types of failure, while the produect is
extended over all types of failure except the v-th type.

Strength at a Certain Definite Cross Section Submitted to a Moment

The ultimate moment is a function of several variables
| m =g (o, 0,k b, A, E) (6)

Since m is not a linear function of the different variables, its mean value
cannot be calculated exactly by inserting the mean values of these variables
in Eq. (6). This procedure, though incorrect, is used in the classic method of
calculation. In fact, this procedure is approximately correct only on the
assumption that m is a nearly linear function of the variables within the
greater part of their intervals of variation. An accurate determination of m is
made in what follows. It is assumed in what follows that the variables are

statistically independent of each other. This assumption is normally correct..

The mean value of the ultimate moment can be obtained from the general
expression

M = [ (03,00 1,80, 4, B) o (0} f0 (00) 1 (W) f () f.4 (4) f (B) d 0y d o, dh dbAAAE

The effects produced by the quantities in question on the ultimate moment
at a certain definite cross section cannot be considered to be completely
investigated. This statement holds true both for tension failure and for com-
pression failure. In the present general study of the effect of the dispersion in
these quantities, we shall assume, however, that the equation of the ultimate
moment is known. For this purpose, we choose a form of this equation which
ig in agreement with most of the inelastic theories. At the same time, it is to be
noted that the general result would be essentially similar if some other theo-
ries, e.g. the elastic theories, were supposed to be valid. In the following study
of the ultimate moment, we assume that the beam undergoes either tension
failure alone or compressmn failure alone.
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Tension Failure

As regards tension failure, the various inelastic theories are closely in
agreement. The ultimate moment of a beam of rectangular cross section can
be written 52 A2

my=cAh—u f"cb (8)

where « is a constant which varies from 0,5 to 0,7 in the different theories.
Since m, is not a linear function of each variable, the mean value m, cannot
be calculated exactly by inserting the mean value of each variable in Eq. (8),
as has already been pointed out in the above.
If Eq. (8) is expanded in a Taylor series, and is inserted in Eq. (7), then
we obtain, after integration,

' S 2 3 4 2 3 4
[1+( _"”) —‘f°3°+’f"f—+...} [1+(@) —’_‘—g+~’%—+...] (9)
O¢ ¢ Gg¢ b b b

where 1, and 2 are the »-th central moments of ¢, and b respectively.

If, for instance, o, and. b are assumed to be distributed in accordance with
the normal distribution, then a study of the series in the last two expressions
in square brackets in Eq. (9) shows that these series first converge relatively

rapidly, but after that become divergent Soc < 1, % «1). This is due to
praly g 5

the fact that the normal distribution presupposes as a necessary. condition
¢ (0,£0)> 0 and a corresponding inequality in b. On the other hand, neither
o, nor b can assume values that are less than zero. Moreover, Eq. (8) is
not applicable to very small values of ¢, and b (m,>m;>0). On condition
that these circumstances are taken into account and that ¢(s,225,) and
@(b22b) can be disregarded, the above-mentioned series are found to be
convergent for applicable distributions. If the expressions in square brackets
in Eq. (9) are multiplied and if all powers higher than the second in the
bracket are disregarded, then we obtain

2 2 2 2 2 2
= o () () (3 ()] oo
O'cb 9y Oc A b
We shall now compare the mean value of the ultimate moment given by
Eq. (10) with the mean value of this moment calculated in conformity with the

classic theories. Accordingly, in the latter case, we assume s,,=0,5,,=0, s, =0
and s, =0. This comparison will be based on relatively extreme values of these

Ql

quantities. The value of the ratio -g—i can vary within the approximate limits

- [

from 10 to 40. The factor % is supposed to have the greatest value that is
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obtained when the reinforcement is ‘‘balanced’’. For the extreme values of the

ratio %, the respective maximum values of this factor are about 0.07 and

C
0.012. The constant « is assumed to have its upper limit value, i. e. about 0.7.

As arule, ‘? <0.10 and 22¢ £ 0,20, and we choose these values for the numerical
c

8
calculations. Furthermore, we assume s, =0 and s,=0.

Table 2. Exireme effect of Dispersion in o, and o, on Mean Value of Uliimate
Moment Causing Tension Failure, cf. Eq. (10)

x=07 225 _010, Se¢_ 0,20

US 00
iy
Os A GsAh Wot-stat. theory
7 A .
e bR Calculated from | Calculated from . Wty
Eq. (10) Classic Theory
10 0,07 0,486 0,510 0,953
40 0,012 0,647 0,664 0,974

The results of these calculations are reproduced in Table 2. As is seen
from this table, for the assumed values of the quantities involved, the maxi-
mum difference between the mean value determined in accordance with the
statistical theory and the mean value calculated in conformity with the classic
theory amounts to about 5 per cent. In ordinary practical calculations, this
difference may often be disregarded. On the other hand, this difference is of
interest in evaluations of test results, particularly when it is of the same order
of magnitude as the differences between some variants of Eq. (8) which are in

practical use at the present time.

Compression Failure

The equations of the ultimate moment in compression failure are some-
what different in form in the various inelastic theories. Nevertheless, most of

these equations can be written in the common form
m, =o,bhg (o,, A, B) (11)

In plastic theories, the function g = const. In deformation theories, g
slightly increases as 4 and Z become greater, whereas the relation between
this function and the argument o, varies in some measure according to the
variant of the theory of this type. All the same, to sum up, we can state that
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a variation in 4, E or o, causes a relatively slight variation in g. In a general
study, it is therefore sufficient to assume g = const. = y. Even though this
assumption does not hold frue exactly, the resultant error can be assumed
to be relatively small. Then we obtain the equation

m, =y o,bh? (12)

If this equation is expanded in a Taylor series by analogy with Eq. (8),
and if the mean value is calculated from this series, then we get

, = y 5,55 [1+ (%)] (13)

This mean value is slightly higher than that computed in accordance with
the classic theories without taking account of the dispersion in the quantities

concerned. Since the maximum value of % is probably less than, or approxi-

mately equal to, 0,2, the maximum increase in the mean value may be expected
to be about 4 per cent.

Effect of Variable Stress Distribution in Longitudinal Direction

If values of the strength of materials obtained from check tests on standard
test specimens are to be compared with the strength of beams, then it is
necessary, from a statistical point of view, to take into account the dimensions
of the beam, the type of loading, and the actual stress distribution in the
longitudinal direction of the beam.

It is obvious that the strength is also influenced by other factors, but the
present study will be confined to the above-mentioned factors, whose effects
are dependent on the dispersion in the quantities concerned. In most cases,
these factors are not taken into consideration, and this can in part explain the
frequent lack of agreement between experimental and theoretical results. For
a general study of these factors, reference is made to ARNE I. JOENSON, op. cit.
p- 77. In the present paper, we shall confine ourselves to a schematic study
of a beam submitted to a constant moment.

When a beam ig subjected to a constant moment, the stress in the rein-
forcement will normally not be constant in the longitudinal direction of the
beam after the formation of cracks due to bending on the side in tension. This
is due to the structural action of the concrete between the cracks on the side
in tension. On account of this action, the stress in the reinforcement between
the cracks is lower than in the cracks. A corresponding reduction in stress
takes place on the side in compression, although this reduction is usually
smaller than on the side in tension. The actual stress distribution is intricate,
and is normally dependent on the strength of bond between the reinforcement
and the concrete, the modulus of rupture (the tensile strength in bending) of
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the concrete, the method of loading, etc. As a rule, the actual form of the
stress distribution cannot be determined exactly.

It is of interest to determine that length of remforcement sub]ected to a
constant stress which shall have the same strength as the actual reinforcement
in the beam. In order to estimate the order of magnitude of this length, it is
necessary to assume a certain definite stress distribution in the longitudinal
direction of the beam. Various distributions are possible (cf. ARNE 1. JoHNSON,
Deformations of Reinforced Concrete, 1.A.B.S.EK., Publication No. XI,
Ziirich, 1951). Simple explicit solutions are obtained if we assume a linear
variation of the stress in the reinforcement from its maximum value o,,,, in
the cracks due to bending on the side in tension to its minimum value g,,, .
Furthermore, we suppose that the values of ¢,,,, in all cracks on the side in
tension, just as the values of o,,;, between all these cracks, are equal. Moreover
Omin

we assume = const.

“max , .
The distance between the cracks on the side in tension and the position of

Opmin are of no importance in this connection. The distribution function of the
strength of reinforcement is assumed to be of the form

F(z) = 1—e 2"

We have chosen this distribution function (which has been introduced into the
theory of strength of materials by W. WersuLL, A statistical theory of strength
of materials, IVA, Proc. 151, Stockholm 1939) because it enables us to obtain
explicit solutions. On the other hand, it is not certain that this function
corresponds exactly to the true distribution. However, as has already been
pointed out in the above, a small deviation from the true distribution pro-
duces, as a rule, a very slight effect on the result in the determination of
mean values. The distribution function of the total strength of the beam under
consideration is P (o)=1—¢B | (14)

where B =(In[1-F (o)) dl | (15)

After that, the mean value is obtained as usual (cf e.g. Eq. (7)). If the
length of the beam is denoted by [ and if the beam is assumed to be provided
with a single reinforcement bar, then this reinforcement bar has the same
mean strength as a corresponding single reinforcement bar in tension which is
submitted to a constant stress and which has the length [, given by

1 1 Omin d
lred =1 1— Conim k—l—l [1 - (Uma,ac) ] (16)

g

max

where k is determined from

~1 - C17)
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Table 3. Numerical Values of 2 Calculated from Hq. (16)

amin
p Gmax .
= 0 0,25 0,50 0,75 0,9 0,99 1
]
k

0,01 128 0,008 0,010 0,016 0,031 0,078 0,564 1
0,02 63 0,016 0,021 0,031 0,063 0,156 0,738 1
0,05 24,8 0,039 0,052 0,078 0,155 0,360 0,860 1
0,10 12,1 0,076 0,102 0,153 0,296 0,550 0,878 1

Some values of /,,; are given in Table 3. Note that the beam has been assumed
to be provided with a single reinforcement bar! If the beam is reinforced with
several bars, then [, decreases as the number of reinforcement bars becomes
greater. |

The length of the test specimens used in check tests on reinforcement bars
is often greater than /,,;, particularly when the beam is reinforced with several
bars. This implies that 6, in the beam is greater than the value obtained from
the check tests. The effect of this circumstance is tantamount.to an increase
in the ultimate moment of the beam in tension failure. In previous comparisons,
the strength of beams loaded to tension failure has often been lower than that
obtained from the theories, whereas compression failure tests have given
varying results. Tt is evident that the above corrections relating to tension
failure, see Eq. (10), will produce an effect in the opposite direction. On the
other hand, the corrections for the reduction in the tensile stress in the rein-
forcement have often an effect in the direction of the tests.

In this paper, we shall not make any detailed comparisons with test results
for the reason, among others, that the form of the basic equation, Eq. (6), is
not exactly known. Nevertheless, it is important to take account of the above-
mentioned statistical factors in theoretical studies and in comparisons between
experimental and theoretical results.

Summary

The strength of reinforced concrete beams is studied in this paper with due
regard to the dispersion in the quantities involved, e.g. the strength of con-
crete and the strength of reinforcement. Attention is directed to the deviations
from the classic method of calculation in which the dispersion in these quan-
tities is disregarded. '

General equations are deduced for determining the mean strength of a
beam, see Egs. (1), (5), and (7). The difference between the results obtained
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from the statistical and the classic theories has been calculated in some
cases, and is expressed by Eqgs. (3a) and (3b) as well as by Egs. (9), (10)
(tension failure) and (13) (compression failure). Finally, a study is made of
the effect produced on the strength by the variable stress distribution in the
longitudinal direction of the beam (the influence of the comcrete in tension
between the cracks due to bending on the side in tension).

Résumé

Dans le présent rapport, 1’auteur étudie la résistance des poutres en béton
armé de facon & tenir compte de la dispersion des quantités en question, par ex.
de la résistance du béton et de la résistance des armatures. Il en résulte des
écarts de la méthode de calcul classique, dans laquelle on néglige la dispersion
de ces quantités.

L’auteur a établi des équations générales pour la détermination de la
régistance d’une poutre, voir les équations (1), (5) et (7). La différence entre
les résultats obtenus au moyen des théories statistiques et des théories clas-
siques a été calculée dans quelques cas. Cette différence est exprimée par les
équations (3a) et (3b) ainsi que par les équations (9), (10} (rupture sous exten-
sion) et (13) (rupture sous compression). En outre, I’auteur examine 1’effet pro-
duit sur la résistance par la distribution variable des contraintes dans le sens
longitudinal de la poutre (I’influence du béton soumis & 1’extension entre les
fissures du c6té soumis & I’extension de la poutre fléchie).

Zusammenfassung

Im vorliegenden Bericht untersucht der Verfasser die Festigkeit von Eisen-
betontrigern unter Beriicksichtigung der Streuung (Dispersion) der zugehdri-
gen Grofen, z. B. der Beton- und Bewehrungsfestigkeit. Dabei ergeben sich
Abweichungen vom klassischen Berechnungsverfahren, bei dem die Streuung
dieser GroBen vernachlassigt wird.

Fir die Bestimmung der Festigkeit eines Tragers stellt der Verfasser
allgemeine Gleichungen auf, siehe Gl. (1), (5) und (7). Der Unterschied zwischen
den Ergebnissen, die den statistischen und den klassischen Theorien ent-
~ sprechen, wurde fiir einige Fille berechnet, siche Gl. (3a) und (3b) sowie
GL (9), (10) (Zugbruch) und (13) (Druckbruch). Schlieflich behandelt der
Bericht die Wirkung, welche von der verinderlichen Spannungsverteilung in
der Lingsrichtung des Trigers auf die Festigkeit ausgeiibt wird (d. h. den
Einfluf} des auf Zug beanspruchten Betons zwischen Rissen auf der Zug-
seite des auf Biegung beanspruchten Trégers).
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