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Open-Spandrel Arch Analysis Assuming Continuity of Structure
Etude des Arcs a Tympan ouvert dans Uhypothése de la continuité de I’ouvrage

Berechnung des Bogens mit durchbrochenem Aufbau ber Annahme monolithischen
- Zusammenhangs

Dr. L. A. BEaurovy, M. Sc. (Eng.), A.M.I.C.E., M. I. Mech. E., M. I. Struct. E.,
M. Am. Soc. C. E., Chartered Civil Engineer, London

Introduction

Because of the incomplete nature of our knowledge of the interaction
between the deck, the spandrel columns and the arch rib of a bridge which is
monolithic, proper consideration is not given to its effect when designing
. open-spandrel arches. Designs are commonly based on the assumption that
loads are applied directly to the arch rib, whose behaviour is assumed to be
uninfluenced by the spandrel columns and deck. The many experiments which
have been carried out to study the effect of deck participation have not provi-
ded a full picture of the nature of this participation, being limited to the deter-
mination of influence lines for the fixed-end reactions and the resultant lines
of thrust for temperature stresses. Information is lacking as to the manner in
which stresses are distributed quantitatively between the arch rib and the
deck, and, although it is known that the deck aids the arch rib, it is not known
to what extent this assisting role may be harmful to the deck.

The mathematical analysis of open-spandrel arches by the classical methods
~ is so tedious that it has been regarded by some engineers as virtually impossible
unless certain approximations are made. One approximation sometimes used
is to neglect the shear in the spandrel columns, or, in other words, to assume
these columns to be hinged at both ends. Although such an approximation
may seem to be reasonable, especially when the columns are comparatively
slender, it is, nevertheless, very misleading. The most important role in deck
participation is, as will be seen later, that of the shear resistance of the span-
drel columns, which is responsible for transferring a comparatively large
thrust to the deck. If there were no such shear resistance no thrust could be
transmitted. The near-impossibility of the classical methods of analysis has
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therefore led to extensive experimental studies, of which those of WiLsox1)
and FINLAY 2) may be especially cited.

The object of the present paper is to present a reasonably simple and
exact method of theoretical analysis for open-spandrel arch systems, requiring
the expenditure of less time and effort than the experimental one. By avoiding
the formulation of simultaneous equations, all calculations may be performed
by slide-rule. This method of analysis is similar to that for Vierendeel trusses
described recently by the author3).

The difference between the two systems is that open-spandrel arches are
externally statically indeterminate as well as being internally so. It therefore
becomes necessary to distinguish between the internal panels and the end
(or external) panels to which external moments are applied. The present paper
develops the necessary extension to the method of analysis of Vierendeel
trusses and carries the structural analysis further so that the elastic constants
and stiffness factors for the open-spandrel arch as a whole may be determined,
thereby making it possible to calculate the influence lines for the fixed-end
reactions. Once these are known, the computations for stresses produced any-
where in the system due to any given loading, temperature changes, or dis-
placements at a support follow readily.

The application of the method is illustrated in some detail by reference
to an example of a nine-panel open-spandrel arch?) which was the subject of
experimental analysis, so that an experimental check on some of the theoreti-
cal results is available. It will be found that the agreement between the two
sets of results is of a high order. :

The author is indebted to A.F.S. DiwaN, formerly a research student in
civil engineering working under his direction, for assistance with the com-
putational work, and to C.C. BREARLEY, who prepared the illustrations for press.

Notation and Sign Convention

Symbols are defined when they are first used, but are collected here for
convenience of reference.

a denotes panel width.
b denotes difference in height between spandrel posts in a panel.

1) WiLson, “Tests of Reinforced Concrete Arch Bridges’, Publications, I.A.B.S.E.,
vol. 5, 1938. ‘

%) FinvrAy, “Deck Participation in Concrete Arch Bridges”, Civil Engineering (N. Y.),
vol. 2, no. 11, 1932,

3) BeAuFoy, ‘“Vierendeel Truss Analysis using Equivalent Elastic Systems’, Publi-
cations, I.A.B.S.E., vol. 11, 1951.

4) WiLsox and KLUGE, ‘“Laboratory Tests of Three-span Reinforced-concrete Arch
Bridges with Decks on Slender Piers”, Bulletin No. 270, University of Illinois Engineering
Experiment Station, 1934.
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Open-Spandrel Arch Analysis Assuming Continuity of Structure 19

denotes panel coefficient.

denotes vertical distance between the elastic centre and the deck of
an open-spandrel arch.

as suffix, denotes that the quantity refers to the deck.

as suffix, denotes that the quantity refers to a virtual equivalent
system.

denotes Young’s modulus.

denote horizontal force; height of spandrel post.

denotes a centroidal moment or product of inertia.

=Ix_(I5c2y/Iy)°

=Iy_(lgy/]x)'

denotes length of span.

denote moment.

zMx - (My I:ry/Iy)

=M, (M, 1,L,).

as suffix, denotes that the quantity refers to the elastic centre.
denotes normal elastic load on analogous column.

denotes shearing force.

as suffix, denotes that the quantity refers to the arch rib.

denotes elastic area.

denotes thrust in deck.

denote vertical force.

denote horizontal and vertical co-ordinate distances respectively.
denote horizontal and vertical co-ordinates respectively of the elastic
centre.

as suffixes, denote that the quantity is taken about the z-axis, the
y-axis, or axes z, ¥.

denote rotational, horizontal and vertical displacements respectively.
as suffixes, denote that the quantity is in respect of applied rotational,
horizontal or vertical displacement respectively.

Sign Convention. Unless otherwise stated this is as follows: Moments and
rotational displacements are taken as positive when clockwise; horizontal and
vertical forces, displacements, and co-ordinate distances as positive when
measured to the right and upwards respectively.

The Single Closed Panel

Provided they are in equilibrium, and assuming that deformations due to
shear and axial thrust may be disregarded, any system of external forces applied
to a closed panel through its joints (Fig. 1) may be reduced to three horizontal

forces H,, H,, and (H,— H,), plus two vertical forces V =

+ (thl_H2 h2)

a
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Fig. 2. Bending-moment diagrams for stati-

cally-determinate cases occurring with a

Fig. 3. Characteristic bending-moment single panel according to the position of the
diagram for a single closed panel cut section

A cut section anywhere in the panel (Fig. 2) makes the system statically-
determinate and the bending-moment diagram may then be reduced to any one
of the forms shown in the figure by suitably choosing the position of the cut
section and proportioning the amount of the vertical force V between the upper
and lower panel points. If any one of these diagrams is selected, say Fig. 2b,
and it is assumed that the moment M at the joint B is unity, it may easily be
shown by column analogy, using the bending-moment diagram in the stati-
cally-determinate case as an elastic loading, that the bending-moment diagram
for the closed panel has the shape shown in the shaded diagram (Fig. 3). Since
the statical bending-moment diagram refers to any balanced set of external
forces applied at the joints, it follows that the form of the bending-moment
diagram for the closed panel must also refer to any such balanced set of forces;
in other words, the latter is what might be termed a characteristic bending-
moment diagram for the panel. As the values in this diagram are obtained on
the basis of unit M at the joint B in the statically-determinate case, it is clear
that, by finding the actual value of M corresponding to any given set of
external forces, the true bending-moment diagram for the closed panel may
be obtained by proportion from the characteristic bending-moment diagram;
this characteristic bending-moment diagram should, therefore, always be
associated with the relevant statical bending-moment diagram, shown dotted
in Fig. 3. It follows from the above that points ¥, F,, F, and F, in the figure
are fixed points at which the bending moment due to any system of external
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forces applied at the joints will always be zero, it being understood that these

external forces are in equilibrium.

The elastic constants for a single closed panel may be readily found by

using the following equations®)

S =l§1+§2

= _ Slili&@
S

8+ 5.7,

Y g

I, = (Izl+1$2)+(§1y12+§2y22)
I, = (Iy1+Iy2)+(Slx12+Szx22)
Imy= (Iacy1+1xy2)+(Slx1y1+s2x2y2)

(la)

(1b)

(Le)

(1d)
(Le)
(1f)

which give the elastic constants for the resultant of any two members con-

nected together in series, in terms of those for the separate members.

Virtual and Partial Equivalent Systems

These are illustrated in Fig. 4b, where the virtual equivalent system is
represented by an elastic area P having rigid arms P B and @D which link
it to joints B and D respectively; the elastic centre O of P @ is so located with

respect to joints B and D that the re-
lative displacements of these two points
are the same for the virtual equivalent
systems as for the panel. This virtual
equivalent system may be used in repla-
cement of all the members of the open-
spandrel arch shown in dotted lines in
Fig. 4b, including the real member D B.

The above virtual equivalent sys-
tem when connected to the real deck
member C' D and the real arch rib mem-
ber A B, constitutes a partial equivalent

Fig. 4. (b) is a partial equivalent system for
the part of the open-spandrel arch to the
right of section XX (a); (c) is an equivalent
panel based on panel ITI

______

9

—————

%) Beauroy and Diwan, ‘“Equivalent Elastic Systems in the Analysis of Continuous
Structures’’, Concrete and Constructional Engineering, November and December, 1950.
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system based on panel III, and this may be used in replacement of all the
members of the arch system to the right of section XX (Fig. 4a). The elastic
constants of partial equivalent systems, as for single closed panels, may be
obtained by applying equations (1).

Reference should be made to the earlier paper®) for further information
about the properties of virtual and partial equivalent systems.

Equivalent Panel

An equivalent panel is illustrated in Fig. 4c by A BC D, where A B and
C D are real members linked in a closed circuit to a virtual equivalent system on
the left and one on the right, which replace the members shown in dotted lines.
The elastic constants for such a panel may be obtained as for a single closed
panel. In comparing the equivalent panel with the single closed panel it should
be realised that the external forces at the joints of the equivalent panel are-
provided by the conjugate forces in the open-spandrel arch system, i.e., by
the interaction between the panel considered and those on either side of it.

A characteristic bending-moment diagram can also be obtained as for a
single closed panel; this gives the primary moments in the real members, i.e.,
the top and bottom chords. The primary moments in any equivalent panel
induce moments in all panels to either side and so create moments throughout
the structure. The determination of the induced moments follows from the
relative displacements of the upper and lower ends of the posts?).

The diagram of primary and induced moments gives what may be termed
a full characteristic bending-moment diagram for the whole open-spandrel
arch system, based on the panel to which the primary moments refer. This
diagram would be produced by applying a tensile or compressive force along
the line of the diagonal of the equivalent panel of such a value that the force
multiplied by the perpendicular distance was unity.

An end panel of an open-spandrel arch is usually subject to an external
moment acting at one of the lower points so that the statical bending-moment
diagram is generally trapezoidal over the arch-rib segment. To deal with this
case, a second characteristic bending-moment diagram is necessary for the panel,
and this follows from a statical bending-moment diagram having a rectangular
part along the arch-rib segment similar to that shown in Fig. 5d. Each internal
panel therefore has only one characteristic bending-moment diagram, but each
end (or external) panel has two: the first of these is derived from a statical
bending-moment diagram similar to that for the internal panels and will be
referred to here as case A; the second arises when an external moment is
applied to one of the joints of the panel, usually that on the lower chord, and

¢) BrauFrov, op. cit.
%)y Ibid., step (6).
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Panel | I

Fig. 5. (a) Open-spandrel arch: determination of elastic constants; (b) conjugate forces

in internal equivalent panel II corresponding to unit M at end 4; (c) statical bending-

moment diagram, internal equivalent panel IT; (d) conjugate forces and statical bending-
moment diagram, external equivalent panel I

is derived from the statical bending-moment diagram for the case (case B).
Any shape of bending-moment diagram in the main system for the external
panels can then be readily obtained from the two conditions of loading, cases
A and B. When an expansion joint is introduced in the deck the panels on
either side of that containing the expansion joint must similarly be treated
as if they were external panels. ,

There will, therefore, be one full characteristic bending-moment diagram
for each internal panel and two full characteristic bending-moment diagrams

for each external panel. This information is best collected together in tabular
form.

The Whole Arch System

Elastic Constants

First consider a fixed-ended arch member 4 B. Release the end A and
assume a unit moment M to be applied there; a reaction at B of M =1 will
result. It can then easily be shown$) that the end A moves through distances

(2a)
(2b)
(2¢)

from which the elastic constants S, # and 7, for the arch member may be found.

and

> IS~

=8
= —¢-
= ¢

Kl

%) BEAUFOY and DIwaN, ‘“Analysis of Continuous Structures by the Stiffness Factors
Method”, Quarterly Journal of Mechanics and Applied Mathematics, vol. 1T, pt. 3, 1949.

3  Abhandlung XIII
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Next, apply only a horizontal force H =1 at the end O of a rigid arm 4 O,
O being at the elastic centre. Then, values of I, and I, may be obtained from
the following equations
I, =4 (2d)
I,=-2A (2e)
In the symmetrical case, I,,=0. Similarly, by applying only V=1 at O,
I, =2 (2f)

Thus, the remaining elastic constants /,, I,, and I,, for the arch member are
found.

Now, in the case of the open-spandrel arch, the deflection of a point P in
the arch rib (Fig. 5a) may be obtained from the arch rib P B alone due to the
bending moments on it, or from the members B R, R, @ P due to the bending
moments on them. Similarly, the deflection of the point C' may be obtained
by considering only the arch rib B P C, rather than members B R ¢ SC. Hence,
the deflections of points in the lower chord are obtained by considering the
arch rib only, subject to the moments acting thereon. Thus, the deflections
of end 4 may be found and subsequently transformed into elastic constants
by applying equations (2). In passing, it should be observed that vertical
deflections of corresponding points on the deck and arch rib are the same,
disregarding axial deformations, but that horizontal and rotational displace-
ments are not the same.

The above process will now be considered in more detail as it applies to the
open-spandrel arch shown in Fig. 5a. Fix end B and apply unit moment at
end 4. Then, for the equivalent panel II, the conjugate forces corresponding
to unit M at A are as shown in Fig. 5b. When the forces at the joints of the
upper chord are combined into one force, Fig. 5¢ is obtained, and if the upper
chord is assumed to be cut, a statical bending-moment diagram results similar
to that shown in Fig. 2b but with a value for M of b/h,. The characteristic
bending-moment diagram for the panel was based on a unit value for M and
the moments induced on either side followed from the characteristic bending-
moment diagram. In the case of the equivalent panel, however, the value of
M is not unity but b/h,, viz., a coefficient C' obtained from the proportions of
the panel; it follows that the values in the characteristic bending-moment
diagram and the moments induced to either side must all be multiplied by C.

For the special case of equivalent panel I, the conjugate forces are as shown
in Fig. 5d, which also shows the statical bending-moment diagram, from which
the characteristic bending-moment diagram may be derived. Thus, for unit
M applied at end A, the coefficient C'=b/h, for all internal panels, but C=1
for case B of the external panel (case A of the external panel does not arise).
Each full characteristic bending-moment diagram is now multiplied by the
corresponding C' value to give actual primary and induced moments. The
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Fig. 6. (a) Conjugate forces on internal equivalent panel corresponding to unit H at the
elastic centre O of an open-spandrel arch; (b) statical bending-moment diagram

)

M=-b

¢

Fig. 7. (a) Conjugate forces and statical bending-moment diagram for external equivalent

panel corresponding to unit H at the elastic centre of an open-spandrel arch. The statical

bending-moment diagram may be broken down into the separate diagrams (b) and (c)
due to M and H respectively

X+3

(% =

! b

Fig. 8. (a) Conjugate forces on internal equivalent panel corresponding to unit V at the
elastic centre O; (b) statical bending-moment diagram
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summation of all values for the different panels will give the final bending-
moment diagram for unit M. From this final bending-moment diagram the
values of the elastic constants S, Z and 7 are found by substitution in equa-
tions (2). As this final bending-moment diagram for the whole structure must
always diminish towards the crown, it follows that, compared with the same
arch rib without the superstructure, the total elastic area S must be reduced,
and the elastic centre must drop towards the springing line, that is, ¥ must be
smaller.

Next apply unit H only at the elastic centre O (Fig. 6a). Considering any
internal equivalent panel, the conjugate forces and the statical bending-
moment diagram will be as shown in Fig. 6b, so that for all internal panels the
value of the coefficient C is —db/h,. Fig. 7Ta shows the conjugate forces for an
external equivalent panel (H is transferred to 4 through the rigid arm 0O A4).
A cut section in the upper chord gives rise to the statical bending-moment
diagram indicated; this is compounded of Figs. 7b and 7c¢, which refer respec-
tively to the diagrams for M and H, and which are of forms already familiar,
Fig. 7b being similar to Fig. 5d and Fig. 7c to Fig 2b. Thus, the coefficient
for the characteristic bending-moment diagram in case A (Fig 7c¢) s €' = —b,
while for case B (Fig. 7b), C =%. These values of C are now applied, as in the
case of unit M, to the full characteristic bending-moment diagram to obtain
a final bending-moment diagram for unit H by summation. From this final
bending-moment diagram, the horizontal displacement 4 at point A4 is cal-
culated and hence the value 7/, is known from equation (2d).

Finally, apply unit V at point O (Fig. 8a). For an internal equivalent panel
(Fig. 8b) it can be shown that

xb—ah,
S
which may be plus or minus according to values. Hence the ' value is

—xbtah,
hq '

For an external equivalent panel the conjugate forces are as shown in Fig. 9.
The shape of the statical bending-moment diagram is illustrated in Fig. 7a,
and can similarly be reduced to forms corresponding to Figs. 7b and 7c, from
which values of C are

case A: C =a,

case B: (' = —L/2.

Hence, from these values of C, the final bending-moment diagram for unit V
and the vertical displacement A, =1, are found, completing the determination
of the elastic constants for the whole structure. For convenience of reference,
the various values of C' derived above are collected together in Table 1.
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Fig. 9. Conjugate forces and statical bending-moment diagram for external equivalent

panel corresponding to unit V at the elastic centre of an open-spandrel arch

Table 1. Values of the coefficient C for equivalent panels

External panel
Loading Internal panel
Case A I Case B

| b |

Unit M = — 1.0
by
Unit H ] _ab -b Y
[ hy
. ‘ —xb+ah, L
|

Stiffness Factors for the End A of the Whole Structure

These may be obtained from the elastic constants by substitution in the
following equations®) which refer to the case when the arch is symmetrical

and I,,=0

%) BrAUroOY, op. cit.

1. 7. 2
m¢ ,§+Ix Iy.
hg =Ii[=m4]

1
hy =-.
4 Iz

1
'U/\ —T.

Y
hy =0.
V4 = 0.

(3a)

(3b)

(3¢)
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Influence Lines for the Fixed-end Reactions of the Whole Structure

A horizontal force of amount %, at the elastic centre will, by definition,
cause a unit horizontal movement only at 4. The resulting deflection line is the
influence line for H, and can be found from the bending-moment diagram
corresponding to the force h,, which is obtained by proportion from that
already found for unit H. The influence line for V may be found similarly. To
get that for M, apply horizontal and vertical forces A4 and vy respectively at
the elastic centre 0, together with a moment 1/S to cause unit rotation only
at A. The influence line for M is then obtained as the summation of the
following deflection lines (I) that due to Ay at O, obtained by proportion from
the influence line for H, since hy=%.h4; (II) that due to v, at O, obtained by
proportion from the influence line for V, since vy = — Lv,/2; (III) that due to
M =1/8. The bending-moment diagram is obtained by proportion from that
for unit M previously derived and the deflection line follows.

Method of Analysis

Structural Analysis

1. Determination, for each of the partial equivalent systems, of the bending-
moment diagrams corresponding to unit relative displacement imposed at
the cut ends.

2. Evaluation of the elastic constants for the virtual equivalent systems for
successive groupings of panels working from left to right, and also from
right to left if the open-spandrel arch is not symmetrical. In a symmetrical
case, the two sets of evaluations will be similar.

3. Determination, for each equivalent panel, of the elastic constants and the
primary moments, and the determination of all the moments induced both
to the right and to the left of each of the equivalent panels.

4. Evaluation, for the whole arch system, of the elastic constants, the stiffness
factors for the ends of the arch system at the springings, and the influence
lines for the fixed-end reactions M, H and V.

Stress Analysis

5. Determination of the fixed-end reactions for the given loading from the
influence lines for M, H, and V.

6. Evaluation, for each equivalent panel, of the conjugate forces, the statical
bending-moment diagram and the coefficient C.

7. Determination of the final bending-moment diagram by summation.
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&) ) a)

Fig. 10. Reinforced-concrete high-deck arch: (a) main dimensions; (b) section of deck;
(c) section of arch rib; (d) section of post

Example

To illustrate the use of the method, it will now be applied to the solution
of a 27-ft. span reinforced-concrete open-spandrel arch modell?). The dimen-
sions of this model, a high-deck arch without expansion joints, are shown in
Fig. 10. For the purposes of the calculations, the effect of the joints will be
disregarded, the analysis being based on a consideration of centre lines; this
effect will not be of great importance owing to the absence of haunches.
Furthermore, the arch rib between any two spandrel columns will be assumed
prismatic with a constant cross section identical with that at the middle of its
length. It would be possible to take into account the variation in the cross
section of the arch rib but the differences involved would be slight. On the
above basis, the values of the relative elastic areas (S - 100 - E) of all members
are as shown in Fig. 11.

Structural Analysis

Step 1. The elastic constants for all partial equivalent systems working
from right to left, found by using equations (1), are collected together in
Table 2, in which Z and 7 are as measured from the upper left-hand end of the
system. Then, for each partial equivalent system in turn, considering the
lower left-hand end to be fixed, the forces required on the upper left-hand end
to produce unit displacements there (viz., the stiffness factors for the upper

Post 1 2 3 4 5 & 7 8 g o
NOTE g 08k p U8k 084 p 08 & r oy v ow

Fig. 11. Relative elastic areas for all members, as used in calculations

10) WiLsoN and KrugE, op. cit.
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Table 2. Partial equivalent systems: elastic constants

Panel II 1T v v VI VII VIII IX
S 1.62 1.83 2.04 2.21 1.98 1.76 1.54 8.97
z 1.84 1.82 1.80 1.76 1.77 1.78 1.78 2.37
Yy -1.68 -1.40 -1.21 -1.20 -1.24 -1.49 -1.79 -3.95
I, 9.60 5.24 3.30 3.04 4.06 8.20 20.18 61.30
1, 1.58 1.77 1.96 2.08 1.87 1.67 1.47 1.79
: - 0.14 0.19 0.14 0.05 -0.16 -0.35 —0.46 -2.67
1,/ 9.59 5.22 3.29 3.04 4.04 8.13 20.03 57.30
XL/ 1.58 1.76 1.96 2.08 1.86 1.66 1.45 1.67

ends relative to the lower ends) are found1!); these values of m,, h,, v4 and
My s k¢, Vg4 are shown in Table 3. The values m, and A, shown in this table are
found by transferring these forces to the elastic centre of the relevant virtual
equivalent system and calculating the relative induced displacements (e.g.
b4, 4,) of the upper end with respect to the lower end of the partial equivalent
system12). Finally, for each partial equivalent system in turn, the bending-
moment diagram is found by statics; these diagrams are collected together in

Fig. 12.
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Fig. 12. Partial equivalent systems: (a) bending-moment diagram producing unit relative
horizontal translation between upper and lower joints on left-hand side; (b) as for (a)
but in respect of unit relative rotation

1) BEAUFOY, Op. cit., equation (4).
12) BEAUFOY, oOp. cit., equation (5).
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Table 3. Partial equivalent systems: stiffness factors and induced displacements
of upper ends relative to lower ends

Panel I II ‘ IT1 ' v ] A% ' VI ‘ VII 1 VIII IX
my -0.193 |-0.307 |—-0.407 f -0.410 |-0.269 |-0.138 |-0.061 |-0.007
hy 0.105 0.192 0.304 | 0.330 0.248 | 0.124 0.050 0.018
vy 0.009 0.021 0.022 0.007 |—-0.022 |-0.026 |-0.016 |—-0.026
m, — 0.023 0.020 | 0.010 0.018 | 0.000 0.012 0.011
h, — 0.105 0.192 0.304 | 0.330 | 0.248 0.124 | 0.050
¢4 0.008 0.008 0.004 0.007 0.000 | 0.004 0.003 —
4y 0.283 0.230 0.215 0.236 0.353 | 0.510 0.660 —
my 3.109 2.920 2.695 2.446 2.471 2.614 2.890 3.259
hqs -0.193 |-0.307 |-0.407 |-0.410 |-0.269 —0.138 |-0.061 | -0.007
vg -1.180 |-1.067 |—-0.950 [—0.855 |—-0.923 /~1.040 -1.199 |-1.320
m, — -0.777 |-0.703 |-0.623 | -0.577 J -0.661 |—-0.749 J‘ —-0.853
h, — -0.193 | -0.307 |-0.407 |-0.410 l -0.269 |-0.138 |-0.061
9643 -0.287 | -0.277 | -0.258 |-0.219 |-0.232 |-0.242 |-0.243 ‘ —
AqS -1.005 | -0.731 (‘ —0.578 ’ -0.546 |-0.698 | -1.000 '-1.375 f —

\ ‘:

Table 4. Virtual equivalent systems: relative actual stiffness factors and elastic

constants
Panel I ’ II ' III } Iv l A" ! VI VII l VIII i IX
| | l
Spandrel posts only
S 5.70 3.82 2.68 2.15 2.15 2.68 3.82 5.70
mg 0.70 1.05 1.50 1.87 1.87 1.50 1.05 0.70
hg -0.18 | -0.39 | -0.80 | -1.25 | -1.25 | -0.80 | -0.39 | —0.18
hy 0.06 0.20 0.58 1.12 1.12 0.58 0.20 0.06

Virtual equivalent systems

M¢ 3.81 3.97 4.20 4.32 4.34 4.11 3.94 3.96
HqS -0.37 | -0.70 | -1.21 | -1.66 | -1.52 | —0.94 | -0.46 | —0.18
H, 0.16 0.39 0.88 1.45 1.36 0.70 0.25 0.08

N 0.34 0.37 0.39 0.42 0.38 0.35 0.32 0.29
Y -2.26 | -1.80 | -1.38 | -1.15 | -1.12 | -1.35 | -1.85 | -2.39
I

6.12 2.57 1.14 0.69 0.74 1.44 4.05 13.05
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Table 5. Equivalent panels: elastic constants

Panels T and IX IT and VIII IIT and VII IV and VI A%
_ P
S 9.30 J 1.91 2.15 2.39 2.59
z 0.22(I) | L57(ID) 1.55 (III) 1.54(IV) 1.50
2.28(IX) |  1.43(VIIIL) 1.45(VII) 1.46 (VI)
Yy -3.89 \‘ -1.79 -1.47 -1.22 -1.19
I, 68.12 \ 22.74 9.35 4.74 3.78
I, 3.60 240 2.69 2.92 3.08
I, 3.96 L 0.44 0.41 0.22 0.00
\
|
I’ 63.77 | 22.66 9.28 4.72 3.78
I, 3.37 239 2.66 2.92 3.08
i
Table 6. Equivalent panels: forces acting at elastic centre
Panel ! ! | II III v
ane (Case B) (Case A) [ V
| |
P -35.3 -24.0 -37.3 | -49.2 —-60.5 0.0
M, 156.2 114.7 123.7 90.4 76.5 0.0
My —52.6 —45.6 -32.7 —41.5 -48.9 -53.0
M, 214.0 164.8 | 129.7 96.8 80.2 0.0
M,y’ -61.5 -52.2 *; -35.1 -45.5 ~52.4 -53.0
M - 3.8 - 2.6 i -19.6 —22.9 —-25.4 0.0
H 3.4 2.6 \ 5.8 10.4 17.0 0.0
4 -18.3 -15.6 | 147 -17.2 -18.0 -17.3
|
Table 7. Virtual equivalent systems: induced displacements of upper ends relative
to lower ends
. . II [ VI
Panel (Case B) | (Case A) 111 Iv \' f
m, - 2.17 - 4.03 — 4.33 - 2.50 - 0.10 1.00
h, —13.49 -14.27 -19.25 -25.30 —27.45 -22.25
¢ — 0.73 - 1.36 — 1.60 - 0.96 - 0.41 0.38
4 —80.55 -90.20 -52.30 -30.13 -19.47 -15.98
m, - 0.05 | —0.28 0.22 1.00
h, — 5.75 ~10.42 -17.00 -22.25
<~ ¢ ; - 0.01 - 0.09 0.08 0.38
<~ 4 -75.03 —42.37 -24.27 -15.98
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Step 2. Values of the relative elastic areas (8 - 100 - E) and stiffness factors
for the upper ends of spandrel posts are given in Table 4. The stiffness factors
follow from the following relations

4 —6 12

Mmy =—; hyg=——:; hy=-—= .
T8 *TSL YT S Ie

Each post in turn is then combined with the partial equivalent system on its
right to give the corresponding virtual equivalent system, and values of the
relative actual stiffness factors My, Hy, H, (for the upper left-hand ends)
follow by definition from the combination. Substitution of these values in the
Table given in the earlier paper!3) enables the elastic constants for the virtual
equivalent systems to be found.

Step 3. The elastic constants of equivalent panels are next determined
(Table 5). Then, assuming an arbitrary bending-moment diagram (M =100)
for the statically-determinate case, and applying column analogy, we get the
elastic loads on the analogous columns and the moments of these loads
(Table 6), from which the moment M and the forces H and V acting in each
case at the elastic centre of the equivalent panel are found. These are also
shown in Table 6, which includes cases 4 and B of the external panel I, and
which deals only with the left-hand half of the structure, the values in the other
half being symmetrical. From these values, the primary moments (Fig. 13)
are calculated.

Transferring moments to the elastic centre of the virtual equivalent
system on the right of an equivalent panel, we get the values of m, and A, in
the first half of Table 7, from which follow the induced displacements ¢ and 4

979

2809 1370 30 885 %0 2315 5 B 2590
’ = I

i

2835 315 2410

2275 3840

1) y/4 o i T

Fig. 13. Equivalent panels: primary moments

13) BEAUFOY, Op. cit.
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Table 8. Induced displacements of upper
Post 2 3 4
4| 4 s | 6 | 4
Panel T (A) | | -1.36 ] —90.20 | | -0.36 | -24.21 | —0.00 | - 528
|
Panel I (B) || 073 | -80.55|| -0.88 | -23.61 0.05 | - 4.76
|
Panel IT | 001 | -75.03|||-1.60 | -52.30|| 0.02 | -10.84
|
Panel 111 011 | -27.50 || -0.00 | —42.37[|| -0.96 | -30.3|
|
Panel IV -0.01 | -7.99 | -011 | -1233 || 008 | -24.27|
Panel V 0.0l | - 1.93 | -0.00 | 293 | -0.09 | - 59
Table 9. Induced moments (C=1.0)
aoading onl I II I1I v
(Deck) NO | ON op | PO PQ QP QR | RQ
s
T (case B) | |-13.21 | -32.54/| 17.77 | -13.03 | 4.69 | —6.00 | 2.08 | -1.61
|
T (case A) ||-10.79 | —28.09| | 13.12 | -15.49 | 6.38 | —6.01 | 1.90 | —1.81
I 543 | 0.48 |[-13.70 | -30.30]| 11.47 | -13.30 | 4.46 | -3.70
TIT ~2.01 | —0.16 | —4.66 | 2.33 [l~18.85 | -32.40| 9.70 | -10.40
v 058 | 0.02| -L42 | o044 516 | 3.52 -23.15 | —30.65|
\4 04| —002| -032| o018 -132| 059 524 5.22
(Arch) ¢p | pc | DE | ED | EF | FE | FG@ | GF
I (case B) || 84.93 | —47.42|| 33.16 | -21.27 | 12.20 | -5.87 | 2.04 | -1.71
I (case A) | |-10.90 | -56.52|| 41.38 | -21.15 | 11.70 | —6.64 | 2.49 | -1.73
II ~5.60 | 7.32 ||-20.60 | —46.70|| 26.70 | ~13.49 | 4.81 | -3.74
1 —2.06 | 3.06 | -7.91 | 6.12 ||-22.75 | -38.40| 14.90 | -9.37
Iv ~0.60 | 0.81 | -2.22 | 2.01 | -6.80 | 4.86 ||-24.35 | -31.15
Vv ~0.14 | 0.22 | -0.55 | 041 | -1.57 | 144 | -6.09 | 3.90
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ends of posts relative to thevr lower ends

35

5 6 7 8
4 | 4 6 | 4 4 | 4 4 | 4 ¢ | 4
|
0.00 ? ~1.08 | 0.01 | - 0.26 | —0.00 | —0.10 | 0.00 | —0.05 | —0.00 | —0.03
—0.03 | — 1.06 | 0.01 | — 0.23 | —0.00 | —0.09 | 0.00 | —0.04 | —0.00 | —0.03
—0.04 | — 235 | 0.02 | — 053 | —0.01 | -0.20 | 0.00 | —0.10 | —0.00 | —0.06
0.12 f ~ 594 | 001 | - 1.46 | -0.00 | —0.53 | -0.00 | —0.27 | -0.00 | —0.17
. I —
-0.40 | -19.47|| 0.22 | - 435 | —0.05 | -1.71 | 0.01 | —0.81 | —0.00 | —0.54
S R (S S—
| 0.38 | -15.98 ||| 0.38 | —15.98 || —0.09 | —5.96 | —0.00 293 | 001 | 193
! 1 | ‘ |
wn deck members and arch rib
| v VI VII VIII X
RS | SR | ST | 78 | TU | Ur | UV | vU | VW | WV
1 ‘ r
0.35 ' ~0.41 | 0.10 ~0.07} 0.00 | —0.02 | 0.00 | —0.00 | 0.00 | -0.00
045 | 042 | 0.09 —0.08% 0.01 | —0.02 | 0.00 | —0.01 | 0.00 | —0.00
[
086 | 091 | 0.20 | -0.17 | 001 | ~0.05 | 0.01 | —0.01 | 0.00 | —0.01
|
| |
2.74 | -2.28 | 043 | 049 | 0.06 | —0.12 | 0.0l | —0.03 1—0.00 ~0.01
|
| .
6.98 | -7.59 | 172 | -1.40 | 0.10 | -0.39 | 0.06 | —0.08 | -0.01 | -0.04
| |
-25.90 | -25.90|| 5.22 | -5.24 | 059 | -1.32 | 0.18 | —0.32 | -0.02 | -0.14
|
. GH HG | HI | JH | JK ’ KJ | KL | LK | LM | ML
| | |
| 0.40 | -0.34 | 0.04 | —0.10 | 0.03 1 ~0.02 | 0.01 | -0.01 | 0.00 | -0.00
| 0.36 4 ~0.39 | 0.06 | —0.10 | 0.02 | —0.02 | 0.01 | —0.01 | 0.00 | -0.00
[ 0.84 | —0.79 | 0.11 | -0.22 | 0.06 | -0.05 | 0.01 | 0.02 | 0.01 | —0.01
179 | -2.25 | 0.40 | —0.54 | 0.12 | -0.14 | 0.04 | —0.05 | 0.02 | -0.01
| 7.10-‘ —6.48 | 0.85 | —1.80 | 0.47 | —0.42 | 0.10 | —0.16 | 0.06 | —0.04
\\(—24.10 | -24.10|| 3.90 | -6.09 | 1.44 | -1.57 | 0.41 | -0.55 | 0.22 | —0.14
|
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of the upper relative to the lower ends of the virtual equivalent systems; these
displacements propagate to the right to the other panels. The second half of this
table similarly shows the displacements which propagate to the left. This
propagation is shown in Table 8, which gives the displacements of upper ends
of posts relative to their lower ends, as induced from the equivalent panels in
turn, the values being obtained by proportion from those for the partial
equivalent systems (Table 3). These values are now used in conjunction with
the moments in Fig. 12 (which are for unit imposed relative rotations or trans-
lations) to prepare a table of induced moments (for unit C') in the deck members
and the arch rib (Table 9) due to the arbitrary loading condition on the equi-
valent panel.

Step 4. Now assume two end moments M =100 applied at the abutments
in opposite directions. The values of the coefficient C for panels II, IIT and IV
are 0.329, 0.30 and 0.197 respectively; these values, applied to the relevant
figures in Table 9, give the actual primary and induced moments, which are
plotted in Fig. 14a.

o
L L. o

Table 10. Checks for statical equilibrium for the following loadings a) M =100;
b) H=100; ¢c) V=10

Section just left of Post No. 2 3 4 5 6

a) Shear @ in post on left 3.97 6.90 10.42 12.20 6.18
Thrust T in deck = 2@ 3.97 10.87 21.29 33.49 39.67
T-h 23.70 43.48 59.50 75.20 89.10
Moment Md in deck 32.42 22.22 19.42 12.60 5.74
Moment MT in rib 43.95 34.46 21.03 12.22 5.17
Mr+Md+T-h 100.07 100.16 99.95 100.02 100.01
External moment 100.00 100.00 100.00 100.00 100.00

b) Shear @ in post on left +1.72 ~6.68 -28.11 -46.20 -26.75
Thrust T in deck = 2@ +1.72 -4.96 -33.07 —79.27 -106.03
T-h 10.10 -19.84 - -92.70 -178.40 -238.50 |
Moment M ; in deck 39.67 41.69 -63.50 -54.50 —24.85
Moment M, in rib 36.28 —-48.71 -73.84 -52.15 —-21.89
M,+Mg+T-h 86.05 | —110.24 | -230.04 | —285.05 | —285.24
Eaxternal moment —-86.00 110.00 230.00 285.00 285.00

¢) Shear @ in post on left 3.78 4.91 3.56 -2.21 -10.05
Thrust T' in deck =X2Q 3.78 8.69 12.25 10.05 0
T-h 22.50 34.80 34.30 22.60 0
Moment M ; in deck 35.10 14.78 5.41 -3.61 0
Moment M, in rib 47.02 25.45 5.24 -4.00 0
M, +My +T-h 104.62 75.03 44.05 14.99 0
Eaxternal moment -105.00 —75.00 —45.00 —15.00 0
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The deflection line for the arch rib, assuming a trapezoidal bending-moment
diagram in each arch segment between two spandrel posts, may be obtained
by the moment-area method; values of the horizontal and vertical displace-
ments 4 and A respectively of points on the arch rib relative to the tangent
to the rib at the crown are shown in Table 11a. Since the deflection line drawn
from these values is due to an end moment M =100, it follows from equation
(2a) that the total elastic area S for the whole system with reference to A

and B is

97.54

‘10—0 —~ 0.975,
while, from equation (2b), the height 7 of the elastic centre above the springing
line 4 B is

190.5

M - 3.90 ft.

The deflection line can also be obtained relative to the tangent to the rib at
the end B; the values are given in the Table.
Hence, from equation (2¢), the horizontal distance Z of the elastic centre

from the end A4 is
1316.8

97 54 = 13.5 ft.

which conforms to the requirements of symmetry.

Now that the position of the elastic centre has been determined, consider
a horizontal load H =100 to act on the arch through its elastic centre and
through a rigid arm connected to end 4. The coefficients C' for the internal
panels, by which the moments in Table 9 have to be multiplied, are — 1.63,
— 1.5, and —1.005 for panels II, IIT and IV respectively. For external panel I,
the statical bending-moment diagram over C D is trapezoidal with values of
M;=330 and M, =86. The panel may, therefore, be considered as subject
to a case A loading with M = — 244 or (' = —2.44 plus a case B loading with
M =330 or C=3.30. The resulting bending-moment diagram is shown in
Fig. 14b.

Deflections relative to the tangent at the crown are given in Table 11b.
Since the force H acts through the elastic centre, the inclination of the end
tangent relative to the tangent at the crown is zero. The displacement of end 4
relative to end B is, therefore, a pure horizontal translation 4 of amount

2.279.2 = 558.4.
Hence, from equation (2d),
_ 558.4

I, = 100

= 5.584.

Consider next a vertical load V =10 acting downwards on the system
through the elastic centre, which is rigidly connected to end 4. The coefficients



39

Open-Spandrel Arch Analysis Assuming Continuity of Structure

0 7&°0 66°0 LET AI°r geo 0¢'0— 86— or'I— 0 oNyoa
10puuLad X
0 ¥¢°0 16°0 0¢'1 701 8%°0 9¢°0— (A L4 0 Y 18310,
0 L8G'0— | €61~ | QLG | €L 08°'L— 08°6— 69°T1- G6'cI— 09°61— |991°0—= a J0yY
0 8¢9'0 |[G38'1 ¥8°C 8¢°¢ 8¢°¢ ¥8°¢ GG8'1 8¢9°0 0 L'0 = Yyaoyy
0 8630 |8I0'T 80'¢c |¥6¢€°¢ 6% 99 gg'sg g8'01 0¢°¢l €0'T =W a0y Y
J AUeWOW PUe-pexy 10§ oul] souenpuy (p
0 970'0 |88I°0 |6l6'0 |G36F°0 848°0 8§64°0 69870 766°0 00°r anjoa
1yusuLadry
0 ¥90°0 |E€¥1°0 | LLGO |[PGFO 9L¢’0 €GL0 LGSR0 966°0 00°'1L X
A uonoeal
PUo-poxy J03 oul] eousnpul “zIA ‘UOIJB[SUBI) [BO1I0A JIun 03 Sulpuodsediod ‘g pue Je jueSue) 0} OAIB[RL ‘OUI[ UOIJOSPA(T
0 EI'T— |06°LE— | GFCI—|SE°0¥¢—| 19°69€—| T 9¢%—| 6L'B0S9—| S0°GEY9—| &'8¥L—| 9'%E8—| LT ILS—| F'TLS— X
0 ¢y |e¥'ec |[¥S¥E |FVIF | 9T'EP 96'%¥ ¢
g pue 98 JueluB} 0} 0A1B[aI ‘O] = /4 JI0J SUONRPS( (o
968°0 ¥94°0 E9F°0 ¥or°0 0 ngoa
101UULId X
6L8°0 €g98°0 8GL0 L9¥V°0 191°0 ¢00°0 0 X
H 6nay)
PUe-pOXy IO} OUl] eouenjul ‘ZIA ‘UOMEB[SURI} [BIUOZLIOY JIun 03 Surpuodserioo ‘g pue 9e juoSue) 0} OAIJB[Od ‘OUI] UOTFORPS(T
0 1'8— 6'%8— | 9G°0€c—| TO'10¥— L'L8%—| L'06%— Y
0 0 oT'vI— 1°¢L— 6°681—| 9°GLG—| G 6LG— 4
0 8'01— | C9'96— LT'%S— | 08G9~ | 08'el— 0 ¢
UMOIO J8 Juedus) 03 0ATIR[AI ‘(0] = J I0] suorpoepge( (q
0 ¢80 6°8¢ 6’86 | 01'60G |8S°63¢ 8°00¥% 6'GLY $0'1%9 S¥°0€8. T°'€G601 8'8GGI| 89161 Y
0 1Y 9°L1 L6 | 9868 |1G°9¥ LL'8% 8819 69°L¢ ¥8°L9 ¥6°6L ¥1°%6 ¥G'L6 ¢
g Puse 9 JueduB] 01 AR ‘OUI] UOTJOSPS(T
0 ¢6'1 GL'0C 16°69 Sr oVl ¢8'¥6C | 98°L9T ¢
0 0 9%'¢— GL'0G— | 9L0L— €'e91—| ¢<061— 4
0 98°G 6’8 LO'61 LT'TG Lg 9% LL'8¥ ¢
UMOIO B JueTur) 0} OATJB[AI ‘()0 = Ji7 JI0J SUO}oSPe( (e
q W T X r H UMoIy) O o 4 a 0 V jurod

APuo HIr

“of saugy wonoanfoq [T 219w,

4 Abhandlung XIII



40 L. A. Beaufoy

C for the loading of internal panels II, III, IV and V are 0.0453, —0.075,
—0.212, and —0.30 respectively; the signs of these quantities for correspond-
ing panels on the right of the crown are reversed.

The statical bending-moment diagram for the external panels is trapezoidal
along the rib segments CD and LM, and may be considered as subject to a
case B loading with M ,=130 or C' =1.30, plus a case A loading with M, = —25
or C = —0.25. Fig. 14c shows the bending-moment diagram.

Deflections relative to the tangent at the fixed end B are shown in Table 11ec.
At end A4, the deflection A is —872.4 so that, from equation (2f), the vertical
displacement I, due to V' =1.0 at the elastic centre is 87.24. The elastic cons-
tants for the open-spandrel arch are now determined. They are: S =0.9754;
x=13.5; y=3.90; I,=5.584; I, =87.24; from equation (2e) it can be seen that
I,,=0. From these values, the stiffness factors for the end 4 are readily found,
by substitution in equations (3), to be: my=5.846; hy=0.70; v4=0.155;
hy=0.179; v, =0.0115.

Influence lines for the fixed-end reactions are calculated by proportion
from the deflection lines (Table 11). Thus, that for H is obtained as the deflec-
tion line, relative to the fixed ends 4 and B, due to the application at the
elastic centre of a force h,=0.179 which will produce only a unit horizontal
translation at the end 4. The ordinates of this influence line are given in the
Table at (b). Similarly, a vertical force of vy =0.0115 at the elastic centre pro-
duces a deflection line which is the influence line for V at the abutment
(Table 11¢).

To produce a pure rotation of unit amount at the springing A4, the necessary
forces at the elastic centre are:

mo = 'i = 1.026,
-8
hy =2 =0.70, and
I,
-
vy, =—— = —0.155.
0 Iy

From the bending-moment diagrams and deflection lines obtained for the three
cases of loading M, H and V, the total bending-moment diagram and deflec-
tion line due to m,, h, and v, applied simultaneously can be readily obtained
by summation. This deflection line is the influence line for the fixed-end moment
at the abutment 4 (Table 11d). The bending-moment diagram due to an
imposed rotation ¢=10.0 at the end 4 is given in Fig. 15.

The influence lines calculated above are compared in Table 11 with those
obtained experimentally!4); in Fig. 16 they are plotted, and the calculated
influence lines for the arch rib only, which are also shown, indicate the extent
of the participation of the deck.

1) WiLsoN and KLUGE, op. cit.
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Fig. 15. Bending-moment diagram produced by pure unit rotation of free end 4
(end B fixed)
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Fig. 16. Calculated and experimental influence lines for fixed-end reactions (a) for H; (b)
for V; (c) for M. Calculated influence lines for the arch rib only are shown in dotted lines
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397

7225

Fig. 17. Bending-moment diagram (a) for given loading case compared (b) with that
for arch rib only

Stress Analysis

The effect of a particular case of loading on the structure, viz. a concen-
trated load of 100 tons at point P (Fig. 17) will now be considered.

Step 5. From the influence lines, the fixed-end reactions due to the applied
load are found; they are indicated on Fig. 17.

Step 6. For each equivalent panel, the statical bending-moment diagram is
determined from the loading condition under consideration and this fixes the
value of the coefficient C' for the panel. For internal panels, if M, and M,
(Fig. 18) are the moments of all forces to one side about the two lower joints,
M, being about the joint nearer to the centre of span and the signs being as
shown in the figure, the coefficient C' is :
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in which the factor 100 appears in order to correct for the fact that the cha-
racteristic bending-moment diagram previously obtained was for M =100. For
the two external panels the bending-moment diagram for the main system is
divided into a triangle and a rectangle, as previously stated. The values of C
for the different panels are listed in Table 12. ;

Step 7. These values of C' are now applied in turn to the moments shown
in Table 9, which are for unit C, and the proportionate moments for each
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Fig. 18. Signs used in deriving the coefficient ’ AL N S I
C for an internal equivalent panel in the stress ‘;,/,: s

analysis N, A
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Table 12. Values of the coefficient C for the various equivalent panels when a load
of 100 tons is applied at point P

Panel c Panel C
I (case B) -1.072 V1 0.036
I (case A) 0.995 VII -0.304
11 1.635 VIII -0.512
IIT -0.516 IX (case B) 0.708
v -0.567 IX (case A) —0.788
v —0.430

panel are then summed to give the total moments, shown graphically in
Fig. 17a, which is the bending-moment diagram for the assumed loading case.
The resultant line of thrust for the arch rib and deck and for the arch rib only
without a deck are shown in the figure, while the corresponding bending-
moment diagram for an arch rib only is also given for comparison in Fig. 17b.

Checks and Comment on the Analysis

Checks will now be made on the calculations, which were all performed by
slide rule, in order to demonstrate their self-consistency. First consider the
bending-moment diagram for end moments of M =100 (Fig. 14a). For any
vertical section cutting both the deck and the arch rib the sum of the moments
of the internal stresses, including both forces and moments, in the two cut
sections about any point along the vertical section must be equal to the
moment M =100. Taking moments about the point of intersection of this
vertical section with the arch rib the following expression must apply

M. +Mz;+T-h =100

where M, is the moment in the rib, M, the moment in the deck, 7' the thrust
in the deck, and % the distance between the two points of intersection of the
vertical section with the arch rib and deck. Appropriate signs have to be
employed in this equation. The thrust 7' in the deck is readily obtained as the
sum of the shearing forces in the spandrel columns on either side. Taking the
vertical sections just to the left of the spandrel columns the sum of these
moments is as in Table 10a, which reveals an interesting fact. A great part
of the externally-applied moment is resisted by the thrust transmitted to the
deck through the spandrel columns. As we move towards the centre of the
arch, this part becomes the most important one in resisting the moment, the
value it contributes increasing from 23.79, in the first panel up to nearly 909,
of the whole moment in the middle panel.

Next, consider the bending-moment diagram for H =100 (Fig. 14b), where
the moments of the internal forces on any vertical section about its intersection
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with the arch rib must balance the moment of the external force H =100
(Table 10b). It will be seen that the greater part of the external moment is
balanced by the thrust transmitted to the deck through the spandrel columns;
at the central panel this part amounts to about 849 of the total moment. It
will also be seen that the moments produced in the spandrel columns are large;
in the internal panels they are of the same order of magnitude as the moments
produced in both the arch rib and the deck. The spandrel columns are, however,
of much smaller section. Furthermore, the thrust produced in the deck is very
high. In those panels in which the resultant line of thrust (that of the xz-axis
through the elastic centre) falls inside the panel, the thrust in the deck reduces
the thrust in the arch rib and in that way assists the rib. Towards the centre,
however, where the resultant line of thrust falls outside the panels, this thrust
acts in the same direction as the external force H =100, and so the thrust in
the arch rib is increased. Thus, in the central panel, in which the deck is in
tension, 7'=106.03, a higher value even than that of the external force. It will
be seen that the thrust at the crown in the arch rib =100+ 106.03 =206.03.
The thrust in the deck, then, does not always assist the rib; a fact which
becomes of importance in a consideration of shrinkage and temperature
stresses.

The check for statical equilibrium in the case of V' =10 is similarly given
in Table 10c.

The effect of deck participation for this particular case of loading may
now be studied. First, it will be seen (Fig. 17) that the line of thrust has moved
closer to the springings 4 and B, thereby reducing the fixed-end moments by
as much as 409, at 4 and 369, at B. At these ends, the fixed-end moments
are totally resisted by the arch rib; the reduction is therefore of great value.
In the external panels, also, the contribution of the deck to the resistance to
external moments is small, indeed almost negligible, owing to the very small
shearing forces in the columns; but these external moments are already reduced
by 409, and 369%, by the deck participation which brought the line of thrust
nearer to the arch rib in these panels. On the other hand, this reduction in the
fixed-end moments gives rise to an increase in both the positive and the nega-
tive moments in the internal panels, where the resultant line of thrust is
moved further from the arch rib, as shown in Fig. 17a. In these panels, however,
there is an important item to be taken into account, which, together with the
moments already transmitted to the deck, greatly relieves the moments in the
arch rib; this item is the thrust transmitted to the deck through the shear in
the spandrel columns. Thus, at J in the arch rib (Fig. 17b) the moment on the
arch rib only is 43. In the open-spandrel arch the moment in the deck is 17.6
(Table 13), the moment about J due to the thrust in the deck is 30.3, and the
moment in the arch rib is 20.7, giving a total of 68.6, which is greater than 43.
By comparison, the figure for the arch rib alone is only 20.7, which is less
than 43. The important item is evidently the thrust 11.2. It will be seen from
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Table 13. Check for statical equilibrium in the case of the applied loading of
100 tons at pownt P

Section just left of Post No. 2 3 4 5 ‘ 6
n |
Shear Q in post on left 076 | 593 ~10.26 |  7.55 | 1860
Thrust 7' in deck = 2Q ~0.76 ~6.69 ~16.95 | -9.40 |  9.20
T-h | —4.50 ~26.70 ~47.20 ~21.00 |  20.90
Moment M ; in deck ’ 7.65 -52.42 - 6.77 14.37 16.24
Moment M, in rib | 462 | -80.07 | - 5.87 14.99 14.54
M, +My+T-h 7.77 | —159.19 ~59.84 8.36 51.68
Eaxternal moment -7.5 158.3 I 58.9 -9.6 -52.5
9, M resisted by T 5 179 [ 799, 1 409,
|
Section just right of Post No. 5 6 E 7 8 9
! |
Shear @ in post on right ‘ -8.10 6.00 ! 7.71 3.06 0.43
Thrust T in deck =2Q | 9.10 17.20 | 11.20 | - 3.49 0.43
T-h . —20.70 -38.80 | -30.30 ~14.98 -2.56
Moment M, in deck 6.38 -7.03 | -17.60 | -17.88 1.05
Moment M, in rib 5.97 —4.47 | -20.69 | -24.06 —6.40
M,+Mg+T-h . 835 | 503 | 6859 | -56.92 ~7.90
External moment 96 | 520 | 69.80 56.2 | 1.6
9, M resisted by T | 779% | 449% | 269% 329,
< 5 I ;

Table 13 that the percentage of the moment resisted through the balancing
action of this thrust is considerable, amounting to 799, for the section just to
the left of post 4 and 779, for the section just to the right of post 6. Conse-
quently, moments in the arch rib in panels where the resultant line of thrust
has been moved further from the arch rib and where an increase in these
moments might have been expected are, in fact, less than the corresponding
moments produced by the same load in the same arch rib without a deck.
This reduction is considerable and may amount to more than 609, as will be
seen by a comparison of the bending-moment diagrams for the arch rib and
deck and the arch rib only (Fig. 17).

So far, the role played by the deck has been an assnstmg role, but it is of
interest to enquire into the stresses produced in the deck itself and the extent
to which the thrust in the arch rib has changed. Large moments have developed
in the deck, greater even than was suggested by NEWMARK %) who claims a
moment distribution between the arch rib and deck in the ratio of the moments
of inertia of their cross sections. Furthermore, a comparatively large thrust
has been transmitted to the deck through the shear in the spandrel columns.

15) NEWMARK, ‘“‘Interaction between Rib and Superstructure in Concrete Arch
Bridges’, Transactions, American Society of Civil Engineers, vol. 103, 1938.
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Table 14. Ratios of the thrust in the deck and the horizontal thrust in the rib to
the horizontal reaction at the abutments

Panel I 5 I 11 ’ v A% VI VII | VIII IX
|

Thrust 7T in l t !

deck -0.76 , —6.69 %~16.95 - —9.40 9.20 | 17.20 | 11.20 = 3.49 0.43
Horizontal | ‘ |

thrust ] |

H, in rib 45.94 | 40.01 | 29.75 | 37.3 5.97 | 63.90 | 57.90 | 50.19 | 47.13
T/H (%) 1.65 | 14.4 | 36.3 | 20.2 [-19.7 -36.9 ~24.0 | 75 | 0.9
H,/H (%) } 98.35 | 85.6 | 63.7 . 79.8 |119.7 [136.9 i124.0 107.5 [100.9

, i J

As will be seen from Table 14 this thrust, which may be either tensile or com-
pressive, reaches 379, of the horizontal reaction at the springings in panels
I1I and VI. In panels where the deck is in compression, the arch rib is relieved
of a part of the thrust which would otherwise have existed. On the other hand,
where the deck is in tension, the arch rib carries a greater thrust than that
due to the full external reaction alone. In panel VI, the horizontal compressive
force H in the arch rib is as high as 1379, of the horizontal reaction at the
springing owing to a tensile force, equal to 379, of this reaction, which has
developed in the deck. This is therefore a harmful contribution by the deck
to the arch rib. In general, this harmful contribution is to be expected where
the resultant line of thrust falls outside the open-spandrel arch panel.

Conclusions

A method has been evolved which provides an exact solution without the
need for solving the considerable number of elastic equations necessary in the
classical methods. All computations are reduced to a form in which they may
be made by slide rule. Multiple open-spandrel arch systems may equally be
solved as, by this method, the elastic constants for particular spans become
readily available.

Comparison with some experimental results shows exceedingly close
agreement. The shear resistance of the spandrel columns is shown to be an
important item in deck participation, enabling a large thrust to be transferred
to the deck.

Summary

Designers of arch bridges have long recognised the existence of inter-
actions between the arch rib, the spandrel columns and the deck in the case
of open spandrel structures having full continuity.
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The theoretical analysis of such a structure has, however, always been
regarded as so complicated that it has seldom been undertaken. Experimental
evidence has provided some indication of the effects of deck participation in
the stresses but there has been no information as to the quantitative distri-
bution of stresses between the arch rib and the deck.

In this paper a method of theoretical analysis is developed which enables
the interactions between the arch rib, the spandrel columns and the deck to be
taken into account.

The elastic properties of the structure, valid for all conditions of loading,
are first evaluated; once this has been done the effects of any desired loading
conditions can be quite rapidly determined. In this method, elastically equi-
valent closed panels are used in replacement of the whole structure. The pro-
cess employs only simple arithmetical operations and no simultaneous equa-
tions so that the whole solution becomes a slide rule job.

The method is applied to a case for which experimental results are available
and, where comparison can be made, agreement is found to be very good. The
theoretical analysis, however, yields much information that was not available
from the experimental work.

The method can be used to investigate stresses due to particular loadings,
influence lines for desired stress components, effects of expansion joints,
temperature effects, etec., and can be applied equally to the solution of multiple
arch systems.

Résumé

Les spécialistes du calcul des ponts en arc, ont depuis longtemps reconnu
P’existence d’influences réciproques entre les membrures de 1’arc, les colonnes
du tympan et le tablier, dans le cas des ouvrages a tympan ouvert présentant
une pleine continuité.

L’étude théorique d’un tel ouvrage a toutefois été toujours considérée
comme si complexe qu’elle n’a été qu’assez rarement entreprise. La pratique
expérimentale a fourni quelques indications sur 'influence de la participation
du tablier aux contraintes; toutefois, nous ne disposons d’aucune information
sur la répartition quantitative des contraintes entre les membrures de 1’arc
et le tablier.

L’auteur du présent rapport expose une méthode d’analyse théorique qui
permet de tenir compte des actions réciproques entre la membrure de 1’are, les
colonnes du tympan et le tablier.

I1 détermine tout d’abord les propriétés élastiques de 1’ouvrage, propriétés
valables pour toutes les conditions de charge; aprés cette premiére étude, il est
possible de déterminer trés rapidement ’influence de toutes les conditions de
charges voulues. Dans cette méthode, I’ensemble de 1’ouvrage est remplacé
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par des panneaux fermés élastiquement équivalents. Ce procédé ne fait inter-
venir que des opérations arithmétiques simples, sans systémes d’équations,
de sorte que dans son ensemble la solution ne constitute qu’un travail de
regle & calcul.

Cette méthode est appliquée a un cas pour lequel nous disposons déja de
résultats expérimentaux et ou les comparaisons révelent une excellente con-
"cordance. Toutefois, 1’étude théorique fournit de nombreuses informations
qu’il était impossible de tirer de 1’étude expérimentale.

Cette méthode peut étre utilisée pour les recherches importantes sur les
points suivants: contraintes dues & des charges particuliéres, lignes d’influence
relatives & des composantes déterminées, influence des joints de dilatation,
influence de la température, etc. La méthode peut également étre appliquée
a la solution des systémes & arcs multiples.

Zusammenfassung

Bei der Konstruktion von Bogenbriicken wurde das Vorhandensein von
Wechselwirkungen zwischen den Bogenrippen, den Stiitzen und der Fahrbahn
bei Tragwerken mit monolithischem Zusammenhang schon lange erkannt.

Die theoretische Berechnung solcher Tragwerke wurde jedoch immer als
so kompliziert angesehen, daf sie selten durchgefiihrt wurde. Versuche lieferten
die Anzeichen fiir das Mitwirken der Fahrbahn, aber sie gaben keinen Auf-
schiuf} iiber die quantitative Verteilung der Spannungen auf Bogenrippen und
Fahrbahn.

Im vorliegenden Beitrag wird eine Berechnungsmethode entwickelt, welche
die Beriicksichtigung des Zusammenwirkens von Bogen, Stiitzen und Fahr-
bahn ermoglicht.

Die elastischen Eigenschaften, die fiir alle Belastungsfille giiltig sind, wer-
den zuerst berechnet; wenn das geschehen ist, kann die Wirkung jedes einzelnen
Belastungsfalls ziemlich rasch bestimmt werden. Die Konstruktion wird fiir
die Berechnung ersetzt durch elastisch dquivalente geschlossene Rahmenfelder.
Der Rechnungsgang erfordert nur einfache arithmetische Operationen und
keine Auflésung von Gleichungssystemen, so daf3 die ganze Berechnung mit
dem Rechenschieber durchgefiihrt werden kann.

Die Methode wird auf einen Fall angewendet, bei dem Versuchsresultate
verfiigbar sind. Die Vergleiche zeigen eine gute Ubereinstimmung der Resul-
tate. Die theoretische Berechnung liefert jedoch viele Aufschliisse, die aus den
Versuchen nicht erhiltlich waren.

Die Methode kann verwendet werden zur Untersuchung von Spannungen
infolge Teilbelastung, von EinfluBlinien fiir bestimmte Spannungskomponen-
ten, der Wirkung von Dilatationsfugen, von Temperaturwirkungen, usw. Sie
kann auch zur Berechnung von Bogenteilen herangezogen werden.
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