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Das 2-dimensionale Problem bei periodisch veränderlicher
Temperatureinwirkung

(Temperaturverteilung und TemperaturSpannungen)

Le probleme bi-dimensionnel sous Veffet de temperatures
periodiquement variables

(Repartition de la temperature et contraintes thermiques)

The two - dimensional problem in the case of periodically
altering temperature effects

(Temperature distribution and thermal stresses)

Prof. Dr. Pierre Lardy, Eidg. Techn. Hochschule, Zürich,
Generalsekretär für Eisenbetonbau der IVBH

1. Einführung

Die vorliegende Arbeit behandelt das Problem der Temperaturverteilung
sowie der TemperaturSpannungen für 2-dimensionale Elemente, wenn die
Außentemperaturen periodisch veränderlich sind.

Die mathematischen Schwierigkeiten sind bedeutend größer als beim linearen

Problem1), da die Differentialgleichungen hier partiell sind und die
Einhaltung der Randbedingungen besondere Anforderungen stellen. Trotzdem
gelingt es, die Integralfunktionen in wichtigen Anwendungsfällen auf eine für
die numerische Auswertung geeignete Form zu bringen.

Als Grundlage der Berechnungen dient die Fourier'sche Theorie der Wärmeleitung,

unter der Voraussetzung, daß keine Wärmequellen vorhanden sind
und daß die gegebenen Außentemperaturen periodisch veränderlich sind. In
der Folge wird nur eine einzige Temperaturfrequenz co betrachtet, was in den
meisten praktischen Fällen genügen dürfte. Andernfalls gelingt die
Berücksichtigung verwickelterer Fälle durch Überlagerung der Lösungen mit mehreren

verschiedenen Frequenzen.
In der praktischen Anwendung handelt es sich um Scheiben, die längs ihrer

Oberflächen thermisch isoliert sind und bei denen die oszillierenden
Außentemperaturen an den Rändern angreifen oder, in vermehrtem Maße, um
prismatische oder zylindrische, unbeschränkt lange Pfeiler, an deren Mantelflächen

Vgl. Prof. Dr. M. Ritter: I.V.B.H., 7. Band der „Abhandlungen", 1943/44.
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die Außentemperaturen angreifen. Solche Probleme sind beim Staumauerbau
sowie beim Behälterbau aktuell (Pfeilerstaumauern als Scheibenproblem,
Temperaturprobleme bei großen Pfeilern, bei Behältern, usw.).

Im folgenden werden die theoretischen Grundlagen der Temperaturverteilung

und der Temperaturspannungen aufgestellt und als Anwendungen die
rechteckige Scheibe sowie die Halbebene behandelt. Die Arbeit schließt mit
einigen Hinweisen aufandere, wichtige Beispiele der praktischen Anwendungen.

2. Allgemeine Theorie der Temperaturverteilung

a) Grundgleichung

Die Fourier'sche Grund-Differentialgleichung der Wärmeleitung lautet:

dT
(I)

Darin bedeuten:

T: die Temperatur,
t: die Zeit,
A: die Temperaturleitzahl, wobei:

A
_4o mit:3 cy
A: Wärmeleitzahl,
c: spezifische Wärme,
y: Raumgewicht.

A: der Laplace'sche Operator, z.B. in kartesischen Koordinaten:

/| _______
___!_

dx2 dy2*

b) Allgemeines Integral

Die gegebenen, periodisch veränderlichen Außentemperaturen TR haben
nach Voraussetzung die Frequenz co, sind also darstellbar als Funktionen von:

cos co t oder sincof.

Daher muß das allgemeinste Integral der Grundgleichung (I) folgende Form
besitzen:

T coscot'F + smcot-G (II)

Darin sind F und G Funktionen der beiden unabhängigen, dem betreffenden
2-dimensionalen Problem angepaßten Koordinaten. Die Form (II) entspricht
sowohl der Grundgleichung (I) wie auch den gegebenen Außentemperaturen,
die für das Problem der Temperaturverteilung die Randbedingungen darstellen.
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Der Ansatz (II) werde in die Gleichung (I) eingesetzt. Es folgt:
8 T
—- — — co'Smcot-F + co-coscot-G
et

und daher

oder

A T cos co t-A F + sin co t-A G

¦ co - sin co t - F + co • cos cot-G A (cos co t • A F + sin cot-A G)

coscot(-co-G + A'AF) + smcot(to'F + A'AG) 0.

Diese Identität erfordert das Verschwinden der beiden Klammern und
führt, mit der Abkürzung:

2k2

zu den beiden Gleichungen

AF= 2k2-G

AG -2k2-F (1)

aus denen die Abhängigkeit der beiden Funktionen F und G voneinander
ersichtlich ist.

Wird der Laplace'sche Operator auf beide Gl. (1) ausgeführt, so folgen nach
einfacher Elimination 2 getrennte Bestimmungsgleichungen für F und G:

AAF + ±K*F 0

AAG + ±k*-G =0 (2)

Dank der Gl. (1) genügt die Integration einer einzigen der Gl. (2).
Damit bedeutet der Integrations-Ansatz (II) als allgemeines Integral der

Grundgleichung (I) die grundsätzliche Lösung des Problems.

c) Randbedingungen

Die Funktionen F und G müssen am Rande den gegebenen Außentemperaturen

entsprechen. Wenn beispielsweise die Randtemperatur TR gegeben
ist als:

TR= T0-smcot,

wo _T0 längs dem Rande i. A. variieren kann, so müssen dort die Bedingungen
für F und G lauten (Index „0" bedeutet Rand):

^0 0

Erst die Erfüllung dieser Randbedingungen sondert aus dem allgemeinen
Integral die Lösung des betreffenden Problems aus.
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d) Amplituden

Meistens interessiert in einem bestimmten Punkt der größte Wert der
Temperatur, die Amplitude Tmax, im Zeitpunkte t±. Die Bedingung für Tmax
lautet: 3T - o

woraus sehr einfach folgt:

sowie

-* max ' ^ ' ™

(3)

(4)

Das allgemeine Integral kann damit auch auf folgende Form gebracht werden,
wo die Phasenverschiebung t± und die Amplitude Tmax in Evidenz gesetzt sind:

oder:
T= y>2+ö2-eos (cot-arctg^)
T Tmax/costo(t-t1)

(IF)

Für numerische Auswertungen bietet Tmax den Vorzug großer Einfachheit
im Vergleich zu F oder G und ergibt ein sehr eindrückliches Kriterium für die
Beurteilung der TemperaturVerteilung.

3« Temperaturspannungen und Formänderungen

a) Grundgleichung zur Spannungsberechnung

Zur besseren Übersicht seien die folgenden Überlegungen im rechtwinkligen,

kartesischen Koordinatensystem dargestellt. Die Hauptergebnisse sind
ihrerseits jedoch vom Koordinatensystem unabhängig, wie dies aus der Form
der Grundgleichung ersichtlich sein wird. Es seien bezeichnet mit:

u Verschiebung parallel #-Achse,
v Verschiebung parallel y-Achse,

ex — Dehnung parallel ^-Achse,

€y —— Dehnung parallel y-Achse,

Ytv ö—1-7- Winkeländerung,,xu dy ox °
dx — Normalspannung parallel x-Achse,
Gy — Normalspannung parallel ^/-Achse,

rxy Schubspannung,
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v — Querdehnungszahl,
m

E Elastizitätsmodul.

Jedes rechtwinklige Element dx-dy erfährt durch die Temperatureinwirkung
T eine Dehnung eT nach beiden Richtungen x und y. Wird mit 0 der

Wärmeausdehnungskoeffizient bezeichnet, so ist:

(5)d-T

Dies führt zu folgender Verallgemeinerung der Spannungs-Dehimngs-
Gleichungen der 2-dimensionalen Elastizitätstheorie für Temperatureinwirkungen:

du 1

dx
dv

-wWx-v-(Jy) + '

_du_ 8v_ _ 2(l+v)
7xv~ dy+Jx~ ~ ™ T"E

(6)

Wird mit 0 die Airy'sche Spannungsfunktion bezeichnet, so ist:

d2& d2& d2&
x dy2' v dx2i xv dx-dy

und deren Einführung in die Verträglichkeitsbedingung:

dy2 dx2 dx-dy

führt zur verallgemeinerten Grundgleichung für _>:

AA & + E- AeT 0 (HI)

Für d konstant wird:

AA& + E0-AT 0 (HI')

Die Airy'sche, biharmonische Gleichung ist bei Temperatureinwirkungen
nicht mehr homogen. Sie ist vom Koordinatensystem unabhängig.

Wird in Gl. (III') T durch den allgemeinen Ansatz (II) ersetzt, so folgt,
mit Hilfe der Gl. (1):

AA® + 2k2-E 6(coscot'G-sincot-F) 0 (IV)

(Grundgleichung der Temperaturspannungen).
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b) Partikuläres Lntegral und allgemeine Lösung

Die Lösung der Gl. (IV) ist ebenfalls eine periodische Zeitfunktion und
kann hier als Summe eines partikulären Integrals 0O und des allgemeinen Integrals

<_>! der homogenen Gleichung gefunden werden; die allgemeine Lösung
0 lautet daher: 0 =0O + 0X

0t0. 0O wird wie folgt angesetzt:

0O cos cot- P + sin cot-Q

wo: P und Q Funktionen der beiden unabhängigen Variabein sind,
Gl. (7) in Gl. (IV) eingesetzt ergibt:

AAP -2k2E0-G
AAQ 2k2E6-F

Ein Vergleich der Gleichungen (8) und (2) führt sofort zur Bestimmung von
PxmdQ: ^ q

(8)

P

V" 2k2

G

F
(»)

woraus das partikuläre Integral folgt zu:

E6
0O —- (cos cot-G — sin cot- F)

0X: Für 0± gilt: AA01 O; 0X ist in t periodisch, mit biharmonischen Koeffi¬
zienten U und V als Funktionen der beiden unabhängigen Variabein:

0, cos cot- U + sin cot- V

mit: AAU 0, AA V 0

Das allgemeine Integral lautet:

0 co8co't(^2-G+u\+8mcot(-^2-F+v)

(11)

(12)

(V)

Auch diese Lösung hat allgemeine Bedeutung, da sie vom Koordinatensystem

unabhängig ist.
c) Randbedingungen

Diese drücken den Spannungs- oder den Verschiebungszustand am Rande
aus. Eine besondere Schwierigkeit bei der numerischen Auswertung besteht
darin, daß 0O und _\ aus verschiedenartigen Funktionen bestehen, die sich
als Lösungen verschiedener partieller Differential-Gleichungen ergeben. Auf
Grund von Reihenentwicklungen oder mit der Ritz 'sehen Methode können diese

Schwierigkeiten überwunden werden.
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Bei freien Rändern können die Bedingungen

einfacher durch
*nt

d00 0, p: o
d n

ersetzt werden (n: Koordinate der Randnormalen).
Der Verschiebungszustand wird durch u und v ausgedrückt.

d) Spannungs-Amplituden

Analog den Temperatur-Amplituden folgt aus der Formel (V) für die
Spannungs-Amplituden:

•W[£(&0+,7)],+[£(-£-'+F)]'
und analog für o„ und t_,0 Umax ^ymax

e) Verschiebungen

Vorausgesetzt sei ein rechtwinkliges, kartesisches Koordinatensystem x, y.
Die Verschiebungen u und v werden durch Integration der Ausdrücke für e~

und ey erhalten, die zu diesem Zwecke auf folgende Form gebracht werden:

dv 1 \ .^ J2&1
e« dy-=E-[A0-(1+v)l^\+eT

wo:

Die Integration ergibt:

€T 0-T ist.

-*/ A 0dx- (1+v) 80
E -+e [r-dx

x J
+ .(_•)

v ±JA0.dy-{^p-8^ + eJT.dy + rl{x)
(13)

Darin sind die Integrationsfunktionen | (y) und rj (x) durch die 3. der Gl. (6)
miteinander verbunden:

+
(14)
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4. Anwendungen und Beispiele

a) Wahl des Koordinatensystems

Wie bei zahlreichen Problemen der Elastizitätstheorie bedeutet es auch
hier einen Vorzug, das Koordinatensystem der Form des Randes anzupassen.

Rechteckscheiben

Rechtwinklige, kartesische Koordinaten x, y. Der Operator von Laplace
wird: ^2 ^2

Jx2^~dy2'

Schiefe Scheiben

Schiefwinklige, kartesische Koordinaten u, v (im Winkel t) mit dem
Laplace'sehen Operator:

1 / d2
a Y

c2 d2 \
sin24\_%J du-dv dv*J

Kreis- und Kreisringscheiben
Polarkoordinaten r und cp mit dem Operator:

a ____!_ l
____

1 d2

dr2 r dr r2 dop2'

Bei Polarsymmetrie wird:
d2 1 d

dr1 r d r
usw.

b) Lntegrationsmethoden

Die zu integrierenden Grundgleichungen haben die Form

AAF + ±k±-F 0. (1. Gl. 2)

Eine sehr allgemeine, wenn auch nicht erschöpfende Integrationsmethode
besteht im Ansatz

wo Fx und F2 je nur von einer der beiden unabhängigen Variabein abhängen.
Durch geeignete Wahl von F± entsteht für F2 eine totale Differentialgleichung.

Dieser Ansatz ist auf verschiedenartige Weise möglich. Die Summe solcher
Einzelintegrale ist wieder ein Integral von entsprechend größerer Tragweite.

Es sind jedoch noch ganz andere Integrationsansätze obiger Differentialgleichung

möglich. Beispielsweise kann gesetzt werden:

F^Fi-F^Fs-Ft
wo Fx und F3 von der einen, F2 und F± von der andern unabhängigen Variabein

abhängen. Auch hier führt eine geeignete Wahl von Fx und F3 zu 2

totalen, simultanen Differentialgleichungen für F2 und F±.



Das 2-dimensionale Problem bei periodisch veränderlicher Temperatureinwirkung 209

Dieser Ansatz beherrscht einen sehr weiten Integrationsbereich der
vorliegenden Differentialgleichung.

NB.: Die Differentialgleichungen der Form (2) finden sich bei ganz anderen
Problemen wieder, beispielsweise bei der Theorie der Platten auf nachgiebiger
Unterlage, unter der Annahme, daß die Einsenkungen proportional den

Bodenpressungen sind (Theorie der Bettungsziffer).
Die beim Temperaturproblem gewonnenen Integrale können daher

sinngemäß auf diese oder andere ,,abgebildete" Probleme übertragen werden.

c) Anwendung auf die Rechteckscheibe

(bzw. Pfeiler mit rechteckiger Basis)

Die Seiten haben die Längen 2 a und 2 6. Das Koordinatensystem x, y hat
seinen Ursprung im Scheibenmittelpunkt.

iY

r

b\

X

_¦!

i

i
i

a

I

i

Integration

Die Gl. (2) sind:

Der Ansatz lautet:

Fig. 1

AAF + ±k*-F 0

AAG + 4k*-G 0

F cos ocx-f1(y)
G cos <xx-g1 (y)

wo ol vorläufig unbestimmt ist.
Nach Einsetzen von F folgt eine totale Differentialgleichung für f-^iy):

dy* dy*
+ (a4+_*4)-/1 0

f± wird seinerseits angesetzt als: fx^er'y woraus für r folgende charakteristische
Gleichung entsteht :

r4-2oc2r2 + a4+_K4 0
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Mit r sind die komplex-konjugierten wie die negativen Größen ebenfalls Wurzeln,

d.h. es bestehen folgende 4 »Wurzeln:

ri,..,_ ±A±i-/x,
deren Komponenten A und \i ausgerechnet, geschrieben werden können:

A 4-- 1R2 + ol2

n
&

mit der Abkürzung:
n

iR2 - OL2

B2 ]/a4 + 4/c4.

Zwischen A und \x bestehen folgende Beziehungen, wie man leicht einsieht:

A2-^2 a2, \* + p* R2, \.p ±k2.

Die Lösung besitzt für jeden Wert rx bis r4 einen unabhängigen Anteil, der
mit einer Integrationskonstanten multipliziert ist:

/i (y) C1-er>v + C2- e™ + C3 • e™ + 04 • e™.

Analog wird g1(y) bestimmt. Wegen der Gl. (1) unterscheidet sich g±(y) von
fx (y) nur durch die Reihenfolge und gegebenenfalls das Vorzeichen der
Integrationskonstanten

Nach Umwandlung in reelle Funktionen entsteht folgende Tabelle, wo
f1 (y) und gx (y) aus dem Produkt der Ci mit den entsprechenden Funktionen
des Kolonnenkopfes entstehen und die Summe über diese Produkte gebildet
wird.

ChXy • cos fjuy Ch^y-sin/xy Sh\y- cos fiy ShXy - sin\iy

1 ffl

i

t

C\ C2

04 I -c3
1

C3

C2

Beim Übergang von f± zu g1 permutieren sich paarweise die Konstanten
der geraden, bzw. der ungeraden Funktionen in y.

Wird im Ansatz cosax mit sinax vertauscht, so entsteht ein neues
Funktionenpaar f2(y) und g2(y), das sich vom Vorhergehenden nur durch neue
Integrationskonstanten Z^ bis Z>4 unterscheidet.

Werden ferner x und y vertauscht, so entstehen Funktionenpaare in x mit
entsprechenden Integrationskonstanten:

Für eosßy: cPl(x), ^(x), (L1,..,L^)
für sinßy: cp2(x), */s2(x), (M1,..,M^)

(die cpi gehören zu F, die ifjt zu G).
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Die Wurzeln der charakteristischen Gleichung werden mit:

±p ±i-rj
bezeichnet.

Endlich können die trigonometrischen durch die entsprechenden
hyperbolischen Funktionen ersetzt werden, wobei in den Wurzeln A und pu vertauscht
sind:

ri,..,_ ±/^±^-A

Damit entsteht als Summe eine Integrallösung mit 32 Integrationskonstanten,

d.h. für die praktischen Anwendungen bereits ein bemerkenswert
großer Vorrat an Funktionen, die entsprechend weite Anpassungsmöglichkeiten

an die praktischen Anwendungen erlauben.
Die Argumente a und ß werden in den Anwendungsfällen mit den Abmessungen

2 a und 2 6 der Rechteckscheibe in Beziehung gesetzt.

d) Sonderfall einer Rechteckscheibe als Beispiel

Der Berechnungsgang sowie seine charakteristischen Merkmale können am
übersichtlichsten an einem einfachen Beispiel aufgezeigt werden, das als
Grundlage für allgemeine Fälle dient.

kY

T

-4

-L—A-±

Fig. 2

Die Randtemperatur TR sei symmetrisch in x +a und x
cos-Welle in y angenommen:

- a als einfache

TR T0 - cos ßy-smcot

Für y ± 6 sei TR 0.

Das Argument ß ist daher:

(TR 0 für £ 0)

ß 26#
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Im Ansatz (II) sind hier F und G gerade Funktionen von x und y:

F cos ß y [C-l- Ch p x • cos rj x + C2- $h p x - sin r) x]
G cos ß y [C2 • Ch p x • cos rj x — Cx - Sh p x * sin rj x]

Darin ist:

y_

wi»-r
mit: R2 }ß4 + 4#c4.

Die Randbedingungen sind:

Für x ± a: F + a, y) 0

G(±a,y) T0-cosßy

Für y ±6: F(x, ±6) 0

G(x, ± 6) 0

Diese beiden letzten Bedingungen sind wegen der Wahl von ß automatisch
erfüllt.

Es folgt nach kurzen Berechnungen:

2 _T0 • Sh p a - cos rj a
C_

Ch 2 p a + cos 2 07 a

2T0- Chpa• sin rja
2 ~~

Ch2pa + cos2^a

Nach Einsetzen dieser Werte und einigen Umformungen können die
Funktionen F und G und damit die Lösung T auf eine für die praktische
Auswertung einfache Form gebracht werden.

Analog kann der antimetrische Fall, wo am Rande x— — a die Randtemperatur

— TR= — T0 - cos ß y • sin co t herrscht, berechnet werden. F und G sind
hier ungerade Funktionen von x.

Beide Fälle können auf geeignete Weise kombiniert werden.

Ergebnisse
T coscot-F + smcot-G (II)

Symmetrischer Fall (T=TR für x= ±a):

fp OAQ W qj
F - ,-,

° ,—^-~ [Sh p(a + x)- sin 77 (a - x) + Sh p (a ~ x) - sin 77 (a + x)]Ch2pa + cos 2 rja ' r v } lx JJ

fp cos ß u
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Antimetrischer Fall (T ± TR für x= ±a):
fp cos ß 1/

F - ° rf [Shp(a + x)-smr](a-x)-Shp(a-x)-sinr](a + x)]
kju.zpa-+ cos_« rja

fp cos __ ?v

0 n,
° Jlo ^[Chp(a + ^)-cosri(a-a;)-Chp(a-^)»cos7?(-.+a;)]uü _s p a + cos _. 77 a

Die Funktionen in Klammern lassen die Randbedingungen deutlich
hervortreten und sind für die numerische Berechnung besonders geeignet.

Amplituden (siehe 2., d)).
Tmax=lF*+G*.

Symmetrischer Fall:

T -T cozBv iGh2Px + °os2VxJ""-'oCOW |/Ch2pa + cos27?a

T - 42
Für x y 0 folgt: Tmax (0, 0) - ° K

]/Ch 2 p a -f cos 2 77 a

Tri-. 0 ,w ^ A* A\ m t/ Chpa + cosTyaFür „=-,^ 0 folgt: Tmax{-,0J T0 •|/Ch2pa + cos2r?a

Antimetrischer Fall:

Tmax r,u?°CO*ßy» /(Ch 2p a - COS 2 ry a) (Ch 2p ^ - COS 2 r; ^)max Ch2pa + cos27?a
v r ' r '

Für _r i/ 0 folgt: _Tma:c (0, 0) 0 (Antimetrie-Achse!)

Pür XJL .-ofolcrt- T (- (A - T .i^2p^^^2va)^pa-™^)J_ur a;-2, y-Utolgt. __ maa^2> üj -i0 Ch2pa + cos 2 77a

Temperaturspannungen

Ein Hinweis auf die Lösung für den symmetrischen Fall soll genügen. Das
partikuläre Integral der Airy'sehen Spannungsfunktion lautet (Gl. 10):

Ed
0O —- (cos co t • G — sin co t • F)

und erzeugt an den Rändern x ± a Normalspannungen <jXo und Schubspannungen

rxyo, an den Rändern y=±b nur Schubspannungen rxyo, während die
Normalspannungen cryo dort verschwinden.

Es wird daher ein Integral 01 der homogenen Gleichung hinzugefügt, so daß

AA _>! 0

und: 0 0O + 01
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die Randbedingungen erfüllt unter der Voraussetzung, daß die Rechteckscheibe

an den Rändern spannungslos ist. Es ist somit:

Für x= ±a: aXo +o>Xl =0
T -+-T 01

xyo ~ ' xyL w

Für y=- ±b: ayi 0

T 4-T 0
xyo ' ' xyi v/*

0X wird angesetzt in der Form (Gl. 11):

0X cos co t [cos <x x (U1 Ch a y + £72«/ Sh a ?/) + cos ßy(U3 Ch /3 # + £74 # Sh /3 #)]
+ sin co t [cosocx(V1Ghocy+V2yShocy)-\-cos/??/(F3 Ch]8x + F4#Shj8#)]

wo cosaa 0, cosßb 0

und *715.., ?74; F1?.., F4

Integrationskonstanten sind. Somit entsteht da,s allgemeine Randwertproblem
der Rechteckscheibe. Die Randbedingungen für die Normalspannungen ax und

oy an den Rändern x= ±a bzw. y= ±b können streng erfüllt werden und
führen zu folgenden Gleichungen:

Uz-Chßa+Ufa-Shßa - ^^
Vs-Ghßa+V^-a-Shßa 0

C71.Cha6+[/2-6.Sha6 0

F1-Cha6 + F2-6.Sha6 0.

Die Randbedingungen für die Schubspannungen sind weniger einfach und
erfordern entweder Reihenentwicklungen oder die Anwendung der
Minimalbedingung nach Ritz. In vielen Fällen dürfte auch die Bedingung genügen,
daß der Mittelwert der Schubspannungen über den halben Rand verschwindet.
Solche Gleichgewichtssysteme von Randschubspannungen (Gleichgewicht über
den halben Rand) klingen schnell ab.

Damit ist im vorliegenden Fall das Problem der Temperaturspannungen
grundsätzlich gelöst.

Die gegenüber der bloßen Bestimmung der Temperaturverteilung erhöhte
Schwierigkeit des Problems der Temperaturspannungen ist, wie schon
angedeutet, die Folge der Verkuppelung von zwei verschiedenen partiellen
Differentialgleichungen und die damit verbundene Notwendigkeit, zwischen zwei
verschiedenen Funktionengruppen eine Brücke zu schlagen. Jedoch ist der
numerische Arbeitsaufwand, bei geeigneter Wahl der Berechnungsmethoden,
bedeutend geringer, als dies auf den ersten Blick scheint.

e) Hinweis auf den allgemeinen Fall der Rechteckscheibe

Der vorgängig behandelte Sonderfall bildet die Grundlage zum allgemeinen
Fall der Rechteckscheibe, bei der die gegebenen Randtemperaturen TR beliebige

Funktionen längs der Ränder darstellen.
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Der geeignete Lösungsweg ist durch die Entwicklung der Randtemperaturen

TR in Fourier'sche Reihen vorgezeichnet (der obige Sonderfall enthielt
nur eine ,,Welle" der Fourier'sehen Entwicklung). Man gelangt damit zur
Überlagerung von Lösungen, wie sie in Abschnitt d) für den symmetrischen
xind antimetrischen Fall gegeben waren.

Beispiel

^ Für x= ±a und y= ±b sei:

TR TQ-smcot (T0 konstant).

Die Temperaturverteilung ist in x und y symmetrisch (Koordinatensystem
vrie früher).

_T0 wird in Fourier'sche Reihen entwickelt:

Rand y= +6: Periode 4a, ar„ ——
- =— m 2 a

4 _T0 ^- sm.mTTJ2
T0 (x) Zj —L- * cos ccmx

TT m-1,3,5,... m

n 77
Rand x= +a: Periode 46, B„ ttt-__— rw 2 6

4 TQ ^ sin w 77/2

TT n l,3,5,... n

Die Lösung wird hier ohne Ableitung angegeben:

[OO 00-1- S Am'G°S<XmX'Sm(y)- S 5n * C0S ßn 1/ * Sn (x)\
ra=l,3,.. w l,3,.. J

[00 oo-iS 4m-cosoTOa-C'm(_/) + S Bn-cosßny-Cn{x)\
m=l,3,.. n l,3,.. J

Darin bedeuten:

2TU sin m tt/2
4«

77 m Sh2Am6 + cos2/xm6

__
2T0 sinn77/2 1

77 n Sh2 pn a + cos2 77^ a

#m(y) ShAm(6 + 2/).sin^m(6-^/) + Sh.\m(&-y)-sinj__Jfl(& + y)

^n(^) Sh.pn(a-\-x)-sinrjn(a — x) + Shpw(a — x) - sin rjn(a + x)

Cm(y) GhXm(b + y)-cosfim(b-y) + GhXm(b-y)-cosfim(b + y)

Cn(x) Ch. pn(a + x) - cos r)n(a —x) + Gh. pn(a — x)-cos r)n{a + x)

15 Abhandlung XII
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Am, fim: Wurzeln der charakteristischen Gleichung mit am.

pn, r]n: Wurzeln der charakteristischen Gleichung mit ßn.

Die Konvergenz obiger Reihenentwicklungen ist bemerkenswert rasch.
Für die numerische Auswertung ist das Verhalten der Wurzeln Xm, \im bzw.

pni rjn für große Werte m und n wichtig:

Kl -* am r.. Pn ~> ßn) r..\ für m -> oo, > für 7. -> 00.
^m -> 0 J 77^ -> 0 J

Daraus folgt für die Funktionen Sm(y), usw.:

Sm(y)-* 0

öm(y)-^ 2Ch«m6.Chamy^J.e«-<^)
Sw(a?) -> 0

0n(a?) -> 2Chj8na-Chj8na;^J-e^<a+a;>

Für große Werte m und n hat die Lösung folgende einfache Gestalt:

__ 4 _Tft ,r v sin m 77/2-cos ams_-eawi2/r 2 sh

Lm: gross

+ 2 sin n 77/2 • cos ßny-eßnX

n* gross f(/ &

T wird somit eine Bipotentialfunktion!
Es empfiehlt sich, allgemeine Fälle aus symmetrischen und antimetrischen

Grundfällen zu kombinieren.

TemperaturSpannungen
Der Ansatz für 01 ist eine Überlagerung des entsprechenden Ansatzes im

Abschnitt d). Die Erfüllung der Randbedingungen kann behebig genau
durchgeführt werden.

Sonderfall
Es sei 6>a, d.h. es hege der Fall einer in ^-Richtung sehr langgestreckten

Rechteckscheibe vor, so daß ßn^0 gesetzt werden kann. Es folgt:

Pn^yn^K> co8ßnyg*l, sinßny^0, Amg^0.

Die Lösung für T ist hier nur noch eine Funktion von x und mit dem in der

Einleitung erwähnten ,,linearen Problem" identisch.

f) Die Halbebene; Beispiel

Die Randtemperatur TR sei, für y > 0:

TR T0-e-*y-sm.tot
(a>0, behebig)

Für y < 0 sei TR symmetrisch.
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Fig. 3

Allgemeine Lösung: T cos co t • F + sin co t - G. F und G werden angesetzt als:

F e-<xv-f(x)
G =e-°Ly-g(x)

Analog früher folgt aus einer charakteristischen Gleichung für s, wenn / und g
als esx eingeführt werden:

mit folgenden Eigenschaften:
*i,..,_ ±v±i-£

v2_£2 -_a2

V-£= ±K2

Da für x -> oo die Lösung _F -> 0 strebt, sind nur die Lösungen mit negativem
v möglich.

F und G können leicht auf eine reelle Form gebracht werden und es folgt:
F e-"V'e-vx[C1'Coa£x + C2-Bixi£x']
G e-ay-e-vx[-C2-cost>x + G1-sh\r>x]

Randbedingungen für x 0:

d.h.

Daraus folgt:

und die Lösung lautet:

T TR= T0-e-«v-sincot

F(0,y)^0
G(0,y) T0-e-«y

Cx 0

^2 —TQ

T _T0-c-a^-e-,;;r[-cosa>^-sin^-f-sincD^-cos^]
T0-e-(xy-e-vx-sm(cot-Cx)

T hat demnach die Form von ,,gedämpften Schwingungen".
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Amplitude

Es folgt sofort:
fp — T .p—cx-v.p-vxx max ~ -*¦ 0 ^ ^

für t t± aus: tgco^ —cotg^.

Temperaturspannungen

Neben 0O aus F und G muß hier, wie früher, noch eine Funktion <_>x

bestimmt werden. Diese gewinnen wir sehr einfach aus dem sogenannten ,,strahligen",

für die Halbebene charakteristischen Spannungszustand durch
Überlagerung (Integration) der bekannten Spannungszustände infolge einer Rand-
Normalkraft und Randscherkraft.

r

Fig. 4

Für P in 0 ist, in den Koordinaten x und y:

Für S in 0 ist:

P y0p =-.rarctg-
77 Ju

0„ — -#-arctg —ö
77 ° X

Durch Integration der 0P und 0S über y von 0 bis oo und mit 2 multipliziert,
können die infolge _>0 entstandenen Randspannungen restlos eliminiert und
durch Überlagerung der wahre Spannungszustand ermittelt werden.

g) Weitere Anwendungen

Auf weitere Anwendungen der behandelten Theorie sei kurz hingewiesen:

Behälter mit Kreisringquerschnitt

Innen oder außen oszillierende Randtemperatur. Die'Lösung in
Polarkoordinaten führt auf Bes'sel'sche Funktionen, die tabuliert sind.
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Halbebene mit Kreisloch

Hier ist die Anwendung der Bipolarkoordinaten von Vorteil.

Keilförmige Scheibe

Hier können polar- oder schiefwinklige kartesische Koordinaten benützt
werden.

Halbstreifen mit totaler Einspannung an der Schmalseite (Mauerproblem)

Die Randbedingungen lauten, daß an der Schmalseite die Verschiebungen
u und v verschwinden.

Parallelogrammförmige Scheibe

Die Lösung ist in schiefwinkligen kartesischen Koordinaten darstellbar.
In allen Fällen führt eine Betrachtung über die Art der Konvergenz der

Lösungen zu wesentlichen Vereinfachungsmöglichkeiten bei der numerischen
Auswertung.

Zusammenfassung

In dieser Arbeit werden die theoretischen Grundlagen der Temperaturverteilung

sowie der Temperaturspannungen für 2-dimensionale Elemente
(Scheiben, Pfeiler) entwickelt, falls die Außentemperaturen periodisch
veränderlich sind.

Einige Anwendungen und Beispiele vermitteln ein Bild über die
Integrationsmöglichkeiten der Grundgleichungen im Zusammenhang mit den
Randbedingungen und enthalten einige Hinweise für praktisch wichtige Fälle.

Diese Theorie findet Anwendung bei Staumauer- sowie bei Behälterproblemen,

wo die Temperatureinwirkung eine maßgebende Rolle spielt, sowie
bei ,,abgebildeten" Problemen anderer Art mit denselben Grundgleichungen.

Resume

Ce memoire etablit les bases theoriques de la repartition de la temperature
et des contraintes thermiques dans les elements bidimensionnels (parois
minces, piliers indefinis) dans le cas de temperatures exterieures periodiquement
variables.

Quelques applications et exemples donnent un apercu sur les methodes
d'Integration des equations fondamentales en rapport avec les conditions aux
limites et contiennent des indications pour quelques cas importants de la
pratique.
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La theorie developpee sert avant tout ä resoudre les problemes thermiques
des barrages et des recipients, quand l'effet de la temperature joue un role
preponderant; eile peut etre egalement appliquee ä tous les problemes ,,simi-
laires" qui, bien que de nature differente, conduisent au meme type d'equations
fondamentales.

Summary

In this contribution, the theoretical principles of temperature distribution
and also of thermal stresses for two-dimensional elements (slabs, pillars) are
developed, in cases where the outside temperatures are periodically altering.

Some applications and examples illustrate the Integration possibilities of
the fundamental equations in connection with the edge conditions, and furnish
some hints for practically important cases.

This theory finds application in problems regarding dams and Containers,
where the temperature effect plays an important part, as also in ,,similar"
problems of another kind with the same fundamental equations.
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