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The Vibration of a Slightly Curved Bar Carrying an End Mass

Oscillations d’une barre légérement courbée et chargée par une masse
a son extrématé

Die Schwingungen eines leicht gebogenen, an seinem Ende mit einer Masse
behafteten Stabes

J. F. Davipsoxn, Cambridge, England

Notation

cross-sectional area of bar

,b,9, € arbitrary constants

flexural rigidity of bar

initial lateral displacement at middle of bar after application of load P,
initial lateral displacement without load

Young’s Modulus

lateral displacement of middle of bar due to vibration
distance from centroid of section to outer fibre
cantilever stiffness = 3 B/[3

stiffness of spring attached to mass M

radius of gyration of bar

length of bar

mass attached to end of bar

mass of bar

212m/m* c® mass in equivalent system

axial load in bar due to vibration

fixed axial load in bar

Euler load =2 B/I?

maximum stress in bar due to initial bending
amplitude ratios (w/f)/(w|f)saie corresponding to frequencies o and B
time
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total lateral displacement of bar at any point
initial lateral displacement of bar at any point
displacement of mass M due to vibration
distance along bar measured from fixed end
longitudinal contraction of bar due to curvature
anti phase frequency

in phase frequency

2m 1202/7* c? spring stiffness in analogous system
1/(AE|KIl+1)

density of bar material

wr, (1= Py Py)"

first circular frequency of bar =2 (B/p A)"/I2
circular frequency of spring mass combination = (u 4 B | M 1)’
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1. Introduction

The effect of axial constraint on the lateral vibration of thin bars has been
examined by various writers. CowLEY and Levy (1918), BATEMAN (1929),
Puweix (1939), WARREN (1939), Nowack1 (1949) showed that a constant
axial force reduces the lateral frequency, which becomes zero at the Kuler
load. WoinOowsKY-KRIEGER (1950), BURGREEN (1951) and ERINGEN (1952)
considered an initially straight bar whose pinned ends were rigidly fixed in
position. The longitudinal contractions normally associated with lateral vibra-
tion were thereby restricted, and the frequency made to depend upon ampli-
tude in the same way as for a simple pendulum. Thus for infinitesimal ampli-
tudes, the motion was simple harmonic, and the frequency unaltered by the
axial restriction.

When one pinned end is attached to a mass constrained to move towards
the fixed pin, the bar being initially straight, an effect similar to that of
WoinowskY-KRIEGER is obtained, the longitudinal restriction being provided
by the inertia of the mass. Vibrations of the mass, so that the bar acts merely
as a spring without lateral movement, will also be possible, so that the system
has two fundamental frequencies. When the bar is initially curved, the mass
being constrained in the same way, infinitesimal lateral movements of the bar
are accompanied by movements of the mass. In this way the lateral frequency
of the curved bar is altered when its amplitude is very small, and the two
fundamental frequencies of the system become coupled. The relation between
these fundamental frequencies and the frequencies of the coupled system is
obtained in the present paper. Two simple systems, made up of springs and
masses, and having the same vibration characteristics as the coupled system,
have been evolved to assist in visualising its behaviour.
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2. Theory of the Curved Bar Carrying an End Mass

The system under consideration is shown in figure 1. R and  are the
pinned ends of the bar, R being fixed and @ free to move along the fixed axis
Rx. Due to fixed applied loads, the bar, whose length is [/, has initial lateral
displacement, at distance z from R, of u,=csinwx/l. In the first place we
notice that the ratio

Time for stress wave to travel from R to Q [(p/E) w_k
First natural period of bar (p|E)2R|mk 21
is small if the bar is thin, £ being  1* /—‘ZA;E
Young’s Modulus, and p the den- 7 F i
sity of the bar, whose radius of i T ?“"* n 7 M
X

gyration is k. Thus if P is the ad-
ditional axial load in the bar due _
to vibration, its variation with z !- Z

|

may be neglected. Then if the total Fig. 1. Pin ended bar carrying end mass M
lateral displacement at any time is via spring. Vibration about curved position

w=(f+c)sin"", (2.1)

[

f being a function of time, the longitudinal contraction due to vibration will be

1
Pl 1 ou o U, Y
AE+EJ[(%) (ﬁx)]dx—AE g7 (2. (2:2)
0

If the mass M, which is constrained to move along the axis R, is attached
to the pin @ by a spring of stiffness K, its total movement due to vibration is

sz(II{ A%) (F+2¢f). (2.3)

A being the cross sectional area of the bar. The system may thus be visualised
as a bar R, whose contraction is y =n2(f>+ 2cf)/4l, carrying a spring of net
stiffness u 4 E/l where 1

K= ABKI+1
Also, P=—Muw" (2.5)

(2.4)

dashes denoting differentiation with respect to time. Then eliminating w from
(2.3) and (2.5), and neglecting f/c so that only small oscillations about the
equilibrium position are considered, we get

Py 2P+’”"2§”cf =0, (2.6)

where w?=unAE/ Ml (2.7)
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The equation of lateral motion of the bar is

Ot (u —uy) 2u 2u 2u
e TP PG Pagg e d e =0, (25)

B 0t

t denoting time, B the flexural rigidity of the bar, and P, the fixed part of the
axial load, due for example to gravity acting on the end mass. (2.8) may be
simplified by the use of (2.1) so that
P Pr%(f+c)

”n 2 - __0 SRR LI

f"+or (1 PE)f poo 0, (2.9)
where w; =72 (B/p A)"*/I? is the first circular frequency of the bar, Py =n? B/
is its Euler load, and m is its mass. Then neglecting f/c in (2.9) we get

f"+82f— % P =0, (2.10)

where 22 = w2 (1—- I{;") . (2.11)
Eliminating P from between (2.6) and (2.10) gives

Y+ (w32+92+ws23;§%{) +fw2? =0, (2.12)

of which the solution is
f=asin(xt+e€)+bsin (Bt +05),

where a, b, €, 3 are arbitrary constants depending upon the initial conditions

and
4,2 Y, 402 M 1
- 2 e M —0)2 g TN M

d/g = wS.Q.

Then « and B are the circular frequencies of the coupled system, and o> .
Thus « represents an “anti-phase’’ mode of vibration in which the strut bends
towards the line R figure 1 simultaneously with the mass M approaching Q.
Similarly B represents the ‘“‘in-phase’’ mode. The ratio w/f which is (mass
deflexion)/ (strut deflexion) can be obtained from (2.3) and (2.10). Its ratio to
the value of w/f caused by a small static load on the mass M is, for the « mode,

Ry = (o))l e = 25 ot (214)
and for the B mode, '
o — .2
Rg = (w/f)/(w]{siatic = m—i@f (2.15)

Two analogous systems having the same properties as the strut-mass com-
bination are shown in figure 2. The equations of small oscillations about
equilibrium are in each case (2.6) and (2.10), so that the analogies hold good
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Fig. 2. Systems with the same
characteristics as the strut-spring- m
mass combination of figure 1 /) 2 IF (i)

only when f/c is small. In (I) figure 2, the strut is replaced by a mass N =
212m/|=*c?, carried by a spring of stiffness

A =2m2Qnte? = 21243 5. C(2.16)

j =3 BJI® is the stiffness of the strut when used as a cantilever, and d is its
initial central deflexion without axial load. Thus d is the ““initial imperfection”’,
and when the constant axial load P, is applied, the central deflexion becomes c,
and if the strut is always in the form of a half sine wave,

i_ 1 _ sz
i=1-p,)p,~ &

(2.17)

from (2.11). Thus if the initial imperfection d is small, and P, is nearly Py,
12d/c® will be of order 1, and from (2.16) A is of order j, and therefore represents
a comparatively soft spring.

In analogy (II) figure 2, X is a fixed hinge, and X ¥ Z a rigid link whose
end Z has the same movement as the centre of the strut and carries half its
mass. This illustrates the large mechanical advantage, 27/#2¢, which the strut
mass has over the mass M.

Numerical Results in a Typical Case

The maximum stress ¢ in the bar due to the initial bending is given by

w2

g=Ehc 7

(2.18)
h being the distance between the centroid and the outer fibre. For a high
strength aluminium alloy ¢ may be 10 tons/sq.in. and E =4550 tons/sq.in.,
so that if {/k=150 and k/h=0.578, as for a rectangular bar, we get, from
(2.18), ¢/l=0.0193. A reasonable value of M may be obtained by taking
M|Pg=0.25 so that M 2 B k2

— = 0.26 ———
m 0 pld 7’
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and putting /=100in. and p=0.096 lbs/cu.in., we get M/m=117, so that
mtc? M[212m =2.12. Using this value in (2.13) we obtain «/2, «/w,, B/S2 and
Blw, in terms of 2/w, and these values are shown plotted in figure 3, together
with the amplitude ratios E, and Rp from (2.14) and (2.15). Thus when
Qw, — oo the coupling is small and the two component frequencies are
obtained. But for values of £/w, from 0 to 2.0 the coupled and component
frequencies are widely different, so that the only condition for no coupling is
R/wg — 0. ‘

The conditions necessary to obtain each value of 2/w, are determined by
combining (2.7) and (2.11) to give

QL _mEl M () Py
w, I |pm Py '

In the present case we use the given values of M/m, I/k, and obtain

s
ﬁzmuFb—ﬂﬂ, (2.19)
Wy I PE

so that any value of 2/w, may be obtained by using appropriate values of u
and Py/P,. From (2.4) we note that u <1 and if P;=0, the minimum value
of Q/w, from (2.19) is 0.711. At this minimum point, the bar carries the mass
without an intermediate spring, and figure 3 shows that the coupled and
component frequencies differ by a factor of about 1.8.

curvatyre fo scale
c/l=.0193

=05 .

Fig. 3. Frequency ratios. « obtained
“Ra with mass and bar anti-phase, 8 ob-
] 25 » > R tained with mass and bar in-phase.
10 1 : i 1 1 in - Ra and RB = (w/f)/(w/f)static
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The character of the motion can be further understood from the amplitude
ratios. Thus Rg remains almost 1, so that the displacements of the “in-phase’
mode are similar to those with a static load. When £ — co, R, — 0 since the
anti-phase motion is made up of a high frequency strut vibration, with the
mass remaining almost fixed.

3. Conclusions

Ap analysis of the foregoing type might be applied to a built up structure
such as a triangulated truss. Thus the vibration of such a structure consists
of movements of the dead weight carried, together with compression and
tension of the component members, and is analogous to the vibration of the
spring and mass in the example given. If at the same time the component
members are curved, due for example to end bending moments, their vibra-
tions will become coupled with those of the whole structure. The coupling will
be small only if the lateral frequency of the component member is much
greater than that of the whole structure.
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Summary

A pin ended bar, slightly bent in the form of a half sine wave, is considered.
One end is fixed and the other is free to move along the line joining the pins.
A mass, constrained to move along the same line, is attached to the moving
end by a spring. The oscillations of the bar are small compared with its cur-
vature.
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In these circumstances the system has two degrees of freedom, and the
resulting pair of frequencies is obtained in terms of the natural frequency of
the straight bar and of the spring mass combination. In a practical case, the
frequences of the coupled system are shown to differ from the natural frequen-
cies by a factor of 1.8.

Résumé

Nous avons étudié le cas d’une barre montée a articulation et incurvée en
forme de demi-sinusoide. L’une des extrémités est fixe et ’autre peut se dépla-
cer le long de la corde. A cette extrémité mobile, est fixée, & ’aide d’un ressort,
une masse qui doit se déplacer suivant la méme ligne. Les déviations de la
barre sont faibles par comparaison avec sa fleche.

Dans ces conditions, le systéme comporte deux degrés de liberté et les deux
fréquences qui se manifestent peuvent étre exprimées en fonction des fré-
quences propres de la barre droite et de la masse fixée élastiquement. Dans
I'un des cas examinés, les fréquences du systéme couplé s’écartent des fré-
quences propres dans le rapport de 1,8.

Zusammenfassung

Wir betrachten einen gelenkig gelagerten, nach einer halben Sinuswelle
gekrimmten Stab. Das eine Ende ist fest, das andere kann sich langs der Stab-
sehne bewegen. An dieses bewegliche Ende ist mittelst einer Feder eine Masse
befestigt, die sich in derselben Wirkungslinie bewegen soll. Die Ausschlige des
Stabes sind klein verglichen mit seiner Ausbiegung.

Unter diesen Umstdnden besitzt das System zwei Freiheitsgrade, und die
beiden auftretenden Frequenzen lassen sich ausdriicken durch die Eigen-
frequenzen des geraden Stabes und der abgefederten Masse. An einem der
untersuchten Fille weichen die Frequenzen des gekoppelten Systems von den
Eigenfrequenzen um das 1,8-fache ab.
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