
Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 13 (1953)

Artikel: Instabilité de l'équilibre des voûtes polygonales

Autor: Giangreco, Elio

DOI: https://doi.org/10.5169/seals-13198

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-13198
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Instabilite de Pequilibre des voütes polygonales

Das Unstabilwerden von Faltwerken

Instability of equilibrium of polygonal arches

Prof. Dr. Ing. Elio Giangreco, Napoli

Dans un precedent travail1), j'ai envisage le probleme de la determination
des charges critiques dans les voütes polygonales en appliquant la methode
habituelle de la membrane. Cette etude, comme je Tai dejä signale, constitue
un premier essai de recherche dans un domaine qui ne me semble pas, jusqu'a
ce jour, suffisamment developpe. Ces genres de voütes ont, par contre, une
importance sans cesse croissante dans la Technique Moderne de Construction,
d'autant plus qu'elles sont les soeurs jumelles des voütes minces pour lesquelles
le meme probleme a ete largement traite2).

Dans la presente etude, je me suis servi des considerations energetiques en
conformite du theoreme de Dlrichlet que je vais rappeler brievement3).

„La condition necessaire pour qu'un Systeme ait la forme d'equilibre stable
est que l'energie potentielle totale E (somme de l'energie totale elastique et
de l'energie de position) soit un minimum." C'est-a-dire que l'energie E qui
doit dejä satisfaire ä la condition:

81E 0

x) V. Elio Giangreco. Instabilita neirequilibrio delle strutture scatolari. Rend. Acc.
Scienze fis. e mat. della Soc. Naz. di Scienze, Lettere e Arti in Napoli. Serie 4. Vol. XVII.
1950.

2) V. A. Galli. Stabilita neirequilibrio d'una volta trave. Rend. Acc. di Scienze fis.
e mat. della Soc. Reale di Napoli. Serie 4. Vol. XI. 1941—1942. — V. G. Krall. Molti-
plicatore critico Xcr d'alla distribuzione di carico su una volta autoportante. Rend. Acc.
dei Lincei die. 1946, gen. 1947. — V. Elio Giangreco. Stabilitä dell'equilibrio delle volte
sottili autoportanti. Atti dellTstituto di Scienza delle Costruzioni. Universitä di Napoli.
4° II, febb. 1951.

3) Je pense que c'est la le seul moyen d'arriver a des resultats concrets en vue d'appli-
cation pratique, etant donne que la methode d'Euler n'a pu me conduire qu'a des for-
mules laborieuses.
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pour que le Systeme soit en equilibre, doit encore satisfaire, en vertu du
theoreme de Dirichlet, ä la condition:

§2^>0
pour que l'equilibre soit stable.

Par suite l'equation: S2E 0 (1)

est la condition de l'equilibre indifferent, c'est-ä-dire la limite entre l'equilibre
stable et l'equilibre instable. En appelant:

0 l'energie potentielle elastique;
L2 le travail developpe par les contraintes internes correspondantes de la

forme d'equilibre pour les composantes du deuxieme ordre de la
deformation;

et L2 le travail developpe par les charges exterieures pour les composantes
du deuxieme ordre des deplacements;

on peut ecrire avec la relation (1)

82E=& + \(L2-L2') 0*)

dans laquelle A est un coefficient de multiplication des charges assignees.

Pratiquement on fait varier la forme initiale d'equilibre ä laquelle cor-
respond l'energie E de teile fa9on que la nouvelle forme d'equilibre soit tres
proche de la precedente5). A cet effet, on se sert des variations Su, 8v, et 8w
des composantes des deplacements exprimees par series de fonctions connues
et satisfaisant aux conditions aux extremites avec des coefficients inconnus.
A cette nouvelle forme d'equilibre correspondra une energie potentielle donnee

par:
E^ E -\-o^E -\-o2E

Pour la condition de minimum 8X Ex 0, correspondant ä cette forme, ainsi
qu'avec la condition 81E 0, on arrive ä l'equation:

ou:
d§2E 3S2E d82E ^* 2 0 (1
dhut dSvi dhwi

y }

4) V. Krall. Stabilitä dell'equilibrio elastico. Annali di matematica pura e applicata.
Serie IV. Tomo XXIX. Ed. Zanichelli 1949.

5) V. Dirichlet. Über die Stabilität des Gleichgewichts. Journ. f. r. u. angewandte
Math. Bd. 32. 1846. — V. Liapottnoff. Sur l'instabilite de 1'equilibre dans certains cas
oü la fonction de force n'est pas maximum. Journ. de Liouville. Ve serie 1897. — V. Levi,
Civita e Arnaldi. Meccanica Razionale. Vol. II. Parte I. Ed. Zanichelli 1926. — V. Krall.
Meccanica tecnica delle vibrazioni. Parte I. Ed. Zanichelli 1940.
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qui, par la forme quadratique de E dans les coefficients inconnus, conduit ä

un Systeme lineaire homogene dans ces coefficients. L'annulation du deter-
minant qui fournit la condition de compatibilite du Systeme offre aussi l'equation

de degre n dont les racines representent les n valeurs critiques cherchees.
La racine la plus petite est celle qui, pratiquement, nous Interesse.

II.

Pour ce qui a rapport ä l'etude statique de ces voütes, je pense qu'il n'est
pas necessaire de s'attarder sur une question dejä largement traitee6). Je
rappelle seulement les deux hypotheses fondamentales ci-apres:

1° Que les feuilles ne doivent pas subir des deformations en se gauchissant.
2° Que les efforts internes qui se transmettent pour deux feuilles contigues

le long de l'arete commune, se reduisent seulement ä un effort parallele ä cette
meme arete, c'est-ä-dire, que la liaison de ces deux feuilles est equivalente ä

une realisation au moyen de charnieres.
La deuxieme hypothese est non seulement une simplification pour le calcul

des efforts internes, mais eile est aussi tres utile parce qu'elle nous fournit une
valeur de la charge critique qui est plus petite que la valeur reelle pour la plus
grande souplesse que cet aspect statique de la voüte presente par rapport aux
liaisons effectives.

Convenons de numeroter les aretes de 0 ä n, ä partir de l'un des deux
bords dans le sens des aiguilles d'une montre. On a ainsi en correspondance n
feuilles ou dalles et nous appelons i^me celle qui est comprise entre les aretes
(i — l)hme et ihme (fig. 1). Nous affecterons l'index i ä toutes les grandeurs
relatives ä cette feuille (8i epaisseur; hi hauteur; yi — angle aigu que fait

Fig. 1

6) V. W. Flügge. Statik und Dynamik der Schalen. Springer. Berlin 1937. — V.
G. Krall. Questioni di matematica applicata. Ed. Zanichelli 1939. — V. O. Belltjzzi.
Scienza delle Costruzioni. Vol. III. Cap. XXIX. Ed. Zanichelli 1951.
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la feuille (i — l)®me avec ja feuiUe ielaG). On rapporte chaque feuille ä un Systeme
d'axes de eoordonnees rectangulaires Ox, Oy, Oz ayant son origine au centre
de la feuille, ses axes Ox et Oy dans le plan meme de la feuille, le premier
dirige suivant la longueur de la voüte, le second positif dans le sens croissant
du numerotage des aretes. L'axe des z, perpendiculaire au plan de la feuille,
est positif s'il est dirige vers l'interieur de la voüte.

Supposons que les charges exterieures soient localisees et reparties sur les

aretes. Appelons Fi le vecteur de la force concentree par unite de longueur de

l'arete, Sii9 Si>i+1 ses composantes dans les plans de deux feuilles contigues
i et i +1, Ti la force qui s'exerce par unite de longueur de l'arete ihme entre la
feuille ihiae et la feuille (i + l)feme. De cette fagon, une feuille isolee sera soumise
ä 1'action d'une force S{ Sii_1 — Sii par unite de longueur dans la direction
de Taxe Oy et ä une repartition de contraintes tangentielles Ti_1 et Ti dans
la direction de Taxe Ox. Nous avons ainsi dans une section quelconque de la
feuille:

1° Pour la charge uniformement repartie (fig. 2):

21

Q{(x) -£<(*)

Mi(x) Si
l2-c

Fig. 2

(2)

2° Pour les efforts tangentiels variables lineairement (fig. 3):

Ti-,

J£-
n 21

a±

Nt(x) j (T^-TJdx (3)

0
x

Mi(x)= -hj{Ti_i + Ti)dx

Fig. 3

Nous pouvons alors determiner les contraintes normales ax en chaque point,
en particulier Celles situees sur les bords de chaque feuille. En egalant les
contraintes en correspondance avec chaque arete commune ä deux feuilles, on
arrive ä l'equation de laquelle on tire la valeurs des efforts inconnus Ti. L'etat
des contraintes est ainsi determine completement en chaque point en fonction
des charges exterieures Si. Passons maintenant ä la caracterisation de l'etat
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de deformation. En nous rapportant au Systeme de coordonnees dejä adopte,
nous remarquons que, pour une feuille quelconque, lorsque la charge S aura
atteint une certaine valeur, nous aurons la deformation de la poutre carac-
terisee par une fleche laterale teile que les divers points P de la poutre subissent
un deplacement dans la direction de l'axe des z. Nous aurons, en outre, une
rotation autour de Taxe des x qui fait subir ä ces memes points P un autre
deplacement dans la meme direction Oz, proportionnel ä leur distance ä l'axe
Ox. Choisissons alors en respectant les conditions ci-apres des deplacements:

u 0 v 0 w w0(x)+ß0(x)y (w0 + ß0y) cos
7TX

~2l (4)

dans lesquelles w0 et ß0 sont lies aux deplacements correspondants des extre-
mites inferieure i — 1 et superieure et inferieure ihlae dans la section faite au
milieu de cette feuille, par les relations suivantes:

w, wi,i + wi,i-i wiA-w<
Pi — ¦

i, i—l
2 ^ 2Ä«

Et l'expression de w sera en fonction de ces derniers deplacements:

w \ 2 + 2h, y) cos
TTX

"2T

(5)

(*')

II faut maintenant tenir compte des liaisons entre les feuilles. En appelant v
la composante du deplacement dans le sens 0|/, on a dans le milieu de la
feuille (v. fig. 4):

L +
£ + 7

L+l

Wi.u.i

Fig. 4

w.i,i—l
_vicosyi_1-vi_1

sinyi

(i 0 n-2)

(» 1 n-l)

(6)

(6')

Ecrivons les memes relations pour le deplacement de l'extremite superieure
de la feuille (i — l)feme e^ p0ur Celui de 1 'extremite inferieure de la feuille (i + l)feme
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Wi
Vj-Vj-lOOBYt-l

siny*-!

siny^

(* 1

(i 0

n-1)

n-2)

(7)

(7')

Tirons v des relations (6) et (6') accouplees. Les memes Operations repetees
avec les relations (7) et (7') accouplees permettent d'ecrire une autre expression
de v que nous egalons ä la precedente. Nous obtenons ainsi la relation suivante
entre les grandeurs w*_M, witi_l9 wi/t et wi+li:

w,\-\,i-wiA-\™*yj-\ _ wi,iG°syi-wMA

ou entre les grandeurs wi_1, wi, wi+1, ^_x, ßi9 et ßi+1:

(»*-! +&4^1-) - (»< -^) COBy^ («,, + M) cosn_ M'i+l-
&+lÄi

(8)

+1

smy^j smy^

Cette relation nous permet de lier entre elles les deformations w et de trois
feuilles consecutives, de sorte que le deplacement imprime ä chaque feuille
est, non seulement compatible avec les conditions aux extremites, mais en plus,
avec la deformation de toute la voüte.

Passons ä exprimer les composantes de la deformation du deplacement que
nous avons etabli en tenant compte des infinitesimales du deuxieme ordre et
en nous servant des relations suivantes7):

(8')

€(D + e(2)
.7! ' er.

du
dx

e(1) + €'

1 \(8v\2 (dw\
2 {[dx) + \dx)

(2) dv 1 \Idu\2 ldw\

,<1) ,(2) l^ I3+3 dz 2

(1), (2)
ryz 7yz ~ 7yz

Yxz ' Yxz

dw dv du du dv dw dv dw
dy dz dz dy dy dy dz dz

du dw dv dv
dz dx dz dx

dw du dw du
dz dz dx dx

— (i) (2) _
dv du dw dw du dv du dv

(9)

7) V. A. Galli. Complementi analitici utili per la trattazione effettiva dei problemi
di stabilitä delPequilibrio elastico. Rend. Mat. della R. Universitä di Roma. Vol. 43.
1942. — V. G. Krall. Moltiplicatore critico Xcr d'una distribuzione di carico su una
volta autoportante. Rend. Acc. Naz. dei Lincei. Dicembre 1946.
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Dans le cas qui nous occupe, nous avons:

e(l) e(l) e(2) (1) (2)
^x y z Yxy Yxz Yy

><2> 0

,(2) ^p(w0+ß0y)2sin2~

TTX
ey =2^2C°S22I

7x1 - 2l Po (W° + &»y) sin if COS Ü
TTX TTX

y(DIxz
TT TTX

2yK+^o2/)sm2j

(9')

(1) Q 7TX

De ces composantes, les seules que nous utiliserons dans 1'expression du travail

L2 sont: e^,2) et y^. Nous avons maintenant tous les elements necessaires

pour commencer notre etude. A ces fins, il est opportun d'etudier au prealable
une feuille quelconque prise isolement et soumise successivement ä l'action
de la charge exterieure et ä celle des efforts tangentiels sur les bords.

III. Poutre simplement appuyees et symetriquement chargee8)

Choisissons pour les deplacements u, v9 w, les expressions suivantes:

TTX
u 0; v 0; (w w0 + ß0y) cos^y

21

ßoY ¦/Soy

Fig. 5

(10)

8) Si la distribution des charges transversales est quelconque il convient de prendre
d'autres termes dans le developpement en series de w.
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En effet, #4=0 parce que l'on a v=ß02y (comme l'on peut le remarquer facile-
ment sur la figure 5). La quantite v est une infinitesimale d'ordre superieur par
rapport ä w. II est donc permis de considerer P P1.

En effet le deplacement v pourrait donner lieu ä une composante de
deformation €y qui est dejä une infinitesimale du deuxieme ordre et qui intervient
pour modifier L2 lorsqu'il y a une contrainte ay. Dans le cas qui nous occupe,
on a toujours ay 0. On a ainsi evidemment par rapport aux composantes
choisies du deplacement.

i i
- T>[d2wQj rl[d2ß0j Btt* 9 0tt2O9

o o

oü B est la rigidite flexionale EIy relative ä l'axe 0y et G la rigidite torsionale
qui, pour une section rectangulaire allongee, vaut 0,333 Cb*h,

L2' 0 L2 jaxe^dV + jrxyy^ dV (11)

_ _My _TS _ _^Th2 _ 2 (section
°x ~ T^ Txv~H> ~ "II ~y rectangulaire)

(2) l/dwy_l/dw0 dß0V
2\Bx) 2\dx y dx J

On a alors:
i

(2) dw djv /dw0 dß0'
7xv dx dy Po\dx ^y dx t

0 0

+ «/**£?*
Ö 0

l

2 j" Jf&

0

dx

d2w.
dx2

^dx

e terme fini etant evidemment nul. On pourrait aussi obtenir plus simplement
les resultats ci-dessus en precisant que, par effet de la courbure - -^ > on

a une rotation relative — entre deux sections distantes de dx qui fait tra-
trailler la composante du moment flechissant dans les nouveaux plans de la
poutre apres la deformation, c'est-ä-dire autour de l'axe des z.
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Nous aurions pu aussi choisir:

CM d2w
u 0 v= -\—ß0-^dx w w0(x)+ß0(x)y (10')

o

v est alors une infinitesimale d'ordre superieur; on a ainsi une composante du
deuxieme ordre de ex et le travail L2 est fourni par:

W*[(£H£)W'-[£+ dw dw
dx dy

dV

0 0 0

Cette expression s'annule pour le choix fait pour v. II ne reste plus que le
travail de deuxieme ordre des charges exterieures pour la composante cor-
respondante v du deplacement.

Par exemple pour une charge concentree au milieu on a, en choisissant les

expressions (10):

L2= jom&dV + jTxyY^dV=-Fß0w0^-^p-=-Fßow0^ (12)

V V

Tandis que si nous choisissons les expressions (10') on a, en considerant la
poutre comme encastree au milieu et soumise dans l'extremite libre ä l'action
de la reaction -^ 9)

o o

laquelle donne pour toute la poutre
i

72 2F jßo^T (l-x)dx10) Fßo^o^ (12')

£2 0.

9) Le deplacement du milieu par rapport aux appuis d'extremite est egal au deplacement

des extremites par rapport au milieu considere comme fixe.
10) On pourrait arriver aux memes resultats en raisonnant de la facon suivante: on

considere en plan la poutre cantilever ci-dessus qui a une longueur 1. En considerant la
deformation elastique d'un element dx d'une distance x de l'encastrement qui tourne de

d2 w —
d(p 2° dx on a l'extremite libre qui se deplace de (l — x) d2 w0/dx2 dont la composante

verticale est ß0 (l — x) d2 wjdx2. Pour avoir la deformation de l'extremite en tenant
compte de Pelasticite de toute la poutre cantilever, il faudra evidemment integrer sur

toute sa longueur et on a J (l — x) ß0 2° dx (fig. 6).
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l-x

Fig. 6 df
(I-X)dcf

Si la charge etait uniformement repartie on aurait avec les expressions (10)

>+3c r tt2—3 i

L2'=0
et avec les expressions (10')

La =0

pdgv(t;)-plv(l) pß0w0
+ 3

12
(13')

dans lesquelles w(|) et i;(Z) representent les deplacements auxquels on doit
affecter respectivement la charge elementaire pdg et la reaction pl. II est
interessant de remarquer que l'on peut tenir compte de la position effective
de la charge en rappelant ce que nous avons dit ä la page 132. On a effective-
ment pour une charge appliquee ä une distance y0 du milieu, un travail qui
est donne par:

W*/o

\ pdx
ß02y0

si la charge est concentre.

si la charge est repartie.11)

II est interessant de remarquer que, selon que la charge est appliquee
au-dessus ou au-dessous de la poutre (y0 > 0 ou y0 < 0) le travail du deuxieme
ordre du aux forces exterieures pour les composantes du deplacement augmente
ou diminue en donnant comme consequence une charge critique plus petite
ou plus grande que celle qui correspond ä la position barycentrique de la
charge (6). En general, les ecarts sont si petits qu'on peut les negliger. On a

ainsi, en resume, pour une charge concentree:

8^=32Z^o U ß02-Fß0w0-
5 + 4

16
(14)

11) Selon que la charge est sur la face superieur ou inferieur on a:

±FfiJj et +ipß0^dx
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Des conditions de minimum:

on tire le determinant:
dwn

Btt*
16 l3

d89E

-F

Zßo

4 + TT1

0

16

F
4 + -

16 4:1

0

lequel annule fournit la valeur critique de F:

2 tt3 ]/B~C12)
FCr- 7T2+4 P

(15)

avec un ecart de 1,55% par rapport ä la valeur exacte.
Pour la charge repartie, on a:

32 P
- C7T2 ]ß 7T2+313)

81 12

et
iBC

Vcr-
2(ir2 + 3) P

(16)

(17)

avec un ecart de 1,51 % par rapport ä la valeur exacte14).

12) V. S.Timoshenko, Theory of elastic stability. Mc. Graw Hill Book Company, New
York 1936.

13) Si l'on considere la poutre comme une dalle chargee sur la face superieure on
trouve pour la fonction d'Airy l'expression suivante:

h\lO h2)y 5h*y

et pour les contraintes:

5_P^2_^Px2y+Px2yZiX 4Ä" h*

3 6p 2

h \10 h2) » h*V + h?x yh \10 h2) U

P 3 p 2p

_3 p _6p 2

Txy~2hX MXy
L'expression de la Variation seconde de l'energie potentielle totale est fournie par:

32 l*'(
772 + 3 1n phl,

laquelle est la meme qu'on trouverait pour la poutre si l'on tient compte du travail du
a la position barycentrique de la charge.

14) V. A. Pfltjger. Stabilitätsprobleme in Elastostatik. J. Springer. Berlin 1950. —
V. K. de Vries. Strength of beams as determined by lateral buckling. — American
Society of Civil Engineers. September 1946.

10 Abhandlung XIII
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IV. Poutre supportant une distribution de charges tangentiales
variables lineairement

Soit: Ti_1 *i_1x; T^'oc.x (18)

les charges appliquees. On peut choisir encore pour les deplacements les

expressions suivantes:
u 0 v 0 w =w0(x)+ß0(x)y

avec les memes annotations dejä faites ä la page 128 et 129. L'energie
potentielle elastique garde son expression:

- £tt4 ft Ott2
a0 32F<+Tr^

L2' 0 L2= I d^ei2)dV

tandis que pour le travail du deuxieme ordre, on a:

-h
dans laquelle "

N My a^-at P-x* ht P-*» y

Apres avoir effectue les integrations et les simplifications des expressions on
obtient: 2_~

L2 ^p l[(*i-i-"i)(Wo2 + ßo2P2) + ("i-i + *i)hßowo}

en appelant p le rayon d'inertie maximum.
Si l'on avait ehoisi pour les composantes du deplacement, les expressions
suivantes:

U- 2
0

on aurait obtenu15):
TT2 — 3

L2 —g£- l [K-i - a,) ß02 p2 + (a^ + oct)hß0 W0]

L2 ~^p l K-i - «<) V
et on retrouve pour L2 — L2 la meme expression que precedemment pour L2.

On a ainsi pour S2E l'expression:

**E ^Wo2 + ^ßo2+7^n(oci^i)(w^+ß^p^)+ (ai_1+ai)hß0W0\ (20)

l
15) On a en effet: L\ 2 J (Ti__1-Ti) u (x) dx, dans laquelle:

o

tt \ ttX rrxl
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de laquelle, etant donne les expressions de ai-1L et a$ fonctions d'un meme
parametre, on peut tirer la valeur critique de ce parametre ou la valeur critique
de oci_1 en connaissant la valeur de at ou inversement.

Examinons maintenant quelques cas particuliers ci-apres:

1° «, 0.

On a alors l'equation du deuxieme degre qui fournit la valeur critique de

«?_ l>2-3\2 ] 772-3-/^77* C 772\ ^L6 0
64 P

2° «,_! «,._
La valeur critique est fournie par:

3° at-_x - cct.

La valeur critique se deduit de l'equation du deuxieme degre suivant:

2 /772-3\7- 772-37/57749 C772\
a|-1 (~e-)l ~"|-1~T~l[üpp2+^r)

BCtt« n+ -64~p-
0

En consequence, on a pour une feuille quelconque de la voüte polygonale
l'expression ci-apres de la Variation seconde de l'energie potentielle:

§ E _ Bi^ wd)2 +.£^1 Qd)2_s ß(i)w(i)j7rl±l +2 " 32P ° 81 P° *^° ° 12—

+^ * [(«i-i - «,) «)2 + $>V) + («^ + «,) A, fl» «,«>]

Et pour toute la voüte:

dans laquelle les 2 w parametres w0(i) et ß0® ne sont pas independants entiere-
ment, mais lies par les conditions de compatibilite (8) ou (8') dejä etudiees
ä la page 130.

En utilisant maintenant l'equation (1') c'est-ä-dire les conditions d'extreme
qui sont au nombre de n + 21G) on arrive ä un Systeme algebrique lineaire

16) En effet, les parametres independants se reduisent ä 2n — (w — 2) n + 2. Si la
voüte est symetrique, on a encore une reduetion des parametres independants.
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homogene de n + 2 equations ä n + 2 inconnues. La condition de compatibilite
de ce Systeme d'equations nous permet de parvenir ä une equation de (n + 2)hme

degre dans la charge exterieure. La racine la plus petite donne la valeur
cherchee.

VI.

Passons maintenant ä une application concrete. Considerons une voüte
ä cinq feuilles symetriques et symetriquement chargee. On prendra, en con-
sideration l'instabilite due au poids propre (uniformement le long de la direc-
trice) et due aux charges concentrees le long des aretes. De toute fa^on, la
distribution des charges exterieures est toujours supposee uniforme le long
de la generatrice. On considerera encore deux formes possibles d'instabilite: la
forme symetrique et la forme anti-symetrique. Dans notre cas, il suffit d'ecrire
les conditions de compatibilite seulement pour les deux premiers couples de

feuilles:

(wx +^) - (w2 -£^ cos Yl (w2 + M?j cos y2 - (w3 - $*£*J

sin yx sin y2

sin y2 sin y3

dans lesquelles:

TT

72 7z ~2~Yi> cos72 cosy3 siny^ smy2 smy3 cosy!

Pour la forme symetrique, etant donne

ß3 0 w± w2 /34 -/32

on tire facilement les deux relations:

w1 -^-±-ß2h2cosy1

w2+M*
Wo ;

smy-L

Pour la forme antisymetrique, etant donne

w3 0 w^=-w2 ß± ß2

on a:

w2 w1cosy1 + I1~: cosy-^ ry,z cos2yx— r'd'"'AsmyxMlnno». J.M?«a00.. ß*Kt
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Considerons une voüte qui a les caracteristiques elastiques et geometriques
suivantes:

h2 2hx; hs 2h2; 1 10/^
B2 C2 2Bi; B3 3Bi; C2 ±Bi; C3 6B^)

Les relations de compatibilite (8') fournissent dans notre cas: pour la
deformation symetrique:

Wl - 0,5 ß±h-1,2498 ß2h

w3 1,2809 w2 + 1,2809 ß2 h

Fig. 7

17) Dans la pratique on a pour chaque feuille une section rectangulaire de beton
(m ~ 0) beaucoup plus haute que large (b < h) ce qui nous permet de supposer:

-«¥('-m»9~!¥-»
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et pour la forme anti-symetrique:

w2 0,624:89 Wt +0,3124:5 ß±h-0,21902 ß2h- 1,7106 ßshls).

Dans la figure 7 sont indiquees les diverses conditions de charge que nous
avons examinees et au-dessous de cette figure nous dressons un tableau dans

lequel nous consignons les valeurs des charges axiales dans chaque feuille, les
valeurs des coefficients a^ et a^ obtenues au moyen de l'equation des trois
efforts tranchants et les valeurs correspondantes de la charge critique respec-
tivement pour la deformation symetrique et anti-symetrique19).

Dans ce tableau sont consignees les valeurs correspondantes aux plus
petites racines20).

(1)

(2)

(3)

(4)

St S2 «i a2
Val.

sym.
crit.

anti-sym.

0,6634 ph 4,5391 ph 1,4642 p 2,0040 p 19,81 £ 117,5-5-

F 1,6002 F F
1,3333ĥ

0,4000
ĥ 2,69^ 17,55-?-

O 1,6002 F F
0,2667 =-

h
0,8000^

h «•"T ".«T
F O F

1,0667 -=-
h

0,4000 %
h *>< 10 T

On remarque que les charges critiques correspondant ä la deformation
anti-symetrique sont toutes plus grandes que Celles correspondant ä la
deformation symetrique, comme l'on pourrait prevoir etant donne que le travail
du aux charges exterieures est plus petit dans ce dernier cas. II est encore
interessant de remarquer que, en correspondance avec la forme symetrique, la
charge critique est plus grande pour la troisieme condition de charge que pour
la quatrieme et inversement pour la forme anti-symetrique. Aussi cela peut

18) II est facile de justifier que pour la forme anti-symetrique on a une seule relation
utile (l'autre wz 0 que l'on tire est intuitive et est dejä donnee dans Thypothese de

depart). En effet, la symetrie annule ou rend connue en general une caracteristique de
l'effbrt et deux caracteristiques de deformation tandis que l'anti-symetrie permet de
connaitre deux caracteristiques de l'effort mais seulement une caracteristique de
deformation.

19) Pour ce qui concerne la charge repartie, les forces sont reportees aux noeuds en
determinant les reactions d'une poutre continue ä trois travees obtenues en aplatissant
les feuilles 2 et 4 et en les supposant appuyees aux extremites.

20) L'equation determinatrice de la charge critique que l'on tire de l'annulation du
determinant est du 3eme ou 4eme degr& selon que la forme d'equilibre instable est
symetrique ou anti-symetrique.
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etre justifie en considerant le plus petit ou le plus grand travail developpe

par les charges exterieures. On remarque que le theoreme de Dunkerly21)
est satisfait. En effet, on a: pour la forme symetrique

1 1 1

2,69 5,14 5,44

pour la forme anti-symetrique.
1 1 1

17,55 21,88 10

Par exemple pour une voüte polygonale qui a les caracteristiques suivantes:

6 0,10 m; h 1,00 m; l 10 m; B 167 tm2

on tire pour la condition de charge (2):

jp<«) 0,86 t/m FW 3,64 t/m

Ces valeurs sont certainement plus petites que Celles reelles conformement
ä ce que nous avons dit au debut du travail.

Resume

L'auteur etudie 1'instabilite de l'equilibre elastique dans les voütes
polygonales, en se servant des considerations energetiques, en conformite du
Theoreme de Dirichlet.

II determine avant tout les contraintes de chaque feuille en appliquant la
methode habituelle de la membrane, il etablit ensuite un choix de deplacements
qui respectent les conditions aux tympans d'extremite, ecrit l'expression de la
Variation seconde S2E de l'energie potentielle totale de chaque feuille, puis
tenant compte de la compatibilite des feuilles entre elles, il ecrit l'expression
de 82 E pour toute la voüte.

Avec les conditions de minimum, il arrive ä une equation de n + 2 degres
(n etant le nombre de feuilles de la voüte) en pc dont la racine la plus petite
fournit la valeur critique cherchee pour la charge.

II expose une application concrete pour une voüte de cinq feuilles pour
laquelle il determine la charge critique correspondant ä des formes symetriques
et anti-symetriques d'instabilite.

21) Les valeurs reeiproques des charges critiques d'un Systeme dont les forces
exterieures sont la somme de celles des systemes partiels est toujours plus petit (ou au maximum

egal) que la somme des valeurs reeiproques des charges critiques des valeurs
correspondantes des systemes partiels.
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Zusammenfassung

Anhand von Energiebetrachtungen nach dem Satz von Dirichlet führt der
Verfasser Stabilitätsberechnungen für das elastische Gleichgewicht von
Faltwerken durch.

Er bestimmt vorerst die Spannungen in den einzelnen Seitenebenen mit
Hilfe der Membrantheorie, wählt dann einen Zustand von Verrückungen, der
die Randbedingungen in den Endfeldern erfüllt, schreibt den Ausdruck der
zweiten Variation h2E der potentiellen Energie jedes Feldes an und geht
schließlich unter Berücksichtigung des Zusammenhanges der einzelnen
Seitenebenen zum Ausdruck S2 E für das ganze Faltwerk über.

Die Minimumbedingung führt auf eine Gleichung w + 2ten Grades in pc
(wobei n die Anzahl der Seitenebenen ist), deren kleinste Lösung die gesuchte
kritische Belastung liefert.

Für ein fünfseitiges Faltwerk wird ein Zahlenbeispiel durchgerechnet zur
Bestimmung der kritischen Lasten, die einer symmetrischen und einer
antimetrischen Form des Unstabilwerdens zugehören.

Summary

The author studies the instability of elastic equilibrium of polygonal
arches, making use of energy considerations, based on Dirichlet's Theorem.

He first of all determines the constraints of each face by applying the usual
membrane method, he then establishes a choice of displacements compatible
with the conditions at the spandrel ends, writes down the expression of the
second increment S2 E of the total potential energy in each face, then taking
account of the mutual compatability of the faces he writes down the expression
of 82 E for the whole arch.

With minimising conditions he obtains an equation of degree n + 2 (where
n is the number of faces in each arch) in pc of which the least root provides the
critical value required for the load.

He demonstrates a particular application for an arch of five faces for
which he determines the critical load corresponding to symmetrical and anti-
symmetrical forms of instability.
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