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Die durch beliebig viele elastische Spanten versteifte, kreiskegelförmige
Membrane mit veränderlicher Wandstärke

The right-circular conical membrane of variable wall-thickness
with any number of elastic ribs

Les membranes coniques circulaires d'epaisseur variable, renforcees par des

membrures elastiques en nombre arbitraire

Dr. Ing. habil. Ernst Gruber, Oberregierungsbaurat z. Wv., Eldingen/Hannover

A. Allgemeines

Die Membranen finden im Bauwesen bei Errichtung von hohen Masten,
freitragenden Rohrleitungen, Kühltürmen, Gas- und Flüssigkeitsbehältern in
ausgedehntem Maße Anwendung. Diese Bauwerke müssen aber fast immer
mit formhaltenden Spanten ausgesteift werden. In der Folge wird die Statik
derartiger Tragwerke entwickelt.

Wir benutzen die kegelstumpfförmige Membrane ohne Querspanten, die
an einem Ende längs eines Parallelkreises fest gelagert ist und im übrigen frei
auskragt, als Grundsystem und nennen es in Hinkunft „Kragwerk".

B. Das Kragwerk ohne Spanten

a) Spannungen

Wählt man entsprechend der Fig. la, x und cp als Koordinaten und stellt
für ein infinitesimales Element das Gleichgewicht auf, so erhalten wir

dx sina dop l s

(xr) 1 dot
dx sina d<p

<jt + xptg<x 0 (Fig. lb), (lc)

8(xr) 1 dot „ „..dx sina d<p l
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wobei as, crt und r von der Membranendicke &x unabhängige Kräfte je Längeneinheit

sind, (lc) in (lb) eingesetzt ergibt

— - l d-V- -dx+ xT ~ cos <x' d<p
Pt { '

mit der Lösung

*-hf>w + hf*(^-8fi-*)d*' (3)

Setzt man (3) in (1 a), so folgt durch Integration nach x und mit Hilfe von (1 c)

-iHdh; +*•)**• (4)

at folgt aus (lc) unmittelbar. Die Funktionen fx und /2 ergeben sich aus den

jeweiligen Randbedingungen. Wirkt z.B. längs des oberen Randes x xx der
Schubfluß tx (cp) und die parallel zu den Erzeugenden gerichtete Auflast cr8tl(<p),

so folgen1) für das längs des Parallelkreises x xm festgelagerte Kragwerk die
Spannkräfte ina; ^ zu

Xn

'--^•W^^H-ftH (3,)

xx
Xn

xi lx\ i\ r xi f /-. x\ d / 1 dp \ 7

Xn

~— (P't>goi + ps)xdx. (4')
xn J

xx

Wirkt nur längs xv ein Schubfluß rv (cp) und bedenkt man, daß die Ermittlung

der Spannkräfte einer Membrane eine statisch bestimmte Aufgabe ist, so

wird für x<xv die Membrane spannungslos. Für x>xv wird hingegen aus (3')
und (4')

Ist nur asl vorhanden, so treten im Mantel trotz seiner Konizität keine
Schubwirkungen auf.

Treten längs eines Parallelkreises beim Fortschreiten in Richtung der
Erzeugenden in den Belastungen p,ps und pt Unstetigkeiten auf, wie z.B. bei
der Abstufung der Winddrücke nach DIN, so werden, da hierbei die Schub-

*) Dabei wird das Doppelintegral von (4) wie folgt umgeformt: Nennt man das
innere Integral Jx, so wird

xx xj xx xY
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flusse tv keine Sprunge erleiden, die in den bisherigen Gleichungen auftretenden
Quadraturen mit den Unstetigkeitsstellen als Integrationsgrenzen einzeln
durchgeführt und die Ergebnisse schlicht summiert.

b) Verformungen

Wir beschreiben die Verschiebung eines Punktes der Membrane durch
3 Komponenten:

1. r normal zur Kegelflache
2. s in Richtung der Erzeugenden
3. t in Richtung der Parallelkreistangente.

n7
Kegelspitze

i *<»

1Ansicht E

i-i \Schnitt\ *>

|Kf*
par8b.v

&H«^ xdif smy \T^\,

Hr]-

™* radius xtga
Csj

M-K Sa 5
1 Sä

r \**£** H*tf*5

*A [] kennzeichnet die

Verschiebungen im Schnitt I-Ir*—c»W?*J

u
J,

*&*
*&rs//iZ

%cosDraufstchtM —j
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I
I

fff
5,nctW

r^f
Fig. 2
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Aus Fig. 2 kann man bei Voraussetzung der üblichen, für unsere gebräuchlichen

Baustoffe geltenden Bedingungen, leicht die Beziehungen

ds os-p,at
dx EK (6)

s 1 dt r (Tf — Lia^
x #sina d <p xtg oc E&x

A/l\ 1 ds _2{l+pi)
dx\xj #2sina dcp Ex&x

ablesen. Dabei ist zu achten, daß die Tangentialverschiebung t senkrecht zur
Erzeugenden steht. Aus (6) folgt die AchsialVerschiebung zu

<^n

D,xn=^\ (vs-pvjjr +<vM- (7)
dx

Damit erhalten wir aus (6")
Xn 2) Xn

1 C /. xn\ d dx ' 2(1 + /*) f r

Mit (7) folgt daraus aus (6') die Radialverschiebung
Xn

at — LL<js 2 C / # \ d2 .dx
710 £'sm2aj \ x / dcp2K s ^u&x

ht,n

Xm
Xn Xn

2(1 -f /*) f dr dx tga f d#
^/cosaj £<p ^ £7 J ^ ^^Xm Xm

-25^5;(<p)-tga-^(9)-^CM- (n
sm und tm stellen die längs x xm vorgegebenen Werte der s und t dar,

welche z.B. in Form von Fundamentbewegungen auftreten können.
Da in (7") eine analoge Funktion rm nicht vorkommt, kann bei x xm für

rm keine Vorschrift gemacht werden, das heißt, die Membrane muß an dieser
Stelle radial verschieblich gelagert sein, etwa so wie in Fig. la. Ist diese

Lagerung nicht verwirklicht, so ist ein Gleichgewichtszustand ohne Schalenbiegung

nicht möglich. Diese klingt aber vom Auflager ab sehr rasch ab.
Die Verformungsflächen müssen stetige Funktionen von x und cp sein. Das

Gegenteil würde einem Zerreißen der Membrane entsprechen. Da eine solche,
ideell gesehen, überhaupt keinen Biegewiderstand besitzen darf, könnte man
in letztere beliebig viele Knicke hineinfalten, ohne daß dadurch unendlich
große Materialanstrengungen entstünden. Das würde bedeuten, daß die ersten

2) Wurde durch eine der Fußnote 1 analogen Umformung erhalten.
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Differentialquotienten der Verformungsflächen unstetig sein könnten. Da man
aber eine Membrane in einer solchen Idealisierung nicht verwirklichen kann,
würden dann im Tragwerk trotzdem beträchtliche Biegespannungen auftreten,
die wir aber vermeiden wollen. Wir streben also immer die Stetigkeit auch der
1. Ableitungen an. Handelt es sich um Tragwerke, deren Größenausdehnung
in der ^-Richtung bedeutend mächtiger ist als in der 99-Richtung, so genügt es,

wenn man diese differentiellen Bedingungen nur für die letztere Richtung
einhält.

Für die Folge sind die tangentiellen Verschiebungen t wichtig, die durch
einen im Parallelkreis xv wirkenden Schubfluß rv erzeugt werden. Sie ergeben
sich für xn^xv aus (7'), indem man darin für t, as und at die Werte (5, 5', 5")
setzt. Es wird

Xn Xn

Esin*xJ \ x)\ x)
dx 2(1 +/u.)
x&„ E+ ' „' ' x„r.

»x

/y iy sy

r dx

^m ^n 0/s'm+~tm; xn^xv (Fig. 3a) (8)

mit a =x sina. Analog folgt aus (7)

_x,
E

Xn

vV CL x\ dx
sinaj \ x) xd-x

+ (9)

Ist xnSxv, so ergibt sich zunächst, wenn wieder in xv der Schubfluß rv wirkt,

"v,n ^v,v + K
x„ sm a

(10)

wobei wir tvv und s'v>v aus (8) und (9) erhalten, indem wir xn xv setzen. Mit
hVtn + xn xv wird dann aus (10)

Xp Xn

xvrv" Cl xn\t xv\ dx 2(1+^) C dx
h>n~ Esm*oc}\ x)\l x)x&x + E X"T* xnx*J xs&x

+ - ¦s'm+-rtm; xn^xv (Fig. 3b). (8')
Jbrn

SpitzeSpitze

/ / V

i-Ü
-«II " JC,

>>)>>>)< m

Fig. 3 c

Spitze

Fig. 3 a Fig. 3 b



Die durch beliebig viele elastische Spanten versteifte, kreiskegelförmige Membrane 149

(8) bzw. (8') können wir auch als lineare Funktionen von xv bzw. xn
anschreiben. Es folgt, wenn man zunächst sm und tm außer acht läßt und xvrv
zur Kraft Xv zusammenfaßt, die Doppelgleichung

Xn Xn

*".» ^" [ Esm2aJ\ xjxftx nEsm2ocJ \ x J x2ftx\
(lla,b)

+ Xvxv w xn 3 q — Xv [ccn(xn)-{-ocv'ßn (xn)] + Xv-ocv-yn(xn);
n Mi v J X XTX v v n v v n v v

Xm

Xn — Xv.
V X

Setzt man nun entsprechend der Fig. 3a, b das xv bzw. xn der (8') gleich dem

xn bzw. xv der (8), so erhalten wir, wenn wir der Deutlichkeit halber die größere
der beiden Ordinaten mit b und die kleinere mit a bezeichnen

ta}b X'^[ocb(b) + a-ßb(b)] + Xa>a-yh(b), b ^ a; (Fig. 3c). (12a,b)
b,a b b

Hierin gibt der erste Index von t immer den Ort der Kraftwirkung und der
zweite den Ort der Verschiebung an. Ferner liegt b dem Einspannkreis immer
näher als a. In diesem Sinne sind jeder Ordinate xn die 3 Funktionen a, ß und

y zugeordnet.
Man erkennt in diesen Entwicklungen wieder das Prinzip der Gegenseitigkeit

der Verschiebungen, wenn man sm und tm als nicht elastische
Verformungen außer acht läßt.

Zwischen den tangentiellen Verschiebungen bestehen wichtige Beziehungen.
Bezeichnet man die zu (Xn l) gehörigen, bei xv_x,xv und xv+1 auftretenden
Verformungen mit dtntV_1, ftn>v und ftn>v+1, so wird nach (11)

ft ft

K,v+l (Xn=l)[*n + Xv+l-ßJ + (Xn l)Xv+l-Yn (13a)

ft" &'u n, v un,v

*nfV=(X; l)[an + ^-j8w] + (Zw l)a;v-yn (13b)

ft" ftvn,v-l vn,v-l
»»,H ffi=l)k +VrW + Äsl)Vi7p' (Fig. 4a) (13c)

Daraus folgt, wenn man in Hinkunft die Ordinatendifferenz Xp — x^ mit Aptfl
bezeichnet,

K*i-Kv_Kv-Kv-x =0; x^KX^x^x». (14)
n v+1, v nv, v-1

Für die einmal gestrichenen ft gibt es eine analoge Beziehung. Bildet man
nun entsprechend der Fig. 4 b die algebraischen Summen
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Fig. 4 a Fig. 4b

(-
+

ft" ft" ft
- + + ¦

ft"un-l,v-l
* v, v—1

' n, v—1

*-* v, v—1 J V+l, V J V+l, V

K
A

¦ +
V, v~ 1 1 V+l, V

(ft" ft" ft"u n, v—1 _
u n,v u n,v

Av,v-i ^v,v-l ^v+l,v

V*n, v+l\
^v+l,v!
an
Un, v+l

1 v+l, V

An>n—1

K+i, an an an \
,v+l Vn+liv Wn+^v ^n+l^+lj jv-1 ^v, v-1 ^v+l,v ^v+l,v 1 n+l,n (15)

und faßt jeweils die Glieder der lotrechten Spalten zusammen, so erhalten wir
für die erste von diesen

an an
Vn+l, v-1 ~ ^n, v-1 + K'V'\ K+1-v~1) : AVtV_x. (15')

nn+l,n /

Denken wir uns nun bei xv_t eine Kraftwirkung [(X"_± =1), (Xv_1 =1)] wirkend,
bringen die zu dieser gehörigen bei xn_1,xn und xn+1 auftretenden Verschiebungen

#w_i>v_i, &v-\,n un(i &v-i,n+iin den durch (14) angegebenen Zusammenhang

und vertauschen entsprechend dem Prinzip von der Gegenseitigkeit der
Verschiebungen die Indices der ft, so erhalten wir wieder (15'). Da (14) den
Wert Null hat, muß also auch (15') verschwinden. Führen wir für die übrigen
3 Spalten dieselben Rechnungen durch, so folgt, daß der Wert der ganzen (15)
Null wird.

Auch hier gelten für die einmal gestrichenen ft die analogen Beziehungen.
Das Nullwerden der (14) und (15) tritt nur dann ein, wenn in der zur

ersteren gehörigen Fig. 4 a xv+1^xn und in der zur letzteren gehörigen Fig. 4 b

xn+i xv-i1S^* ^ie ^-Gebiete dürfen sich nur berühren, aber nicht ineinandergreifen.
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C. Die kreisförmige Spante

a) Der kreisförmig gekrümmte Stab

In der Folge benötigen wir den Zusammenhang zwischen den Verformungen

tn,rn und den Belastungen rn,rpn,pn einer solchen Spante. Dabei soll
der Anschluß der Membrane an die Querspante so wie am Lagerkreis wieder
durch unendlich kleine Fachwerke idealisiert werden, so daß zwischen Membrane

und Spante nur Schubwirkungen rn als Verbindungskräfte möglich
sind (Fig. la).

J

3n —.

and<ß

rn \+ r„ ¦ d<p

dM,
th*r„Y M

Fig. 5 b Fig. 5 a

Aus der Fig. 5 a, welche ein Elementarelement darstellt, ergeben sich die
3 Gleichgewichtsbedingungen

-Nn + Q'n + an(l+\n)pn=0 (16a)

-N'-Qn-anTn-an(l+\n)rP}n=0 (16b)

+ Qn'an(l-en) + M'n-anenTn-an2(l+\n)(Xn + en)TP)n=0 (16c)

e lmit " a ' " aan an

während wir aus Fig. 5 b die elastostatischen Beziehungen

JjjnJn

-tL + <=an2(l-eny
J„

E„J„

(17a)

(17b)

ablesen. Eliminiert man zuerst aus (16a,b,c) Qn undmit*w=^(i-ej2
aus diesem Ergebnis und (17 a, b) Mn und Nn, so erhalten wir

11 Abhandlung XIII
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r'n + rn + tZ + t'n (l-en)^j[(l+Xn)(pn-r'Pin)-T'n] (18a)

(l+Kn)t:-KnrZ + r'n=--^r[(l+Xn)^p>n + Tn], (18b)

was man leicht in die beiden expliziten Formen

^''(U ^[(^ + 0+^ (19a)

D'(rn)=^[(rn + <)+^2(rn +r:^ (19b)

mit yi>n^^4^J2[rn + ^
+ a+Aw)(Aw + €nXn] (20a)

u, iC*^^ (20b)

umwandeln kann.
Die Lösung von (19a) lautet:

K =L + tn (anftn-ALnsincp+AVfncoscp)+cp(C1+C2smcp

Vt,n =J%i + 3Jn02 + Jn<l>s'> Jn01 \ sin9J^<P $®t,n *™ 9^ cp (21a)

+ % cos <p $ d cp j0tncos <p d <p

Jn<P2 icosvföt,n sin 99 d 99 -1 sin9/^n cos 99 d 99; J%s $d<pj&t ndcp.

Setzt man darin für <Ptn die Werte von (20a, b) ein, so erhalten wir nach
mehrfachen Umformungen

«»4U-€»):' ^^[l+^ + ^(l-O]^U+[3-€,-^(l-6j]4fT2+ji0T3}

+ (Z + 2\n-en-Kn(l-eJ]J^2+(l+\jJ«Ts}

wobei man die Integrale J^Tl, J®r2 und J<fT3 bzw. J<f>Tl, J™
2 und J<f>T3 aus

J^ki» e/^g un(^ ^03 erhält, indem man statt &tn die Belastungen rn bzw.

Tp,n setzt. Außerdem gilt

J{nPi =cos(p$pncoscpd<p + sm<p$pnsmcpdcp-$pndcp (23a)

^n% isin9fd<pJ^cos99<Z<p-|^^ (23b)

EKminiert man aus (18a, b) rn'" und setzt in dieses Ergebnis tn ein, so folgt
die Lösung für (19 a) zu



Die durch beliebig viele elastische Spanten versteifte, kreiskegelförmige Membrane 153

rn=fn +^n (A&n COS 99 + J^SUKp) + C2 {—^J sin^ ~ COS 9)

+ C3(7^C0S9 + 9Sin9)+7?r^ + (7 (21b)

^r.» ^»<Pl-^2 + ^»(P3; J{n01= ~ i$incp$ d(p$&rnCOScp d cp +
-f1 cos (pjd(p$<Prt n sin 99 d 99

J^2= Sin9j0r>nsin9d9> + cos9j^ncos<pd9>; «7<&3 S<Pr,nd<p.

Setzt man analog für 0r>w die Werte von (20a, b) ein, so erhalten wir nach
mehreren Umformungen

n - an*(l-€n)2 t(l x r(r) _ j(r) j{r) \
Vr,n — jp j H1 €n) K1 ^ Kn) u nrl ü m2^~ ü nrZ)

an (1 ~^)2(1 +K)2 //-, x r(r) f(r) r(r) 1

"•" IT» r IV1 enl u nrl u nr2 ~r u nrZ

<t(l-*J3(l + AJ(l + /cJf (r) (r) 1

Die Integrale J^Tl, J^2 und j£>3 bzw. J^rl, j£2 und J^>3 ergeben sich
wieder aus J^lpx, ^02 un(i ^»^3» indem man darin statt &rn die rn bzw. Tpn
setzt. Außerdem bedeutet

J(npi — l^^9Jpnco^cpdcp + ^coscpjpnsmcpdcp (24a)

J{nV2 %&inq)jd<pfpnsin.(pd<p + %cos<pjd<pfpnQO&<pdq). (24b)

Setzt man (21a) und (21b) in (17a,b) ein, so ergeben sich die Schnittkräfte

Nn und Mn zu

an3 (1 -ej' *n^ 2^_ (Cg g.n ^ + ^ cQg + g + + +

?5^^^J!fn=T^- (^2sin^ + ^cos^-^-V + V'. (25b)

Aus (16 c) in Verbindung mit (25 b) folgt
an \* ~ €n) Kn r\ Kn / n n - \ n 1

W~t £»=T—7-(-<?2 COS?+ 0,8111 <p)-V-V
-^4(1~€;)3*"[tw+(1+Aw)tp,J. (25c)

Nn, Mn und Qn sind also von an-&n9 Agn und J^n unabhängig. Ist die
Spante starr, also En oo, so geht, da alle Glieder mit En im Nenner
verschwinden, (25 c) in -C^sincp + OjSincp^O über. Da dies für jedes cp gelten
muß, wird auch O2 0 und C3 0, woraus nach (25b) C1 0 und aus (25a)
endlich 0 0 folgt. Die Lösungen (21a, b) reduzieren sich daher für die
vollkommen starre Spante auf tn und rn. Die A^n und A^n sind also die
Verschiebungskomponenten des Koordinatenursprungs der Spantenebene, ftn ist deren
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Drehwinkel und tn bzw. rn stellen die von Nn, Mn und Qn stammenden elastischen

Verschiebungen dar.
Da das ftn an der starren Spante keinen Beitrag liefert, ist in (21b) C

ständig Null.
Durch Kn wird der Einfluß der Achsdehnungen erfaßt. Vernachlässigt man

diesen, so wird wegen Fn co auch Kn 0, wodurch sich die Rechnung bedeutend

vereinfacht.

b) Der geschlossene Bing

Die bisherigen Betrachtungen gelten für segmentartige oder geschlossene

Spanten, ganz gleichgültig wie diese gelagert sind.
Weisen die Belastungsfunktionen rn, rpn und pn Unstetigkeitsstellen auf,

so legen wir durch jede von diesen einen Radiusvektor und zerlegen auf diese

Weise die Spante in /x Sektionen. Für jede von diesen besteht ein Lösungspaar

(21a,b). An der Berührungsstelle v—l,v zweier Sektionen v—1 und v

muß die Biegelinie punkt- und tangentenweise stetig verlaufen (Fig. 6). Es

folgt also

-1 ^n,v> v ^n,v—1 ' rn,v—1/ V "n,v ' 'n,v)

(26a,b,c,c')

/ f • rvn,v—l vn,v> ' n,v-
oder r' 1 r'

v-lvr kl? *tl
v-1

v-lvl

M-IJl

JlJ.r

Fig. 6

Stellen wir für die beiden der Sektionsgrenze
v— l,v unendlich benachbarten Punkte v—l,v\r
und v— l,v;l nach (21b) die Werte der rn bzw. rn'
auf und ziehen sie voneinander ab, so fallen die
für alle Sektionen gleich großen ftn ,A% n und Av n
heraus und wir erhalten zwei lineare Gleichungen
mit den Unbekannten (02v_1 — C2v) und (CSv_1 —

— 03 v). Die Auflösung ergibt

C^-C2^ ^{[^,-i- Vr, v]^^ (^eos^^-^,,. sin^)
+ Ur, v-1 ~ Vr, v\

\1^~ Slfl ^"-1. " + V*-1'v ' C°S (P"-1' 7 } (27 a)

<?3, v-1 -°S,v= *t Vr, v-1 ~ Vr, v
I T^T sin ^"L " + ^"L "

* C°S ?"-l. *iyv-l,v{l J 9v-l, v \L ~T" Kn /

+ Ur,v-l-^r,v (]^^cos9?v-lfv-9v-l,v-s^9v-l,v)|- (27b)

mit Nv_hv 2([l~KKJ + 9v-i,v ; v 2,Z,...^.

Bei der Bildung unserer Gleichungen begannen wir bei der Sektionsgrenze 1,2

und schritten im Sinne der positiven 99 bis zur Grenze \x — 1, /x vor. Die Sektion
pL ist dabei immer diejenige, welche vom Fahrstrahl 99 0 geschnitten wird.



Die durch beliebig viele elastische Spanten versteifte, kreiskegelförmige Membrane 155

(28a)

Handelt es sich um eine geschlossene Spante, so haben wir bei der letzten
Sektionsgrenze zu beachten, daß zu deren linksseitigem Randpunkt /jl, 1; l das

Argument 99^ und zum rechtsseitigen Randpunkt pu, l;r das Argument
9^,1 + 277 gehört. Stellen wir für die beiden obigen Randpunkte wieder die

rn bzw. rn' auf und subtrahieren sie voneinander, so wird

- (Cg, ,* - c2, J yi^rsin <P* 1+ ?/*. 1cos <P* 1)

-(C3,^-C3jJ ^r^cos99^1-99^1sin^1j

-27rC2>fX sin 99^ -2nC2tllco8<pfl3l ri'rifJL(<pfJLtl + 2 77) - 77^ (99^)

- (C2f ^ - 02} x) (y^ cos ?V, 1 - ^, 1sin fy. 1J

+ (C3^-C35J^Y-^sin99^1 + 99^1cos^1j.

Bestimmt man daraus C2fJL — C21 und C3jLt —031 und addiert dazu die /x—1
Lösungen von (27 a, b), so fallen alle Differenzen Cv__1 — Cv weg und es verbleiben

zwei lineare Gleichungen mit den zur Sektionsgrenze pu gehörigen
Integrationskonstanten C2 und C3 als Unbekannte. Die Auflösung ergibt

(28b)

(29a)

(29b)

1 v^/x+l 1
mit Jl=2^ ^ ÄT~"

1 v=^+l 1

(*7r v-1 - Vr, v) \Y^r C0S 9 - 9 Sin 9J

+ (*7r,v-l - *?r, v) \l+K Sil1 P + 9 COS 9
1

«v-i - Vr,v) \t^tsin<p + 9cos9)

9v-l,>

+ (Vr,v-l~Vr \l+*n
cos 99 — 99 sm 99

9V-i,v

(29c)

(29d)

Aus C2tfl und C3jLt ergeben sich die übrigen C2 und 03 aus den Lösungen der
(27 a, b) durch einfache Differenzenbildungen.

Für die Bestimmung der C1 müssen wir von der Bedingung (26 a) ausgehen.
Bildet man zunächst für die Grenzpunkte nach der (21a) die tn und zieht sie
voneinander ab, so wird

Gi. v-i -°i,v=- (°2, v-i ~ C2, „) sin 99y_1} „ - (03j v_1 ~CS>V) cos <pv_lf v

9v-l,v L l9v-l9v

Stellen wir noch die den (28) analogen Bedingungen auf und addieren die
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daraus folgende Differenz C11 — Clfl zu der vorhergehenden Beziehung, so

wird
99 1v=/*+i r

C1,H=- Sin fy, 1 °2,n ~ COS fy,1^"-^: 27 j (C2, v-1 ~ C«, v) Sin <Pv-l, v

+ (C3, v-1 - Cs. v) COS cpv_x v + rjt>v_x ~Vt,v „ (29')
<Pv-l,v L J9V-l,vJ

worin die bereits errechneten G2 und 03 einzusetzen sind.
Bei den 27-Bildungen ist der Zeiger /x+1 durch 1 und 99^ durch 99x zu

ersetzen. Außerdem müssen die rj^ rj'rtfl und rjt) ^ mit dem Argument 99X + 2 77

gebildet werden.
Sind die Belastungsfunktionen stetig mit der Periode 277, so liegt im

Sinne unserer Betrachtungen nur eine Sektion vor, deren Randpunkte wir in
99 0,277 legen wollen. Berücksichtigt man, daß die rn, pn und rnp im
Gleichgewicht stehen, so ergibt eine einfache Zwischenrechnung die 6 Beziehungen

2tt 2tt 2tt
$0ttnd<p=O; f<PUn8m<pd<p=0; $<Ptncos<pdcp= 0, (30a,b,c)
0 r, n 0 r,n 0 r,n

woraus aus (21a, b)

2tt 2ir 2tt

Vt,H.-Vt,i=:Sd95®t,nd9 + i$d9S®t,nGOS9d9; Vr,n~Vr,i :k$dcpj<Pr>nsmcpdcp',
o 277 0 0

Vr)a-Vr,i= -%Sd<pf<Prtnooa<pd<p (31a, b,c)

folgt. Durch partielle Integration der rechten Seiten der (19a, b) ergibt sich,
daß die Doppelintegrale der (31a,b) ihr Vorzeichen ändern, wenn man &tn
durch 0rn ersetzt. Substituiert man (31a) in (29') und (31b, c) in (28a,b), so

erhalten wir die Integrationskonstanten zu

2tt 2tt

<?!=-—j dcp\0tndcp', C2=-— jdcpS<Pt}nsmcpdr,
o o

2tt

C3= — -— dcpj0t ncos(pdcp (32a,b,c)
477J

o

2tt 2tt

C1 j^J9<I>t,nd9'> C2=-^\ cp&tinsmcpdcp;
0 0

2tt

G^=^TT\ 9(I>t,nGOS9d9> (32a',b',c')
o

wobei sich die zweiten Formen aus den ersten durch partielle Integration
ergeben.
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Wir entwickeln nun die von der Membrane auf die Spante übertragene
Schubkraft xn-rn und die äußeren Belastungen pn und rpn in Fouriersche
Reihen. Es wird

OO 00

^T^ ^ ^1 + Tn,1sin(p + ^}1cos9+^Tn>fesinÄ;<p+i;^njfccosÄ:9 (33a)
2 2
00 00

^ -Pno + Pn,iCos99 + P^1sin(p+i;*Pn5fccos^99+^PnjÄ:sin^99 (33b)
2 2

oo

Tp,n Tp n,0 + Tp,n,l8in(P + TP,n,lCOS,P+ ^TP,n,k^n^<P
00 _+ 2>2i.n,*°<>s*9>> (33c)
2

wobei wir als 1. Wellen jeweils die ersten 3 Glieder bezeichnen wollen. Da

xn-rn, pn und rp>n miteinander im Gleichgewicht stehen müssen, erhalten wir
3 Bedingungen, die sich, da alle hierbei auftretenden Integrale bis auf die
3 folgenden 27r 27r 27r

Je? 99 2 77; J sin2 cpd 99 / cos2 cpdcp 77000verschwinden, auf

27n,0=»n(l+An)237p,n,e= 2irajm*; Tn,l= ~Xn(l + K) (K,l~Tp,n,l) ~^^',
Tn,1=xn(l+XJ(Pn>1 + Tp>n>1) -^- (34a, b, c)

77 ölil oc

reduzieren. Dabei bedeuten Mn, Pg>n, PVtn die auf das Achsenkreuz £, rj
bezogenen Komponenten der auf die Spante einwirkenden Lasten pn und rpn.

Belastet man die Spante nur mit den 1. Wellen, so werden die rechten
Seiten der (19a, b) nach (20a, b) und wegen (34a, b, c) identisch Null. Aus den
Integralformen der (21a, b) ergeben sich die Beziehungen Vt,n,i=Vr,n,i=®*)- Da

wegen 0t t=0 ± 0 nach (32a,b,c) 01? C2 und C3 Null wird, folgt aus
(25 a, b, c), daß auch die Schnittkräfte Nn, Mn und Qn verschwinden müssen.
Die Verschiebungen tn und rn reduzieren sich also auf tn und rn, d. h. die Spante
verhält sich unter der obigen Teilbelastung wie eine vollkommen starre Scheibe.
Dieses Ergebnis hängt eng mit der Tatsache zusammen, daß jedes Glied der
Entwicklungen (33 a, b, c) für k 2 immer eine gerade Anzahl von Wellenbergen

und -tälern mit absolut gleich großen Amplituden aufweist, so daß

jede dieser Wellen für sich im Gleichgewicht steht. Hat man also die 1. Wellen
der Belastungsfunktionen erledigt, so braucht man sich um das Gleichgewicht
der einzelnen Spanten nicht mehr zu kümmern. Man kann dann aber auch
andererseits aus dem letzteren keinerlei Randbedingungen herleiten.

Belastet man aber die Spante mit der k. Welle, bestehend aus

-Tntksinkcp; Pnkcosk<p; Tp.nksmk(p; -Tn}kcoskcp;

Pn,k*inJc9> Tp;n)kcoskcp, (35)

3) Der zusätzliche Index 1 soll die Zugehörigkeit zu den 1. Wellen andeuten.
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so erhalten wir die rechte Seite der (19a), indem man diese Werte in die (20a, b)
einsetzt zu

+ (4,Jfc^«,lfc-5»,t,fnlfc + 0»life'^»lJk)COS^ (36)

mit ¦"¦w, k W J smot[l-€nk2 + Kn(l-en)k*]

a/(l-eJ3(l+AJ k[ k2]
JjjnJn

(37a)

(37b)

On,k
anHl 'J2/1+An)[-(l+AJ + (An-feJF-/cn(l-gJP]. (37c)

Damit ergibt sich die zur k. Welle gehörige tangentiale Verschiebung tnk in
der Form

v™ hn,k jfc2(jfc2_!)
(38)

D. Die durch Spanten versteifte Kragmembrane

a) Allgemeines

Steht die unversteifte Kragmembrane unter der Einwirkung der unbekannten

Schubflüsse rn, der äußeren Lasten p, ps und pt sowie der vorgegebenen
Fundamentbewegungen tm und rm, so folgt durch Überlagerung von (IIa,b)
und (7') die gesamte tangentielle Verschiebung längs des ParalMkreises xn,
welche der durch (21a) dargestellten Verschiebung tn der Spante n gleich sein

muß. Es wird so

v=n v=m—1

2 [{ocn+xvßn) X';+xv ¦ ynXv] + E [(ocv+xnßn) X';+xn ¦ yvXv] -tP_n+ tn -9n, (39)
v=l v=n+l

n— 1, 2, 3, m — 1.

Eine analoge Betrachtung für die achsialen Verschiebungen führt zu

sin
r v n v=m—l

aan 27X^,4- S *VX'V
L v=l v=n+l

-sp,n + sn> n l,2,...m-l. (39')

b) Belastung durch die 1. Wellen

Da man eine periodische Funktion nur auf eine einzige Art in eine Fourier-
sche Reihe entwickeln kann, ersieht man, daß die 1. Welle von tn durch das

tn der (21a) und jede k. Welle durch (38) bereits dargestellt ist. Vereinigen
wir die 1. Wellen von tPn und tn, so erhalten wir zunächst
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@n=-(Dnt0-aM-{Dn<1 + AiiJsm<p-(Dn>1-Ar)sn)cos<p-RP>n + Rtin

-©0n-RPin + Rttn=-&°n-Qn, (40a)
A:=oo k=oo_

wobei RP n E Dn ksinkcp + S Dn kcoskcp (40b)
n=2 ' k=2

fc=oo |
^t,n= ~ 2 jc2/jc2_ j\2 [(Anik'Tn)k + Bn)k-Pnk + Cn)k-Tp.nfk)smk(p

+ (An,k'^n,k-Bn,k'Pn,k + Gn,k'^p;n,k)G°^^9] (40c)

bedeutet und die Fourierschen Koeffizienten die Werte

2tt 2t7 2tt

^n,0= 2^tJ tP,nd9'i Dn,k=—\ tp,n sin * 9 d 9 5 Dn,k= ~ tPnCOSkcp d <p;

0 0 0

&=l,2,...oo (40d)
2tt 2tt 2tt-

Pn>k=~ \PnSmkcpdcp) Pnk =—l pnco$kcpdcp; Tpnk ~-\Tp;n)ksmkcpdcp;
0 0 0

2tt

^;n,*= —JTp;n,fcC0Sfc<pdp & 2,3,. .oo (40e)
0

annehmen. Tnk sind als Beiwerte der Xv noch unbekannt. Da wir in (34 a, b, c)
die 1. Welle der Xv bereits ohne Hilfe der (39) gefunden haben, können wir
an Stelle der ersteren aus den letzteren noch weitere Größen bestimmen. Da
die (39) linear sind, werden sie auch von den 1. Wellen unserer Fourierschen
Entwicklungen allein befriedigt. Berücksichtigt man dabei, daß hierbei
~Rp,n + Rt,n~ —^n — ® wird und ersetzen wir die Funktionen av, ßv und yv
durch die Werte der (IIa,b), so folgen mit (34a,b,c) die zur Membranenachse
normalen Verschiebungen A^n, A^n und ftn der Spantenmittelpunkte zu

Xn Xv
v=n r dx v=m—l r ^^
ZPLv'\ (X-Xn)(X-Xv)-jfj+ Z f^'J (X-Xv)(X-Xn)-lfiJ

Xm Xm
Xn X\>

4
- ¦ - - -

+ xn(l + u)\C dx "=" _ v=m-i r gx 1

Xm Xm f 41 a^
Xn Xv

J xftxJtx v l v=n+l J xftxXxl an anE sina
Xm

Die nicht angeschriebene (41b) folgt aus (41a), indem man £ mit rj und Dnl
mit Dnl vertauscht. Jx tt ftx x3 sin3 a bedeutet das Trägheitsmoment und
Fx= 27Txftxsinoc die Fläche eines achsnormalen Membranenquerschnittes. Fx
soll jedoch den Flächeninhalt eines Parallelkreises darstellen.
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Man ersieht, daß A°^n, A^n, ft^ denjenigen Anteil der Gesamtverschiebungen

darstellen, der nur von den Spantenbelastungen herrührt, während die

^n,i> ^w,i> —~ nur von &er Mantelbelastung abhängen.
an

Zusammenfassend können wir sagen:
1. Ist nur der Mantel belastet und zwar so, daß für das unversteifte Kragwerk

längs der zu den Spanten n gehörigen Parallelkreise xn die Tangential-
verschiebungen tP n nur aus der 1. Welle

tP,n ==Dn,o + Dn,isin 9 ^^^ cos cp (42)

der Entwicklung (40a) bestehen, so sind im versteiften Tragwerk wegen
p^n P =Mn 0 nach (34a,b,c) alle Berührungsflüsse Null. Die
achsnormalen Bewegungen betragen hierbei

an
2. Ist hingegen der Mantel lastfrei und greifen an den Spanten die Last-

wirkungen Pg>n, PV)7l und Mn an, so ergeben sich nach (34a, b, c) die
Berührungsflüsse zu M Pt PTn=^^-^smcp + -^coscp, (43)

während die Verschiebungen durch die Anteile A\ n, A°}71, ft^ gegeben sind.
In beiden Fällen rühren die achsnormalen Verschiebungen nur von den

1. Wellen her. Es ist auch leicht zu erkennen, daß für diese die an, at und r
einen ebenen Verlauf annehmen.

Die beiden ersten U der (41a, b) sind identisch mit den Biegeformeln eines
durch transversale Einzellasten belegten, vollwandigen Kragträgers mit
veränderlichem Jx. Die beiden übrigen U stellen den Einfluß der Schubkräfte
unter Berücksichtigung der Konizität dar. In (41c) erkennt man die für den

Kegel abgewandelte Bredtsche Torsionsformel.

c) Restbelastungen, genaue Randbedingungen und Konstantenbestimmung

Um die Gesamtwirkung der Lasten zu erfassen, müssen wir (39) mit
—Qn= — RpiU + Rtn als Absolutglieder integrieren. Wendet man auf (39) den

Differentialoperator D an, so folgen mit (19a) die simultanen, linearen
Differentialgleichungen 8. Ordnung
v=n v—iYi—1

2 [(«n + xv-ßn)Dir(Xv) + xv-ynD''(Xv)] + 2 [(ocv + xn.ßv)D^(Xv)
v=l v=n+l

+ xn.yvD"(Xv)-0t}n= -D"(R^n); n=l,2,...m-l (44)

mit 8 (m— 1) Integrationskonstanten, wobei in 0tn die XntXn" und X*v noch
latent enthalten sind.

Aus der Ansicht II der Fig. 2 erkennt man, daß bei unstetigem -—¦ der

Winkel ft± endlich groß und somit r oo wird. Da ein Zerreißen der Membrane
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nicht eintreten darf, müssen also sn und sn' längs eines jeden Spantenkreises
punktweise stetig verlaufen. Erinnern wir uns an (26a, b, c') und bedenkt
man, daß aus dem Gleichgewicht eines Elementarelementes einer Spante der
punktweise stetige Verlauf auch der Schnittkräfte Nn, Mn und Qn folgt, so
sind wir im Besitze der notwendigen und hinreichenden 8 Randbedingungen4).

Wir legen nun durch jede Stelle, an welcher wenigstens eine von den Funk-
j • / ,/ ,// ,/// ,JY " IV ' "I 4-4-'tionen sPn, sPn, tPn, tPn, tPn, tPn, tP n, rPf7l, rpn, rpn, pn pn unstetig
wird, eine Kegelerzeugende und teilen auf diese Weise das Tragwerk in pu

Sektionen. Für jede von diesen besteht ein Gleichungssatz (44), so daß nun
8/x(m— 1) Integrationskonstante zu bestimmen sind.

Es sei A fv_lv fv+1 (cpv_x) — fv (cpv) der endliche Wert, um den die Funktion /
beim Übergang von der Sektion v—1 zur Sektion v abnimmt, wenn deren
Numerierung im Sinne des zunehmenden Argumentes 99 erfolgt. Dabei sei

9V-i,v dessen Wert an der Übergangsstelle. Damit lauten die ersten fünf der
vorhin beschriebenen Bedingungen5)

AsPn 0; As'Pn 0; Atn 0; Arn 0; Ar' 0, (45a,b,c)(46a,b)

wobei (45c) und (46a,b) identisch mit (26a,b, c') sind. Aus (17a) folgt mit
(46 a) aus der Stetigkeit der Nn

Atn' 0. (45 d)

Ebenso erhalten wir aus (17 b) mit (45 d) aus der Stetigkeit der Mn

Arn" Q. (46 c)

Setzt man (17 a) in (16 b), so folgt mit (46 b) aus der Stetigkeit der Qn

At» - a^3(1-€J3/cnSina/1 v an4(l -ej3(l +AJn ln — Tri T n ^n w f nrp,n- l*oei

Es ist nun zweckmäßig, in diesen Bedingungen die rn durch tn zu ersetzen.
So folgt aus (18a) mit (46a, c) und (45d)

/!/'"- ^3(1-€n)3^n^a q/(l-6j3(l+AJ A(nnntn jg—j ^1^1 ^—j A \Pn~Tp,n)' v401;

Ferner ergibt sich mit Hilfe der (46b) und (45e) aus j- (18a) und (18b)

AC=-an3{1~efSin0C{[e'n + 2Kn(l-*n)WXn + Kn(l-en)AX:}

-gn4(l-0'd+An)'{[(gB + Aw) -2^(1-0]^^,, (45g)
JJJntJn

+ Kn(l-€n)A(TPfn-p'n)}.
4) Die ersten fünf dieser Bedingungen gelten auch dann, wenn konzentrierte Kraft-

Wirkungen auftreten. Sind solche vorhanden, so machen bei den letzten drei Bedingungen
die Nn, Mn, Qn endliche Sprünge, die den Größen dieser konzentrierten Kraftwirkungen
gleich sind.

5) Wir lassen vorläufig den Index v— 1, v weg.
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Aus (19 a) erhalten wir endlich mit (45e,g) die letzte Randbedingung

jC=am3(1;efSina{[ew-(l-0(l + 3>cJ]JXw

-[€n-2Kn(l-en)]AX'n-Kn(l-€n)AX^}
+ aB«(l-cn)»(l+AB) {[(1+AJ_(1 )(2 + 3 )]i4

ünJn
-[(A» + €n)-2Kn(l-6w)]JT;>n-KB(l-€w)JT^ (45h)

-Kn(l-en)A(2p'n-p'Z)}.

In der Folge werden wir nur die (45 a, b,c, d, e,f, g, h) benutzen. Sie gelten
in dieser Form nur, wenn konzentrierte Lastwirkungen nicht vorhanden sind.
Sind jedoch solche zu berücksichtigen, so haben wir bei den Differenzenbildungen

an Stelle der Nn, Mn und Qn deren sprunghafte Änderungen
einzusetzen, welche den konzentrierten KraftWirkungen selbst gleich sind.

Wir bezeichnen, entsprechend den (40), mit Rp>n und RT n die Reste,
welche übrig bleiben, wenn man von pn und r die dazugehörigen 1. Wellen
abzieht. Da die letzteren als stetige Funktionen bei der Bildung der Differenzen

Av_1>v wegfallen, gelten dann die (45 a, b,c, d, e, f, g, h) auch für Rtn, Rp>n,

Rpn und RTp>n.

Die für die Aufstellung der obigen Randbedingungen nötigen Werte der
A sn und A sn', sowie der A tn, A tn', A tn", A tn"', A t™ und A tj1 erhalten wir,
durch Differenzenbildung der (39') und deren 1. Ableitung, sowie der (39) und
deren 1., 2., 3., 4. und 6. Ableitung, wenn man vorher die tn, tPn, pn und rpn
durch die Reste Rt>n, Rp,n, RPf7l und Rr n ersetzt. Stellen wir nun für die

Schnittpunkte der Sektionsgrenze v—l,v mit den Spantenkreisen n zuerst die
(45 a) und dann die (45b) usw. bis (45h) auf, so erhalten wir 8 Gruppen linearer
Gleichungen mit den Unbekannten A Xn', AXn", AXn, AXn'", AX1Y, AXj,
A XYI, A XYU1 (n 1, 2, 3,. m - 1), deren Absolutglieder lineare Funktionen
der AsP>n, AsP>n, ARP,n, A RP,n, A RP>n, A RPn, A R™^, A £gn, A RTP,n,
A R"TP>n, ARpYx, A RV)7l, ARpn sind. Wir wollen diese Beziehungen
„Zwischenbedingungen '' nennen6).

Fangen wir bei der Bildung der obigen Bedingungen mit der Spante 1 an,
so läßt sich die zu (45 a) gehörige Gruppe leicht lösen. Man zieht zunächst
immer die folgende Gleichung von der vorhergehenden ab und dividiert dieses

Ergebnis jeweils durch ocv_1 — ocv. Dadurch verschwinden die oberhalb der
Hauptdiagonale liegenden Beiwerte, während alle andern einander gleich
werden. Subtrahiert man in diesem System wieder jeweils zwei aufeinanderfolgende

Gleichungen, so wird

/)!/=- ZUp'1~J^2 (39"a)

6) Infolge der Zentralsymmetrie der Tragwerksanlage sind die Funktionen a, ß und y
der (39) für alle Sektionen gleich.
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AX' l- Z|^p-i"z1p>P-^^p~^^p+1 (39'»p ap-i_aP ap-aP+i

AX'= + Ä^^~2 "J ^^~1 - J^ "»-*, (39"m-l)
am-2 ~~ am-l ara-l

wobei für die letzte dieser Lösungen die letzte Zeile der (39') zur Elimination
herangezogen wurde. Die Ergebnisse der zu (45b) gehörigen Gruppe folgen
aus (39" a,. m — 1) formal durch einmalige Differentiation. Die Matrixen
dieser beiden Gleichungsgruppen sind einander gleich, während deren Absolutglieder

im allgemeinen von einander verschieden sein werden, da AsPn nicht
immer der 1. Ableitung von AsPn gleich sein wird. Setzen wir nun in die zu
(45 c) gehörigen Gleichungen die soeben gefundenen AXn", so ergeben sich

m — 1 Beziehungen, die sich nach den Xn ebenso leicht lösen lassen, wie die
aus (45a) entstandenen. Bilden wir weiter die zu (45 d) gehörige Gruppe und
setzen in diese die bereits errechneten XJ, so folgen m—1 Gleichungen mit
den Unbekannten Xn'". Verfahren wir mit den übrigen, zu den Randbedingungen

(45e, f, g, h) gehörigen Gleichungsgruppen genau so, so ergeben sich
schließlich auch die AX™, A XJ, A Xj1 und ^X^111. Diesen Vorgang muß
man für jede Sektionsgrenze durchführen. Wir zerspalten auf diese Weise die
Spi(m—1) Bedingungen in 8^ Gruppen mit je m— 1 Unbekannten.

Das allgemeine Integral der (44) hat bekanntlich die Form

x -fi +P^Tl)C .T (»=l>2,3,...m-l) U1)^v,n-$v,n+ ^ ^p,v*P (v=l)2,3,...f*), { }

wobei wegen der Zentralsymmetrie der Tragwerksanlage die Elementarlösungen

r für alle Sektionen gleich sind. Daraus erhält man für die Erzeugende

v—l,v
A Xf_x, v>n

A Ä „>n
+P=äT1\GptV_1 -Cp>v)¦ rf\<pv_x>v), (47')

p=l
wobei für den Grad ß der Ableitungen nacheinander 0,1, 2, 3, 4, 5, 6 und 8 zu
setzen ist. Für die letzte Sektionsgrenze pu 1 folgt analog (28a, b)

+ S2~[Gp,lirf(<Pl + 2 n) - Cptirf>(9l)] (47")
p=l

Setzen wir nun an Stelle der linken Seiten dieser Beziehungen die aus den
Zwischenbedingungen gefundenen Werte der AX^\ so erhalten wir 8(m—1)
lineare Gleichungen mit den Unbekannten [C ,v_i — Gp,„]. Bilden wir auch für
die Sektionsgrenzen 1,2; 2, 3;.../x — 1,/x dieselben Gleichungssätze, lösen alle
nach den [Cpv_1 — Cpv](v=l,2,...pi) auf und addieren diese Ergebnisse, so

ergeben sich die [Cpfl — Cp ^] (p 1,2,. .m—1). Führt man diese Betrachtung
schließlich auch für (47") durch und ersetzt die Cpl mit Hilfe der soeben

gewonnenen Differenzen [Gpl — Cp}jJ, so folgen 8(m — 1) Gleichungen mit den
Unbekannten Cpj/x (p 1, 2,. .m— 1). Bestimmt man daraus diese letzteren, so
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ergeben sich aus \Gpv_x —Cpv\ die CPtl und daraus mit Hilfe der [GPfV_1 — Gpv]
die übrigen Integrationskonstanten7). Bei diesem Rechnungsgang sind immer
8 (m — 1) lineare Gleichungen mit ebensovielen Unbekannten aufzulösen.

Sind die Belastungen alle stetig, so werden alle AR Null, so daß alle Absolutglieder

der Zwischenbedingungen verschwinden, weshalb auch alle A X^
(ß 0,1,2, 3,4, 5, 6,8) den Wert Null annehmen. Die Randbedingungen für
stetige Belastungen lauten also

Xf(cp1 + 27T) Xf(cPl); (n l,2,... m-1); (0 0,1,2,3,4,5,6,8). (48)

was für jedes cpr gelten muß. Zweckmäßig setzt man 9^ 0.

Sind die Spanten vollkommen starr, so werden die Bedingungen (45c-h)
trivial und es liefern nur die (45a,b) effektive Rechnungsansätze, was aber
auch genügt, da in diesem Falle die (39) nur vom 2. Grade sind. Für stetige
Belastungen nehmen daher in (48) die ß nur die Werte 0 und 2 an.

Nach diesen Methoden kann man für behebige Belastungen das exakte
Integral bestimmen. Ist hierbei die Anzahl der Spanten und Sektionen gering,
so kann man die damit verbundene Rechenarbeit noch bewältigen. Im
gegenteiligen Falle ist es zweckmäßig, die (39) nach dem nächsten Abschnitt
umzuformen.

Man ersieht aus diesen Betrachtungen, daß eine Membrane durch den
Einbau von biegesteifen Spanten befähigt wird, auch unstetige Lasten durch
reine Membranenwirkung — also ohne Heranziehung der örtlichen Schalen-

Wirkung — aufnehmen zu können. Die Unstetigkeiten, welche in der unver-
steiften Haut auftreten würden, lösen bei den Schubflüssen rn sprunghafte
Änderungen aus, die endlieh in den biegesteifen Versteifungsringen so

ausgeglichen werden, daß Trennungen, Kanten und Ecken bei den Verformungsflächen

nicht mehr auftreten. Durch den Einbau von Ringsteifen wird also das

Tragverhalten so grundsätzlich verbessert, daß bei unstetigen Belastungen zur
Herstellung der Tragfähigkeit eine örtliche Heranziehung der praktisch immer
vorhandenen Schalenwirkung nicht mehr unbedingt notwendig ist, letztere
nunmehr als zusätzliche Sicherheit gewertet werden kann. Hiervon sind
allerdings örtlich unendlich konzentrierte Belastungen, sofern sie unmittelbar auf
die Membrane und nicht direkt auf eine Spante einwirken, ausgeschlossen.

d) Vereinfachung der Grundgleichungen

Zu diesem Zwecke führen wir durch die Transformation

y y y y y" vrr v" vn
JT ==_

-LV—1 j _v ±v ^v+l -xrtr __ _
-* v—1 •* v 1 v ¦* v+l

^v,v-l ^*v,v-l ^v+l,v ^v+l,v Avv__1 Avv_1 Av+liV AV+1)V

v=l,2,...m-l (49a,b)
7) Man kann die Auflösung der Zwischenbedingungen auch ersparen, wenn man die

(47') unmittelbar in die Zwischenbedingungen einsetzt. Der übrige Vorgang bleibt
derselbe.
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mit den beiden, zunächst vorhandenen Randbedingungen

r0=r+lSo (50)

die neue Unbekannte Yv ein, d. h. wir setzen die (49a, b) in die (39) ein. Dabei
soll der Einsatz der 1. Wellen als erledigt gelten, so daß nach (40) die Absolut¬

glieder nur mehr — Qn betragen. Beachtet man dabei
die (14), so erhalten wir für die m—1 Unbekannten
Yn auch m—1 Gleichungen, in welchen die Beiwerte,
die unterhalb der Hauptdiagonale der Matrix liegen,
bis auf die der letzteren unmittelbar anliegenden
verschwinden (Fig. 7). Die rechten Seiten bleiben bei
dieser Transformation noch unverändert. Bezeichnen
wir diese Zwischenergebnisse vorübergehend mit Gn
und bilden die linearen Ausdrücke

Fig. 7

ißn-1 ~ ®n) : ^n,n-l ~{Gn- Gn+1) I Axn+l,n"> (51)

so erhalten wir bei Beachtung der Relation (15) ein 3-gliederiges System,
welches mit den Bezeichnungen der (13a, b, c) die Form

Y

+ Y,

+ Y'„

" i-n-1 \

9>"
"n—l,n—2 + ¦

&:
^ + K.

*n—l,n—2 jti—1, n—2

K,
- + ¦

Kn—l,n—l + ¦
*9v

Jn—l,n—2 Jn—1, n—2

-1.71-1 _ ^n-l,n\
,,n—l ^n,n—l!

l,n-l _ ^n-l,n\
,n—l ^n,n—ll

Jn,n—1

ft" ft" ft"u n—1, n—1 un—l,n un—l,n ft"vn-1, n-1

+

*-*n,n—1

&n,n-l _ ,„,,«,

^n,n—l ^n,n-

J n, n—1 Jn+l,n an+l, n

K u n,n
~^n+l,n

+ ^n, n+1

^n+l,n,
)-

+ 1 +

+

+ 1 +

+ F:

+ *n+l

/ ft" ft" ft" ft" \ 1
I un,n—l _ un,n u n,n un,n+l \ A I

\ A A A A / " n+^n\\ ^n,n-l ^n,n-l ^n+l,n ^n+l,n/ J

[(-
79«' ft' ft'un—1, n—1 un—l,n u n—l,n ^n-1, n+1

Jn,n—1

^n, n-1 _
^n,n—l

Jn+l,n

K K
Jn,n—1 Jn+l,n

+

(¦

n+l\

¦(¦

7$' 79-'u n,n—1 un,n K.

+

yn,n—1

ft"un,n

¦ + -

A

-*n,n—l

K-i,
^n,n-l
ft' ft'un—l,n un3n

+

+ -

J n+1, n

ft"untn
An+l,n
ftf

ß.
¦ + ¦

J n, n—1

^n,n—1 ^n,n—l
+ -

J n+1, n

1
J n+1, n

Jn+l,n
/ \
71,71+1 1

71+1,71/

/ \71,71+1 1

7i+l, nl

-):
,nl

-)=
,71/

"n+1.

K+l.

K+l.

J 71,71—1

i 1
J 71+1, 71

J Ti+1, n

^n+1
A n+1, n

(52)
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annimmt. Setzt man n 2 und beachtet die Randbedingung (50), so erhalten
wir die obere Randgleichung, die nur die Unbekannten Y2 und F3 enthält. Da
jedoch hierbei Qx 4=0 wird, lautet hiefür die rechte Seite noch

ub-t "^9 ""2 wuo

^2,1 ^2,1 ^3,2 ^3,2

Die der Einspannstelle anliegenden Randgleichungen erhält man hingegen aus

(6rm_2 — (*m-i)'- Am_lm_2 — (^m-i'Amm_1 (51a)

und Gm_1:Am>m_1, (51b)

was sich auch aus (51) ergibt, indem man n=m— 1, n m setzt und bedenkt,
daß Gm und Gm+1 gar nicht existiert. Es wird also mit den Bezeichnungen der
(13a,b,c)

(ft" ft" ft" ft" \
_ u m-2, m-2 _,_

u m-2, m-2 ^771-2,771-2 _ ^ m-2, m—1 1 a

A A A A /' n^-l,m-2
^Jm-2,m-3 ^Jm-2,m-3 ^Jm-l,m-2 LAm-l,m-2/

(ft' ft' ft' ft' \
_ um-2,m-S um-2,m-2 um-2,m-2 _ um-2,m-1 \ a

A A A A ' nm-l,m-2
^771-2,771-3 ^771-2,771-3 ^771-1,771-2 ^771-1,771-2/

T / 9>" 9>" 9// 9>/r 9/' 9i" \
i V" i xrm-2,m-2 xrm-2,m-l ^77i-2,m-l xrm-l,m—2 ^m-l, ra—1 l7m-l,m-l\ /i+ ^m-i l-j + j +^ + 2 2 ^ r A

L\ ^771—1,771-2 ^m—1,771—2 ^m,m—l *-*m—l,ra—2 ^771—1,771—2 ^-,m,m-l /

(79>"
79>" 79-" \u 771—1, 771—1 _ ^ 771—1, 771—1 _ ^ 771—1, 771—1 l A

^771—1,771—2 ^W—1,771-2 ^771,771-1 /
_L V \ i "m—2,771—2 ^771—2,771—1 ^771—2,771-1 ^771—1,771—2 ^771—1,771—1 ^771—1,771-1 \ /«+ ¦^771-1 l-j +j + -i - + 2 ^ 2 1. ^

L\ ^771—1,771—2 " 771-1,771—2 ^ 771,771—1 "771—1,771—2 ^J771—1, 771—2 ^771771—1 /
/

I
^771—1,771—2

_
^771—1,771—1

_
^771—1, 771-1 \ A

\ ^771—1,771—2 ^771—1,771—2 ^771,771-1 /
/ 79>" ft" ft" \

i Yn I ^771—2,771—1 | ^771—1,771—1 u 771-1,771—1 1 ^
\ ^J77l-l,77l-2 ^771—1,771-2 ^771,771-1 /

I Y I ^771-2,771-1 ^771-1,771-1 ^771-1,771-1 \ /| _ ^771-2 ^771-1 ^771-1 /^Q\fi» /] +J "^ J )' nm,m-l— ~2 /l /I * '\ "771—1,771—2 ""771—1,771—2 ^"J 771,771—1 / ^771—1,771—2 ^ TU—1, 771—2 ^ 771,771—1

(Q//
Qtf Q// \

^771—1,771—2 ^771—1,771—1 ^771—1, 771—1 \ /I

^771-1,771-2 ^771-1,771-1 ^771,771-1 /
\ V I ^771—1,771—2 ¦ ^771-1,771—1

_,
^771—1,771—11 A+ *m-\ I - ^ + 2 + ~Ä 1 " A

\ *-*m—1,771—2 ^ 771—1, 771—2 " 771,771—1 /

i Y" I — rn—l,m-1 \ ^ 4. V | _ y^-1, m-l\ /i ^TiM /f / * ^771,771-1 "T" ^ 771 I A I • ^TTljTTl-l ~ /|\ nm,m-l / \ nm,m-l I n

J77l—1 771—2

J
771, 771—1

771—1,771-2

J
771, 771+1

J 771,771—1
J

771, 771-

J 771,771—1

^m-1
(54)

J 771,771—1

Man bekommt diese beiden Randgleichungen auch aus der (52), indem man
darin zunächst n m — 1 bzw. n m setzt. Bedenkt man, daß das Tragwerk
außerhalb der Einspannstelle nicht mehr existiert, so müssen wir noch

Ym+1 0; Qm=Qm+1 0; Am+lm+1 co (55)
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Xm

setzen. Außerdem verschwinden wegen J 0 für die Stelle m die Beiwerte der
(12a,b) d.h., es gilt

"771 0; ft» 0; ym 0 (56a); am+1 0; /3m+1 0; ym+1 0. (56b)

Daraus folgt wieder, daß auch die ft" und &' verschwinden, in denen der
Zeiger m oder m-f 1 vorkommt. (55), (56a, b) und (50) sind somit die
Randbedingungen des eingespannten, versteiften Systems.

Die Beiwerte der Bestimmungsgleichungen (52) und deren Randgleichungen
lassen sich noch bedeutend vereinfachen. Aus den (IIa,b) ergibt sich zunächst

xp xp

o//
1 f/, xp\ /i xk\ dx Q, 2(l + u) f dx ,_„

Xm Xm

Damit erhalten wir für den Koeffizienten von Y"n_x der (52)

Xn-1 Xn-1

A =\ l f/i X»-A(i X"-A dx l f/l xn-iY dx
U~X Un-l.n-2J\ X )\ X)X»X An_Un.J \ x)x&x

Xm, Xm

Xn—\ Xn—\

_
1 C(l_ ^»-i\2 dx _1 C/l_ xnA / xn\ dx

An,n-lJ \ X X&x /!„,„_! J \ * / \ X ] X&x
Xm Xm

Xn

+a^/(-V)(-^)^l =**'«'¦.«• <58>

Xn-1

Dabei haben wir für das letzte Glied ftn-1>n das Integrationsintervall [xm,xn]
in [xm,xn_1] und [xn_l9xn] zerlegt. Da nun die ersten 4 Integrale gleiche
Grenzen haben, kann man sie zu einem vereinigen, dessen Integrant

(i-5^) [a-2— (1-^-1+^r)+jJ-(-1+^1+1-?)\ X I lnn-1,Ti-2 \ X X / nn,n-l\ x x I

dx
xft^

verschwindet, so daß nur
Xn

'•^i.n-1 J \ X J\ x) X&x
An Esin2«

übrig bleibt.
Eine analoge Betrachtung ergibt den Beiwert von Yn_1 zu

Xn

Bn_i=_2J^j^aXn_Ux^ {%Q)

&An,n-l J °x
Xn-1

Für den Beiwert von Yn" ermitteln wir zunächst den Wert seiner 1. Zeile.
Wir erhalten nach Multiplikation mit E sin2 oc-Ann_1

12 Abhandlung XIII
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Xn-1 Xn-1
f i r r/i_xn-i\2dx _ ffi_x*-i\(i xAdx
Un,n-A] \ X X&x J\ X \ Xjx»x

Xm, Xm

Xn

-J('-¥)K)t]
Xn-1

Xn Xn—1

+
1 f _ f Ci_X*-A (1 _?*\ — _ f (i-x^=i) (1 XA dx

^n+l,n l J \ x J\ XJ x&x J \ x )\ x) X&x
Xn—1 Xm

Xn-1 Xn

j_ f (l - X"-A l^ - X"+A dX
l (7l _ X»»-l\ /l _ gn+l\ <**

+ J \ x )\ x )xöx+ J \ ar M x /'sft,
3?m Xn— 1

#n+l

+ /('-^)('-^)^J}- <«>

#n

Dabei haben wir wieder die Integrationsintervalle [xm,xn] und [#m,#w+i] in
[xm>xn-il K-i^ti] und in lxm,xn-il lxn-i>xn)> lxn>xn+il zerlegt. Faßt man
wieder die Integrale gleicher Grenzen zusammen, so ergeben die ersten 4

Summanden von (61) wie bei (58) wieder Null und der Rest zieht sich auf
Xn Xn+1

^r^Jl1-~f1)^'x+Antn_1An+liJ {l-^r)[1--ir)i^x\ (62)

Xn—1

zusammen, wenn man bedenkt, daß

r i l
\

Xn ] l (i Xn-i\
L ^7i,7i-l X X^n,n-l\ ^7i,7i-l \ x 1

ist. Beachtet man bei Auswertung der 2. und 3. Zeile, daß die Indices
derselben aus denjenigen des Beiwertes von Y" _x durch Vermehrung um 1

entstehen, so erhalten wir
Xn+l

Eairi
i r i r /x _ x»\ u _ xn+i\dx
"^«lA.n-iAi+i.nJ l x/\ x } x&x

Xn+1

-"ti+1,

Fassen wir in den (62) und (63) wieder die Integrale gleicher Grenzen zusammen,

so wird der Beiwert von Yn"

Xn Xn+1

A
1 [1 (V, xn-lVdx 1 [/ Xn+Iydx]

» ESinZ«[Aln_J \ x x&x + A*J \ x x&J'
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wenn man beachtet, daß nun auch

I" l Xn 1 1 L xn+l\
L ^n+l,n x x^n+l,ni ^7i+l,7i \ x 1

ist.
Eine analoge Betrachtung liefert den Beiwert von Yn zu

Xn Xn+1

2(l + r)\x\_1 dx xj+1 r dx 1

E \_A\,n-i J x* &x
+

Al+1>n J z*&J ¦ l° 'JS Y^n.n-
Xn-1 Xn

Die übrigen Koeffizienten folgen aus den bisherigen durch Indexvermehrungen.

Die Mittelgleichungen von (39) nehmen nach einigen weiteren
Umformungen schließlich die Form an

Xn
dx

¦^-n-l ' A2 \x xn~l) \x Xn) ~J -^ti-1 * ~Ä2 an-l an ~Ynn,n-lJ üx an,n-l J Jx
Xn-1 Xn-1

Xn Xn+1

~™n\~Ä2 (x~xn-l) ~TJt~Ä2 \x~xn+l) ~T~\
Lnn.n-lJ üx nn+l,nJ dx\

Xn—1 Xn

Xn Xn+1

lnn,n-l J °x nn+l,n J üx\
Xn—1 Xn

Xn+1
__ _ Xn+1

% dx
+ M" an+1 [ix x )(x x — -M 2(1 + /X)r7 a2 f-TJXLn+x .2 \A Jbn) \Jb An+1) j 1Y1n+l Ai an an+l

*-* n+1, n J tJx nn+l,n J J*

77

^n~l ^n ^7i _ ^7i+l
^71,71—1 ^71,71-1 ^71+1,71 ^"71+1,7

Jx TTftxxnZsm*x; an ansina; Mn=— Yn. (65)
xn

Die obere Randgleichung erhält man daraus, indem man n — 2 setzt und
die Randbedingung (50) berücksichtigt.

Wertet man die (53) und (54) auf dieselbe Weise aus, so erhalten wir die
beiden Schlußgleichungen, welche sich auch aus (65) ergeben, indem man
darin n m—1 bzw. n m setzt, die Randbedingungen (55) berücksichtigt

Xm+1
und beachtet, daß wegen (56b) alle j in Wegfall kommen. Die linke Seite

Xm+l
der vorletzten dieser beiden Schlußgleichungen ist 3-gliederig und hat
dieselbe Gestalt wie in (65). Ihre rechte Seite ist jedoch der der (53) gleich.
Die letzte der beiden Schlußgleichungen ist hingegen nur 2-gliederig und
lautet
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Xm

'dx-mjrn am-l f / w \dx ,.- 2(l + /x) 2 f dx
^m-l~Ä2 I \x~xm-l)\x~xm)^f -^m* ~Äü am-l' am ~F^ 771,771—1 J **X ^771,771+1 J ÜX

Xm-1 Xm-1

Xm Xm

-MlJ^ \(x^m_lfdx + Mm.2^all_x.aJdf= -~-§^- (66)
^771,771—1 J **X ^J 771,771—1 •/ ^iC " ^ 771,771—1

Xm—1 Xm—1

Sind die Spanten vollkommen starr, so verschwinden in (40) bei den Qn
die Btn, so daß in den (65) die rechten Seiten nur mehr lineare Funktionen
der nur von den Belastungen abhängigen RP n sind. Man kann also aus den
so erhaltenen Bedingungen die Unbekannten Mn bestimmen. Es sind dabei
simultane, lineare Differentialgleichungen 2. Ordnung mit 3-gliederigen Formen

zu lösen.
Sind hingegen die Spanten elastisch, so wenden wir auf die (65) und deren

Randgleichungen wieder den Differentialoperator D an. Für die Absolutglieder
wird dann bei Berücksichtigung der (40 a, b)

D(Qn) -&tf7l + D(RPfn) n =1,2,... m-1. (67)
Da nach (19a)

^t,n ~ ^1,71 + *2,7t

ist, ersieht man aus den (20a, b), daß in den &t n die Xn, Xn" und X^ enthalten
sind. Übt man auf diese die durch (49a) und deren 2. und 4. Ableitung
dargestellte Transformation aus, so erkennt man, daß dann in der rechten Seite
der w-ten Gleichung von (65) die Yn_2, Yn_x, Yn, Yn+X, Yn+2 und deren 2. und
4. Ableitungen auftreten Es entstehen also Differentialgleichungen 8. Ordnung
in 5-gliederiger Form, wobei deren Randgleichungen aus den zum System (65)
gehörigen auf analoge Weise folgen. Diesen gesamten simultanen Gleichungssatz

wollen wir mit (65') bezeichnen.
Für die Bestimmung der zu (65') gehörigen Integrationskonstanten bilden

wir zunächst aus (49 a) die Transformationsgleichung

{ß) xv^AMf_x xyAMf xv-AMf x^AMfj,AXf -, + —. + —, -= (49
nv,v-l nv,v-l nv+l,v nv+l.v

Kehren wir diese für ß 1 unter Bedachtnahme auf (50) um, so ergeben sich
die A Mnr als lineare Funktionen der A Xn'. Setzt man in diese die zu den
Randbedingungen (45a, b) gehörigen Lösungen (39") ein, so folgen die A Mn'
als Funktionen der vorgegebenen A sP. Analog ergeben sich die A Mn". Die
(65) bzw. (65') stellen mit ihren 1., 2., 3., 4. und 6. Ableitungen die restlichen,
zu den Randbedingungen (45 c, d, e,f,g, h) gehörigen Zwischenbedingungen
dar, aus denen entsprechend dem Absatz c) die noch fehlenden A Mn, A Mn"\
A M^, A M%, A M™ und A Mjni gefunden werden können. Hierbei haben
wir bei starren Spanten mit 3-gliederigen und bei elastischen Spanten mit
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5-gliederigen Gleichungsgruppen zu operieren. Dieser Rechnungsgang ist für
jede Sektionsgrenze durchzuführen. Nachdem man das allgemeine Integral
für (65) bzw. (65') aufgestellt hat, gestaltet sich der restliche Rechnungsgang
analog Absatz c). Dabei werden die Spu (m— 1) Gleichungen wieder in /x Gruppen

mit je 8(m— 1) Unbekannten zerspalten. Da in jeder n-ten Gleichung die
Beiwerte von Xn gegenüber den anderen Beiwerten dominieren, kann man
sich bei der Auflösung dieser Systeme der Iterationsverfahren bedienen.

Mit dieser Umformung der Grundgleichungen ist auch eine bedeutende

Vereinfachung der charakteristischen Gleichung des Systems verbunden.
Aus den Mn folgen nach Multiplikation mit xn die Yn, woraus sich aus

(49 a) bei Einhaltung der (50) endlich die Schubkräfte Xn und daraus die
Schubflüsse rn ergeben.

e) Lösung mittelst Fourierscher Reihen

Die im Absatz c) beschriebene genaue Anpassung des allgemeinen Integrals

an die Randbedingungen ist selbst bei einer geringen Zahl von Spanten
und Unstetigkeitsstellen auch bei Benutzung der vereinfachten Grundgleichungen

noch umständlich und führt meist zu unübersichtlichen Endformeln.
Man entwickelt dann zunächst die Restfunktionen RPn und Rtn nach (40a,
b, c, d, e) in Fouriersche Reihen. Setzt man das sin-Glied der h. Welle in die
(39) ein, so ergibt sich nach Kürzung durch sin £99 der Satz algebraischer,
linearer Gleichungen

v=n v=m—l J^
Z[(«n + xv-ßn)k*-xv-yJTVtk+ E {(^v + xn-ßv)ki-xn-yv\TVtk- l'\ Tn!k

V=l V 7l+1 *' V76 ~L)

Dn>k + Bn>k-Pntk + Cntk-Tp;ny, (»=1,2,... m-1). (68a)

Zum Glied Tvk-cos kcp gehört ein analoger Gleichungssatz (68b) mit den
Unbekannten Tvk und den rechten Seiten Dnk — Bnk-Pniic + Cnk'Tvnk.
Aus (68a) und (68b), deren Matrixen einander gleich sind, erhalten wir also
die Beiwerte Tnk und Tnk der Schubkräfte durch algebraische Auflösungsprozesse.

Benutzt man die umgestalteten Grundgleichungen (65) mit ihren
Randformen, so werden (68a, b) bei starren Spanten 3-gliederig und bei
elastischen Spanten 5-gliederig.

Wendet man diesen Rechnungsgang auf sämtliche Glieder von (33 a) an,
so erhalten wir die Xn in Form von Fourierschen Reihen, deren Summenwerte
mit den Funktionswerten der nach Absatz c) ermittelten exakten Lösungen
bis auf die Unstetigstellen übereinstimmen, an welchen der Reihenwert gleich
dem arithmetischen Mittel aus links- und rechtsseitigem exakten Funktionswert

ist. Da jede Welle die Periode 2tt hat, sind die Randbedingungen (48)
für jedes Glied von (33 a) erfüllt, so daß die so erhaltenen Ergebnisse, bei
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Bedachtnahme auf die obigen Einschränkungen, als exakte Integrale der
Grundgleichungen gelten können8).

Der Vollständigkeit halber weisen wir noch darauf hin, daß auch hier bei
allen Gleichungssystemen, und zwar besonders bei den 3-gliederigen und
5-gliederigen Formen, in jeder Gleichung ein Beiwert gegenüber den anderen
dominiert, so daß die Auflösungen auch durch Iteration gefunden werden
können.

Die Konvergenz des gesamten Verfahrens wächst mit steigendem k ganz
bedeutend.

f) Fundamentbewegungen

Wir erinnern zunächst daran, daß entsprechend den Ausführungen zu (7")
rm hierbei keinen Einfluß ausüben kann.

Der Rechnungsgang gestaltet sich genau so wie in den Absätzen b) und c)
dieses Abschnittes, nur muß man an Stelle der von den äußeren Belastungen
ps,pt, und p herrührenden Verschiebungen tpn der Kragmembrane die durch
die Fundamentbewegungen sm und tm in Höhe eines jeden Spantenkreises
auftretenden tangentiellen Verschiebungen

tstn=x^LZ^s,m+X^tm; (n l,2,...m-l) (69)st'n xmsmoc
m

xm
m v ' v ;

setzen.
Bedient man sich wieder der Fourierschen Reihen, so muß man, da sm in

ihrer 1. Ableitung auftritt, jeweils ein cos-Glied der sm mit einem sin-Glied der
tm zusammenfassen und umgekehrt.

Es ist leicht einzusehen, daß durch die 1. Wellen keine Schubflüsse rn
entstehen.

Zusammenfassung

Mit den in dieser Abhandlung entwickelten Verfahren kann man jede kreis-
kegelförmige, zentralsymmetrisch geformte, durch beliebig viele starre oder
elastische Spanten versteifte Membrane mit veränderlicher Wandstärke für
unsymmetrische, stetige oder unstetige Belastungen berechnen. Nach einer

genauen Erläuterung der Randbedingungen des Problems wird für die Grund-
gleichungen, die in Form von linearen, simultanen Differentialgleichungen
2. oder 8. Ordnung — je nachdem die Spanten starr oder elastisch sind —
auftreten, die Anpassung der allgemeinen Integrale an die obigen
Randbedingungen für unstetige oder stetige Belastungen generell durchgeführt.

8; Näheres, insbesondere bzgl. des Konvergenzbeweises, analog wie in der Abhandlung

des Verfassers: «Die genaue Membranentheorie der prismatischen Paltwerke.» Int.
Ver. f. Brückenbau und Hochbau, Abh. XI. Seite 129 (1951).



Die durch beliebig viele elastische Spanten versteifte, kreiskegelförmige Membrane 173

Diese Grundgleichungen können in 3- bzw. 5-gliederige Formen umgewandelt
werden, wodurch die Berechnung beim Vorhandensein beliebig vieler Spanten
praktisch überhaupt erst ermöglicht wird.

Für verwickelte, unstetige Belastungen ist es immer zweckmäßig, sich der
Fourierschen Reihen zu bedienen. Dadurch wird die Rechnung schematischer,
so daß man ungeschultere Hilfskräfte mit Erfolg einsetzen kann.

Ist die Veränderlichkeit der Wandstärke analytisch festgelegt, so kann man
die auftretenden Koeffizienten ein für allemal in zweidimensionalen Tabellen
festlegen.

Durch die Aussteifung mittelst Spanten wird das Tragverhalten
grundsätzlich verbessert.

Zwischen diesen Tragwerken und den gewöhnlichen Durchlaufträgern
besteht eine enge Verwandtschaft, die besonders in den umgeformten
Grundgleichungen erkenntlich wird.

Bestimmt man auch die radialen Verschiebungen rm, so kann man die
durch diese verursachte, aber nach beiden Seiten hin rasch abklingende
Schalenbiegung nach den bekannten Iterationsverfahren näherungsweise
bestimmen.

Wählt man das hier ausführlich behandelte „Kragwerk" als Grundsystem,
so kann man daraus die Theorie der beliebig gestützten Balken- und
Durchlaufträger von kreiskegelförmiger Form entwickeln.

summary

With the procedure developed in this paper any axially symmetrical right-
circular conical membrane of variable wall-thickness stiffened with any number
of rigid or elastic ribs can be computed for unsymmetrical continuous or dis-
continuous loading. For any exact Interpretation of the boundary conditions
of the problem, the adjustment of the general integral to the upper edge
conditions for continuous or dis-continuous loading is carried out in all cases from
the basic equations which appear in the form of linear simultaneous differential
equations of the second or the eighth order according to whether the ribs are
rigid or elastic.

These basic equations can be transformed into three- or five-linked forms
whereby the calculation is for the first time made generally practicable in the
case of any desired number of ribs.

For complicated dis-continuous loads, it is always desirable to make use
of Fourier series. Thereby the calculation becomes orderly so that irregulär
auxiliary forces can be successfully brought in.

If the Variation of wall stiffness is analytically established, the relevant
coefficients can be laid down once for all in two-dimensional tables.
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The load-bearing capacity is basically improved by stiffening the middle-
most ribs.

Between this type of girder and the ordinary continuous girders, there is

a close relationship which is especially recognisable in the transformed basic

equations.
If these should be needed to find the radial displacements rn, they can be

approximately determined by known methods of iteration, as can be the shell-

bending produced by them, though rapidly diminishing on both sides.

If the "Collar-work" so fully treated here, is chosen as the basic system,
the theory can be developed from it for any braced girder-work or continuous
girder of right-circular conical form.

Resume

Le procede ici expose permet de calculer toute membrane d'epaisseur
variable, de forme conique circulaire ä symetrie axiale, renforcee par un nombre
arbitraire de membrures rigides ou elastiques, continues ou discontinues et
dissymetriques. Apres avoir presente d'une maniere precise les donnees marginales

du probleme, l'auteur adapte l'integrale generale aux conditions marginales

ci-dessus, pour des charges continues ou discontinues, pour les equations
de base qui se presentent sous la forme d'equations differentielles lineaires
simultanees, du deuxieme ou du huitieme ordre, suivant que les membrures
sont rigides ou elastiques. Ces equations de base peuvent etre transformees en
relations ä 3 ou 5 termes, seule disposition permettant un calcul pratique,
lorsque la membrane comporte un nombre arbitraire de membrures.

Dans le cas des charges complexes non continues, il est toujours opportun
d'utiliser les series de Fourier. Le calcul est ainsi rendu plus schematique,
ce qui permet de faire appel ä des calculateurs auxiliaires non specialises.

Si la variabilite de l'epaisseur de la paroi est definie analytiquement, les
coefficients qui interviennent peuvent etre determines une fois pour toutes
dans des tableaux a deux dimensions.

Le renforcement par des membrures ameliore essentiellement les possibili-
tes de charge.

II existe une parente etroite entre ces dispositifs porteurs et les poutres
continues habituelles, parente qui est particulierement mise en evidence dans
les equations de base transformees.

En determinant egalement les deformations radiales rm, on peut calculer
d'une maniere approchee, par les methodes connues de recurrence, la flexion
qui en resulte, mais qui s'attenue rapidement des deux cötes.

En choisissant comme Systeme de base le dispositif en encorbellement,
largement traite ici, on peut en deduire la theorie des poutres continues de

forme conique circulaire, avec appuis arbitraires.
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