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Sur une méthode nouvelle de résolution du probléme
des dalles rectangulaires encastrées

Uber eine neue Losungsmethode des Problems der eingespannten Rechteckplatte

On a mew method of resolution for clamped rectangular plates

PierrE LArDY, Prof. & ’E.P.F., Secrétair Général de I’A. 1. P.C., Zurich

1. Introduction

La solution classique du probléme de la dalle rectangulaire encastrée, telle
qu’elle est traitée dans les ouvrages de la théorie de 1’élasticité, exige des
développements théoriques et numériques qui s’averent probihitifs dans les
calculs pratiques. En effet, elle est basée sur la solution de la dalle librement
posée, a laquelle vient s’ajouter 1'influence des moments d’encastrement sur
les 4 bords. La superposition de ces effets conduit & de laborieux développe-
ments en séries de fonctions trigonométriques et aboutit, dans le cas général de
la dalle rectangulaire, & 2 systémes infinis d’équations linéaires pour les
constantes d’intégration.

IL’auteur de ce mémoire propose une solution nouvelle, directe et & priori
adaptée a la nature du probléme, dans le but de simplifier de fagon sensible
les calculs numériques et d’ouvrir, pour le cas fondamental de la dalle rec-
tangulaire totalement encastrée, une voie a I’application pratique.

L’idée de la solution est fort simple et consiste & remplacer la superposition
des différentes composantes sus-mentionnées (dalle simple plus influences des
bords) par des fonctions adaptées d’emblée et de fagon rigoureuse aux conditions
aux limites. Ces fonctions, appelées dans la suite ,,fonctions fondamentales*, se
déduisent de la ligne élastique d’une poutre encastrée soumise & des vibrations
transversales de flexion et conduisent directement, c.-a-d. sans détours, a la
solution.

Ces fonctions fondamentales ont des propriétés remarquables, dont la plus
importante est qu’elles forment des familles de fonctions orthogonales qui per-
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mettent de développer trés simplement en séries les grandeurs caractéristiques
telles que les fleches, les moments de flexion, les efforts tranchants, les sur-
charges données, etc.

Pour bien mettre en évidence le caractére et le mécanisme de la solution,
I’auteur traite d’abord, au moyen de ces fonctions fondamentales, le cas de la
poutre et du treillis de poutres encastrées, pour en arriver a la dalle rectan-
gulaire totalement encastrée.

La solution est adaptée, par 'introduction de développements asympto-
tiques élémentaires, aux besoins du calcul numérique. Quelques exemples sou-
lignent la rapidité de la convergence du procédé. On obtient d’excellentes
approximations en ne prenant en compte qu’un nombre tres restreint de termes
des séries.

11 est nécessaire d’insister sur 'importance de solutions simples rigoureuses
et pratiquement accessibles des problémes de la théorie de 1’élasticité dont
P’appareil mathématique a trop souvent, au premier abord, un aspect rébarba-
tif. Ceci s’applique tout particulierement aux ,,problémes de connexion‘‘, ou la
coaxion entre différents éléments joue un role prépondérant.

Dans un mémoire ultérieur, I’auteur traitera les dalles continues, c.-a-d.
connexes dans les deux directions.

2. La poutre encastrée

a) Données

Soit donnée une poutre de section constante, chargée symétriquement par
rapport & son milieu, de longueur /=2a et totalement encastrée a ses 2 extré-
mités (Fig. 1).

a a

et
>

]

1

1
&

T Fig. 1
w(x)

Désignons par w(x) sa ligne élastique; par raisons de symétrie, w (x) est
une fonction paire de z.
L’équation différentielle fondamentale est donnée par:

BN -

d*w  p
dzt ~ EJ (I)
Les conditions aux limites sont:
dw
Pour z = t+a: —_ o
+ w=0, ——=0. (II)
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Le probléme sera résolu dés que 1’on aura trouvé une fonction w (x) satis-
faisant aux conditions (I) et (II).

b) Fonctions fondamentales

L’équation des vibrations transversales de flexion peut s’écrire:

oty p-¥ Py

it T BT o

Une solution harmonique est donnée par:
y=w(x)-coswt
11 vient dés lors pour w (x) 1’équation différentielle:
d*w w®pF
dat EJ
w2pF
EJ

4
Z—x%—oz‘l-w = 0.

cw = 0.

ol

ou, en posant:

La partie paire de son intégrale est la fonction fondamentale & la base de
notre probléme. On obtient:

w(x) =C;-Chax+Cy-cosax (1)

C,, Cy: constantes d’intégration.
«: parametre a déterminer.
Les conditions aux limites conduisent, pour z = +a, aux 2 équations sui-
vantes:
C,-Chaa+C,y-cosaa =0

. (1)
C,-Shaa —~C,-sinaa = 0.

Pour obtenir une solution non-triviale, c.-4-d. non-identiquement nulle,
on annulle le déterminant, ce qui conduit & 1’équation transcendante suivante
pour le parametre «:

tgaa—i—Thaa:O (2)

Les valeurs de «, qui sont en nombre infini, seront appelées: valeurs fonda-
mentales (ce sont les valeurs propres du probléme des vibrations transversales).
En posant: aa = A, on peut écrire:

tgA+ThA = 0. (2')

14 Abhandlung XIII
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1
s ThA+4 Tha*t
kA ka by
f / / / /
»
¥ |
% 7 [l T 57
Fig. 2

La figure 2 représente les racines A = aa.

On s’apergoit immédiatement que ces racines ont la propriété remarquable
de tendre asymptotiquement trés rapidement vers des valeurs simples. On
aura, avec une exactitude pratiquement absolue:

A, = 2,36504, un peu > 37/4
Ay 2T w4

Ay~ 11 7/4

ete.

Dés lors, de maniére générale, on a:

(4m—1)=m

A = aga = 2T (mz2), (3)

Cette forme des racines est extrémement avantageuse pour les calculs
pratiques.

A chaque valeur «,, correspond une constante d’intégration C,, qui sera
déterminée ultérieurement au moyen de 1’équation (I). On peut donc écrire,
en tenant compte des équations (1’), la solution générale w (x) sous la forme
appropriée suivante:

w (%) =m>;1 O Uy (),
(4)

_ (Cha,x cosa,x
Um (%) = (Chama,— COS o, a)

u,, (x) est la fonction fondamentale pour la valeur fondamentale ,,.
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-1406
=10 |

Y2(%)

0 ]

415

1588
ui(x)
Fig. 3a
-1474
-1206 -
Z10 ] U (x)
7 (X)
10 ]
1422

Fig. 3b

Ces fonctions fondamentales ont des propriétés remarquables.
Premieérement, elles se reproduisent, & un facteur constant pres, par la

4éme dérivée.
Secondement, et principalement, ces fonctions fondamentales forment une

famille de fonctions orthogonales entre —a et +a. Cette propriété est & la base,
comme on le verra, de la simplicité des calculs dans la suite. Cela signifie donc:

(5)

+a
[ Uty dx =0 (Mm*En).
—a

On le démontre aisément par le calcul intégral élémentaire, compte tenu

de 1’équation (2)!
On trouve de facon analogue:

+a 1 1
2
f o B0 = (coszama+ Chzocma)

—a

(6)
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Ce résultat peut étre mis sous une forme asymptotique extrémement simple,
car avec o, augmentant, on a:

1 0 1
Ch%a, a ’ cosZa,, @

11
i

Pratiquement, le résultat suivant est déja valable pour «,; on obtient:

+a 9 ,
[ Up-drx>~2a. m=1,2,..... ) (6')

—a

Ces propriétés remarquables des fonctions fondamentales ainsi que les
expressions asymptotiques tres simples et trés exactes démontrent que leur
choix peut conduire & une solution également tres simple du probleme.

¢) Solution du probléme de la poutre

La solution est donnée par les expressions (4), ou les constantes C,, doivent
étre déterminées par 1’équation fondamentale (I), les conditions aux limites
étant satisfaites. Ceci revient & développer en série de w,, (x) le membre de
droite p/ E J.

Posons donc pour p, puisque EJ est constant:

[¢ o]

P= 2 Doty (). (7)

m=1

C’est ici qu’intervient ’avantage essentiel constitué par I’orthogonalité des
fonctions u,, (x). Sans nous arréter & des considérations de convergence, on
obtiendra le coefficient général p,, en multipliant les 2 cotés de 1’équation (7)
par u,, (x) et en intégrant entre —a et +a. Tous les termes de droite sont nuls
sauf celui qui contient u,, (x). On a done:

+a +a
—a —a

Grace a I’équation (6’), on peut écrire:

1 +a
—a
Cas particulier : p = const.
Il vient: _, Tho,,a o)
Pm = <P U @
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P, atteint rapidement une forme asymptotique simple:

P =~ 0,8308-p

8p 1 (9")
Pm S T T) (m = 2).

Coefficients C,,:

Les C,, sont dés lors déterminés en identifiant les deux cotés de 1’équation
(I), ce qui conduit a:

o0 1 =0}
mZ=1 Cm“;lnum = W Z P Um

m=1
d’ou: O — _Pm _
m EJ-a
ou, en introduisant («,,-a):
at- Pm
= mn 1
Con EJ: (a,a) (10)

La solution de la poutre est donc (éq. 4):

4 a0
@ Pm

w(x) = mZ=1 Om Uy, (x) = EJ .mzl (ama)4 “ U (x),
c.-a-d
_a* < pn (Cho,x cosa,x
w® =77 mzzjl (ot @) (Chcxma_ cosa, a)’ (11)
Les coefficients C,, sous forme asymptotiques sont:
C. ~ a4'p1
1 = ) i
EJ - (2,36504) (12)

o ~ (22\ . Pm 1
m=\n) EJ (4m-1)

Dans le cas particulier ou p = const., on obtient, en utilisant les valeurs asymp-
totiques (9):

-t
0y 220,0266 - L5 .
O~ 2p [(4a\® 1 (12)
m=aBEJ \w) (dm—1)

(12) et (12’) sont valables dés que m = 2.
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La qualité de la convergence est mise en évidence par la 5°™e puissance de
(4m —1) au dénominateur.

Les moments et efforts tranchants sont donnés par:

P AT TN
e et e

Dans la suite, on introduira 1’abbréviation:
i -Gz et

d) Ezxemple numérique

Nous choisissons p = const.; la portée de la poutre est I = 2a.
Coefficients p,, (¢9. 9'):
p, = 0,8308-p, p, =0,364-p, p; =0,232.p, p,=0,170-p, etc.
Coefficients C,, (éq. 12'):
Avec a = -é—, on aura:

C; = 0,0016620

C, = 0,0000248 p-14
C; = 0,0000026 EJ
ete.

Fonctions u,, (éq. 4):
_ Ch2,365-z/a cos2,365-x/a

1= TT5 3602 0,7133
Tmrax Tmx
. Ch T2 ~ oS ——
2 122,078 0,7071
117« 117z
Ch ia o8 —

’U,3=

28249 | 07071
etce.

Ligne élastique (éq. 11):
En posant: ¢ =1/2, on aura:

.]4
w(x) = % [0,0016620 -, + 0,0000248 - %, + 0,0000026 - 25+ . . . . . 1.
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Fléche pour x=0:

. ) _ 1 p* plt
Vraie valeur: w(0) 380 BT = ~ 0,002604 - T
‘ 4
1. terme: w' (0) = 0,00264- — erreur 1,389.

EJ

4

1. et 2. terme: w” (0) = 0,002605 - Eflfé erreur ~ 0,049%,.

Pratiquement, le premier terme suffit.
Moments (éq. 13) :

]2 ’
Pour x=0: Vraie valeur: 1;—45 = 0,041667 - p-I2.

Nous n’indiquerons que les erreurs:

1. terme: erreur + 8,309,
1. et 2. terme s ~1,969,
1., 2. et 3. terme: . + 0,669,
1., 2., 3. et 4. terme: . — 0,049,

L’erreur alterne de signe; pratiquement, les 2 ou, au plus, les 3 premiers
termes suffisent.
pr

Pour x = +a: Vraie valeur: — I3 = —0,083333-pl2.
Les erreurs sont, en valeur absolue:

1. terme: erreur — 10,929,

1. et 2. terme: » o — 3,729%

1., 2. et 3. terme: »  — 1,859,

1., 2., 3. et 4. terme: » o — 1,119

1.,2.,3.,4. et 5. terme: ,, — 0,759,

Pratiquement, les 3 premiers termes suffisent.
La convergence est dés lors pratiquement suffisamment rapide.

e) Cas antimétrique

La poutre est symétrique, la charge supposée antimétrique par rapport &
son milieu. Les fonctions fondamentales sont impaires en x. On posera:

w' (x) =C;-Sha'x+Cy-sina’ x. (15)

Les conditions aux limites sont celles données par (II), soit:

dw'

dx =4

Pour x=+a: w =0,
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Ceci conduit & 1’équation transcendante pour «’ suivante:

tga'a—Tha'a = 0.

(16)

Les valeurs fondamentales «’ ou A’ =a«'a sont indiquées sur la figure 4.

!
l lgA] [lgA-ThA lg X/ [lgA-ThA
ST /L
i J .l’
/A7) 2 JA, e
Fig. 4

On peut leur donner, pour toutes les valeurs de m, la forme:

, , (4m+1)nw
Am =yt @ = 1

La solution générale, par analogie avec 1’équation (4), prend la forme:

w' (x) = ;lc;nou;n(x),
, She), z sina, x
() =( -

" o o ’
Sha),a sine,a

On démontre que les fonctions u,, (x) sont, elles aussi, orthogonales:

+a
J up-ul-de=0.
—a

+a
| runt-de =a( . ! )

sin?e,, @ Sh?«;,a

~2a (pour m=1).

(17)

(18)

(19)

La solution pour une charge p antimétrique donnée est analogue au cas symé-

trique. On trouve:

+a
’ 1 ’
Pm = 2a fp'um'dx
—a

(20)
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I1 vient, en utilisant 1’éq. (I) et en identifiant:

y o Pm 40\ pn 1
Cm"EJ-a,'n4:(w) EJ (4m+1)* (21)

(Forme asymptotique valable pour toutes les valeurs de m).
Les moments fléchissants et les efforts tranchants se déduisent comme
précédemment.

f) Cas général de charge

On peut former le cas d’une charge générale en superposant les parties
symétrique et antimétrique. On posera dés lors, pour la solution générale:

(Omum'*'o;nur’n)’

Z1
= (22)
2,

m=1

g) Cas général d’encastrement élastique

Le cas d’encastrement élastique de la poutre peut étre traité sur la méme
base. Les conditions aux limites sont:

dw

=1 e- M, (cas symétrique).

r=+a: w=0,

ou: e = degré d’encastrement, M, = moment d’encastrement.
En posant: w (z) = C,-Chaz+ C,- cos a z, on trouve pour « 1’équation carac-
téristique:
tgA+ThA+p-A=0. (23)
ou: A=aa
_ 2e EJ

= nombre constant.

P

Les racines se déduisent de la fig. 1 par intersection des courbes (tgA+ThA)
par la droite (p-A).
On aura de nouveau:

w(x) = Zlomum(x)a
(Ch X & COS oy, x)

Cha,a cosa,a

(24)

U (x) =

Le fait remarquable persiste, & savoir que les fonctions u,, (x) sont ortho-
gonales pour tous les degrés d’encastrement e.
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Cas particulier: la poutre simplement appuyée.
En posant également:
w=0C,-Char+Cy-cosax
d*w

" F 0, il vient:

et en exprimant pour # = + a les conditions aux limites: w=0

Cm—-1)=

C;=0, cosaa =0—>aa = 3 .

On retrouve donc automatiquement les développements en Séries de Fourier.
Remarquons que la notion d’encastrement élastique, définie pour les
poutres, ne peut étre transposée directement aux treillis de poutres et aux dalles.

3. Le treillis de poutres encastré
a) Généralités

Nous considérons un treillis rectangulaire de poutres, supposées en nombre
infini dans les 2 directions x et y et infiniment minces. Le treillis différe de la
dalle par 1’absence des moments de torsion et par le fait que la dilatation
latérale est nulle; ceci revient & poser:

y = — = 0.
m

Supposons de plus EJ = const. et la charge symétrique dans les deux direc-
tions. L’encastrement est total.
L
77777777777 77777777774

T .
b

X

|2

Y

L 7 7

a a
Fig. 5

L’équation différentielle fondamentale du treillis sans torsion peut s’écrire,
en désignant la fleche par w (x,y):

34’00 8411) _ P I/
oA T oyt T BT | @
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Les conditions aux limites sont:

Pour:™z = ta: w=0, —2—?:0.
5 (IX')
w

b) Solution

La forme de 1’éq. (I') suggere immédiatement la forme de la solution, qui
sera le produit des fonctions u,, () et de celles analogues v, (y). On posera
des lors:

w@y) = 2 2 Ot (2)-00 (9)- (25)

(z) = Cha,z cosa,x

“m %)= Ch %,0 COSa,ad’
ChB,y cosB.y

on () = ChB,b cosB,b

ou l'on a:

(voir éq. 4)

Cela signifie que la fonction w, donnée par 1’éq. (25), satisfait automatique-
ment aux conditions aux limites (II'), pourvu que A,, =«,, @ et A, =B, b vérifient
I’équation transcendante (2).

Il suffit donc de déterminer les coefficients C,,, en procédant & 1’identi-
fication dans 1’équation fondamentale (I'). Ceci conduit, en parfaite analogie
avec la poutre, au développement de p en série des u,, et v, :

= Z Z Pmn Wi Vn (26)
m=1 n=1

N.B.: La double X' X s’effectuera en variant les indices m et n de fagon que
m n

leur somme soit constante; p.ex.: m=1, n=1 — m+n=2
m=1, n=2

m=2, n=1 — m+n=3, etc.

u,, et v, formant 2 familles de fonctions orthogonales; on trouve p,,, en
multipliant les deux cotés de 1’éq. (26) par u,,-v, et en établissant 1’intégrale
double entre les limites —a et +a, —b et +b. On trouve, en raison de 1’ortho-
gonalité:

+a +b +a +b
{f [ pwu,v,dc=np u2 v2-dx-dy
—a —b mn” —-a —

En raison de 1’éq. (6’), on aura:

+a +b +a o
[T uheobedady = | ugyedoe [ o3dy = dab.
—a b

—a —b
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et: +a +b d d
. .?) . x.
L e dedy @)
pmn_ 4ab

Cas particulier: p = const.

+ +b h ThB,b
p- faum-dx- [ v,-dy p-4a-T Im® . 4p. Bu
_ —a - =b — % @ Bnb
Prmn = 4ab 4abd ’
d’ou:
dp. Tha,a ThB,b (28)
Pmn = %P &, @ Bnb
et: Prm = Pmn-
La forme asymptotique de p,,, est analogue & celle de 1’éq. (9'):
Py =20,69032-p
64 1 ’
Pmn = p' . (28 )

= 72 (4m—-1)(4n—-1)
(m=2, n=2)

Si I’'un des 2 indices m ou n est =1, on aura, p. ex. pour p,,:

Theya 4 16:p
~ . -0,41543 - ———
Pin 24P = ) n = M3y
6,64682- 1
done: Prp = - £ @n—1) (n=2)
6,64682.p 1
‘ ~ . >
et: Pma = T (4m__1) (m=2)

Coefficients C,,,

En introduisant 1’expression (25) pour w (z,y) dans 1’équation fondamen-
tale (I'), on obtiendra:

Z Z Cmn(“ +Bn

=1 n=1

1 [oe] o0
'E_— Z Zl Pmn U

On identifiera pour les couples (m, n) et 1’on aura:

pmn
COmn = FF (b + B1)

ou: . o (29)

- [ty &

a4
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La forme asymptotique est:

0 ~ a'b 4. pll . 1
1 =12,36504) EJ (a*+b%)’

4ab)4_ Pmn 1 (29%)
(77 EJ [b*(4m—1)2+a*(4n—1)4]

(mz2, nz2).

Omn

I’

Ci,(n=2)et C,, (m=2)auront une forme asymptotique qui découle de 1’intro-
duction des racines («, @), resp. (8,b).
i
ox?’

Moments: M,=-EJ

y=—

2w

c) Hxemple: Treillis carré

Ona:b=a =%. La charge p est supposée constante. Dés lors, les coefficients

C,.. sont donnés, pour le calcul pratique, sous leur forme asymptotique,

compte tenu des éq. (28) et (29’). Pour p = const., on a: C,,,=C,,...

Pyy = 0,69032. 0, = 0,011032. 2%

P BT

Par = P12 = 0,30225-p Cyy = Cyp = 0,000320- %"
P13 = Pa1 = 0,19234-p Ci5 = Cy5; = 0,000034 - %ft;
Doz = 0,13234-p Oy = 0,000072. 2%

P = Py = 0,14105-p C14 = Oy = 0,000007- 2%
Pag = P32 = 0,08422-p Cy3 = C35 = 0,000013- %
P15 = P51 = 0,11135-p Cy5 = Cgy = 0,000002- 2%
Paa = Pas = 0,06177-p Cyq = Cye = 0,000003. 2%
Psz = 0,05359-p Cys = 0,000005. 2%

On obtient pour w (x,y), en remplacant a par % (I = portée), la série (éq. 25):

Ja
w (2, y) = -1%7 [0,0006895 - %, v, -+ 0,0000200 (24, v, + 11y v;) +
+0,0000021 (u, v4 + u5v;) + 0,0000045 - u, v, +
+ 0,0000004 (u; v4 + u4 vy) + 0,0000008 (uy Vg +ugvy)+ . . . . . 1
Fléche pour x=y=0:

l4
1. t : = s
erme w (0,0) = 0,001650 57
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4
1. et 2. terme: w (0,0) = 0,001669-%
1., 2. et 3. terme: w(0,0) = 0,001664- 22
.. . . A‘ 3 - H EJ
) . _ plt ~ pl
Aprés 7 termes: w (0,0) = 0,001665 BT =600 BT
Moments
2
Pour: z =y = 0: M, (0,0) = 0,0255-pl2_g—~pl

39,2

Aprés 3 termes, 1’erreur n’est que de 2,79,.
Pour: x=1/2, y=0 (moment d’encastrement):

_ o, PP
M, (42,0) = —0,05646-pP =~ — £

Les résultats convergent rapidement. Il est facile de généraliser la méthode
indiquée pour des moments d’inertie différents dans les deux directions en
partant de 1’équation fondamentale du treillis orthotrope.

L’encastrement élastique peut étre pris en compte facilement en procédant
comme indiqué au chap. 2, g.

4. La dalle encastrée

a) Equations fondamentales

La dalle rectangulaire est supposée totalement encastrée et chargée symé-
triquement par rapport aux axes x et y (voir fig. 5, de disposition analogue
a celle du treillis).

L’équation fondamentale de Lagrange s’exprime par:

Aw Htw Ptw  p ,
AAw-— 3x4+2.8x2-3y2+ 3?/4 _—,B— (I)
ou: w = fléche,
B = L rigidité & la flexi
=72 Tigidité & la flexion.

Les conditions aux limites sont:

r = ta: w = 0, —‘Z;DT-O
3 (IT")
w

y=ib. w—O, —37/—=0
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La dalle différe du treillis par le fait que les moments de torsion ainsi que
le facteur v de la dilatation latérale sont différents de zéro.

b) Solution

Nous choisirons une solution de méme forme que 1’éq. (25) pour le treillis,
afin de satisfaire d’emblée aux conditions aux limites (II"):

x y) Z Zl Omn'um(x)'vn (y)

Les fonctions u,, et v, sont celles définies pour la poutre et le treillis (voir
chap. 2 et 3).

La solution, c.-a-d. la détermination des coefficients C,,,, suit, en principe,
le méme chemin que pour le treillis. On établira tout d’abord le développement
de la surcharge p (voir éq. (26)):

dont les coefficients p,,, sont ceux des éq. (27), (28) etc.
La différence essentielle avec le treillis (moments de torsion, »+0) appa-
rait dans ’expression 44 w au membre de gauche de 1’éq. (1”):

Ahw = 2 2 Cruul(ah+BL) Uy vyt 208, BT B,
m=1 n=1
S *w o s
La dérivée mixte 2- PR introduit les fonctions #,,, 7,, définies en

fin du chap. 2, c):
i, (z) = Cha,xz cosa,x
m* "~ Che,a cosa,a’

_ _ ChB,y  cosB,y
on(y) = ChB,b + cos B, b

Ces fonctions représentent 1’existence des moments de torsion.

Dés lors, pour procéder a l’identification des deux membres de 1’éq. (I'),
il est nécessaire de développer les produits #,,-7, en fonction des u;-v,. On
procédera en développant chaque fonction % et ¥ séparément et en effectuant
les multiplications. Ces calculs sont faits une fois pour toutes! Posons done:

ﬂl = ki'u1+k1 u2+kl us +k1 u +
Uy = k2 uy+ K2 up+ k2 u3+...+kf u,+...

@m= Y -uy + k5w + K3 - ug+ .o R
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De maniére analogue:

51 = hi’vl+h;'vz+hé'v3+ .« o e +k%"01+ « o 0
Ty =hlv +h2-vy+h2 v+ ... +hE v+ ...

Uy =hY- vy +hY-vo+hY-v5+ .. A0+
Les coefficients k7", i}, etc. sont déterminés par le procédé déja utilisé pour

Pmn- On trouve, par intégration élémentaire, compte tenu de 1’orthogonalité
des fonctions u et v:

ta +a
| puy-de=km | u?-de=2a-k™
—a —a

et: km =

En particulier:

ainsi que des expressions analogues pour A} et A. On trouve, en posant:

U@ = Ay, a, @ =2A,, etc.

P
km = =2 [\~ ThA, —A;-ThA;]
o L1 1 Th,,
m = 3\Chex, “costa) T A,

Il est aisé de trouver des expressions asymptotiques simples pour les
indices = 2.
Les racines A, étant les mémes pour les fonctions v,,, on en déduit que:

kim = kim.

Les premieéres valeurs des k£ sont données dans le tableau ci-dessous:

Tableau kT

0= 1 2 3 4
1 ~0,54984 0,43495 0,34087 0,27302
2 0,08050 —0,81811 ©0,20139 0,19010
3 0,02551 0,08155 —0,88425 0,12738
4 0,01100 0,04140 ~0,06850 ~0,91512
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c .
Les produits u,,- v, s’écrivent:

Uy O, = (KT uy +ET - ug + KT - ug +
(kYo kg - va kY- vg+
= kT k7w v+
+ Kk ug vy + kY K uy vy +
+ K1 RS uy v+ K kG wy vy + K5 BT ug vy +

.+k§n’ui+...)'
.+k?"vl+-.-)=

Le tableau suivant contient quelques coefficients des développements:

Uy Vg Uy Uy Uy Vg Uy Vg Uy Vy Ug Vg .+
Uy Dy 0,30234 | —0,23916 | —0,23916 | —0,18715 0,18918 | —0,1875
Uy .0, | —0,04426 0,44984 0,03501 | —0,11073 | —0,35584 0,02740
Uy.v; | —0,04426 0,03501 0,44984 0,02740 | —0,355684 | —0,11073
.03 | —0,01403 | —0,04484 0,01110 0,48620 0,03547 0,00868
Uy . Dy 0,00648 | —0,06586 | —0,06586 0,01621 0,66930 0,01621
uz.v; | —0,01403 0,01110 | —0,04484 0,00868 0,03547 0,48620

Nous insistons sur le fait que ces coefficients sont calculés une fois pour
toutes.

11 suffit maintenant de remplacer les expressions #%,, -7, dans 44 w par leurs
développements en série pour procéder a l’identification qui permettra de
calculer les coefficients C,,,. On aura tout d’abord:

ZZOmn[(“;Ln"I"lgi)umvw+2“iﬁzzk?ut'gk?vl EF Zzpmn Uy, 0
m n 7

Posons: Dy = Crin (o +B) (31)
2 o2 -,82 A2 .22
= "M _ 2q2pH2. L R 32
Pmn = (1 gi) PAL 3 ai Al (32)
il s’en suit:

1
ZZDmn[um'vn+Pmn'ZZkim'kln'uivl]E Zzpmn'um'vn'
m n Tk B m n

Il faut donc égaliser & gauche et & droite de cette identité les coefficients du
méme produit «,,- v, . Nous indiquons, pour bien mettre en évidence le procédé,
les premiers termes de I’identité:

Dy [ty vy +pyy (kg - by -y vy Ry kg g v+ Ry By - wp v + )]+
+Dyg [y 0y +pyg (kg - K -y vy + Ky - G-y vy + K- k U0+ )]+
+ Doy [ty 01 + poy (k- Ky -uy -0y + 7 - k “Uy Oy + K- k UV + .. )]+

1
= 5 [D11° U103+ Dro Uy Vo + Pog - U U3 + . ']'

15 Abhandlung XIIT
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D’ou I’on tire les équations (coefficients de u,- v, u,-v,, ete.):

Dn(l+P11'ki'ki)+D12‘P12‘ki'ki+D21'P21‘k%‘k%+ coe = %"1
Diy-pry-ky kg +Dyg (L +pry- ki k3) + Doy - poy b3 Iz + ... = %% (33)
D11'P11'k%'ki+D12'P12;k%'k%+D21(1+Pz1‘kg’ki)+ e = %I

---------

La forme générale, pour le coefficient de w,,-v,, peut s’écrire, en mettant en
évidence le terme de la diagonale principale pour i=m et I=n:

22 23D pa K k4 Dy (14 pr- - ) = 222 (33)
v 1

Z Z L vEm } simultanément!
T 1 L+n .

Ce systéeme a des coefficients qui décroissent rapidement, car tel est le cas
pour les p;;, les & , etc. En plus, la constante C,,, cherchée s’obtient de D,,,
par division par («: +B2) selon 1’éq. (31).

Pratiquement, on peut résoudre ce systéeme en procédant par étappes le
long de la diagonale principale suivant le schéma (fig. 6) et en utilisant le
procédé d’itération par étapes:

07/ 0/2 02/ 0/3

787 etspe

27%me glape

Jeme glape

47 gfape

Fig. 6

Les valeurs calculées d’une étape peuvent étre utilisées comme wvaleurs
approchées de la suivante. C’est ainsi que 1’on obtient:
ere & . !
1ere étape: Dy,
é 2 . 4 4 ’
2eme gtape: Dy, D,
éme ’ . n ” ’
geme étape: Di;, Di,, Dy,
etc. L’approximation peut étre poussée aussi loin que 1’on voudra.

La convergence rapide des calculs sera illustrée par l’exemple du para-
graphe suivant.
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Les constantes dont se compose le systéme d’équation sont en partie géné-
rales, c.-a-d. indépendantes des cétés a et b, p. ex. k7 ; par contre, les «,,, B,
p, contiennent a et b et caractérisent la forme de la dalle rectangulaire.

Les moments, efforts tranchants etc. sont donnés en fonction des secondes,
troisiéemes dérivées partielles de w.

La convergence numérique est remarquablement rapide.

c) Exemple numérique: dalle carrée

On a: b=a= —;—, d’ou, avec: A, =o,a, A, =B, a:
A, + AL
D,,=C,. - (_m_z_"_).
a
2022

Pmn = m.

La charge p est uniformément répartie. Nous indiquons immédiatement le
systéeme d’équations (33), dont chaque équation est donnée par 1’équation-
type (33"). Nous nous bornons ici aux premiers termes; les calculs ont été
effectués avec 9 équations.

La convergence est trés rapide, aussi bien pour les coefficients-mémes
que pour les inconnues D,,, .

Dans le cas de la dalle carrée, on a:

Dmn = Dnm’

Dés lors, il suffit d’établir les équations pour les D,,, différents. Le systéme
est le suivant, indiqué pour les 6 premiers termes:

D, D, D, Dy, D,, Dy, pmn/ B

1,30234 | —0,03168 | -0,00418 0,00648 | —0,00098 0,00286 0,69032 p/B
-0,23916 1,17351 | -0,00503 | —-0,06586 | —0,00145 | —0,00996 0,30225 p/B
-0,18715 | —0,02982 1,07375 0,01621 | -0,00273 | -0,04595 0,19234 p/B

0,18918 | -0,25468 0,01058 1,66930 0,00290 | —0,09284 0,13234 p/B
—0,15013 | -0,02954 | -0,00940 0,01530 1,04073 0,01050 0,14105 p/B

0,14804 | -0,06830 |-0,05318 |—0,16476 0,00353 1,51479 0,08422 p/B

Aprés avoir calculé les D,,, par étapes (voir schéma de la fig. 6), on obtient
les constantes C,,, par 1’éq. (31):
D

C _ mn a’4'Dmn
" (ot B T AR

Aprés un calcul de 9 étapes (fig. 6), par itération, on obtient les valeurs
suivantes:
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Cy; = 0,0086270, Cys = Cyy = 0,0003956,
Cy3 = O3 = 0,0000508, C,y = 0,0000412,
C14 = Cyy = 0,0000117, C,3 = Cyy = 0,0000058,

Ajoutons encore les valeurs:

Oy = 0,0000002.

La convergence est, comme on voit, trés rapide. En calculant par itération
d’autres étapes, les premiers coefficients ne changent pratiquement plus!

11 est intéressant de comparer la convergence, c.-a-d. I’exactitude du pro-
cédé exposé dans ce mémoire & celle des méthodes classiques. En ne calculant
qu'une étape, c.-a-d. seulement le coefficient C,, ’erreur sur la fleche ne
comporte que 4,7%, tandis que par les méthodes classiques, I’erreur est de
8,5%,. Donc, le premier terme C,, suffirait pratiquement au calcul de la fléche.

Fléche au miliew: x=y=0:

_ . pl4N pl4
w (0,0) = 0,0012640- - = — .

D’aprés TiMOSHENKO (,,Plates and Shells*), la différence est de 0,0249, =
0,249/, .
Moment au milieu: x=y=20:

1 pl?

: = — = : = . 2N—————.
Avec: e 0,3: M (0,0) = 0,02291-pl ~436

Cette valeur correspond pleinement avec celles indiquées dans la littérature.
Moment d’encastrement: x=a=1/2, y=0:

- _ or2 o~ PP
M (1j2,0) = —0,0503-pl? = — [

L’exemple traité démontre suffisamment la rapidité et 1’exactitude de la
méthode exposée.

5. Généralisations; remarques finales

Le calcul de la dalle demande, par rapport & celui du treillis, un dévelop-
pement plus prononcé. Mais 1’ampleur du travail numérique reste bien infé-
rieur & celui de la méthode ordinaire qui consiste & superposer 3 fonctions
w (z, y) et de développer ces trois composantes en séries, ce qui conduit &
2 systémes infinis d’équations linéaires pour les constantes. Dans notre méthode
proposée, il n’y a aucun calcul ,,d’orthogonalisation‘’ & effectuer, les fonctions
fondamentales » et v 1’étant d’emblée.
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La méthode peut étre utilisée pour des cas de charges antimétriques et
généraux ainsi que pour les cas ou 3 bords seuls sont encastrés, le quatriéme
librement appuyé, etc.

Le cas important d’un ou deux bords libres, les autres étant totalement
encastrés, sera traité ultérieurement. Il en sera de méme du cas beaucoup plus
général ol I’encastrement, sans étre total, est da & la connexion avec d’autres
éléments: dalles, poutres, etc.

C’est avant tout ce ,,probléme de connexion qui joue un réle fondamental
dans la construction, et qui mérite d’étre traité par une méthode appropriée
aux besoins numériques.

Résumé

L’auteur propose une méthode nouvelle pour le calcul des dalles rectan-
gulaires encastrées, en se basant d’emblée sur des fonctions fondamentales
vérifiant automatiquement les conditions aux limites. Il suffit dés lors d’un
seul développement de la surcharge p en série de ces fonctions fondamentales,
qui représentent la ligne élastique de la poutre encastrée sous ’effet de vibra-
tions transversales.

Les calculs sont grandement simplifiés par le fait que ces fonctions fonda-
mentales sont orthogonales et qu’elles donnent lieu & des expressions asymp-
totiques simples, facilitant les calculs numériques.

Les bases étant établies, I’auteur montre le mécanisme de la solution en
traitant d’abord la poutre, ensuite le treillis de poutres et enfin la dalle rec-
tangulaire elle-méme.

Les exemples numériques démontrent que la convergence est rapide et les
calculs aisés.

La méthode exposée permet de remplacer la superposition de plusieurs
solutions partielles, comme c’était le cas jusqu’ici, par une solution unique;
elle peut étre appliquée 3 un nombre de cas trés divers quant aux conditions
de bord et & la surcharge considérées.

Il est prévu de généraliser cette méthode au probléme des dalles rectan-
gulaires continues en deux directions.

Zusammenfassung

Der Verfasser schlidgt eine neue Methode fiir die Berechnung der einge-
spannten Rechteck-Platten vor, indem er von vornherein Grund-Funktionen
einfiihrt, die automatisch die Randbedingungen erfiillen.

Es geniigt daher, fiir die Belastung p eine einzige Reihenentwicklung in
diesen Grundfunktionen aufzustellen, die iibrigens der Biegelinie des einge-
spannten Balkens bei Querschwingungen entsprechen.
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Die Berechnungen werden dadurch stark vereinfacht, daf die Funktionen
orthogonal sind und da@ sie zu einfachen asymptotischen Ausdriicken fiihren,
was die numerische Auswertung erheblich abkiirzt. |

Nachdem er die Grundlagen dargelegt hat, zeigt der Verfasser den Mecha-
nismus der Losung, indem er zuerst den Balken, dann den Balkenrost und
schlieBlich die rechteckige Platte selbst behandelt.

Die numerischen Beispiele zeigen, dafl die Methode sehr rasch konvergiert
und leicht anzuwenden ist.

Die dargestellte Methode ersetzt die bisher unumgingliche, umstdndliche
Superposition von vielen partiellen Losungen durch eine einzige Losung.

Sie kann auf verschiedenste Fille angewendet werden (verschiedene Rand-
bedingungen und Belastungen).

Es ist vorgesehen, diese Methode noch auf Rechteck-Platten zu verallge-
meinern, die nach beiden Richtungen durchlaufend sind.

Summary

The author proposed a new method for calculating fixed rectangular slabs,
in that he introduces, right at the start, fundamental functions which auto-
matically fulfil the edge conditions.

It is therefore sufficient, for the loading p, to establish a single series
development in these fundamental functions, which also correspond to the
bending line of the fixed beam under transverse vibrations.

The calculations were greatly simplified in that the functions are ortho-
gonal and that they lead to simple asymptotic expressions, thus considerably
shortening the numerical evaluation.

After explaining the fundamental bases, the author demonstrates the
mechanism of the solution, in that he first of all deals with the beam, then with
the beam-grid, and finally with the rectangular slab itself. '

The numerical examples show that the method converges very quickly
and is easy to apply.

The proposed method replaces the hitherto unavoidable, cumbersome
superposing of many partial solutions by one single solution.

It can be adopted for cases of very different kinds (various edge conditions
and loadings).

It is intended to generalise this method also to rectangular slabs which are
continuous in both directions.
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