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Sur une methode nouvelle de resolution du probleme
des dalles rectangulaires encastrees

Über eine neue Lösungsmethode des Problems der eingespannten Rechteckplatte

On a new method of resolution for clamped reetangular plates

Pierre Lardy, Prof. ä l'E.P.F., Secretair General de TA. I. P. C, Zürich

1. Introduction

La Solution classique du probleme de la dalle rectangulaire encastree, teile
qu'elle est traitee dans les ouvrages de la theorie de l'elasticite, exige des

developpements theoriques et numeriques qui s'averent probihitifs dans les
calculs pratiques. En effet, eile est basee sur la Solution de la dalle librement
posee, ä laquelle vient s'ajouter 1'influence des moments d'encastrement sur
les 4 bords. La superposition de ces effets conduit ä de laborieux developpements

en series de fonctions trigonometriques et aboutit, dans le cas general de

la dalle rectangulaire, ä 2 systemes infinis d'equations lineaires pour les

constantes d'Integration.
L'auteur de ce memoire propose une Solution nouvelle, directe et ä priori

adaptee ä la nature du probleme, dans le but de simplifier de fagon sensible
les calculs numeriques et d'ouvrir, pour le cas fondamental de la dalle
rectangulaire totalement encastree, une voie ä l'application pratique.

L'idee de la Solution est fort simple et consiste ä remplacer la superposition
des differentes composantes sus-mentionnees (dalle simple plus influences des

bords) par des fonctions adaptees d'emblee et de fa$on rigoureuse aux conditions
aux limites. Ces fonctions, appelees dans la suite „fonctions fundamentales'c, se

deduisent de la ligne elastique d'une poutre encastree soumise ä des vibrations
transversales de flexion et conduisent directement, c.-a-d. sans detours, ä la
Solution.

Ces fonctions fundamentales ont des proprietes remarquables, dont la plus
importante est qu'elles forment des familles de fonctions orthogonales qui per-
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mettent de developper tres simplement en series les grandeurs caracteristiques
telles que les fleches, les moments de flexion, les efforts tranchants, les sur-
charges donnees, etc.

Pour bien mettre en evidence le caractere et le mecanisme de la Solution,
l'auteur traite d'abord, au moyen de ces fonctions fondamentales, le cas de la
poutre et du treillis de poutres encastrees, pour en arriver ä la dalle rectangulaire

totalement encastree.
La Solution est adaptee, par l'introduction de developpements asympto-

tiques elementaires, aux besoins du calcul numerique. Quelques exemples sou-
lignent la rapidite de la convergence du procede. On obtient d'excellentes
approximations en ne prenant en compte qu'un nombre tres restreint de termes
des series.

II est necessaire d'insister sur l'importance de Solutions simples rigoureuses
et pratiquement accessibles des problemes de la theorie de l'elasticite dont
l'appareil mathematique a trop souvent, au premier abord, un aspect rebarba-
tif. Ceci s'applique tout particulierement aux ,,problemes de connexionCi, oü la
coaxion entre differents elements joue un role preponderant.

Dans un memoire ulterieur, l'auteur traitera les dalles continues, c.-ä-d.

connexes dans les deux directions.

2. La poutre encastree

a) Donnees

Soit donnee une poutre de section constante, chargee symetriquement par
rapport ä son milieu, de longueur l 2a et totalement encastree ä ses 2 extre-
mites (Fig. 1).

<?>-

Fig. 1

w(x)

Designons par w(x) sa ligne elastique; par raisons de symetrie, w (x) est

une fonction paire de x.
L'equation differentielle fondamentale est donnee par:

d*w
dtf

V
EJ

Les conditions aux limites sont:

Pour x ±a: w o,
dw
dx

0.

(I)

(II)
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Le probleme sera resolu des que l'on aura trouve une fonction w{x) satis-
faisant aux conditions (I) et (II).

b) Fonctions fondamentales

L'equation des vibrations transversales de flexion peut s'ecrire:

dx* "*" EJ dt2

Une Solution harmonique est donnee par:

y — w(x)' cos co t

II vient des lors pour w(x) l'equation differentielle:

d*w ü>2-pF
dx* EJ

oü2-PF
ou, en posant: —w T

-w 0.

——-ofi.w 0.
dx*

La partie paire de son integrale est la fonction fondamentale ä la base de

notre probleme. On obtient:

w (x) Cx - Ch a x + G2 • cos a x (i)

CX,C2: constantes d'Integration,
a: parametre ä determiner.

Les conditions aux limites conduisent, pour x + a, aux 2 equations
suivantes :

C, • Ch ol a + Co • cos ol a 0
(1')

Cx • Sh ol a — C2 - sin a a 0.

Pour obtenir une Solution non-triviale, c.-ä-d. non-identiquement nulle,
on annulle le determinant, ce qui conduit ä l'equation transcendante suivante

pour le parametre a:
' '

(2)tgaa + Thaa 0

Les valeurs de ol, qui sont en nombre infini, seront appelees: valeurs
fondamentales (ce sont les valeurs propres du probleme des vibrations transversales).
En posant: oca A, on peut ecrire:

tgA + ThA 0. (2')

14 Abhandlung XIII
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ThXt

mn m
tgX W &*

ThX

2T 5T/2m

Fig. 2

La figure 2 represente les racines A <xa.

On s'apergoit immediatement que ces racines ont la propriete remarquable
de tendre asymptotiquement tres rapidement vers des valeurs simples. On

aura, avec une exactitude pratiquement absolue:

Xx 2,36504, un peu > 3tt/4
A2^7tt/4
A3^ll7r/4
etc.

Des lors, de maniere generale, on a:

Xx =oLxa 2,36504

_ _ (4m— 1)77
(m 2).

(3)

Cette forme des racines est extremement avantageuse pour les calculs
pratiques.

A chaque valeur ocm correspond une constante d'Integration Cm qui sera
determinee ulterieurement au moyen de l'equation (I). On peut donc ecrire,
en tenant compte des equations (1'), la Solution generale w(x) sous la forme
appropriee suivante:

w (x) 2 Cm-um{x),
m=l

\Chama cosama/

(4)

um (x) est la fonction fondamentale pour la valeur fondamentale 0Lm.
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Fig. 3 b

Ces fonctions fundamentales ont des proprietes remarquables.
Premierement, elles se reproduisent, ä un facteur constant pres, par la

4eme derivee.
Secondement, et principalement, ces fonctions fondamentales forment une

famille de fonctions orthogonales entre — a et +a. Cette propriete est ä la base,
comme on le verra, de la simplicite des calculs dans la suite. Cela signifie donc:

(5)

On le demontre aisement par le calcul integral elementaire, compte tenu
de l'equation (2)!

On trouve de fa$on analogue:

+a
I «m Un -dx 0 (m * n).

—a

+a

ull-dx a\ ^ + 7^2J \cos2ama Ch2ama/
(6)
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Ce resultat peut etre mis sous une forme asymptotique extremement simple,
car avec am augmentant, on a:

i i
^0,Ch2 am a cos* am a

Pratiquement, le resultat suivant est dejä valable pour ax; on obtient:

+a
jum-dx^.2a. (m 1,2,. ¦ (6')

Ces proprietes remarquables des fonctions fondamentales ainsi que les

expressions asymptotiques tres simples et tres exactes demontrent que leur
choix peut conduire ä une Solution egalement tres simple du probleme.

c) Solution du probleme de la poutre

La Solution est donnee par les expressions (4), oü les constantes Cm doivent
etre determinees par l'equation fondamentale (I), les conditions aux limites
etant satisfaites. Ceci revient ä developper en serie de um(x) le membre de

droite pjE J.
Posons donc pour p, puisque EJ est constant:

P= X Pm'Um(x)'

C'est ici qu'intervient l'avantage essentiel constitue par l'orthogonalite des

fonctions um(x). Sans nous arreter ä des considerations de convergence, on
obtiendra le coefficient general pm en multipliant les 2 cötes de l'equation (7)

par um (x) et en integrant entre — a et +a. Tous les termes de droite sont nuls
sauf celui qui contient um(x). On a donc:

+a +a
J p-um>dx pm- J u%-dx.

—a —a

Gräce ä l'equation (6'), on peut ecrire:

+a

Pm==Ya' J V'um'dx
—a

(8)

Cas particulier: p const.

II vient:
Pm 2P'

Thamq
cL^a

(9)
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pm atteint rapidement une forme asymptotique simple:

px ^ 0,8308-p

Sp 1

Pm
tt (4m-l) (m^ 2).

(9')

Coefficients Cm:

Les Cm sont des lors determines en identifiant les deux cötes de l'equation
(I), ce qui conduit ä:

oo 1 00

jlLj ^m ' am * ^m j? j ' Z-i Pm ' ^m
m l & <J m=l

d'oü:

ou, en introduisant (am-a):

0™ —
Pn

EJxl

Cm —
^¦Vn

EJ-(ocma)*
(10)

La Solution de la poutre est donc (eq. 4):

w

c.-ä-d.

oo 4 °°

(x) J] Cm. um (x) ^j • 2 t-%4 ' nm (x)y
m=l

EJ „41! (a„a)4 \Ch«ma cos ccm a) ' (11)

Les coefficients Cm sous forme asymptotiques sont:

a ai-p1
1 — EJ- (2,36504)4

c -l^X.v^. \
m= \tt EJ (4w-l)4

(12)

Dans le cas particulier oü p const., on obtient, en utilisant les valeurs
asymptotiques (9'):

Cx ^0,0266 p-a*

m aEJ \n) (4w-l)5

(12')

(12) et (12') sont valables des que m 2.
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La qualite de la convergence est mise en evidence par la 5öme puissance de

(4 m —1) au denominateur.
Les moments et efforts tranchants sont donnes par:

M -

Q

EJ

EJ

d2w
~dtf

d3w
dxs

£±xm m\Chama cosama/

WT V „3 n (ShccmX sinam#\
m==i \Kjaccma cosama/

Dans la suite, on introduira l'abbreviation:

vm(x)
Chama;
Chama

+ -

cos aw a

(13)

(14)

d) Exemple numerique

Nous choisissons p const.; la portee de la poutre est l 2 a.

Coefficients pm (eq. 9'):
p1 0,8308-2>, p2 0,364-2), p3 0,232p, p4 0,170 p, etc.

Coefficients Cm (eq. 12') :

Avec a —, on aura:

Cx 0,0016620 j
C2 0,0000248 p>l*
C3 0,0000026 EJ
etc.

Fonctions um (eq. 4) :

u,
Ch 2,365. x\a cos 2,365. x\a

5,3692

Ittx

• +

Ch
Uo

Uo

4a
122,078

IIttxCh

0,7133

COS —:—4a
0,7071

ll7ra;
4a COS

2824,9
+ 4a

0,7071

etc.

Ligne elastique (eq. 11):

En posant: a Z/2, on aura:

vi*w{x) Vi^ [0,0016620 -^ + 0,0000248- u2 + 0,0000026-%+ ].MiJ
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Fleche pour x 0:

Vraie valeur: w(0) ~ • |^-^ 0,002604. |^.384 ejJ JjjJ

7)1*
1. terme: w' (0) 0,00264-^ -> erreur 1,38%.

vi*
1. et 2. terme: w" (0) 0,002605 • —^^ erreur ~0,04%.

Pratiquement, le premier terme suffit.

Moments (eq. 13) :

vi2Pour x 0: Vraie valeur: ±—- 0,041667-p-l2.
———————— Z4:

Nous n'indiquerons que les erreurs:

1. terme: erreur +8,30%
1. et 2. terme „ -1,96%
1., 2. et 3. terme: „ +0,66%
1., 2., 3. et 4. terme: „ -0,04%

L'erreur alterne de signe; pratiquement, les 2 ou, au plus, les 3 premiers
termes suffisent.

Pour x + a: Vraie valeur: - ^— - 0,083333 • p l2.
^————————— j.^

Les erreurs sont, en valeur absolue:

1. terme: erreur — 10,92%
1. et 2. terme: „ - 3,72%
1., 2. et 3. terme: „ - 1,85%
1., 2., 3. et 4. terme: „ - 1,11%
1., 2., 3., 4. et 5. terme: „ - 0,75%

Pratiquement, les 3 premiers termes suffisent.
La convergence est des lors pratiquement suffisamment rapide.

e) Cas antimetrique

La poutre est symetrique, la charge supposee antimetrique par rapport ä

son milieu. Les fonctions fundamentales sont impaires en x. On posera:

w' (x) CX'Sha x + C2'Sma x. (15)

Les conditions aux limites sont Celles donnees par (II), soit:

t> / „ dw'Pour x + a: w 0, -^— 0.
dx
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Ceci conduit ä l'equation transcendante pour at! suivante:

tga'a-Tha'a 0. (16)

Les valeurs fondamentales o! ou \' a a sont indiquees sur la figure 4.

\fyx-mto*w- ThXtgx ItgX-m *96.

5X/22XmV/2

Fig. 4

On peut leur donner, pour toutes les valeurs de m, la forme:

Kn am* a
(4ra+l)7T

La Solution generale, par analogie avec l'equation (4), prend la forme:

w' (x)

< (*)

00

2 C'm-u'm{x),
m=l
/Shoc'mx sina^aA
\Sha^a sin ocma)'

On demontre que les fonctions u'm(x) sont, elles aussi, orthogonales:
+a
J u'm>u'n>dx 0.

—a

+a / 1 1 \

(17)

(18)

(19)

^2a (pour m^ 1).

La Solution pour une charge p antimetrique donnee est analogue au cas
symetrique. On trouve:

+a

(20)P'm ^- PK dx
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II vient, en utilisant l'eq. (I) et en identifiant:

°-~ EJ-aC=\ir) EJ
1

EJ (4m+l)4
(21)

(Forme asymptotique valable pour toutes les valeurs de m).
Les moments flechissants et les efforts tranchants se deduisent comme

precedemment.

f) Cas general de charge

On peut former le cas d'une charge generale en superposant les parties
symetrique et antimetrique. On posera des lors, pour la Solution generale:

(22)

00

w(x)
m=l

00

(C„ •»« + G'm ¦Wm),

p(x) 2
ra=l

(Pm- wm + P'm *»)•

g) Cas general d'encastrement elastique

Le cas d'encastrement elastique de la poutre peut etre traite sur la meme
base. Les conditions aux limites sont:

x +a:
dW TUT >J. ' X

w 0, -=— ±€'MX (cas symetrique).
ax

oü: e degre d'encastrement, Mx moment d'encastrement.
En posant: w (x) Cx - Ch a x + C2 • cos a x, on trouve pour a 1 'equation

caracteristique:

tgA + ThA + p-A 0. (23)

ou: A oca

2eEJ nombre constant.

Les racines se deduisent de la fig. 1 par intersection des courbes (tgA + ThA)
par la droite (p-A).

On aura de nouveau:

w (x) X Cm-um(x),
m=l

u (x\ (ChocmX _
COSam^\

m \Chama cos ccma)

(24)

Le fait remarquable persiste, ä savoir que les fonctions um (x) sont
orthogonales pour tous les degres d'encastrement e.
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Cas particulier: la poutre simplement appuyee.
En posant egalement:

w Oi-Chatf + Cg-cosax
d2w

et en exprimant pour x + a les conditions aux limites: w 0, -=— 0, il vient:

(2ra-l)7r
Cx 0, cosota 0 -+ ota

On retrouve donc automatiquement les developpements en Series de Fourier.
Remarquons que la notion d'encastrement elastique, definie pour les

poutres, ne peut etre transposee directement aux treillis de poutres et aux dalles.

3. Le treillis de poutres encastre

a) Generalites

Nous considerons un treillis rectangulaire de poutres, supposees en nombre
infini dans les 2 directions x et y et infiniment minces. Le treilhs differe de la
dalle par l'absence des moments de torsion et par le fait que la dilatation
laterale est nulle; ceci revient ä poser:

.1 0.
m

Supposons de plus EJ const. et la charge symetrique dans les deux directions.

L'encastrement est total.

'///////////.Y/<

s

/
'/
1

\
'',

b \
i
'f

1 i
b

^

t
£

£
v/?//////////// 77///////////
\*~ 6 6t

Fig. 5

L'equation differentielle fondamentale du treillis sans torsion peut s'ecrire,
en designant la fleche par w (x, y):

e*w g4w
Jx1 + Jyi

P
EJ

(!')
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Les conditions aux limites sont:

209

Pour:je ±a:

y= ±b:

w 0,
dw
dx

0.

dy

(IF)

b) Solution

La forme de l'eq. (I') suggere immediatement la forme de la Solution, qui
sera le produit des fonctions um(x) et de Celles analogues vn(y). On posera
des lors:

00 00

(25)
00 00

w(x y)
n=l

-um {xy vn(y)-

oü l'on a: _ Ch.amx cosocmx
Urn \X) -p^.m Cha„,a cosawa

vn(y)
Ghßny eosßny

(voir eq. 4)

Chßnb cos^ft-
Cela signifie que la fonction w, donnee par l'eq. (25), satisfait automatique-

ment aux conditions aux limites (II')» pourvu que Am ocma et Xn=ßnb verifient
l'equation transcendante (2).

II suffit donc de determiner les coefficients Cmn en procedant ä l'identi-
fication dans l'equation fondamentale (F). Ceci conduit, en parfaite analogie
avec la poutre, au developpement de p en serie des um et vn:

P Z Z Pmn"»m'v«
m=l n=l

(26)

N.B.: La double UE s'effectuera en variant les indices m et n de fagon que
m n

leur somme soit constante; p. ex.: m=l, n=l -> m + n 2

m=l, n 2)
> -> m + n 3, ete.

m 2, n l)

um et vn formant 2 familles de fonctions orthogonales; on trouve pmn en
multipliant les deux cötes de l'eq. (26) par um-vn et en etablissant l'integrale
double entre les limites — a et +a, —b et +6. On trouve, en raison de l'ortho-
gonalite: +a +b +a +b

$ $ P-um'Vn-dx pmn> $ $ ul-vl-dx-dy
—a —b

En raison de l'eq. (6'), on aura:

-a —b

+a +b +a +b
J" $ u^-vl-dx-dy J u2m>dx* j* v2n-dy ±ab.

—a —b —a —b
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+a +b
J J P'Um'Vn'dx-dy

—ct — b

4a&

Cas particulier: p — const.

Pn

p- J um-dx- J vn-dy p-4a- m -46- ¦---**-
-a -6 ama M

4a6 4a6

d'oü:
2W 4P

Thama Thj8n6

^: Pnm Pmn-

La forme asymptotique de pmn est analogue ä celle de l'eq. (9'):

Pn ^ 0,69032- p

Pmn tt2 (4m-l)(4w-l)
(m^2, n 2)

Si l'un des 2 indices m ou n est 1, on aura, p. ex. pour pXn:

Tho^a 4
Pm =^4P

donc:

et:

OLxa {^n—V)TT TT

6,64682^ 1

(ss2)

(ra^2)

16'P 0,41543
1

(4%-l):

/^ln — TT (472,-1)

Pml
6,64682-p 1

tt (4ra-l)

(27)

(28)

(28')

Coefficients Cmn:

En introduisant l'expression (25) pour w(x,y) dans l'equation fondamentale

(I'), on obtiendra:
OO OO 00 00

2 2 Gmn(*m + K)'um'Vn ^7 * ZI 2 Pmn'um"»n-
m=l n=l -ß/«/ m=l n=l

On identifiera pour les couples (m, n) et l'on aura:

ou:

Cn

n _

Pn

EJ-(*i+ßi)
Pmn

[ a4 ft*

(29)
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La forme asymptotique est:

Cl1 — (2,36504J
Pu 1

o„

EJ (a4 + 64)'

4ö6\4 Pmn 1/4ojA
¦¦-{ TT EJ [64(4m-l)* + a4(4n-l)4]'

(m£2, w^2).

(29')

CXn (n ^ 2) et Oml (m ^ 2) auront une forme asymptotique qui decoule de l'intro-
duction des racines (ocxa), resp. (ßxb).

d2w
Moments: M«=-EJw

c) Exemple: Treillis carre

On a: b a=^. La charge p est supposee constante. Des lors, les coefficients

(7mn sont donnes, pour le calcul pratique, sous leur forme asymptotique,
compte tenu des eq. (28') et (29'). Pour p const., on a: Cnm Gmn.

pn 0,69032

Pn Vu 0,30225

Pis=Pzi 0,19234

p22 0,13234

Pu Po. 0,14105

Pzs 2>32 0,08422

p16 3»5i 0,11135

P21 Pi2 0,06177

pm 0,05359

•p C?u 0,011032-

¦p C2i C12 0,000320-

¦p ^13 CS1 0,000034-

¦p C22 0,000072-

¦p Cu <741 0,000007-

¦ p ^23 CZ2 0,000013-

¦ p <?15 Cbx 0,000002-

¦p ^24 (742 0,000003-

•p C33 0,000005-

EJ
pa*
~EJ
pa*
~EJ
pa*
~EJ
pa*
~EJ
pcfi
Tsj
pa*
~EJ
pa*
~EJ
pa*

On obtient pour w(x,y), en remph^ant a par ^ (l portee), la serie (eq. 25):

vi*w(x,y) j~ [0,0006895>uxvx + 0,0000200 (%v2 + u2vx) +

+ 0,0000021 (ux vz + us vx) + 0,0000045 • u2 v2 +
+ 0,0000004 (uxv± + u±vx) + 0,0000008 (u2v3 + usv2)+ ]

Fleche pour x y 0:

1. terme: w{0,0) 0,001650 pl*
EJ
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1. et 2. terme:

1., 2. et 3. terme:

Apres 7 termes:

Moments

Pour: x y 0:

Pierre Lardy

«17(0,0) 0,001669
pl*
EJ

w{0,0) 0,001664- ^yJtLJ

w{0fi) 0,001665
pl* pl*
EJ 600- EJ'

Mx(0,0) 0,0255 -pl2g^
pl2

39,2

Apres 3 termes, 1'erreur n'est que de 2,7%.

Pour: x 1/2, y 0 (moment d'encastrement):

Mx(Z/2,0) -0,05646-pl2^ - p-l2
17,7

Les resultats convergent rapidement. II est facile de generaliser la methode
indiquee pour des moments d'inertie differents dans les deux directions en

partant de l'equation fondamentale du treillis orthotrope.
L'encastrement elastique peut etre pris en compte facilement en proc^dant

comme indique au chap. 2, g.

4. La dalle encastree

a) Equations fundamentales

La dalle rectangulaire est supposee totalement encastree et chargee syme-
triquement par rapport aux axes x et y (voir fig. 5, de disposition analogue
ä celle du treillis).

L'equation fondamentale de Lagrange s'exprime par:

AAw
d*w
dx* + 2.

d*w d*w
dx2-dy2 dy* B

ou: w fleche,

B EJ
1-v2

Les conditions aux limites sont:

: rigidite a la flexion.

x ±a:

V ±b:

dw
w 0, 0

dx
dw

w 0, 0
dy

(I")

(IF)
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La dalle differe du treillis par le fait que les moments de torsion ainsi que
le facteur v de la dilatation laterale sont differents de zero.

b) Solution

Nous choisirons une Solution de meme forme que l'eq. (25) pour le treillis,
afin de satisfaire d'emblee aux conditions aux limites (II"):

W(x,y)= X 2 Omn'Um{x)-Vn(y).
ra=l n=l

Les fonctions um et vn sont Celles definies pour la poutre et le treillis (voir
chap. 2 et. 3).

La Solution, c.-ä-d. la determination des coefficients Cmn, suit, en principe,
le meme chemin que pour le treillis. On etablira tout d'abord le developpement
de la surcharge p (voir eq. (26)):

00 00

P 2-i Zj Pmn'um'Vn>
ra=l n=l

dont les coefficients pmn sont ceux des eq. (27), (28) etc.
La difference essentielle avec le treillis (moments de torsion, v4=0) appa-

rait dans l'expression AAwsbU membre de gauche de l'eq. (I"):
00 00

AAw= 2 X Cmn[(«im+ßin)um-vn + 2«l-ßl-üm-vn]
m=l n=l

d*w
dx2-dy2

La derivee mixte 2 • ^ _ ^ introduit les fonctions um, v„, definies en
fin du chap. 2, c):

_ Ch ocmx cosam#
^m V^) Tri

'
5

<jh<xma cosama

Ghßny cosßny
V"[y) Chßnb^ cosßnb'

Ces fonctions representent l'existence des moments de torsion.
Des lors, pour proceder a l'identification des deux membres de l'eq. (I'),

il est necessaire de developper les produits üm-vn en fonction des ui-vk. On
procedera en developpant chaque fonction ü~ et v separement et en effectuant
les multiplications. Ces calculs sont faits une fois pour toutes! Posons donc:

üx k\ • ux + lc\ • u2 + k\ • u% + -f- k\ • ut +
ü~2 ~ kl • ux + k\ • u2 + k\ • u3 + + kf • ut +

üm= km'Ux-i-k2n^u2 + km'U3+ +kf -i^ +
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De maniere analogue:

vx h\-vx + h\>v2 + h\-v3 + +h\-vl+
v2 hf • vx + hl • v2 + hl • v3 + • + h\ • vx +

vn hn-vx + h%-v2 + h%-v3+ > +hn-vl+

Les coefficients k™, hn, etc. sont determines par le procede dejä utilise pour
pmn. On trouve, par Integration elementaire, compte tenu de l'orthogonalite
des fonctions u et v:

+a +a
J üm-ui'dx kim' J ui2'dx 2a-kim

—a —a
+ a

et: &/» — - J um-uv
—a

En particulier: +a

dx

T.T)

2a' J "^m' um' d%,

ainsi que des expressions analogues pour hf et Ä". On trouve, en posant:

ocma ^m> <Xna=K> etc-

hm
4A,2

(AS.-V)

** 2^^ cob«aJ +

[Am-ThAm-ArThAJ

ThAM
(30)

II est aise de trouver des expressions asymptotiques simples pour les
indices ^ 2.

Les racines Am etant les memes pour les fonctions vn, on en deduit que:

h.™ ktm.

Les premieres valeurs des k sont donnees dans le tableau ci-dessous:

Tableau Jfcf

m^^^ 1 2 3 4

1

2

3

4

-0,54984
0,08050
0,02551
0,01100

0,43495
-0,81811

0,08155
0,04140

0,34037
0,20139

-0,88425
0,06850

0,27302
0,19010
0,12738

-0,91512
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Les produits ü~m-vn s'ecrivent:

üm-vn (k%-ii1 + t%-u2 + t$-uz + +k7P'Ui+ .)•
• (kn-vx + k12l'V2 + k73l'Vs+...+kn-vl +
k™-k\*uxvx +
~T" fC-i * A/o * Ux t/o "T~ Ä'O * fC-i ' U2 Vx "T"

~t~ rC-i * fCo * U-t Vn -]" A/o * ICn * fct'o ^9 "I- S
*

1
*

3
*

1 '

+

Le tableau suivant contient quelques coefficients des developpements:

u1v1 utv2 u2vt utv3 u2v2 uzvx

üx.vx 0,30234 -0,23916 -0,23916 -0,18715 0,18918 -0,1875
ÜX.V2 - 0,04426 0,44984 0,03501 -0,11073 -0,35584 0,02740
ü2.v± - 0,04426 0,03501 0,44984 0,02740 - 0,35584 -0,11073
üx.vz -0,01403 - 0,04484 0,01110 0,48620 0,03547 0,00868
ü2.v2 0,00648 - 0,06586 - 0,06586 0,01621 0,66930 0,01621
üz.vx -0,01403 0,01110 - 0,04484 0,00868 0,03547 0,48620

Nous insistons sur le fait que ces coefficients sont calcules une fois pour
toutes.

II suffit maintenant de remplacer les expressions üm • vn dans AAw par leurs
developpements en serie pour proceder ä l'identification qui permettra de
calculer les coefficients Cmri. On aura tout d'abord:

XZCmn[(«L + ßin)-um-vn + 2ocl-ßl-£k?-ui-£k?-vl] =i
m n

Posons:

B ¦XXVn

D P*^mn ^mn

Pmn

'(*m + ßn

2a2b2>
A™ • A„

il s'en suit:

22 A™Kt^n+/w22 hf" - h? - U^ 5 -p" 2 2 Pit

• um. vn.

(31)

(32)

B ' Uyyn ' V~>

II faut donc egaliser a gauche et ä droite de cette identite les coefficients du
meme produit um-vn. Nous indiquons, pour bien mettre en evidence le procede,
les premiers termes de 1'identite:

Dxx[ux-vx + p11(k\-k{-uxv1 + k\'kl'Uxv2 + kl-k{'U2vx+ ...)] +
+ D12[ux-v2 + p12(k\'kl'Uxv1 + k\'kl'U1v2i-kl'kl'U2vx-{- .)] +
+ D2X[u2'Vx+p21(kl-k\'U1-v1 + kl-kl'U1v2 + kl>k{-u2vx+ .)] +
+ » [Pn'U1'Vx + p12'Uxv2 + p2X-u2vx+ .1.

15 Abhandlung XIII
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D'oü l'on tire les equations (coefficients de ux-vx, ux-v2, etc.):

Ai(1+Pu-*i-*i)+A2-A>i2-*i-*i+-D2i-P2rfci-*i+---

DXX'pXX'kl'kl+DX2(l+pX2'kl'kl)+D2X'p2X'kl'kl +

DxVpXX'kl'k\+DxrpX2'k12kl + D2X(l+p2X'k22'k11)+...

B
Pl2
B

P21

B

(33)

La forme generale, pour le coefficient de um-vn, peut s'ecrire, en mettant en
evidence le terme de la diagonale principale pour i m et l n:

Zj Zj Uü'Pu ' km' kn + Omn (1 -f pmn• km• kn) — —±
B (33')

y, y, i 4= m simultanement!

Ce Systeme a des coefficients qui decroissent rapidement, car tel est le cas

pour les pix, les kxm, etc. En plus, la constante Cmn cherchee s'obtient de Dmn

par division par (ocm + ß^) selon l'eq. (31).
Pratiquement, on peut resoudre ce Systeme en procedant par etappes le

long de la diagonale principale suivant le Schema (fig. 6) et en utilisant le
procede d'iteration par etapes:

D„ Dg D21 Da

fere etape

2''me etape

3'<m etape

U'*metape

Fig. 6

Les valeurs calculees d'une etape peuvent etre utilisees comme valeurs

approchees de la suivante. C'est ainsi que l'on obtient:

l*re etape: D'X1

2hmG etape: D"1X, D'12

3*™ etape: JD£, D"X2, D'2l

etc. L'approximation peut etre poussee aussi loin que l'on voudra.
La convergence rapide des calculs sera illustree par 1'exemple du para-

graphe suivant.
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Les constantes dont se compose le Systeme d'equation sont en partie gene-
rales, c.-ä-d. independantes des cötes a et b, p. ex. k7^; par contre, les am, ßn,
pn contiennent a et b et caracterisent la forme de la dalle rectangulaire.

Les moments, efforts tranchants etc. sont donnes en fonction des secondes,
troisiemes derivees partielles de w.

La convergence numerique est remarquablement rapide.

On a:

c) Exemple numerique: dalle carree

b a —, d'oü, avec: Am ocma, \n ßna:

n ~ n*^mn ^mn
(\n + K)

2^m'K
Pmn u ,\4 •

Am + Än

La charge p est uniformement repartie. Nous indiquons immediatement le
Systeme d'equations (33), dont chaque equation est donnee par l'equation-
type (33'). Nous nous bornons ici aux premiers termes; les calculs ont ete
effectues avec 9 equations.

La convergence est tres rapide, aussi bien pour les coefficients-memes
que pour les inconnues Dmn.

Dans le cas de la dalle carree, on a:

•*^mn -^nm •

Des lors, il suffit d'etablir les equations pour les Dmn differents. Le Systeme
est le suivant, indique pour les 6 premiers termes:

Ai #12 A3 A2 A4 As PmJB

1,30234 -0,03168 -0,00418 0,00648 -0,00098 0,00286 0,69032 p/B
-0,23916 1,17351 -0,00503 -0,06586 -0,00145 -0,00996 0,30225 p/B
-0,18715 -0,02982 1,07375 0,01621 -0,00273 -0,04595 0,19234 p/B

0,18918 -0,25468 0,01058 1,66930 0,00290 -0,09284 0,13234 p/B
-0,15013 -0,02954 -0,00940 0,01530 1,04073 0,01050 0,U105p/B

0,14804 -0,06830 -0,05318 -0,16476 0,00353 1,51479 0,08422 p/B

Apres avoir calcule les Dmn par etapes (voir Schema de la fig. 6), on obtient
les constantes Cmn par l'eq. (31):

C ^mn ® ' "mn

Apres un calcul de 9 etapes (fig. 6), par iteration, on obtient les valeurs
suivantes:
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Cxx 0,0086270, CX2 C2X 0,0003956,
CX3 C3X 0,0000508, C22 0,0000412,
<?i4 C41 0,0000117, 023 C32 0,0000058,

Ajoutons encore les valeurs:

C15 C51 0,0000037, C24 <742 0,0000013,
C33 0,0000002.

La convergence est, comme on voit, tres rapide. En calculant par iteration
d'autres etapes, les premiers coefficients ne changent pratiquement plus!

II est interessant de comparer la convergence, c.-ä-d. l'exactitude du pro-
cede expose dans ce memoire ä celle des methodes classiques. En ne calculant
qu'une etape, c.-ä-d. seulement le coefficient Cxx, 1'erreur sur la fleche ne

comporte que 4,7%, tandis que par les methodes classiques, 1'erreur est de

8,5%. Donc, le premier terme Cxx suffirait pratiquement au calcul de la fleche.

Fleche au milieu: x y 0:

w (0,0) 0,0012640 •^^^g.
D'apres Timoshenko („Plates and Shells"), la difference est de 0,024%
0,24 <>/00.

Moment au milieu: x y 0:

Avec: v — 0,3: M (0,0) 0,02291- p l2^-V
m ' ' v ' ' ' r ~43,6

Cette valeur correspond pleinement avec Celles indiquees dans la litterature.

Moment d'encastrement: x a 1/2, y 0:
vi2

M(1/2,0) -0,0503-pl2^ - H

19,9

L'exemple traite demontre suffisamment la rapidite et l'exactitude de la
methode exposee.

5. Generalisations; remarques finales

Le calcul de la dalle demande, par rapport ä celui du treillis, un develop-
pement plus prononce. Mais l'ampleur du travail numerique reste bien infe-
rieur ä celui de la methode ordinaire qui consiste a superposer 3 fonctions
w (x, y) et de developper ces trois composantes en series, ce qui conduit ä
2 systemes infinis d'equations lineaires pour les constantes. Dans notre methode

proposee, il n'y a aucun calcul „d'orthogonalisation" ä effectuer, les fonctions
fondamentales u et v 1'etant d'emblee.
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La methode peut etre utilisee pour des cas de charges antimetriques et

generaux ainsi que pour les cas oü 3 bords seuls sont encastres, le quatrieme
librement appuye, etc.

Le cas important d'un ou deux bords libres, les autres etant totalement
encastres, sera traite ulterieurement. II en sera de meme du cas beaucoup plus
general oü l'encastrement, sans etre total, est du ä la connexion avec d'autres
elements: dalles, poutres, etc.

C'est avant tout ce ,,probleme de connexion" qui joue un role fondamental
dans la construction, et qui merite d'etre traite par une methode appropriee
aux besoins numeriques.

Resume

L'auteur propose une methode nouvelle pour le calcul des dalles
rectangulaires encastrees, en se basant d'emblee sur des fonctions fundamentales
verifiant automatiquement les conditions aux limites. II suffit des lors d'un
seul developpement de la surcharge p en serie de ces fonctions fundamentales,
qui representent la ligne elastique de la poutre encastree sous 1'effet de vibrations

transversales.
Les calculs sont grandement simplifies par le fait que ces fonctions

fundamentales sont orthogonales et qu'elles donnent lieu ä des expressions asymp-
totiques simples, facilitant les calculs numeriques.

Les bases etant etablies, l'auteur montre le mecanisme de la Solution en
traitant d'abord la poutre, ensuite le treillis de poutres et enfin la dalle
rectangulaire eile-meme.

Les exemples numeriques demontrent que la convergence est rapide et les
calculs aises.

La methode exposee permet de remplacer la superposition de plusieurs
Solutions partielles, comme c'etait le cas jusqu'ici, par une Solution unique;
eile peut etre appliquee a un nombre de cas tres divers quant aux conditions
de bord et ä la surcharge considerees.

II est prevu de generaliser cette methode au probleme des dalles
rectangulaires continues en deux directions.

Zusammenfassung

Der Verfasser schlägt eine neue Methode für die Berechnung der
eingespannten Rechteck-Platten vor, indem er von vornherein Grund-Funktionen
einführt, die automatisch die Randbedingungen erfüllen.

Es genügt daher, für die Belastung p eine einzige Reihenentwicklung in
diesen Grundfunktionen aufzustellen, die übrigens der Biegelinie des

eingespannten Balkens bei Querschwingungen entsprechen.
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Die Berechnungen werden dadurch stark vereinfacht, daß die Funktionen
orthogonal sind und daß sie zu einfachen asymptotischen Ausdrücken führen,
was die numerische Auswertung erheblich abkürzt.

Nachdem er die Grundlagen dargelegt hat, zeigt der Verfasser den Mechanismus

der Lösung, indem er zuerst den Balken, dann den Balkenrost und
schließlich die rechteckige Platte selbst behandelt.

Die numerischen Beispiele zeigen, daß die Methode sehr rasch konvergiert
und leicht anzuwenden ist.

Die dargestellte Methode ersetzt die bisher unumgängliche, umständliche
Superposition von vielen partiellen Lösungen durch eine einzige Lösung.

Sie kann auf verschiedenste Fälle angewendet werden (verschiedene
Randbedingungen und Belastungen).

Es ist vorgesehen, diese Methode noch auf Rechteck-Platten zu
verallgemeinern, die nach beiden Richtungen durchlaufend sind.

Summary

The author proposed a new method for calculating fixed reetangular slabs,
in that he introduces, right at the start, fundamental funetions which auto-
matically fulfil the edge conditions.

It is therefore sufficient, for the loading p, to establish a single series

development in these fundamental funetions, which also correspond to the
bending line of the fixed beam under transverse vibrations.

The calculations were greatly simplified in that the funetions are orthogonal

and that they lead to simple asymptotic expressions, thus considerably
shortening the numerical evaluation.

After explaining the fundamental bases, the author demonstrates the
mechanism of the Solution, in that he first of all deals with the beam, then with
the beam-grid, and finally with the reetangular slab itself.

The numerical examples show that the method converges very quickly
and is easy to apply.

The proposed method replaces the hitherto unavoidable, cumbersome

superposing of many partial Solutions by one single Solution.

It can be adopted for cases of very different kinds (various edge conditions
and loadings).

It is intended to generalise this method also to reetangular slabs which are
continuous in both directions.
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