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Die durch beliebig viele elastische Spanten versteifte, kreiskegelformige
Membrane mit veriinderlicher Wandstiirke

The right-circular conical membrane of variable wall-thickness
with any number of elastic ribs

Les membranes coniques circulaires d’épaisseur variable, renforcées par des
membrures élastiques en nombre arbitraire

Dr. Ing. habil. ERNsT GRUBER, Oberregierungsbaurat z. Wv., Eldingen/Hannover

A. Allgemeines

Die Membranen finden im Bauwesen bei Errichtung von hohen Masten,
freitragenden Rohrleitungen, Kiihltiirmen, Gas- und Fliissigkeitsbehiltern in
ausgedehntem MafBle Anwendung. Diese Bauwerke miissen aber fast immer
mit formhaltenden Spanten ausgesteift werden. In der Folge wird die Statik
derartiger Tragwerke entwickelt.

Wir benutzen die kegelstumpfférmige Membrane ohne Querspanten, die
an einem Ende lings eines Parallelkreises fest gelagert ist und im iibrigen frei
auskragt, als Grundsystem und nennen es in Hinkunft ,, Kragwerk‘‘.

B. Das Kragwerk ohne Spanten

a) Spannungen

Wé&hlt man entsprechend der Fig. 1a « und ¢ als Koordinaten und stellt
fur ein infinitesimales Element das Gleichgewicht auf, so erhalten wir

o(xa,) 1 o7 _
EP Sma-—ﬂp—o,+xps—0 (1a)
o(xT) 1 0o
Ml = 1
dx  sina a¢+’r+xpt 0 (1b)

o+xptga=0 (Fig. 1b), (le)
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wobei o,, o, und 7 von der Membranendicke &, unabhingige Krifte je Liangen-
einheit sind. (1c) in (1b) eingesetzt ergibt

or 2 1 a_p_

oz zT cosa O

r=5h@ + 5 [ (oo 22 ) do. ®

Py (2)

mit der Losung

zrsine | x2

—o—lcfx(coza+ps)dx. @

o; folgt aus (1c) unmittelbar. Die Funktionen f, und f, ergeben sich aus den
jeweiligen Randbedingungen. Wirkt z. B. lings des oberen Randes x ==, der
Schubflul 7, () und die parallel zu den Erzeugenden gerichtete Auflast o, (p),
so folgen!) fiir das lings des Parallelkreises x =x,, festgelagerte Kragwerk die
Spannkrifte in x =z, zu

1 1 1 d 0 1 0
oy = — 11 (@) + = f(p) — g P P _ ) da
X x A

1 1 odp

— |, 2 Bt A 3
Ten = 3 [xl 'rl+fx (eos“ pp pt) dx] (3

&y

_Em (m ) 1z e (1w _
os’x"—sina(xn 1) T +xnos’1+fx(l xn) o (cos<x O p,) dw
1 n

o | (ptgatp)rde (4')

Wirkt nur langs z, ein SchubfluBl 7, (¢) und bedenkt man, daf3 die Ermitt-
lung der Spannkrifte einer Membrane eine statisch bestimmte Aufgabe ist, so
wird fiir x <, die Membrane spannungslos. Fiir « >z, wird hingegen aus (3')

und (4')
x.\2 € x . , ’ ' mn
e (i) Ty Us’w=xsi;1a(;v —-1) 7,5 o=0. (5,5',5%)

Ist nur o, ; vorhanden, so treten im Mantel trotz seiner Konizitidt keine
Schubwirkungen auf.

Treten lings eines Parallelkreises beim Fortschreiten in Richtung der
Erzeugenden in den Belastungen p, p, und p, Unstetigkeiten auf, wie z. B. bei
der Abstufung der Winddriicke nach DIN, so werden, da hierbei die Schub-

1) Dabei wird das Doppelintegral von (4) wie folgt umgeformt: Nennt man das
innere Integral J,, so wird
Ly Ty T, Ty
1 J 0 1 op xz\ 0 1 op
—|J dl-)=—-|-= — c—— dx = 1——})— —— —p, | dx.
f z (x) [x] + Jxa(p (cos<x Jo pt) v fx( wn) oo (cos<x oo pt) v

x ry, Zy
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fliisse 7, keine Spriinge erleiden, die in den bisherigen Gleichungen auftretenden

Quadraturen mit den Unstetigkeitsstellen als Integrationsgrenzen einzeln
durchgefiihrt und die Ergebnisse schlicht summiert.

b) Verformungen

Wir beschreiben die Verschiebung eines Punktes der Membrane durch
3 Komponenten:

1. r normal zur Kegelfliche

2. s in Richtung der Erzeugenden

3. t in Richtung der Parallelkreistangente.
-/
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e
=

Y ’ \
=Y '
120 =
A3 | &
4 " . .
D) i %
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3 #% J L_ g [ ] kennzeichnet die
Qs l‘ | [+ gf—dx] " "™\ Verschiebungen im Schnitt I-1
5t J
el

Draufsich! I

{ oberer Parallelkreis)
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Aus Fig. 2 kann man bei Voraussetzung der iiblichen, fiir unsere gebriauch-
lichen Baustoffe geltenden Bedingungen, leicht die Beziehungen

08 0,—poy

dz= B9, (6)
s 1 ot T 0y— O, ;
E+xsinoc'%+xtgoc_ E9, (6)
0 t 1 0s 2(1+[1/) ”
8_95(75)+x281noc op  Exd, (6%)

ablesen. Dabei ist zu achten, da} die Tangentialverschiebung ¢ senkrecht zur
Erzeugenden steht. Aus (6) folgt die Achsia,lverschiebung zu

P,xn E f f"ot + Sm ((P) (7)

Damit erhalten wir aus (6”)
In Zn

%)
1 x,\ 0 dx 2(1+4 ) T
tp,2,= Esinocf (1 - ‘x’) bg (T THA) gt g x"fxawd”

xr
Tm Tm

Tn g @)+ (p) . (T)

m
T Slnoc

tst, n

Mit (7) folgt daraus aus (6) die Radialverschiebung

In

_OI"HT, 2 (1%}, o
"R g, nt8% Esin2ocf(l x)a<p2("s o g

xr x

Tm

2(1+p) [ 07 dx tgaf(cs_”ct)dx

Ecosa | 0p 20, E P,
Tm Tm
Z, — X, x
_9 tm " "n —to- __"n__p . i
z sin2a’m m (p) —tga - 8y (9p) xmcomtm(qv) (7%)

s, und ¢, stellen die lings x ==, vorgegebenen Werte der s und ¢ dar,
welche z. B. in Form von Fundamentbewegungen auftreten konnen.

Da in (7”) eine analoge Funktion r,, nicht vorkommt, kann bei x=x,, fir
r,, keine Vorschrift gemacht werden, das hei3t, die Membrane mufl an dieser
Stelle radial verschieblich gelagert sein, etwa so wie in Fig. 1a. Ist diese
Lagerung nicht verwirklicht, so ist ein Gleichgewichtszustand ohne Schalen-
biegung nicht méglich. Diese klingt aber vom Auflager ab sehr rasch ab.

Die Verformungsflichen miissen stetige Funktionen von x und ¢ sein. Das
Gegenteil wiirde einem Zerreilen der Membrane entsprechen. Da eine solche,
ideell gesehen, iiberhaupt keinen Biegewiderstand besitzen darf, kénnte man
in letztere beliebig viele Knicke hineinfalten, ohne daBl dadurch unendlich
groBBe Materialanstrengungen entstiinden. Das wiirde bedeuten, daf} die ersten

?) Wurde durch eine der FuBinote 1 analogen Umformung erhalten.
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Differentialquotienten der Verformungsflichen unstetig sein konnten. Da man
aber eine Membrane in einer solchen Idealisierung nicht verwirklichen kann,
wiirden dann im Tragwerk trotzdem betrachtliche Biegespannungen auftreten,
die wir aber vermeiden wollen. Wir streben also immer die Stetigkeit auch der
1. Ableitungen an. Handelt es sich um Tragwerke, deren GroBenausdehnung
in der z-Richtung bedeutend méchtiger ist als in der p-Richtung, so geniigt es,
wenn man diese differentiellen Bedingungen nur fiir die letztere Richtung
einhélt.

Fiir die Folge sind die tangentiellen Verschiebungen ¢ wichtig, die durch
einen im Parallelkreis x, wirkenden Schubflull =, erzeugt werden. Sie ergeben
sich fir x, 2, aus (7'), indem man darin fiir 7, o, und o, die Werte (5, 5’, 5")
setzt. Es wird

In Tn
x,T,” x x,\ dz  2(1+pu) dx
f = vl 1—2v —In : =
v Esm%cj( :c)( x)ocﬁx+ E Ty % 23,
Tom Tm
+Ms,’n+ g’itm; x,zx, (Fig.3a) (8)
am xm
mit a,=x,sin «. Analog folgt aus (7)
In
__z,T) _x,) dz
S = Esinocf(l x) xd, + S ()
Lm
Ist x, <x,, so ergibt sich zundchst, wenn wieder in x, der Schubflufl =, wirkt,
xn / hV n
= “n R 10
tv’n tv,v x, + V”xvsmzx ( )

wobei wir ¢, , und s, , aus (8) und (9) erhalten, indem wir z, =x, setzen. Mit
b, ,+x, =2, wird dann aus (10)

Ty a
- X
a Im

m m
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(8) bzw. (8) konnen wir auch als lineare Funktionen von z, bzw. z,
anschreiben. Es folgt, wenn man zunichst s, und ¢,, auler acht 148t und =, 7,
zur Kraft X  zusammenfaBt, die Doppelgleichung

1 T\ do 1 xn) do
= " — 7y 9 1—_1 Ty s 9 ]--*'_V“
by.n X”[ Esm%cf( x)mﬁw +x,'{E’s1n2af( & xzﬂx]

Tm ZTn Tm (11 a, b)

2(1 "d
v Ty ( + /"“) x, x = Xv” [an (xn) +wv'lgn (xn)] +Xv'mv"yn(xn) ;
7 n :1:31936 A ¢ n VvV Vv n v

n 14

P

+

Zm
X

i\

5 Z Ty
Setzt man nun entsprechend der Fig. 3a,b das x, bzw. x, der (8') gleich dem
x, bzw. x, der (8), so erhalten wir, wenn wir der Deutlichkeit halber die groere

der beiden Ordinaten mit b und die kleinere mit a bezeichnen

tg’b = X%[ab (b) + @B, (b)] + Xg-a-'y,, (b), b 2z a; (Fig.3c¢). (12a,b)
Hierin gibt der erste Index von ¢ immer den Ort der Kraftwirkung und der
zweite den Ort der Verschiebung an. Ferner liegt &6 dem Einspannkreis immer
niher als a. In diesem Sinne sind jeder Ordinate z,, die 3 Funktionen «, 8 und
y zugeordnet.

Man erkennt in diesen Entwicklungen wieder das Prinzip der Gegenseitig-
keit der Verschiebungen, wenn man s, und ¢, als nicht elastische Verfor-
mungen auller acht 1a8t.

Zwischen den tangentiellen Verschiebungen bestehen wichtige Beziehungen.
Bezeichnet man die zu (X, =1) gehorigen, bei z,_,,z, und z,,,; auftretenden
&, , und &, ., so wird nach (11)

Verformungen mit &, ,_;,
l9'n, v+1 8n, v+1
” e rm— e,
ﬁn, v+l = (Xn = 1) [‘xn +xv+1'ﬁn] + (Xn = l)xv+1"yn (133')
P, v I
29n,u":(‘X',r/p,zl)[an'l"’/vv'ﬁn]'*'()(n=l)xu"yn (13b)
19’;,?,,v—l 19")’&, v—1

” (e e, e e, .
19'%,1/—1 = (Xn =1) [an +xv~1'Bn] + (Xn =1) Ly1"Vy- (Flg 4a) (13¢)
Daraus folgt, wenn man in Hinkunft die Ordinatendifferenz x,—x, mit 4, ,
bezeichnet,

” " U4 4
ﬂn,v+1 _&n,v _ z9")1,,1/ —9

n, v—1
A v+1,v A

=0; ¥, 1<%, <%, 1=%,. (14)
v,v—1

Fiir die einmal gestrichenen & gibt es eine analoge Beziehung. Bildet man
nun entsprechend der Fig. 4b die algebraischen Summen
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Fig. 4a Fig. 4b

4

” ” ” ”
( _ 1911—1. v—1 ﬁn—l,v 29"n,—l,v _ ﬁn—l, v—1

v,v—1 A v, v—1 A v+1,v A v+1,v

" " ” n
ﬁn, v—1 797», v ﬁn, v 19'n, v+1} . A
YA, 4, 4,4, T
v,v—1 v,v—1 v+1,v v+1,v
” " ”n L4
07;, v—1 ﬁn, v ﬁn, v ﬂn, v+1
A T4, 4,7
v,v—1 v,v—1 v+1,v v+1,v
14 19‘” ” 19'”
— Z+l, v+1 + An+1, v + An-f-l, v__ Z+1, v+1) . A niln (1 5)
v,v—1 v, v—1 v+1,v v+1,v

und faB3t jeweils die Glieder der lotrechten Spalten zusammen, so erhalten wir
fiir die erste von diesen

” 19‘” ” 19‘”
_Yn+1,v-1 " Vn,p—1 4 vl —Tnily=1) . [ (15,)
A A * v,v—1°

n,n—1 n+1l,n

Denken wir uns nun bei z,_, eine Kraftwirkung [(X”_,=1), (X,_, = 1)] wirkend,
bringen die zu dieser gehdrigen bei z,_,,%, und z,., auftretenden Verschie-
bungen &, , ,_,, ¢, , und &, 4 ,., in den durch (14) angegebenen Zusammen-
hang und vertauschen entsprechend dem Prinzip von der Gegenseitigkeit der
Verschiebungen die Indices der &, so erhalten wir wieder (15’). Da (14) den
Wert Null hat, muB} also auch (15") verschwinden. Fiihren wir fiir die iibrigen
3 Spalten dieselben Rechnungen durch, so folgt, dafl der Wert der ganzen (15)
Null wird.

Auch hier gelten fiir die einmal gestrichenen ¢ die analogen Beziehungen.

Das Nullwerden der (14) und (15) tritt nur dann ein, wenn in der zur
ersteren gehorigen Fig. 4a z,,; <z, und in der zur letzteren gehorigen Fig. 4b
%1 =, 4 ist. Die v-Gebiete diirfen sich nur beriihren, aber nicht ineinander-

greifen.
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C. Die kreisformige Spante

a) Der kreisformig gekrivmmte Stab

In der Folge bendtigen wir den Zusammenhang zwischen den Verformun-
gen t,,r, und den Belastungen 7,7, ,,p, einer solchen Spante. Dabei soll
der Anschlul der Membrane an die Querspante so wie am Lagerkreis wieder
durch unendlich kleine Fachwerke idealisiert werden, so daB} zwischen Mem-
brane und Spante nur Schubwirkungen 7, als Verbindungskrifte moglich
sind (Fig. 1a).

Fig. 5b Fig. 5a

Aus der Fig. 5a, welche ein Elementarelement darstellt, ergeben sich die
3 Gleichgewichtsbedingungen

_Nn+Q;L+an(1+)‘n)pn=0 (163’)
_N,_Qn—anTn_a’n(l+An)7p,n:O (16b)
+Qnan(l _en)+M1’1_anen7n_an2(l +An) (An_’"en)'rp,n: 0 (160)
mit en=&, An=—l—7i,
n a

n

wiahrend wir aus Fig. 5b die elastostatischen Beziehungen

, N,
Tn+tn=an3(1—€n)3Kn—Ean (17a)
4 ” M’n
—t +rl=a,2(1—¢,)? Z0 (17D)

I
a’n2 I n (1 - En)
aus diesem Ergebnis und (17a,b) M, und N, , so erhalten wir

mit «, =

; ablesen. Eliminiert man zuerst aus (16a,b,c) @, und

11  Abhandlung XIII
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/4 /4 4 a 4 ! ’
rn+rn+tn+tn=(1_€n)EnJ [(1+/\'n) (pn_Tp,n)—T’n] (183’)
nYn
n V4 ’ a 2
(1+Kn)tn_Knrn+7'n = - E nF [(’1+An)2'rp,n+7n]’ (18b)
ntn

was man leicht in die beiden expliziten Formen

2 d2
D) = goa Ot )+ o (b t0)| = ti4 28 48—, 1 ¥, =0, (192)
’ d ” d2 ” ’ " Vv
D (Tn)=3; (¢n+rn)+d—§vg(rn+rn) =rp+2r,+r, =¥ ,+¥;,=D,, (19b)
: a’n4 ( 1= €'71,)2 ” ’ 2
mit g’l,n:""—vE—J"“[Tn+€n7n+(l+An)(l_En)pn+(1+An) To,n
H(14A) N+ e)Th,]  (208)
a’n4 Ky (1 — Gn)3 " ’ ”
Von=—"-777—"—[=mn+(1+A,) (Pn—7p,,)] (20Db)

E,J,

umwandeln kann.
Die Losung von (19a) lautet:

L, =t,+1%, = (anﬁn—Af’nsin<p+Amncosgo)+q> (C1+Cysinp+C3co8 @)+, 4.
Mo = Jno1+3I00s+ 0y Jlp1=4singfde [P, sinpde (21a)
+4cospfdefD, ,cospde

T = bcosofP, singde—sing(d, ,cospde; J g, =[do[D, ,de.
Setzt man darin fiir @, , die Werte von (20a, b) ein, so erhalten wir nach mehr-
fachen Umformungen

a,t(l—¢,)? ¢
— {[1 +e€,+ Ky (l—en)] Jif)v-l + [3_€n_Kn(1_€n)] Jg?-rZ +J£L)'r3}

M,n = E_ J,

_at(d ”5:)21 +u) (1420, +e,+r, (1—€ )T,

+(342X, —e,—r, (L)1 e +(1+2,) J s}

+an4(1—£:§n(1 +An){J%1+(1+Kn)J%2}, . (22a)
wobei man die Integrale J&  , J®  und J?, bzw. J? , J?9, und J? ; aus

IO, Jlpy und JU, erhilt, indem man statt @, , die Belastungen 7, bzw.
Tp,n Setzt. Aullerdem gilt

J;f)pl =cosgpfp,cospdp+sing|p,singde—[p,de (23a)
Jg)pz =}sinpfdofp,cospdp—}cospfdefp,sinedp. (23b)

Eliminiert man aus (18a,b) r,” und setzt in dieses Ergebnis ¢, ein, so folgt
die Losung fiir (19a) zu
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Kk, +1

n

_ - . -1
Tn =Ty +7, =(d¢ ,cosp+4, ,sing) +C, (K" smqa—qmos,rp)

-1 .
+Cy (:"+ 3 COSqD-{-qDSlngo) +1,.,+C (21D)
n

M =JIno1—TueetIes;  Jip1=—ising[de[d, ,cospde+
+3cosefde[D, ,sinpde

JXZDZ = Sinq).qur,n sinpd g+ COSq)f(Dr’nCOS(pd(p, J(rd53 = J.d)r nd .

Setzt man analog fiir @, , die Werte von (20a,b) ein, so erhalten wir nach

mehreren Umformungen

Bn = (=) (16 T = T+ T )
+ 2 O BEM 1 ) 0, = T+ 70
nn
n4(1—en)Séi;nAn)(¥+Kn){J<r) T (221)
Die Integrale J*  , J®, und ngg, bzw. J& ., J7, und J), ergeben sich

wieder aus J{"%p,, JU%, und J,, indem man darin statt ?, , die 7, bzw. 7, ,
setzt. Aullerdem bedeutet

JU =—1sing|p,cospdp+icose|p,sinpdge (24a)
J o =13singfdo[p,sinpdep+icospfdefp,cospde. (24D)

Setzt man (21a) und (21b) in (17a,b) ein, so ergeben sich die Schnitt-
krifte N, und M, zu

3 — 3
(1 =€) K"Nn_ 2 K (O sing+Czcosp)+C+Ci+ 9/ +7, (25a)
E,.J, 1+
(ln2(1"—€n)2 _ 2 ’ "
TJ_—M”_ T+ r (Cysing + C5cosp)— O — — +1,". (25Db)

n

Aus (16¢) in Verbindung mit (25b) folgt

a, (l_en) K _ n . ” ’
B Q, = 1 +'<n( Cycos @+ Cgsing) — " — 1,
a,'(l1—e, )Pk

EJ

Ny, M, und @, sind also von a,-#9,, 4;, und 4, , unabhingig. Ist die
Spante starr, also E, =o0, so geht, da alle Glieder mlt E, im Nenner ver-
schwinden, (25¢) in —C,sing+ C;sing=0 iiber. Da dies fiir jedes ¢ gelten
mub, wird auch C,=0 und C;=0, woraus nach (25b) C;=0 und aus (25a)
endlich ¢'=0 folgt. Die Liosungen (21a,b) reduzieren sich daher fiir die voll-
kommen starre Spante auf 7, und r,,. Die 4 , und 4, , sind also die Verschie-
bungskomponenten des Koordmatenursprungs der Spantenebene ¢, ist deren

et (L+N) 75,1 (250)
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Drehwinkel und %, bzw. r, stellen die von N,, M, und @, stammenden elasti-
schen Verschiebungen dar.

Da das &, an der starren Spante keinen Beitrag liefert, ist in (21b) C
standig Null.

Durch «,, wird der EinfluB der Achsdehnungen erfaf3t. Vernachlissigt man
diesen, so wird wegen F, =co auch «, =0, wodurch sich die Rechnung bedeu-
tend vereinfacht.

b) Der geschlossene Ring

Die bisherigen Betrachtungen gelten fiir segmentartige oder geschlossene
Spanten, ganz gleichgiiltig wie diese gelagert sind.

Weisen die Belastungsfunktionen 7, 7, , und p, Unstetigkeitsstellen auf,
so legen wir durch jede von diesen einen Radiusvektor und zerlegen auf diese
Weise die Spante in u Sektionen. Fiir jede von diesen besteht ein Losungs-
paar (21a,b). An der Beriihrungsstelle v—1,v zweier Sektionen v—1 und »
mulB3 die Biegelinie punkt- und tangentenweise stetig verlaufen (Fig. 6). Es
folgt also

tn,v—l = tn,v; Tn,v—l = rn,v; (—tn,v—1+r;z,v——1) = (_tn,v+7';z,v)

oder r, , =7, ,. (26a,b,c,c)

Stellen wir fiir die beiden der Sektionsgrenze
v—1,v unendlich benachbarten Punkte v—1, v;r
und v—1,v;! nach (21b) die Werte der r,, bzw. r,’
auf und ziehen sie voneinander ab, so fallen die
fir alle Sektionen gleich grofen #&,,4, , und 4, ,
heraus und wir erhalten zwei lineare Gleichungen
mit den Unbekannten (Cy, ;,—C, ) und (C; ,_;—
-y ,). Die Auflésung ergibt

1 ’ ’ K »
02, v=1" 02, v N { [7)1', v—1 " M, v] ®,_1 (1 I Kn COSQy,_ 1, —Pyq,," SINP, 4 v)
v—1,v n

2 ..
+ [7]7' v—1 " "r v] ( sin gvv——l, v + 9DV~1, v’ COs (Pv—l, v) } (27 a’)
’ ’ (Pv——l, v 1 + Ky

1—«,

03, v—1" 03, v N_v:l,—; { I:T]?,‘, v—1 " 7)7,', v] Pty (1 +x, sin Py—1,v + Py_1,,"COS@,_4, v)

2 .
+ [7]1', v—1 " ", v] Pyt (1 + K, CcOos Pyv—1,v " Pv—1,v" sSm Py-1, v) } . (27 b)

o 2(1—k,) o
mit Nv—l,v=Tl—:;;)p2_+qpv—l,v; V=2,3,.../J..
Bei der Bildung unserer Gleichungen begannen wir bei der Sektionsgrenze 1,2
und schritten im Sinne der positiven ¢ bis zur Grenze p — 1, u vor. Die Sektion

p ist dabei immer diejenige, welche vom Fahrstrahl ¢ =0 geschnitten wird.
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Handelt es sich um eine geschlossene Spante, so haben wir bei der letzten
Sektionsgrenze zu beachten, dafl zu deren linksseitigem Randpunkt y,1;7 das
Argument ¢, ; und zum rechtsseitigen Randpunkt u,1;r das Argument
®u,1+27 gehort. Stellen wir fiir die beiden obigen Randpunkte wieder die
r, bzw. r,” auf und subtrahieren sie voneinander, so wird

27T02,;1.COS(P;L,I_27703,,1,Sin90/.¢,1=77r,y.(‘P‘u,1+277)_77r,1((p,u,1)_
l—+t, .
- (Cz,p. —Cy1) (l " sin Pu,1t Py,1€08 (Pp.,l)

+ K,

11—« .
_(03,;1._03,1) (T‘_‘_—Kn cos ‘Pp,l"(Pu,1sm‘Pp,1) (28a)

n

—277'02’”_Si1190”’1—27703’#COSCPM,1=777’~’M((p“’1+277)—-7),’,’1((p“’1)
2 .
- (02,[1. —Cy4) (m— COS @1~ Pp, 1810 @y 4

n

2 .
+(Cs, . —Cs,1) (——1 e SN +@u,1C08 @, 1) . (28D)
n

Bestimmt man daraus C, , —C,; und C; ,—C,, und addiert dazu die u—1
Losungen von (27a, b), so fallen alle Differenzen C,_; —C, weg und es verblei-
ben zwei lineare Gleichungen mit den zur Sektionsgrenze p gehorigen Inte-
grationskonstanten C, , und C; , als Unbekannte. Die Auflosung ergibt

Co,p=(p,1—sin2¢, )4, + (i ;:: +sin2<p“’1) 4, (29a)
03,;1, = - (i I:i: + COSZ(PMJ) A1+(¢p,1+%‘3in2¢p,1)d2 (29b)
mit 4;= ;;vzglﬁ [(mﬁ v—1= Mr,v) (i ;:: cos @ — @ sin sv)
F =) (1 sine b gcosg) | (200)
4y = %vj:lNVl_Lv [~ (s, 1= 1, ) (i _:Z: sing + <POOS<P)
+ (M, p-1— M1, (ﬂTn cos @ — @ sin 90)] i (29d)

Aus €, , und Cj , ergeben sich die iibrigen (', und C; aus den Losungen der
(27a, b) durch einfache Differenzenbildungen.

Fiir die Bestimmung der C; miissen wir von der Bedingung (26a) ausgehen.
Bildet man zunichst fiir die Grenzpunkte nach der (21a) die ¢, und zieht sie
voneinander ab, so wird

01, . 01, y= (02, y—1"" 02, ») Sin Py—1,0— (03, y—1" 03, ») COS Pr—-1,v
1

(Pv—l, v

I:nt,v—l_nt,v]q)v_l,v; V=2, 3, ce M.

Stellen wir noch die den (28) analogen Bedingungen auf und addieren die
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daraus folgende Differenz € ,—C} , zu der vorhergehenden Beziehung, so
wird

. Pu, aata .
C,, p= —SINQ@, 4 O, p—COSQ, 4 Cs, LT o 22 (Cg,,—1—0C5,,)sing, 4,
=
1 ,
+ (03, v—1"" O3,V) COos Py—1 v + — l:nt y—1 77t, V] } (29 )
(Pv—l v Py—1,v

worin die bereits errechneten C, und C; einzusetzen sind.

Bei den Z-Bildungen ist der Zeiger u+1 durch 1 und ¢, ; durch ¢, zu
ersetzen. Auflerdem miissen die 7, ,, n,, , und 7, , mit dem Argument ¢, +2m
gebildet werden.

Sind die Belastungsfunktionen stetig mit der Periode 2, so liegt im
Sinne unserer Betrachtungen nur eine Sektion vor, deren Randpunkte wir in
¢@=0,27 legen wollen. Beriicksichtigt man, da8 die r,, p,, und 7, , im Gleich-
gewicht stehen, so ergibt eine einfache Zwischenrechnung die 6 Beziehungen

2 2m
f ndqo:O; [®, ,sinpde=0; j¢t,nCOS(pd(p=O, (30a, b, c)
0 rn 0 r,n

0 , N

woraus aus (21a, b)

2w
M m1—fd¢f¢tndqo+zfdﬂ@mcowdsv, N = M1 = %g ¢J P, ,sinpdg;
N~ N1 = — 2fd¢f¢,ncos<pdq> (31a,b,c)

folgt. Durch partielle Integration der rechten Seiten der (19a,b) ergibt sich,
daB die Doppelintegrale der (31a,b) ihr Vorzeichen &ndern, wenn man &, ,
durch @, ,, ersetzt. Substituiert man (31a) in (29') und (31b,¢) in (28a,b), so
erhalten wir die Integrationskonstanten zu

2w T
1 1 ]
Cy=— Q;qu’f@t,nd‘?’; Cy= —Equpf@t,nsmqodcp;
0 0
03=—11—77—qu:[@t,ncos<pd<p (32a, b, c)
1 1 .
Ci=5- | 9Punde; Co=1—| ¢P,singdy;
0 0

1 I4 ’ 14
03=4—7;f¢@t,n00599d% (32a’,b’,¢’)
0

wobei sich die zweiten Formen aus den ersten durch partielle Integration
ergeben.
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Wir entwickeln nun die von der Membrane auf die Spante iibertragene
Schubkraft z,-7, und die &ulleren Belastungen p, und 7, , in Fouriersche
Reihen. Es wird

.’EnTn=Xn=Tn’1+Tn,lsinq)—i-Tn,lCOSqJ-i- ;‘an’ksinhp—i- gﬂ_’n,kcoskqa (33a)
Pp=P, o+ P, cosp+P, sing+ ;‘kPn,kcos keo+ ;‘kPn’ksinkqo (33b)

Toon="Tp n,0+Tp,n’lsin¢+Tp’nalcos¢+g‘kTp’n,ksink¢
+§"°Tp,n’kcosk¢, (33¢)

wobei wir als 1. Wellen jeweils die ersten 3 Glieder bezeichnen wollen. Da
%,-T,, P, und 7, , miteinander im Gleichgewicht stehen miissen, erhalten wir
3 Bedingungen, die sich, da alle hierbei auftretenden Integrale bis auf die
3 folgenden 2 O oo
fdep=2nm; [sinpde=[cos’pdep=m
0 0 0

verschwinden, auf

M — P
Tn,ozxn(1+/\n)2Tp,n,0= m; Tn,lz_xn(l'l_An) (Pn,l_]}),n,l)=—7—1__sil—na;
_ S _ P, .
Tn,l =xn(1+An) (‘an,l—l'T’p,n,l)—_—“77_—8?;1—0C (34a,b, 0)

reduzieren. Dabei bedeuten M, , P; ,, P, , die auf das Achsenkreuz ¢,y bezo-
genen Komponenten der auf die Spante einwirkenden Lasten p, und 7, ,,.

Belastet man die Spante nur mit den 1. Wellen, so werden die rechten
Seiten der (19a, b) nach (20a,b) und wegen (34a, b, ¢) identisch Null. Aus den
Integralformen der (21a,b) ergeben sich die Beziehungen v, ,, ;=7, , ;=03). Da
wegen @, , =P, ;=0 nach (32a,b,c) ;, C; und C; Null wird, folgt aus
(25a, b, ¢c), dafl auch die Schnittkriafte N,, M, und @, verschwinden miissen.
Die Verschiebungen ¢, und 7, reduzieren sich also aufZ, und r,, d. h. die Spante
verhilt sich unter der obigen Teilbelastung wie eine vollkommen starre Scheibe.
Dieses Ergebnis hingt eng mit der Tatsache zusammen, daB jedes Glied der
Entwicklungen (33a,b,c) fir k=2 immer eine gerade Anzahl von Wellen-
bergen und -tdlern mit absolut gleich groBen Amplituden aufweist, so daB
jede dieser Wellen fiir sich im Gleichgewicht steht. Hat man also die 1. Wellen
der Belastungsfunktionen erledigt, so braucht man sich um das Gleichgewicht
- der einzelnen Spanten nicht mehr zu kiimmern. Man kann dann aber auch
andererseits aus dem letzteren keinerlei Randbedingungen herleiten.

Belastet man aber die Spante mit der k. Welle, bestehend aus

—T, xsinke; I_Sn,kcoskgv; T, o xSink@; —An,kcoskcp;
P, psinkg; T nxcosko, (35)

3) Der zuséatzliche Index 1 soll die Zugehorigkeit zu den 1. Wellen andeuten.
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so erhalten wir die rechte Seite der (19a), indem man diese Werte in die (20a, b)
einsetzt zu

¢t,n,k=(An,k' Tn,k+Bn,k'j);z,k'l"cn,k'Tp’n,k) Siﬂk(p
+(An,k'Tn,k_Bn,k’Pn,k'i'On,k'@’n:k)coskq) (36)

a,(l—¢,)?

mit A, =" B sina[l—e, k®+x, (1 —¢,) k] (37a)
a,t(1—€,)3 (142, |
B, =" ﬁ;nzfn( V141, 2] (37b)
401 ¢ )2 '
O = e A (10 )40 e B, (1) L (370)

Damit ergibt sich die zur k. Welle gehorige tangentiale Verschiebung ¢, ; in
der Form

d)t,n, k

b= — B — 1) (38)

D. Die durch Spanten versteifte Kragmembrane

a) Allgemeines

Steht die unversteifte Kragmembrane unter der Einwirkung der unbekann-
ten Schubfliisse 7,,, der duleren Lasten p, p, und p, sowie der vorgegebenen
Fundamentbewegungen ¢,, und 7,,, so folgt durch Uberlagerung von (11a,b)
und (7') die gesamte tangentielle Verschiebung lings des Parallelkreises z,,,
welche der durch (21a) dargestellten Verschiebung ¢, der Spante » gleich sein
muf}. Es wird so

v=n v=m—1
21[(“n+xv18n) X:'*'xv e Xv] + 2+[1(“v+xn Bn) Xr’z/'l'xn : 'vav] =—tP, nt tn =‘@n’ (39)
y— y=n

n=1,2,3,...m—1.

Eine analoge Betrachtung fiir die achsialen Verschiebungen fiihrt zu

A p="n v=m—l
smoc[oan'X,’,+ Z‘a,,X,',] =—Spnpt+s,, n=12,...m—-1. (39"
v=1 v=n+1

b) Belastung durch die 1. Wellen

Da man eine periodische Funktion nur auf eine einzige Art in eine Fourier-
sche Reihe entwickeln kann, ersieht man, dafl die 1. Welle von ¢, durch das
t, der (21a) und jede k. Welle durch (38) bereits dargestellt ist. Vereinigen
wir die 1. Wellen von #p , und ¢,, so erhalten wir zunichst
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@nz _(Dn,o_anﬁn)—(-l)n,l +A§,n) Sin(P_(Bn,l_An,n) OOSQD_RP,n-{-Rt,n
= _@O_RP'n"l'Rtn: _@??,—Qn: (403’)
k=00
wobel Rp ,= Z'Dn kSlIlk‘(p-l- Z,'anCOSk‘(p (40Db)
n=
k= 1 .
Rt,n= < kz( )2 [( nk'Tn,k+Bn,k'Pn,k+On,k'Tp;n,k)sulkq)

+(An,k'Tn,k_Bn,k'Pn,k+On,k'Tp;n,k) OOSk(P] (400)

bedeutet und die Fourierschen Koeffizienten die Werte

2 2
1 1 . = 1
Dn,OZEJtl),nqu; Dn,kZ;ftP,n81nk¢d¢; Dn,kz';ftl’,n(}os}cq)d(p;
0 0 0
k=1,2,...00 (40d)
2m
1 .
P, =—fpnsmlc<pdqo, Pn % —-—fpncoskcpdq), Tp;n’kz—f—rp;n Sinkede;
77- E]

0
277

— 1
Tp;n,k:;fTIJ;n,kCOSk¢d¢ k=2,3,...OO (406)
0

annehmen. 7", , sind als Beiwerte der X, noch unbekannt. Da wir in (34a, b, ¢)
die 1. Welle der X, bereits ohne Hilfe der (39) gefunden haben, kénnen wir
an Stelle der ersteren aus den letzteren noch weitere GroBen bestimmen. Da
die (39) linear sind, werden sie auch von den 1. Wellen unserer Fourierschen
Entwicklungen allein befriedigt. Beriicksichtigt man dabei, daB hierbei
—Rp ,+ R, ,= —£,=0 wird und ersetzen wir die Funktionen «,, 8, und y,
durch die Werte der (11a, b), so folgen mit (34a, b, ¢) die zur Membranenachse
normalen Verschiebungen 4, ,, 4, , und #, der Spantenmittelpunkte zu

Tn Ly
v=n dax v=m-—1 dx
TP [ @)y ¥ 2 Pow [-n) 0-e) 5
Lm Tm
Zn
4xn 1+ d v=m—1 dx
Tom Tm (41&)
14+p [ x Ve y=m-— o ] 0 17,0
: = M, + 22X M —|+—==3+—2=38,. 4lc
Esinax J(xﬁxe y=1 v=n+1 Y X G B Ay, 2 ( )

Die nicht angeschriebene (41b) folgt aus (41a), indem man ¢ mit » und D, ,
mit D, ; vertauscht. J, =79, 23sin3« bedeutet das Trigheitsmoment und
F,= 27 29,sin« die Fliche eines achsnormalen Membranenquerschnittes. F,
soll jedoch den Flicheninhalt eines Parallelkreises darstellen.
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Man ersieht, dall 4 g’n, Ag,n, #° denjenigen Anteil der Gesamtverschiebun-

gen darstellen, der nur von den Spantenbelastungen herriihrt, wihrend die

= 1 «
D,,,D,,, —22% nur von der Mantelbelastung abhingen.
£ £ a12/
Zusammenfassend konnen wir sagen:

1. Ist nur der Mantel belastet und zwar so, daf fiir das unversteifte Krag-
werk lings der zu den Spanten n gehorigen Parallelkreise x, die Tangential-
verschiebungen #p , nur aus der 1. Welle

tg’,n=Dn,0+Dn,ISin(p+D_n,lcosq3 (42)
der Entwicklung (40a) bestehen, so sind im versteiften Tragwerk wegen

P¢,=P, ,=M,=0 nach (34a,b,c) alle Berithrungsfliisse Null. Die achs-
normalen Bewegungen betragen hierbei

— D
Af,n=Dn,1; A

=Dn,1; &n=

n.0

nn
n

2. Ist hingegen der Mantel lastfrei und greifen an den Spanten die Last-
wirkungen P, , P, , und M, an, so ergeben sich nach (34a,b,c) die Beriih-

rungsfliisse zu M P p
Ty= o —-—f—’ﬂsinq>+ hn

= coS 43
" 27a? mwa, Ta, LA (43)

wihrend die Verschiebungen durch die Anteile 43 ,, 4, ,, &, gegeben sind.

In beiden Fillen rithren die achsnormalen Verschiebungen nur von den
1. Wellen her. Es ist auch leicht zu erkennen, dafl fiir diese die o,, o, und =
einen ebenen Verlauf annehmen.

Die beiden ersten X der (41a,b) sind identisch mit den Biegeformeln eines
durch transversale Einzellasten belegten, vollwandigen Kragtrigers mit ver-
anderlichem J,. Die beiden iibrigen X stellen den Einflu der Schubkrifte
unter Beriicksichtigung der Konizitat dar. In (41c¢) erkennt man die fiir den

Kegel abgewandelte Bredtsche Torsionsformel.

c¢) Restbelastungen, genaue Randbedingungen und Konstantenbestimmung

Um die Gesamtwirkung der Lasten zu erfassen, miissen wir (39) mit
—82,=—Rp ,+ R, , als Absolutglieder integrieren. Wendet man auf (39) den
Differentialoperator D an, so folgen mit (19a) die simultanen, linearen Diffe-
rentialgleichungen 8. Ordnung
v=n v=m-—1
P [(“n +,- Bn) ‘DIV(XV) +TZ, VY D" (Xv)] + 2 [(av+xn'/9v) DIV(XV)
v=1

v=n-+1
+xn-y,,D"(X,,)—q5t’n= —D"(Rp ,); n=1,2,...m—1 (44)

mit 8 (m — 1) Integrationskonstanten, wobei in @, ,, die X, X,” und XV noch
latent enthalten sind. '

Aus der Ansicht IT der Fig. 2 erkennt man, daBl bei unstetigem %——'2‘ der
Winkel ¢, endlich groB und somit 7 =00 wird. Da ein Zerreilen der Membrane
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nicht eintreten darf, miissen also s, und s, lings eines jeden Spantenkreises
punktweise stetig verlaufen. Erinnern wir uns an (26a,b,c¢’) und bedenkt
man, dafl aus dem Gleichgewicht eines Elementarelementes einer Spante der
punktweise stetige Verlauf auch der Schnittkrifte N,, M, und @, folgt, so
sind wir im Besitze der notwendigen und hinreichenden 8 Randbedingungen?).

Wir legen nun durch jede Stelle, an welcher Wenigstens eine von den Funk-

" 1A% IV ’ V4 :
tionen 81—’ n? SP n? tP n? tP n? tP no tP no tP ns Tp,no Tp ns Tp,n» Pn s Pn unStetlg

wird, eine Kegelerzeugende und teilen auf diese Weise das Tragwerk in p
Sektionen. Fir jede von diesen besteht ein Gleichungssatz (44), so dall nun
8 u (m —1) Integrationskonstante zu bestimmen sind.

Esseidf, ; ,=f,1(®,_1)—f, (p,) der endliche Wert, um den die Funktion f
beim Ubergang von der Sektion v—1 zur Sektion » abnimmt, wenn deren
Numerierung im Sinne des zunehmenden Argumentes ¢ erfolgt. Dabei sei
®,_1,, dessen Wert an der Ubergangsstelle. Damit lauten die ersten fiinf der
vorhin beschriebenen Bedingungen 5)

Asp ,=0; Asp ,=0; At,=0; Ar,=0; Ar'=0, (45a,b,c)(46a,b)

wobei (45¢) und (46a,b) identisch mit (26a,b,c¢’) sind. Aus (17a) folgt mit
(46a) aus der Stetigkeit der N, .
At =0. (45d)
Ebenso erhalten wir aus (17b) mit (45d) aus der Stetigkeit der M,
Ar,” = 0. (46c)
Setzt man (17a) in (16b), so folgt mit (46b) aus der Stetigkeit der @,

a,3(1—¢,)3k,sina a,t(1—¢,)2(1+A,)
7, J, 4X,— B, J, Ay 5

Y| by = (45€)

Es ist nun zweckméBig, in diesen Bedingungen die 7, duroh t, zZu ersetzen.
So folgt aus (18a) mit (46a, c) und (45d)
at(l1—¢,)2(1+2,)

a,2(1—¢,)k,sina

Aty = - B, J, ALt E,J, A®n=720)- o)
Ferner ergibt sich mit Hilfe der (46b) und (45e) aus d%) (18a) und (18b)
3(1—e )2qi .
At£V= Pn (IEGZ) Slna{[en+2kn(1—en)]AXn+Kn(1—en)A X,
a,t(1—¢,)2(1+A,
( En)‘];f ){[(en +)‘n) -2 Kp (1 —en)]A Tp,n (45g)

+Kn(1 '—en)A (Tj,r;,n—pq’@)}

%) Die ersten fiinf dieser Bedingungen gelten auch dann, wenn konzentrierte Kraft-
wirkungen auftreten. Sind solche vorhanden, so machen bei den letzten drei Bedingungen
die N,,, M, , @, endliche Spriinge, die den GréBen dieser konzentrierten Kraftwirkungen
gleich sind.

%) Wir lassen vorldufig den Index v—1, » weg.



162 : Ernst Gruber

Aus (19a) erhalten wir endlich mit (45e,g) die letzte Randbedingung

AT = Gl ST (1) (143k,)]4 X,

o ~[en =21, (1— )14 X}, — 10, (1 —€,) 4 X17)
a4 (1=, )2 (1+2,)
E, J
—[Quten) =2k, (1—€,)] 470 —x, (L—e,) A70T (45h)

— k(1 —€,) 4 (2P, —py)}-

In der Folge werden wir nur die (45a,b,c,d, e, f, g, h) benutzen. Sie gelten
in dieser Form nur, wenn konzentrierte Lastwirkungen nicht vorhanden sind.
Sind jedoch solche zu beriicksichtigen, so haben wir bei den Differenzen-
bildungen an Stelle der N,, M, und @, deren sprunghafte Anderungen ein-
zusetzen, welche den konzentrierten Kraftwirkungen selbst gleich sind.

Wir bezeichnen, entsprechend den (40), mit R, , und R, , die Reste,
welche tibrig bleiben, wenn man von p,, und 7, , die dazugehérigen 1. Wellen
abzieht. Da die letzteren als stetige Funktionen bei der Bildung der Differen-
zen 4, ; , wegfallen, gelten dann die (45a,b,c,d,e,f,g, h) auch fir R, ,, Rp ,,
R, ,und R_ .

Die fiir die Aufstellung der obigen Randbedingungen nétigen Werte der
4ds, und 4s,’, sowie der 4¢,, At,’, 4t,", 4t,”, AtV und 4¢7" erhalten wir,
durch Differenzenbildung der (39’) und deren 1. Ableitung, sowie der (39) und
deren 1., 2., 3., 4. und 6. Ableitung, wenn man vorher die ¢,, tp ,, p, und 7, ,
durch die Reste R,,, Rp,, R, , und R, , ersetzt. Stellen wir nun fiir die
Schnittpunkte der Sektionsgrenze v —1,v mit den Spantenkreisen n zuerst die
(45a) und dann die (45b) usw. bis (45h) auf, so erhalten wir 8 Gruppen linearer
Gleichungen mit den Unbekannten 4 X', 4X,", 4X,, 4X,”, 4 XV, 4 XY,
AXVE AXVH (n=1,2,3,...m—1), deren Absolutglieder lineare Funktionen
der 4sp,, 4sp ,, ARp,, ARy, ARy ., AR}, ., ARY AR} , AR, ,,
AR AR\, AR, ., AR, , sind. Wir wollen diese Beziehungen ,,Zwischen-

+

{[(1 +)‘n)_(1 _en) (2+ 3Kn)]A Tp,n

TP, p,1° ;N
bedingungen‘‘ nennen ¢).

Fangen wir bei der Bildung der obigen Bedingungen mit der Spante 1 an,
so 1af3t sich die zu (45a) gehorige Gruppe leicht 16sen. Man zieht zunéchst
immer die folgende Gleichung von der vorhergehenden ab und dividiert dieses
Ergebnis jeweils durch «, ;—«,. Dadurch verschwinden die oberhalb der
Hauptdiagonale liegenden Beiwerte, wihrend alle andern einander gleich
werden. Subtrahiert man in diesem System wieder jeweils zwei aufeinander-
folgende Gleichungen, so wird

_ASP,I_ASP,2 (39”@)

4X, =

0 — Xy

¢) Infolge der Zentralsymmetrie der Tragwerksanlage sind die Funktionen «, 8 und y
der (39) fiir alle Sektionen gleich.
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AX = + A8P,p~1—AP,p_ASP,p'—ASP,p+1 (39”P)
AX =+ 4 Sp,m—2 —4 Spm—1 4 Sp, m-—l, (39”1!1—1)
T R | %m—1

wobei fiir die letzte dieser Losungen die letzte Zeile der (39") zur Elimination
herangezogen wurde. Die Ergebnisse der zu (45b) gehorigen Gruppe folgen
aus (39”a,...m—1) formal durch einmalige Differentiation. Die Matrixen
dieser beiden Gleichungsgruppen sind einander gleich, wéhrend deren Absolut-
glieder im allgemeinen von einander verschieden sein werden, da 4 s} , nicht
immer der 1. Ableitung von 4 sz , gleich sein wird. Setzen wir nun in die zu
(45¢) gehorigen Gleichungen die soeben gefundenen 4 X,”, so ergeben sich
m — 1 Beziehungen, die sich nach den X, ebenso leicht 16sen lassen, wie die
aus (45a) entstandenen. Bilden wir weiter die zu (45d) gehorige Gruppe und
setzen in diese die bereits errechneten X,’, so folgen m —1 Gleichungen mit
den Unbekannten X,”. Verfahren wir mit den iibrigen, zu den Randbedingun-
gen (45e,f,g,h) gehorigen Gleichungsgruppen genau so, so ergeben sich
schlieBlich auch die 4 XY', 4 XY, 4 XY und 4 X" Diesen Vorgang muf}
man fiir jede Sektionsgrenze durchfiihren. Wir zerspalten auf diese Weise die
8 u (m —1) Bedingungen in 8 u Gruppen mit je m — 1 Unbekannten.
Das allgemeine Integral der (44) hat bekanntlich die Form

p=8(m~1) n=1,2,3,...m—1
Xv,nzgv,n'*" 2 CP,V'FP ( )

47
Pt} v=1,2,3,...4), (#7)

wobei wegen der Zentralsymmetrie der Tragwerksanlage die KElementar-
16sungen I', fiir alle Sektionen gleich sind. Daraus erhélt man fiir die Erzeu-
gende v—1,v

p=8(m—1)
A ‘XI(JB—)'I; v,n - A ffzﬁ—) Lv,n + 21 (CP: v—1" OP,V) : Ff(ﬁ)((pv—l,v) ’ (47’)
p=

wobei fiir den Grad B der Ableitungen nacheinander 0,1,2,3,4,5,6 und 8 zu
setzen ist. Fir die letzte Sektionsgrenze n 1 folgt analog (28a,b)

X1+ 2m) — X, () = (€8 (@ +2m) B ()]
p=8(m—1) ® @ )
+ p§1 [OP,P-FP (9’1"‘277)—0},’11’,, (p)].  (477)

Setzen wir nun an Stelle der linken Seiten dieser Beziehungen die aus den
Zwischenbedingungen gefundenen Werte der 4 X‘P, so erhalten wir 8 (m — 1)
lineare Gleichungen mit den Unbekannten [C,, ,—C, ,]. Bilden wir auch fir
die Sektionsgrenzen 1,2;2,3;...u—1,u dieselben Gleichungssitze, 16sen alle
nach den [C, , ;—C, J(v=1,2,...u) auf und addieren diese Ergebnisse, so
ergeben sich die [C, ,~C, ,](p=1,2,...m—1). Fithrt man diese Betrachtung
schlieBllich auch fiir (47”) durch und ersetzt die C,, mit Hilfe der soeben
gewonnenen Differenzen [C, ; —C, ], so folgen 8 (m —1) Gleichungen mit den

Unbekannten C, , (p=1,2,...m—1). Bestimmt man daraus diese letzteren, so
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ergeben sich aus [C, , ,—0C,,] die 0, ; und daraus mit Hilfe der [C, , ,~C, ]
die iibrigen Integrationskonstanten?). Bei diesem Rechnungsgang sind immer
8 (m — 1) lineare Gleichungen mit ebensovielen Unbekannten aufzulosen.

Sind die Belastungen alle stetig, so werden alle 4 R Null, so daf3 alle Absolut-
glieder der Zwischenbedingungen verschwinden, weshalb auch alle 4 X®
(B=0,1,2,3,4,5,6,8) den Wert Null annehmen. Die Randbedingungen fiir
stetige Belastungen lauten also

XPp+2m)=XP(g)); (m=1,2,...m—1); (8=0,1,2,3,4,5,6,8). (48)

was fiir jedes ¢, gelten mufl. ZweckmiBig setzt man ¢, =0.

Sind die Spanten vollkommen starr, so werden die Bedingungen (45c-h)
trivial und es liefern nur die (45a,b) effektive Rechnungsansitze, was aber
auch geniigt, da in diesem Falle die (39) nur vom 2. Grade sind. Fiir stetige
Belastungen nehmen daher in (48) die  nur die Werte 0 und 2 an.

Nach diesen Methoden kann man fiir beliebige Belastungen das exakte
Integral bestimmen. Ist hierbei die Anzahl der Spanten und Sektionen gering,
so kann man die damit verbundene Rechenarbeit noch bewiltigen. Im gegen-
teiligen Falle ist es zweckmiBig, die (39) nach dem néchsten Abschnitt umzu-
formen.

Man ersieht aus diesen Betrachtungen, dafl eine Membrane durch den
Einbau von biegesteifen Spanten befihigt wird, auch unstetige Lasten durch
reine Membranenwirkung — also ohne Heranziehung der o6rtlichen Schalen-
wirkung — aufnehmen zu konnen. Die Unstetigkeiten, welche in der unver-
steiften Haut auftreten wiirden, 16sen bei den Schubfliissen 7, sprunghafte
Anderungen aus, die endlich in den biegesteifen Versteifungsringen so aus-
geglichen werden, dal Trennungen, Kanten und Ecken bei den Verformungs-
flichen nicht mehr auftreten. Durch den Einbau von Ringsteifen wird also das
Tragverhalten so grundsétzlich verbessert, da bei unstetigen Belastungen zur
Herstellung der Tragfihigkeit eine értliche Heranziehung der praktisch immer
vorhandenen Schalenwirkung nicht mehr unbedingt notwendig ist, letztere
nunmehr als zusdtzliche Sicherheit gewertet werden kann. Hiervon sind aller-
dings ortlich unendlich konzentrierte Belastungen, sofern sie unmittelbar auf
die Membrane und nicht direkt auf eine Spante einwirken, ausgeschlossen.

d) Vereinfachung der Grundgleichungen

Zu diesem Zwecke fithren wir durch die Trans:forma,tion

Y Y Y Y YII YII Y” n
X =— v—1 + Y4 v _Tv+l ; X" =_ v—1 + v + LA v+1
Y A v,v—1 A v,v—1 A v+1,v A v+1,v ” Av, v—1 A v,v—1 A v+l,v A v+1,v
v=1,2,...m—1 (49a,b)

) Man kann die Auflésung der Zwischenbedingungen auch ersparen, wenn man die
(47’) unmittelbar in die Zwischenbedingungen einsetzt. Der iibrige Vorgang bleibt
derselbe.
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mit den beiden, zunichst vorhandenen Randbedingungen

die neue Unbekannte Y, ein, d. h. wir setzen die (49a, b) in die (39) ein. Dabei
soll der Einsatz der 1. Wellen als erledigt gelten, so dafl nach (40) die Absolut-

=

2R

Y
%

2

©

Fig. 7

glieder nur mehr —£2, betragen. Beachtet man dabei
die (14), so erhalten wir fiir die m—1 Unbekannten
Y, auch m—1 Gleichungen, in welchen die Beiwerte,
die unterhalb der Hauptdiagonale der Matrix liegen,
bis auf die der letzteren unmittelbar anliegenden
verschwinden (Fig. 7). Die rechten Seiten bleiben bei
dieser Transformation noch unverindert. Bezeichnen
wir diese Zwischenergebnisse voriibergehend mit @,
und bilden die linearen Ausdriicke

(Gn—l—Gn):An,n-——l_(Gn_Gn+1):An+1,n’ (51)

so erhalten wir bei Beachtung der Relation (15) ein 3-gliederiges System, wel-
ches mit den Bezeichnungen der (13a, b, c) die Form

n " 14 4
Y” _ ﬁn—l, n—2 19"n—l,n—l ﬁn—l.n—l _ 0%——1,77, -4
n—1 A A A A . n,n—1
n—1,n—2 n—1,n—-2 n,n—1 n,n—1
! ! ’ I4
Y z9‘%—1, n—2 19'n—l, n—1 19‘n—1,n—1 19'n—1,n . A
+ n—1 _A +A + A _A . n,n—1
n—1,n—2 n—1,n—2 n,n—1 n,n—1
l/4 14 ”n "
+ Y” [( _ ﬁn—l.n—-l ﬂn—l,n ﬁfn—l,n - l‘}n—l,n—l
n
A n,n—1 A n,n—1 A n+l,n A n+l,n
n 14 " 14
+ 19\1@ n—1 __ ﬁ‘n,n _ ﬁnn + 19n,n+1) - A
. n,n—1
A n,n—1 An n—1 A n+1,n A n+l,n
” n 14 "
+( <+ ﬂn,n—l . 19'n,n _ 19'n,n _ 19'n,n—i-l |
A A A A . n+l,n
n, n— n,n—1 n+l,n n+1l,n
1 1 1
7 ’ 14 ’
+ Y [( _ 19'n—1,n-1 + ﬁn—l,n l9'n—1,n _ “n-1,n+1
n
An, n—1 An, n—1 An+1,n An+1,n
! ! ! ’
+ ﬁn, n—1 ﬂn,n _ ﬁn,n + ﬁn,n—’rl 3 'A
A4 Yi| yi| 4 " Tma—l
n,n—1 n,n—1 n+l,n n+1l,n
’ 14 ’ !
19tn,’n—l 0n,n 19n,'n l9'n,n+1 . A
\*a,,.74,., 4,,.%2 P Anitn
n,n—1 n,n—1 n+l,n n+l,n -
n " n” 14
+ Y” 1 ( _ 19'71—1,71 ﬁ'n,n ﬁn,n _ 19n+1,n) - A
n+ . n+l,n
A’n, n—1 An,n—l An+1,n An-i—l,n
14 ’ ’ ’
+ Y i ( _ 19‘n—l.n ﬁn,n + ﬂ'nn _ l9'n+1, n) . A 1
n . . n+l,n
An, n—1 An,n—«l An+l,n An-l—l,n
— 'Qn—l ‘Qn 'Qn _ ‘Qn+1 (52)
A n,n—1 A n,n—1 A n+l,n A n+1l,n
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annimmt. Setzt man n =2 und beachtet die Randbedingung (50), so erhalten
wir die obere Randgleichung, die nur die Unbekannten Y, und Y, enthilt. Da
jedoch hierbei 2, +0 wird, lautet hiefiir die rechte Seite noch

2,9 2 9

— + .
A 2,1 A 2,1 A 3,2 A 3,2
Die der Einspannstelle anliegenden Randgleichungen erhélt man hingegen aus
(Gm—z - Gm—l): Am-—l,m—2 - Gm——I: Am, m—1 (51 a’)
und G,_,:4 (51b)

m,m—1>

was sich auch aus (51) ergibt, indem man n=m —1, n» =m setzt und bedenkt,
daB G, und G, ., gar nicht existiert. Es wird also mit den Bezeichnungen der
(13a,b,c)

19”

m—2,m—2
A4

'9‘ ”

19‘”
m—2,m—2 __ “m-2,m-1} . A
A A = m—1,m—2
m—1,m—2 m—1,m—2

" 79;;7,—2 m—3
Yol -7 +
m—2,m—3 m—2,m—3

19/

e Ym—z (_ Am——z ,m—3 o 1% 2, m—2 + z9'1,71—2 m—2 l%n-—2 m—1) . Am—l,m—z

4 4 4

m—2,m—3 m—2,m—3 m—1,m—2 m—1,m—2

" 19.” 19‘” 19‘” 14
+ Y”—l [(_ m—2,m—2+ m—-2,m—1+ m—2,m—1 m—1,m—2  “Ym—-1,m—-1 __ m 1, m—) A o
" Am—l,m—z Am—l,m—z Am,m—l Am—l,m—2 Am 1.m—2 mm 1 molmo2
+ (_i_A;In—l.m—l j;,n 1m—-1 __ 19;;1 1, m—l) Am,m—l]
) m—1,m—2 m—1,m—2 1
L Y 1 [( _ 19';72—2,"1—2 4 19';71—2.m—1 b l%n—%m—l + ﬁ;n 1,m—2 0;n 1,m—1__ m—l m— 1) A 1 5
" Am—l,m—z Am—l.m—z Am,m—l Am—-l,m—z Am 1,m—2 m m—1 mmhm
+ ( + '-%n—l,mvz _ Ym— 1 m—1 __ m—1 m— 1) Am m+1J
” ” ” Am—l,m—z Am —1,m—2 mm 1 "
+ Y” (__ 19'm—2.m—1 ﬁ'm—-l m—1 + 19'm 1, m—l) A 1
" Am—l,m 2 Am——l,m 2 Am m—1 e
Y '9';11—-2 m— 1 19‘1"n 1, m—l 19‘m—l m—1 - A - Qm—2 ‘Qm—l ‘Qm—l
+ m A A A . m,m—1 " A +A +A (53)
m—1,m—2 m—1,m—2 m,m—1 m—1,m—2 m—1,m—2 m,m—1
Y” ( ﬁfn——l m—2 19';';1—-1 m—1 4 19’;In—1 m—l) A 3
— . m_
A m—1, m—2 A m—1,m—1 A m,m—1 "
+Y 1( 19';n—lmz l%n 1m—1+0;n 1, m— 1) A 1
m— ¢ —
Am—-l, m—2 Am—l, m—2 Am m—1 .
" 19‘” _ _ 19‘/ . Q
+ Ym('_ Zln Lo 1): Am,m'-1+ Ym( ZL 1.1 ) : Am,m—-lz _A mel (54)
m,m—1 m,m—1 m, m—1

Man bekommt diese beiden Randgleichungen auch aus der (52), indem man
darin zundchst n=m —1 bzw. n=m setzt. Bedenkt man, daB das Tragwerk
auBlerhalb der Einspannstelle nicht mehr existiert, so miissen wir noch

Y1 =0; £, =80,41=0; Ay 3 i1 =0 (55)
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setzen. Aulerdem verschwinden wegen fm= 0 fiir die Stelle m die Beiwerte der
(12a,b). d.h., es gilt e

‘xm=0; Bsz; ym:O (56a); “m+1=0; Bm+1=0; '}’m+1=0' (56b)

Daraus folgt wieder, daBl auch die 8" und ¢ verschwinden, in denen der
Zeiger m oder m + 1 vorkommt. (55), (56a,b) und (50) sind somit die Rand-
bedingungen des eingespannten, versteiften Systems. '

Die Beiwerte der Bestimmungsgleichungen (52) und deren Randgleichungen
lassen sich noch bedeutend vereinfachen. Aus den (11a, b) ergibt sich zunéchst

.,x

P xp
" 1 x z,.\ dx , 2(1+p) dr

Esin2a x T
Tm Tm

Damit erhalten wir fiir den Koeffizienten von Y, _, der (52)

N Tn—1
o= [ [ (=) (-5 - T (-
o A
e | L E e | L [ (B P
+A,:n_1f (1 - %) ( - "%ti) f;w] . Bsintad, , ;. (58)

Dabei haben wir fiir das letzte Glied &,_, , das Integrationsintervall [z,,,,]
in [«,,%, ;] und [z, ,,%,] zerlegt. Da nun die ersten 4 Integrale gleiche
Grenzen haben, kann man sie zu einem vereinigen, dessen Integrant

(l_xn_l)[ 1 1_xn_2_l+xn_1)+ 1 (—1+w"_1+1—ﬁ)] dx
i A, 102 x x 4, 0 x x )| xS,

verschwindet, so daf3 nur

Tn

. 1 X, _1 x,\ dv
A”_E’sinza-éP f(l_ x )( _?) x 9 (59)

n,n—1 &
Tn—1

iibrig bleibt.
Eine analoge Betrachtung ergibt den Beiwert von Y, _, zu

Tn
2(14+p)msinda fdx
B, =— Xy "%, | —- (60)
n—1 EA% s n—1 *n Jx
? Tn—1

Fiir den Beiwert von Y,” ermitteln wir zunéichst den Wert seiner 1. Zeile.
Wir erhalten nach Multiplikation mit E sin?«-4

n,n—1

13  Abhandlung XIIT
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- - T - 2)%
[(-559 0-%) 5]
a0 =) - T (- 2)
J-m) 0 T 0 -7

&,

(1) (- 7) ). o)

Tn

Dabei haben wir wieder die Integrationsintervalle [x,,,z,] und [z,,,2, ] in
[ Zp1l, [Zp_1,2,] und in [z, ,2, {1, [Zn_1,%,), [®,,%,.41] zerlegt. Fallt man
wieder die Integrale gleicher Grenzen zusammen, so ergeben die ersten 4 Sum-
manden von (61) wie bei (58) wieder Null und der Rest zieht sich auf

1 1 2de 1 T“ | Tuma) (4 Fasr) 4
Esin?« Ai - r | x8, 4y p1dpi1n x x | xd,
Tn-1 Tn

zusammen, wenn man bedenkt, daf3

11 z, _ 1 1 %n1
An,n—l € * xAn,n—l B A’n,n—l €
ist. Beachtet man bei Auswertung der 2. und 3. Zeile, dafl die Indices der-

selben aus denjenigen des Beiwertes von Y”_, durch Vermehrung um 1 ent-
stehen, so erhalten wir

Tn+1

+
1 1 1 %) (1 _ %nea dx
Esin?e (4, , 14,115 x x ) xd,

1 Tn+1 _Eﬂ/ n+1 dw
*an) (2 () o

Tn

Fassen wir in den (62) und (63) wieder die Integrale gleicher Grenzen zusam-
men, so wird der Beiwert von Y "

1 T 2 1 2
— _ X _.’En+1 X
A=~ Feim®a [ f(l z ) v, Af(l z )xﬂ]

mw-l i Zn
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wenn man beachtet, daBl nun auch

1 1 x 1 x
PR NS Tt § n ]}z _ (1_ n+1)
[ An+1,n x xAnJrl,n An+1,n x
ist.

Eine analoge Betrachtung liefert den Beiwert von Y, zu

Tn In+1
2(1+p) [ 25,4 dz 1 dx
= . 64
Ba=""% [ o) @9, A, ) s, (64)
Ln—1 Tn

Die iibrigen Koeffizienten folgen aus den bisherigen durch Indexvermeh-
rungen. Die Mittelgleichungen von (39) nehmen nach einigen weiteren Umfor-
mungen schlieBlich die Form an

Tn

" _ dx 2(1+ A
e [ T RN L T L f
n,n—1 x n,n—1
Tn—1 -1
ZTn d Tn+1 d
_yr| %= _ 24T On i
M [ ;n—lf(x xn—l) Jx+Agz+1,nf(x xn+1) Jz]
Tn-1 Tn
Tn Tn+1
+ M, 2(1+pu) ”1“ @Jra——"ai“f@
n n—1 J:c A?Hl,n J;c
Zn-1 Tn
Tn+1 d 2(1+ ) xn-ic—zl
x 2% 2 X
+ M, f x—x,)(x—2, -M,——"a,-a f—
n+1 A?Hl N ( ) ( +1) J n+1 A?L+1,n n+1 Jx
Zn
=£ [_ ‘Qn—l + ‘Qn + Qn _ 'Qn-i—l];
T An,n—l An,n~1 An+1,n An+1.n
Jy=nmt, x,3sina; a,=x,sine; M, = xi Y . (65)

n

Die obere Randgleichung erhilt man daraus, indem man n=2 setzt und
die Randbedingung (50) beriicksichtigt.

Wertet man die (53) und (54) auf dieselbe Weise aus, so erhalten wir die
beiden SchluBgleichungen, welche sich auch aus (65) ergeben, indem man
darin n=m—1 bzw. n=m setzt, die Randbedingungen (55) beriicksichtigt

Tm+1
und beachtet, daBl wegen (56b) alle [ in Wegfall kommen. Die linke Seite
ZTm+1

der vorletzten dieser beiden SchluBgleichungen ist 3-gliederig und hat die-
selbe Gestalt wie in (65). Ihre rechte Seite ist jedoch der der (53) gleich.

Die letzte der beiden SchluBgleichungen ist hingegen nur 2-gliederig und
lautet
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O [ ey 204, (e
Mm-l A?n,m—b-f (x xm—-l) (x xm) Jz Mm A2 a "
m—1 m—1

Lo Tm

_ ” a’m. p 2 dx 2 (1 +FL) 2 dx - E ‘Qm—l
Mﬁdawgf“"”-”lz+ﬂ“lAamﬂ“mﬁ S A R
m—1 m—1

Sind die Spanten vollkommen starr, so verschwinden in (40) bei den £,
die R, , so dafl in den (65) die rechten Seiten nur mehr lineare Funktionen
der nur von den Belastungen abhiingigen Ry , sind. Man kann also aus den
so erhaltenen Bedingungen die Unbekannten M, bestimmen. Es sind dabei
simultane, lineare Differentialgleichungen 2. Ordnung mit 3-gliederigen For-
men zu losen.

Sind hingegen die Spanten elastisch, so wenden wir auf die (65) und deren
Randgleichungen wieder den Differentialoperator D an. Fiir die Absolutglieder
wird dann bei Beriicksichtigung der (40a, b)

D(‘Qn):_d)t,n+D(RP,n) n=1, 2,...m_'].. (67)
Da nach (19a)
cDt,n = —Wl,n+¥12,n

ist, ersieht man aus den (20a, b), dal in den @, , die X, X,,” und XV enthalten
sind. Ubt man auf diese die durch (49a) und deren 2. und 4. Ableitung dar-
gestellte Transformation aus, so erkennt man, daBl dann in der rechten Seite
der n-ten Gleichung von (65)die ¥, ,,Y, ;,Y,,Y, ,Y,., und deren 2. und
4. Ableitungen auftreten Es entstehen also Differentialgleichungen 8. Ordnung
in 5-gliederiger Form, wobei deren Randgleichungen aus den zum System (65)
gehorigen auf analoge Weise folgen. Diesen gesamten simultanen Gleichungs-
satz wollen wir mit (65’) bezeichnen.

Fiir die Bestimmung der zu (65") gehdrigen Integrationskonstanten bilden
wir zundchst aus (49a) die Transformationsgleichung

xv-—l'AMEJB—)l + xv'AMS/B) + xv'AMl(/B> — xv+1'AM5’B-i)-1.

Y (49°)

AXP — —

v,v—1 A v,v—1 A v+1,v 4 v+1,v

Kehren wir diese fiir 8=1 unter Bedachtnahme auf (50) um, so ergeben sich
die 4 M,  als lineare Funktionen der 4 X,’. Setzt man in diese die zu den
Randbedingungen (45a,b) gehorigen Losungen (39”) ein, so folgen die 4 M’
als Funktionen der vorgegebenen 4sp. Analog ergeben sich die 4 M,”". Die
(65) bzw. (65’) stellen mit ihren 1., 2., 3., 4. und 6. Ableitungen die restlichen,
zu den Randbedingungen (45¢,d,e,f, g, h) gehorigen Zwischenbedingungen
dar, aus denen entsprechend dem Absatz ¢) die noch fehlenden 4 M,,, 4 M ",
AMY, AMY, AMY* und 4 MY™ gefunden werden konnen. Hierbei haben
wir bei starren Spanten mit 3-gliederigen und bei elastischen Spanten mit
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5-gliederigen Gleichungsgruppen zu operieren. Dieser Rechnungsgang ist fiir
jede Sektionsgrenze durchzufiihren. Nachdem man das allgemeine Integral
fir (65) bzw. (65') aufgestellt hat, gestaltet sich der restliche Rechnungsgang
analog Absatz c). Dabei werden die 8 u (m — 1) Gleichungen wieder in u Grup-
pen mit je 8 (m — 1) Unbekannten zerspalten. Da in jeder n-ten Gleichung die
Beiwerte von X, gegeniiber den anderen Beiwerten dominieren, kann man
sich bei der Auflosung dieser Systeme der Iterationsverfahren bedienen.

Mit dieser Umformung der Grundgleichungen ist auch eine bedeutende
Vereinfachung der charakteristischen Gleichung des Systems verbunden.

Aus den M, folgen nach Multiplikation mit z, die Y,, woraus sich aus
(49a) bei Einhaltung der (50) endlich die Schubkrifte X, und daraus die
Schubfliisse =, ergeben.

e) Losung mittelst Fourierscher Reihen

Die im Absatz c) beschriebene genaue Anpassung des allgemeinen Inte-
grals an die Randbedingungen ist selbst bei einer geringen Zahl von Spanten
und Unstetigkeitsstellen auch bei Benutzung der vereinfachten Grundglei-
chungen noch umstédndlich und fithrt meist zu uniibersichtlichen Endformeln.
Man entwickelt dann zunichst die Restfunktionen Ry , und R,, nach (40a,
b,c,d,e) in Fouriersche Reihen. Setzt man das sin-Glied der k. Welle in die
(39) ein, so ergibt sich nach Kirzung durch sink¢ der Satz algebraischer,
linearer Gleichungen |

v=n v=m-—1 A
2[(“n+xv'13n)k2_xv'yn]ﬂk+ pA [(“V"’xn'ﬁv)kz_ n'Vv]ﬁk_%Tnk
v=1 ’ v=n+1 ’ k (kz_l) ’

=D, 1+ B 1 P+ Coi Tponzs m=1,2,...m—1). (68a)

Zum Glied 7', ;-coske gehort ein analoger Gleichungssatz (68b) mit den
Unbekannten 7, ; und den rechten Seiten D, ,— B, P, x+Cp Ty u k-
Aus (68a) und (68b), deren Matrixen einander gleich sind, erhalten wir also
die Beiwerte 7', ;, und T, , der Schubkrifte durch algebraische Auflgsungs-
prozesse. Benutzt man die umgestalteten Grundgleichungen (65) mit ihren
Randformen, so werden (68a,b) bei starren Spanten 3-gliederig und bei
elastischen Spanten 5-gliederig.

Wendet man diesen Rechnungsgang auf sdmtliche Glieder von (33a) an,
so erhalten wir die X, in Form von Fourierschen Reihen, deren Summenwerte
mit den Funktionswerten der nach Absatz c¢) ermittelten exakten Losungen
bis auf die Unstetigstellen iibereinstimmen, an welchen der Reihenwert gleich
dem arithmetischen Mittel aus links- und rechtsseitigem exakten Funktions-
wert ist. Da jede Welle die Periode 2 hat, sind die Randbedingungen (48)
fir jedes Glied von (33a) erfiillt, so dal die so erhaltenen KErgebnisse, bei
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Bedachtnahme auf die obigen Einschrinkungen, als exakte Integrale der
Grundgleichungen gelten kénnen8).

Der Vollstandigkeit halber weisen wir noch darauf hin, daBl auch hier bei
allen Gleichungssystemen, und zwar besonders bei den 3-gliederigen und
5-gliederigen Formen, in jeder Gleichung ein Beiwert gegeniiber den anderen
dominiert, so dafl die Auflosungen auch durch Iteration gefunden werden
konnen.

Die Konvergenz des gesamten Verfahrens wichst mit steigendem %k ganz
bedeutend.

f) Fundamentbewegungen

Wir erinnern zunéchst daran, dafl entsprechend den Ausfiihrungen zu (7”)
r,, hierbei keinen EinfluB} ausiiben kann.

Der Rechnungsgang gestaltet sich genau so wie in den Absétzen b) und ¢)
dieses Abschnittes, nur mufl man an Stelle der von den dulleren Belastungen
Ps> Py, und p herriihrenden Verschiebungen ¢, ,, der Kragmembrane die durch
die Fundamentbewegungen s,, und ¢, in Hohe eines jeden Spantenkreises auf-
tretenden tangentiellen Verschiebungen

T

— Ly n :
= Im= Ty (n=1,2,...m—1 69
et P s (0 ) (69)

st,n
setzen.

Bedient man sich wieder der Fourierschen Reihen, so mufl man, da s,, in
ihrer 1. Ableitung auftritt, jeweils ein cos-Glied der s,, mit einem sin-Glied der
t,, zusammenfassen und umgekehrt.

Es ist leicht einzusehen, daf durch die 1. Wellen keine Schubfliisse 7,

entstehen.

Zusammenfassung

Mit den in dieser Abhandlung entwickelten Verfahren kann man jede kreis-
kegelformige, zentralsymmetrisch geformte, durch beliebig viele starre oder
elastische Spanten versteifte Membrane mit veridnderlicher Wandstéirke fiir
unsymmetrische, stetige oder unstetige Belastungen berechnen. Nach einer
genauen Erlduterung der Randbedingungen des Problems wird fiir die Grund-
gleichungen, die in Form von linearen, simultanen Differentialgleichungen
2. oder 8. Ordnung — je nachdem die Spanten starr oder elastisch sind —
auftreten, die Anpassung der allgemeinen Integrale an die obigen Rand-
bedingungen fiir unstetige oder stetige Belastungen generell durchgefiihrt.

8) Naheres, insbesondere bzgl. des Konvergenzbeweises, analog wie in der Abhand-
lung des Verfassers: «Die genaue Membranentheorie der prismatischen Faltwerke.» Int.
Ver. f. Briickenbau und Hochbau, Abh. XI. Seite 129 (1951).
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Diese Grundgleichungen koénnen in 3- bzw. 5-gliederige Formen umgewandelt
werden, wodurch die Berechnung beim Vorhandensein beliebig vieler Spanten
praktisch iiberhaupt erst ermdglicht wird.

Fiir verwickelte, unstetige Belastungen ist es immer zweckmiBig, sich der
Fourierschen Reihen zu bedienen. Dadurch wird die Rechnung schematischer,
so dal man ungeschultere Hilfskrifte mit Erfolg einsetzen kann.

Ist die Verdnderlichkeit der Wandstéirke analytisch festgelegt, so kann man
die auftretenden Koeffizienten ein fiir allemal in zweidimensionalen Tabellen
festlegen.

Durch die Aussteifung mittelst Spanten wird das Tragverhalten grund-
satzlich verbessert. |

Zwischen diesen Tragwerken und den gewohnlichen Durchlauftrigern
besteht eine enge Verwandtschaft, die besonders in den umgeformten Grund-
gleichungen erkenntlich wird.

Bestimmt man auch die radialen Verschiebungen 7,,, so kann man die
durch diese verursachte, aber nach beiden Seiten hin rasch abklingende
Schalenbiegung nach den bekannten Iterationsverfahren ndherungsweise
bestimmen.

Wahlt man das hier ausfiihrlich behandelte , Kragwerk® als Grundsystem,
so kann man daraus die Theorie der beliebig gestiitzten Balken- und Durch-
lauftriger von kreiskegelférmiger Form entwickeln.

Summary

With the procedure developed in this paper any axially symmetrical right-
circular conical membrane of variable wall-thickness stiffened with any number
of rigid or elastic ribs can be computed for unsymmetrical continuous or dis-
continuous loading. For any exact interpretation of the boundary conditions
of the problem, the adjustment of the general integral to the upper edge con-
ditions for continuous or dis-continuous loading is carried out in all cases from
the basic equations which appear in the form of linear simultaneous differential
equations of the second or the eighth order according to whether the ribs are
rigid or elastic.

These basic equations can be transformed into three- or five-linked forms
whereby the calculation is for the first time made generally practicable in the
case of any desired number of ribs.

For complicated dis-continuous loads, it is always desirable to make use
of Fourier series. Thereby the calculation becomes orderly so that irregular
auxiliary forces can be successfully brought in.

If the variation of wall stiffness is analytically established, the relevant
coefficients can be laid down once for all in two-dimensional tables.
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The load-bearing capacity is basically improved by stiffening the middle-
most ribs.

Between this type of girder and the ordinary continuous girders, there is
a close relationship which is especially recognisable in the transformed basic
equations.

If these should be needed to find the radial displacements r,,, they can be
approximately determined by known methods of iteration, as can be the shell-
bending produced by them, though rapidly diminishing on both sides.

If the “Collar-work’’ so fully treated here, is chosen as the basic system,
the theory can be developed from it for any braced girder-work or continuous
girder of right-circular conical form.

Résumé

Le procédé ici exposé permet de calculer toute membrane d’épaisseur
variable, de forme conique circulaire a symétrie axiale, renforcée par un nombre
arbitraire de membrures rigides ou élastiques, continues ou discontinues et
dissymétriques. Apres avoir présenté d 'une maniére précise les données margi-
nales du probleme, 1’auteur adapte 1’intégrale générale aux conditions margi-
nales ci-dessus, pour des charges continues ou discontinues, pour les équations
de base qui se présentent sous la forme d’équations différentielles linéaires
simultanées, du deuxiéme ou du huitiéeme ordre, suivant que les membrures
sont rigides ou élastiques. Ces équations de base peuvent étre transformées en
relations & 3 ou 5 termes, seule disposition permettant un calcul pratique,
lorsque la membrane comporte un nombre arbitraire de membrures.

Dans le cas des charges complexes non continues, il est toujours opportun
d’utiliser les séries de Fourier. Le calcul est ainsi rendu plus schématique,
ce qui permet de faire appel & des calculateurs auxiliaires non spécialisés.

Si la variabilité de 1’épaisseur de la paroi est définie analytiquement, les
coefficients qui interviennent peuvent étre déterminés une fois pour toutes
dans des tableaux a deux dimensions.

Le renforcement par des membrures améliore essentiellement les possibili-
tés de charge.

Il existe une parenté étroite entre ces dispositifs porteurs et les poutres
continues habituelles, parenté qui est particuliérement mise en évidence dans
les équations de base transformées.

En déterminant également les déformations radiales r,,, on peut calculer
d’une maniere approchée, par les méthodes connues de récurrence, la flexion
qui en résulte, mais qui s’atténue rapidement des deux cotés.

En choisissant comme systéme de base le dispositif en encorbellement,
largement traité ici, on peut en déduire la théorie des poutres continues de
forme conique circulaire, avec appuis arbitraires.
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