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Instabilité de I’équilibre des voiites polygonales

Das Unstabilwerden von Faltwerken

Instability of equilibrium of polygonal arches

Prof. Dr. Ing. Evrro GianGrEco, Napoli

I

Dans un précédent travaill), j’ai envisagé le probleme de la détermination
des charges critiques dans les vofites polygonales en appliquant la méthode
habituelle de la membrane. Cette étude, comme je 1’ai déja signalé, constitue
un premier essai de recherche dans un domaine qui ne me semble pas, jusqu’a
ce jour, suffisamment développé. Ces genres de votlites ont, par contre, une
importance sans cesse croissante dans la Technique Moderne de Construction,
d’autant plus qu’elles sont les sceurs jumelles des vottes minces pour lesquelles
le méme probléme a été largement traité?).

Dans la présente étude, je me suis servi des considérations énergétiques en
conformité du théoréme de DIRICHLET que je vais rappeler brievement3).

,»,La condition nécessaire pour qu’un systéme ait la forme d’équilibre stable
est que 1’énergie potentielle totale E (somme de 1’énergie totale élastique et
de I’énergie de position) soit un minimum.* C’est-a-dire que 1’énergie £ qui
doit déja satisfaire a la condition:

HE =0

1) V. ELro GiaANGRECO. Instabilita nell’equilibrio delle strutture scatolari. Rend. Ace.
Scienze fis. e mat. della Soc. Naz. di Scienze, Lettere e Arti in Napoli. Serie 4. Vol. X VII.
1950.

2) V. A. GavuL1. Stabilita nell’equilibrio d’una volta trave. Rend. Acec. di Scienze fis.
e mat. della Soc. Reale di Napoli. Serie 4. Vol. XI. 1941—1942. — V. G. KrarL. Molti-
plicatore critico A, d’alla distribuzione di carico su una volta autoportante. Rend. Acc.
dei Lincei dic. 1946, gen. 1947. — V. EL10 G1aANGrECO. Stabilita dell’equilibrio delle volte
sottili autoportanti. Atti dell’Istituto di Scienza delle Costruzioni. Universita di Napoli.
4° 11, febb. 1951.

8) Je pense que c’est 1a le seul moyen d’arriver & des résultats concrets en vue d’appli-
cation pratique, étant donné que la méthode d’Euler n’a pu me conduire qu’a des for-

‘mules laborieuses. '
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pour que le systéme soit en équilibre, doit encore satisfaire, en vertu du
théoreme de DIRICHLET, & la condition:

S, E>0

pour que 1’équilibre soit stable.
Par suite 1’équation: =0 (1)

est la condition de 1’équilibre indifférent, c’est-a-dire la limite entre 1’équilibre
stable et 1’équilibre instable. En appelant:

® [D’énergie potentielle élastique;

L, le travail développé par les contraintes internes correspondantes de la
forme d’équilibre pour les composantes du deuxieme ordre de la défor-
mation; '

et L," le travail développé par les charges extérieures pour les composantes
du deuxieme ordre des déplacements;

on peut écrire avec la relation (1)
Sl =D+ A(Ly— Ly,') = 0%)

dans laquelle A est un coefficient de multiplication des charges assignées.
Pratiquement on fait varier la forme initiale d’équilibre a laquelle cor-
respond 1’énergie E de telle facon que la nouvelle forme d’équilibre soit tres
proche de la précédente®). A cet effet, on se sert des variations du, dv, et dw
des composantes des déplacements exprimées par séries de fonctions connues
et satisfaisant aux conditions aux extrémités avec des coefficients inconnus.
A cette nouvelle forme d’équilibre correspondra une énergie potentielle donnée
par:
E,=E+8,E+8,F
Pour la condition de minimum §, £, = 0, correspondant a cette forme, ainsi
qu’avec la condition §; ' = 0, on arrive a 1’équation:

95, 25, E 28, E
ou:
08,8 _ 05, _ 03,8 _ -

odu;,  08v;, Odw;

1) V. KraLL. Stabilita dell’equilibrio elastico. Annali di matematica pura e applicata.
Serie IV. Tomo XXIX. Ed. Zanichelli 1949,

5) V. DiricHLET. Uber die Stabilitit des Gleichgewichts. Journ. f. r. u. angewandte
Math. Bd. 32. 1846. — V. LiapoUNoO¥FF. Sur l'instabilité de 1’équilibre dans certains cas
ou la fonction de force n’est pas maximum. Journ. de Liouville. Ve série 1897. — V. LEvr,
Civita e Arnaldi. Meccanica Razionale. Vol. II. Parte I. Ed. Zanichelli 1926. — V. KRALL.
Meccanica tecnica delle vibrazioni. Parte I. Ed. Zanichelli 1940.
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qui, par la forme quadratique de E dans les coefficients inconnus, conduit a
un systéme linéaire homogeéne dans ces coefficients. L’annulation du déter-
minant qui fournit la condition de compatibilité du systéme offre aussi I’équa-
tion de degré n dont les racines représentent les n valeurs critiques cherchées.
La racine la plus petite est celle qui, pratiquement, nous intéresse.

IL

Pour ce qui a rapport a 1’étude statique de ces voftites, je pense qu’il n’est
pas nécessaire de s’attarder sur une question déja largement traitée®). Je
rappelle seulement les deux hypothéses fondamentales ci-aprés:

1° Que les feuilles ne doivent pas subir des déformations en se gauchissant.

20 Que les efforts internes qui se transmettent pour deux feuilles contigues
le long de I’aréte commune, se réduisent seulement a un effort paralléle a cette
méme aréte, c’est-a-dire, que la liaison de ces deux feuilles est équivalente a
une réalisation au moyen de charnieres.

La deuxieme hypothésé est non seulement une simplification pour le calcul
des efforts internes, mais elle est aussi trés utile parce qu’elle nous fournit une
valeur de la charge critique qui est plus petite que la valeur réelle pour la plus
grande souplesse que cet aspect statique de la votite présente par rapport aux
liaisons effectives.

Convenons de numéroter les arétes de 0 a n, & partir de 1'un des deux
bords dans le sens des aiguilles d’une montre. On a ainsi en correspondance n
feuilles ou dalles et nous appelons #™e celle qui est comprise entre les arétes
(¢ —1)eme et geme (fig, 1). Nous affecterons 'index 7 & toutes les grandeurs
relatives a cette feuille (8, = épaisseur; h; = hauteur; y, = angle aigu que fait

N

8) V. W. Frieer. Statik und Dynamik der Schalen. Springer. Berlin 1937. — V.
G. KraLL. Questioni di matematica applicata. Ed. Zanichelli 1939. — V. O. BELLUZZI.
Scienza delle Costruzioni. Vol. ITI. Cap. XXIX. Ed. Zanichelli 1951.
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la feuille (7 — 1)®™e avec la feuille 7¢™e). On rapporte chaque feuille & un systéme
d’axes de coordonnées rectangulaires Ox, Oy, 0z ayant son origine au centre
de la feuille, ses axes Ox et 0y dans le plan méme de la feuille, le premier
dirigé suivant la longueur de la vofite, le second positif dans le sens croissant
du numérotage des arétes. L’axe des z, perpendiculaire au plan de la feuille,
est positif s’il est dirigé vers l'intérieur de la votte.

Supposons que les charges extérieures soient localisées et réparties sur les
arétes. Appelons F, le vecteur de la force concentrée par unité de longueur de
I’aréte, S; ;, S; ;41 ses composantes dans les plans de deux feuilles contigues
1 et 1+ 1, T, la force qui s’exerce par unité de longueur de ’aréte 7°™e entre la
feuille 72me et la feuille (7 + 1)®™e. De cette facon, une feuille isolée sera soumise
a laction d’une force S; = S, ;_; — 8, ; par unité de longueur dans la direction
de ’axe Oy et & une répartition de contraintes tangentielles 7', ; et 7', dans
la direction de ’axe 0x. Nous avons ainsi dans une section quelconque de la
feuille:

19 Pour la charge uniformément répartie (fig. 2):

T Qi (@) =—8;()
’ 12 g2 (2)

y[ M;(x) = SiT
h

X

t 27 Fig. 2

29 Pour les efforts tangentiels variables linéairement (fig. 3):

Tiep - 3
- = i— N, (z) = j (T, ,—T,)dx (3)
Y 0
h M _ Nk T T)d
x (@) = Y (T; 1+ T;)dx
0
RN, TL - ‘21 - - Flg3

Nous pouvons alors déterminer les contraintes normales o, en chaque point,
en particulier celles situées sur les bords de chaque feuille. En égalant les con-
traintes en correspondance avec chaque aréte commune & deux feuilles, on
arrive a I’équation de laquelle on tire la valeurs des efforts inconnus 7';. L’état
des contraintes est ainsi déterminé complétement en chaque point en fonction
des charges extérieures §;. Passons maintenant & la caractérisation de 1’état
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de déformation. En nous rapportant au systéme de coordonnées déja adopté,
nous remarquons que, pour une feuille quelconque, lorsque la charge S aura
atteint une certaine valeur, nous aurons la déformation de la poutre carac-
térisée par une fleche latérale telle que les divers points P de la poutre subissent
un déplacement dans la direction de 1’axe des z. Nous aurons, en outre, une
rotation autour de I’axe des z qui fait subir & ces mémes points P un autre
déplacement dans la méme direction 0z, proportionnel a leur distance a 1’axe
0z. Choisissons alors en respectant les conditions ci-aprés des déplacements:

w=0 v=0 w=1)+h )y = (wo+Byy)cos T (4)

dans lesquelles w, et B, sont liés aux déplacements correspondants des extré-
0 0

mités inférieure ¢ — 1 et supérieure et inférieure i®™e dans la section faite au

milieu de cette feuille, par les relations suivantes:

_ Wit Wi B, = Wi — Wi,3-1 (5)

Wi 2 27,

Et I’expression de w sera en fonction de ces derniers déplacements:

cos =2 (4")

2 2h; 21

W »+ W, Wy o — W +
w = ( 1,7 1 1+ % %% 1y)
T

Il faut maintenant tenir compte des liaisons entre les feuilles. En appelant v
la composante du déplacement dans le sens 0y, on a dans le milieu de la
feuille (v. fig. 4):

t () (+1

jp Wi W
Wierivr
il Biai
g‘)l
= N
%
Fig. 4
V;CO8y,;, 1— 0,
Wiy g =Vl G0 n—2) (6)
’ SIN y;_y
V:1 71— V;COSy., . ’
wy, = LT iRV G=1..... n—1) (6')

Sin Yi

Ecrivons les mémes relations pour le déplacement de 1’extrémité supérieure
de la feuille (i — 1)®me et pour celui de 1’extrémité inférieure de la feuille (¢ + 1)eme



130 Elio Giangreco
V; —V;_1 COS y;_ :
Wy_y 4 = =L L2 =1..... -1 7
1—1,7 sin 'yi—l (7/ n ) ( )
.1 COS Y, — U, . ,
wi+1’i = vz-l—l Sin ;}:": U (7/ = 0 ..... n— 2) (7 )
(]

Tirons v des relations (6) et (6') accouplées. Les mémes opérations répétées
avec les relations (7) et (7’) accouplées permettent d’écrire une autre expression
de v que nous égalons a la précédente. Nous obtenons ainsi la relation suivante
entre les grandeurs w;_; ;, W ; 1, W; ; 66 Wy 4

Wi—1, — W4,3-1C08 Y51

wW.: :COSV: —W;: .
_ — %) Yi i+1.¢ (8)
SIny;_y

ou entre les grandeurs w, _;, w;, W;,1, Bi—1> Bi» 6 B :

i1 P i "> >
(’wi—l +§_1.2_l) — (wz — %) COSY;_4 (wz o EQ_) Cosy; — (wi+1 _B +12 +1)

siny,;_, siny,

Cette relation nous permet de lier entre elles les déformations w et de trois
feuilles consécutives, de sorte que le déplacement imprimé & chaque feuille
est, non seulement compatible avec les conditions aux extrémités, mais en plus,
avec la déformation de toute la votte.

Passons a exprimer les composantes de la déformation du déplacement que
nous avons établi en tenant compte des infinitésimales du deuxiéme ordre et
en nous servant des relations suivantes?):

M, @ _ du  1[{dv)\? ow\?]
“ ~wte =y te|\er) t\es
ov 1[[/ou\2 ow\?|
e 8
ow 1[[/ou\? ov\?
_ 9w Lifou vv
€ & te oz 2 _(82) +(6z) |
— D@ 8w+ v  ou ou ov 8w__ ov 0w (9)
Ve TV V2 T Gy T 9. T2 by oy oy oz oz
_ (2)__8u+3w ov 0v 0w ouw dw du
Voo =Vo: TVor = 50 T 9x T 0z 0w 0z 0z 0w 0w
I 8v+,6u dw dw du 0v  Ju v
Vou = VeyTVev T 50 T oy T ox 0y oy dy  ox ox

) V. A. Garu1. Complementi analitici utili per la trattazione effettiva dei problemi
di stabilitd dell’equilibrio elastico. Rend. Mat. della R. Universitd di Roma. Vol. 43.
1942. — V. G. KraLL. Moltiplicatore critico 2, d’una distribuzione di carico su una
volta autoportante. Rend. Acc. Naz. dei Lincei. Dicembre 1946.
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Dans le cas qui nous occupe, nous avons:

Do (D) _ @ )2 (2
€D = D — @ — ) @ @ g
@ n? 2 X
€, =8l2 (wo+ Boy)?sin 37

T
€ = cos? —
v B" 21

™ T
7’202; = —Q—Z’BO (wo+BoY) sm?lcos?)—l

T . T
Vos = — 37 (w0+60?/)31n“27

(1) —

'sz BOCOS 2l

131

(9)

De ces composantes, les seules que nous utiliserons dans 1’expression du tra-
vail L, sont: €? et 2. Nous avons maintenant tous les éléments nécessaires
pour commencer notre étude. A ces fins, il est opportun d’étudier au préalable
une feuille quelconque prise isolément et soumise successivement & 1’action

de la charge extérieure et a celle des efforts tangentiels sur les bords.

III. Poutre simplement appuyées et symétriquement chargée®)

Choisissons pour les déplacements u, v, w, les expressions suivantes:

u=0; v=0; (w=w0+/80y)cos%%

SN
Y
. o

Fig. 5

~Ae,

~ /&

Yy

ky

y Fre~

(10)

%) Si la distribution des charges transversales est quelconque il convient de prendre

d’autres termes dans le développement en séries de w.
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En effet, v+ 0 parce que I’on a v=8,2y (comme 1’on peut le remarquer facile-
ment sur la figure 5). La quantité v est une infinitésimale d’ordre supérieur par
rapport & w. Il est donc permis de considérer P= P,.

En effet le déplacement v pourrait donner lieu & une composante de défor-
mation e, qui est déja une infinitésimale du deuxiéme ordre et qui intervient
pour modifier L, lorsqu’il y a une contrainte o,. Dans le cas qui nous occupe,
on a toujours o,=0. On a ainsi évidemment par rapport aux composantes
choisies du déplacement.

2
@ — dew"d +0f Poge — B 07;30

32"

ou B est la rigidité flexionale £ I, rélative & I'axe 0, et C la rigidité torsionale
qui, pour une section rectangulaire allongée, vaut 0,333 Cb3h,

L2, == O LZ = fo-xe:(f)dV_*_Jv xyy(z)dV (11)
ou __ My _rs _ Tr , (section
% =777 TwTTp T 7247 rectangulaire)
1/ow\? 1/dw d By\2
(2) __ Y R P 0 J
) 2(893) Q(dx +Y da:)

On a alors:

L,= —2fMdB°dw°d —2fTBOdZ°dx=

dx
0
. d?TJO d
-2 %%( Bo)
0
1
<~ dw = d?w

= —2!Mﬁod—x“ +2fM,80 dxzodx

0

e terme fini étant évidemment nul. On pourrait aussi obtenir plus simplement
. Y 290
les résultats ci-dessus en précisant que, par effet de la courbure % = %%02—“, on

a une rotation relative (—lrf entre deux sections distantes de dx qui fait tra-

vailler la composante du moment fléchissant dans les nouveaux plans de la
poutre aprés la déformation, c’est-a-dire autour de ’axe des z.
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Nous aurions pu aussi choisir:

x

u=0 o= [FpIE w-w@ @y (10)
0

v est alors une infinitésimale d’ordre supérieur; on a ainsi une composante du
deuxiéme ordre de ¢, et le travail L, est fourni par:

o, [[0v)\? ow ov Jwow _
Lff‘z‘[(%) +(ax)]‘” f [%*%@]”—

14 14

1 ] 1
,8 dw, ov 5 AW, ;
0 0 0

Cette expression s’annule pour le choix fait pour ». Il ne reste plus que le
travail de deuxiéme ordre des charges extérieures pour la composante cor-
respondante v du déplacement.

Par exemple pour une charge concentrée au milieu on a, en choisissant les
expressions (10):

— 4 FB,w, 5 w2+ 4
wO 16 - 2 —‘Fﬁowo—16— (12)

Ly= [o,c®dv+ f 7oy y AV = F By

Tandis que si nous choisissons les expressions (10’) on a, en considérant la
poutre comme encastrée au milieu et soumise dans ’extrémité libre & 1’action

5 F
de la réaction = 9)

2 1 l
_ (I—2x) By 2w, d? w0
v——f? 72 dzd flx,Bo dax
0 0
laquelle donne pour toute la poutre
2
2—2FfBod Do (1 —2) dw %) = F Bywy T2 (12)

L,=0.

9) Le déplacement du milieu par rapport aux appuis d’extrémité est égal au déplace-
ment des extrémités par rapport au milieu considéré comme fixe.

10) On pourrait arriver aux mémes résultats en raisonnant de la fagon suivante: on
considére en plan la poutre cantilever ci-dessus qui a une longueur 1. En considérant la
déformation élastique d’un élément dx d’une distance = de I’encastrement qui tourne de
Wo

d2
do = d

verticale est Bo (I —z) d? wy/dz?. Pour avoir la déformation de l’extrémité en tenant
compte de ’élasticité de toute la poutre cantilever, il faudra évidemment intégrer sur

dx on a ’extrémité libre qui se déplace de (I —z) d? wy/dx? dont la composante

1 — 2 75
toute sa longueur et on a | (I—x) B de (fig. 6).
o 0 dx2 g
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1-x)d
Fig. 6 dg (-dy

Si la charge était uniformément répartie on aurait avec les expressions (10)

2 3 l 243
Lzzvf%%(f)dV—i—J‘ xyy(z)dV ~PBowol —5— P/gowoz plgowoﬂlz (13)

L2’: 0

et avec les expressions (10')

l
Ly~ [ pagv©-plo® = pPowe ™15 (13)

0

dans lesquelles v (¢) et v (l) représentent les déplacements auxquels on doit
affecter respectivement la charge élémentaire pd¢ et la réaction pl. Il est
intéressant de remarquer que 1’on peut tenir compte de la position effective
de la charge en rappelant ce que nous avons dit a la page 132. On a effective-
ment pour une charge appliquée & une distance y, du milieu, un travail qui
est donné par:

)

2
l

f pdx =222 Bui*%o yo si la charge est répartie.l?)
0

si la charge est concentré.

Il est intéressant de remarquer que, selon que la charge est appliquée
au-dessus ou au-dessous de la poutre (y,> 0 ou y,<0) le travail du deuxiéme
ordre dii aux forces extérieures pour les composantes du déplacement augmente
ou diminue en donnant comme conséquence une charge critique plus petite
ou plus grande que celle qui correspond & la position barycentrique de la
charge (6). En général, les écarts sont si petits qu’on peut les négliger. On a
ainsi, en résumé, pour une charge concentrée:

B 2 C n? w2+ 4
8. B =557 o'+ —g7 Bo® = F Bowo—— (14)

11) Selon que la charge est sur la face supérieur ou inférieur on a:

1
2P B ot + [ pp2Tan
4 ° 4
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Des conditions de minimum:

08B _ . 9E _
dwy ?Bo
on tire le déterminant:
Brt 4+ 72
163 ~F 5 o
_F 4 + 72 C 2 -
16 41
lequel annulé fournit la valeur critique de F':
3 VYRBO12
s Lok (15)
S B T
avec un écart de 1,559, par rapport a la valeur exacte.
Pour la charge répartie, on a:
Bxt C n? 2+ 313)
- 2 B ar-
€ = 32 l3w0 + Sl pO pllgowﬂ 12 (16)
et -
3
3 YBC (17)

Per. = 2(772+3) 3

avec un écart de 1,519, par rapport & la valeur exactel4).

12) V. S.Timoshenko, Theory of elastic stability. Mc. Graw Hill Book Company, New
York 1936.
13) Si ’on considére la poutre comme une dalle chargée sur la face supérieure on
trouve pour la fonction d’Airy ’expression suivante:

p(l P P P 3p P
e A R I E e S S A s

et pour les contraintes:

6p (1 2 4p 6p
o= (o= ) ¥ = W+ ey
p. 3 p 2p
W= TV T Y
3 p 6p
W= T s O Y

L’expression de la variation seconde de 1’énergie potentielle totale est fournie par:

Bt 2 243 hl
= gt + g At = Ty plAvwe — F A

S B
laquelle est la méme qu’on trouverait pour la poutre si ’on tient compte du travail da
a la position barycentrique de la charge.

14) V. A. PrLUGER. Stabilitdtsprobleme in Klastostatik. J. Springer. Berlin 1950. —
V. K. pE VRIES. Strength of beams as determined by lateral buckling. — American
Society of Civil Engineers. September 1946.

10 Abhandlung XIII
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IV. Poutre supportant une distribution de charges tangentielles
variables linéairement

Soit: T, 1=o0;q2; T, =‘°‘1:x (18)

les charges appliquées. On peut choisir encore pour les déplacements les
expressions suivantes:
u=0 v=0 w=Wy(x)+f(x)y

avec les mémes annotations déja faites a la page 128 et 129. L’énergie
potentielle élastique garde son expression:

Bt C 72
— 2 2
P =35 W'+ g5 Po

tandis que pour le travail du deuxieme ordre, on a:

dans laquelle v

_ﬁ My _ “i—l_“i lz—xz h,': + )lz‘—xz
U—A+I— ] B +”’2—(°‘i—1 0% B

Yy
I

Apres avoir effectué les intégrations et les simplifications des expressions on

obtient: 5
a2 —

3
L, = 24 L[ (0tg—y = 0¢g) (o2 4 Bo? p2) + (ats—y + ;) b By wp]

en appelant p le rayon d’inertie maximum.
Si ’on avait choisi pour les composantes du déplacement, les expressions

suivantes:
X
T

- P @l v=0  w=w+hoy) (19)
w=—5113z @ x v= w = (Wo+PBoY €oS o7
0
on aurait obtenu?®):

2_3
L, = Tr—fM- U[(otgy — o) Bo? p2 + (251 + 25) B Bp 0]

. -3
Ly = o1 L otg—q — o) wy?

et on retrouve pour L,— L,’ la méme expression que précédemment pour L,.
On a ainsi pour 8,/ 1’expression:

Bt C 2 72 —3
O B = 393 w2 + 81 Bo® + 54 [(ot;_q05) (W2 + B2 p2) + (g +a;) b Bywy]  (20)

1
15) On a en effet: Li =2 | (T; 1—T,) v (x) dz, dans laquelle:
0

w 2 . L wr
u () = Te7 WO’ [sin T — 7 |-
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de laquelle, étant donné les expressions de «; ; et «; fonctions d’un méme
paramétre, on peut tirer la valeur critique de ce paramétre ou la valeur critique
de «;_, en connaissant la valeur de «; ou inversement.

Examinons maintenant quelques cas particuliers ci-aprés:

].0 oci =-O.

On a alors 1’équation du deuxiéme degré qui fournit la valeur critique de

9 72— 3 22_ a| _ m2 -3 Bt " C 2 BCTTG_
2 [( 12 )l h oy 12 l 16l3p+ 11 + 6418 =0

20 —
2 O‘i—l —oci.

La valeur critique est fournie par:
§ - I/ITO

oy
1T 2423 Bh

30 cxi*l = oci .
La valeur critique se déduit de 1’équation du deuxiéme degré suivant:

9 m2 -3 - 72 -3 . (Bt 5 C 72 BOWG_
“i—l( 6 )l “1—g UGEP*a1) " ear

V.

En conséquence, on a pour une feuille quelconque de la votite polygonale
I’expression ci-aprés de la variation seconde de ’énergie potentielle:

B.7t o Czn2 .o oo om24 3
— (7) “
8, B = 3§l3 w +57 B —Siﬁg”wf)”l—lz
™ —3 1 _ @2, g2 o B B 40
+ [(ots_1 — o) (W™ + By p?) + (041 + ;) by By Wiy ]

24

Et pour toute la votte:

. i2 13"7T4 772—3 i2 O,’:»n'z is _3
82E = Z{wg) [3.‘3l3 Y l(“i—l_“i)] +/95)) [SZ Piz“‘ 924 l(“i—l_ai)]

=1

D w2+3, 7w*—3 :

dans laquelle les 27 parameétres wy® et B, ne sont pas indépendants entiére-
ment, mais liés par les conditions de compatibilité (8) ou (8') déja étudiées
a la page 130. }

En utilisant maintenant 1’équation (1’) ¢’est-a-dire les conditions d’extréme
qui sont au nombre de n+216) on arrive & un systéme algébrique linéaire

16) En effet, les parameétres indépendants se réduisent & 2n—(n—2)=n+2. Si la
volte est symétrique, on a encore une réduction des paramétres indépendants.
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homogeéne de n + 2 équations a n+ 2 inconnues. La condition de compatibilité
de ce systéme d’équations nous permet de parvenir & une équation de (n + 2)éme
degré dans la charge extérieure. La racine la plus petite donne la valeur
cherchée.

VL

Passons maintenant & une application concrete. Considérons une votte
a cinq feuilles symétriques et symétriquement chargée. On prendra, en con-
sideration I'instabilité due au poids propre (uniformément le long de la direc-
trice) et due aux charges concentrées le long des arétes. De toute facon, la
distribution des charges extérieures est toujours supposée uniforme le long
de la génératrice. On considérera encore deux formes possibles d’instabilité: la
forme symétrique et la forme anti-symétrique. Dans notre cas, il suffit d’écrire
les conditions de compatibilité seulement pour les deux premiers couples de
feuilles:

(w1 + P 12h1) — (w2 ;i 22k2) cos y, (w2 +—~—~I8 22h2) COS Yy — (w3 i Zh3)

sin y, B sin v,
Bah h h h
(w2+—22 2y — w3———}932 2 COS')/2— w3+————332 2) cosys— w4—lg42 4
sin y, B sin y,

dans lesquelles:

ke . . .

Pour la forme symétrique, étant donné

Bs=0 Wy = Wy Bs=—B:

on tire facilement les deux relations:

h
Wy =— /812 =By hycosy,
h
Wy + :822 2
Ws = siny,

Pour la forme antisymétrique, étant donné

wy =0 Wy = — Wy By = B2

h h
Wy = wlcos'y1+—’8171— cos;zl-i—% cos 2y, —

on a:

Bshs
2

sin y,
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Considérons une volte qui a les caractéristiques élastiques et géométriques
suivantes:
hy=2hy; hy=2hy; 1=10h,
B,=Cy,=2B,; B;=3B,; C,=4B,; O;=6B,1)

Les relations de compatibilité (8’) fournissent dans notre cas: pour la défor-
mation symétrique:

wy = —0,5B,h—1,2498 B8,k
wy = 1,2809w,+1,28098,%

a
TN
7Y

F F
®
Fig. 7

17) Dans la pratique on a pour chaque feuille une section rectangulaire de béton
(m ~ 0) beaucoup plus haute que large (b<h) ce qui nous permet de supposer:

bh b\ Ebh
O_GT(1—0,630—)~§_3_ —

7 2B.
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et pour la forme anti-symétrique:
wy = 0,62489w, +0,31245 8, h — 0,21902 B, h — 1,7106 B h18).

Dans la figure 7 sont indiquées les diverses conditions de charge que nous
avons examinées et au-dessous de cette figure nous dressons un tableau dans
lequel nous consignons les valeurs des charges axiales dans chaque feuille, les
valeurs des coefficients «; , et «, obtenues au moyen de I’équation des trois
efforts tranchants et les valeurs correspondantes de la charge critique respec-
tivement pour la déformation symétrique et anti-symétrique??).

Dans ce tableau sont consignées les valeurs correspondantes aux plus
petites racines??).

S, S, 2 s Val. crit. -
sym. [ anti-sym.
B B
(1) 0,6634 ph 4,5391 ph 1,4642 p 2,0040 p 19,81 e 117,5 7T
B F B B
(2) v 1,6002 ¥ 1,3333 W 0,400072 2,69F 17,55T3
r v B B
(3) 0] 1,6002 ¥ 0,2667 % 0,8000 % 5, 14l—3 21,8 7
F F B B
(4) r (8] : 1,0667 s 0,4000 W 5,44-l—3-— 10 —l;

On remarque que les charges critiques correspondant a la déformation
anti-symétrique sont toutes plus grandes que celles correspondant & la défor-
mation symétrique, comme 1’on pourrait prévoir étant donné que le travail
dt aux charges extérieures est plus petit dans ce dernier cas. Il est encore
intéressant de remarquer que, en correspondance avec la forme symétrique, la
charge critique est plus grande pour la troisiéme condition de charge que pour
la quatriéme et inversement pour la forme anti-symétrique. Aussi cela peut

18) Il est facile de justifier que pour la forme anti-symétrique on a une seule relation
utile (I’autre w; = 0 que l’on tire est intuitive et est déja donnée dans I’hypothése de
départ). En effet, la symétrie annule ou rend connue en général une caractéristique de
I’effort et deux caractéristiques de déformation tandis que l'anti-symétrie permet de
connaitre deux caractéristiques de l’effort mais seulement une caractéristique de défor-
mation.

19) Pour ce qui concerne la charge répartie, les forces sont reportées aux nceuds en
déterminant les réactions d’une poutre continue & trois travées obtenues en aplatissant
les feuilles 2 et 4 et en les supposant appuyées aux extrémités. ,

20) L’équation déterminatrice de la charge critique que 'on tire de ’annulation du
déterminant est du 3éme ou 4éme degré selon que la forme d’équilibre instable est symé-
trique ou anti-symétrique.
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étre justifié en considérant le plus petit ou le plus grand travail developpé
par les charges extérieures. On remarque que le théoreme de DUNKERLY 2!)
est satisfait. En effet, on a: pour la forme symétrique

N S
2,69 514 ' 544

pour la forme anti-symétrique.

1 < 1 + 1
17,5656 21,88 10

Par exemple pour une voiite polygonale qui a les caractéristiques suivantes:
b=0,10m; A=1,00m; !=10m; B =167 tm?
on tire pour la condition de charge (2):
F@® =0,86t/m  F@ =364t/m

Ces valeurs sont certainement plus petites que celles réelles conformément
a ce que nous avons dit au début du travail.

Résumé

L’auteur étudie 1'instabilité de 1’équilibre élastique dans les votites poly-
gonales, en se servant des considérations énergétiques, en conformité du
Théoréme de DIRICHLET. ’

Il détermine avant tout les contraintes de chaque feuille en appliquant la
méthode habituelle de la membrane, il établit ensuite un choix de déplacements
qui respectent les conditions aux tympans d’extrémité, écrit ’expression de la
variation seconde 8, F de 1’énergie potentielle totale de chaque feuille, puis
tenant compte de la compatibilité des feuilles entre elles, il écrit 1’expression
de 3, E pour toute la votte. .

Avec les conditions de minimum, il arrive & une équation de n+ 2 degrés
(n étant le nombre de feuilles de la votite) en p, dont la racine la plus petite
fournit la valeur critique cherchée pour la charge.

Il expose une application concréte pour une voiite de cing feuilles pour
laquelle il détermine la charge critique correspondant & des formes symétriques
et anti-symétriques d’instabilité.

21) Les valeurs réciproques des charges critiques d’un systéme dont les forces exté-
rieures sont la somme de celles des systémes partiels est toujours plus petit (ou au maxi-
mum égal) que la somme des valeurs réciproques des charges critiques des valeurs
correspondantes des systémes partiels.
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Zusammenfassung

Anhand von Energiebetrachtungen nach dem Satz von Dirichlet fithrt der
Verfasser Stabilitdtsberechnungen fiir das elastische Gleichgewicht von Falt-
werken durch.

Er bestimmt vorerst die Spannungen in den einzelnen Seitenebenen mit
Hilfe der Membrantheorie, wéhlt dann einen Zustand von Verriickungen, der
die Randbedingungen in den Endfeldern erfiillt, schreibt den Ausdruck der
zweiten Variation 6, £ der potentiellen Energie jedes Feldes an und geht
schlieflich unter Beriicksichtigung des Zusammenhanges der einzelnen Seiten-
ebenen zum Ausdruck §, £ fiir das ganze Faltwerk iiber.

Die Minimumbedingung fithrt auf eine Gleichung »+ 2ten Grades in p,
(wobei n die Anzahl der Seitenebenen ist), deren kleinste Losung die gesuchte
kritische Belastung liefert.

Fiir ein fiinfseitiges Faltwerk wird ein Zahlenbeispiel durchgerechnet zur
Bestimmung der kritischen Lasten, die einer symmetrischen und einer anti-
metrischen Form des Unstabilwerdens zugehoren.

Summary

The author studies the instability of elastic equilibrium of polygonal
arches, making use of energy considerations, based on Dirichlet’s Theorem.

He first of all determines the constraints of each face by applying the usual
membrane method, he then establishes a choice of displacements compatible
with the conditions at the spandrel ends, writes down the expression of the
second increment &, F of the total potential energy in each face, then taking
account of the mutual compatability of the faces he writes down the expression
of 3, E for the whole arch.

With minimising conditions he obtains an equation of degree n+ 2 (where
n is the number of faces in each arch) in p, of which the least root provides the
critical value required for the load.

He demonstrates a particular application for an arch of five faces for
which he determines the critical load corresponding to symmetrical and anti-
symmetrical forms of instability. '
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