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Adaptations plastiques au bord des surfaces de révolution?)
Plastische Anpassungen am Rande von Rotationsflichen

Plastic re-adjustment at the boundary of surfaces of revolution

Prof. Ing. Franco Levr, Politecnico di Torino, Torino

Introduction

La prise en compte des phénomeénes d’adaptation qui se vérifient dans les
constructions & la suite du dépassement local des limites d’élasticité présente
un intérét tout particulier quand le régime des contraintes, calculées d’apres
la théorie de 1’élasticité, donne lieu a des concentrations d’efforts sur des
régions relativement peu étendues. Dans ce cas en effet le calcul des marges
de sécurité fondé sur I’hypothese élastique conduit & des résultats fort éloignés
de la réalité du moment que I’intervention des déformations anélastiques (les-
quelles peuvent consister soit en de véritables deformations plastiques, soit
en une fissuration plus ou moins étendue) peut provoquer une importante
redistribution des sollicitations entre les zones surchargées et les régions
voisines qui disposent encore d’une bonne marge de résistance.

Ceci se produit en particulier au voisinage des bords des surfaces de révo-
lution en correspondance desquels se développent souvent des efforts considé-
rables qui sont destinés a rendre compatibles les déformations d’ensemble de
la surface (déformations du régime de membrane) avec les conditions de liaison
auxquelles les bords eux-mémes se trouvent soumis.

Dans ce genre de problémes une étude élasto-plastique de 1’équilibre est
rendue particulierement intéressante par les raisons suivantes:

a) En général les moments fléchissants et les poussées qui agissent sur les
bords ne provoquent des contraintes importantes que dans certains des élé-
ments résistants en présence (méridiennes par exemple), et les efforts intenses

1) Ce mémoire, remis au Secrétariat du 4° Congrés avant les réunions de Cambridge,
n’a pu étre inséré dans le rapport final, le texte n’en ayant pas été discuté au cours des
séances. ‘
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se concentrent dans une région fort peu étendue. Ceci donne de larges possi-
bilités aux phénomeénes de redistribution auxquels nous avons fait allusion.

b) Les déformations que la surface subit ,,en régime de membrane‘‘ sont
relativement petites [1] en sorte que des déformations anélastiques méme tres
limitées ont une influence considérable sur le régime des contraintes.

c¢) Souvent la surface étudiée est soumise & des conditions de charge rela-
tivement simples et il est facile de prévoir I’allure de la loi de variation des
contraintes locales.

C’est 13 & notre sens un point trés important sur lequel il faut toujours
fixer son attention au moment d’entreprendre 1’étude d’un probleme d’équi-
libre au dela de la limite élastique. Il faut en effet se rappeler que la loi de
déformation des matériaux plastifiés n’est pas réversible et qu’elle n’est pas
redevable du principe de superposition. 1l s’en suit des complications analy-
tiques inextricables si 1’on ne peut se procurer a priori quelques renseignements
sur I’allure du phénomene: par exemple si 1’adaptation plastique donne lieu
a une rétrogradation d’efforts dans une région déja plastifiée il faudrait, pour
cette région, adopter la loi de déformation du matériau écroui. C’est pourquoi
la plupart des problemes élasto-plastiques qui ont été traités jusqu’a présent
concernent des exemples dans lesquels on peut prévoir a priori que les con-
traintes sont une fonction toujours croissante de la sollicitation [2]. Il en sera
précisément ainsi dans le réservoir vertical rempli de liquide qui nous servira
d’exemple par la suite. Nous démontrerons en effet que les contraintes nor-
males agissant sur la section transversale au voisinage du bord inférieur sont
une fonction croissante de la hauteur de remplissage aussi bien en régime
élastique qu’en régime elasto-plastique?).

Position du probléme et hypothéses simplificatrices adoptées

Nous conduirons tout d’abord notre étude dans un cas particulier. Par la
suite nous nous efforcerons de dégager des résultats obtenus des conclusions
de portée plus générale.

L’exemple dont nous partirons est celui d’un réservoir cylindrique vertical
encastré a sa base, rempli d’eau. Aprés avoir procédé au dimensionnement du
réservoir au moyen de procédés ordinaires de calcul, nous imaginerons d’en
augmenter la hauteur jusqu’a provoquer le dépassement des limites élastiques
dans la section de base.

Pour mener & bien le calcul au deld de la limite élastique, nous adopterons
alors deux lois différentes pour la relation moment fléchissant-courbure, 1’une
valable pour la région plastifiée, 1’autre pour la région élastique. Nous serons

2) Une autre fagon de procéder consiste & fixer intuitivement la localisation des
déformations plastiques [3]. Cette méthode donne souvent des résultats intéressants dans
les problémes & faible degré d’hyperstaticité. ‘
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ainsi conduits & deux équations différentielles distinctes que nous pourrons
écrire indifféremment en fonction de la déformation radiale ou du moment de
flexion longitudinal. L’introduction des conditions au contour, qui sont cons-
tituées ici par les limites imposées & la déformation aux extrémités du réservoir
et par la condition de continuité au passage d’une région & l’autre, nous
consentira d’étudier simultanément le régime des deformations et celui des
contraintes. En particulier, le calcul des constantes impliquera automatique-
ment la résolution des conditions d’hyperstaticité.

Ainsi que nous ’avons souligné ci-dessus, notre étude ne sera valable que
dans la mesure ou nous pourrons démontrer qu’en chaque point de la région
plastifiée la contrainte sera une fonction croissante de la hauteur de remplissage.

D’une maniére générale, nos développements se fonderont sur les hypo-
théses suivantes:

a) Localisation des déformations anélastiques sur les bords de la section
transversale et conservation des sections planes. Nous verrons cependant que
notre procédé peut s’appliquer au cas ou les déformations anélastiques inter-
viennent dans la direction circonférentielle.

b) Possibilité de tenir compte de l’effet des déformations non-élastiques
par ’adoption, dans le sens des génératrices, d’une loi moment de flexion —
courbure opportunément modifiée. Cette hypothése constituerait certainement
une approximation relativement grossiére si nous voulions étudier en détail
Peffet local du phénoméne anélastique. Mais il n’y a pas de doute que si ’on
se place au point de vue du technicien qui se préoccupe de ’allure générale
du régime d’équilibre, et qui cherche surtout & évaluer les marges de sécurité,
une telle facon de procéder suffit & rendre compte des principaux effets des
déformations anélastiques.
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En pratique, dans notre exemple, des considérations d’ordre analytique
nous conduiront & adopter une loi moment de flexion — courbure formée par
deux droites de pente différente (fig. 1a). Cette représentation schématique
se rapproche assez bien du phénomeéne physique quand on a affaire & une
construction en béton armé. Dans ce cas, en effet, il a été démontré, aussi bien
théoriquement que par voie d’expérience, que si 1’on fait abstraction d’un
intervalle relativement bref qui suit la fin de la période élastique, la loi de
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déformation d’une poutre fléchie est representée, au dela de la limite élastique,
par une droite assez fortement couchée sur I’axe des abscisses [4] (fig. 1b).

Notre représentation s’adapte par contre moins bien au cas d’une cons-
truction métallique. On sait en effet que pour une section rectangulaire formée
par un matériau qui passe instantanément du régime parfaitement élastique
au régime parfaitement plastique, la courbe représentative de la relation
moment flechissant — courbure a une allure asymptotique analogue & celle
qui est dessinée dans la fig. 2 [5].

24

M
03 kgm

. v

Section recksngulaire
20%710 on
G =2400 Kg/c

Fig. 2

o 25 25 75 5C
M x10°m’

Cette remarque nous ameéne & conclure que, d’'une maniére générale, les
résultats que nous obtiendrons se rapprocheront davantage de la réalité dans
le cas des constructions en béton armsé.

Développements analytiques

La fig. 3 représente le réservoir cylindrique pris comme exemple. Voici
d’autre part la liste des notations que nous adopterons par la suite:

Hauteur de remplissage: H.
Epaisseur de la paroi: h.
Moment d’inertie de la paroi (par cm de largeur): I.
Rayon du cylindre: a.
Module d’élasticité: K.
Moment de flexion longitudinal dans la partie plastifiée: M ,.
Id. id. dans la partie élastique: M,.
Déplacement transversal mesuré suivant le rayon,
dans la partie plastifiée: w,.
Id. id. dans la partie élastique: w,.
Poids spécifique du liquide qui remplit le réservoir: y.
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Dans la figure 3 nous avons d’autre part indiqué les conventions de signe
adoptées pour le moment flechissant, le déplacement transversal et la poussée,
cette derniére étant representée par la lettre Q.

\ 2a
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Voici alors comment on peut écrire les équations différentielles du probléme.
Dans la région élastique la relation entre la courbure des génératrices et le

déplacement transversal s’écrit:
d? w,

M- L% (1)

ou z représente ’abscisse mesurée a partir de la section d’encastrement et ou
nous avons posé:
EI

£ = 1—v2

Dans la région plastifiée nous écrirons par contre:

2
d®w,

Ceci posé, nous remarquons que les conditions d’équilibre nous permettent
d’écrire, aussi bien dans la zone élastique que dans la zone plastique, la relation

classique:
a2M Eh
G2 e = rvH=) ®)
En nous servant de cette derniére équation nous pouvons alors éliminer w
dans les équations. (1) et (2). Ceci nous ameéne aux équations différentielles
suivantes:

Dans la région plastifiée (z <z,)

d*M, Eh
gA gz M) =0 ®)
Dans la région élastique (2= z,)
a*M, h
ik @l M. =0 ®)

(dans cette derniére relation nous avons posé v=0).
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L’intégration de I’équation (4) n’étant pratiquement possible que si f (M)
prend une forme linéaire, nous adopterons la loi representée dans la figure 1a
et nous écrirons:

f(M,) = c M, +d (6)

L’équation (4) s’écrira donc:
d*M, Hhc Ehd ,
dz4p+ a2 M, + a2 =0 (4')

11 est alors facile d’écrire les intégrales générales des équations (4') et (5).
En fait, pour faciliter le calcul des constantes, nous mettrons ces intégrales
sous deux formes différentes, soit:

M, =eF2(CysinBz+Cycos Bz)+eP?(Cysinfz+Cycosfz) __Zl_ (7)

g L Y/ Ehc

avec =5 ) e
M,=Ae*?sin (xz+e€) (8)

14k

avec a_ﬁ 21

Notons que ’expression (8) admet implicitement que le réservoir ait une
hauteur suffisante pour que 1’on puisse négliger I'influence du bord supérieur
sur le régime des contraintes.

Dans les expressions (7) et (8) apparaissent six constantes inconnues. Pour
les calculer nous devons exprimer les conditions limites qui sont ici les suivantes:

do

Pour z=0 (section d’encastrement) on doit avoir: w= = 0, ce qui peut

d
s’écrire, en tenant compte de 1’équation (3): ?
d* M,
i - H
9
#M, ®)
aw Y

Pour P’abscisse z,, en correspondance de laquelle le moment de flexion
atteint la valeur limite élastique M, les déformées plastiques et élastiques
doivent avoir méme ordonnée et méme tangente. En outre, pour les deux
branches, le moment de flexion doit prendre la valeur M, , tandis que les efforts
tranchants doivent s’égaler. Ces derniéres conditions s’écrivent: pour z=z,

M, =M,=M,

p
iM, dM, (10)
dz =~ dz

Quant aux conditions de raccord des déformées elles peuvent s’exprimer sous
la forme: pour z=2z,
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(Up = W,

d Wp _ dwe

dz ~ dz

ce qui s’écrit, en tenant compte de 1’équation (3)

a*M, d*M,
d2 ~ dz2 1

d*M, d3M, (11)
d=3 ~ dz3

En définitive, en groupant les égalités (9), (10), (11) nous disposerons de
7 relations qui nous permettront de calculer & la fois les six constantes d’inté-
gration et I’abscisse z, qui caractérise le passage de la région plastique & la
région élastique.
Commengons alors par utiliser la premiére des relations (10). En tenant
compte de la (8) nous pouvons écrire:
M, = Ae*%sin (az, +€)
et donc: A= M e, 1 (12)
sin (2, +€)

En reportant dans ’expression (8) de M, il vient:

M. = M. o-ct—zp S0 (22+€)
e 1 sin (ocz; + €)
Pour introduire les autres conditions de groupe (10) et (11), calculons alors
les dérivées successives de M, et dans les formules obtenues donnons & z la

valeur z,. Il est facile de voir qu’en posant:

N v Eé“w_ifi?) Y
il vient: (ddﬂz[e)lz —aM,(1-u)
(d;__ffe)f —2a2M,u (14)
(d;ils{e)f 263 My (1+)

Deés lors les conditions (10) et (11) pourront s’écrire:
e~Be1 (O, sin Bz, + C,c0s B2,) +eP1 (Cysin Bz, + CycosBz,) = M1+—é{
BeB[C, (cos Bz, —sinBz,) —C, (sin Bz, +cos Bz,)] +
+Bela[Cy(sin Bz, +cosBz) —C, (sin Bz, —cos B2,)] = — o M, (1 —u) (15)
2R%eBa[— (O cos Bz, +C,ysinfz,]+2B2eP2 [Cycos B2,—C,sinBz,] =
= —202M,u

2R3eF2[C, (cos Bz + sinBz,) +Cy(cos Bz, —sinBz,)] +

+2pB3eBu [0, (cos Bz, —sinBz) — O, (sin Bz, +cos Bz,)] = 203 M, (1 +u).
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On voit que la méthode de calcul adoptée nous permet de séparer le calcul
de quatre des constantes recherchées3). En résolvant le systéme d’équations
(15) nous aboutissons en effet aux expressions suivantes des constantes C,,
C,, O3, C4, écrites en fonction de u (soit implicitement de 2, et de ¢):

C’l—eﬁzl[ smﬁzl( 1+f) cosﬁzlﬁ 1 (1=w)+ = sm,lelng(l —u)+

1 o 1
+§cosﬂz1/—3—éM1u+Zsm,BzIB—3M1(1+u)+zcosﬁzlﬁ—3§M1(1+u)]

1 d 1., 1 o
Oy =eba [Ecosﬁz1 (M1+—c—) +Zsmﬁz1%Ml(l—u)+~cos,3z1l—gM1 (1-u)-—
1. a? 1 oc3
_§s1nﬁle—2M1u+Zcosﬁzll—8—3 1(14+u)— sm}?zlﬁ3 1 (1+u)
Cy=e B [2sm,8z1(Ml+i)—lsinﬁzlng(l——u)— (16)

_icosﬁzlﬁ (1—u)— cosﬁzlﬁzM “+1COSI321ﬁ3 1(1+u)—

o3

—isinﬁleEMl (1 —l-u)]

C,=eBn B_cosﬁz1 (M1+ d) —cosﬁzlﬁ (1- u)+lsmﬁzl)B 1 (I—u)+

2
+%sin,8z1§—éM1u ls1n,3zllg3M1 1+u)— cosBzIBsM (1+u)]

I1 nous faut maintenant introduire les conditions du groupe (9) qui peuvent
se mettre sous la forme: I 282 (—Cy+C,) =y H

2B3(C1+Cp+03—Cy) = —y

En introduisant dans le systéme (17) les valeurs de C,, C,, C;, C4 on
aboutit, aprés simplification, aux équations suivantes:

(17)

—2p2 (M1+ —f—) sin 8z,-sinh B2z, + ng(Bz-—az)cos,le-sinh,le—

—ng(ﬁz—i—ocz)sinle-COSthl—ng (B%+ «2) cos Bz, -sinh Bz, - u+

[%Ml(ﬁz—ocz)sinﬁzlcoshﬁz,-u—2oc2Mlcoslecoshﬁz1-u=yH
2M,a(xcosBz,—BsinBz)(xcoshBz, +BsinhBz) u = —y—
—2cosh,3z1[(M1+ )3351n/8z1+M1a cosﬁzl]

—-2ﬁzsinhﬂz1[ rasinfz; + ( )ﬁcosﬂzl]

3) Les calculs qui suivent ont été effectués par le ,,Ufficio Calcoli Numerici‘‘ de l’Ecole
Polytechnique de Turin sous la direction de M. le professeur Buzano.

* (18)
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En éliminant « on est alors conduit a 1’expression transcendente suivante
qui ne contient que z;:

2By H (acos 2z, —BsinfB2,) (e cosh B2, + Bsinh Bz,) —y (B2 + «?) cos Bz, sinh Bz, +
+ v (B2—a?)sin Bz, cosh Bz, —2«Bycos Bz, cosh Bz, —2 (Mﬁ%) aB4(sin2Bz,+sinh2Bz,) -
— (M1+g) o2 B3 (cosh 2Bz, —cos 2Bz,)+ (Mﬁ%) B3 (2—cos 2Bz, —cosh 2B2z,)— (19)
—M,a*B(2+cos2Bz +cosh2Bz,)+2M,038%(sin2Bz, —sinh 2B2,) —
— M, %83 (cosh2B2, —cos2B2,) =0

On remarque que dans cette équation z; ne figure que sous forme du pro-
duit Bz,. Comme la constante B est toujours trés petite, nous pouvons simpli-
fier le calcul en développant en série les fonctions qui contiennent le produit
Bz, et nous arréter aux termes du deuxiéme degré. Cela nous améne &
I’équation:

B4(')/H+4Mloc2+2g—oc2) 212+a(ay+4M1ﬁ4+4§B4) 2y —

—a(ayH—y—2M,0®) =0

(20)

dont on tire facilement z,, en fonction de quantités connues. Pour terminer le
calcul il faut alors reporter la valeur de z; dans ’expression de » qui dérive
de la deuxiéme équation du groupe (18), aprés quoi on peut calculer les cons-
tantes C,, C,, C;, C, d’aprés les formules (16) et ensuite écrire 1’expression (7)
du moment M,,. En calculant par ailleurs la constante € d’aprés la formule (13)
et la constante A d’aprés la formule (12), on peut également écrire 1’expression
(8) du moment flechissant dans la région élastique.

En posant z=0 dans I’expression de M, et dans sa dérivée par rapport
& z on pourra aussi calculer la valeur du moment flechissant et de la poussée
dans la section d’encastrement. Enfin, s’il le faut, on tirera de I’équation (3)
la loi de variation de w en fonction de z.

Exemple numérique

Imaginons d’avoir affaire & un réservoir cylindrique parfaitement encastré
a4 sa base ayant les caractéristiques suivantes:

Rayon du cylindre a = 400 cm
Epaisseur de la paroi h = 20cm
Moment d’inertie par centimétre

de paroi I =1739,7 cm3

Densité du liquide de remplissage y = 1-10-3 kg/cm3
Module d’élasticité E = 210000 kg/cm?
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Si I’on suppose que le niveau de remplissage atteigne 600 cm on trouve
par les formules classiques que le moment fléchissant et la poussée & la base
prennent les valeurs respectives:

M,=+1326,3kg-cm/ecm H,= —41 kg/cm

Nous admettrons que, dans ces conditions, la paroi se comporte encore
d’une maniére parfaitement élastique. Plus précisément nous imaginerons que
la loi moment de flexion — courbure ait 1’allure qui est représentée dans la
figure 4 d’apreés laquelle le moment fléchissant M, qui caractérise le passage
de la phase élastique & la phase plastique prend la valeur de 1670 kg-cm/cm.
Au-dessous de cette valeur la courbure u et le moment de flexion du régime
élastique M, sont liés par la relation:

M, M

= e—e——— == — € -1
M= TFI T T210000-739,7 ™

tandis que pour M > 1670 la courbure s’exprime en fonction du moment
~ (désigné par M, pour rappeler que nous avons dépassé la limite élastique):

p=—cM,—d
avec: ¢ =+0,25-10"7 kg—l-cm?
d=-31-10"%-cm—!

Naturellement pour M =1670 kg-cm/cm les deux expressions donnent la
méme valeur de p soit 1,075-10-5 cm—1.

Pour une hauteur de remplissage atteignant 10 métres les sollicitations
a la base du réservoir, calculées en régime élastique, prendraient les valeurs:

M, =2325,1kg-cm/em @, = —70kg/cm
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Le moment fléchissant serait donc supérieur a la limite élastique. Cela
signifie que le calcul doit étre effectué en régime élasto-plastique, nous aurons
donc recours au procédé de calcul exposé plus haut.

Dans le cas particulier les coefficients des exponentielles qui interviennent

dans le calcul (exprimés en kg, cm) valent:
o =1,4525.10-2 B =0,20126-10"1
De ’équation approchée (20) on tire alors:
2y = 2,77417 cm

(notons que cette valeur, substituée dans 1’équation exacte (19), donne lieu a
une verification tres satisfaisante).

L’étendue de la région plastifiée est donc inférieure & 3 cm.

La deuxieme équation du groupe (18) donne de son cbté:

u = —1,40935

On en déduit par I’équation (13):
e = —0,65736

et donc (d’apres la formule (12))
A = —3004,72394

Nous pouvons alors calculer les constantes qui figurent dans 1’expression
de M, en nous servant des formules (16); il vient:

¢, = —1393,10095
Cy = +1662,91693
C,=— 158,22441
O, =+ 172,91220

Ces données numériques nous permettent en passant de vérifier que pour
z=z; on a bien M, =M. Il vient en effet ici:

pour 2z = 2,77417
M, =1669,99552 M, =1669,99694

De méme on vérifie facilement que pour z=0 il vient sensiblement:

K2 T F R

ce qui correspond aux conditions limites (9).

Les calculs effectués nous permettent d’exprimer sous forme explicite les
lois de variation de M, et M, en fonction de z. En particulier on trouve que
le moment d’encastrement, obtenu en faisant z=0 dans 1’expression de M,
vaut
b (M) = +1835,95 kg - cm/cm

16 Abhandlung XIIT
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En posant z=0 dans I’expression de d M, /dz on obtient d’autre part la
valeur de la poussée & la base:

Q= — 61,22 kg/cm
Au passage d’une zone a 1’autre l’effort tranchant prend la valeur:
(@),~,, = — 58,46 kg/cm

Pour résumer les résultats de cette premiére partie du calcul, nous avons
représenté dans la figure 5 la loi de variation du moment de flexion en fonction
de 1’abscisse z. Cette représentation a été obtenue en calculant les expressions
de M, et de M, pour un certain nombre de points. Pour mettre en évidence
Peffet de 1’entrée en régime plastique du bord inférieur du réservoir, nous
avons d’autre part représenté en trait discontinu sur la méme figure 1’allure
que prendrait la loi de variation du moment fléchissant si le réservoir restait
élastique dans les conditions de remplissage considérées, soit H = 1000 cm *).
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Sur la figure 5 on peut faire les remarques suivantes. Comme on pouvait
le prévoir, l'intervention du phénomene anélastique se traduit par une
diminution considérable du moment d’encastrement. Cette diminution atteint
ici le 229%,. Une autre remarque intéressante tient & la forme de la loi de
variation de M, en fonction de z. On voit sur la figure que la courbe représen-
tative de cette loi est, aux approximations du tracé prés, une droite.

*) Pour bien mettre en évidence l'effet local du phénoméne plastique la partie des

deux courbes se rapportant & la région d’encastrement a été représentée & plus grande
échelle.
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Pour nous rendre compte de la raison de cette constatation assez sur-
prenante (et qui d’ailleurs ne peut pas étre rigoureusement exacte car elle
contredirait aux conditions imposées par 1’équation différentielle (4')), déve-
loppons en série la loi de variation de M, en négligeant les termes de degré
supérieur & deux. Il vient:

M, =(—-C+0;)B222+(C;—Cy+ 03+ 0y B2+ 0, +C’4—%l~

Si I’on tient compte de la premiére des équation (17) le coefficient du terme
de 2° degré en z peut s’écrire:
v H
2

La valeur numérique de ce coefficient est inférieure & 1’'unité. Du moment
que dans la région plastifiée z conserve nécessairement des valeurs tres petites,
il s’en suit que ’influence du terme du 2° degré sur la valeur de M sera tou-
jours petite. On voit donc que 1’allure sensiblement rectiligne du diagramme
des moments n’est pas le fait du hasard et qu’elle se retrouvera chaque fois
que les données numériques en présence conserveront les mémes ordres de
grandeur que dans le probléme qui nous occupe.

Avant de quitter 1’étude de la loi de représentation du moment fléchissant,
il nous faut encore établir si dans la zone plastifiée les contraintes sont des
fonctions croissantes de la hauteur de remplissage.

L’étude analytique compléte  du phénomeéne étant assez complexe, limi-
tons-nous & analyser 1’allure du diagramme du moment de flexion pour une
valeur de H supérieure a 1000 cm. Pour H =1200 cm on trouve:

(—=C1+Cy) B2 =

z; = 4,93316 cm

(valeur qui vérifie tres bien 1’équation (19))

uw=—1,67793

e = —0,60910
C, = —1642,21863 C, = 1902,78840
C,=— 182,49091 C,= 141,45296

(M), ~o = 2044,36 kg-cm/cm
(M), 2,77 = 1848,71 kg-cm/cm

Sur la figure 5 nous avons représenté la loi de variation de M, pour
H =1200 cm. On voit qu’en tous les points de la zone qui était plastifiée pour
H=1000 cm le moment est augmenté & la suite de I’acroissement de H.
D’ailleurs I’allure presque linéaire de la loi de variation de M, et la consta-
tation intuitive qu’a une augmentation de H doit correspondre un accroisse-
ment de ’abscisse z; et du moment d’encastrement, suffit pratiquement &
démontrer qu’il ne peut y avoir de rétrogradation des contraintes dans les
régions plastifiées & la suite d’une augmentation du niveau du liquide. D’apreés
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ce que nous avons dit dans 'introduction, ceci nous permet d’affirmer que
notre maniére de poser le probléeme de 1’équilibre élasto-plastique est correcte.
Remarquons que pour H =1200 cm nous aurions en régime parfaitement

élastique:
M, = 2824,5 kg-cm/cm @, = — 84,55 kg/ecm

Cette fois la diminution du moment d’encastrement provoquée par ’apparition
des déformations anélastiques est d’environ 289, ce qui montre que 1’efficacité
du phénomeéne plastique s’accroit rapidement.

32 //*'—"‘\\\
w
sof|enxr0® yd ~
28, / h,
x /
2 A
22 iy
20 wn\ \x‘z'
(,7 ; (]
18 QJ @\
16 / /
/ x//
14 N ” ~
@ yAR X p2
e K 1z
w0l ozo / 2 N 7 Jabgug
/ / 3 N /1 }
oms F N 3 —
I~ 7] P
// § e -
6 i A ”
Lo 1/ \'L AR ]
4 i - 8 A e | COlctd ElasHquE
/] N 47 | —| el elosioplosiigue
2 —420f/ = i
| A 3 4 s s ;| Fig. 6
20 40 60 80 100 120 w0 160 180 200 220 240 260 [

Z cm

D’autres considérations intéressantes dérivent de la figure 6 dans laquelle
nous avons comparé pour H=1000 cm la déformée du réservoir supposé en
régime élasto-plastique et la déformée qui correspondrait & un comportement
entiérement élastique.

On voit sur cette figure qu’au voisinage de la base le dépassement de la
limite élastique entraine un accroissement de l’ordonnée. Cela signifie que
lorsque le réservoir tend & céder dans le sens longitudinal par suite de ’appa-
rition des déformations plastiques la sollicitation tend & se reporter sur les
paralléles, qui sont supposés dans notre étude rester parfaitement élastiques.
Or il n’est pas sans intérét de remarquer que dans notre cas le complément de
sollicitation va se concentrer sur des éléments résistants (les paralléles) qui ne
subissaient, en regime élastique, que des contraintes trés modérées et qui
disposaient donc encore d’une tres large marge de résistance.

Il résulte de ce qui précede que, d’une maniére générale, 1’intervention des
déformations plastiques a un effet trés favorable et de grande amplitude sur le
régime des efforts. Il est alors naturel de se demander quelle est 1’'importance
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des déformations anélastiques qui interviennent afin de se rendre compte si le
matériau constituant la paroi est en mesure de les supporter sans dommage.

Pour répondre & cette question, calculons la courbure totale au voisinage
de ’encastrement. Il vient en valeur absolue: pour H =1000 cm

pw=cM,+d=0,25-10-7-1835,9 — 31-10-6 = 1,489.10-5 cm~1,

A cette valeur de la courbure correspond sur les bords de la section trans-
versale, haute de 20 cm, une déformation relative
yay/ h
S o T = 1,489.104
[ Ty = Las

pour H =1200 cm on aura
p=0,25-10-7.2044,3 —31-10-6 = 2,0-10-5 cm !

Al _ 510
[

On voit done que dans un cas comme dans ’autre les déformations qui
entrent en jeu sont encore tres faibles, méme au voisinage du bord ou le
phénomeéne anélastique est plus intense. Nul doute qu’une construction en
béton munie d’une armature bien répartie est susceptible de subir sans incon-
vénient des déformations de cet ordre de grandeur (soit en se déformant
d’une maniere plastique, soit en donnant lieu & une trés légeére fissuration.
Naturellement il faut admettre que toutes précautions soient prises pour
empécher 'introduction du liquide dans les fissures éventuelles).

Possibilité de généralisation des résultats obtenus

Nous avons vu, au cours de la discussion qui précede, que 1’allure générale
du phénomeéne étudié n’est pas strictement liée aux valeurs des données
numériques dont nous sommes partis. En fait on constate que les résultats
obtenus restent valables pour autant que le rapport entre le rayon du cylindre
et 1’épaisseur de la paroi conserve une valeur suffisamment élevée. Qu’il
s’agisse de I’étendue de la zone plastifiée, de I’ampleur des déformations anélas-
tiques ou de I'importance de l'effet de redistribution des contraintes, on peut
donc affirmer que ce que nous avons trouvé s’applique & n’importe quel
cylindre suffisamment mince.

Mais on peut encore élargir considérablement le champ d’application
de nos conclusions si 1’on remarque que 1’étude du comportement des régions
voisines des bords des surfaces de révolution peut pratiquement toujours se
fonder sur une équation différentielle analogue & 1’équation (4) qui nous a
servi de point de départ pour le cylindre. On sait en effet que 1’étude des bords
d’une sphére qui ne soit pas excessivement surbaissée, et dans laquelle le
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rapport du rayon a 1’épaisseur de la paroi reste suffisamment élevé, peut se
faire au moyen d’une méthode asymptotique [6, 7] qui conduit & une équation
de la forme:
d*R
d ot

+4B'R =0 (21)

dans laquelle on a posé:
R =4, Ysin ¢

(@, étant ’effort tranchant et ¢ I’angle au centre).

Et il est évident que rien n’empéche d’opérer sur 1’équation (21) comme
nous ’avons fait sur 1’équation (4).

Dés lors nous pouvons faire encore un pas dans notre généralisation si nous
tenons compte de la possibilité bien connue d’assimiler le bord d’une surface
de révolution quelconque a celui d’une sphere de méme rayon, tangente a
notre surface en correspondence du bord étudié. Quelle que soit la forme de la
surface de révolution considérée, 1’allure des phénoménes d’adaptation sera
donc toujours analogue & celle que nous avons trouvée pour le cylindre (du
moins tant que nous aurons affaire & une surface mince, non surbaissée).

Enfin nous voulons en terminant attirer 1’attention sur la possibilité
qu’offre le procédé indiqué ci-dessus de tenir compte d’une plastification éven-
tuelle des paralleles. Si ces derniers atteignent leur limite élastique on pourra
en effet mettre en compte la nouvelle loi efforts — déformations qui carac-
térise leur comportement en régime anélastique en modifiant opportunément
le coefficient du terme en w de I’équation (3) qui représente 1’action de cerclage
exercée par les paralleles sur les génératrices.

11 est évident que cette fagon de procéder constitue elle aussi une approxi-
mation relativement grossiere. Mais on a le droit de se demander si dans les
problémes d’equilibre elasto-plastique 1’ingénieur a intérét & rechercher une
plus grande précision du moment que les hypothéses que 1’on adopte sont
toujours nécessairement trés imprécises et que les procédés de calcul finissent
toujours par introduire des approximations importantes. Ce point de vue nous
parait d’autant plus raisonnable si le but que 1’on se propose est celui d’évaluer
d’une facon approchée les marges de sécurité disponibles.
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Résumé

Les efforts considérables qui se développent au bord des surfaces de révo-
lution subissent fortement 1’influence des phénomeénes d’adaptation qui
prennent naissance au dela de la limite élastique. Le présent mémoire propose
une méthode approchée pour analyser l’effet des déformations anélastiques
dans ce genre de problémes. L’étude est tout d’abord conduite dans le cas
d’un réservoir vertical encastré. On admet que la loi moment fléchissant longi-
tudinal-courbure prenne une forme différente dans la zone plastifiée et dans la
zone élastique et 1’on écrit en conséquence les équations différentielles du pro-
bléme. On introduit ensuite les conditions limites: conditions imposées par
I’encastrement et conditions de continuité. Le procédé, appliqué & un exemple
numérique, met en évidence ’importance de 1’effet d’adaptation et la petitesse
des déformations anélastiques correspondantes. Le dernier paragraphe est
consacré & la généralisation des résultats obtenus fondée sur la prise en considé-
ration des équations approchées au moyen desquelles on peut étudier le com-
portement des bords d’une sphére mince non surbaissée et sur I’assimilation
du bord d’une surface de révolution quelconque & celui d’une sphére tangente.

Zusammenfassung

Die betrichtlichen Beanspruchungen, die am Rande von Rotationsflichen
auftreten, unterliegen sehr stark dem Einflu von Anpassungserscheinungen,
die nach Uberschreiten der Elastizitiitsgrenze beginnen. Der vorliegende Bei-
trag schligt eine Naherungsmethode vor, um die Auswirkung der unelastischen
Forménderungen bei diesen Problemen zu untersuchen. Vorerst wird das Bei-
spiel des unten eingespannten Behilters betrachtet. Unter der Annahme, daf3
der Zusammenhang zwischen Biegemoment in der Léangsrichtung und Kriim-
mung eine fiir die plastifizierte und die elastische Zone verschiedene Form
habe, werden die Differentialgleichungen des Problems aufgestellt. Sodann
werden die Randbedingungen (Einspannung) und Ubergangsbedingungen
eingefithrt. Die Anwendung der Methode in einem numerischen Beispiel macht
die Wichtigkeit des Anpassungsvorgangs und die Kleinheit der entsprechenden
plastischen Forménderungen augenfillig. Der letzte Abschnitt ist der Verall-
gemeinerung der erhaltenen Resultate gewidmet unter Verwendung von
Niherungsgleichungen, mit welchen das Verhalten der Randzone einer nicht
abgeflachten, diinnen Kugelschale studiert werden kann, und der Annahme,
daB sich der Rand einer beliebigen Rotationsfliche demjenigen einer tangie-
renden Kugel angleicht.
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Summary

The considerable stresses developed at the boundary of surfaces of revo-
lution are strongly influenced by phenomena of re-adjustment which are
initiated there at the elastic limit. The present memoir proposes an approxi-
mate method for analysing the effect of inelastic deformations in this class of
problems. The study is first of all directed to the case of a vertical encastred
reservoir. It is assumed that the relation between bending moment and longi-
tudinal curvature takes a different form in the plastic and in the elastic zone
and the differential equations of the problem are written accordingly. There
are then introduced the boundary conditions imposed by fixation and the con-
ditions of continuity. The procedure applied to a numerical example demons-
trates the importance of the effect of re-adjustment and the smallness of the
corresponding inelastic deformations. The last paragraph is devoted to the
- generalisation of the results obtained by taking into account the approximate
equations by means of which can be studied the behaviour of the boundaries
of a thin sphere not excessively deformed, and representation of the boundary
of any surface of revolution by that of a tangent sphere.
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