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Mathematical Prediction of Suspension Bridge Behavior in Wind from
Dynamic Section Model Tests

Vorausberechnung des Verhaltens von Hängebrücken im Wind, auf Grund von
dynamischen Querschnittsmodellversuchen

La prevision mathematique du comportement des ponts suspendus, sous Vaction
du vent, ä partir d'essais dynamiques sur modeles de sections

George S. Vincent, Principal Highway Bridge Engineer, United States Bureau of
Public Roads, Washington

When the engineers of the Washington Toll Bridge Authority undertook
the task of rebuilding the Tacoma Narrows Bridge, their first concern was to
determine the nature of the wind action which had oscillated it harmlessly for
a few months and finally destroyed it on November 7, 1940, and, by using this
knowledge, insure the new bridge against such action. A mechanical model
had been built which demonstrated the natural modes of oscillation of the
bridge and formulas were developed for predicting them (see fig. 1). Some

study of the effects of mechanical damping had been made with this model.
Static wind tunnel tests had been made on section modeis of the bridge to
determine the lift, drag, and moment coefficients. These investigations led to
tentative though inadequate theories regarding the mechanics of the excitation.
It was eventually determined that a properly scaled complete model of the
bridge should be tested in a wind tunnel1)2)3).

The model was constructed to a linear scale of 1 to 50, making it 100 ft.
long (2800 ft. main span and two 1100 ft. side spans) and tested in a specially
built wind tunnel having a throat 100 ft. long and 4 ft. high. A review of the
scales of the various properties and elements involved will give some concep-
tion of the model and tests. The linear scale, n (1/50 in this case), and its powers,
of course govern the spatial dimensions. The acceleration of gravity, g, acts
alike on the model and prototype and so has the scale of unity. To make

x) "Aerodynamic Stability df Suspension Bridges with Special Reference to the
Tacoma Narrows Bridge", University of Washington Bulletin No. 116, "Part I — Investigations

Prior to October, 1941" by F. B. Farquharson.
2) Ibid. "Part II — Mathematical Analyses" by F. C. Smith and George S. Vincent.
3) Ibid. "Part III — The Investigation of Models of the Original Tacoma Narrows

Bridge under the Action of Wind" by F. B. Farquharson.
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inertial forces proportional to gravitational forces the scale of all accelerations,
a, must likewise be unity which leads to the scale of ^n for time, t, and for
velocity, V. Natural air being used in the wind tunnel, it is desirable that the
scale of mass density, p, be unity which determines the scale, ns, for the mass,
m, of each element of the structure. This leads to correct mass distribution
and makes nz the scale of weight, w, and of a force, F.

These scales involve no problems except in the properties of the materials.
Modulus of elasticity, force divided by area, requires the scale, n. Material
having a modulus of elasticity 1/50 that of steel while having at the same time
the required density, strength and damping properties is not available. However,

the modulus of elasticity is involved only in combination with area, _4,

where direct stress is involved and with moment of inertia, /, where bending is
involved, and the Solution was to use steel, making the scale of modulus of
elasticity unity and to distort the scales of A and / for stress-carrying elements
to n3 and n5, respectively. Accordingly, the cable consisted of piano wire
whose area was (1/50)3 times that of the prototype cable, enclosed in a jointed
steel sleeve whose diameter was 1/50 that of the prototype cable. Also girders
and trusses were made up in separate sections each attached only at one point
to a much smaller continuous bar having a moment of inertia (1/50)5 times
that of the prototype flexural member. The decks were jointed to prevent
their contributing to both vertical and lateral stiffness. All details and
connections of the model including the separate sections described above were
designed to minimize structural damping and so secure a sensitive response
to wind action3).

The scales described above are based on the assumption that the flow
around the model is turbulent and that the wind forces vary in accordance
with Froude's Law, the influence of Reynolds' Number being unimportant.
The validity of this assumption was reasonably demonstrated by the agreement

between the model behavior and that of the original Tacoma Narrows
Bridge as imperfectly revealed by observations made during its brief life.
There is some uncertainty concerning the wind measurements made at only
one point on the bridge and often the motion of the bridge altered before
sufficient measurements could be made to establish its character but the
composite indication of all of the field observations served to establish confidence
in the füll model tests as a means of determining what the prototype would
do in a known wind stream. Later, static tests made on section modeis over
a wide ränge of Reynolds' Number showed no appreciable scale effect4). Also,
the form of the curve of the logarithmic decrement for aerodynamic damping
in still air (discussion of fig. 8) reveals only a minor influence of viscous forces
in the wind.

4) These studies will be described in Part IV of University of Washington, Bulletin
No. 116, now in preparation.
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The validity of the füll model tests having been established by the investigation

of the original bridge, a füll model of the proposed new bridge was built
and similarly tested. It became apparent that some improvement in the
aerodynamic stability of this design was necessary and the effects of various
alterations were tested, leading ultimately to the design finally adopted. The
numerous configurations were first tried out on a section model, equivalent to
a five-foot section of the suspended structure of the füll model, mounted on
Springs designed to produce torsional or vertical oscillation at the frequency
of some convenient mode of the füll model (see fig. 1). The configuration
selected on the basis of these tests was then installed on the fall model and its
beneficial effect was verified by füll model tests5).

From the start, the tests demonstrated the proportionality of the wind
velocity, V, and the frequency, N, of the oscillation caused by the wind. To
make it dimensionless and independent of the scale their ratio is divided by
the width, 6, resulting in the ratio, V/Nb, critical values of which are essentialia

constant for a given section and a given type of motion. For example,
all vertical modes will begin at wind velocities corresponding to the critical
V/Nb ratio for vertical modes and there is a different critical V/Nb ratio for
torsional modes. Similarly all modes of the same type reach their maximum
amplitudes at about the same V/Nb ratio and their upper critical velocities
at which motion dies out fall close to a common V/Nb ratio. Differences in
aspect ratio (length of model to its width) and in tunnel wall conditions cause
minor shifts in the critical ratio. Changes in shape affect it profoundly. Increas-
ing the structural damping increases the critical V/Nb ratio at which a catas-
trophic oscillation starts but has small effect on that of a restricted oscillation
(though it limits the maximum amplitude reached by the latter).

The indications of the füll and section model tests were quite similar
although they differed quantitatively because of certain essential differences
in the modeis, principally the following:
1. The structural damping was greater on the füll model than on the section

model (except in certain tests for which the damping of the section model
mounting was progressively increased).

2. The movement was uniform along the section model but the amplitude on
the füll model, of course, varied in accordance with the wave form of the
particular mode. Figure 1 shows typical forms for several modes.

The effects of the above factors can be evaluated mathematically. In
addition there is a small effect from the wind flow around the ends of the
section model. Tests with and without end plates blocking this end flow showed
that its effect was very small if the aspect ratio was as much as 4.5. There was
some minor uncertainty concerning the uniformity of the wind along the füll
model, particularly, the angle of attack, ß, the divergence of the wind stream

5) Ibid.



Mathematical Prediction of Suspension Bridge Behavior in Wind 307

from the horizontal. This angle was controlled by the adjustment of horizontal
vanes arranged in 25 sets each 4 ft. long. The pitchmeters and smoke streamers
used for measuring the angle of attack permitted variations of as much as 1°
in the actual setting of the angle. Also the curvature of the wind downstream
from the model caused a small change in ß as the velocity increased. The
effects of these factors differed in the various tests depending upon the sensi-

tivity of the phenomenon to the angle of attack.

Test Procedure and Analysis of Data

For predicting bridge behavior in the wind the section model is used as

an instrument for determining the rate of energy transfer between the structure

and the wind stream. The logarithmic decrement, S, easily determined
from the record of motion of the model, is the key to the analysis because of
its relation to ifj, the rate of energy change per cycle. For low damping 8 0/2.
If 8 exceeds about 0.05, a closer approximation is:

0 28(1-8/2) (1)

DOUBLE AMPLITUDE-0-
(20 DIVISIONS 8°)

19.5 173 11.95 8.9514.7

1/30 L0Ge (11.95/8.95) 00097 I

-25 ¦+• 30

aoii3 0.0108 0.0103

h
16.5 16.45 10.15 7.7

INTERVAL, CYCLES

AMPLITUDE, 0

8=l/n LOGe0o/*n

INTERVAL, CYCLES

AMPLITUDE, $

0.0113 I 0.0102 I 0.0092

Fig. 2. Specimen Oscillograph Record and Calculations of Logarithmic Decrement

The logarithmic decrement is defined as the natural logarithm of the ratio
of two successive amplitudes and is computed from the formula:

8 — los; e
n 6

7).

Vo (2)

in which rj0 is a conveniently chosen amplitude and rjn is the amplitude n
cycles later. Figure 2 shows the detailed procedure for determining 8 using a
double series of measurements to provide a check and detect discrepancies.
For viscous damping 8 is constant with respect to amplitude. For Coulomb
friction damping it varies inversely with amplitude and for damping due to a
force proportional to the square of the velocity of Vibration 8 is directly
proportional to amplitude. It is positive for decreasing and negative for in-
creasing amplitude.
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The value determined by section model tests may also be defined:

8 3S + S„ (3)

in which Ss is the structural damping (in Springs and mounting) and 8a is the
aerodynamic or atmospheric damping. The former is always positive. The
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latter is positive in still air and may be positive or negative in a wind depending
upon the velocity and vertical angle of attack, ß. Figures 3 and 4 show curves
for 8 plotted against the amplitude in degrees of a torsional oscillation. These
are typical curves for restricted oscillations as plotted from early tests. It will
be noted that they do not correspond because the angle of attack differs.

When 8 is zero no change in amplitude is taking place. Therefore, the
intersections of the curves with the axis of zero 8 indicate the "steady state"
amplitudes for the corresponding velocities. The model at rest in the wind
stream will build up to this amplitude and if manually excited to a greater
amplitude it will decay to this steady state.

These individual curves showing the influence of velocity and amplitude
upon the rate of energy transfer suggested the method of prediction described
herein. It was recognized, however, that only the aerodynamic damping was
caused by forces which could be correctly scaled in the model tests. The structural

make-up and action of the model differ so much from those of the prototype

that their structural dampings bear no useful quantitative relationship.
The section model tests do show how structural damping will affect the
oscillation, but they give no quantitative indication of what the structural
damping of the prototype will be. This must be determined by other means6)7)
or assumed for the purpose of analysis.

The first task was to segregate the aerodynamic and structural damping
of the section model oscillating in still air. The method used was based on the
knowledge that the section model was rigid due to its relatively short length,
and deliberate stiffening in some cases, so that its structural damping was due
entirely to the action of the Springs and their supports and connections. The
structural damping was therefore determined by recording the decay of
oscillation when two streamlined brass rods were suspended from two of the
Springs constituting the support of one end of the model (see fig. 5). The rods
were of such size that the total weight on the two Springs was one-half that
of the section model. The air forces (still air) were negligible. Having thus
determined 8S, Sa was found by subtracting Ss from 8 as determined from the
tests of the section model with the same Suspension and frequency.

Though simple in principle the segregation of the aerodynamic damping
involved numerous experimental difficulties and delays.

The model mounting including the spring Suspension and restraining wires
used in these tests is shown in figure 4 of the paper "Model Verification of the
Classical Flutter Theory as Adapted to the Suspension Bridge" by Professor
F. B. Farquharson (page 147 of this volume). The oscillations of the brass

6) "Damping Effect in Suspension Bridges" by Arne Selberg, Vol. X, Publications
of the International Association for Bridge and Structural Engineering.

7) Damping tests on small Suspension bridges, intended to develop methods for use
on major bridges will be described in Part V of University of Washington, Bulletin
No. 116, in preparation.
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weights were recorded on an oscillograph receiving the amplified Output of an
electrical circuit involving an unbonded wire strain gage which sustained a

part of the reaction of the spring support. The oscillation of the section model
was similarly recorded using the Output of a linear differential transformer
built into a small accelerometer placed on the model. In both cases the record
was calibrated by adjusting the gain of the amplifier while manually main-
taining a steady amplitude and observing a pointer attached to the oscillating

Restraining wires

Cross bar
Pivot

13.30

flexures''

ßrass rods

Wt. 3.22 Lb. each

-•-CG. of rod

^

Fig. 5. Brass Rods Suspended on Spring
Mounting for One End of Section Model

Fig. 6. Type II Restraining Wires
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system as it moved aeross a fixed. scale indicating the linear or angular motion.
The restraining wires were used to prevent displacement and sway of the
model in the direction of the wind. The type I wires resist torsional but not
vertical motion, and use was made of this action in the studies of flutter. In
the tests here reported, type II wires were used. These (shown in figures 5 and 6)
restrained each hanger separately and being attached to supports some 8 or
10 ft. from the model thev had negligible effect on vertical or torsional oscil-

K____K__p____in

^N

Fig. 7. Wood Rods Suspended from Section Model

lation. Torsional oscillation took place about a longitudinal axis of the model
which usually tended to shift slightly in a small orbit with respect to the model.
This caused a slight irregularity in the amplitude as recorded at one edge of
the model. Fixing the axis of rotation within the observed orbit by means of
a phonograph needle lightly pressed into a small hole or dimple in a plate
attached to each end of the model gave a steadier record and had only a slight
effect on the structural damping and the behavior of the model. The pivot
plate is shown in figures 6 and 7. In the tests here described, the pivot was
placed on the longitudinal centeiiine of the deck.

The assumption that the aerodynamic forces on the brass rods in still air
were negligible was readily confirmed by suspending from the section model

very light wood rods of the same size (fig. 7) and noting that the logarithmic
decrement, §, remained essentially the same as for the model alone.

Figure 8 shows both 8 and Ss plotted against amplitude for vertical
oscillation in still air. The atmospheric damping, 8a, is indicated by the ordinates
between these curves. It will be noted that 8a has a very small initial value
and increases directly with the amplitude. This is significant as shown by the
following analysis.

21 Abhandlung XII
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The energy of a vibrating system can be expressed:

U
mco2 r]2

w
in which m is the mass, cd is the circular frequency and 77 is the amplitude.
The work performed on the system by a force which varies as the square of
the velocity of Vibration is: AU Cmco2^ (5)

in which C is an experimental constant. The resulting rate of change in energy
per cycle then is:

0 -rT ^7? (6)

Thus ifj and 8a should increase as linear funetions of 77. The experimental
value shown in figure 8 may therefore be regarded as a small constant value
due to viscous damping plus a much larger constituent due to the dynamic
pressure. The small influence of the viscous damping confirms the validity of
testing the modeis under Froude's Law. Curves for torsional oscillation in still
air, shown in figure 9, show this same basic charater but are curved somewhat
because of the more complex air flow. The fact that this evidence of the
dominance of inertial force action is not found in the curves obtained with
the model in a wind stream need not be disturbing. Only in the still air tests is
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the effective velocity identical to the velocity of Vibration. In a wind stream
the effective velocity is a resultant of velocities due to wind and to oscillation.
Furthermore the air forces are altered by vortex action associated with the
particular velocity and their energy contribution to the motion, depending
upon the degree of resonance with the motion of the structure, changes with
wind velocity and with amplitude. The resulting relation between amplitude
and logarithmic decrement, therefore, is not simple.

Figure 9 shows the small effect on damping caused by the pivots fixing
the center of rotation.

Theory Underlying Predictions

In developing the relation between the logarithmic decrement, 8a, of the
section model and that of the prototype it should be noted that the mass of
the section model is uniformly distributed along its length and the motion is
likewise the same at all cross sections of the model. Therefore, both U and A U
(equations 4 and 5) are proportional to the length of model considered and
their ratio A UjU ifj, is the same for any portion of the model, such as a unit
length, as it is for the entire model. The value of ip for a unit length of the füll
model at a location which moves with the same amplitude as the section model
will be the same as ifj for the latter. Moreover, since the scales are correct, ifj,

which is a non-dimensional ratio, will be the same for a unit length of the
prototype when oscillating at an amplitude equal to that of the section model
adjusted by the scale factor.

What has been said about ifj applies also to Sa because of their relationship.
This means that a curve for Sa determined from section model tests and
plotted as a function of the amplitude, rj (as in fig. 8), will apply to the prototype

if the abscissa scale is changed to the corresponding prototype amplitudes.
For figure 8 ri would be multiplied by fifty. For torsional oscillation as illustra-
ted by figure 9 no change in the graph is required.

To avoid confusion, Sa as a function of the amplitude of motion of a unit
length of model or prototype will be designated, Sma, and can be expressed
as the power series:

8ma Ama + Bma V + Gma rf + Dma rf • • ¦ (7)

in which Ama, etc. are the coefficients required to define the curves plotted
from the section model test data.

For the purpose of this analysis the approximation, i/j 28 is adequate
and the energy change due to atmospheric damping on a differential length
of the prototype is: w 2^2Aü 28ma^p-dx (8)

mp being the mass of the prototype per unit length, o> its frequency and 77 its
amplitude.
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Mode and wave Form
IjNx_
Lfd*

CoeFFicients For constants

Lt2d*
___: ___:

Tower1-NV
Umoo'

wo1 %H0 0,7500 0,6791

V-VoSin^f

0-NV Tower
-L=7400'0.797

noo
%H°

M.5. —•/?= 0,49729% (1+1,0109COS 5-99xJ

SS — 7?=0,49729% (1+1.3403COS -^*- + 2,2320sin ¦&$*-)

2-NV Tower —,—.
7=1100' X fc«92 1=933.33

»-#L_(__±____I-——^—1 1=933,33'

7= VÖsm ^j- (approx/mated)

Table I. Integration Ratios

The total change in energy is:

\ AU 8mampw2 J rfdx (9)

in which L indicates Integration over the entire length of the bridge. Substituting

for 8ma from equation (7) this becomes:

$ AU mp^\Ama $ rj*dx + BmJ v*dx + CmJ r)±dx + DmJ rjtdx] (10)
L L__ L L __

J

Similarly the total energy of Vibration of the bridge is:

m^ a>2

\u \rfdxz _
(11)

The overall rate of energy change per cycle due to atmospheric damping
for the bridge can now be written:

JLAU \ Lrfdx c Lrfdx Lrfdxl
Lu L

ma^ ma\Lrfdx ""[irf&x maLrfdx\

For any mode of oscillation of the bridge the amplitude, 77, at any point
can be expressed as a function of x,- measured along the longitudinal axis
from a convenient point, and of r]0, the amplitude at any convenient point
such as the center of the main span for Symmetrie modes and the quarter-
point of the main span for the first asymmetric mode. Numerical values for
the integral ratios for certain wave forms are given in Table 1.
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From equation (12) the overall logarithmic decrement of the prototype
due to atmospheric damping, 8pa, can be written:

^Va ^ Ava + Bpay]^Cpar]0^Dpar]^... (13)

m wbich Apa Ama; Bpar]0 Bma ^ etc.

If the logarithmic decrement of the bridge, 8p has been measured in the
field or is assumed, it also can be expressed as a power series in 770. The structural

damping of the bridge, S^, can be determined by subtracting 8pa from
the total thus:

_ _ <_ /i a\
°ps öp-öpa (14)

If a wind of a certain velocity causes oscillation of the section model the
oscillograph record can be analyzed to determine the varying negative values
of 8m for amplitudes below the steady state and its positive values for some-
what higher amplitudes. The structural damping, 8ms, of the section model

mounting as determined with the brass rods is substracted from 8m to obtain
8mav, the aerodynamic damping in the windstream. This will be expressed:

8mav Äma + Bma V + Gma rf + Dma rf • • • (15)

in which numerical values of the coefficients will differ from those in equation
(7). Some of them will be negative. Following the process used above for still
air damping, an expression similar to equation (13) but with some negative
coefficients, will be obtained for 8pav, the overall aerodynamic decrement of
the bridge in the prototype wind. The overall decrement, 8pv, of the bridge in
the prototype wind will be:

&pv 8ps + 8pav (16)

The prototype amplitude at which Spv 0 will be the predicted steady state
amplitude, r)0.

Verification of Theory. Illustrative Example

In order to test this method, predictions based on section model data were
compared with the behavior of the füll model. Space permits the presentation
of only enough of the data to illustrate the procedure and compare the results.

The data used in this Illustration are from tests on the model of the new
Tacoma Narrows Bridge as modified by covering the roadway slots, removing
all of the truss except the top chord, and adding girders 12 ft. deep (prototype).
The resulting section had the relative proportions of the original Tacoma
Narrows Bridge but was 50% wider and deeper and the suspended structure
had several times the vertical stiffness of the original section. Figure 10 shows

the cross section of this model.
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Fig. 10. Model of Girder-Stiffened Bridge

Predictions were made for two vertical modes, the fundamental (0 — NV)
and the two-node (2 — NV). These had natural frequencies of 52.8 cpm and
82.8 cpm respectively. The section model was tested on sets of Springs (four to
the set) giving natural frequencies of 63.2 cpm and 83.9 cpm, which were used
for predictions of the 0 — N V and 2 — N V modes respectively. Actually tests
made at one frequency would have sufficed for both modes because of the
consistent relation between model behavior and the V/Nb ratio. Typical
calculations for the 0 — N V mode are given below.

The logarithmic decrement of the section model in still air, plotted as
illustrated in figure 8 is expressed by the equation:

8ms + 8ma 0.01+ 0.026,, (17)8)

From tests with the brass rods on the same Springs the structural damping is:

8ms + 0.0016 + 0.0005 rj (18)

Subtracting, the atmospheric damping is:

8ma 0.0084 + 0.0255 7? (19)

The overall atmospheric damping of the füll model (and of the prototype)
is obtained by multiplying each term of equation (19) by the proper integral
ratio as indicated by equation (12) and the numerical values in Table I for
wave form (b) thus:

8fa 0.0084 + 0.0255 X 0.7702 Vo 0.0084 + 0.0196 rj0 (20)

(The subscript, /, is used to designate the füll model.)
The overall damping of the füll model, when oscillated in the fundamental

mode in still air was found to correspond to the equation:

§/s + 8/a 0.027 +0.1436 770 - 0.0839 7}02 (21)

8) This curve not reproduced.
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Bridge in Wind

Substracting equation (20) from equation (21) the structural damping of
the fall model in the 0 — N V mode is:

8fs 0.0186 + 0.1240 rj0 - 0.0839 rj02 (22)

Oscillograph records of the motion of the section model were made at
various velocities in a horizontal wind and the logarithmic decrement was
computed continously along these records both above and below the steady
state amplitude. Figure 11 shows the plotted points and the equation of the
curve for 8ms-\-8mav as a function of rj. Substracting the structural damping,
equation (18), from this gives the net aerodynamic damping:

8mav - 0.2088 + 3.4551 rj - 21.6317 v2 + 58.5697 rj* -
- 71.4936 ^ + 32.5903 rj5 (23)

This is adjusted to the füll model by multiplying the terms by the integral
ratios indicated in equation (12) having the numerical values shown in Table 1

for wave form (b) thus:

8fav - 0.2088 + 2.6611 Vo - 13.5739 r;02 + 31.0771 t?03 -
- 32.9585 rjtf + 13.3295 rj05 (24)

Finally the overall decrement for the predicted motion of the füll model is
obtained by adding equations (22) and (24), thus:

8f8 + 8fav -0.1902 + 2.7851 rj0- 13.6578 tj02 +
+ 31.07717703 - 32.9585 ^04 + 13.3295 rj05 (25)
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The predicted steady state amplitude of the füll model as measured at the
center of the main span is the value of rj0 which makes 8^s + 8fav 0.

Equation (24) for a wind-velocity of 3.18 fps and a V/Nb ratio of 2.35 is
plotted in figure 12 along with curves similarly produced for other velocities
and VjNb ratios. The negative value of equation (22), identified as — 8fs is
plotted as a dashed Une. Thus the intersections of this curve with the various
füll line curves occur at the predicted steady state amplitudes for the V/Nb
ratios indicated.

Figure 13 shows similar curves for the two-node vertical mode.

Although the section model was tested on two sets of Springs to represent
approximately the frequencies of the two modes the results are very nearly
the same when plotted against V/Nb ratio instead of velocity. Therefore
predictions were made for both modes from both series of section model tests as
shown in figures 12 and 13.

Finally, figure 14 shows the double amplitude plotted against the V/Nb
ratio for the füll model in^the two modes for which these predictions were made.
The open symbols show predicted points taken from the intersections in
figures 12 and 13 (with amplitude doubled) and the solid symbols of the
corresponding shape show the amplitudes actually measured on the füll model
at various wind velocities.

Predictions for the truss-stiffened model with slotted deck did not agree
with the observed values as closely as indicated in figure 14 for the girder-
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stiffened model. This is attributed principally to the sensitivity of the truss-
stiffened section to angle of attack in winds angled upward about 6° and 8°
(the angles used in the tests). As indicated earlier, there was some unavoidable
Variation in the actual angle along the füll model. The agreement was
considered close enough to recommend the procedure as a means for ascertaining
the probable behavior of a Suspension bridge in a known wind. The non-
uniformity of natural winds in space and their fluctuation in time reduce their
effeGtiveness in varying degree at different bridge sites so that great refinement
in the determination of the response of the bridge in an ideal wind is not
essential.
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Summary

The results of wind tunnel tests on three dimensional modeis of Suspension
bridges show sufficient correlation with the behavior of the actual bridges
under similar conditions to indicate that the scale effect is small. Static wind
tunnel tests on modeis show that the effect of Reynold's Number on drag,
lift and moment is negligible. When the logarithmic decrement for atmospheric
damping in model tests in still air is plotted against amplitude of oscillation
the resulting curves reveal the action of forces whose strength varies as the
square of the velocity with only a small component of viscous damping,
indicating that the phenomenon follows Froude's Law. These facts make it
possible to use aerodynamic section model tests to predict the behavior of the
bridge in the wind.

When a section model, properly scaled as to form, mass and mass
distribution, is supported on Springs designed to reproduce to scale the vertical,

9) "Mathematical Theory of Vibration in Suspension Bridges" by Friedrich Bleich,
C. B. McCtjllotjgh, Richard Rosecrans, and George S. Vincent. United States
Bureau of Public Roads, Government Printing Office.
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torsional and coupled movements of the prototype and is exposed in a wind
stream, the flow will be similar and the wind forces will be proportional to
those associated with the prototype under corresponding conditions. The
continuous record of the motion of the model will reveal the integrated work
performed on it by the wind forces and will indicate the rate per cycle at
which the wind transfers energy to the oscillating system. This rate, which
varies with the amplitude, will be the same on the prototype as on the model,
the latter representing the conditions over a unit length of the prototype
oscillating at a discrete amplitude. The energy transfer per cycle on the prototype

can be calculated by Integration over the length of the structure using
the previously computed frequency and wave form of the mode under
investigation. The steady state amplitude in the given wind stream will be that at
which the total energy input per cycle just equals that absorbed by the structural

damping. The latter, for the prototype, must be known or assumed.
The structural damping of the model mechanism is obtained from tests

with equivalent streamlined weights substituted for the section model. When
this is subtracted from the damping of the model assembly in still air or a wind-
stream the atmospheric damping for that condition is obtained. The tests are
extended to sufficient amplitude to include the ranges of positive and negative
atmospheric damping. The Integration for the prototype is facilitated by
expressing the logarithmic decrement as a power series in the amplitude. The
curves vary much in form for different velocities.

'Zusammenfassung

Die Resultate von Windkanalversuchen mit dreidimensionalen Modellen
von Hängebrücken zeigen genügende Übereinstimmung mit dem Verhalten
bestehender Brücken, so daß der Einfluß des Maßstabes als klein angenommen
werden kann. Aus statischen Windkanalversuchen ergibt sich, daß der Einfluß
der Reynold'schen Zahl auf Rücktrieb, Auftrieb und Moment vernachlässigbar
ist. Trägt man das logarithmische Dekrement der atmosphärischen Dämpfung
des Modellversuchs in unbewegter Luft über der Amplitude der Schwingung
auf, so kann aus den entstehenden Kurven abgelesen werden, daß die Größe
der wirkenden Kräfte mit dem Quadrate der Geschwindigkeit zunimmt. Die
Komponente der viskosen Dämpfung ist nur klein; für den Vorgang ist demnach

das Froude'sche Gesetz gültig. Diese Tatsachen ermöglichen es, auf
Grund von aerodynamischen Versuchen mit Querschnittsmodellen das
Verhalten der Brücke im Wind vorauszusagen.

Wird ein Querschnittsmodell in richtigem Maßstab für Abmessung, Masse
und MassenVerteilung derart auf Federn gelagert, daß diese die'vertikalen,
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drehenden und gekoppelten Bewegungen des Prototyps maßstabgetreu
nachbilden, so wird im Windkanal die Strömung ähnlich verlaufen und die Windkräfte

werden proportional denjenigen sein, wie sie beim Prototyp unter
entsprechenden Bedingungen auftreten. Die fortlaufende Aufzeichnung der
Bewegungen des Modells ergibt die Integration der von den Windkräften
geleisteten Arbeit und gibt an, wieviel Energie der Wind pro Schwingung auf das
schwingende System überträgt. Diese Energiemenge, die sich mit der Amplitude

ändert, wird dieselbe sein für Prototyp und Modell, da ja das letztere die
Bedingungen über die Längeneinheit des mit einer bestimmten Amplitude
schwingenden Prototyps darstellt. Der Energieübergang auf den Prototyp pro
Periode kann durch Integration über die Länge des Bauwerks berechnet werden

unter Verwendung der vorher berechneten Frequenz und Wellenform des

zu erforschenden Systems. Die gleichbleibende Amplitude im gegebenen Windstrom

wird diejenige sein, bei der die gesamte pro Schwingung zugeführte
Energie gerade gleich groß ist, wie die von der mechanischen Dämpfung
aufgenommene. Die letztere muß für den Prototyp bekannt sein oder angenommen

werden.
Die mechanische Dämpfung des Modellmechanismus wird aus Versuchen

mit gleichwertigen stromlinienförmigen Gewichten an Stelle des Querschnittsmodells

erhalten. Wird diese subtrahiert von der Dämpfung des zusammengesetzten

Modells in stiller Luft oder in einem Windstrom, so erhält man die
atmosphärische Dämpfung für diese Bedingungen. Die Versuche werden bis zu
genügend großer Amplitude ausgedehnt, um die Bereiche positiver und negativer

atmosphärischer Dämpfung zu erfassen. Die Integration für den Prototyp

wird erleichtert, wenn man das logarithmische Dekrement als eine Potenz -
reihe in Funktion der Amplitude ausdrückt. Die Kurven weichen für
verschiedene Geschwindigkeiten in ihrer Form stark voneinander ab.

Resume

Les resultats des essais en soufflerie sur modeles a trois dimensions de ponts
suspendus presentent une correlation suffisamment bonne avec le comportement

des ponts reels, dans des conditions semblables, pour que l'on puisse en
conclure ä une faible influence de la reduetion du modele. Les essais statiques
sur modeles, en soufflerie, montrent que rinfluence du nombre de Reynold sur
la trainee, la portance et le moment est negligeable. Lorsque l'on porte le
decrement logarithmique de l'amortissement atmospherique qui se manifeste
au cours d'essais sur modeles, en air calme, en fonction de l'amplitude d'oscil-
lation, les courbes obtenues mettent en evidence l'action de forces qui varient
comme le carre de la vitesse, en ne comportant qu'une faible composante
d'amortissement visqueux, indiquant que le phenomene suit la loi de Froude.
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Ces faits rendent possible l'emploi des essais aerodynamiques sur modeles de

sections, pour prevoir le comportement des ponts sous Feffet du vent.
Lorsqu'un modele de section, correctement proportionne en ce qui con-

cerne la forme, la masse et la distribution des masses est monte sur des ressorts
etablis de maniere ä reproduire ä l'echelle les mouvements verticaux, torsion-
nels et combines du prototype et que ce modele est expose ä un courant d'air,
l'ecoulement et les efforts düs au vent sont similaires ä l'ecoulement et aux
efforts qui se manifestent sur le prototype dans des conditions correspondantes.
L'enregistrement continu du mouvement du modele revele le travail integre
qui s'accomplit sur lui sous l'action du vent et indique le taux par cycle suivant
lequel le vent transfere son energie au Systeme oscillant. Ce taux, qui varie
avec l'amplitude, est le meme sur le prototype que sur le modele et represente
les conditions qui se manifestent sur l'unite de longueur du prototype, oscillant
sous une amplitude discrete. Le transfert d'energie par cycle sur le prototype
lui-meme peut etre calcule par integration sur la longueur de l'ouvrage en
utilisant la frequence et la forme d'onde anterieurement calculees d'apres le

mode en cours d'examen. L'amplitude en regime stationnaire dans le vent
donne est celle qui, sous l'apport total d'energie par cycle, est juste egale a
celle qui se trouve absorbee par l'amortissement de l'ouvrage. Cette derniere
doit etre connue ou supposee pour le prototype lui-meme.

L'amortissement structural du mecanisme modele est obtenu ä partir
d'essais effectues ä l'aide de poids carenes Äquivalents substitues au modele de

la section. En deduisant cet amortissement de celui de l'assemblage du modele

en air calme ou dans un courant d'air, on obtient Yamortissement atmos-
pherique pour la condition consideree. Les essais sont etendus ä une
amplitude süffisante pour englober les gammes d'amortissements atmosphe-
riques positifs et negatifs. L'integration relative au prototype est facilitee
lorsque Ton exprime le decrement logarithmique sous la forme d'une serie de

puissance en amplitude. La forme des courbes varie beaucoup pour les
differentes vitesses.
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