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Trigerschwingungen unter bewegter Last
Beam vibrations due to a moving load

Vibrations d’une poutre sous charge mouvante

Prof. Dr. F. Sttss1i, ETH, Ziirich, Prasident der 1.V.B.H.

1. Problemstellung und Ersatzsystem

Wir stellen uns die Aufgabe, die Schwingungen des Punktes m eines Trigers
wihrend der Uberfahrt einer Last P (Fig. 1a) zu berechnen. Da wir uns damit
auf die Bestimmung des zeitlichen Verlaufes der Schwingungen y =y (f) eines
bestimmten Punktes m beschrinken, diirfen wir uns das schwingende System

1
—
‘ ;
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Fig. 1

durch das ,,Ersatzsystem der Figur 1b ersetzt denken; der schwingende
Massenpunkt m sei an einer Feder mit der Federkonstanten C aufgehingt. Fiir
dieses HErsatzsystem kann die Differentialgleichung als Gleichgewichtsbedin-

gung zwischen der Triagheitskraft K,=M -%, der Dampfungskraft K, =

=k--§7y (die wir wie iiblich proportional zur Geschwindigkeit annehmen), der

Rickstellkraft K;=C-y und der von der bewegten Last P herrithrenden
Storungskraft R angeschrieben werden:
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2y
dt?

+k-d~y—+0-y-—R=O. (1)

u dt

Dividieren wir durch M und bezeichnen wir die Ableitungen von y nach der
Zeit ¢ durch Punkte, so nimmt Gleichung (1) mit den Abkiirzungen
ko 0:=% é%zp
die Form ‘
g+b-y+cy—F =0 (2)

an.
Es sind nun in erster Linie Bedeutung und Grofe der verdnderlichen
Koeffizienten b und ¢ sowie der Storungsfunktion F zu bestimmen. Lassen wir
die Storungsfunktion F und den Dampfungsfaktor k verschwinden, so geht
Gleichung (2) iiber in die Differentialgleichung der ungeddmpften harmonischen

Schwingung:
g+cy=0; (2a)

damit wird offensichtlich, daBl ¢ dem Quadrat der Kreisfrequenz p entsprechen
mul}:

c = p2 (3a)
Die schwingende Masse M,
C

ist so zu bestimmen, daf} die Kreisfrequenz p des Ersatzsystems in jedem Zeit-
punkt mit der Kreisfrequenz des wirklichen Trigers iibereinstimmt. Die Feder-

konstante C ist dabei durch
P
=120 3¢
Yo, (3¢)
bestimmt, wenn wir mit y,,, die statische Durchbiegung des Punktes m infolge
einer Last P,, bezeichnen. Fiir die Mitte eines einfachen Balkens mit konstan-
ter Steifigkeit E.J ist beispielsweise
48 EJ
0 = T .

Nehmen wir nun, um die Stérungsfunktion F zu bestimmen, andrerseits an,
die Last P bewege sich mit verschwindender Geschwindigkeit iiber den Balken,
so geht mit =0, ¥ =0 die dynamische Durchbiegung y in die statische Durch-
biegung y, iiber:

P*Yo=F,. (2b)

Bezeichnen wir mit 7, die Ordinaten der EinfluBlinie fiir die Durchbiegung
des Punktes m, so ist offensichtlich
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Yo = nm'P
und es wird
FO :pz"r]m'P'

Genau genommen ist die unter bewegter Last auftretende Storungsfunktion #
wegen der bei der Tragerdurchbiegung auftretenden lotrechten Beschleunigun- °
gen etwas grofler als F,. Fir einen einfachen Balken mit verschwindender
Masse und konstanter Steifigkeit #J 1463t sich fiir konstante Geschwindigkeit v
dieser ,,Stokes-Effekt‘‘ leicht bestimmen; es ist im ungiinstigsten Fall (Trager-
mitte)1).
v Pl
F=F, (1 + m) .

Der Unterschied zwischen F und F ist normalerweise klein; im ungiinstigsten
der im 3. und 4. Abschnitt zu untersuchenden Félle ist F =1,017-F,. Wir
werden deshalb im folgenden diesen Stokes-Effekt als praktisch bedeutungslos
vernachlédssigen und

F =Fy,=p*n, P=py, (3¢)
setzen.

Da die Bestimmung der Einfluflinie 7,, keine Besonderheiten bietet und
mit den klassischen Methoden der Baustatik fiir beliebige Ausbildung und
Lagerung des Tridgers ohne jede Schwierigkeit durchgefiihrt werden kann,
brauchen wir uns hier damit nicht weiter zu beschéftigen. Dagegen soll die
Bestimmung der Kreisfrequenz p noch etwas niher besprochen werden. Da
die Eigenschwingungen harmonische sind, gilt zwischen den inneren elastischen

Widerstandskréaften und den Tragheitskriften eines mit der Masse g belegten
Balkens die Differentialgleichung

d? AN T

Diese Gleichgewichtsbedingung erlaubt nun eine einfache baustatische Deu-
tung?):

Wir schitzen eine mit den Auflagerbedingungen vertrigliche Biegungslinie y,
und berechnen zur Belastung

9.,
U = — o .
g P Yo
die Momentenfliche M, , wobei bei statisch unbestimmten Trigern auch die
iiberzdhligen GroBen z zu Dberiicksichtigen sind, und aus der reduzierten
Momentenfliche M,/EJ die Biegungslinie y,. Die Gleichsetzung y, =y, fir
irgend eine Trigerstelle (oder die entsprechende Mittelwertbildung) liefert uns

1) 8. z. B.: S. TiIMOSHENKO, Vibration Problems in Engineering, New York 1928, 1937.
%) S.z. B.: F.StUss1, Zur Berechnung der Grundschwingungszahl vollwandiger
Tréager. Schweiz. Bauzeitung, Bd. 104, Nr. 17, 27. Okt. 1934.
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den gesuchten Wert von p% Stimmen die Kurven y, und y, ihrer Form nach
nicht iiberein, so ist die Berechnung, ausgehend von einer zu y, @hnlichen
neuen Ausgangskurve zu wiederholen oder es ist eine Energiebetrachtung bei-
zuziehen (,,Kombinationsverfahren‘‘2)). Da wir die fiir die zu untersuchenden
Tragerschwingungen mafigebende Grundschwingungsfrequenz suchen, ist die
Form der Kurve y, so zu wihlen, dafl die Belastung v moglichst groe Durch-
biegungen y; verursacht; fiir einen einfachen Balken ist somit eine Schwingungs-
kurve y mit einer Halbwelle iiber die Spannweite mafigebend. In Figur 2 ist

EJ - Konst.

Ll |
— & 4
A | k1 B

1 . ’ (P-1429-q-1)

Fig. 2

der Rechnungsgang fiir einen durch die verteilte Masse ¢/g und die konzen-
trierte Masse P/g im Punkt m (x=0,201) belasteten einfachen Balken als Bei-
spiel skizziert.

Figur 3 zeigt den Verlauf von p? fiir eine wandernde Masse P/g fiir den
Zahlenwert P =1,429.9l der Anwendungsbeispiele; ferner sind die Kurve ¥,
fiir den Punkt m (x=0,50-1) in Trigermitte und die nach Gleichung (3c) be-
rechnete Kurve F =F, eingetragen.
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(P-1420-q-1)

2. Die numerische Losung der Differentialgleichung

Zur Losung der Differentialgleichung (2),
y+b-y+cy—F =0,

verwenden wir eine numerische Methode, die ich schon vor lingerer Zeit auf-
gestellt und seither wiederholt verwendet und ausgebaut habe3), die aber hier
nochmals in ihren wesentlichen Grundziigen skizziert werden soll.

Wir fithren endliche Zeitintervalle 4¢ von konstanter Grée ein und setzen
die zu losende Differentialgleichung (2) um in die entsprechende Gleichung
fiir 4 t-fache Knotenlasten,

At-K;(§)+At-K;(b-y)+4t-K;(c-y) =At- K, (F), (5)

aus der wir die zweiten Ableitungen 3 mit Hilfe der Seilpolygongleichung

At-K;(§) =y, 1—2Y; +Yia (6)

8) S.u. a.: F. StUssi, Die Stabilitdt des auf Biegung beanspruchten Trigers. Abh.
I.V.B.H,, Bd. I11, 1935. — F. Stiss1i, Numerische Lésung von Randwertproblemen mit
Hilfe der Seilpolygongleichung. Zeitschr. f. ang. Math. und Phys., ZAMP, Vol. I, 1950,
p. 53. — F. StUss1, Numerische Methoden der Baustatik. IV. Kongre3 der I.V.B.H.,
Cambridge-London 1952, SchluBbericht p. 181.

23  Abhandlung XTIT



344 F. StuBi

eliminieren kénnen. Fiir das zweite Glied, das normalerweise klein ist (Damp-
fung), konnen wir mit der Abkiirzung

b4t

2
den fiir feldweise linearen Verlauf von y und fiir konstanten Wert von 6 im
Doppelfeld von ¢ —1 bis ¢+ 1 ermittelten Wert

A8-K;(b-9) = B; Ysr1—Yi1)

einsetzen, wihrend sich fiir die stetig angenommenen Funktionen c¢-y und F
die 4 t-fachen Knotenlasten mit der ,,Parabelformel‘‘ zu

42
A4t-K;(c-y) = 19 (Ci1Yir1+10¢;- Y+ Cii1 Yita)
und

_Ap

At-K;(F) = 15 (Fiqa + 10 Fi+ Fyyy)

ergeben. Durch Einsetzen und mit der Abkiirzung

e A prde
Y= T 12

erhalten wir aus Gleichung (5) die Rekursionsformel

Yir1 = ml{d t- K (F)+(2-10y;) ;= (1 =By +via) Yinf> (7

die uns erlaubt, aus den Schwingungsausschligen y, , zur Zeit ¢, , = {,— 4t
und y; zur Zeit ¢, den Schwingungsausschlag y;,, zur Zeit ¢, ,=t,+4¢ zu be-
rechnen.

Die Losung des Problems ist also erst vollstindig, wenn noch zwei Anfangs-
bedingungen zur Bestimmung der beiden ersten Schwingungsausschlige y, und
¥, gegeben sind. Da zu Beginn des Schwingungsvorganges der untersuchte
Punkt m in Ruhe ist, lauten offensichtlich diese beiden Bedingungen

Yy4=0, y,=0. (8)

Die Bedingung y,=0 (Zeit ¢{=0) erspart uns eine Bestimmungsgleichung,
dagegen muf} die Bedingung ¥, =0 besonders formuliert werden.

Aus Analogie zur Berechnung der Querkraft @ =M’ aus Moment M und
Belastung q = — M” bei der Balkenbiegung kann fiir ¢, die Beziehung

Adt-gg=y,—ys—A4t- K (9
angeschrieben werden. Wir setzen entsprechend der Differentialgleichung (2)
K @) =—K, 0b-§)—K, (c-y)+K, (F);

nehmen wir naherungsweise, jedoch mit geniigender Genauigkeit wieder feld-
weise linearen Verlauf von y und b = konst. an, so ist
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as
Y1=Ya= 5 Gat )
oder

) 2 )
Y11= m(%“yA)—?/A

und wir erhalten mit der Trapezformel

S | 2 . At -
K, (y) = —6—(2?/44‘%) =y‘4'“6"|'y_1“3ﬂ
oder mit y ;=9 =0

R 2
41K, b-9) =20y

Fiir die geltenden Anfangsbedingungen kénnen wir die Werte

4t-K (c-y) =y,
und
A2

anschreiben und wir erhalten durch KEinsetzen die gesuchte Bestimmungs-
gleichung zu

yl-(1+i)’—6+y1)=dt-KA(F). ‘ (9)

Damit kann die gesuchte Schwingungskurve y (¢) des Tragerpunktes m, aus-
gehend von y, =0, Punkt fiir Punkt berechnet werden.

Wir werden in den folgenden Untersuchungen die Dampfung vernach-
lassigen. Dann vereinfachen sich die Bestimmungsgleichungen auf

At K, (F)
T gy, (2)
und
1
Y=+ 4At Ky (F)+(2-10y,) -y, — (L + ;1) Yiq) - (7a)
1+,

Um die Kurve y (t) zuverldssig bestimmen und aufzeichnen zu koénnen, sollte
das Zeitintervall 4 ¢ zu héchstens

2

@
:6, Dbesser zu ,
pmam pma:z

VAR

d.h. zu hochstens einem Sechstel, besser einem Achtel der kleinsten Eigen-

schwingungédauer Tomin s .
TO =
p

gewahlt werden; erfahrungsgemafl ist bei einer solchen Intervallteilung auch
die Rechnungsgenauigkeit praktisch vollstindig geniigend.
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3. Berechnungsbeispiel

Zunichst soll der Rechnungsgang an einem einfachen Beispiel veranschau-
licht werden, dem die Zahlenwerte der im nichsten Abschnitt zu beschreiben-
den Versuche zu Grunde gelegt werden.

Der untersuchte Triger sei ein einfacher Balken von 4,20 m Spannweite,
bestehend aus einem 1-Profil 60/40 (J,=34,1 cm?, F =5,90 cm?, q¢=4,63kg/m’);
die wandernde Einzellast p besitze ein Gewicht von 27,8 kg = 1,429 pl. Die
Tragersteifigkeit EJ wurde aus statischen Durchbiegungsmessungen zu
72200 t cm? bestimmt.

Die Kurve der Werte p? wurde nach dem durch Figur 2 angedeuteten
Rechnungsgang fiir eine Reihe verschiedener Laststellungen berechnet und
fiir Zwischenpunkte moglichst sorgfiltig (durch Logarithmieren) interpoliert.
Mit

EJ-g  72200-981
g-1* ~ 0,0000463 - 420%

= 49,162

ergibt sich fiir den unbelasteten Triger

2

pi=m4-49,162=4788,95%¢c p=69,202%c’ T, = > = 0,09080 sec

Omin

withrend bei Last p in Trégermitte die entsprechenden Werte

p?=1231,0%", »=35,086, T, =0,17908sec
betragen.

Fiir das Zeitintervall 4¢ sollte, entsprechend der Bemerkung am Schlufl
des letzten Abschnittes, ein etwa zwischen 0,011 und 0,015 sec liegender Wert
gewihlt werden. Wir wihlen absichtlich einen groBeren Wert, 4¢=0,0195 sec,
der sich bei einer Uberfahrtszeit 7',=0,76 sec (v=>552 cm/sec) aus der Eintei-
lung von 7', in 40 Intervalle 4¢ ergibt. Da nach Gleichung (3c¢) die Belastungs-
funktion F' mit

F=p*y
einzufiihren ist, ergeben sich wegen
_ 2 At
Y=EPT T,
direkt die Werte
4t
Fe 12 ~ Y Yo

aus denen sich die 4i-fachen Knotenlasten K (F) einfach berechnen lassen.

Die folgende Tabelle enthilt die Berechnung der Schwingungskurve y des
Punktes m in Balkenmitte (x =0,50-1) fiir die ersten 6 Zeitintervalle nach den
Gleichungen (9a) und (7a); weitere Zwischenberechnungen, auler der Bestim-
mung der Werte p? und y,, sind nicht erforderlich.
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| y vo | AT . platK(F) 210y | 14y y [4t=Ts/80
J 12 Yy
j cm 101’ | |
A 47885)](L14407 0 0 | 001287 | 05503 | 1,1441 0 0
1| 4671,4 | 0,14053 | 0,04454 | 0,06259 | 0,07441 | 0,5946 | 1,1405 | 0,01128 | 0,01167
2 44221‘J(L13303 0,08885 | 0,11820 | 0,14075 | 0,6697 | 1,1330 | 0,07160 | 0,07123
3| 4080,0 | 0,12274 | 0,13272 | 0,16200 ;(L19426 0,7726 | 1,1227 | 0,15661 | 0,15585
4| 36921 | 0,11107 | 0,17592 | | 0,19540 | 0.23319 | 0,8893 | L1111 | 0.21073 | 0.21096
5| 32752 | 0,00853 | 0,21822 ;()21501 1(%25714 | 10141 | 1,0085 | 0,22280 | 0,22400
6| 28947 | 0,08708 | 0,25942 | 0,22591 l — | — | 10871 | 0,22901 | 0,22989
i | | |

Zum Vergleich sind in der letzten Kolonne auch diejenigen. Werte y beige-

fiigt, die sich bei doppelter Teilung, 4i¢=

T,/80=0,0095 sec, ergeben. Die

Ungenauigkeit infolge zu grober Intervallteilung wirkt sich wie eine kleine
Verkiirzung der Abszissen ¢ aus, die fir 4¢=0,019 sec etwa 0,59, gegeniiber
4t=0,0095 sec betrdgt. Praktisch diirfte somit auch die mit dem gréberen
Intervall berechnete Schwingungskurve y geniigend genau sein.

Genau wie fiir den Punkt m in Balkenmitte konnen die Schwingungskurven
y auch fiir andere Tragerpunkte berechnet werden. So habe ich noch, fiir sonst
gleiche Verhiltnisse, die Schwingungskurven fiir = 0,257 und 0,751 berechnet;
~die drei Schwingungskurven sind in Figur 4 dargestellt.

sec

Ts-076

—_— ”
-

V - 552 “Wsec 7

04

}. sec
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Aus diesen Schwingungskurven y fiir verschiedene Triagerpunkte m konnen
nun die Biegungslinien y des Trégers zu verschiedenen Zeitpunkten ¢ bestimmt
werden; so sind aus Figur 4 die Biegungslinien der Figur 5 fiir die Zeitpunkte

| - L-420cm o
9 g
N\ [
NS o~
T2 X, 3
N
N
\\
T Odem
VA |
\\ =
N\ <
TN 3
\Y
N
N
N
104 NS .
N 7 =050 s
+ 06em i
yu

Fig. 5

t=0,25-7, und ¢=0,50 Ty ermittelt worden. Diese Biegungslinien erlauben
nun eine grundsétzliche Priifung des Berechnungsverfahrens, da sie der
Gleichung ’

(EJy”)"+§-g—q =0 (10)

geniigen miissen. Aus der Schwingungskurve y ist nun aber fiir jeden Zeitpunkt
die Beschleunigung 7 aus
y+p*y—F=0
wegen
F=p?y,
zu
g=r*(%—y)

fir den untersuchten Triagerpunkt bekannt, so dafl die Biegungslinie zur
Belastung

~4.
4=y
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berechnet werden kann. Dabei ist zu beachten, dafl wir die Schwingungen y
von der statischen Gleichgewichtslage aus berechnet haben, so dall die sta-
tische Wirkung des Triagergewichtes q eliminiert erscheint; die statische Bie-
gungslinie y, ergibt sich somit aus der Kinzellast P allein. Dagegen ist in den
Tragheitskriften sowohl die Tragermasse wie die Masse P/g der Einzellast zu
beriicksichtigen.

In Figur 5 sind, neben den den Schwingungskurven der Figur 4 entnom-
menen Ordinaten, in Klammern auch die sich aus der Berechnung nach Glei-
chung (10) ergebenden Werte eingetragen. Wenn wir bedenken, dal} bei der
Berechnung der Schwingungskurven einerseits der Stokes-Effekt vernach-
lissigt wurde, wihrend andererseits die lotrechten Beschleunigungen der Last
p im Wert von p? beriicksichtigt erscheinen, so ist leicht einzusehen, dafl eine
genaue Ubereinstimmung von Schwingungskurven und Biegungslinien nicht
erwartet werden darf. Dagegen darf festgestellt werden, daB die Ubereinstim-
mung im Rahmen der eingefiihrten Rechnungsvereinfachung sehr befriedigend
ist und damit darf das vorgeschlagene Rechnungsverfahren als zutreffend
beurteilt werden.

4. Versuche

Um das dargestellte Berechnungsverfahren auch mit in Wirklichkeit auf-
tretenden Tréigerschwingungen zu vergleichen, lie ich in meiner Abteilung des
Institutes fiir Baustatik an der ETH eine Reihe von einfachen Schwingungs-
versuchen durchfithren?).

Die Versuchsanordnung ist in Figur 6 schematisch dargestellt. Die wan-
dernde Last P ist durch einen ,,Einachswagen* mit elektrischem Antrieb
gebildet (Fig. 7); dabei konnte die Drehzahl des Motors durch stufenlose
Schaltung in ziemlich weiten Grenzen beliebig verdndert werden. Vor dem
eigentlichen Versuchstriger von 4,20 m Spannweite war eine Beschleunigungs-
strecke, dahinter eine Bremsstrecke angeordnet. Die Schwingungen y des
Punktes m wurden durch einen Askania-Schwingungszeichner aufgenommen,
wobei auch das Uberfahren von Balkenanfang, Balkenmitte und Balken mit

Askania Schwingungszeichner

> | /]
N S N 3 —~ T T
- Anfahrtstrecke | “‘;’PV " v | Bremsstrecke
!__ 420m |
T Messtrecke o
Fig. 6

1) Diese Versuche hat in gewohnt sorgfiltiger Weise mein Assistent-Konstrukteur,
Dipl.-Ing. M. Walt, unterstiitzt durch Mechaniker E. Peter, durchgefiihrt.
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Hilfe elektrischer Kontakte auf dem MeBstreifen registriert wurde. Uber-
setzungsverhiltnis und Papiervorschub wurden in Vorversuchen moglichst
genau bestimmt.

Figur 8 zeigt typische Schwingungsdiagramme fiir drei verschiedene
Geschwindigkeiten, aufgenommen fir Punkt m in Balkenmitte und P =
27,8 kg = 1,429-¢-1. Es zeigt sich, daB die Geschwindigkeit », die nicht von
vornherein genau auf einen gewiinschten Wert eingestellt werden konnte, son-
dern erst nachtriglich aus den Aufzeichnungen des MeBstreifens berechnet
werden muflte, nicht genau konstant war, sondern wahrend der ersten Halfte
der Uberfahrt noch etwas zunahm. Diese UngleichmiiBigkeit vergroBert sich
mit wachsender Geschwindigkeit.

3 B Ts -152 >
- B A
F N\ - S
! b V= 276 Cm/sec y 4 1 g9
S S 1 04
< <y0 B =
T s s + 06cem
- Ts =114 €€ A
- |
i 1N - : .
: X . V- 368 “/sec e L oo
RN /yo // v 1 04
Nooemm<” + 06cm
Ts-076° y
- N A
; U TN 7
\\ = cm
‘ . V = 552 Msec J L oe
| X N 74
N\
\\(y" /’/ T 04
TN + 06¢cm
vy
bose 16 14 12 10 08 06 04 02
Fig. 9

In Figur 9 sind die Ergebnisse der entsprechenden Berechnungen fiir
v = konst. aufgetragen. Der Vergleich der gemessenen und berechneten Schwin-
gungskurven zeigt zunichst eine gute Ubereinstimmung des allgemeinen
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Schwingungsverlaufes; Zahl und Dauer der eigentlichen Schwingungsaus-
schliage, die sich der statischen Durchbiegungslinie y, iiberlagern, stimmen in
Versuch und Rechnung miteinander iiberein.

Dagegen zeigt sich, dal die GroBe dieser Schwingungsausschlige im Ver-
such grofler ist als in der Rechnung. Gleichzeitig 148t sich aus den Versuchs-
diagrammen eindeutig feststellen, daf die Schwingungen des Punktes m nicht
gleichzeitig mit dem Auffahren der Last P auf den Balken beginnen, sondern
erst etwas spiter. Daf} eine solche Verzogerung des Schwingungsbeginns in
Balkenmitte gegeniiber dem Auffahren der Last auf den Balkenanfang vor-
handen sein muB, ist grundsitzlich einleuchtend, denn die Kraftwirkung kann
ja keine unendlich grofle, sondern nur eine endliche Fortpflanzungsgeschwin-
digkeit (iiber deren GroBle m. W. bis heute wenig bekannt ist) besitzen. Es
darf nun, aus dem Vergleich der gemessenen und berechneten Schwingungs-
bilder ohne weiteres vermutet werden, dal3 die Verzogerungszeit z die eigentliche
Ursache fir die Vergroferung der Schwingungsausschlige darstellt.

Ts = 076 *°¢
- S o,
N _[\lB A ¢
— \/ P
t N /
N V = 552 ¢™/sec 7 102

Fig. 10
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Um wenigstens quantitativ den Einflu der Verzogerungszeit z auf die
GroBe der Schwingungsausschlige abzuschidtzen (und ohne heute schon den
zeitlichen Verlauf des ganzen Verzogerungsverlaufes diskutieren zu wollen),
habe ich noch einige Schwingungskurven fiir verzogerten Schwingungsbeginn
in vielleicht etwas zu schematischer Weise berechnet: fiir den Zeitpunkt
t,=t,+2 habe ich die Anfangsbedingungen y,=0 und ¢,=0 entsprechend
Gleichung (9) beriicksichtigt und den weiteren Schwingungsverlauf mit gegen-
iber z=0 unverinderten Werten von p? und F nach Gleichung (7) berechnet.
Die Rechnungsergebnisse sind in Figur 10 aufgetragen; sie bestitigen unsere
Vermutung, dal eine Verzogerungszeit. z die Schwingungsausschlige wesent-
lich vergroBern kann. Der Vergleich der Schwingungskurven y mit der stati-
schen Durchbiegungslinie y, 146t auch die physikalische Ursache dieser Erschei-
nung erkennen. Die Diagramme der Figur 10 zeigen im Vergleich mit den
gemessenen Schwingungen, Figur 9, dall die Verzogerungszeit z etwa in der
GroBenordnung von 0,02 Sekunden liegt, was gut mit den aus den entsprechen-
den Versuchen feststellbaren Werten von z iibereinstimmt. Bei einer genau-
eren Abklirung miilte der zeitliche Verlauf des Verzogerungsvorganges sowie
der Dampfungseinflull beriicksichtigt werden.
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Um das Vorhandensein der Verzégerungszeit z versuchsmifig noch deut-
licher festzustellen, wurden noch Schwingungskurven y fiir verschiedene
Triagerpunkte m, x =0,25-1, 0,50-1 und 0,75-1 aufgenommen. Die Beurteilung
dieser in Figur 11 wiedergegebenen Diagramme fiihrt zum Ergebnis, daB eine
mit wachsendem x zunehmende Verzigerungszeit z vorhanden sein muf}, deren
GroBenordnung fiir die Balkenmitte, in Ubereinstimmung mit den Uber-
legungen iiber die GroBe der Schwingungsausschlige, wieder zu etwa 0,02 sec.
angegeben werden kann. Bei der Kleinheit der hier maBgebenden Zeitinter-
valle ist eine genauere Bestimmung des Verzogerungsvorganges mit der vor-
handenen Versuchseinrichtung noch nicht zuverlissig moglich.

Es ist noch festzustellen, daBl nach den Diagrammen der Figur 7 bei der
Uberfahrt der Last P iiber das Balkenende B, also beim Verlassen des Balkens,
zusitzliche Storungen auftreten, die einer Rechnung nicht zugidnglich sein
diirften, und die nicht nur die freien Schwingungen vergré8ern, sondern auch
Obertone verursachen konnen.

9. SchluBbemerkungen

Zusammenfassend darf wohl festgestellt werden, dafl das hier entwickelte
Verfahren zur Berechnung von Trigerschwingungen mit Hilfe eines Ersatz-
systems (das selbstverstindlich auf beliebige Lagerungsarten und Belastungs-
falle anwendbar ist) an sich zuverlassig ist. Dagegen haben unsere Versuche
gezeigt, daB die Schwingungen eines Trigerpunktes m gegeniiber dem Bela-
stungsbeginn ¢, mit einer Verzégerung z beginnen; die Verzogerungszeit z hat
eine wesentliche VergroBerung der Schwingungsausschlige zur Folge. Eine
wirklichkeitsnahe Weiterentwicklung der theoretischen Berechnungsmethoden
setzt somit als Grundlage die physikalische Abklirung des Verzogerungsvor-
ganges voraus.

Zusammenfassung

Es wird ein Verfahren zur Berechnung von Trigerschwingungen unter
bewegter Belastung auf Grund eines einfachen Ersatzsystems aufgestellt. Die
entsprechende Differentialgleichung, deren Koeffizienten und Stérungsfunktion
verdnderlich sind und aus einfachen Grenziibergingen bestimmt werden, wird
numerisch mit Hilfe der Seilpolygongleichung gelost. Der Vergleich mit Ver-
suchen zeigt, dafl das Rechnungsverfahren an sich zuverlissig ist, daB jedoch
zwischen dem Beginn der Schwingungen eines Trigerpunktes und dem Auf-
fahren der Last auf den Triger eine ,,Verzogerungszeit verstreicht, die eine
wesentliche Vergroflerung der Schwingungsausschlige verursacht.
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Summary

A method based on a simple substitute system is presented for the calcu-
lation of beam vibrations due to a moving loading. The relevant differential
equation, in which the coefficients and perturbation functions are determined
from simple boundary transitions, is solved with the help of the funicular
polygon equation. Comparison with experiments shows that the method of
calculation is self-checking, but that a ‘time-lag’ elapses between the be-
ginning of the vibrations of a point on the beam and the onset of the load on
the beam, which causes a significant augmentation of vibration amplitudes.

Résumé

L’auteur expose un procédé pour le calcul des oscillations dans les poutres
soumises & une charge mobile, sur la base d’un systéme équivalent simple.
L’équation différentielle correspondante, dont les coefficients et la fonction
de perturbation sont variables et peuvent étre déterminés & partir de condi-
tions transitoires simples, est résolue numériquement a 1’aide de 1’équation
du polygone funiculaire. La comparaison avec des résultats expérimentaux
montre que ce procédé de calcul est sir en soi; toutefois, entre le début des
oscillations d’un point de la poutre et le commencement du passage de la
charge sur cette poutre, il intervient un ,,temps de retard** qui donne lieu &
une augmentation notable de I’amplitude des oscillations.
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