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Forméinderung der hyperbolischen Paraboloidschale
Deformation of hyperbolic-paraboloid shells

Déformation des vodtes minces en forme de paraboloide hyperbolique

Prof. Dr. Ing. SHI1ZUO BAN, Kioto Univ., Kioto

1. Einleitung

Die Theorie der hyperbolischen Paraboloidschale ist heute soweit ent-
wickelt, dafl die Membranspannungen fiir die verschiedenen Belastungen aus-
reichend bekannt sind. Die Form#nderungen, die der Membrantheorie ent-
sprechen, sind meines Wissens noch nicht entwickelt worden. Um die Liicke
auszufiillen, legt der Verfasser hier einen Aufsatz vor, in welchem die Differen-
tialgleichung fiir die Verformung der allgemeinen Translationsschale aufgestellt
wird. Fir die hyperbolische Paraboloidschale ist es mir gelungen, die Losung
auszurechnen.

2. Geometrische Beziehungen der Schalenfliche (s. Fig. 1)

Gleichung der Schalenfliche z=—ay (1)
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Neigung der Flichen in z-Richtung tge = % = % :
0z x (2)
Neigung der Flichen in y-Richtung tgy = 7y =
Winkel zwischen den beiden Geraden:
. . xy
cosd = singsinyg = 3
P ) @

Winkel zwischen den beiden Diagonalen des Flidchenteilchens:

2 Y1 +tan2 ¢ + tan2y
V2 + (tan g + tan )% V2 + (tany —tan )2,

wobei der Einfachheit halber dx = dy angenommen ist.
Die Richtungskosinusse der Flichennormale sind

sin® =

tan @ Y
coS o = = =,
J1+tan2p+tan2y R
tan x
cosf = = e ,
g J1+tan®p+tany B ()
cosy = ! _ L
4 y1+tan®?g+tanzy B
wobei R = Yn?+a2+y? eingesetzt ist.
Das Flichenteilchen der Schale berechnet sich aus
iF =W _E (6)
cosy n

und die Seitenlinge des Teilchens aus

dx
S =
? cosg

1 55—
. Yn2 +y? da,

(7)

_ 4y _ 1o
d8¢_cos¢ —;Vn +x2 dy.

3. Die Membrankriifte

Die Membrankrifte werden mit N, N b T bezeichnet und die Teilkrifte
der duBeren Lasten in den Achsenrichtungen mit X, Y, Z, wobei die letztere
Gruppe auf die Flicheneinheit des Grundrisses bezogen ist. Aus den wertvollen
Aufsitzen von A. PucHER [1] und K. G. TESTER [2] ergeben sich

*2F

—rl — . L4 1
T o=rh=—g o ==y 24Xyt Vo), (8)
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_ _cosyp[PF [® __cosy oT

No=-0,h = cos<p{3y2 _J‘Ode}— 005(P{f(3y +X) 4o +Cy (y)}, ®)
_ _cose[B*F (¥ __cosg eT

Ny=oyh= cos¢{6m2 OYdy}_ cosl,l/{f(@x +Y)dy+C (@), (10)

wo h die Schalendicke bedeutet.
Auf einzelne Belastungsfille geht der Verfasser nicht ein.

4. Verzerrung bei schiefwinkligem Spannungszustand

Entsprechend der GrundriBprojektion dx-dy hat das Schalenteilchen die
Form eines Parallelogramms, dessen Seiten mit den Richtungen der inneren
Krifte T, N, N, iibereinstimmen. Wir bezeichnen die Spannungen mit o,
oy, 7 und die Verzerrungen in denselben Richtungen mit ¢,, ¢,, y. Da die
Léngsspannung o, auf der Schnittfliche schiefwinklig gerichtet ist, ergibt sich
die Verzerrung zu o,/Esind in der ¢-Richtung und ve,/Esind in der dazu
rechtwinkligen Richtung. Es 148t sich leicht beweisen, dafl die Verzerrung in
der -Richtung mit vo,/E sind tibereinstimmt. Dann erhalten wir

J
Ny
oo oo
Fig. 2
1
€= Fsins Yo V%) (11)
1
6()[, = m(c(ﬁ—'l/()'(p). (12)

Unsere weitere Aufgabe besteht nun darin, die Beziehung zwischen + und
y zu suchen. In Fig. 3 nimmt man an, dafl lings der Seiten 4B und AC nur
eine Schubspannung wirke. Dieser Spannungszustand wird durch zwei Lings-
spannungen o, und oy, in Richtung der Diagonalen ersetzt. Das Gleichgewicht
der Spannungen in dem Dreieck A BC erfordert

AD _ V2 + (tan i + tan )2
BC Y2+ (tan ¢ — tan )2’
BC V2 + (tany — tan )2

Og, =T —— = — s 14
%= T AD 1-}/2+(ta.nz,l:+1;a,n<p)2 (14)

C'd1=7'

(13)
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wobei dy = dx angenommen ist. Da die beiden Diagonalen den Winkel & ein-
schlieBen, ergibt sich die Verkiirzung der Diagonale BD zu

1
Esin®
Da lings der Seiten 4B und AC keine Lidngendnderung vorhanden ist,

wird die Anderung des Winkels § nur durch die Verkiirzung der Seite BC
hervorgerufen. Bezeichnet man die Winkeldnderung mit y, so lautet

4BC = BC - Og,~VOy)- (15)

BC
Y= AB-AC-sin s 4B
BC? 1

= 4B AC-5ins Bsin® '~ ‘aTVo);

wobei das positive Vorzeichen die Abnahme des Winkels bedeutet. Setzt man
Gl. (13), (14) und (15) in die oben eingefiihrte Beziehung ein, so erhélt man

__cospcosy 24 (tany —tan )?
sind 21 +tan%p +tan2y

X [(2+ (tan ¢ —tan @)% +v {2 + (tan ¢ + tan ¢)?}] Ei (16)

Fiir die hyperbolische Paraboloidschale nach der Gl. (1) geht dieser Aus-
druck iiber in:
' _cosgcosyp 1 7T

~ sind 2R Er (17)
WO R = Vn24+a2+92, (18)
I'=[2n*+ @y [20°+@—y)*+v{2n*+ (x +y)2] (19)

ist. Bei quadratischem Flichenelement sind einzusetzen

Loy =T, oy =—-7, BO=V24, C=V2A4B, sind=1, sin®=1,

und der Ausdruck fiir y vereinfacht sich bekanntlich auf
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5. Aufstellung der Differentialgleichung der Forminderung

Fig. 4

Wir nehmen die Verschiebungen in der z-, y- und z-Richtung und bezeich-
nen diese mit u, v und w. Zuerst betrachten wir die Teilverschiebung » geson-
dert und deswegen die Flichengerade AC, die parallel zur wz-Ebene sich
erstreckt (s. Fig. 4). Die Fig. 4 stellt eine Flichengerade AC vor und nach der

Verformung dar, woraus zu entnehmen ist, daf3 der Zuwachs % dx die Langen-
. 0 0 . o e
anderung % dxcose und ebenso Verdrehung -— 53 dx sin ¢ C;;‘p einfiihrt.

Durch die Verdrehung dndert sich der Richtungskosinus und zusammenhén-
gend der Winkel 8§ zwischen AC und 4 B. Die Richtungskosinusse sind

vor der Verformung CcoS @, 0, sin g,

. : 0 .
und nach der Verformung cos (<p — g—z CcOS @ Sin <p) , 0, sin ((p — % cos @ sin (p) .

Die Lingeninderung und Drehung, die von den anderen Ursachen her-
riithren, lassen sich in &hnlicher Weise ermitteln. Fiir samtliche Verschiebungen
sind alle notigen Zuwachse, Verdrehungen und Richtungskosinusse in der
Tabelle 1 zusammengestellt.

Dividiert man die Léngeninderung durch die Seitenlinge dx/cos¢ bzw.
dy/cos i, so erhidlt man die Verzerrungen:

€p = %;i cos?e + %Siﬂ(pCOS(p (20)
€) = %cos2¢+-g—;usin¢cos¢ (21)

An Hand der Richtungskosinusse erhdlt man nun die dritte Gleichung der
Verformung, indem man die Anderung des Winkels 8 berechnet. Zum Beispiel
berechnen wir die Winkelénderung infolge der senkrechten Verschiebung w,
die mit y,, bezeichnet und als positiv gewéhlt wird, wenn der Winkel sich ver-
kleinert. Nach der bekannten Beziehung der Raumgeometrie erhalten wir

ow ow
_ — g L et ; % cos?
cos (8 —y,,) = sin ((p +—cos (p) sin (z/1+ 7y cog z,l;)
oder

. : . : 0 .
cosd +ywsind = sinpsinyg + —Z% cos3<ps1n¢+—8—;£cos3¢sm<p
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Setzen wir Gl. (3) ein, so erhalten wir

ow

ow
— $ ol A
Yo = (896 cosd psin + 5y oS ¢51n¢)

Die anderen Winkeléinderungen infolge der Verschiebung » oder » werden
in dhnlicher Weise ausgerechnet und schliefllich erhalten wir

_(0v 0w\ cospcosp [(du ov_
y = (87+@) s (axcos cp+5§cos i) cot 8

sin &

ow ow
3 1 3 1
+ (8x cos3 @ siny + 5y cos x/;smqo)

Die Gl. (20), (21) und (22) sind die gesuchten Beziehungen, die fiir die Berech-
nung der Verformung zur Verfiigung stehen.

sin & (22)

6. Losung der homogenen Differentialgleichungen

Setzt man e, =€y =y = 0 in die Gl. (20), (21) und (22) ein, so erhilt man
die homogenen Differentialgleichungen, deren Lisungen sind

1 w = konst., » = konst., w = konst. (Parallelverschiebungen)

2 u=—cy, v = cx, w =10 (Drehung um die z-Achse)
3 u=0, v = —cxy/n, w=cy (Drehung um die x-Achse)
4 u=—cxy/n, v=0, w = cx (Drehung um die y-Achse)

Durch Einsetzen in die Gleichungen laf3t sich ohne weiteres beweisen, daf}
diese Losungen richtig sind. Um die Randbedingungen erfiillen zu koénnen,
werden diese spannungslosen Verformungen denjenigen iiberlagert, die die
Schale unter gegebener Belastung annimmt.

7. Partikularlosung der inhomogenen Differentialgleichung

Um eine Partikularlésung auszurechnen, zerlegen wir die Losung in drei
Schritte, die in der Tabelle 2 ersichtlich sind.

Tabelle 2
Fall 1 Fall 2 Fall 3 1+243
w w, Wy Wy wy + Wy +wg
u U, = w;cote Uy = —wy tan @ U = —wg tan ¢ Uy + Uy +Ug
v v = —w, tan ¢ Vy = wycoty vg = —wg tan ¢ Uy + vy + vy
€p €p, = €5 0 0 €
€y 0 €4, = € 0 €
Y "1 Y2 Y3 = Y~ Y172 Y

2  Abhandlung XIII
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Fall 1
Nehmen wir an
Uy = w,cotp = wlgi und v; = —w,tany = ——wlg—, (23)
so erhalten wir
du;  odw, 1 ov, 0wy
dx =~ 0x tang’ oy  dy tan ¢
ou; odw, 1 n ov, 0w wy
oy 0y tango_wlyz’ ox oz tan

Setzt man diese Beziehungen in die Gl. (20) bzw. Gl. (21) ein, so erhilt man
sogleich

w, = [e,tangdz, (24)
€, = 0,
und ferner aus Gl. (22)
COS @ COS w, 1 0w,y
——— ¥ i 25
"1 SinS {eq,tangotanz[r+ n smip By (cot @ +tan ) (25)
Fall 2
Durch Einsetzen von
Uy = —wytang, und v, =w,coty (26)
erhalten wir in derselben Weise
€p, = 0’
wy = [ e tanddy, (27)
und
__cosgcosy wy, 1 OJw,
Ve =T s { ey tanytang + n snig o (cot+tany);. (28)
Fall 3
Mit den Losungsanséitzen
us=—wstang und wv;=—w;tany, (29)

bekommt man
€¢3 =0 und 61/13 = 0

Die Winkelabnahme kann ohne die Ausfiihrung der Integration berechnet

werden. Es wird 9
_ 2wy cospcos

n sin d

Y3 =

Damit nun die Summe der Verschiebungen w = w, +w,+w; die gesuchte
Losung der inhomogenen Differentialgleichungen mit den gegebenen Bela-
stungsgliedern ¢,, ¢, und y sein kann, ist es erforderlich, y; =y —y, —y, zu
wihlen, woraus sich ergibt:
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w3=_

nsin 8 y—yi—ra).
2cospeosy ¥ Y17 Y2

Zusammenfassend ist die Losung wie folgt:

worin wy =

w3 _— =

w; cot ¢ —w,tan ¢ —wztan ¢
—w; cot b +wy tan  —w, tan

Jep,tanpdx = % Jepdx

x
[eytanihdy = . feydy

n sin &

) OOS(pCOS(/J (y—‘}/l_)’2)

(30)

Die Werte von y, und y, werden aus der Gl. (25) und (28) berechnet. Um
die Randbedingung zu erfiillen, fiigt man die spannungslose Verformung hinzu.

8. Abgekiirzte Ausdriicke und Hilfsformeln

In folgenden Rechnungen nimmt der Verfasser nachstehende Abkiirzungen

R = V2?2 +y%+n?

vor:

I
I = [20+ (@—y)] (200 + =y +v{2nt+

(@+9)%]

und gibt auch einige Differentiations- und Integrationsformeln fiir die Funk-
tionen von R an, die bei der Berechnung vorkommen.

0 xz

rERR )

91 _ =z

ox R R3

0 22

0 x__l__ _9{2_ F2
oxr R R R R%
0 1

0 1 x

jj{%dm:lnﬁ

F.? Y

Jy%i@ de = 1 (In |z + R))?

2
fo do— o R+ S In|e+ R|
2
fF =% 3_Ry2
B2 %
PR

x

R
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3
fRdngxR+%Fy21n|w+R| gz—dx=%x2—Fy21nR
1 x 1
Rdx = 1 R® ¥ e —lnR+iF2 )
X

Um die Integration in rascher und iibersichtlicher Weise zu ermoglichen,
ist es zweckméaBig, nachstehenden Ausdruck zu verwenden.

R+x x x3 x’
ln]x—i—R}—lnFy:%lnR_x =F+%R—3+%}F+... (32)
Es sei noch darauf aufmerksam gemacht, dafl der Verfasser in folgenden
Beispielen immer dieselben Randbedingungen annimmt, d. h.

N,=0 fir y=0 und Ny =0 fir z=0.

Diese Randbedingungen sind meines Krachtens ganz passend, wenn das
Schalendach, wie man in Fig. 5 sieht, aus vier hyperbolischen Paraboloid-

flachen zusammengesetzt ist.

9. Anwendungen fiir einige Belastungsfille

a) Gleichmdfig verteilte Belastung des Grundrisses (Schneebelastung)

Die Teilbelastungen sind
X=Y=0, Z=gq (konst.)

Bekanntlich haben wir in diesem Fall
N,=Ny=0 und T =-—}ng.

In diesem besonderen Spannungszustand ist der Fall 3 fiir sich allein maB-
gebend, da die Lidngenverzerrungen ¢, und ¢, in der ganzen Schalenfliche ver-
schwinden. Wir erhalten aus Gl. (17) und (30)

I' ¢
CES T R 8 Ehn (33)
wobei k die Schalendicke bedeutet.

Als Zahlenbeispiel gibt der Verfasser in Tabelle 2 und 3 die senkrechte und
waagrechte Verschiebung, wobei die Grundrif(fliche der Schale 5 X 5 m betrigt
und 7 =10 m angenommen ist. Bei der Auswertung ist v =0,3 zu Grunde
gelegt. Die Randbedingungen sind folgendermafen gewihlt:

w=0 fir e=y=56m; u=0 fir y=0; v=0 fir x=0.
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Tabelle 3. w in q/8 Ehn

11

N 0 1 2 { 3 4 5m
0 470 497 575 706 899 1154
1 497 442 440 450 611 782
2 575 440 367 347 389 490
3 706 450 347 250 220 259
4 899 611 389 220 131 93
5m | 1154 782 490 J 295 93 0

Tabelle 4. « in ¢/8 Ehn (fiir v vertausche man = und y untereinander)

;/Y 0 | 1 | 2 3 4 5m
0 0 0 | 0 0 0 0
1 ~ 523 — 517 | — 517 — 518 — 534 — 552
2 —1061 — 1034 ~1019 ~ 1015 — 1024 — 1044
3 — 1631 — 1553 — 1523 — 1491 — 1485 — 1496
4 — 2252 — 2136 — 2049 — 1981 — 1945 ~1930
5m | —2942 — 2756 — 2610 — 2494 — 2411 — 2365

b) Gleichférmiger Sog in Richtung der Flichennormalen ( Windbelastung

vm Wirbelbereich)
Mit den Belastungen

~q¥ — g -
X~gn, Y g und Z q
ergeben sich als Schnittkréfte
T —+h=_qR*
=T —“%q )
_ _cosy 2 _ 2q F,
th“gwh—_éo—s; gqu——;;xy?;,
2 F,
N¢»o¢k=—-—q—xy?y,
woraus wir erhalten
29 «x
= ~wnrp & W)
2q =
YT T E ’Rg Er=v B,
___1E cosgoosy
Y = TnihE  sins L

(34)

(35)
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Fall 1. Aus der Gl. (24) ergibt sich

2
wy =~y {F2 R—v R(} R* =)}, (37)

und nach lingeren Zwischenrechnungen gelangt man zu

2q cosgcosy

"Z 08Fh T sine 11 (38)
worin
I =2 g ,roy relrer_,R(LR_yp
1=R (y—'vm)+y Y -V § —Y
—F2 2(2y2+n2)R+y2F2—1——vR 3132—33/2——?/i (39)
Yy Y R 3 _R2
ist.
Fall 2. In ahnlicher Weise erhalten wir
20_2lpep_u R R2 2 1
Wy == 557 % —v —x (40)
_ 2q cospcos
Y2 = TEh  sms LY (41)
x?y?
r,= 7 (F2—vF2)+F2{F2R—vR( Rz—xz)}
2 2 2 2 2 1 2 __ 2 x4
Fall 3. Aus der Gl. (30) erhalten wir
(R
W, = — _%—h( r-T, r) (43)

¢) Qleichformige Belastung der Oberfliche
Mit |
Z=%& X=Y=Q
kommt aus Gl. (11)

[ = oo % y{in|z+ | ~InF,).
cosgp 2

Um die Integration leichter durchzufiihren, setzt man den Ausdruck nach
Gl. (32) in die obenstehende Gleichung ein. Daraus folgt

ey (x 12
N(p-—U(ph— 2 F y(R +§—_—RS§)’ (46&)

x
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wobei die Glieder von kleinem EinfluB auBler acht gelassen sind. Da ferner

oho B (v 1Y
N¢,——O’¢h— D) Fy.’l’)(R-f-g R3), (46b)
und T =Th=—€2ﬂR, (46c¢)

1 1

3 3
y 1 93 z 1 23
o= a7 (s ) v R (s ) (*7)
_cospcosy g, 1

sin & 2FEh 203 T

Aus diesen Gleichungen ergeben sich

+ 1 F2 1 2 1
gy CcOS@cCOsy
" T 9Ehn®  sind L (49)
F2 1 a2 F2 1 42
Iy = —x?y? {'1?2/2‘ (1+§—;—%2—) vy (1+ 3 ]zz )}—i—Fz{ (3y*+n*)In R
! 14 14 n2 20t U L SPYF SN IR A | ST
g g (180 14m P nt)— g v (30-200In Rt fom g ) - (50)

Fiir w, und y, vertauscht man « und y sowie ¥, und F, untereinander. Es ist
noch

_ 9 l o
w3*4Ekn2(2F I Fz). (51)

d) Gleichformige Belastung in der y- Richtung ( Erdbebenbelastung)

Ist « der waagrechte seismische Koeffizient und g, das Eigengewicht der
Schale von der Einheitsfliche, so ergibt sich die Massenkraft zu

Y=agy, X=0und Z=0. , (52)
Daraus folgt

%y (R—F,), | (53)

age £, (3 3n?+5a2
Ny=o4h = —5—7;9F~{§yR+———~—(ln|y+R]—lan) ,
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Fz(ln}y+R[—lan)}] ,

und ferner
___%fqg 1 2 3 0 3 n2+5x2
=gt o [ yF 34y F2 R V{ By Ry 20T
o 113 3n2+5x2
e*/l:—?ﬁﬁgoffﬁ [—ényzR+—2—— 2 (ln|y+R[—lnFm)—vayz(R—Fy)] .

Damit die Integration ohne Miihe durchgefiihrt werden kann, ist es zweck-
mifBig, einen angendherten Ausdruck fiir den Faktor (In|y+ R|—In F,) und

(R — F,) einzufiihren, falls er mit v multipliziert ist:

v(nly+R|-InF,)=v-2
1 a2
v(R—F)=v5 &

Diese Anniherung ist zulissig, da v klein ist. Dann erhalten wir

og F, 3 3n2+5x%2 Fp2
fw=‘Mhonz{yFyz(l"?y)_v(ﬁF’”zy*“ 5 Y R)[

. g, {3 7o 3n2+5a? F’ 1 Fp2

— — _ X 2
%= T3Ehn |2 2 (nly+R|-In F)-voy2®

_ agy COS@COoS
Y T4Ehn*  sind

i

(54)

Ein langwieriger Rechnungsgang, den wir hier iibergehen wollen, fiihrt zu

ag
wl = 2Eh0n3y [Fyz (x_Fylnlx‘l'.Rl)
4 5y2—6n? 5 3 nt x
D B S A VB3 _ 4,2 . *
v{gx 3 X+ (2F 4nF+2F)tan Fy}],

_ afgy cos@cosy
"W T 2Ehnt T sind v

F 3 3n2+5x2
I'l = .’,Uyz {Fy2 (1-— —Fy) —V (§Fx2+WFx2)}

F 32

2 2 2 Yy _ 2 DY

+F, {F’y(3y +F, )1n|x+R[+R(R+x) x(F2+2y )}
4

15 A
—vF2 [——x3+——y2x—3n2x+ (ng 4n%+ 3 n ) 2y

3 2F2 R

v 2 F F, 2Fp3

v

a a
+{——F3+4n2F —§—n——(12511’y—4n2 1 _3n )yz}-tan‘l1

2 2
wy = — 20 [Fzyz Mpxz(%1n(y+R[_1an)1n|y+R;

2B hnt”

x? 5
vy (2y -z lnR)]

2
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Y
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(60)
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agy COSgCosy

Y = 9Ehnd  sins ¥ (61)

1 3n2+5 a2 x2

Ficz 2 2 2 1 2,2
+7 —42%(4n%*+522)In |y + R|- -2—lnly+R|—lnFm)—3x y
— (@t 50y B2 (g g iinly+ Bl = gy nFe= g Inly + Rl)
T \R(R+y) R(R+y) * Fp2
4

—vxz(—y2+4x2lnR +%—2)” (62)

und
X

w, = _42-‘20”3 (51’_1”1_1"2). (63)

10. Bemerkungen zur Konstruktion und Ausfiihrung

Firstbalken

[~ ; /
T Binderscheibe T

Fig. 5

Da nur eine Integrationskonstante in der Gl. (9) vorhanden ist, ist es
unmoglich, beide gegeniiberliegende Riander der Teilfliche gleichzeitig frei von
Léngsspannung zu halten. Nimmt man die Bedingung N ,=0 oder N, =0
an dem Firstbalken an, so mufl die dreieckige Binderscheibe imstande sein,
die senkrecht zu der Scheibenebene gerichtete Teilkraft zusétzlich aufzuneh-
men. Falls man dagegen die Bedingung N, =0 oder N, =0 an der Binder-
scheibe annimmt, so ist der Firstbalken in der Lage, senkrechte oder waag-
rechte Reaktion aufzunehmen, je nachdem das ganze Dach symmetrisch oder
antisymmetrisch belastet ist. Die zusammengesetzte hyperbolische Para-
boloidschale unterscheidet sich derartig von der gewohnlichen Translations-
schale, die keine Unstetigkeit an dem Dachfirst besitzt. Aus der Erkenntnis
iiber die Verformung ist es zu betonen, dafl das zusammengesetzte Schalen-
dach nach Fig. 5 nicht biegungsfrei sein kann, wenn es aus Eisenbeton mono-
lithisch aufgebaut ist. Um den biegungsfreien Zustand zu bekommen, wenig-
stens fiir die stindige Belastung, empfiehlt es sich, vier Teilflichen je mit
Randbalken nachtriglich miteinander zu verbinden, nachdem der Schalen-
teil ausgeriistet worden ist. Dabei ist zu beachten, dal die vorldufige Raumfuge
zwischen den Randbalken genug klaffend sein muB, so daf3 die Verformung
der Schale frei erfolgen kann.
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Wenn die Schale nach dem Aufbau belastet wird, wie es bei Winddruck
der Fall ist, so ist die Schubverformung verhindert und demnach wird der
biegungsfreie Spannungszustand ausgeschlossen.
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Zusammenfassung

Der Verfasser gibt zuerst die Beziehung zwischen Spannung und Verzer-
rung, die in den parallelogrammformigen Schalenteilchen erzeugt werden.
Dann wird die Differentialgleichung der Verschiebungen aufgestellt, die allge-
mein fiir beliebige Translationsschalen angewendet wird. Fiir die hyperbolische
Paraboloidschale ist die Losung der Differentialgleichung méglich und einige
Belastungsfille wurden untersucht. Bei der zusammengesetzten Schale nach
Fig. 5 weist der Verfasser darauf hin, wie die Montage der Schale erfolgen muf3,
um den biegungsfreien Spannungszustand zu erhalten.

Summary

The author first gives the relation between stress and strain which subsists
in shell elements in the form of parallelograms. He then sets up the differential
equation of displacements, which is that commonly applied to shells of trans-
lation of any form of section. For the hyperbolic-paraboloid shell the differen-
tial equation is soluble, and a few loading cases are investigated. With the
arrangement of intersecting shells of Fig. 5 the author indicates the sequence
to be followed in erection in order to achieve a bending-free stress system.

Résumé

L’auteur indique tout d’abord la relation qui existe entre les contraintes
et les déformations qui en résultent dans les éléments de volites minces en
forme de parallélogramme. 11 établit ensuite 1’équation différentielle des défor-
mations, équation qui est généralement appliquée aux voltes de translation
quelconques. La résolution de 1’équation différentielle est possible pour le
paraboloide hyperbolique et 'auteur étudie quelques cas de charge. Dans le
cas de la votte composée suivant figure 5, il montre comment doit étre effectué
le montage si 1’on veut obtenir un régime de contrainte exempt de flexion.
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