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Das 2-dimensionale Problem bei periodisch verinderlicher
Temperatureinwirkung

(Temperaturverteilung und Temperaturspannungen)

Le probléme bi-dimensionnel sous Ueffet de températures
périodiquement variables

(Répartition de la température et contraintes thermiques)

The two -dimensional problem in the case of periodically
altering temperature effects

(Temperature distribution and thermal stresses)

Prof. Dr. PiERrRE LarDY, Eidg. Techn. Hochschule, Ziirich,
Generalsekretir fur Eisenbetonbau der IVBH

1. Einfiihrung

Die vorliegende Arbeit behandelt das Problem der Temperaturverteilung
sowie der Temperaturspannungen fiir 2-dimensionale Elemente, wenn die
Aullentemperaturen periodisch verdnderlich sind.

Die mathematischen Schwierigkeiten sind bedeutend grofler als beim line-
aren Problem?'), da die Differentialgleichungen hier partiell sind und die Ein-
haltung der Randbedingungen besondere Anforderungen stellen. Trotzdem
gelingt es, die Integralfunktionen in wichtigen Anwendungsfillen auf eine fiir
die numerische Auswertung geeignete Form zu bringen.

Als Grundlage der Berechnungen dient die Fourier’sche Theorie der Warme-
leitung, unter der Voraussetzung, dall keine Wiarmequellen vorhanden sind
und dafBl die gegebenen AufBlentemperaturen periodisch veridnderlich sind. In
der Folge wird nur eine einzige Temperaturfrequenz « betrachtet, was in den
meisten praktischen Fillen geniigen diirfte. Andernfalls gelingt die Beriick-
sichtigung verwickelterer Fille durch Uberlagerung der Losungen mit meh-
reren verschiedenen Frequenzen.

In der praktischen Anwendung handelt es sich um Scheiben, die lings ihrer
Oberflichen thermisch isoliert sind und bei denen die oszillierenden Auflen-
temperaturen an den Rédndern angreifen oder, in vermehrtem Ma@e, um pris-
matische oder zylindrische, unbeschrankt lange Pfeiler, an deren Mantelflichen

1) Vgl. Prof. Dr. M. RirteEr: 1.V.B.H., 7. Band der ,,Abhandlungen‘, 1943/44.
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die AuBlentemperaturen angreifen. Solche Probleme sind beim Staumauerbau
sowie beim Behilterbau aktuell (Pfeilerstaumauern als Scheibenproblem,
Temperaturprobleme bei groBen Pfeilern, bei Behiltern, usw.).

Im folgenden werden die theoretischen Grundlagen der Temperaturver-
teilung und der Temperaturspannungen aufgestellt und als Anwendungen die
rechteckige Scheibe sowie die Halbebene behandelt. Die Arbeit schlieBt mit
einigen Hinweisen auf andere, wichtige Beispiele der praktischen Anwendungen.

2. Allgemeine Theorie der Temperaturverteilung

a) Grundgleichung

Die Fourier’sche Grund-Differentialgleichung der Wiarmeleitung lautet:

oT
W=A-AT (I)

Darin bedeuten:
T: die Temperatur,
t: die Zeit,
A: die Temperaturleitzahl, wobei:
A4, = A mit:
cy

A: Wirmeleitzahl,
c: spezifische Wirme,
y: Raumgewicht.
4: der Laplace’sche Operator, z. B. in kartesischen Koordinaten:
02 02
= —é_.i;,‘é + 3—3/2.

b) Allgemeines Integral

Die gegebenen, periodisch verdnderlichen AuBentemperaturen 7', haben
nach Voraussetzung die Frequenz w, sind also darstellbar als Funktionen von:

coswt oder sinwt.

Daher muB das allgemeinste Integral der Grundgleichung (I) folgende Form
besitzen:

T =coswt-F+sinwt- @ (1T)

Darin sind F und G Funktionen der beiden unabhingigen, dem betreffenden
2-dimensionalen Problem angepaften Koordinaten. Die Form (II) entspricht
sowohl der Grundgleichung (I) wie auch den gegebenen Auflentemperaturen,
die fiir das Problem der Temperaturverteilung die Randbedingungen darstellen.
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Der Ansatz (II) werde in die Gleichung (I) eingesetzt. Es folgt:

or
ot
AT =coswt- A F+sinwt-4G

= —w-sinwt-F+w-coswt-G

und daher

—w-sinwit- F+w-coswt-G = A(coswt-4d F+sinwt-4G)
oder
coswt(—w-G+A-AF)+sinwt(w-F+4-4G) =0.

Diese Identitit erfordert das Verschwinden der beiden Klammern und
fiilhrt, mit der Abkiirzung:

w
g, P98
1 2k
zu den beiden Gleichungen
AF = 242.Q
4G = —2x2- F (1)

aus denen die Abhingigkeit der beiden Funktionen F und G voneinander
ersichtlich ist.

Wird der Laplace’sche Operator auf beide Gl. (1) ausgefiihrt, so folgen nach
einfacher Elimination 2 getrennte Bestimmungsgleichungen fiir ¥ und G:

AAF +4x* F =0
A4 G +4k*-G =0 _ (2)

Dank der Gl. (1) geniigt die Integration einer einzigen der Gl. (2).
Damit bedeutet der Integrations-Ansatz (II) als allgemeines Integral der
Grundgleichung (I) die grundsétzliche Losung des Problems.

¢) Randbedingungen

Die Funktionen F und G miissen am Rande den gegebenen AuBentem-
peraturen entsprechen. Wenn beispielsweise die Randtemperatur 7' gegeben
ist als: Ty = Ty -sinwt,
wo T, lings dem Rande i. A. variieren kann, so miissen dort die Bedingungen
fiir ¥ und G lauten (Index ,,0° bedeutet Rand):

Fo=0
Go=1T,.
Erst die Erfiilllung dieser Randbedingungen sondert aus dem allgemeinen
Integral die Losung des betreffenden Problems aus.
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d) Amplituden

Meistens interessiert in einem bestimmten Punkt der grofite Wert der Tem-
peratur, die Amplitude 7',,., im Zeitpunkte ¢,. Die Bedingung fir 7,,,,

lautet: aT
at ="
woraus sehr einfach folgt:
q
sowie
Tmax = VFZ_“ G? (4)

Das allgemeine Integral kann damit auch auf folgende Form gebracht werden,
wo die Phasenverschiebung ¢; und die Amplitude 7,,,, in Evidenz gesetzt sind:

T = VF2+ G2-cos (wt — arctgg)

F

oder: (I1")

T =T,4.-cosw(t—1t)

Fiir numerische Auswertungen bietet 7,,, den Vorzug groBer Einfachheit
im Vergleich zu F oder G und ergibt ein sehr eindriickliches Kriterium fiir die
Beurteilung der Temperaturverteilung. '

3. Temperaturspannungen und Formiinderungen

a) Grundgleichung zur Spannungsberechnung

Zur besseren Ubersicht seien die folgenden Uberlegungen im rechtwink-
ligen, kartesischen Koordinatensystem dargestellt. Die Hauptergebnisse sind
ihrerseits jedoch vom Koordinatensystem unabhingig, wie dies aus der Form
der Grundgleichung ersichtlich sein wird. Es seien bezeichnet mit:

= Verschiebung parallel z-Achse,
v = Verschiebung parallel y-Achse,

€ = Z—Z— = Dehnung parallel x-Achse,

€ = 2—;— = Dehnung parallel y-Achse,
ou 0Ov . o

You = Gy too= Winkeldnderung,

o, = Normalspannung parallel z-Achse,

= Normalspannung parallel y-Achse,
T,y = Schubspannung,
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v = 7,1; = Querdehnungszahl,
E = Elastizitdtsmodul.
Jedes rechtwinklige Element dx-dy erfihrt durch die Temperatureinwir-

kung 7 eine Dehnung e, nach beiden Richtungen x und y. Wird mit 6 der
Wirmeausdehnungskoeffizient bezeichnet, so ist:

e =0-T (5)

Dies fithrt zu folgender Verallgemeinerung der Spannungs-Dehnungs-

Gleichungen der 2-dimensionalen Elastizitdatstheorie fiir Temperatureinwir-
kungen:

ou 1
€x=8—x='ﬁ(aw_v'oy)+€1‘
ov 1 ,
€y=@=f(0'y—V'0'x)+€T > (6)
_du, ov _ 2014w
YT oy e T T E W

Wird mit @ die Airy’sche Spannungsfunktion bezeichnet, so ist:
‘ _?D 0?0 2P

W= VT Em W Taay

und deren Einfiihrung in die Vertriaglichkeitsbedingung:

32€x+82€y _ Yy
oy:  o0x* dx-0y

fithrt zur verallgemeinerten Grundgleichung fiir @:

A4D+E-dey =0 (I1T)

Fiir 6 = konstant wird.:

AAG+EG-AT =0 (IIT')

Die Airy’sche, biharmonische Gleichung ist bei Temperatureinwirkungen
nicht mehr homogen. Sie ist vom Koordinatensystem unabhingig.

Wird in Gl. (III') 7 durch den allgemeinen Ansatz (II) ersetzt, so folgt,
mit Hilfe der GI. (1):

44D +2k%- EO(coswt-G—sinwt-F) =0 (Iv)

(Grundgleichung der Temperaturspannungen).
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b) Partikulires Integral und allgemeine Lésung

Die Losung der Gl. (IV) ist ebenfalls eine periodische Zeitfunktion und
kann hier als Summe eines partikuliren Integrals @, und des allgemeinen Inte-
grals @, der homogenen Gleichung gefunden werden; die allgemeine Losung
@ lautet daher: @ =D, + D,

D,: D, wird wie folgt angesetzt:
@, = coswi-P+sinwt-Q | (7)
wo: P und @ Funktionen der beiden unabhéngigen Variabeln sind.
Gl (7) in Gl (IV) eingesetzt ergibt:
44P = -2 E0-G (8)
44Q = 2«2 E0-F

Ein Vergleich der Gleichungen (8) und (2) fiithrt sofort zur Bestimmung von
P und Q: B

P el o)
E0
9= 5T

woraus das partikuldre Integral folgt zu:

D, = %(COSwt'G—Sinwt-F)

@,: Fir @, gilt: 44P,=0; @, ist in ¢ periodisch, mit biharmonischen Koeffi-
" zienten U und V als Funktionen der beiden unabhéingigen Variabeln:

&P, =coswt-U+sinwt-V (11)
mit: 44U =0, 44V =0 (12)

Das allgemeine Integral lautet:

@=cosw't(Eg-G—l—U)+sinwt(—-@-F+V) (V)
2k 2 K2

Auch diese Losung hat allgemeine Bedeutung, da sie vom Koordinaten-
system unabhéngig ist.
. ¢) Randbedingungen

Diese driicken den Spannungs- oder den Verschiebungszustand am Rande
aus. Eine besondere Schwierigkeit bei der numerischen Auswertung besteht
darin, dal @, und @, aus verschiedenartigen Funktionen bestehen, die sich
als Losungen verschiedener partieller Differential-Gleichungen ergeben. Auf
Grund von Reihenentwicklungen oder mit der Ritz’schen Methode kénnen diese
Schwierigkeiten iiberwunden werden.
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Bei freien Ridndern kénnen die Bedingungen

einfacher durch 2@

¢=O, ﬁ=0

ersetzt werden (n: Koordinate der Randnormalen).
Der Verschiebungszustand wird durch » und v ausgedriickt.

d) Spannungs-Amplituden

Analog den Temperatur-Amplituden folgt aus der Formel (V) fiir die
Spannungs-Amplituden:

02 (K6 2 02 EB
"wm=V[é§é(§zé'G+U)]+[a“y‘z( F”’)]

und analog fiir ¢, und 7, .

e) Verschiebungen

Vorausgesetzt sei ein rechtwinkliges, kartesisches Koordinatensystem x, y.
Die Verschiebungen  und v werden durch Integration der Ausdriicke fiir €,
und ¢, erhalten, die zu diesem Zwecke auf folgende Form gebracht werden:

ou 1 >
em=-a—a;=—E—[A@ (1+V)3 :|+€T
ov 1 D
ey=537=—E—[A@ (1+v)9y]+€T
wo: ep =0T ist.

Die Integration ergibt:

fACDd 1+") a@ dex+§()

_1 dy— 1+V)._ :
Efd@ dy % 3y+0JT dy+n (x)

(13)

Darin sind die Integrationsfunktionen ¢ (y) und 7 (x) durch die 3. der Gl. (6)
miteinander verbunden:

fi(dtp)-dx+fi(dq5)-dy+

B |o( [y -du+ [pan) + 55+ 5] = o

(14)
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4. Anwendungen und Beispiele

a) Wahl des Koordinatensystems

Wie bei zahlreichen Problemen der Elastizitdtstheorie bedeutet es auch
hier einen Vorzug, das Koordinatensystem der Form des Randes anzupassen.

Rechteckscheiben
Rechtwinklige, kartesische Koordinaten x, y. Der Operator von Laplace
wird: ‘ o2 o2 '
R

Schiefe Scheiben

Schiefwinklige, kartesische Koordinaten u, v (im Winkel () mit dem
Laplace’schen Operator:

L g B2
—sinzg(auz 5 Tu-ov sz)'

Kreis- und Kreisringscheiben
Polarkoordinaten r und ¢ mit dem Operator:
g ® 1o 1 &
A Tort oy ar ' 1% dgr
Bei Polarsymmetrie wird:
1 0
4=—+ Pyl

usw.
b) Integrationsmethoden

Die zu integrierenden Grundgleichungen haben die Form
AAF +4x* F =0. (1. GL 2)

Eine sehr allgemeine, wenn auch nicht erschopfende Integrationsmethode
besteht im Ansatz F-F,F,

wo F, und F, je nur von einer der beiden unabhingigen Variabeln abhéngen.
Durch geeignete Wahl von F, entsteht fiir F, eine totale Differentialgleichung.
Dieser Ansatz ist auf verschiedenartige Weise moglich. Die Summe solcher
Einzelintegrale ist wieder ein Integral von entsprechend groBerer Tragweite.
Es sind jedoch noch ganz andere Integrationsansitze obiger Differential-
gleichung moglich. Beispielsweise kann gesetzt werden: '

F=F, F,+F,F,

wo F; und F; von der einen, F, und ¥, von der andern unabhingigen Varia-
beln abhéngen. Auch hier fiihrt eine geeignete Wahl von F; und Fj zu 2
totalen, simultanen Differentialgleichungen fiir ¥, und F,.
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Dieser Ansatz beherrscht einen sehr weiten Integrationsbereich der vor-
liegenden Differentialgleichung.

NB.: Die Differentialgleichungen der Form (2) finden sich bei ganz anderen
Problemen wieder, beispielsweise bei der Theorie der Platten auf nachgiebiger
Unterlage, unter der Annahme, da die Einsenkungen proportional den Boden-
pressungen sind (Theorie der Bettungsziffer).

Die beim Temperaturproblem gewonnenen Integrale konnen daher sinn-
gemil auf diese oder andere ,,abgebildete’ Probleme iibertragen werden.

c) Anwendung auf die Rechteckscheibe
(bzw. Pfeiler mit rechteckiger Basis)

Die Seiten haben die Lingen 2a und 2b. Das Koordinatensystem x, y hat
seinen Ursprung im Scheibenmittelpunkt.

AY

\ £33

Fig. 1
Integration
Die Gl. (2) sind: AAF + 4«4 F =0
A4 G +4«*-G =0
Der Ansatz lautet:. F =cosax-f,(y)

G =cosax-g;(y)

wo « vorldufig unbestimmt ist.
Nach Einsetzen von F folgt eine totale Differentialgleichung fiir f, (y):

da*f, d? f
W—Qaz-d—y?l+ (a*+4k4)-f, =0
f, wird seinerseits angesetzt als: f, =e”*¥ woraus fiir r folgende charakteristische

Gleichung entsteht: 90212 1o b dicd — 0
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Mit r sind die komplex-konjugierten wie die negativen Groflen ebenfalls Wur-
zeln, d. h. es bestehen folgende 4 Wurzeln:
7.1,..,4 = iAi?’M)

deren Komponenten A und u ausgerechnet, geschrieben werden konnen:

A= L VRt
V2

omo= 1__-]/R2—oc2
V2

mit der Abkiirzung: R2 = Yol + drt
= o K™ -

Zwischen A und p bestehen folgende Beziehungen, wie man leicht einsieht:
X—p? =02 AN4pu?=R? Ap=+k2

Die Losung besitzt fiir jeden Wert r, bis 7, einen unabhéngigen Anteil, der
mit einer Integrationskonstanten multipliziert ist:

fl (y) = Ol'erly—}—Cz-gsz_l_C3,ersy+04.er‘y.

Analog wird g, (y) bestimmt. Wegen der Gl. (1) unterscheidet sich g, (y) von
f1(y) nur durch die Reihenfolge und gegebenenfalls das Vorzeichen der Inte-
grationskonstanten.

Nach Umwandlung in reelle Funktionen entsteht folgende Tabelle, wo
f1(y) und g, (y) aus dem Produkt der C; mit den entsprechenden Funktionen
des Kolonnenkopfes entstehen und die Summe iiber diese Produkte gebildet
wird.

Chay-cospy \ ChAy-sinpy | ShAy-cospy | ShAy-sinuy
|

]
h } o ‘ C, O C,
91 C, \ -0, C, -0,

Beim Ubergang von f, zu g, permutieren sich paarweise die Konstanten
der geraden, bzw. der ungeraden Funktionen in y.

Wird im Ansatz cos « x mit sin ax vertauscht, so entsteht ein neues Funk-
tionenpaar f;(y) und g,(y), das sich vom Vorhergehenden nur durch neue
Integrationskonstanten D, bis D, unterscheidet.

Werden ferner x und y vertauscht, so entstehen Funktionenpaare in x mit
entsprechenden Integrationskonstanten:

Fiir cosﬂy: #1(2), Py (), (Ly,-.,Ly)
fir Sinlgy: ‘Pz(x)’ ‘1[’2(%): (Ml,.-,M4)

(die ¢; gehdren zu F, die s, zu G).



Das 2-dimensionale Problem bei periodisch veranderlicher Temperatureinwirkung 211

Die Wurzeln der charakteristischen Gleichung werden mit:
bezeichnet. SHEY

Endlich kénnen die trigonometrischen durch die entsprechenden hyper-
bolischen Funktionen ersetzt werden, wobei in den Wurzeln A und u vertauscht
sind: ,

7”1,..,'4 =dpti-A

Damit entsteht als Summe eine Integrallésung mit 32 Integrationskon-
stanten, d.h. fiir die praktischen Anwendungen bereits ein bemerkenswert
groBer Vorrat an Funktionen, die entsprechend weite Anpassungsmoglichkei-
ten an die praktischen Anwendungen erlauben.

Die Argumente « und 8 werden in den Anwendungsfillen mit den Abmes-
sungen 2a und 26 der Rechteckscheibe in Beziehung gesetzt.

d) Sonderfall einer Rechteckscheibe als Beispiel

Der Berechnungsgang sowie seine charakteristischen Merkmale kénnen am
iibersichtlichsten an einem einfachen Beispiel aufgezeigt werden, das als
Grundlage fiir allgemeine Fille dient.

AY
._T_— ——
5! ——\
| —
I X
_+ >
| =1
| 5
5|
!
4 T [ Tp
B |
S S R
Fig. 2
Die Randtemperatur 7', sei symmetrisch in = +a und x = —a als einfache

cos-Welle in ¥ angenommen:

Ty =T, cosBy sinwt
(T'p =0 fir t=0)

Fir y= +bsei Tp = 0.
Das Argument B ist daher:

w
=53
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Im Ansatz (II) sind hier F und ¢ gerade Funktionen von z und y:

F =cosBy[C;-Chpx-cosna+C,-Shpzx-sinyx]
G =cosBy[Cy-Chpx-cosnpax—C;-Shpx-sinnzx)

Darin ist:
|
=——.VR24+p82
P }/2 VR*+pB
il VRz 2
= 1/2 B
mit: R2 = YBt44st.
Die Randbedingungen sind:
Fir x = t+a: F(+a,y)=0
G(ta,y) =Ty cosBy
Fir y = +b: F(x, +b)=0
G(x, +b) =0

Diese beiden letzten Bedingungen sind wegen der Wahl von B automatisch
erfiillt.
Es folgt nach kurzen Berechnungen:

2T,-Shpa-cosya
Ch2pa+cos2na
2T,-Chpa-sinna
Ch2pa+cos2na

G

02=_

Nach Einsetzen dieser Werte und einigen Umformungen kénnen die Funk-
tionen F und G und damit die Losung 7' auf eine fir die praktlsche Aus-
wertung einfache Form gebracht werden.

Analog kann der antimetrische Fall, wo am Rande x= —a die Randtem-
peratur — 7', = — T;-cos By-sinwt herrscht, berechnet werden. ¥ und ¢ sind
hier ungerade Funktionen von .

Beide Fille konnen auf geeignete Weise kombiniert werden.

Ergebnisse ,
' T =coswt- F+sinwt-G (IT)

Symmetrischer Fall (T =Ty, fir = ta):

_ Ty-cosBy o )
F = —Ch2pa+cos2na[8hp(a+x) sinn (@ ~x)+Shp (¢ —z)-sin 7 (@ + )]
Ty -cosBy
G = [Chp (a+)-cosn(a—x)+ Chp (@ —z)-cos 5 (a+)]

Ch2pa+cos2na
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Antimetrischer Fall (T = + Ty fir x= +a):

= — Ty-cosBy L )
F= Ch2patcos2na [Shp (a+x)-siny (@ —x)—Shp (a —x)-sin 7 (@ +x)]
_ Ty-cosBy |
¢= Ch2pa+coszna[Chp(“+x)'cos’7(“—x)—Chp(a——x)-cosn(a+x)]

Die Funktionen in Klammern lassen die Randbedingungen deutlich her-
vortreten und sind fiir die numerische Berechnung besonders geeignet.

Amplituden (siehe 2., d)).
l Tymtm= VF2+G2‘

Symmetrischer Fall:

Ch2px+cos2nx
Pnaz = TO'COSBg'VGtha-!—cost;a

7,92
YCh2pa+cos2na

Fir z =y = 0 folgt: T oz (0,0) =

) a B . a B Chpa—{—COS"/)a_
Fir x—“é: y-—O fOlgt' Tmax(§’0) - TO 1/Ch2pa+cos2na

Antimetrischer Fall:

_ Ty-cosBy
mar — Ch2pa+cos2na

Fir x=y=0 folgt: T o (0,0) = 0 (Antimetrie-Achse!)

T

Y(Ch2pa—cos2na)(Ch2px—cos27nx)
M P 1

) _ 7. Y(Ch2pa—cos 2y a)(Chpa—cos na)
2,

) a ) a
Fiir x“‘é: y“‘OfOlgt Tmaac( 0 Ch2pa+cos.‘2’7“

Temperaturspannungen

Ein Hinweis auf die Losung fiir den symmetrischen Fall soll geniigen. Das
partikulire Integral der Airy’schen Spannungsfunktion lautet (Gl. 10):

D, =—fTZ(COSwt-G—sinwt-F)

und erzeugt an den Riandern x= +a Normalspannungen o¢,, und Schubspan-
nungen 7,,,, an den Randern y = + b nur Schubspannungen 7,, , wihrend die
Normalspannungen ¢, dort verschwinden.

Es wird daher ein Integral @, der homogenen Gleichung hinzugefiigt, so dal

44D, =0
und: D =P,+D,
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die Randbedingungen erfiillt unter der Voraussetzung, daBl die Rechteck-
scheibe an den Randern spannungslos ist. Es ist somit:

Fir 2= +a: Opy +0, =0
=0

Tayo T Tay,

Fir y= +6: o, =0
Tayo T Tay, = 0-

@, wird angesetzt in der Form (Gl. 11):

@, =coswit[cosaz(U;Chay+ U,yShay)+cosBy(UsChBx+ U,xShBx)]
+sinwit[cosax(V;Chay+V,yShay)+cosBy(VaChBax+V,2ShBx)]
WO cosaa =0, cosBb=0
und Uy,.., Ug; Vi,oy V,y

Integrationskonstanten sind. Somit entsteht das allgemeine Randwertproblem
der Rechteckscheibe. Die Randbedingungen fiir die Normalspannungen o, und
o, an den Réndern x= +a bzw. y= +b konnen streng erfiillt werden und

fithren zu folgenden Gleichungen:
E4T,

Us-ChBa+Uy-a-Shfa =——5
Vy-ChBa+V,-a-ShBa =0
U;-Chab+Uy-b-Shoab=0
Vi-Chab+V,-b-Shab = 0.

Die Randbedingungen fiir die Schubspannungen sind weniger einfach und
erfordern entweder Reihenentwicklungen oder die Anwendung der Minimal-
bedingung nach Ritz. In vielen Fillen diirfte auch die Bedingung geniigen,
daB der Mittelwert der Schubspannungen iiber den halben Rand verschwindet,.
Solche Gleichgewichtssysteme von Randschubspannungen (Gleichgewicht iiber
den halben Rand) klingen schnell ab.

Damit ist im vorliegenden Fall das Problem der Temperaturspannungen
grundsitzlich gelost.

Die gegeniiber der bloen Bestimmung der Temperaturverteilung erhGhte
Schwierigkeit des Problems der Temperaturspannungen ist, wie schon ange-
deutet, die Folge der Verkoppelung von zwei verschiedenen partiellen Dif-
ferentialgleichungen und die damit verbundene Notwendigkeit, zwischen zwei
verschiedenen Funktionengruppen eine Briicke zu schlagen. Jedoch ist der
numerische Arbeitsaufwand, bei geeigneter Wahl der Berechnungsmethoden,
bedeutend geringer, als dies auf den ersten Blick scheint.

e) Hinweis auf den allgemeinen Fall der Rechteckscheibe

Der vorgingig behandelte Sonderfall bildet die Grundlage zum allgemeinen
Fall der Rechteckscheibe, bei der die gegebenen Randtemperaturen 7', belie-
bige Funktionen lings der Rénder darstellen.
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Der geeignete Losungsweg ist durch die Entwicklung der Randtempera-
turen 7'y in Fourier’sche Reihen vorgezeichnet (der obige Sonderfall enthielt
nur eine ,,Welle* der Fourier’schen Entwicklung). Man gelangt damit zur
Uberlagerung von Losungen, wie sie in Abschnitt d) fiir den symmetrischen
und antimetrischen Fall gegeben waren.

Beisprel
+ Fir x=+a und y= +b sei:
Trp=T,sinwt (T, = konstant).

Die Temperaturverteilung ist in # und y symmetrisch (Koordinatensystem
wie friiher).
T, wird in Fourier’sche Reihen entwickelt:

Rand y= +5b: Periode = 4a, «, = %;;
4T - sinm/2
To(x) = . — " .cosa, X
0 () ™ m=1§,5,... m %m
Rand z= +a: Periode = 46, B, = Z—Z
4T . sinnw/2
Ty (y) = °© 7/-cosﬂny

T p=1,3,5,..

Die Losung wird hier ohne Ableitung angegeben:

T=COSwt[—~ > A,,-cosa, x-S, > B-coany-Sn(x)]

m=1,3,.. n=1,3

+sinwt[ > A, -cosa,x-C, (y)+ Z Bn-cosﬁny'On(x)]

=1,3,.. n=1,3,..

Darin bedeuten:

4 - 2T, sinmm/2 1
mT g m Sh2},, b+ cos?u,, b
27T, sinnw/2 1
B, = . s .
ar n Sh2p, a +cos?n, a

S, (y) = ShA, (b+y)-sinp, (b—y) +ShA, (b—y)-sinu,, (b+y)
S, (x) = Shpn (@+x)-siny, (@ —x) +Shp, (@ —x)-siny, (a@+x)
Cn(y) = ChA,, (b+y)-cospy, (b—y)+Cha, (b—y)-cosu, (b+y)
C,(x) = pn(@+2x)-cosn, (@ —2x) +Chp, (a —x)-cosn, (@+x)

15 Abhandlung XII
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A, i Wurzeln der charakteristischen Gleichung mit a,,.

Pns Mn: Wurzeln der charakteristischen Gleichung mit ,,.

Die Konvergenz obiger Reihenentwicklungen ist bemerkenswert rasch.
" Fiir die numerische Auswertung ist das Verhalten der Wurzeln A, , y,, bzw.
Pns My fiir groBe Werte m und » wichtig: '

A, —> a, . Pn = Ba ..
fiir m — oo, fir n — oo.
Pm = 0O Np —> 0

Daraus folgt fiir die Funktionen S,, (y), usw.:
Sp(y) — 0
C,.(y) - 2Cha,b-Cha,,y~ L en®tv)
S, (x) - 0
C,(x) - 2ChB,a-ChpB, x =} ebrlata

Fiir groBe Werte m und n hat die Losung folgende einfache Gestalt:

T~4T°-sinwt[ Z sinmm/2-cos a,, x-e%n¥
= = m: gross m-e%mb

+ Z sinnn/2-coany-e/’nx]

n<gross n-ehn .

T wird somit eine Bipotentialfunktion!
Es empfiehlt sich, allgemeine Fille aus symmetrischen und antimetrischen
Grundfillen zu kombinieren.

Temperaturspannungen

Der Ansatz fiir @, ist eine Uberlagerung des entsprechenden Ansatzes im
Abschnitt d). Die Erfilllung der Randbedingungen kann beliebig genau durch-
gefiihrt werden.

Sonderfall

Es sei b>a, d.h. es liege der Fall einer in y-Richtung sehr langgestreckten
Rechteckscheibe vor, so daB B, =~ 0 gesetzt werden kann. Es folgt:

Pn 2y 2k, cOSB,y~1, sinB,y~0, 4, ~0.
Die Losung fiir 7' ist hier nur noch eine Funktion von # und mit dem in der
Einleitung erwéihnten ,,linearen Problem‘ identisch.
f) Die Halbebene; Beispiel
Die Randtemperatur 7'y sei, fiir y > 0:

Te=T,e* sinwt
(x>0, beliebig)

Fiir y <0 sei T'z symmetrisch.
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Fig. 3

Allgemeine Losung: 7 =coswt- F +sinwt- (. Fund G werden angesetzt als:
F =ev.f(x)
G =e%Y.g(x)
Analog frither folgt aus einer charakteristischen Gleichung fiir s, wenn f und ¢

als es* eingefiihrt werden: .
$1,..,a=tvte-{

mit folgenden Eigenschaften:
Ty Y
vl= i
Da fiir x — oo die Losung T — 0 strebt, sind nur die Losungen mit negativem
v moglich.
F und @ konnen leicht auf eine reelle Form gebracht werden und es folgt:
F =e¥.ev2[(C).-cos {x+C,-8inx]
G =e*.e Ve[ —(y-cos{x+C;-sin (]

Randbedingungen fir x=0:

T=Tr=Tye* sinwt

d.h.
F0,y)=0
G(0,y) = Ty-e~¥
Daraus folgt: O —0
L=
Co,=-T,

und die Losung lautet:

T =Ty e *-e?2[—coswi-sin{x+sinwit-cosfx]
=Ty-e ¥-evZ.gin (wit—{x)

T hat demnach die Form von ,,gedimpften Schwingungen‘‘.
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Amplitude

Es folgt sofort: |
T

— L o—0Y . p—VT
max_[()e V.g

fir t=1¢, aus: tgwt, = —cotg {x.

Temperaturspannungen

Neben @, aus F und G mul} hier, wie frither, noch eine Funktion @, be-
stimmt werden. Diese gewinnen wir sehr einfach aus dem sogenannten ,,strah-
ligen®, fiir die Halbebene charakteristischen Spannungszustand durch Uber-
lagerung (Integration) der bekannten Spannungszustéinde infolge einer Rand-
Normalkraft und Randscherkraft.

A

©
Y G
T\ E\
Y~

v

Fig. 4
Fiir P in 0 ist, in den Koordinaten z und y:

@, =£.y.arctg%
r

Fiir S in 0 ist:

Y

¢S=£-x-arctg;
aw

Durch Integration der @, und @y iiber y von 0 bis co und mit 2 multipliziert,
konnen die infolge @, entstandenen Randspannungen restlos eliminiert und
durch Uberlagerung der wahre Spannungszustand ermittelt werden.

g) Weitere Anwendungen

Auf weitere Anwendungen der behandelten Theorie sei kurz hingewiesen:

Behdilter mit Kreisringquerschnitt

Innen oder auBen oszillierende Randtemperatur. Die*Losung in Polar-
koordinaten fiithrt auf Bessel’sche Funktionen, die tabuliert sind.
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Halbebene mit Kreisloch

Hier ist die Anwendung der Bipolarkoordinaten von Vorteil.

Keilformige Scheibe

Hier konnen polar- oder schiefwinklige kartesische Koordinaten beniitzt
werden.

Halbstreifen mit totaler Einspannung an der Schmalseite (Mauerproblem,)

Die Randbedingungen lauten, dafl an der Schmalseite die Verschiebungen
» und v verschwinden.

Parallelogrammformige Scheibe

Die Losung ist in schiefwinkligen kartesischen Koordinaten darstellbar.

In allen Fillen fiihrt eine Betrachtung iiber die Art der Konvergenz der
Losungen zu wesentlichen Vereinfachungsmoglichkeiten bei der numerischen
Auswertung.

Zusammenfassung

In dieser Arbeit werden die theoretischen Grundlagen der Temperatur-
verteilung sowie der Temperaturspannungen fiir 2-dimensionale Elemente
(Scheiben, Pfeiler) entwickelt, falls die Aullentemperaturen periodisch verin-
derlich sind.

Einige Anwendungen und Beispiele vermitteln ein Bild iiber die Inte-
grationsmoglichkeiten der Grundgleichungen im Zusammenhang mit den Rand-
bedingungen und enthalten einige Hinweise fiir praktisch wichtige Fille.

Diese Theorie findet Anwendung bei Staumauer- sowie bei Behiilterpro-
blemen, wo die Temperatureinwirkung eine mafligebende Rolle spielt, sowie
bei ,,abgebildeten Problemen anderer Art mit denselben Grundgleichungen.

Résumé

Ce mémoire établit les bases théoriques de la répartition de la température
et des contraintes thermiques dans les éléments bidimensionnels (parois
minces, piliers indéfinis) dans le cas de températures extérieures périodiquement
variables.

Quelques applications et exemples donnent un apergu sur les méthodes
d’intégration des équations fondamentales en rapport avec les conditions aux
limites et contiennent des indications pour quelques cas importants de la
pratique.
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La théorie développée sert avant tout a résoudre les problémes thermiques
des barrages et des récipients, quand l’effet de la température joue un role
prépondérant; elle peut étre également appliquée & tous les problémes ,,simi-
laires‘‘ qui, bien que de nature différente, conduisent au méme type d’équations
fondamentales.

Summary

In this contribution, the theoretical principles of temperature distribution
and also of thermal stresses for two-dimensional elements (slabs, pillars) are
developed, in cases where the outside temperatures are periodically altering.
‘ Some applications and examples illustrate the integration possibilities of
the fundamental equations in connection with the edge conditions, and furnish
some hints for practically important cases.
This theory finds application in problems regarding dams and containers,
where the temperature effect plays an important part, as also in ,,similar®
problems of another kind with the same fundamental equations.
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