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The Vibration of a Slightly Curved Bar Carrying an End Mass

Oscillations d'une barre legerement courbee et chargee par une masse
ä son extremite

Die Schwingungen eines leicht gebogenen, an seinem Ende mit einer Masse
behafteten Stabes

J. F. Davidson, Cambridge, England

Notation

A cross-sectional area of bar
a,b,8,€ arbitrary constants
B flexural rigidity of bar
c initial lateral displacement at middle of bar after application of load P0
d initial lateral displacement without load
E Young's Modulus
/ lateral displacement of middle of bar due to Vibration
h distance from centroid of section to outer fibre

j cantilever stiffness 3 B/l3
K stiffness of spring attached to mass M
k radius of gyration of bar
l length of bar
M mass attached to end of bar
m mass of bar
N 2 Z2 m/774 c2 mass in equivalent system
P axial load in bar due to Vibration
P0 fixed axial load in bar
PE Euler load n2 Bfi2
q maximum stress in bar due to initial bending
Ra, Rß amplitude ratios {wjf)l{w\j)siatic corresponding to frequencies a and ß
t time

7 Abhandlung XIII



88 J. F. Davidson

u total lateral displacement of bar at any point
u0 initial lateral displacement of bar at any point
w displacement of mass M due to Vibration
x distance along bar measured from fixed end

y longitudinal contraction of bar due to curvature
a anti phase frequency
ß in phase frequency
A 2mZ2ß2/774c2 spring stiffness in analogous system
ju IHÄE/Kl+I)
p density of bar material
Q coL(l-P0IPufl>
a>L first circular frequency of bar tt2 (B/pAf^/l2
ojs circular frequency of spring mass combination (fjuAEjMlf1*

1. Introduction

The effect of axial constraint on the lateral Vibration of thin bars has been

examined by various writers. Cowley and Levy (1918), Bateman (1929),
Puwein (1939), Warben (1939), Nowacki (1949) showed that a constant
axial force reduces the lateral frequency, which becomes zero at the Euler
load. Woinowsky-Krieger (1950), Bttrgreen (1951) and Bringen (1952)
considered an initially straight bar whose pinned ends were rigidly fixed in
position. The longitudinal contractions normally associated with lateral Vibration

were thereby restricted, and the frequency made to depend upon ampli-
tude in the same way as for a simple pendulum. Thus for infinitesimal ampli-
tudes, the motion was simple harmonic, and the frequency unaltered by the
axial restriction.

When one pinned end is attached to a mass constrained to move towards
the fixed pin, the bar being initially straight, an effect similar to that of
Woinowsky-Krieger is obtained, the longitudinal restriction being provided
by the inertia of the mass. Vibrations of the mass, so that the bar acts merely
as a spring without lateral movement, will also be possible, so that the system
has two fundamental frequencies. When the bar is initially curved, the mass
being constrained in the same way, infinitesimal lateral movements of the bar
are accompanied by movements of the mass. In this way the lateral frequency
of the curved bar is altered when its amplitude is very small, and the two
fundamental frequencies of the system become coupled. The relation between
these fundamental frequencies and the frequencies of the coupled system is
obtained in the present paper. Two simple Systems, made up of Springs and
masses, and having the same Vibration characteristics as the coupled system,
have been evolved to assist in visualising its behaviour.
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2. Theory of the Curved Bar Carrying an End Mass

The system under consideration is shown in figure 1. R and Q are the
pinned ends of the bar, R being fixed and Q free to move along the fixed axis
Rx. Due to fixed applied loads, the bar, whose length is Z, has initial lateral
displacement, at distance x from R, of u0 c sin tt xfl. In the first place we
notice that the ratio

Time for stress wave to travel from R to Q

First natural period of bar

is small if the bar is thin, E being
Young's Modulus, and p the density

of the bar, whose radius of
gyration is k. Thus if P is the
additional axial load in the bar due
to Vibration, its Variation with x
may be neglected. Then if the total
lateral displacement at any time is

l(pjE)
{pJE)21*Itt1c

ttIc
27

ßM.,u

^JU=^
^AAA/V m

?;if

Fig. 1. Pin ended bar carrying end mass M
via spring. Vibration about curved position

u {f + c) sin
TTX

l (2.1)

/ being a function of time, the longitudinal contraction due to Vibration will be

i
PI

AE +iJ[(§S)'-(&)>- 5+n",+2* (2.2)

If the mass M, which is constrained to move along the axis Rx, is attached
to the pin Q by a spring of stiffness K, its total movement due to Vibration is

w -'(J L\k+äe) + ü«*+2c»- (2.3)

A being the cross sectional area of the bar. The system may thus be visualised
as a bar RQ, whose contraction is ?/ 7T2(/2 + 2c/)/4Z, carrying a spring of net
stiffness /x A Ejl where

P
1

Also,
AE/Kl+1'

P -Mw"

(2.4)

(2.5)

dashes denoting differentiation with respect to time. Then eliminating w from
(2.3) and (2.5), and neglecting fjc so that only small oscillations about the
equilibrium position are considered, we get

p»+^p+ü!^^ 0)
21

where a>s2 fxAEIMl.

(2.6)

(2.7)
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The equation of lateral motion of the bar is

B 8x* +(P + P°)Jx*-PoJx^ + pÄ-d¥-0> (2-8)

t denoting time, B the flexural rigidity of the bar, and P0 the fixed part of the
axial load, due for example to gravity acting on the end mass. (2.8) may be

simplified by the use of (2.1) so that

/¦w(.-g)/-^-*
where a)L 7T2(BjpA)1,ijl2 is the first circular frequency of the bar, Pe tt2Bj12
is its Euler load, and m is its mass. Then neglecting fjc in (2.9) we get

/"+ß2/-^P 0, (2.10)ml
where Q2 coL2 (l - p^\. (2.11)

Eliminating P from between (2.6) and (2.10) gives

/ _4~2 7Lf\
/iv + /^aJs2+ß2 + a)s2!L^j+/a)s2ß2 o, (2.12)

of which the Solution is

/ a sin (a t + <r) + b sin (ßt + 8),

where a, b, e, § are arbitrary constants depending upon the initial conditions
and

T, ™ ,ttH2M\1* T ^x2 ^iT*c2MVI* 1

[ s s 2l2m J [ 2/2m J (2.13)

aß cüsQ. \

Then a and j8 are the circular frequencies of the coupled system, and a> ß.
Thus öl represents an "anti-phase" mode of Vibration in which the strut bends
towards the line RQ figure 1 simultaneously with the mass M approaching Q.

Similarly ß represents the "in-phase" mode. The ratio wjf which is (mass

deflexion)/(strut deflexion) can be obtained from (2.3) and (2.10). Its ratio to
the value of wjf caused by a small static load on the mass M is, for the a mode,

K (W/)/(W/Wc .2?^^. 2 > (2-14)

and for the ß mode,

Rß (W/)/(W/Wc ,2+^1^2- (2J5)

Two analogous Systems having the same properties as the strut-mass com-
bination are shown in figure 2. The equations of small oscillations about
equilibrium are in each case (2.6) and (2.10), so that the analogies hold good

ß%- cos2

a2 + /32 —s2'

<x2- "/
a2 + i82 -«v2'
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Fig. 2. Systems with the same
characteristics as the strut-spring -

mass combination of figure 1

A=~JTt
2ml2Jl2 2jN' Je7"

ßf
AA/V VWVf

2l2m
N=~Fc~2

~^ K" ZI

(i)

X x

MAE

Tt'C

di)

only when fjc is small. In (I) figure 2, the strut is replaced by a mass N
2l2mJ7T4:c2y carried by a spring of stiffness

A 2ml2Q2J7T±c2 2jl2dj3c* (2.16)

j 3 BjP is the stiffness of the strut when used as a cantilever, and d is its
initial central deflexion without axial load. Thus d is the "initial imperfection",
and when the constant axial load P0 is applied, the central deflexion becomes c,
and if the strut is always in the form of a half sine wave,

c

1 Q2¦rjp. " " <2'I7)

from (2.11). Thus if the initial imperfection d is small, and P0 is nearly PE,
l2djcz will be of order 1, and from (2.16) A is of order j, and therefore represents
a comparatively soft spring.

In analogy (II) figure 2, X is a fixed hinge, and X Y Z a rigid link whose
end Z has the same movement as the centre of the strut and carries half its
mass. This illustrates the large mechanical advantage, 2 Z/772 c, which the strut
mass has over the mass M.

Numerical Results in a Typical Case

The maximum stress q in the bar due to the initial bending is given by
«¦2

q Ehc
l2

(2.18)

h being the distance between the centroid and the outer fibre. For a high
strength aluminium alloy q may be 10 tons/sq.in. and Ü/ 4550 tons/sq. in.,
so that if l/k= 150 and klh 0.51S, as for a reetangular bar, we get, from
(2.18), cß 0.0193. A reason&ble value of M may be obtained by taking
M/PE 0.25 so that M

m
0.25

7T2Ek2

Pl* '
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and putting Z 100in. and p 0.096 lbs/cu. in., we get Jf/m=117, so that
TT*c2Mj2l2m 2.\2. Using this value in (2.13) we obtain a/ß, a/cos, ß/Q and
ßla)s in terms of ß/cos and these values are shown plotted in figure 3, together
with the amplitude ratios Ra and Rß from (2.14) and (2.15). Thus when
Qjcx)s -> oo the coupling is small and the two component frequencies are
obtained. But for values of ß/o»s from 0 to 2.0 the coupled and component
frequencies are widely different, so that the only condition for no coupling is
Q/cüg -> OO.

The conditions necessary to obtain each value of ß/o>s are determined by
combining (2.7) and (2.11) to give

Q

o>0

"k
l

M
jim (-Ä)

In the present case we use the given values of Mim, l/k, and obtain

Q
0.711

1 (-§)r- (2.19)

so that any value of ß/cos may be obtained by using appropriate values of jjl
and P0/PE. From (2.4) we note that /x^ 1 and if P0 0, the minimum value
of ß/cos from (2.19) is 0.711. At this minimum point, the bar carries the mass
without an intermediate spring, and figure 3 shows that the coupled and

component frequencies differ by a factor of about 1.8.

2.0 ' i i i

Kl&s^' Wo

-1.5

10

\ ff awv^\ curvature to scale\ c/l= .0193

h ^^^—^
ß/n y/A/Ws

-05 ""-

&"$£?
-

<^C

0 f 10
l tf"^-^^#" 3.0

I I I

Fig. 3. Frequency ratios. a obtained
with mass and bar anti-phase, ß
obtained with mass and bar in-phase.
Ra&ndRß=(w/f)/(w/f)staiic
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The character of the motion can be further understood from the amplitude
ratios. Thus Ro remains almost 1, so that the displacements of the "in-phase"
mode are similar to those with a static load. When Q -> oo, Pa —> 0 since the
anti-phase motion is made up of a high frequency strut Vibration, with the
mass remaining almost fixed.

3. Conclusions

An analysis of the foregoing type might be applied to a built up structure
such as a triangulated truss. Thus the Vibration of such a structure consists
of movements of the dead weight carried, together with compression and
tension of the component members, and is analogous to the Vibration of the
spring and mass in the example given. If at the same time the component
members are curved, due for example to end bending moments, their vibrations

will become coupled with those of the whole structure. The coupling will
be small only if the lateral frequency of the component member is much
greater than that of the whole structure.
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Summary

A pin ended bar, slightly bent in the form of a half sine wave, is considered.
One end is fixed and the other is free to move along the line joining the pins.
A mass, constrained to move along the same line, is attached to the moving
end by a spring. The oscillations of the bar are small compared with its
curvature.
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In these circumstances the system has two degrees of freedom, and the
resulting pair of frequencies is obtained in terms of the natural frequency of
the straight bar and of the spring mass combination. In a practical case, the
frequences of the coupled system are shown to differ from the natural frequencies

by a factor of 1.8.

Resume

Nous avons etudie le cas d'une barre montee ä articulation et incurvee en
forme de demi-sinusoide. L'une des extremites est fixe et l'autre peut se depla-
cer le long de la corde. A cette extremite mobile, est fixee, ä l'aide d'un ressort,
une masse qui doit se deplacer suivant la meme ligne. Les deviations de la
barre sont faibles par comparaison avec sa fleche.

Dans ces conditions, le Systeme comporte deux degres de liberte et les deux
frequences qui se manifestent peuvent etre exprimees en fonction des

frequences propres de la barre droite et de la masse fixee elastiquement. Dans
Tun des cas examines, les frequences du Systeme couple s'ecartent des

frequences propres dans le rapport de 1,8.

Zusammenfassung

Wir betrachten einen gelenkig gelagerten, nach einer halben Sinuswelle

gekrümmten Stab. Das eine Ende ist fest, das andere kann sich längs der Stab-
sehne bewegen. An dieses bewegliche Ende ist mittelst einer Feder eine Masse

befestigt, die sich in derselben Wirkungslinie bewegen soll. Die Ausschläge des

Stabes sind klein verglichen mit seiner Ausbiegung.
Unter diesen Umständen besitzt das System zwei Freiheitsgrade, und die

beiden auftretenden Frequenzen lassen sich ausdrücken durch die
Eigenfrequenzen des geraden Stabes und der abgefederten Masse. An einem der
untersuchten Fälle weichen die Frequenzen des gekoppelten Systems von den

Eigenfrequenzen um das 1,8-fache ab.
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