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Adaptations plastiques au bord des surfaces de revolution1)

Plastische Anpassungen am Rande von Rotationsflächen

Plastic re-adjustment at the boundary of surfaces of revolution

Prof. Ing. Franco Levi, Politecnico di Torino, Torino

Introduetion

La prise en compte des phenomenes d'adaptation qui se verifient dans les
constructions ä la suite du depassement local des limites d'elasticite presente
un interet tout particulier quand le regime des contraintes, calculees d'apres
la theorie de l'elasticite, donne lieu a des concentrations d'efforts sur des

regions relativement peu etendues. Dans ce cas en effet le calcul des marges
de securite fonde sur l'hypothese elastique conduit a des resultats fort eloignes
de la realite du moment que l'intervention des deformations anelastiques (les-
quelles peuvent consister soit en de veritables deformations plastiques, soit
en une fissuration plus ou moins etendue) peut provoquer une importante
redistribution des sollicitations entre les zones surchargees et les regions
voisines qui disposent encore d'une bonne marge de resistance.

Ceci se produit en particulier au voisinage des bords des surfaces de
revolution en correspondance desquels se developpent souvent des efforts conside-
rables qui sont destines ä rendre compatibles les deformations d'ensemble de
la surface (deformations du regime de membrane) avec les conditions de liaison
auxquelles les bords eux-memes se trouvent soumis.

Dans ce genre de problemes une etude elasto-plastique de l'equilibre est
rendue particulierement interessante par les raisons suivantes:

a) En general les moments flechissants et les poussees qui agissent sur les
bords ne provoquent des contraintes importantes que dans certains des
elements resistants en presence (meridiennes par exemple), et les efforts intenses

x) Ce memoire, remis au Secretariat du 4e Congres avant les reunions de Cambridge,
n'a pu etre insere dans le rapport final* le texte n'en ayant pas 6te diseute au cours des

seances.
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se concentrent dans une region fort peu etendue. Ceci donne de larges possi-
bilites aux phenomenes de redistribution auxquels nous avons fait allusion.

b) Les deformations que la surface subit ,,en regime de membrane" sont
relativement petites [1] en sorte que des deformations anelastiques meme tres
limitees ont une influence considerable sur le regime des contraintes.

c) Souvent la surface etudiee est soumise ä des conditions de charge
relativement simples et il est facile de prevoir l'allure de la loi de Variation des

contraintes locales.
C'est la ä notre sens un point tres important sur lequel il faut toujours

fixer son attention au moment d'entreprendre l'etude d'un probleme d'equilibre

au delä de la hmite elastique. II faut en effet se rappeler que la loi de
deformation des materiaux plastifies n'est pas reversible et qu'elle n'est pas
redevable du principe de superposition. II s'en suit des complications analy-
tiques inextricables si l'on ne peut se procurer a priori quelques renseignements
sur l'allure du phenomene: par exemple si l'adaptation plastique donne lieu
ä une retrogradation d'efforts dans une region dejä plastifiee il faudrait, pour
cette region, adopter la loi de deformation du materiau ecroui. C'est pourquoi
la plupart des problemes elasto-plastiques qui ont ete traites jusqu'a present
concernent des exemples dans lesquels on peut prevoir ä priori que les
contraintes sont une fonction toujours croissante de la sollicitation [2]. II en sera
precisement ainsi dans le reservoir vertical rempli de liquide qui nous servira
d'exemple par la suite. Nous demontrerons en effet que les contraintes
normales agissant sur la section transversale au voisinage du bord inferieur sont
une fonction croissante de la hauteur de remplissage aussi bien en regime
elastique qu'en regime elasto-plastique2).

Position du probleme et hypotheses simplificatrices adoptees

Nous conduirons tout d'abord notre etude dans un cas particulier. Par la
suite nous nous efforcerons de degager des resultats obtenus des conclusions
de portee plus generale.

L'exemple dont nous partirons est celui d'un reservoir cylindrique vertical
encastreäsa base, rempli d'eau. Apres avoir procede au dimensionnement du
reservoir au moyen de procedes ordinaires de calcul, nous imaginerons d'en
augmenter la hauteur jusqu'a provoquer le depassement des fimites elastiques
dans la section de base.

Pour mener ä bien le calcul au delä de la limite elastique, nous adopterons
alors deux lois differentes pour la relation moment flechissant-courbure, l'une
valable pour la region plastifiee, l'autre pour la region elastique. Nous serons

2) Une autre facon de proceder consiste a fixer intuitivement la localisation des
deformations plastiques [3]. Cette methode donne souvent des resultats interessants dans
les problemes ä faible degre d'hyperstaticite.
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ainsi conduits ä deux equations differentielles distinctes que nous pourrons
ecrire indifferemment en fonction de la deformation radiale ou du moment de

flexion longitudinal. L'introduction des conditions au contour, qui sont cons-
tituees ici par les limites imposees ä la deformation aux extremites du reservoir
et par la condition de continuite au passage d'une region ä l'autre, nous
consentira d'etudier simultanement le regime des deformations et celui des

contraintes. En particulier, le calcul des constantes impliquera automatique-
ment la resolution des conditions d'hyperstaticite.

Ainsi que nous 1'avons souligne ci-dessus, notre etude ne sera valable que
dans la mesure oü nous pourrons demontrer qu'en chaque point de la region
plastifiee la contrainte sera une fonction croissante de la hauteur de remplissage.

D'une maniere generale, nos developpements se fonderont sur les
hypotheses suivantes:

a) Localisation des deformations anelastiques sur les bords de la section
transversale et conservation des sections planes. Nous verrons cependant que
notre procede peut s'appliquer au cas oü les deformations anelastiques inter-
viennent dans la direction circonferentielle.

b) Possibilite de tenir compte de 1'effet des deformations non-elastiques

par l'adoption, dans le sens des generatrices, d'une loi moment de flexion —
courbure opportunement modifiee. Cette hypothese constituerait certainement
une approximation relativement grossiere si nous voulions etudier en detail
l'effet local du phenomene anelastique. Mais il n'y a pas de doute que si l'on
se place au point de vue du technicien qui se preoccupe de l'allure generale
du regime d'equilibre, et qui cherche surtout ä evaluer les marges de securite,
une teile fa§on de proceder suffit ä rendre compte des principaux effets des

deformations anelastiques.

regime ' regime
elastique ptsstique

Fig. la

/lb/ //*' /// /
1 ////

J*
Fig. lb

En pratique, dans notre exemple, des considerations d'ordre analytique
nous conduiront ä adopter une loi moment de flexion — courbure formee par
deux droites de pente differente (fig. la). Cette representation schematique
se rapproche assez bien du phenomene physique quand on a affaire ä une
construction en beton arme. Dans ce cas, en effet, il a ete demontre, aussi bien
theoriquement que par voie d'experience, que si l'on fait abstraction d'un
Intervalle relativement bref qui suit la fin de la periode elastique, la loi de
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deformation d'une poutre flechie est representee, au delä de la limite elastique,

par une droite assez fortement couchee sur Taxe des abscisses [4] (fig. lb).
Notre representation s'adapte par contre moins bien au cas d'une

construction metallique. On sait en effet que pour une section rectangulaire formee

par un materiau qui passe instantanement du regime parfaitement elastique
au regime parfaitement plastique, la courbe repräsentative de la relation
moment flechissant — courbure a une allure asymptotique analogue ä celle

qui est dessinee dans la fig. 2 [5].

103 y

/ 5ection rec/angL
20x10 an

6S =2400 Kg/

ilaire

'crrf

Fig. 2
37,5

Cette remarque nous amene ä conclure que, d'une maniere generale, les

resultats que nous obtiendrons se rapprocheront davantage de la realite dans
le cas des constructions en beton arme.

Developpements analytiques

La fig. 3 represente le reservoir cylindrique pris comme exemple. Voici
d'autre part la liste des notations que nous adopterons par la suite:

Hauteur de remplissage: H.
Epaisseur de la paroi: h.

Moment d'inertie de la paroi (par cm de largeur): /.
Rayon du cylindre: a.
Module d'elasticite: E.
Moment de flexion longitudinal dans la partie plastifiee: Mp.
Id. id. dans la partie elastique: Me.
Deplacement transversal mesure suivant le rayon,

dans la partie plastifiee: wp.
Id. id. dans la partie elastique: aje.
Poids specifique du liquide qui remplit le reservoir: y.
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Dans la figure 3 nous avons d'autre part indique les Conventions de signe
adoptees pour le moment flechissant, le deplacement transversal et la poussee,
cette derniere etant representee par la lettre Q.

z>

Fig. 3

Voici alors comment on peut ecrire les equations differentielles du probleme.
Dans la region elastique la relation entre la courbure des generatrices et le

deplacement transversal s'ecrit:

oü 2 represente l'abscisse mesuree ä partir de la section d'encastrement et oü
nous avons pose:

EI
1-v2D

Dans la region plastifiee nous ecrirons par contre:

d2co

dz2 -f{Mp) (2)

Ceci pose, nous remarquons que les conditions d'equilibre nous permettent
d'ecrire, aussi bien dans la zone elastique que dans la zone plastique, la relation
classique:

d2M Eh
-J^-^o,=y(H-z) (3)

En nous servant de cette derniere equation nous pouvons alors eliminer co

dans les equations (1) et (2). Ceci nous amene aux equations differentielles
suivantes:
Dans la region plastifiee (z ^ zx)

d'M' £/W-odz*

Dans la region elastique (z ^ zx)

drMr h
¦ + ¦ M, Q

dz* ' arl e

(dans cette derniere relation nous avons pose v 0).

(4)

(5)
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L'Integration de l'equation (4) n'etant pratiquement possible que si f(Mp)
prend une forme lineaire, nous adopterons la loi representee dans la figure 1 a
et nous ecrirons: * / **¦ * **¦ 7f(Mp)=cMp+d (6)

L'equation (4) s'ecrira donc:

d*Mp Ehe Ehd
dz* a2 p a2 '

II est alors facile d'ecrire les integrales generales des equations (4') et (5).
En fait, pour faciliter le calcul des constantes, nous mettrons ces integrales
sous deux formes afferentes, soit:

Mp e-ßz(Cxsin.ßz + C2eosßz) + eßz(C3smßz + C^eosßz)-~ (7)

q
1 'Ehe

Me ^4e-a*sin(az-|-e) (8)

avec
{2 \ ct2I

Notons que l'expression (8) admet implicitement que le reservoir ait une
hauteur süffisante pour que l'on puisse negliger l'influence du bord superieur
sur le regime des contraintes.

Dans les expressions (7) et (8) apparaissent six constantes inconnues. Pour
les calculer nous devons exprimer les conditions limites qui sont ici les suivantes:

Pour z 0 (section d'encastrement) on doit avoir: co -^ 0, ce qui peut
s'ecrire, en tenant compte de l'equation (3):

d2Mp
~dz^= yH

d*Mv
(9)

Pour l'abscisse zx, en correspondance de laquelle le moment de flexion
atteint la valeur limite elastique Mx, les deformees plastiques et elastiques
doivent avoir meme ordonnee et meme tangente. En outre, pour les deux
branches, le moment de flexion doit prendre la valeur Mx, tandis que les efforts
tranchants doivent s'egaler. Ces dernieres conditions s'ecrivent: pour z zx

Mp =Me Mx
dMv _ dMe (10)
dz dz

Quant aux conditions de raecord des deformees elles peuvent s'exprimer sous
la forme: pour z zx
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a>p a>,

'(JÜpd cüd d coe

dzdz

ce qui s'ecrit, en tenant compte de l'equation (3)

d2M„ d2Mfi
dz2

d?Mp
dz*

dz2

d*Me
dz*

(11)

En definitive, en groupant les egalites (9), (10), (11) nous disposerons de
7 relations qui nous permettront de calculer ä la fois les six constantes
d'Integration et l'abscisse zx qui caracterise le passage de la region plastique ä la
region elastique.

Commen9ons alors par utiliser la premiere des relations (10). En tenant
compte de la (8) nous pouvons ecrire:

Mx A e~aÄ1 sin (a zx + e)

et donc: „ „ 1 (12)
sm(a2;1 + €)

En reportant dans l'expression (8) de Me il vient:

e 1 sinfa^-fe)
Pour introduire les autres conditions de groupe (10) et (11), calculons alors

les derivees successives de Me et dans les formules obtenues donnons ä z la
valeur zx. II est facile de voir qu 'en posant:

1

u (13)

il vient:

(14)

tg(az1 + e)

(tf*),- 2«,m><1+»>

Des lors les conditions (10) et (11) pourront s'ecrire:

e-ß^(CxBmßz1 + C2cosßz1) + eß^(C3smßz1-\-C^cosßzx) Mx +

ße-ßzi[Cx(cosßzx-smßz1)-C2(sinßz1 + cosßzx)] +
-\-ßeßZl[Cs(smßzx + cosßz1)~Cli(Biiißz1-cosßzx)] -olMx{1-u)
2ß2e-ß^[-C1cosßzx + C2smßz1] + 2ß2eß^[C3Gosßzx-C^smßzx]

-2ol2Mxu
2ß3e-ß*L[Cx(cosßzx + smßzx) + C2(eosßzx-smßzx)] +

+ 2ßseß^[C3(cosßz1-smßz1)-C^(smßzx + coBßz1)] 2a?Mx{l+u).

c

(15)
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On voit que la methode de calcul adoptee nous permet de separer le calcul
de quatre des constantes recherchees3). En resolvant le Systeme d'equations
(15) nous aboutissons en effet aux expressions suivantes des constantes Cl9
C2, Cs, C4, ecrites en fonction de u (soit implicitement de zx et de e):

1 a2 1 a3 1 a3 1

^-cosßzxj2Mxu + -smßzx^Mx(l+u) + -cosßzx^Mx(l+u)\

C2 eßz^co$ßzx\Mx+~\+-sm

-lsmßzxj2Mxu + ^cosßzx~Mx(l+u)-^^^

C,= e-/>*gBmj^ (16)

1 a 1 a2 1 a3

--cosßz1ßM1(l-u)--eo8ßz1ß-2M1u + -cos}ßz1^M1{l+u)-

(74= erß« l^cosßz-, (Mi+j) -\cosßz1^M1(l-u) + ^smßz1^M1(l~u)+
1 a2 1 a3 1 a3 ~]

+-smßz1^M1u--smßz1j3M1(l+u)--cosßz1-äpM1(l+u)^

II nous faut maintenant introduire les conditions du groupe (9) qui peuvent
se mettre sous la forme: oß2( —f+fM H

2ß*(C1 + Cz + C3-Ci)= -y
(1?)

En introduisant dans le Systeme (17) les valeurs de Cx, C2, C3, (74 on
aboutit, apres simplification, aux equations suivantes:

-|Mx(ß2 + *2) smßzx-coshßzx-^Mx (ß2 + <x2)cosßzx- smhßzx-u +
P P

+^1(^2-«2)sin^1cosh^]..-2«2ilf1cos^1cosh^1.M rjff (lg)
2lf1a(acosj82:1--j8sinj82;1)(acoshj3^1 + j8sinhj82:1)-'^ — y —

- 2 cosh ß zx \(mx + —J j83 sin ßzx + Mx a3 cos ß zA -
-2ß*ftinhßz1\M1*emßz1 + [Mx+ — 1 ßcosßzj

8) Les calculs qui suivent ont ete effectues par le „Ufficio Calcoli Numerici" de l'Ecole
Polytechnique de Turin sous la direction de M. le professeur Buzano.
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En eliminant u on est alors conduit ä l'expression transcendente suivante
qui ne contient que zx:

2 ß y H (a cos ß zx — ß sin ß zx) (a cosh ß zx + ß sinh ß zx) — y (ß2 + a2) cos ß zx sinh ß zx +

+ y (ß2-oi2)smßzxcosh.ßzx~-2ocßycosßzxcoshßzx-2 1^!+— 1 ocß*(sm2ßzx+smh2ßzx)-

- (Jfi+—) a2j83 (cosh 2^^-cos 2ßzx) + (mx+—\ j85 (2-cos 2ß^-cosh2jg^)- (19)

- Mxot*ß (2 + cos 2ßzx + cosh2ßzx) + 2MX a3 ß2 (sin 2 ßzx - sinh 2^^) -
-Mxot2ß3 (cosh 2 ßzx-cos2ßzx) 0

On remarque que dans cette equation zx ne figure que sous forme du pro-
duit ßzx. Comme la constante ß est toujours tres petite, nous pouvons simpli-
fier le calcul en developpant en serie les fonctions qui contiennent le produit
ßzx et nous arreter aux termes du deuxieme degre. Cela nous amene ä

l'equation:

ß*(yH + ±Mxoc2 + 2-Azx2 + ccLy + 4Mxß± + 4:~

-a(ay#-y-2 Mx<x?) 0

dont on tire facilement zx, en fonction de quantites connues. Pour terminer le
calcul il faut alors reporter la valeur de zx dans l'expression de u qui derive
de la deuxieme equation du groupe (18), apres quoi on peut calculer les
constantes Cx, C2, C3, C4 d'apres les formules (16) et ensuite ecrire l'expression (7)
du moment Mp. En calculant par ailleurs la constante c d'apres la formule (13)
et la constante A d'apres la formule (12), on peut egalement ecrire l'expression
(8) du moment flechissant dans la region elastique.

En posant z 0 dans l'expression de Mp et dans sa derivee par rapport
ä z on pourra aussi calculer la valeur du moment flechissant et de la poussee
dans la section d'encastrement. Enfin, s'il le faut, on tirera de l'equation (3)
la loi de Variation de o> en fonction de z.

Exemple numerique

Imaginons d'avoir affaire ä un reservoir cylindrique parfaitement encastre
ä sa base ayant les caracteristiques suivantes:

Rayon du cylindre a 400 cm
Epaisseur de la paroi h 20 cm
Moment d'inertie par centimetre

de paroi / 739,7 cm3

Densite du liquide de remplissage y 1 • 10-3 kg/cm3
Module d 'elasticite £=210 000 kg/cm2
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Si l'on suppose que le niveau de remplissage atteigne 600 cm on trouve
par les formules classiques que le moment flechissant et la poussee ä la base

prennent les valeurs respectives:

M0 + 1326,3 kg-cm/cm H0 -41 kg/cm

Nous admettrons que, dans ces conditions, la paroi se comporte encore
d'une maniere parfaitement elastique. Plus precisement nous imaginerons que
la loi moment de flexion — courbure ait l'allure qui est representee dans la
figure 4 d'apres laquelle le moment flechissant Mx qui caracterise le passage
de la phase elastique ä la phase plastique prend la valeur de 1670 kg cm/cm.
Au-dessous de cette valeur la courbure /x et le moment de flexion du regime
elastique Me sont lies par la relation:

M* MP
P< EI 210000-739,7

cm-l

tandis que pour M>1010 la courbure s'exprime en fonction du moment
(designe par Mp pour rappeler que nous avons depasse la limite elastique):

^ - cMp~d

avec: c =+0,25-10-7kg-1.cm-1

^ -31.10-6.cm~1

Naturellement pour M 1670 kg-cm/cm les deux expressions donnent la
meme valeur de ^ soit 1,075-10~5 cm-1.

Pour une hauteur de remplissage atteignant 10 metres les sollicitations
ä la base du reservoir, calculees en regime elastique, prendraient les valeurs:

M0 2325,1 kg - cm/cm Q0 - 70 kg/cm
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Le moment flechissant serait donc superieur ä la limite elastique. Cela
signifie que le calcul doit etre effectue en regime elasto-plastique, nous aurons
donc recours au procede de calcul expose plus haut.

Dans le cas particulier les coefficients des exponentielles qui interviennent
dans le calcul (exprimes en kg, cm) valent:

a 1,4525 -10-2 ß 0,20126 -10"1

De l'equation approchee (20) on tire alors:

^ 2,77417 cm

(notons que cette valeur, substituee dans l'equation exacte (19), donne lieu ä

une verification tres satisfaisante).
L'etendue de la region plastifiee est donc inferieure ä 3 cm.
La deuxieme equation du groupe (18) donne de son cöte:

u -1,40935

On en deduit par l'equation (13):

€ -0,65736

et donc (d'apres la formule (12))

A -3004,72394

Nous pouvons alors calculer les constantes qui figurent dans l'expression
de Mp en nous servant des formules (16); il vient:

<?! -1393,10095
C2 + 1662,91693
C3 - 158,22441
04 + 172,91220

Ces donnees numeriques nous permettent en passant de verifier que pour
z zx on a bien Me Mp. II vient en effet ici:

pour z 2,77417
Me 1669,99552 Mp 1669,99694

De meme on verifie facilement que pour z 0 il vient sensiblement:

d2Mp „ d3Mp
~dz^=yH ~d^=='~y

ce qui correspond aux conditions limites (9).
Les calculs effectues nous permettent d'exprimer sous forme explicite les

lois de Variation de Mp et Me en fonction de z. En particulier on trouve que
le moment d'encastrement, obtenu en faisant z 0 dans l'expression de Mp,

{Mp)0 + 1835,95 kg-cm/cm

16 Abhandlung XIII
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En posant 2 0 dans l'expression de dMpjdz on obtient d'autre part la
valeur de la poussee ä la base:

Qö -61,22 kg/cm

Au passage d'une zone ä l'autre l'effort tranchant prend la valeur:

(Q)^=-58,46 kg/cm

Pour resumer les resultats de cette premiere partie du calcul, nous avons
represente dans la figure 5 la loi de Variation du moment de flexion en fonction
de l'abscisse z. Cette representation a ete obtenue en calculant les expressions
de Me et de Mp pour un certain nombre de points. Pour mettre en evidence
1'effet de l'entree en regime plastique du bord inferieur du reservoir, nous
avons d'autre parb represente en trait discontinu sur la meme figure l'allure
que prendrait la loi de Variation du moment flechissant si le reservoir restait
elastique dans les conditions de remplissage considerees, soit H= 1000 cm*).

2050

1950

?Z50 igoo

Limite e'IashqueJZ
1800

\
7700

^1DOO

Cxj/cu/ e/dsr/que
Gb/cu/ e'/ast-o-plastique2>>

¦1600

50O «$
eso

^ 60 100 120 1W 160 180 BOO 220 Z cm
PSO Fig. 5

Sur la figure 5 on peut faire les remarques suivantes. Comme on pouvait
le prevoir, 1'Intervention du phenomene anelastique se traduit par une
diminution considerable du moment d'encastrement. Cette diminution atteint
ici le 22%. Une autre remarque interessante tient ä la forme de la loi de

Variation de Mp en fonction de z. On voit sur la figure que la courbe repräsentative

de cette loi est, aux approximations du trace pres, une droite.

*) Pour bien mettre en evidence reffet local du phenomene plastique la partie des
deux courbes se rapportant ä la region d'encastrement a ete representee ä plus grande
echelle.
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Pour nous rendre compte de la raison de cette constatation assez sur-
prenante (et qui d'ailleurs ne peut pas etre rigoureusement exacte car eile
contredirait aux conditions imposees par l'equation differentielle (4')), deve-
loppons en serie la loi de Variation de Mp en negligeant les termes de degre
superieur ä deux. II vient:

Mp (-Cx + C3)ß2z2 + (CX-C2 + C3 + Ct)ßz + C2 + Ct- -c
Si l'on tient compte de la premiere des equation (17) le coefficient du terme

de 2° degre en z peut s'ecrire:

{-C1 + C9)ß* l£
La valeur numerique de ce coefficient est inferieure ä l'unite. Du moment

que dans la region plastifiee z conserve necessairement des valeurs tres petites,
il s'en suit que l'influence du terme du 2° degre sur la valeur de M sera
toujours petite. On voit donc que l'allure sensiblement rectiligne du diagramme
des moments n'est pas le fait du hasard et qu'elle se retrouvera chaque fois

que les donnees numeriques en presence conserveront les memes ordres de

grandeur que dans le probleme qui nous occupe.
Avant de quitter l'etude de la loi de representation du moment flechissant,

il nous faut encore etablir si dans la zone plastifiee les contraintes sont des

fonctions croissantes de la hauteur de remplissage.
L'etude analytique complete du phenomene etant assez complexe, limi-

tons-nous ä analyser l'allure du diagramme du moment de flexion pour une
valeur de H superieure ä 1000 cm. Pour üT=1200 cm on trouve:

z1 4,93316 cm

(valeur qui verifie tres bien l'equation (19))

u -1,67793
€ -0,60910

cx -1642,21863 C2 1902,78840
c3 - 182,49091 <74 141,45296

{Mp)z=0 2044,36 kg-cm/cm
(Mp)z=277 1848,71 kg-cm/cm

Sur la figure 5 nous avons represente la loi de Variation de Mp pour
H 1200 cm. On voit qu'en tous les points de la zone qui etait plastifiee pour
#=1000 cm le moment est augmente ä la suite de l'acroissement de H.
D'ailleurs l'allure presque lineaire de la loi de Variation de Mp et la constatation

intuitive qu'ä une augmentation de H doit correspondre un accroisse-
ment de l'abscisse zx et du moment d'encastrement, suffit pratiquement ä
demontrer qu'il ne peut y avoir de retrogradation des contraintes dans les

regions plastifiees ä la suite d'une augmentation du niveau du liquide. D'apres
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ce que nous avons dit dans l'introduction, ceci nous permet d'affirmer que
notre maniere de poser le probleme de l'equilibre elasto-plastique est correcte.

Remarquons que pour #=1200 cm nous aurions en regime parfaitement
elastique:

M0 2824,5 kg • cm/cm Q0 - 84,55 kg/cm

Cette fois la diminution du moment d'encastrement provoquee par l'apparition
des deformations anelastiques est d'environ 28% ce qui montre que l'efficacite
du phenomene plastique s'accroit rapidement.
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D 'autres considerations interessantes derivent de la figure 6 dans laquelle
nous avons compare pour #=1000 cm la deformee du reservoir suppose en
regime elasto-plastique et la deformee qui correspondrait ä un comportement
entierement elastique.

On voit sur cette figure qu'au voisinage de la base le depassement de la
limite elastique entrame un accroissement de l'ordonnee. Cela signifie que
lorsque le reservoir tend ä ceder dans le sens longitudinal par suite de l'apparition

des deformations plastiques la sollicitation tend ä se reporter sur les

paralleles, qui sont supposes dans notre etude rester parfaitement elastiques.
Or il n'est pas sans interet de remarquer que dans notre cas le complement de

sollicitation va se concentrer sur des elements resistants (les paralleles) qui ne
subissaient, en regime elastique, que des contraintes tres moderees et qui
disposaient donc encore d'une tres large marge de resistance.

II resulte de ce qui precede que, d'une maniere generale, l'intervention des

deformations plastiques a un effet tres favorable et de grande amplitude sur le

regime des efforts. II est alors naturel de se demander quelle est 1'importance
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des deformations anelastiques qui interviennent afin de se rendre compte si le
materiau constituant la paroi est en mesure de les supporter sans dommage.

Pour repondre ä cette question, calculons la courbure totale au voisinage
de l'encastrement. II vient en valeur absolue: pour H 1000 cm

fi, cMp + d 0,25-10~7-1835,9-31-10-6 1,489-10~5 cm"1.

A cette valeur de la courbure correspond sur les bords de la section
transversale, haute de 20 cm, une deformation relative

^=4=1,489.10-*

pour H 1200 cm on aura

/x 0,25-10-7- 2044,3 - 31 • 10~6 2,0-10~5 cm"1

4* 2-10-

On voit donc que dans un cas comme dans l'autre les deformations qui
entrent en jeu sont encore tres faibles, meme au voisinage du bord oü le
phenomene anelastique est plus intense. Nul doute qu'une construction en
beton munie d'une armature bien repartie est susceptible de subir sans incon-
venient des deformations de cet ordre de grandeur (soit en se deformant
d'une maniere plastique, soit en donnant lieu ä une tres legere fissuration.
Naturellement il faut admettre que toutes precautions soient prises pour
empecher l'introduction du liquide dans les fissures eventuelles).

Possibilite de generalisation des resultats obtenus

Nous avons vu, au cours de la discussion qui precede, que rallure generale
du phenomene etudie n'est pas strictement liee aux valeurs des donnees

numeriques dont nous sommes partis. En fait on constate que les resultats
obtenus restent valables pour autant que le rapport entre le rayon du cylindre
et l'epaisseur de la paroi conserve une valeur suffisamment elevee. Qu'il
s'agisse de l'etendue de la zone plastifiee, de Fampleur des deformations anelastiques

ou de l'importance de l'effet de redistribution des contraintes, on peut
donc affirmer que ce que nous avons trouve s'applique ä n'importe quel
cylindre suffisamment mince.

Mais on peut encore elargir considerablement le champ d'application
de nos conclusions si l'on remarque que l'etude du comportement des regions
voisines des bords des surfaces de revolution peut pratiquement toujours se
fonder sur une equation differentielle analogue ä l'equation (4) qui nous a
servi de point de depart pour le cylindre. On sait en effet que l'etude des bords
d'une sphere qui ne soit pas excessivement surbaissee, et dans laquelle le
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rapport du rayon ä l'epaisseur de la paroi reste suffisamment eleve, peut se

faire au moyen d'une methode asymptotique [6, 7] qui conduit ä une equation
de la forme:

dV+4ßiR^° (21)

dans laquelle on a pose:
R Qyisincp

(Qp etant l'effort tranchant et cp 1'angle au centre).
Et il est evident que rien n'empeche d'operer sur l'equation (21) comme

nous 1'avons fait sur l'equation (4).
Des lors nous pouvons faire encore un pas dans notre generalisation si nous

tenons compte de la possibilite bien connue d'assimiler le bord d'une surface
de revolution quelconque ä celui d'une sphere de meme rayon, tangente ä

notre surface en correspondence du bord etudie. Quelle que soit la forme de la
surface de revolution consideree, l'allure des phenomenes d'adaptation sera
donc toujours analogue ä celle que nous avons trouvee pour le cylindre (du
moins tant que nous aurons affaire ä une surface mince, non surbaissee).

Enfin nous voulons en terminant attirer 1'attention sur la possibilite
qu'offre le procede indique ci-dessus de tenir compte d'une plastification
eventuelle des paralleles. Si ces derniers atteignent leur limite elastique on pourra
en effet mettre en compte la nouvelle loi efforts — deformations qui carac-
terise leur comportement en regime anelastique en modifiant opportunement
le coefficient du terme en co de l'equation (3) qui represente 1'action de Cerclage

exercee par les paralleles sur les generatrices.
II est evident que cette fa^on de proceder constitue eile aussi une approximation

relativement grossiere. Mais on a le droit de se demander si dans les

problemes d'equilibre elasto-plastique l'ingenieur a interet ä rechercher une
plus grande precision du moment que les hypotheses que l'on adopte sont
toujours necessairement tres imprecises et que les procedes de calcul finissent
toujours par introduire des approximations importantes. Ce point de vue nous
parait d'autant plus raisonnable si le but que l'on se propose est celui d'evaluer
d'une fa£on approchee les marges de securite disponibles.
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Resume

Les efforts considerables qui se developpent au bord des surfaces de
revolution subissent fortement l'influence des phenomenes d'adaptation qui
prennent naissance au delä de la limite elastique. Le present memoire propose
une methode approchee pour analyser 1'effet des deformations anelastiques
dans ce genre de problemes. L'etude est tout d'abord conduite dans le cas

d'un reservoir vertical encastre. On admet que la loi moment flechissant
longitudinal-courbure prenne une forme differente dans la zone plastifiee et dans la
zone elastique et l'on ecrit en consequence les equations differentielles du
probleme. On introduit ensuite les conditions limites: conditions imposees par
1 'encastrement et conditions de continuite. Le procede, applique ä un exemple
numerique, met en evidence 1'importance de 1'effet d'adaptation et la petitesse
des deformations anelastiques correspondantes. Le dernier paragraphe est

consacre ä la generalisation des resultats obtenus fondee sur la prise en conside-
ration des equations approchees au moyen desquelles on peut etudier le com-
portement des bords d'une sphere mince non surbaissee et sur l'assimilation
du bord d'une surface de revolution quelconque ä celui d'une sphere tangente.

Zusammenfassung

Die beträchtlichen Beanspruchungen, die am Rande von Rotationsflächen
auftreten, unterliegen sehr stark dem Einfluß von Anpassungserscheinungen,
die nach Überschreiten der Elastizitätsgrenze beginnen. Der vorliegende
Beitrag schlägt eine Näherungsmethode vor, um die Auswirkung der unelastischen
Formänderungen bei diesen Problemen zu untersuchen. Vorerst wird das
Beispiel des unten eingespannten Behälters betrachtet. Unter der Annahme, daß
der Zusammenhang zwischen Biegemoment in der Längsrichtung und Krümmung

eine für die plastifizierte und die elastische Zone verschiedene Form
habe, werden die Differentialgleichungen des Problems aufgestellt. Sodann
werden die Randbedingungen (Einspannung) und Übergangsbedingungen
eingeführt. Die Anwendung der Methode in einem numerischen Beispiel macht
die Wichtigkeit des Anpassungsvorgangs und die Kleinheit der entsprechenden
plastischen Formänderungen augenfällig. Der letzte Abschnitt ist der
Verallgemeinerung der erhaltenen Resultate gewidmet unter Verwendung von
Näherungsgleichungen, mit welchen das Verhalten der Randzone einer nicht
abgeflachten, dünnen Kugelschale studiert werden kann, und der Annahme,
daß sich der Rand einer beliebigen Rotationsfläche demjenigen einer tangierenden

Kugel angleicht.
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Summary

The considerable stresses developed at the boundary of surfaces of
revolution are strongly influenced by phenomena of re-adjustment which are
initiated there at the elastic limit. The present memoir proposes an approxi-
mate method for analysing the effect of inelastic deformations in this class of
problems. The study is first of all directed to the case of a vertical encastred
reservoir. It is assumed that the relation between bending moment and
longitudinal curvature takes a different form in the plastic and in the elastic zone
and the differential equations of the problem are written accordingly. There

are then introduced the boundary conditions imposed by fixation and the
conditions of continuity. The procedure applied to a numerical example demons-
trates the importance of the effect of re-adjustment and the smallness of the
corresponding inelastic deformations. The last paragraph is devoted to the
generalisation of the results obtained by taking into account the approximate
equations by means of which can be studied the behaviour of the boundaries
of a thin sphere not excessively deformed, and representation of the boundary
of any surface of revolution by that of a tangent sphere.
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