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Formänderung der hyperbolischen Paraboloidschale

Deformation of hyperbolic-paraboloid shells

Deformation des voütes minces en forme de paraboloide hyperbolique

Prof. Dr. Ing. Shizuo Ban, Kioto Univ., Kioto

1. Einleitung

Die Theorie der hyperbolischen Paraboloidschale ist heute soweit
entwickelt, daß die Membranspannungen für die verschiedenen Belastungen
ausreichend bekannt sind. Die Formänderungen, die der Membrantheorie
entsprechen, sind meines Wissens noch nicht entwickelt worden. Um die Lücke
auszufüllen, legt der Verfasser hier einen Aufsatz vor, in welchem die
Differentialgleichung für die Verformung der allgemeinen Translationsschale aufgestellt
wird. Für die hyperbolische Paraboloidschale ist es mir gelungen, die Lösung
auszurechnen.

2. Geometrische Beziehungen der Schalenfläche (s. Fig. 1)

Fig. 1

Gleichung der Schalenfläche z —xy (1)
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Neigung der Flächen in ^-Richtung tg<p

Neigung der Flächen in ^/-Richtung tg i(j

dx
dz_

dy

IL
n

x
n

Winkel zwischen den beiden Geraden:

cos S sin 9 sin ip xy
l/(x2 + n2)(y2 + n2)

Winkel zwischen den beiden Diagonalen des Flächenteilchens:

2V/l+tan29 + tan2i/rsin®
]/2 + (tan <p + tan ifj)2 J2 + (tan ip - tan cp)2,

wobei der Einfachheit halber dx dy angenommen ist.
Die Richtungskosinusse der Flächennormale sind

cosa

cos ß

cosy

tan cp JL
l/l+tan2(p + tan20 R '

tan0 x

/l+tan2(p + tan2?/r R '

1

_ J_
]/l+tan29 + tan20 R '

wobei R l/n2 + x2 + y2 eingesetzt ist.
Das Flächenteilchen der Schale berechnet sich aus

dF=dxdy ^
cos y n

und die Seitenlänge des Teilchens aus

dx
ds»

v cos Cp

dSj, y—r
v COSl/f

-l/n2 + y2 dx,

— in2 + x2 dy.
n

(2)

(3)

(4)

(5)

(6)

(7)

3. Die Membrankräfte

Die Membrankräfte werden mit N^, N^9 T bezeichnet und die Teilkräfte
der äußeren Lasten in den Achsenrichtungen mit X, Y, Z, wobei die letztere
Gruppe auf die Flächeneinheit des Grundrisses bezogen ist. Aus den wertvollen
Aufsätzen von A. Pucher [1] und K. G. Tester [2] ergeben sich

T =^h--£h -iz+HXy+Yxh (8)
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*.--.*-g{iF-JH--^{J(£+*)*+c-4 <•>

wo h die Schalendicke bedeutet.
Auf einzelne Belastungsfälle geht der Verfasser nicht ein.

4. Verzerrung bei schiefwinkligem Spannungszustand

Entsprechend der Grundrißprojektion dx-dy hat das Schalenteilchen die
Form eines Parallelogramms, dessen Seiten mit den Richtungen der inneren
Kräfte T, N^, N^ übereinstimmen. Wir bezeichnen die Spannungen mit av,
o-0, r und die Verzerrungen in denselben Richtungen mit e^, e^, y. Da die
Längsspannung o^ auf der Schnittfläche schiefwinklig gerichtet ist, ergibt sich
die Verzerrung zu cr^/i^sinS in der 9-Richtung und v aJE sin S in der dazu
rechtwinkligen Richtung. Es läßt sich leicht beweisen, daß die Verzerrung in
der */<-Richtung mit vaJE sin 8 übereinstimmt. Dann erhalten wir

A \rv

M
Ny

B 0

Fig. 2

1

e»==w^s7äkv-v<v)'

e+ Efa8{°*-v,T*)'

(11)

(12)

Unsere weitere Aufgabe besteht nun darin, die Beziehung zwischen r und
y zu suchen. In Fig. 3 nimmt man an, daß längs der Seiten AB und AG nur
eine Schubspannung wirke. Dieser Spannungszustand wird durch zwei
Längsspannungen adl und ad2 in Richtung der Diagonalen ersetzt. Das Gleichgewicht
der Spannungen in dem Dreieck ABC erfordert

_
AD

_
j/2 + (tan 0 + tan g>)2

°* ~T~BC~ T
^(tan^-tancp)2'

BC
_ __

/2 + (tan^-tany)2
*** ~ T AD " T

^(tan^H-tan^)2'

(13)

(14)
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^%f"

Fig. 3

wobei dy — dx angenommen ist. Da die beiden Diagonalen den Winkel ©

einschließen, ergibt sich die Verkürzung der Diagonale BD zu

ABC BC- „
1

„(gfr-vO- (15)

Da längs der Seiten AB und AG keine Längenänderung vorhanden ist,
wird die Änderung des Winkels 8 nur durch die Verkürzung der Seite BG
hervorgerufen. Bezeichnet man die Winkeländerung mit y, so lautet

BC ABGAB-AC'&mh
BC2 1

" ^5.^C-sinS^sin0( G** + va*J>

wobei das positive Vorzeichen die Abnahme des Winkels bedeutet. Setzt man
Gl. (13), (14) und (15) in die oben eingeführte Beziehung ein, so erhält man

cos 9 cos 0 2 + (tan0 — tan<p)2
7 ~ sinS 2 yi+tan2<p + tan2</r

X [(2 + (tan^-tan9)2 + v{2 + (tan0 + tan9)2}]^-. (16)

Für die hyperbolische Paraboloidschale nach der Gl. (1) geht dieser
Ausdruck über in:

coswcosxl) 1 t „ ,,„xy -^L^2BYr (17)

wo R ]/n2 + x2 + y2, (18)

r= [2n2+{x-y)2][2n2 + (x-y)2 + v{2n2 + (x + y)2}] (19)

ist. Bei quadratischem Flächenelement sind einzusetzen

adi r, ad2 -r, BC ]/2 A, C l/2 AB, sinS 1, sin© 1,

und der Ausdruck für y vereinfacht sich bekanntlich auf

y _(l+v)T=S-öf
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5. Aufstellung der Differentialgleichung der Formänderung

X

ru^\A

du
dJCdx

Fig. 4

Wir nehmen die Verschiebungen in der x-, y- und z-Richtung und bezeichnen

diese mit u, v und w. Zuerst betrachten wir die Teilverschiebung u gesondert

und deswegen die Flächengerade AC, die parallel zur #2-Ebene sich
erstreckt (s. Fig. 4). Die Fig. 4 stellt eine Flächengerade AC vor und nach der

Verformung dar, woraus zu entnehmen ist, daß der Zuwachs ^— dx die

Längenänderung -^ dx cos cp und ebenso Verdrehung — ^— dx sin cp —5—^ einführt.

Durch die Verdrehung ändert sich der Richtungskosinus und zusammenhängend

der Winkel 8 zwischen AC und AB. Die Richtungskosinusse sind

vor der Verformung cos 99, 0, sin 99,

und nach der Verformung cos 199 — — cos 99 sin 99 1, 0, sin 199 — — cos 99 sin 991.

Die Längenänderung und Drehung, die von den anderen Ursachen
herrühren, lassen sich in ähnlicher Weise ermitteln. Für sämtliche Verschiebungen
sind alle nötigen Zuwachse, Verdrehungen und Richtungskosinusse in der
Tabelle 1 zusammengestellt.

Dividiert man die Längenänderung durch die Seitenlänge dx/cosy bzw.
dyj'cos ifj, so erhält man die Verzerrungen:

du „ dw /rt^x
€w —- cos2 99 + -— sm 99 cos 99 (20)^ t)v. ' dar. ' 'dx dx

dv 0 dw
-—COS20 + -—
8y T dyH ^7cos2*A + -^-sin^cosi/f (21)

An Hand der Richtungskosinusse erhält man nun die dritte Gleichung der
Verformung, indem man die Änderung des Winkels § berechnet. Zum Beispiel
berechnen wir die Winkeländerung infolge der senkrechten Verschiebung w,
die mit yw bezeichnet und als positiv gewählt wird, wenn der Winkel sich
verkleinert. Nach der bekannten Beziehung der Raumgeometrie erhalten wir

cos (8 — yw) sin 199 + —-cos2 991 sin I ifj + -j— cos2 ifj I

oder 3 2

cos o + yw sin ö sm 09 sm ib + —— cos*5 w sm w + —— cosd w sm w' T T dx T dy
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Setzen wir GL (3) ein, so erhalten wir

(dw dw \ 1

Yw \^— cos399sm^ + ^cos3^sm99 )-r—z\dx T dy T r/sinö
Die anderen Winkeländerungen infolge der Verschiebung u oder v werden

in ähnlicher Weise ausgerechnet und schließlich erhalten wir
COS 99 COS ifj

y sin 8
I TT— cos2 99 + -— cos2 ib I cot 8
\8x T dy 7_ ldv_ du\~ \dx dy)

lSw -* • / dw
<* / • \ l+ (—— cos-5 w sm0 + —— cosd w sm w -7—\ox dy 1 sm~~k, ^^^^ ^^ r^^r ^ (22)

k
#x dy 1 smo

Die Gl. (20), (21) und (22) sind die gesuchten Beziehungen, die für die Berechnung

der Verformung zur Verfügung stehen.

6. Lösung der homogenen Differentialgleichungen

Setzt man e^ ==€{f) y 0 in die Gl. (20), (21) und (22) ein, so erhält man
die homogenen Differentialgleichungen, deren Lösungen sind

1 u konst., v konst., w konst. (ParallelVerschiebungen)
2 u —cy, v ex, w 0 (Drehung um die z -Achse)
3 u 0, v —cxy/n, w cy (Drehung um die x-Achse)
4 u —cxy/n, v 0, w ex (Drehung um die y-Achse)

Durch Einsetzen in die Gleichungen läßt sich ohne weiteres beweisen, daß
diese Lösungen richtig sind. Um die Randbedingungen erfüllen zu können,
werden diese spannungslosen Verformungen denjenigen überlagert, die die
Schale unter gegebener Belastung annimmt.

7. Partikularlösung der inhomogenen Differentialgleichung

Um eine Partikularlösung auszurechnen, zerlegen wir die Lösung in drei
Schritte, die in der Tabelle 2 ersichtlich sind.

Tabelle 2

Fall 1 Fall 2 Fall 3 1 + 2 + 3

w
u
V

w1

Ux Wx COt Qp

vx— —w1 tan 0
u2= —w2 tan (p

v2 w2 cot ifj

uz— —w3 tan cp

vz — — w3 tan $

wx + w2 + wz
ux + u2 + %
Vl + V2 + ^3

7

€<Pl €q>

0

7i

0

€02 H
72

0
0

73 7-7i-72 7

2 Abhandlung XIII
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Falll
Nehmen wir an

n x
ux WjCoto? wx— und vx — w^dbinfß — — w± —, (23)

so erhalten wir

l^i dwi l dvi dw^tsmJf.
dx dx tan99' dy dy
du* dw, 1 n dv-y dw, w,-~ -k-± i Wi-s, ^ --r^tani/r ±.
dy cy tan99 i/^ dx dx n

Setzt man diese Beziehungen in die Gl. (20) bzw. GL (21) ein, so erhält man
SOgleich

wx J c„ tan 9 dx, (24)

«* °>
und ferner aus Gl. (22)

cos09cosJj [ t w* 1 ^^l, j. A /rt~v
Vi T

<v { eQ)tan99tani/r + —i -v-« ^-- (cot99 + tan99» (25)/x sind l v r r w sm299 dy T T J

JaK2
Durch Einsetzen von

%2 — ^2 tan 99, und v2 w2 co^ 0 (26)

erhalten wir in derselben Weise

^ °>

w2 Je^ tan 0di/, (27)
und

COS 09 COS 0 f Wo 1 ^^9/ x / x #x] /rtox
72 • s

r {€0tan0tany + -1-T-T7--^-- cot 0 +tan 0). 28'* smS ^ r r w sm20 d# r r/J

Mit den Lösungsansätzen

uz —— 2^3 tan 99 und #3 —w3 tan ip, (29)
bekommt man

€„3 0 und ^3 0.

Die Winkelabnahme kann ohne die Ausführung der Integration berechnet
werden. Es wird 02w3 cos 9? cos ip

^3 w sin 8

Damit nun die Summe der Verschiebungen w wt + w2 + w3 die gesuchte
Lösung der inhomogenen Differentialgleichungen mit den gegebenen
Belastungsgliedern €p, e^ und y sein kann, ist es erforderlich, y3 y — yx — y2 zu
wählen, woraus sich ergibt:
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n sin 8
Wo -- (7-71-72)-2 cos 99 cos i/j

Zusammenfassend ist die Lösung wie folgt:

w wx + w2 + wz

u w1 cot 99 — ^2 tan 99 — w3 tan 99

^ —w1cotifj + w2ta,inlj — w3t3binfs

u>i J ^tan 9 *» f^ J SAworin

(30)

w, Je^ tan ./.% — fe^dy

72,

W* -TT
sin 8

(7-71-72)2 COS99COSi/r

Die Werte von y-t und y2 werden aus der Gl. (25) und (28) berechnet. Um
die Randbedingung zu erfüllen, fügt man die spannungslose Verformung hinzu.

8« Abgekürzte Ausdrücke und Hilfsformeln

In folgenden Rechnungen nimmt der Verfasser nachstehende Abkürzungen
vor:

R l/x2 + y2 + n2,

Fx= ix2 + n2, Fy= iy2 + n2,

r [2n2 + (x-y)2][2n2 + (x-y)2 + v{2n2 + (x + y)2}]

und gibt auch einige Differentiations- und Integrationsformeln für die
Funktionen von R an, die bei der Berechnung vorkommen.

— R= —dx R

dx R
x

~R?

i-Rx R +^dx R

d x_

Jx~R

d

~R

x*
~R?

1

F 2

i?3

dx^X + R\ R

8
I T^l

1 #
5jto|»+jt|--g-_-^

J i?3

[Fl
Rz

/-
\i

iy% 2 ^#2
da? |#ÜM ~-~ ln|a? + JB|

^dx \R*-Ry2

dx
R

dx ln\x + R\ —
y2 x

(x + R)
R

dx l{\n\x + R\f

dx In R
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\Rdx \xR + \Fy2\n\x + R\

I
I

dx ln|# +Jß|

xRdx ii?3

^~dx R

/
J

j~dx \nR + ±Fy2

jpdx \x2-Fy2hiR

x _ 1
1

R±aX ~ 2 i?2

Ä2

Um die Integration in rascher und übersichtlicher Weise zu ermöglichen,
ist es zweckmäßig, nachstehenden Ausdruck zu verwenden.

ln|# + i?|-lni^ |ln
R + x

TT + +R-x R ' 3 i?3 ^5i?5 + (32)

Es sei noch darauf aufmerksam gemacht, daß der Verfasser in folgenden
Beispielen immer dieselben Randbedingungen annimmt, d. h.

Nv 0 für y 0 und N^ 0 für x 0.

Diese Randbedingungen sind meines Erachtens ganz passend, wenn das

Schalendach, wie man in Fig. 5 sieht, aus vier hyperbolischen Paraboloid-
flächen zusammengesetzt ist.

9. Anwendungen für einige Belastungsfälle

a) Gleichmäßig verteilte Belastung des Grundrisses (Schneebelastung)

Die Teilbelastungen sind

X=Y 0, Z q (konst.)

Bekanntlich haben wir in diesem Fall

N(p Nlp 0 und T \nq.

In diesem besonderen Spannungszustand ist der Fall 3 für sich allein maß
gebend, da die Längenverzerrungen e9 und e^ in der ganzen Schalenfläche ver
schwinden. Wir erhalten aus GL (17) und (30)

r Q
w — w» (33)R SEhn'

wobei h die Schalendicke bedeutet.
Als Zahlenbeispiel gibt der Verfasser in Tabelle 2 und 3 die senkrechte und

waagrechte Verschiebung, wobei die Grundrißfläche der Schale 5 x 5 m beträgt
und n 10 m angenommen ist. Bei der Auswertung ist v 0,3 zu Grunde
gelegt. Die Randbedingungen sind folgendermaßen gewählt:

w 0 für x — y 5 m; u 0 für y — 0; v — 0 für x 0.
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Tabelle 3. w in q/8Ehn

11

^x 0 1 2 3 4 5 m

0 470 497 575 706 899 1154
1 497 442 440 450 611 782
2 575 440 367 347 389 490
3 706 450 347 250 220 259
4 899 611 389 220 131 93
5 m 1154 782 490 295 93 0

Tabelle 4. u in g/8 Ehn (für v vertausche man x und y untereinander)

"\ X
y \^ 0 1 2 3 4 5 m

0 0 0 0 0 0 0

i - 523 - 517 - 517 - 518 - 534 - 552
2 -1061 -1034 -1019 -1015 -1024 -1044
3 -1631 -1553 -1523 -1491 -1485 -1496
4 -2252 -2136 -2049 -1981 -1945 -1930
5 m -2942 -2756 -2610 -2494 -2411 -2365

b) Gleichförmiger Sog in Richtung der Flächennormalen (Windbelastung
im Wirbelbereich)

Mit den Belastungen

X <7 —, Y= <7 — und Z -qn n

ergeben sich als Schnittkräfte

T rh^~qR2,
cos?/* 2

Nm <jmh - qxy -xy
Nllt er,,, h

woraus wir erhalten

cos 9 n
2q Fy

2a *y /F2

n
F
F..

e<p n2hF B {Fy*-vFx>)

n*hE R ^ x v >'

_ qR cos 9 cos i^ „~ TwFhE süTS '

(34)

(35)

(36)
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Fall i. Aus der Gl. (24) ergibt sich

Wi -Jhy2{F*2B-vB(iR2-y2)}> (37)

und nach längeren Zwischenrechnungen gelangt man zu

2g cos y cos ^r

Yl~^¥h sinS il( (38)

worm

-^•{2(2j,« + n»)Ä +y»j;«-l-vJj(|iP-3y«-^} (39)

ist.

ifaZZ 2. In ähnlicher Weise erhalten wir

2g
w, —^««{^«J2-vJ?(-ii2«-^}, (40)

_ 2g cosycosi/.
y2-^BÄ" sinS r*' (41)

(Fx*-vF/)+Fx*{fx*R-vr(jRZ-x^

-Fx*{2(2z* + n*)B +x*Fx*±-vR^B*-3*-j^. (42)

J'aW 3. Aus der Gl. (30) erhalten wir

n?Eh \ 8^3 --3^(|^-A-A). (43)

c) Gleichförmige Belastung der Oberfläche
Mit

Z ^R, X Y 0,
n

kommt aus Gl. (11)

*.-£*f»(M»+*l-i»A>.
Um die Integration leichter durchzuführen, setzt man den Ausdruck nach
GL (32) in die obenstehende Gleichung ein. Daraus folgt

_ _ 7 gQ Fy (x 1 xs \ An xN* °*h TTj[B+-3&)> (46a)
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wobei die Glieder von kleinem Einfluß außer acht gelassen sind. Da ferner

(46b)**--*»-*jH*+*£)'
und T =Th -^-R, (46 c)

entsteht, erhalten wir

<bL-LFJjL+±Jt\-vxF*(JL +±*.\\ \
€" 2E1

e*~ 2E°hn{X rr 2 / 2/ 1 ^\ „Ja; 1 #3 \

COS<pCOSl/r gr0 1

r sinS 2~¥Ä 2^3 "

Aus diesen Gleichungen ergeben sich

(47)

Wi —

Vi

2Ehn*y \y \3 mjK+6 ÄV U 3^ mi*+6 722;}'

00 cos
2#A^3 sinS

Cp COS i/f p

A -V{f (145)-"f(1 + ¥|-)}+^{l(3^+^lni?
+ 6-^(13 2/4+14 nV+%4)_1 2^_ A

3^ R* "\22^-2^1nÄ + i|; 3i?vr

(48)

(49)

(50)

Für w2 und y2 vertauscht man # und y sowie i^. und Fy untereinander. Es ist
noch

9o
w« 4^Ä^2 (^-a-a). (51)

d) Gleichförmige Belastung in der y-Richtung (Erdbebenbelastung)

Ist ol der waagrechte seismische Koeffizient und g0 das Eigengewicht der
Schale von der Einheitsfläche, so ergibt sich die Massenkraft zu

Daraus folgt
Y ocg0, X 0 und Z 0. (52)

2 n

N(p a(ph 2^Tj{R-Fvh
1 «0o -^ f3N* °,h --^»^r-yR +2 n JP^ 12*

Zn2 + 5x2
(ln|y + J2|-ln^)},

(53)
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und ferner

<*9o
c<p~ 2hEn2
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-1 [-yF1»+yFv*R-v{lF!*yB+
Zn*+5x*

Fx*{\n\y+R\-\nFx)^

e^ -2TE^^ [lyK2R+^^ F/ Qn\y + R\-1nFx)-vyFS(R-Fy)]

Damit die Integration ohne Mühe durchgeführt werden kann, ist es zweckmäßig,

einen angenäherten Ausdruck für den Faktor (ln\y + R\ — InFx) und
(R — Fy) einzuführen, falls er mit v multipliziert ist:

v(\n\y + R\-lnFx) v-^-
1 r2

HR-FV)^~2^
Diese Annäherung ist zulässig, da v klein ist. Dann erhalten wir

3^2 + 5#2*9o [ woL Fv\ ß™» Sn2 + 5x2 F2\]
2E

<x>9o
«yFx2+

3n2+5x2F2 F 2

2Ehn2\2ij x

<xg0 cos cp cos i/j

4Ehn* sinS *

-^(\n\y+R\-\nFx)-v^yx2^ (54)

Ein langwieriger Rechnungsgang, den wir hier übergehen wollen, führt zu

Wi=-2TOysh8(a;-^in|af+Ä|)

-"i3r
5 y2 — 6 n2

x + (iV-«-'.+l^)t-.-^}].
7i

a g0 cos cp cos ifj

2Ehn* sinS A-

(57)

(58)

-vF2V -Ly

5

2

+ Fy* [Fy (3 y2 + Fy*) In \x + R\ +^^ -x (Fy* + 2 j,*)}

n, A ,„ 3 n* /15 „ 1 3 w4\ Jx zl

-j^3x[lFx^+Sn'+25xiFx^lln\y + R\-lnFxyn\y + R\

~vY\2y2~xHnR) "

(59)

(60)
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<*gp COS<pCOSif>

y*-2Whr* sinS 12' (bl)

ra xy\zFx*y + Zn2+R5x2FxH\n\y+R\-\nFx)-vyFv*^\

+ ^2|_4a;2(4w2 + 5a;2)ln|y + i?|-^ln|2/ + Ä|-lni^)-3a;2«/2

-(S^ + S^^-^^^lnly + Äl-^^ln^-^lnly+Äl)
-vx2(-«/2 + 4z2ln.B+-^-)} (62)

und

""^-iHtd^-A-n). («)

10. Bemerkungen zur Konstruktion und Ausführung

Firstbalken.

"X:yo
ry

Binderscheibe

Fig. 5

Da nur eine Integrationskonstante in der Gl. (9) vorhanden ist, ist es

unmöglich, beide gegenüberliegende Ränder der Teilfläche gleichzeitig frei von
Längsspannung zu halten. Nimmt man die Bedingung N'v 0 oder N^ 0

an dem Firstbalken an, so muß die dreieckige Binderscheibe imstande sein,
die senkrecht zu der Scheibenebene gerichtete Teilkraft zusätzlich aufzunehmen.

Falls man dagegen die Bedingung Nv 0 oder N^ 0 an der Binderscheibe

annimmt, so ist der Firstbalken in der Lage, senkrechte oder
waagrechte Reaktion aufzunehmen, je nachdem das ganze Dach symmetrisch oder
antisymmetrisch belastet ist. Die zusammengesetzte hyperbolische
Paraboloidschale unterscheidet sich derartig von der gewöhnlichen Translationsschale,

die keine Unstetigkeit an dem Dachfirst besitzt. Aus der Erkenntnis
über die Verformung ist es zu betonen, daß das zusammengesetzte Schalendach

nach Fig. 5 nicht biegungsfrei sein kann, wenn es aus Eisenbeton
monolithisch aufgebaut ist. Um den biegungsfreien Zustand zu bekommen, wenigstens

für die ständige Belastung, empfiehlt es sich, vier Teilflächen je mit
Randbalken nachträglich miteinander zu verbinden, nachdem der Schalenteil

ausgerüstet worden ist. Dabei ist zu beachten, daß die vorläufige Raumfuge
zwischen den Randbalken genug klaffend sein muß, so daß die Verformung
der Schale frei erfolgen kann.
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Wenn die Schale nach dem Aufbau belastet wird, wie es bei Winddruck
der Fall ist, so ist die Schubverformung verhindert und demnach wird der
biegungsfreie Spannungszustand ausgeschlossen.

Literatur
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Zusammenfassung

Der Verfasser gibt zuerst die Beziehung zwischen Spannung und Verzerrung,

die in den parallelogrammförmigen Schalenteilchen erzeugt werden.
Dann wird die Differentialgleichung der Verschiebungen aufgestellt, die allgemein

für beliebige Translationsschalen angewendet wird. Für die hyperbolische
Paraboloidschale ist die Lösung der Differentialgleichung möglich und einige
Belastungsfälle wurden untersucht. Bei der zusammengesetzten Schale nach
Fig. 5 weist der Verfasser daraufhin, wie die Montage der Schale erfolgen muß,
um den biegungsfreien Spannungszustand zu erhalten.

Summary

The author first gives the relation between stress and strain which subsists
in shell elements in the form of parallelograms. He then sets up the differential
equation of displacements, which is that commonly applied to Shells of trans-
lation of any form of section. For the hyperbolic-paraboloid shell the differential

equation is soluble, and a few loading cases are investigated. With the
arrangement of intersecting shells of Fig. 5 the author indicates the sequence
to be followed in erection in order to achieve a bending-free stress System.

Resume

L'auteur indique tout d'abord la relation qui existe entre les contraintes
et les deformations qui en resultent dans les elements de voütes minces en
forme de parallelogramme. II etablit ensuite l'equation differentielle des
deformations, equation qui est generalement appliquee aux voütes de translation
quelconques. La resolution de l'equation differentielle est possible pour le

paraboloide hyperbolique et l'auteur etudie quelques cas de eharge. Dans le

cas de la voüte composee suivant figure 5, il montre comment doit etre effectue
le montage si l'on veut obtenir un regime de contrainte exempt de flexion.
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