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On the theory of cylindrical shells
Explicit solution of the characteristic equation, and discussion of the
accuracy of various shell theories

Sur la théorie des voiles minces cylindriques
Solution explicite de I’équation caractéristique et discussion de l’exactitude
de quelques théories

Uber die Theorie zylindrischer Schalen
Explizite Losung der charakteristischen Gleichung und Besprechung der
Genauigkeit exniger Schalentheorien

JoEANNES MoE, C. E., Trondheim

1. Introduction

On the basis of the equations of equilibrium and compatibility of the shell

element (Fig. 2) FLtcoE [1] established the following set of simultaneous
differential equations.

o V4 e a2
w+i(l-p)u +pw'+3 (1+p) v +k[3 (1-p)w " —w"+§ (1-p)w ]+X—ﬁ =0

2
Fl+p) " +0" + 3 (1) +w +h[E(1—p)o —FB—p)w” ]+ Y 5 =0 (1)

2
,U:u,‘}‘?)"i‘w-i-k [%(1_“) u,”—u”’—%—(g—ﬂ) v”-+w////+2w”--+w::+2w..+w]+Z% =0
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where u, v and w are, respectively, the longitudinal, tangential and radial
deflection of a shell element (Fig. 1).

X, Y and Z are the loads, d F=a-d¢-dx (Fig. 2).

n = Poisson’s ratio

d? Ed
k=12a2’ Dzl—y,z
d = thickness of shell

a = radius of shell

E = modulus of elasticity
_,%f Sf

f= by, I'= S;
The homogeneous part of Eqgs. (1) is easily solved by substituting.
w=E-em®cosA >
a
LN Z
v=F-.em?gin A - (2)

) x
w=G0G-emPsin A —
a

where E, F and G are constants of integration,

! = length of the shell and the exponent m is found from the followihg equation
of 8th degree [2].

mB4+m8[2—4A2]+mA[1+A2(—8+2u)+6A]+m2[A2(—4+2u)+

— 2
FOX AT M (43— 200 4N T (3)

Eq. (3) is known as DISCHINGER’s characteristic equation, which can be solved
without any fundamental difficulties. By introducing z=m? an equation of
4th degree is obtained, on the basis of which the cubic resolvent equation may
be established [7]. The cubic equation is then solved in the general way by
means of trigonometric functions. This method is discussed in detail by
DiscHINGER [2].

From a practical viewpoint, however, the above mentioned method of
solution has the great disadvantages of being tedious and extremely sensetive
against inaccuracies.

In the following it will be shown that these difficulties may be avoided,
and the solutions of Eq. (3) are given in explicit form.
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2. Solution of the characteristic equation
It is convenient to introduce the following notations [3]
Al 12 7%ab
P = 1/ ]/ 24

(4)

For reinforced concrete shells p will vary within the interval 2—30 and «
from 0.03—0.45.

By substituting —

m
— (5)
p

. DISCHINGER’S characteristic equation (3) takes the following form:

2 K 1
m8+(——4;<) m6+[6;<2+(2 ~8)—+*] mt
o2 ~ o2 ot

3

2
+|:—-4K3+6- 2p—4)— ]m2+ I:K4—2/.L;)l% (6)
pt
2
+ (4~ 3 u2) i 1-;&] =0
By introducing z =m? the following equation of 4th degree is obtained:

2 K 1
z4+(———4:<)z3+[6x2+(2 —8)—+——]z2
p* Hopr T

(6a)
3 K2
+ 4 x3 +6——+2 4 ]z+[;< -2 4 —-3u?)—+1- 2]:0
[ a5 P43 T
Substituti
ubstituting z=§~%(£—4:<) (7)
one arrives at a new equation of 4th degree:
1 2
U |- s —2(1- m 2+ |-450-p|t
2p* P
1 l—p k 2 ®)
el A BRSNS DS
+16p8+ 3 p6+3(1 ,u)p4+l ® 0
which in abbreviated form reads
P+plP+gl+r=0 (8a)

and its cubic resolvent equation becomes [7]:

Y +2py?+ (pP—4r)y—q¢*=0 (9)
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where in Eqgs. (8a) and (9)

K
g=—-4—5(1-p)

p
= L L an ~ (10)
P = 2p4+ —#‘)pg
_ 1 1—p 2y K2 2
=t g e )

Equation (9) is now easily solved. Noticing that
4
¢* =16 "¢ (1—p)?
P

always is a very small quantity (order of magnitude 10-6) while

pPP—dr~—4
one of the roots y, is found from the following simplified equation:

(p?—47)ys—q*=0 (9a)
which gives:
q>
Ys = i _4r (11a)
This root is very small compared to unity, and it is therefore permissible to
neglect the terms of second and third degree in Eq. (9) when evaluating y,.

The two other roots are then found by ignoring the small quantity ¢2 in Eq. (9):

Y24+ 2py+p:—4r=0 (9b)
Thus yielding
Yo = —p+2Vr (11b)

Substituting for p, ¢ and r from Eq. (10) into (11) one gets:

1 K k2 1l—p k 1
= |l—— a2 Xl +271/1-p2 - A AT
Y10 [2P4+ (1 }L)P2] + 1/ w2+ 3( F')p4+ 2 6+16p8

Ys = — e
L0 8 (L hp—2p)

These roots should satisfy the three conditions below:

Yi° Y2 Y3 =¢°
Yi+YetyYs=—2p (13abe)
Y1Ye+Y1Ys+Yays = P> —4r
Eq. (13a) is identically satisfied, while the error in Eq. (13b) is of the magni-
tude 4"—: which is always <1076, and finally in Eq. (13¢) the error will be
P
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271
15 vl
P Lp P

From the binominal formula one has

4
1/(;+A~1/E+2—1/—E (14)

if 4 is a very small quantity compared to c.

which is always <1076,

Eq. (12a) may then be written:

1 K — k2 1-p « 1
. —_ L — .2 _ 2 o
o= [gor2om 5| sl iz 0o S 5 oL (20
Referring to HUTTE [7] and other handbooks
= %(V%“{‘ ]/—y—z‘*' ‘/?7;
=%(V.'971 Voo — Vys) (15)
= 3 (= Yy + Vya— Vys)
Ly =%( Vo= Vyz+ Vyo)
where the signs must be chosen in such a way that
L 2
‘/?-/_1'1/?/2"/?/3= ‘q=4£‘(1_ﬂ) (15a)
Egs. (12¢) and (14) yield:
k2 1—p « 1 K
— 2 1—u & 1 K
y —zﬁ{2l/1— Pp3(l—p) — | +(1- —]}
Yo 9 I &( IJ’) 4 4 PG 32P8 4 pt ( )P2 (16b)
where i=7-1
and from equation (12b):
2 x2
45 (1—p)i 25 (1—p)i

]@-3 ~ — 2
‘f(l ?)+8(L+p—-2p2) o Vl—u2+(1+.u—2n2)fz

As Vy, is a very small quantity as compared to Vy, and Vy, it is sufficiently
accurate to write

— k21— I—p w2, '
Vyg = —21 — ——HF - _2]/T+—Z %z (16¢)

By substitution from Egs. (16) into Eqgs. (15) one gets:
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4, — K2 1—p & 1 1 l—p
=;]/ — o 2.3(1_ .2
‘:1.2 2 2{V1 I +4(1 :u’)p4+ S p6+64p8+(8p4+ 2 p2)}

o= k2 1- p,K 1 1 1-p«k 2(1-p) 2
Al 23 (1—u2) L) /2T
t2l/2{1/1 W (m) Gt g ot Bag (894+ 2 pz) l/ lp  p?

4 k2 1—p « 1 1 1—-p « (17)
= _lyoly1 — 231y TH K .
C3.4 2V—{V ® +4( "")P4+ 8 P6 +64p8+(8p4+ 2 pg)} ‘
i 4 — k2 l—p « 1 1 1-p & 2(1-p) «2
i 243 (1ol TR K _ K N
i2}/§{vl R T T s e (8p4+ 2 P2)+‘/ l+p  p?
and from Eq. (7)
4 — k2 1-p 1 1 1-p«
— 119 243 (1—p2) o x
s Z‘F{Vl et g p6+64p8+(8p4+ ) (K )}
i _H_zk_zl—_&f:l_llw _
i‘zﬁ{l/l pi+2(1 p)p4+ p6+64p8 8p4 P
P k2 l-p k 1 1 1-p«k 1 (18)
= 199 ) VT =243 (1— 2\ x
a= =4y {Vl ) et g 96+64P3+<8P4+ ) ( p)}
2 1-u«k 1 1 1—p « 2 ) 2
hd 1) TR X - Lol IS f" K
i2f{‘/l =) pt 64p (8P4 2 p3) " 1 p?
This is more conveniently written as follows
Z1.2=U1i‘/’17f (19)
234 = Uy £yt
where
- 2 1-u 1 1 1-up x 1
=;2[4_2§_2~ K TR Y LYo et
V1.2 iZl/ l‘/l l‘l’+ (1 I‘L) 4+ 8 P 64)0 (8p4+ 9 p2 ——}/_ K 2P2
2 ] 1 1 1 2 (1—p) 12 (20)
4 K - K -0 K\ —u) K
—1 1o 243 (1—p2)C 2T K _ x il
2 Zﬁ{V )Gt g it e (8p4+ 2 p2)+l/ l+p p?
From Eq. (5) m=pm=plz (21)
and defining « and B so that
My_4=*p Vvlii‘ﬁl:i 1B (22)
Ms_g=+p Vvgtithy = +oy+ Pyt
one obtains \
oy = PVO-5 (Vo2 + 2+ vp)
ﬁl=pV0.5(lv12+¢r12——v1) (23)

ty = p 1/0.5 (Vg2 1 ghg? + vy)
Ba=p VO-5 ( szz +ihy? —v,) -
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To find the roots in DISCHINGER’S characteristic equation will then require the
following steps of calculation.

1. Calculating p and « from Eq. (4)
2. Calculating v, , and ¢, , from Eq. (20)
3. Calculating «, , and B, , from Eq. (23)

According to Eq. (2) the deflections are found to be
w =[e=19{A4; cos B, @ +A,sinf; ¢} + e~ {4308 By + A sin B, ¢} (24)
+e 1@ {4, cos Byw+ A, sinf; w} + e« {4, cos Byw + 4, sin B, w}] sin )\2
and similarly for » and v.
w and ¢ are shown in fig. 1.
It should be noted that this paper concerns disturbances from the straight

edges. A similar solution of the characteristic equation for the circumferential
edges does apparently not exist.

3. Accuracy of the formulas

The differences between the exact v- and i-values and those calculated
from Eqs. (20) are readily found to be less than 2K_p“'

Only in the case of a very long shell will this value be > 10-5. For the
purpose of studying the effect on 8 due to an inaccuracy in i it is assumed

that the calculations have given
=+ 4 “(a)

where i is the exact value and 4 is a small corrective quantity.
From Eqs. (23) and (a) one has

B = p 05 (o2t (@) —v)

R p V0.5 (Vo242 +24 - —v
The following rough approximations for v and iy may be obtained from Egs. (20)

v=yp=112 (b)
after which
Bap V05 (T+-412) ~04p (©)

hence

B ~p 0.5 (VoF+g2+4 - y—v)

= p o5 g-n + 4Y
NPV0-5(VU2+¢2—U)+1—EAP ()
The combination of Egs. (b), (¢) and (d) yields
B ~B+0.454-p (26)
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where 8 is the correct value of the root, while 8’ is inaccurate due to the dis-
crepancy 4, Eq. (a).
A corresponding effect is found from an inaccuracy in v.

4. Discussion of the characteristic equation

Several more or less approximate methods of shell analyses have been
advanced in the last two decades. These methods lead to various characteristic
equations, and each of those may be solved explicitly in the same manner as
shown above.

The solutions of several of the best known equations are tabulated below.
(Table I.)

LunDGREN [4] has found that for most of the shells « will vary within
the limi )

o Himits k= 0.015 (p + 2)
For the sake of convenience, the discussion is therefore based on the average

value k=0.015p

A. FINSTERWALDER’S characteristic equation [1] reads

M+ mS [2 X2 (24 )]+ mA[1 =A% (4 4+ 2 1) + 24 (142 )]

2 2
+m2[—)\2(2+#«)+/\4(1+/u~)2—/u/\“]+A41—I—ci=0 (27a)
When introducing the definitions in Egs. (4) and (5) one gets
2 1
m8 + [—2—(2—1—;1,);(] ms + [(1+2[.L)K2—2 (2+P‘)£2+_Z] mt
P . P2 p (27h)

+ [(1+H)2:—2“(2+[L)P£4—/LK3:| mi+1—pu2=20

The solution of this equation (given in Table I) shows a relatively important
difference from that of DISCHINGER in v, ,, characterized by the quantity.

—1/9./9 K%
d=}72 1/52“2

From Table I one finds that the following expressions represent rough approxi-
mation for the smallest values of « and .

a=0.39(1+%)p
B=0.39(1—i2‘—)p

which combined with Eq. (26) yields the maximum percentage errors in the
roots of Eq. (27). o 115k y
- 2—+K °
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Table 1. List of v and i, Eq. (19)
Equation Vio
— (¢ 2 1—p «x 1 1 1—p «
i%‘lz{‘/l_”2+%(l_”2)7+ 8“;“_+64ps+(8p4 _2—#7-72‘)
DiscHINGER B 13
< V3 (e 5]
¢ 1 1-2 2— 3 143 &
J—”%ﬁ{‘/l“"” P T T T
FINSTERWALDER +2+“_K“+ 1 +(_1_+2+“_£)+V§ (2+ILK_ _1_)}
32 p%  64p8 8 pt 8 p?) ™ 4 2 p?
~ K 2 K 1 1 K 1
AAS-JAKOBSEN i%l/2{1+%ﬁ— <+ +64p +(§—p_+ pz)iﬁ("_é‘pﬁ}
= 2 ]y B 1
1 _ AL e K_ 1T«
) e} a{YIm s f St -z 5 - I S
UNDGREN u ok 1
gyt ) £ 12 (- 5]
JENKINS +3 1/5{1 + ﬁx}
ZERNA -_l-%f{Vl p2+]/2:<}
SCHORER i%ﬁ
Equation 1/
4 K 1—p « 1 l p. K)
1 2 oy 4 TTHE K
DiscHINGER 2(1_ o«
+l/ 1+p '?}
4 1- 1—-2u 2—p & 143p «* 24u «
%ﬁ{‘/l‘“h I e e R
FINSTERWALDER 5
+_1__(L+_2_+_EL);__V_2_ [a+ms-25# )]
64p° \8p* 8 p?) 4yY1—p2 P 8
12155 9 0¥ _L_(_l_ L)— (i_f)
AAS-JAKOBSEN 2}/2{1+§p6 2p4+2p2+64p8 8}{)4-{-2/)2 T2 -
4 1_ 2 K3 1
1 /9 _ ey P K D Y IS [ad
PR{VImi s oz - S
LUNDGREN 1 & X V2 3—p? 2
_ ._+_._)—
(8P4 4 p? 4 Y1—p P}
JENKINS %}/5
— 4
ZERNA V2 ]/1—;;.2
SCHORER 372
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Introducing « = 0.015p one gets

7 0.86p

= 0
"~ 140.0075p /0

The error d’ as a function of p is given in Fig. 3.
It is evident that FINSTERWALDER’S equation is very unsatisfactory for
short shells, say for p> 5.

B.  AAS-JAkOBSEN. The characteristic equation is [3]

2 1

8 -+ [—2—4K]m6+[—4—8i2+6,<2] mt

P Pt p

(28)
K K2 K2

+ [—8—74-1- 14—5—-4K3:| mi+xt+ —+1=0
p p p

The solution of this equation differs from that of DISCHINGER’s mainly in i,
and the error is characterized by

2 1
d=2"_9% _ 0015 (—— 0.03)
Pt p? p |

which yields 1.73 (i _ 0.()3)
4 = P3 (y
1-0.0075p ’°

Fig. 3 shows that Eq. (28) is very accurate for all types of shells.

C. LuxbpcerEex [4] has tabulated the roots of DiSCHINGER’s characteristic
equation. However, on the basis of some approximate assumptions he also
establishes the following equation.

2 1 K

m8 + [——-—41{' mS + [———(6+ )——~+6K2]77i4
P pt s

2

(29)
3
+ [— (2+p);’%+(3+2,1,+p2)%—4x3] m®+ [—u%+x4] +1—p?=0

For p=0 the numerical errors in v and ¢ will be

corresponding to a percentage error equal to

_ 0.89 o
~ p(1—0.0075p) °

-

dl

This is also a very satisfactory result.

D. Jexkixs [5] has succeeded in finding a very simple approximate cha-

racteristic equation: (m2

4
i—f—-n) +4=0 (30)
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Fig. 3. The maximum error in « and B as function of p (x=0,015p).

_nmfad
Ty

A= /nmy/13
I ¥V ad

This equation is easily solved explicitly [5] and the solution is here brought
into accordance with the other solutions of this paper, see Table 1.
The numerical error is defined by the quantity

1
=5
which corresponds to the percentage error

58 0
p%(1+0.0075p) /°

where

d' =

Fig. 3 shows that JENKINS’ equation is very satisfactory for short shells,
especially when considering its simple form. And even for long shells this
solution may appear to be satisfactory.
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E. Zgrw~aA [6] introduces a stress-function and arrives in a very inter-

esting way at the following characteristic equation of the fourth degree:
2 4 b 12 V12 (1 — 2
mi—2 (P72 ey (202 (e [y LEVIZA=6] (g
l l ad

where @, is shown in Fig. 1, and ¢ = ¥ —1.
For =0 the solution of Eq. (31) is identical with JENKINS’ solution, as is
shown in Table I. Therefore the conclusions drawn under point D also applies
to Eq. (31).

F. ScuHORrER. The equation given by SCHORER is well known
B+l =0 (32)
and has a very simple solution which, however, is approximately correct only
in the particular case where = 1
1/2 (K‘— ) =0

2

Substituting « = 0.015p one gets
p=32 «=0.048
which corresponds to a rather long shell.
In this particular case the numerical error in the solution of SCHORER’S
equation is of the magnitude

V2 «
For shorter shells the error will be characterized by the following quantity
— 1 1
1R (e ) = e g

corresponding to the percentage error

(1.73 — §§) p
roonss
1+0.0075p 7°

Eq. (32) is approximately correct only in the very small interval 2.5 <p <4,
see Fig. 3.

d =

Conclusions

On the basis of the study above one may conclude that all equations under
discussion, except those of FINSTERWALDER and ScHORER give sufficiently
accurate results for most of the shell types. The equations given by FINSTER-
WALDER and SCHORER Yyield reasonable values of the roots for very long
shells. However, in such cases it is sufficiently accurate to use the more
elementary methods of calculation, for instance the beam analogy as des-
cribed by LuUNDGREN [4].

The roots, m, of the characteristic equation define the dampening of the
disturbances from the edges of a shell (see Eq. 24) and to a large extent these
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roots influence the magnitude of the moments and forces, which are found by
differentiating the deflection formulas. Since
n
S "
it is evident that an inaccurate value of m will cause increased inaccuracies in
the calculation of moments and forces. It is therefore advisable to calculate
the roots as accurately as possible, even if the rest of the analyses is carried
out in accordance with one of the more simplified methods.
By means of the procedure proposed in this paper the numerical work
involved calculating accurate roots of the characteristic equations is reduced
to a minimum.

eMmP — gl gme
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Summary

Fr. DiscHINGER has presented the exact characteristic equation for the
cylindrical shell in Beton und Eisen, No. 16, 1935. However, the nummerical
calculation of the roots as indicated by DIscHINGER is laborious and very sen-
sitive against inaccuracies.

The author has succeeded in finding a set of roots in explicit form. These
roots are very accurate and the numerical calculation is reduced to a minimum.

At the end of this paper the solutions of several approximate characteristic
equations (FINSTERWALDER, AAS-JAKOBSEN and LUNDGREN) are for the first
time given in explicit form and the accuracy of these equations is discussed.
Also the solutions of JENKINS, ZERNA and SCHORER are compared to those
mentioned above. It is shown that for all practical purposes the methods of
AAS-JAKOBSEN, LUNDGREN, JENKINS and ZERNA are of sufficient accuracy.
However, the moments and forces in the shell depend to a large degree upon
the roots of the characteristic equation, and it is of importance to calculate
these roots as accurate as possible. It should therefore be reasonable to apply
the exact solution given in the present paper, also in combination with calcu-
lations which are carried out in accordance with some of the other theories
mentioned above. |
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Résumé

Les équations exactes et caractéristiques des voiles minces cylindriques
ont été établies dans ,,Beton und Eisen‘“ Nr. 16, 1935, par Fr. DISCHINGER.
Cependant, le calcul numérique des solutions selon la méthode DIScHINGER
exige beaucoup de temps et se révele tres sensible a des inexactitudes.

L’auteur a réussi & mettre les racines sous forme explicite. Celles-ci sont
trés exactes et les calculs numériques sont réduits 4 un minimum. Cet exposé
contient la forme explicite des solutions de quelques équations approchées
caractéristiques (FINSTERWALDER, AAS-JARKOBSEN et LUNDGREN); l’exacti-
tude de ces équations y est également discutée.

Les solutions de JENKINS, ZERNA et SCHORER y sont comparées et montrent
que les méthodes de AAas-JAKOBSEN, LUNDGREN, JENKINS et ZERNA donnent
des résultats suffisamment exacts.

Toutefois, les moments fléchissants et les forces dans le voile dépendent
dans une large mesure des solutions des équations caractéristiques; il est donc
nécessaire de les calculer aussi exactement que possible.

11 est dés lors indiqué de calculer avec les solutions exactes décrites dans
cet exposé, tout en utilisant les calculs selon une des méthodes décrites.

Zusammenfassung

Fr. DiscHiNGER verdffentlichte die genaue charakteristische Gleichung fiir
zylindrische Schalen in Beton und Eisen Nr. 16, 1935. Die numerische Berech-
nung der Losungen nach der Methode DiscHINGER erfordert aber sehr viel Zeit
und ist auch sehr empfindlich gegen Ungenauigkeiten.

Dem Verfasser ist es gelungen, die Wurzeln der Gleichung in expliziter
Form darzustellen. Diese sind sehr genau und die numerische Berechnung wird
dabei auf ein Minimum reduziert.

Am Ende dieses Aufsatzes werden zum ersten Male die expliziten Losungen
von einigen angendherten charakteristischen Gleichungen (FINSTERWALDER,
AAs-JAROBSEN und LUNDGREN) gegeben und gleichzeitig die Genauigkeit dieser
Gleichungen besprochen. Ebenso werden die Losungen von JENKINS, ZERNA
und SCHORER mit den oben genannten verglichen. Dabei zeigt sich, daB fiir alle
praktischen Zwecke die Methoden von AAS-JAKOBSEN, LUNDGREN, JENKINS
und ZERNA eine ausreichende Genauigkeit liefern. Die Momente und Krifte
in der Schale sind aber stark abhéingig von den Lésungen der charakteristischen
Gleichung, so daB3 es notwendig ist, diese so genau als mdglich zu berechnen.

Es wire daher ratsam, die genaue Losung anzuwenden, wie sie in diesem
Aufsatz beschrieben wurde, auch in Verbindung mit Berechnungen, die nach
einer der oben genannten Theorien ausgefithrt wurden.
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