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Die durchlaufenden, prismatischen Faltwerke

Les systemes Continus de parois portantes prismatiques

Continuous cylindrical beams of prismatic cross-section

Dr. Ing. habil Ernst Gruber, Oberregierungsbaurat z. Wv.,
Eidingen /Celle, Deutschland

A. Einleitung

Im Stahlbeton- und Stahlbau finden Schalenkonstruktionen in steigendem
Maße Verwendung. Während nun die stetig gekrümmten Schalen in ihrer
Theorie schon weitgehendst erforscht sind, wurden über die sogenannten
Faltwerke — das sind Schalen bzw. Membranen, welche aus ebenflächigen Teilen
zusammengesetzt sind — bisher nur Untersuchungen über die Balken- und
Kragsysteme angestellt1). In der Folge sollen nun die sogenannten
„Durchlaufenden Faltwerke", die ein- oder mehrfach zwischengestützt sind, behandelt
werden. Um den Zusammenhang mit den bisherigen Entwicklungen des
Verfassers herzustellen, werden vorerst die „gelenkigen Systeme", welche längs
der Kanten n nur scharnierartig zusammenhängen, kurz behandelt.

B. Gelenkwerke

Im allgemeinen wird das Tragwerk von Linienlasten p ergriffen werden,
die zwischen den Kanten n und n +1 liegen. Diese p ersetzt man zunächst
durch zwei gleichwertige, in n und n+\ wirkende Knotenlasten pn und pn+1,

x) Gruber E.:
1. „Berechnung prismatischer Scheibenwerke." Int. Ver. f. Brückenbau- und Hochbau,

Abh. I. Seite 225 (1932).
2. ,,Die Berechnung pyramidenartiger Scheibenwerke und ihre Anwendung auf

Kaminkühler." Int. Ver. f. Brückenbau- und Hochbau, Abh. II. Seite 206 (1934).
3. ,,Die Berechnung äußerlich statisch unbestimmter prismatischer Scheibenwerke."

Int. Ver. f. Brückenbau und Hochbau, Abh. III. Seite 134 (1935).
4. ,,Hohlträger als Faltwerke." Int. Ver. f. Brückenbau und Hochbau, Abh. VII.

Seite 139 (1943/44).
5. ,,Die Querverteilung der Lasten bei Brücken mit 2 Hauptträgern." Bauingenieur

1942. Seite 323.
6. ,,Die exakte Membranentheorie der Faitwerke." Int. Ver. f. Brückenbau und Hochbau,

Abh. XI.
7. „Gekrümmte Faltwerke." Bautechnik-Archiv Ernst & Sohn, Berlin, Heft Nr. 7.
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168 Ernst Gruber

welche man, solange in einer Kante n nur zwei Falten zusammenstoßen, auf
statisch bestimmtem Wege in die Komponenten snn+1 und snn_1 zerlegen
kann (Fig. I)2). Die Reihenfolge der Indices gibt hierbei die Kraftrichtung
an. Für jede Falte n,n+\ erhält man zwei KraftWirkungen sn n+1 und sn+1 n>
die sich zur Transversallast pn+1>n sn+1}n—sn>n+1 zusammensetzen. Neben
diesen werden im allgemeinen noch in den Achsen der Falten n, n + 1 wirkende
stetig verteilte Achsiallasten nn>n+1 und stetig verteilte Momentenlasten

mn,n+i vorhanden sein.
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Fig. 1

Schneiden wir aus zwei benachbarten Falten n — l,n und n,n+l zwei
Elemente m und m +1 heraus und bringen an deren Schnittstellen die frei-
werdenden inneren Wirkungen Q, N und M neben rn-dx an, so müssen diese
mit den obigen Belastungen p, n und m ein ebenes Gleichgewichtssystem
bilden. In Fig. 2 sind die Elemente m und m +1 in eine Ebene geklappt zur
Darstellung gebracht. Es gilt nun für m

^in-l,n — Pn-1

N' *^T n—l,n 'n—1 ' n lvn—l,n

Mn—1, n '

-rn nn

— Tn • flm^ n — Tn_1 • ihm^ n__1 + Vn—1, n ~~ ™n—l, n >

(i)
(2)

(3)

woraus sich durch Vermehrung der Indices um 1 die für m +1 gültigen
analogen Gleichungen (!'), (2') und (3') ergeben. Außerdem müssen längs der

2) Sogenannte zweiteilige Faltwerke.
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Kanten n die bezogenen Dehnungen der anliegenden Ränder zweier benachbarter

Falten punktweise übereinstimmen. Das heißt

__

1 (Mn_1>n N»-l.n\= 1 /I _ rLm,n "• rr 1 F \
i—l,n \ °n—l,n •L n—ltn / £Un»n+l \

M„ Kj ,vm+l
un,n+l

_!_ ________ |
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Fig. 2

Differentiert man dies bei konstanten J und F einmal nach x, setzt Gl. (2)
und (3) sowie Gl. (2') und (3') ein, so folgen die Beziehungen

l^m,n' ^m,n-1 1 \ _ ^m,n ^m+lfn *¦ I \
Tn-1 I j ~p I + Tn I 7 r -y h ~™ h "™ I

\ ^n—l,n -^n—l^n/ \un—l,n ^n.n+l ^n- l,n £n,n+l!

l^m+^n' ^m+^n+l ¦*¦ \ nn-l,n ^ra.w+l /^\• j ^ i_—— |- — ^o)
\ ^n, n+1 -^n.n+1/ -^n—l.n -^n, r

+ T,

~~ "" Vä-1, n + mn-l, n)

.,n+l
n+1

K
J,n-1,

Qn,n+l^~mn,n+l) jn,n+l

die man aber nur unmittelbar anwenden kann, wenn man die Qn>n+1 für
einzelne Punkte ad hoc so angeben kann, daß sich daraus die Integrationskonstanten

der Gl. (1) und (V) ergeben. Ist dies nicht möglich, so muß man Gl. (5)
nochmals nach x differentieren und es folgt mit Benutzung von Gl. (1) und (1')
für jede Kante n eine Bedingung

/ /^m, n' ^m, n-1 _____| _i_ ' ni,n ¦ 'lm+l,n i i |n-1 \ T ti n \ T T F F 1

\ un—l,n -*-n—l,nf Vn—l,n un,n+l ¦*-n— l,n ¦*¦ n,n+l/

./ l^m+hn' ^m+l,n+l __J___ | _ nn-l,n nn,n-l /p>f\
n+1 \ J ^ I— n r—p \0

\ °n n+1 £n,n+lf xn—l,n xn,n+l

~~ \Pn-l,n + mn-l,n)
K

¦(Pn,n+l+K,+l)
K

"n—l,n ^n,n+l

Bei der Bildung dieses Systems sind jeweils die Randbedingungen zu
berücksichtigen. So ist z.B. für einen freien Rand t0 0 (Fig. 1), für symmetrische
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Tragwerke werden bei symmetrischer Belastung die in der Symmetrieebene
liegenden r 0 und bei antimetrischer Belastung die zur Symmetrieebene
symmetrisch liegenden r einander gleich usw., so daß wir ebenso viele Gl. (5)
bzw. (5') aufstellen können, als unbekannte Funktionen rn (x) vorhanden sind.
Da bei der Herleitung dieser Beziehungen über die Art der Belastung und der
Lagerung des Tragwerkes keinerlei einschränkende Voraussetzungen getroffen
werden mußten, gilt (5) bzw. (5') ganz allgemein für jedes prismatische,
gelenkige Faltwerk.

C. Das gelenkige Balkenfaltwerk

a) Allgemeine Betrachtung

Löst man die Gl. (5') nach den rn' algebraisch auf und integriert die Ergebnisse,

so ergibt sich

Tn JTndx + Cn Tn + Gn- (6)

Können hingegen die Gl. (5) benutzt werden, so folgen die obigen rn unmittelbar.
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\< ' —
TTTTTTTTT Faltenachse Jn.n.l
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Fig. 3

Die in Gl. (6) vorhandenen Integrationskonstanten Cn ergeben sich aus
der Belastungsart des BalkenfaltWerkes, bei welchem die einzelnen Falten nur
in zwei Lagerscheiben A und B gestützt sind. Die letzteren sollen so beschaffen
sein, daß sie nur in ihren Achsebenen liegende Stützkräfte aufnehmen können.

Im allgemeinen werden die Lasten nur abteilungsweise stetig sein, wie es

in Fig. 3, in der das Faltwerk in eine Ebene geklappt zur Darstellung gebracht
ist, ersichtüch ist. Legt man durch jede Unstetigkeitsstelle der Belastung eine
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zu den Auf lagerscheiben A und B parallele Ebene, so wird das Faltwerk in
/x Sektionen zerlegt. Schreibt man für jede von diesen ein System (5') an, so

ergibt sich für jede Sektion ein Lösungssatz

p=m p=m
Tn,v== __ an,p\ \Pp,p+l;v + mp,p+l;v)d%+ 2j ^n,p ' Up,p+1; v + @

n, v ~^n, v + @
n, v ' C-0

/>=0 p=0

Stellt man in jeder Falte für die beiden, jeweils einer Sektionsgrenze i>,v+l
unmittelbar anliegenden Faltenelemente die Gleichgewichtsbedingung (1) bzw.
(1') auf, so ergibt sich, daß beim Überschreiten von v,v+l die Querkräfte
keine endlichen Sprünge machen, wenn zunächst unendlich konzentrierte
Lastwirkungen, wie z.B. Einzellasten, nicht vorhanden sind. Es gilt daher

n(xv+i) n(xv+i) /g\^n,n+l;v ^n,n+l;v+l v '

Bildet man also für zwei benachbarte Sektionen die Gl. (5), löst diese nach
Tn>v und TnfV+1 auf, setzt x xv+1 und bildet rn.v+1-rn.v Arn.V}V+1, so folgt
wegen Gl. (8)

p m p=m
^Tn;v,v+1— Ajan,p'^mp,p+l;v,v+lJ^ _L °n,p ' ^ np,p+l; v, v+l > W

/>=0 p=0

wobei die A die Sprünge bedeuten, welche die rn, mP)P+1 und np>p+1 beim Übergang

über die Sektionsgrenze v,v+l erleiden. An dieser gilt unter Benutzung
von Gl. (7)

fi?v+l) + Cn,v + ATn;v>v+1 ?lX^l +Cn;v+1 (10)
oder

C —C — Axv+l) _~(xv+i) _AT —A (ll)^n;v n;v+l~ rn;v+1 Tn;v n Tn; v,v+l ~ nn; v,v+l • \L1)

Solche Gleichungen gibt es /x — 1 je Falte. Addiert man hiervon die ersten v
Stück, so ergibt sich

v=v
Gn;v — _L An. V)V+i + Ln o? (12)

v=0

womit für jede Kante n alle Cn>v durch CU)0 ausgedrückt sind. Aus Gl. (7)
und (12) folgt also

V

Tn;v==Tn;v~2-i^n;v,v+l~^tyn,o- {*¦&)
0

Da die Auflagerscheiben nur normal zu den Faltenachsen gerichtete
Reaktionen übernehmen können, lautet für die Falte n,n+l die Gleichgewichts-
bedingungen gegen achsparallele Verschiebung

v=/*-l v+l
__

J (-Tn;v + Tn+l;v + np,p+l;v)dx °> (l4)
v=0 v

was mit Gl. (13) in
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v=/jl—l
¦" (Gn+1, o ~~ Gn, o) —

__ t(Xv+l "" Xv) 2j (^ ?i+l; v, v+l ~^n, v,v+l)
v=0

v+l
+ J (fn;v-Tn+l;v-^p,p+l;v)^^] (15)

übergeht, woraus man unter Berücksichtigung der zu den Gl. (5) bzw. (5')
gehörigen Randbedingungen die Konstanten Cno durch einfache algebraische
Additionen bestimmen kann.

Da im allgemeinen die Summe der Achsialkräfte aller Falten nicht Null
sein wird, muß das Faltwerk gegen achsparallele Verschiebung gesichert werden.

Bei unserem Balkenfaltwerk genügt es, wenn bei einer Falte eine achs-

parallele Lagerung vorgesehen wird (Fig. 3). Man beginnt dann mit der
Auflösung der GL (15) an einem der kraftfreien Ränder, oder bei symmetrischen
Verhältnissen an der Symmetrieebene und arbeitet sich bis zu Kante n der

waagrecht gestützten Falte n, n +1 vor. Sodann beginnt man vom zweiten
kraftfreien Rand und geht bis zur Kante n+ 1. Stellt man dann auch für die
Falte n, n +1 die Gleichgewichtsbedingung gegen achsparallele Verschiebung
her, so erhalten wir daraus die seitliche Stützkraft des Balkenwerkes.

Pn,n,t

l\-

_L

mimmiiiH Pa+t,,

L

11

Fig. 4

b) Transversale Einzellasten

Wie rasch dieses Verfahren zum Ziele führt, soll an dem Belastungsfall der

Fig. 4 gezeigt werden. Teilt man das Tragwerk in 3 Sektionen, so werden nach
Gl. (9) alle A ¦

unmittelbar
n; v, v+l 0. Da für die erste und dritte Sektion p 0 wird, folgt

p=m

oder

rn,l 0 ; Tn,2= X an,p'Pp,p+l 1 T'n,3 ~ 0
p=0

p=m
(16)

Tn,l—Gn,o'> Tn,2 ~ X '
__ an,p ' Pp.p+l + ^w,2 > Tn,3 ~ Gn,3*

p=0

Mit Hilfe der Gl. (11) und (12) oder durch Gleichsetzen der rn an den Sektionsgrenzen

v, v+ 1 folgt aus Gl. (16)
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T (11 n, 1 ^n,o
p=m

\2= 2 an,p-Pp,p+l-(x-h) + Cn,o (l7)
p=0

p=m
Tn,3== ^2 2 an,p'Pp,p+l + Gn,o'

p=0

Setzt man dies in Gl. (14) ein, so ergibt sich

Cn,o ~ Gn+l,o ~~
~jj I

"2"
~^~ 3 2 \an,p~ an+l,p) h ' Pp,p+1 • (18)

¦Pp.P+i

Sind die Kanten 0 und m kraftfrei, so muß r0 rm 0 oder nach Gl. (17)
Coo Cmo 0 sein. Da außerdem für n 0 und n m die awp nicht bestehen,
lautet die diesen Randbedingungen angepaßte Lösung von Gl. (18)

1 ll \ P==m~1

Gn,o=j;\j+h) Zx-^n,p'Pp,p+l (19)

n l,2,3, m — 1.

Schrumpft 12 auf Null zusammen, so gelangen wir zu Einzellasten Pntn+1.
Gl. (19) geht dann über in

l p=m — l
Gn,o= Jß 2 ~an,p'Pp,p+l' (20)

Aus Gl. (19) bzw. (20) ergeben sich mit Gl. (17) die Schubflüsse rn. v.

c) Einzelmomente als Lasten

Aus diesen Ergebnissen folgen leicht die Lösungen für Kräftepaare M +1

an Stelle der Pp>p+1 (Fig. 5a). Es ergibt sich nach Gl. (20) für den Abschnitt 1A

l p=m— 1 ^ p=m—l
Tn= ~T 2j ~~an,p' *p,p+l T 2 ~an,p'Pp,p+l

-" p=\ ¦*-' p=l

a
\ p=m—1 >

A

T 2 (h-K)'Pp,P+i'-an,p, (21a)

für den Abschnitt 12
MP,P+i

l p=m-l ^ p=m-l
"T 2 ~an,p'Pp,p+l~ ~r 2 -an,p'Pp,p+l

¦*-' p=l -^ p=l
p=m—1 7lf 1 p=m-l

¦ 2 -«».p-^ + T 2 -<Vp-^p,p+i (21b)
p=i » ^ p=i ^ ^M

und für den Abschnitt 2 B
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h P=^-x ^p^m-l2 ~"an,p'Pp,p+l + t 2 ~~an,p'Pp,^ p=l
\ p—m—1

7" 2 -%,p-^p,p+l-
JJ p=l

p=l
p+1

(21c)

4_k~

>i/

I

/>„,„?>

'^ii

L — Fig. 5 a

j Pmm-t I

Fig. 5 b, Schubflüsse

r _,» Mp.f>+i

Fig. 5 c. Normalkräfte

/Crf rr^-^,/p; • Mw

''n,n+t n i

p=m-1
Tn='-^Z3n,f'Mpf p+t Fig. 5d. Schubflüsse

-Z-Z-

j ^ttttttTTTTITT

X" £ ~ ^/» ~ ar>+',p)Mp.f>+i

L-l
L '-' \ P

Fig. 5e. Normalkräfte

Der Verlauf der rn ist in Fig. 5b dargestellt. An den Orten der Pp>p+i
erleiden die rn den endlichen Sprung

p=m— 1

~~ 2 ~~öw,p*-^p,p+i •

p=i

Von Wichtigkeit ist auch der dazugehörige Verlauf der Normalkräfte einer
Falte, der wieder in Fig. 5 c veranschaulicht ist. Es wird für den Punkt 1
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l m-1
Nn,n+i =(Tn-Tn,i)h=j; 2 -K,p-^+i,p)^p,P+i (22a)

und für den Punkt 2

\ m-1
N™n+i -(Tn-Tn+1)A8 f 2 -K,p-an+i,P)Mp>p+1. (22b)

Zwischen 1 und 2 verläuft Nn>n+1 geradlinig.
Konvergiert a -> 0 und Pp>p+\ -> oo, so daß der Grenzwert a-Ppp+1

M +1 besteht, so stellen die gefundenen Tn die Schubflüsse für den Fall dar,
daß in allen Falten in x lx je ein konzentriertes Moment Mp>p+1 angreift. Der
Verlauf der Schub- bzw. Normalkräfte entartet im Sinne der Fig. 5d bzw. 5e.
Innerhalb der Kräftepaare werden die Schubflüsse in jeder Falte oo-groß,
während die Npp+1 auch dort endlich bleiben.

Wir haben bei dieser Betrachtung die Mp>p+1 als Grenzfall eines Kräftepaares

a- P +1 zweier Transversallasten aufgefaßt. Es ist leicht zu zeigen, daß
man zu den gleichen Ergebnissen kommt, wenn man von einer längs der
Strecke a stetig verteilten Momentenlast mPiP+1 ausgeht. Für eine solche gilt
zunächst __fpp+1 a-mp p+1. Nach Gl. (9) tritt bei 1. ein endlicher Sprung von

m-1
Atu= 2 +an,p'mp,p+i un(l Dei 2 ein solcher von —Arn auf. Macht man von

der Bedingung (14) Gebrauch, so folgt bei r0 rm 0

[m-12 +an,p'™<p,p+l+Tn a 0,

woraus wieder
2 p=m—1

T„.= £ 2x -^p-^p,p+i (21c)

wird.
Die Konstante der rn innerhalb der Abschnitte 12, AI und 2B würde

auch aus den Gl. (5') folgen, da in diesen die m'P)P+1 0 werden.

d) Achsiallasten

Greifen in den Falten zwischen den beiden Punkten 1 und 2 stetig verteilte
Achsialkräfte npp+1 an, so folgt zunächst wegen npp+1 0 aus den Gl. (5r), daß
die Schubflüsse in den Abschnitten AI, 12 und 2B wieder konstant sein

p=m—1
müssen. Bei 1 tritt nach Gl. (9) ein endlicher Sprung A rn Zbnp-n p+1 und

p=i
bei 2 ein solcher von — Arn auf. Bildet man wieder die Gleichgewichtsbedingungen

(14) für die ersten n Falten, so erhalten wir mit r0=rm 0

Tn(h+K) +

und daraus

p=m—1
2 bn,p-np,p+l + Tri

L p=i

p=n
a+Za'np-i,p=°

p=i
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\ p=m—1 \ p=n
Tn=£ 2 -^,p'a*^p,p+l-^ 2 a'np-l,p' (23)

Wp,p+i wp-l.p

Dabei ist wieder vorausgesetzt, daß nur eine Falte achsial gestützt ist.
Man arbeitet sich dann wieder von den beiden kraftfreien Rändern zu der
achsial gestützten Falte vor und stellt für sie die Gl. (14) auf, woraus die
seitliche Auflagerkraft des Balkenwerkes folgt. Liegt die Stützung dieser einen
Falte nicht in deren Achse, so ist das Exzentrizitätsmoment nach Punkt c)
dieses Abschnittes weiter zu verfolgen.

Diese Belastungsart hat Bedeutung, wenn Faltwerke für die Ableitung
achsialer Windkräfte herangezogen werden müssen.

D. Das steifknotige Balkenwerk

Die bisher besprochenen Gelenkwerke werden bei stählernen Fachwerks-
faltwerken ohne Querscheiben in hohem Maße verwirklicht. Bei Bauwerken
aus Stahlbeton sind, dem monolitischen Charakter dieses Baustoffes
entsprechend, die einzelnen Falten miteinander starr verbunden, so daß wir uns
auch mit den sogenannten steifknotigen Systemen beschäftigen müssen. Für

*n.t

K-1

n+1

Xn-2
X/7*2

y Sehnendrehwinkel

ß+t;In+t,
n-r

ln-t.n-2

Fig. 6

diese wählen wir jeweils das zugehörige Gelenkwerk als Grundsystem und
bringen an diesem, neben den gegebenen Lasten, die als Unbekannte gewählten
Knotenmomente Xn ebenfalls als äußere Kräfte an. Diese Xn ersetzen wir
durch die, in den Kanten n angreifenden, zueinander parallelen Linienlasten

^=____._/___+^) +
ln—lyti \ln—l,n In /

(24)
n, n+1

aus welchen sich nach den Darlegungen des Abschnittes B z.B. für Faltwerke
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mit regulären Polygonen als Querschnitt die dazugehörigen Faltwerkslasten
des steifknotigen Systems zu

lPn, n-i sm A - Xn_2 + (Xn_1 -Xn)l + 2 cQg A +Xn+1 + pn>n_1 (25)

ergeben. Hierin bedeutet l die Länge der Polygonseiten und A deren
gegenseitigen Neigungswinkel (Fig. 6).

Setzt man diese Werte in die rechten Seiten der Gl. (5') ein und löst diese

auf, so ergeben sich die Ableitungen ?n' der läugs der Kanten n wirkenden
Schubflüsse fn des steifknotigen Systems als lineare Funktionen der Xn. Aus
den Durchbiegungen yn>n+1 der einzelnen Falten n,n+l ergeben sich nun in
bekannterweise die Differenzen A &n der beiden, dem Knoten n benachbarten
Sehnendrehwinkel als lineare 4-gliederige Formen, deren 4. Ableitungen bei
einem 6-seitigen regulären Polygon mit daran beiderseits lotrecht angehängten
Endfalten die Gestalt (Fig. 9 c)

l-A&lV'SmA =ylJ— i/iI(l+cos_]+sin_l.tga1) + ^2l(l + 2cosZl)-2/I3l
COS OC-t

l-A$lY.smA=y{J-(l + 2cosA)(ylJ-ylJ)-yY5 (26)

l'A&]Y-smA =ylJ~y1Y (l + 2cos_l)+2/^(l + cos_l+sin_l.tga7) -^J^m^3)
cosa7

annehmen. Damit können wir unter Verwendung der üblichen Bezeichnungen
für die Faltwerksquerschnitte die 4. Ableitungen der bekannten Dreimomen-
tengleichungen bilden. Es wird

^i-l,n t^IV _i_
^ rn-l,n ^n,n+l\ v_V

6 Jn—1, n E
v_V 2 [ln-l,n Ln,n+l\ vl\A7i-1+ ^lv\-j + ~? )JLn° & \Jn-l,n Jn n+1/

O Jn,n+l-t(j

wobei die ln-1>n, ln,n+i die Sehnenlängen bedeuten und die Jn>n+1 die Größen
^w,n+i/12 annehmen, wenn die dnn+1 die Dicken der einzelnen Falten n,n+l
darstellen. Die Durchbiegungen ynfTl+1, deren 4. Ableitungen noch in den A #*v
der Gl. (27) enthalten sind, genügen den Bedingungen

E Jn, n+1 Vm, n+1 ~ ^n, n+1 > (28)

woraus sich nach 2 maliger Differentiation und mit den Gl. (3)

E ^n, n+1 Vn,n+l=^n ' "'m+l. n + ^n-1' ^m+1, n+1 ~ Pn, n+1 (29)

ergibt. Setzen wir hierin die Gl. (25) und die daraus im obigen Sinne errechneten

fn' ein, so ergeben sich die y^n+1 in der Form

3) ax und a7 siehe Fig. 9b.
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p=m
Vn,n+1 2^,n+l;p-^p+^n,n+l (tt 1, 2, (29')

p=l

Setzt man nun diese in die Gl. (26), so folgt

p=m
A$lY Xdntp-Xn + Pn™, (26')

p=i

wobei die Absolutglieder P*v nur von den gegebenen Lasten herrühren.
Gl. (26') in (27) eingesetzt, ergeben nun die Bestimmungsgleichungen für die
Xn zu

Ki-l,n VlV 2 (tn_1>n ln,n+l\ x^IV ^n,n+l vTV
^1 w n-1+6~H\J + 1 1 n +^1 ^ n+1
O «/n—1, n Mi v ±j \Jn—l, n Jn, n+lJ O Jn, n+1 __

_j_ Ydn,p'Xn + Pn -\-^n,n-l+^n,n+l 0 /^q\
p=l

in welchen die N von den zwischenknotlichen Wirkungen der äußeren Lasten
herrühren.

Das System wird am einfachsten mittelst Fourier'sehen Reihen gelöst4).

E. Die durchlaufenden Systeme

a) Gelenkwerke

Schneidet man ein solches Tragwerk über den Auflagerscheiben durch, so
entstehen Balkenfaltwerke, an deren Auflagerenden l und r je Falte die
Stützenmomente Xpl]p+1 und Xpr^p+1, die Achsialkräfte Ypl}p+1 und Y^p+1,
sowie die Querkräfte Zpl]p+1 und Zp%+1 frei werden. Selbstverständlich müssen
bei dieser Zerlegung diese Balkenfaltwerke an ihren Auflagern durch die
Lagerscheiben ausgesteift bleiben. Die Querkräfte werden also dort unmittelbar

aufgenommen und interessieren uns zunächst noch nicht. Die X bzw. Y
sind dann positiv, wenn sie am Rande n der Falte n,n+l Zug bzw. in letzterer
nur Druck erzeugen (Fig. 7).

Denkt man sich zunächst die X^p+1 und Ypr^p+1 vorerst auf einen kurzen
Bereich a gleichmäßig verteilt und läßt man nur diese letzteren am rechten
Ende r der Balkentonne l, r angreifen, so ergeben sich nach Gl. (21c) und (23)
die Schubflüsse außerhalb des Bereiches a zu

Tn=j- 2'-^,p-Xp?p+i + ^- Zp-K^Y(prP+i--r~ZpY(prlHr 1 Ll,r 1
H Ll,r 1

und innerhalb von a zu

4) Einzelheiten siehe Fußnote 1 Pkt. 1, 3, 4, 5, 6.
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h m-1 j m-1
Tn,a= "r 2P _ an,p ' Xp, p+1 + ~ 2P an,p ' %p,p+l + y— 2'

^,r 1 # 1 ^7,r 1

J m—1
9 —bn>p- YPiP+iAr)

7 ZjHI p-l,p + ~ l/°n,p *^p,p-l-

m-l f

n+i

.n+i

"-JJ*
7e*-n n+f

O d

bewegt.

s 0 Freier Rand

~'/7?+r,n+r |

T0 0 Freier Rand

^bewegt

-^ vir)I *n,n+i
\rr-K

/

Fig. 7

Macht man zunächst das logische Postulat, daß der Übergang von rn nach rn a

stetig erfolgen soll, das heißt, es wird

Tn ~ Tn,ai \&&)

so ergibt die Gleichsetzung der rechten Seiten von Gl. (31) und Gl. (32)

m-1 m-1
2p^,p'_£p?p+i+ ZpK,p-Y(pr>)p+1 0^a 0, (34)

woraus mit Gl. (31) l m-1
-j— 2P ^p,p+l
-^Ir 1

(35)

folgt. Das durch die Gl. (32) anfangs bedingte Unendlichwerden der rn innerhalb

des nun unendlich kleinen Bereiches a ist nun durch die Annahme (33)
verhindert. Diese wird sich noch im Laufe der weiteren Entwicklung exakt
bestätigen.

Löst man weiters die Falte n,n+l aus dem Tragwerksverband und stellt
um den rechten Achspunkt r die Momentengleichung auf, so ergeben sich die
linksseitigen Querkräfte der Balkenfaltwerke zu

Lj,r Ll,r

Z%n+1 h±±^±± j Tn+idx + _*__ j Tndx +
X(r)

n, n+1

Ll,r
(36)
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mit welcher, da sich infolge der Konstanz der Schubflüsse die Glieder mit i
und rn+1 heben, das Biegemoment der Falte n,n+l im Punkte x den Wert

Ll,r Ll,r
Hr)
Ln,n+1

i \ x C x i x (¦

M-n,n+l "Jm+l,n+l~f Tn+1dx + "'m+l,n ~f Tn dx + ~f Xn
0 0

x x

-""^ra+l.rc+l Tn+ldx~'hm+l,n Tndx ~ ~T~ Xn,n+1 (37/
0 0

annimmt. Für die am linken Ende angreifenden Momente Xpl]p+1 und Achsial-
kräfte Ypl)p+1 erhalten wir analoge Werte.

Diese Ergebnisse sagen^nun aus, daß die von allen Momenten Xp®p+1, Xpr?p+1

und allen Achsialkräften Ypl)p+1, Ypr^p+1 herrührenden Biegemomente Mnfn+1
der Falte n,n+1 und somit auch deren'Endverdrehungswinkel &n]n+i und
&%\+i nur von den unmittelbar an n, n +1 angreifenden Kraftwirkungen
Xin,n+i> xn!n+i und Yn]n+i^ Yn]n+i abhängen. Man kann somit für jede der
Falten p,p + l gesondert einen Clapeyron'sehen Gleichungssatz

-Y^v-t) A>-l,v ,9 v(v) I'y-l, v AvH-1 \ viv+l) I'y, v+l
P»P+1 t(v-1,v) ^^^p^P+l t(v-1,i/) "*" T(v,v+l)J ^^P.p+l Hl/,v+l)

^P^+i Wp,p+i Jp,p+i / jp,p+i

+ Gtf.pl? + etf'p7i) 0 (p l,2,. .m) (38)

aufstellen, in welchen die &P}f)+i die Endverdrehungswinkel an der Stützenscheibe

v der Falten p,p+l, der nach Abschnitt C behandelten Balkenfaltwerke

v—\,v und v,v+l, bedeuten. Sie ergeben sich für das Feld v—\,v aus

Jp,p+\ '-L>V-\>VJ
1 +fjLp}P+1(2L2v-liV-6xLv_1}V + 3x*)]dx (39a)

6#£p+1 / f ^p,p+i^(^-i,v-^2)-^Pjp+i(^-i5v-3^2)]^, (39b)
Jp,p+\ 'Lv-i>vJ

wobei ^p,p+i mPfP+1 + Tp+1-Am+1(P+1 + Tp-Am)P bedeutet.
Sind Achsiallasten nUin+1 vorhanden, so ist zunächst das durchlaufende

System durch Festhaltung eines Punktes c gegen Verschiebung in achsialer
Richtung zu sichern. Wir zerschneiden das durchlaufende Tragwerk wieder
über den Stützen, verbinden aber die so entstandenen Balkenwerke über jedem
Auflager in je einem Punkte c(v) so, daß von einem Feld auf das andere nur
achsiale Kräfte __(v) übertragen werden können. Zweckmäßig legt man alle
Punkte c(v) in die Achse ein und derselben Falte n, n +1 des Durchlauftragwerkes

(Fig. 8). Man beginnt nun mit der Auflösung der einzelnen Balkenwerke

bei den beiden Randfeldern und schreitet gegen die im Punkte c gestützte
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Mitteltonne vor, die man schließlich auch so wie die anderen berechnet. Dabei
ist zu beachten, daß sich die, in den c(v) entstehenden Verbindungskräfte A^
der weiter außen liegenden Balkenwerke durch die Gelenkpunkte c(v) nach den
jeweils benachbarten Feldern gegen die Mitte hin bis zu der in c gelagerten
Mitteltonne fortpflanzen, wo sie mit den äußeren Achsiallasten der letzteren
den gesamten Auflagerdruck Ac ergeben.

Randtonne 0,1 \ Randtonne
A-Kjul

A<" ||» -*. -•-"^ Achse i/on n n+1
"n.n+i

1,
Ac

M/7-/ *- ••— •- nn-1,n-a*W„-t,n | /
1- l 3 -

1

/
i ' _-*ii __/

/ |l

[ ll
n0,i

1

Freier Rand —li

Fig. 8

Betrachtet man die _4(v) und für das in c gestützte Mittelfeld auch Ac als
äußere Lasten, so steht im zerschnittenen System jedes Feld für sich im
achsialen Gleichgewicht. Bringt man daher die Xpr?p+1, Ypr^p+1 und XpZ)p+1, Ypl}p+1

an den Enden der Balkenwerke nun zusätzlich als äußere Lasten an und stellt,,
von einem Randfeld beginnend, für jedes Feld gesondert die Gleichgewichts-
bedingung gegen achsiale Verschiebung auf, so folgt für jede Auflagerscheibe
des Durchlaufsystems die Bedingung

2p^p+i °- (40)

Wir sind nun mit Hilfe der Gl. (38) im Stande, die Stützenmomente X +1
der einzelnen Falten zu bestimmen. Die Ermittlung der dazugehörigen Achsial-
kräfte YPtf)+1 gelingt uns aber leicht mittelst der Beziehungen (34), von der ja
nun die linken Glieder bekannt sind. Setzt man in die Grundgleichungen (5')
an Stelle der -n'n_ln bzw. -<,n_x die Y^^ bzw. Ypr}p+1 und für (pn_hn +
m bzW. (Pn,n+l + ™>n,n+l) die X£p-1 DZW-l,n) M^vv- \Fn,n+1 ~ nvn,n+li ~*~ ^p,p
sichtigung der Randbedingungen ro rm 0 nach
entstandenen Systems (5")

^p.p+I'
Gl.

m—1

2%,-^+i +
m—1

n,p
vir)
Ip,p+ 1

so lautet bei Berück-
(7) die Lösung des so

(7">
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Dies in Gl. (5") eingesetzt, muß also letztere identisch befriedigen. Hierbei
werden wegen (34) die linken Seiten gleich Null, so daß die Beziehungen

v(r) v(r) x ti1 P~hp 2 P,P+l ___ y(r) rtm,p Y(r) rt/m+l,p+l ±, v~ ~p + -rr ~ +V1.P7 +^p,p+l~7 (41)
¦Pp-l^ "^p.p+l UP~^,P ^P.P+l

folgen, welche mit Gl. (40) zusammen für die Bestimmung der Ypr^+1 genügen.
Für die Auflösung dieses Systems drückt man mittelst der zweigliederigen
Gleichungen (41) eine der Unbekannten, z. B. Yn>w+1, durch die übrigen aus
und setzt diese Ergebnisse in Gl. (40) ein, wodurch sich dann auch Yn w4 x

ergibt.
Man sieht ohne weiteres, daß die Gl. (41) auch für die Stützen des

Durchlaufsystems die Tatsache bestätigen, daß die aus Xn_ln und Yn_ln ermittelte
Randspannung des Randes n der Falte n— \,n gleich ist der aus Xnn^x und
Yn n+i errechneten Randspannung des Randes n der Falte n,n+l. Die
Bedingungen (38), die vorhandenen Auflagerscheiben und der nun auch dort
vorhandene kantenweise Zusammenhang der einzelnen Falten geben die
Gewähr, daß nach der Verformung die Ränder, der durch Xp® +1, __"j£_+1,

Ypl)+1, Ypr^p+1 und den äußeren Lasten pPtP+1, mP,p+i un(l ^P,P+i ergriffenen
Balkensysteme, zueinander parallel verlaufende Poligonzüge sein müssen, so
daß durch achsiale Verschiebungen alle Schnittränder zur Deckung gebracht
werden können. Es sind also alle Verträglichkeitsbedingungen erfüllt. Man
ersieht nun auch, daß alle Auflagerscheiben, bis auf eine, achsparallel
verschieblich gelagert sein müssen (Fig. 1).

Damit ist auch, wie vorausgesagt, die Annahme (33) nachträglich bestätigt.
Nach Bestimmung der Y +1 folgen aus Gl. (35) die von den Hilfsangriffen

Y +1 und X p+1 herrührenden Schubflüsse, welche mit denen der
Balkensysteme zu überlagern sind.

Es ist nötig, noch daran zu erinnern, daß die durch die Gl. (38) bedingten
Vereinfachungen bei der Berechnung der durchlaufenden, zweiteiligen
Faltwerke nur dann eintreten, wenn man, wie wir es getan haben, den Einfluß der
Querkräfte auf die Verformung vernachlässigt. Würde man nämlich bei der
Bestimmung der Beiwerte der XRiP+1 in GL (38) die durch Gl. (36) dargestellten
Auflagerdrücke Zm>n+1, die den Qn>n+1 gleich sind, berücksichtigen, so würden

wegen der Gl. (35) in der Gl. (38) neben den drei Xpp+1 einer Falte die Ypv~l\,
Ypv?p+i, Y^+H aller Falten vorkommen. Drückt man darin mittelst der Gl. (40)
und (41) die Ypp+1 durch die Xptf)+1 aus, so ergeben sich Beziehungen, in
denen nur mehr die Stützenmomente Xp}f)+1 allein vorkommen. Trotzdem in
jeder dieser Gleichungen die Beiwerte gewisser Unbekannten gegenüber den
anderen Unbekannten dominieren, konvergieren die dadurch ermöglichten
Iterationsverfahren nicht sehr rasch, was mit einer erheblichen Rechenarbeit
verbunden ist, die sich nicht lohnt, da bei zweiteiligen Faltwerken der Einfluß
der Querkräfte auf die Verformungen immer vernachlässigt werden kann.
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Wir nehmen nun im besonderen an, daß zwischen den Trägheitsmomenten
^p!p+i1) bzw. Randfaserabständen A<£*+1) der einzelnen Felder v,v+l die
Beziehungen

Ji£&v+'l+1)=«ll-J%;£) (42a)

fcOW/'+i) _j3/t.^+1> (42b)

bestehen. Außerdem soll vorerst nur ein Feld, und zwar so belastet sein, daß
die Belastungen der einzelnen Falten p,p+l des Feldes v,v+l zueinander
affin sind. Das heißt, es gilt, symbolisch geschrieben

JWp+M+^y^-Pp.p+i (M=l>2;3, (43)

Wir nennen dann das Faltwerk gleichartig gestaltet und gleichartig belastet.
Dann wird auch in den Gl. (38)

»Xtpl^i-y,-^:^- (44b)

Es folgt daraus einerseits, daß für jede Stütze

XpV+fx,p+ix+l Yp ' Xp,p+ 1 (45)

werden muß, und daß andererseits wegen der Gl. (42a) innerhalb jeder
durchlaufenden Falte die Beziehungen

z£#l V_$+1 (46a)

bestehen müssen. Daraus ergeben sich für die Biegerandspannungen aM die

Bedingungen

d„

aus welchen sich nach den Gl. (41) für die Längsspannungen oN in den Achsen
der einzelnen Falten die analogen Gleichungen

$.tfl.N=&fio%p+liN (46c)

ergeben. Wir können also folgenden Satz aussprechen:
„Ist ein durchlaufendes, gelenkiges, prismatisches Faltwerk gleichartig

gestaltet und belastet, so sind die Längsspannungsdiagramme durch die

Faktoren #„ — miteinander affin verbunden. #., folgt dem Momentenverlauf irgend

einer durchlaufenden Falte''.
Sind mehrere Felder belastet, so sind die Ergebnisse zu superponieren.

13 Abhandlung XII
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b) Steifknotige Systeme

Bei diesen zerschneiden wir wieder das System über den Stützen, so wie
wir es bei den gelenkigen Faltwerken getan haben, so daß wir nun lauter
steifknotige Balkenwerke vor uns haben. In diesen erzeugen die auf diese
Weise freiwerdenden Stützenmomente Xpv)p+1 und die von diesen nach Gl. (41)
abhängigen Normalkräfte Ypv^p+1 wieder Knotenmomente X%'v+1\ mit denen
wir uns zuerst beschäftigen müssen. Denken wir uns im Feld v, v +1 vorläufig
nur die Xpv^l und Ypv++l an den Gelenktonnen als äußere Kräfte wirkend, so

betragen nach Punkt a) dieses Abschnittes die Biegemomente der Falte p, p + 1

mp,p+i ~ T ap,p+i >

^v, v+l

woraus sich die Durchbiegungen des gelenkigen Balkenwerkes zu

j-iv+D
yp,p+l; v+l j(v,v+l) T

X (Lv> v+l ~ x2) (47)
b^Wp,p+ l '-^vv+1

ergeben. Entwickeln wir dies in Fourier'sche Reihen und differentieren wir
diese 4 mal nach x, so erhalten wir für das Gelenkwerk

IV ^^-p,p+ l xn ^'7T / i\h • fc77 /ac\yP.p+i;v+i - T(V+1P{P+F 2*x (- l)fcsmx x. (48)
&J n.n+l' Ll„ „j.1 1 ^V V+l ^V^+l

Setzt man dies in die Gl. (26) ein, so ergeben sich wieder sin-Reihen PnIY, deren
Koeffizienten lineare, homogene Funktionen der konstanten Stützenmomente
x%^+i sind. Da bei diesem Kraftangriff zwischenknotliche Belastungen nicht
auftreten, und die obigen Pn™ den von den, als äußere Lasten gedachten,
Xpv^x herrührenden Anteil der Ati™ darstellen, erhalten wir die zu den Xn
gehörigen Bestimmungsgleichungen (30') aus den Gl. (30), indem wir darin
PnIV Pnly machen und alle N gleich Null setzen. Für die Auflösung der (30')
ist wichtig zu bemerken, daß die homogenen Teile von (30') und (30) identisch
sind, so daß man für (30') die Lösungsmatrixen von (30) benutzen kann.

Für die am anderen Ende v des Balkensystems v, v + 1 angreifenden
Stützenmomente X(PiP+1 gelten analoge Beziehungen.

Wir denken uns nun jede der steifknotigen Balkensysteme v,v+l mit
seinen gegebenen Lasten P(pv9Pv+i)

9 mit den Stützenmomenten Xp^p+1, Xpv*l\
und den Normalkräften Yp^p+1, Y{p^l\ belastet und bestimmen nach Abschnitt
D die von den tf'p^ herrührenden Knotenmomente X%'v+1) und außerdem
nach den soeben durchgedachten Überlegungen die zu den X +1 gehörigen
Knotenmomente __^,,,+1). Nun belasten wir das durchlaufende Gelenkwerk
mit allen PPtP+1, Xn und Xn und bestimmen die dazugehörigen
Stützenmomente. Die von den Pp>p+1 und Xn stammenden ergeben sich nach Punkt a)
dieses Abschnittes. Da die letzteren als sin-Reihen vorliegen, stellen die Glie-
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der der sin-Reihen der Xn eine gleichartige Belastung dar. Die aus den PPtP+1
und Xn folgenden Stützenmomente mögen A1Xpv)P^.1 heißen. Die Xn liegen
wieder als sin-Reihen vor, deren Beiwerte lineare, homogene Funktionen aller
als äußere Kräfte angreifenden Stützenmomente X^p+1 sind. Setzen wir diese
Xn in die Gl. (29') ein, so ergeben sich die y™n+1. v>v+1, wobei yn>n+1; v>v+1 die
Durchbiegung der Falte n, n + 1 des steifknotigen Feldes v, v + 1 bedeutet.
Daraus kann man bei Berücksichtigung der Randbedingungen y'^n+v, v,v+i ®>

2/n,n+i;y,v+i ° für x ° und x Lv}V+1 die Enddrehwinkel y'ntn+1;VfV+1 durch
4-fache Integration und darauf folgende Differentiation bestimmen. Führt
man diese Operationen im einzelnen durch, so ergibt sich bei Berücksichtigung
derselben Vorzeichenregeln wie in den Gl. (38)

a(v-l,v) a(v,v+l) _ky™ 'S* f /^-l,v\2 y(v-l) \ (Ly-l,vY»p,p+i +»p,P+i - 2^ L^^p+i-^^-j^-j xp,p+1 + ^PjP+1;^-i--J

j_,> /_____±l\2l Y(v) j_,i (Lv,v+l\2 y(v+l)l (49)

so daß nach (38) die zu den Xn gehörigen Stützenmomente sich zu

^2 ^p,p+l =<&pV,p+l ' XpV,p+l (50)

ergeben. Dabei handelt es sich um eine symbolische Schreibweise, bei welcher
0 eine lineare homogene Funktion bedeutet. Die vollständigen
Stützenmomente betragen nun

xp,p+i =^ixp,p+i +A2Xpv)P+1. (51)

Da hierin der erste Teil der rechten Seite nur von den Pp>p+1 abhängt, handelt
es sich bei (51) um ebenso viele lineare, nicht homogene Gleichungen wie
unbekannte Xpvp+1 vorhanden sind. Man könnte letztere daraus bestimmen.
Leider sind in jeder Gleichung alle Xpv^p+1 enthalten. Da aber in jeder Gleichung
in erster Linie die Beiwerte der Xpv>p+1 und in zweiter Linie diejenigen der
Xpfp+1 unmittelbar benachbarten Momente Xp\p, Xp%>p+2, X^H, X£+#
gegenüber den anderen Beiwerten dominieren, läßt sich immer das folgende
Iterationsverfahren anwenden. Man bestimmt zuerst die von den PPiP+1 und
den Xn stammenden Stützenmomente A1Xpv^p+1, kurz mit Ax benannt. Diese
erzeugen Knotenmomente Xn, welche wieder Stützenmomente zur Folge haben,
die man durch Einsetzen von A1in die Rekursionsformel (50) zu <&>AX erhält,
so daß die verbesserten Stützenmomente A1 + 0-A1 lauten. Wendet man nun
denselben Gedankengang auf diese verbesserten Momente an, so heißt dies,
daß wir diese wieder in Gl. (50) einzusetzen haben. Es ergibt sich 0 (A1+0-A1)

@'A1 + &'(<P>A1), woraus das nochmals verbesserte Moment A1 + 0-A1+0
•(0-A^ folgt. Dies setzen wir solange fort, bis die Gliederfolge 0-(0'A1);
&.[&.(&.AJ] auf Null ausklingt.



186 Ernst Gruber

F. Mehrteilige Faltwerke

Das sind solche, bei welchen in einer Kante mehr als zwei Falten zusammenstoßen.

Die zu Beginn des Abschnittes B dargestellte Kräftezerlegung ist dann
statisch unbestimmt.

Der Umstand, daß in jeder der Gl. (38) nur immer die drei Stützenmomente
derjenigen Falte vorkommen, für welche sie aufgestellt wurde, beruht auf der
Tatsache, daß sich in den Gl. (32) die Glieder, in welchen die rn bzw. rn+1
vorkommen, aufheben. Das heißt, es muß immer

U,r x

x_^i__ \Tndx hm+hnjrndx (52)

0 0

sein. Differenziert man dies nach x, so ergibt sich

-j— rn'dx rn konstant, (53)
Ll,r J

0

so daß die Vereinfachungen nur dann auftreten, wenn für die Hilfsangriffe
XptP+1 und Yp +1 die Schubflüsse in den einzelnen Kanten konstant werden.
Aus den Abhandlungen 3. und 4. des Verfassers (siehe Fußnote 1) geht hervor,
daß bei mehrteiligen Faltwerken äußere Lasten, die in einer mehrteiligen
Kante angreifen, in den anschließenden Falten nur dann zueinander affine
Faltenbelastungen ergeben, wenn man den Einfluß der Querkräfte der
achsnormalen Dehnungen und der Poisson'sehen Querdehnungszahl vernachlässigt.
Da nun für die an den Balkensystemen angreifenden LastWirkungen XptP+1
und Ypp+1 zwischen den Auflagerscheiben die Lasten in den mehrteiligen
Kanten und somit auch die Faltenbelastungen pn>n+1, mn,n+i un(l nn,n+i &er
anschließenden Falten Null werden, ergeben sich aus den, den Gl. (5') analogen,
viergliedrigen Bestimmungsgleichungen bei mehrteiligen Faltwerken die r 0 5),

das heißt, die Schubflüsse sind konstant.
Fassen wir alle bisherigen Ergebnisse zusammen, so können wir den

folgenden Satz aussprechen:
Bei durchlaufenden zweiteiligen Faltwerken kann jede Falte einzeln als

Durchlaufträger, der mit den gegebenen äußeren Lasten und den faltwerks-
mäßig ermittelten Schubflüssen der Balkenwerke belastet ist, berechnet werden.

Bei durchlaufenden, mehrteiligen Faltwerken hingegen gilt dies nur
solange, wie man den Einfluß der Querkräfte, der achsnormalen Dehnungen
und der Poisson'sehen Querdehnungszahl auf die Verformungen unterdrücken
kann.

6) Siehe Abhandlung 3, Fußnote 1.
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G. Anwendung

Wir wollen nun eine 2-feldrige steifknotige Tonne für halbseitige Schneelast
eines Feldes berechnen. In den Fig. 1 und 9b ist das Tragwerk mit seinen

Maß-, Steifigkeits- und Belastungsverhältnissen dargestellt. Nach Abschnitt B
ergeben sich aus der Schneebelastung die Linienlasten p, daraus folgen aus

-1 Pn' • a 9 sn, n+1 ~ Pn ~
COSan—1

Sin_ ' ^.n+X-fn sinJ
und deren Differenzen die Transversallasten der Falten zu

p10 +0,0758; pzi +7,6489
p32 + 1,4390; pi3 - 3,8186; p5i - 4,3187 t/m.

Die Gl. (5') für die Balkentonne lauten

30,725t1'+ 8,697r2' - 13,333 p10- 11,342 pa
8,697 r/ + 42,236 r2' + 12,422 t,

t2' + 4r3' +
t3'+ 4r4' +
r4'+ 4t5'+ t6

12,422 t5' +42,236 t6'+ 8,696 r7

- 11,342 p21- 16,203 p32

- 1,30408a- 1,304 p«
- 1,304p«- l,304p54 (54)

- l,304pM
0

8,696 t6' +30,725 t7'= 0

Wir befassen uns zunächst mit der steifknotigen Balkentonne und erhalten
die Gl. (25) in der Form

Pio= 0,4948 X2 +0,0758
p21 -4,5914X2 + 2,1994 X3 +7,6489
p32 +6,5121 X2-6,5121 Xj + 2,1994 X4 +1,4390
pi3 -2,1994_"2 + 6,51074_3-6,51074_4 + 2,1994_5-3,8186 (55)
pM - 2,1994 _"3 +6,51074 X4-6,51074 X5 +2,1994 _~6- 4,3187
P65= -2,1994 _"4 + 6,51074Z5-6,5121X6
P67= -2,1994 _"5 + 4,5914 X6
P8i= - 0,4948 Z6.

Setzt man diese p in die Gl. (54) ein, löst diese auf und substituiert die so
gefundenen fn' in die Gl. (29), so folgen diese als

ylJ + 33,1947 X2- 19,3070 X3+ 5,4651 X4- 1,4535 X5 + 0,3644 _"6-27,6832
^I=-38,5413Z2 + 30,7604_-3-ll,7753X4+ 3,1319X5- 0,7851 X6 +23,5285
ylJ + 49,3361 X!-57,6363X3 + 36,1708„4-13,7493Xi + 3,4449_"6- 5,2898
^X=-34,9168_-2 + 62,2380_-3-63,0890_"4 + 38,2082X5-13,4635X6- 4,5763
»« + 13,4635 X2 - 38,2082 X3 + 63,0904Xt - 62,2380X6 + 34,9155 Xe - 9,9263 (56)

2/sI =- 3,4448X2+13,7398JT3-36,1694X4 + 57,6349_"5-49,336lZ6+ 10,3232
y™ + 0,7852X2- 3,1317Z3+ 11,7753X4-30,7587X5+38,5414_"6- 2,3530
y]J=- 0,3643X2 + 1,4535 X3- 5,4649X4+19,3072Z5-33,1952Z6+ 1,0921
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belastetes Feld

a\fc --^

Balkentonne

EndFalte
Verformungen m Feldmilte

belastetes Feld

Balkentonne
EndFal/e 8

Fig. 9 b

Balkentonne belastetes £-11731

unbelastetes Feld

Feld (-0108)
0,075 t/m 71280rr-^

[-0 757]
(-0108)

-0,865

3 00?

007 S°W03
T0U9 (~°'033)U,U^ -0,105

[- 0,073]010
17°06'09"

<?Jfc>

(-0,266)
+123*
+1.500]-

\0U7

Kno/enmomen/e m tm/m 28°30't5o.ow (-0,229)
tn Feldmit/e+ 1,tf60)

[+1,689]

belastete HalFte

+ 123U belastetes Feld

- - (-0266) unbelastetes Feld
E+1,500]' Balkentonne

89
I

2.289

unbelastete HalFte

Fig. 9 c

Die Gl. (26) lauten bei Berücksichtigung der bekannten Randbedingungen und
mit a1 a7 28°30/ 15"

A&Y 1,13794 ylJ- 10,5604 y\J + 14,9761 y\J - 5,0586 yjj
A&jY 5,0586 ^1-14,9761^+14,9761^1-5,0586^
Ad? 5,0586 ^-14,9761^+14,9761^-5,0586^
A&Y 5,0586 yjj - 14,9761 yTJ + 14,9761 yjj - 5,0586 y*J

5,0586 ^J-14,9761^ + 10,5604^- 1,1379^A{k
(57)

Setzt man hierin die Gl. (56) ein, so erhalten wir mit J12= y^O^O3- 1,00

0,0083 m4 und J2S= -^ -0,073-1,00 0,00583 m4 die Gl. (30) zui_

591,421 X2 - 662,975 Xs + 431,072 X4 - 188,607 X5 + 55,848 X6
+ 2,30[15661,88^V + 5830,94X^V]-146,104 + _V^ + _V^J 0

- 662,975 X2 + 932,223 Xs - 810,997 Z4 + 482,027 X5 - 188,607 X6
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2,30 [5830,94J_|V + 4.5830,94Z^V + 5830,94 ZJv] + 78,226 + _V^ + _V^J= 0

+ 431,072 X2 - 810,997 X3 + 980,703 X4 - 810,997 X5 + 431,072 X6
+ 2,30 [5830,94 XjY + 4- 5830,94 X*v + 5830,94 X*v] - 69,174 + _V*J 0

- 188,607 X2 + 482,027 X3 - 810,997 X4 + 932,223 X5 - 662,975 X6 +
+ 2,30 [5830,94 X*v +4-5830,94X^ + 5830,94^] + 126,961 0

+ 55,848 X2- 188,607 X> + 431,072 X4- 662,975 __"5 + 591,421 X6 +
+ 2,30 [5830,94 X*v+15661,88 X*v]- 100,396 0 (58)

_) 1 COS ÖL

Die Belastungsglieder — -— lauten im besonderen N21= 76,598-2,30;

_\T32 528,333-2,30; _\T34 572,652- 2,30. Die Auflösung von (58) erfolgt mit-
k fcjj.

telst Fourier'scher Reihen Xn= ^kAn k- sin-y-#.
1 k hnEntwickelt man die Absolutglieder ebenfalls in sin-Reihen Yikan k' sin-y-a;

i ' Li
und setzt die Reihen für die Xn ein, so ergeben sich für jeden Index k hneare
Gleichungen für die An>k. Die Lösungen wurden für k= 1, 2, 3, 4, 5, 6

durchgeführt.

Wir geben nur die Werte für k 1 zu

_4n - 0,0198261 -an- 0,0255963 -a21 - 0,0162385-a31-0,00444810-a41
+ 0,0005668-a51

A21 -0,0255961-an-0,040964 - a21 -0,0343043-asl-0,0168390-a41

- 0,00444795- a51

A31 - 0,0162385 • an - 0,0343056 • a21 - 0,0431234 • a31 - 0,0343056 • a41

-0,0162386-a51
A^ - 0,0044810-an- 0,0168390- a21 - 0,0343043-a31-0,0409640-a41

- 0,0255960 -a51

A51 + 0,0005668 -an- 0,00444810 -a21- 0,0162385- a31- 0,0255963 -a41

- 0,0198261-a51 (59a)

und, um einen Begriff für die Stärke der Konvergenz zu erhalten, auch
diejenige für k 6 zu

100-_461 -0,0183304-a61 + 0,00260646 -a62 + 0,000668030-a63-

- 0,000694105 • a64 + 0,000367100 • a65

100-_462 + 0,00260644-a61 -0,0124119-a62 + 0,00138040-a63-

- 0,00068955-a64 - 0,000694130-a65
100 • _463 + 0,00066850 - a61 + 0,00138005 • a62 - 0,0121546 • a63 +

+ 0,00138095-a64 + 0,0006733-a65
100-_464 - 0,00069413 -a61 + 0,000689550-a62 +0,00138035-a63-

- 0,0124119 • a64 + 0,00260644 - a65

100-_465 + 0,00036710-a61 - 0,000694105-a62 +0,000668030-a63 +
+ 0,00260647-a64 -0,0183304-a65 (59e)
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bekannt. Die Beiwerte der rechtsfallenden Diagonale sinken also auf 1/100 bis
1/400. Die sin-Reihen für die Absolutglieder lauten

- 185,233sin-^x- 56,822sin-^-x- 13,197sin-^-x
Li Li Li

+ 99,950sin^x + 42,638sin-^^+63,197sin-^o;
±j Li Li

- 87,893sin^a-24,_50sin-^a? + 5,112sin^o; (60)
Li Li Li

+ 161,652sin-^ + 53,884 sin -^a+32,330 sin-^a
Li Li Li

- 127,828sin^^- 42,609sin^x- 25,566sin^x______
Dies in (59 a, c, e) eingesetzt, ergibt die Knotenmomente der steifknotigen
Balkentonne zu

,~x + 0,0657-^^ + 0,0052 sin —^
Li Li LiX2= +l,7498sin^x + 0,0657-^x + 0,0052sin —;r

X3= +l,5085sin^x-0,0005-^o;-0,0132sin-^^
Li Li Li

X4= -0,1005sin^£-0,0298-^-0,0020sin-^;_ (61)
Li Li Li

X*= - 1,1941 sin^ x-0,0272^^-0,0059 sin-^x5 L L L

X6 - 0,7257 sin-^-a + 0,0397^x - 0,0083 sin-^x
Li Li Ju

Nun wenden wir uns der steifknotigen Durchlauftonne zu. Entwickeln wir
die 4. Ableitungen der durch die Stützenmomente X +1 an der Balkengelenktonne

verursachten Biegelinien nach Gl. (48) in sin-Reihen, setzen diese in
Gl. (57) ein, so erhalten wir die Absolutglieder PIV der Gl, (30') in Form von
sin-Reihen, deren Koeffizienten lineare, homogene Funktionen der X +1 sind.
Wertet man mit diesen die Matrixen (59a, b, c, d, e, f) aus, so ergeben sich die
sin-Reihen der durch die X +1 verursachten Knotenpunktsmomente Xn.
Setzt man diese in die Gl. (56) unter Weglassung deren Absolutglieder ein, so

ergeben sich die 4. Ableitungen der durch die Xp>p+1 und Yp>p+1 verursachten
Durchbiegungen y der steifknotigen Balkentonne. Bestimmt man mit diesen
nach Gl. (49) die Belastungsglieder der Gl. (38) und löst diese nach den X +1
auf, so folgen die zu den Xn gehörigen Stützenmomente A2Xp>p+1 der Gl. (50).
Dabei ist nicht zu vergessen, daß die Xn in beiden Feldern der Durchlauftonne
wirken. Es wird also
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^01 -^12 ^-23 ^34 ^45 -^56 ^67 -^78

^2^01= +0,0823-0,254 +0,207 +0,186 +0,0391-0,0586-0,0380 + 0,0134
__2__"12 -0,0972 + 0,393 -0,520 -0,138 +0,0493 + 0,0745 + 0,0161-0,0159
z_2X23=+0,0182-0,167 +0,483 -0,256 -0,0538 + 0,0344 + 0,0218-0,0086
__2__34=+0,190 -0,0231-0,242 +0,516 -0,240 -0,0477 + 0,0245 + 0,0060
A2Xi5 +0,0060 + 0,0245-0,0477-0,240 +0,516 -0,242 -0,0231 + 0,0190
A2X5Q -0,0086 + 0,0218 + 0,0344-0,0538-0,256 +0,483 -0,167 +0,0182
__2X67 -0,0159 + 0,0161 + 0,0745 + 0,0493-0,138 -0,520 +0,393 -0,0972
A2X78= +0,0134-0,0380-0,0586 + 0,0391 + 0,186 +0,207 -0,254 +0,0823

Um nun diesen Gleichungssatz durch Iteration auswerten zu können, müssen
wir die gelenkige Durchlauftonne mit der halbseitigen Schneelast und den

dazugehörigen Knotenmomenten Xn der steifknotigen Balkentonne belasten
und hierfür die Stützenmomente A1Xpp+1 nach Abschnitt Ea ermitteln. Zu
diesem Behufe setzen wir die Gl. (61) in die Gl. (56) ein und entwickeln die

Absolutglieder der letzteren in sin-Reihen. Integrieren wir dann unter
Berücksichtigung der Randbedingungen y" 0; y ~ 0 für x 0, x L und differentieren
einmal nach x, so ergeben sich die Enddrehwinkel &p>p+i der Gl. (38) und
daraus die gesuchten Stützenmomente zu

A1X01 -1,686 + 2,011= +0,325; A±X^ -0,614 + 0,910= +0,296
Ax X12 + 2,344 - 3,081 - 0,737; A± X56 + 1,050 - 0,946 + 0,104
__1X28= -0,694 + 0,485= -0,209; Ax X67= -0,437 + 0,308= -0,129 '

AXX^= -0,226 + 0,419= +0,193; AtX78 +0,173-0,079=+0,094

Da nur ein Feld der Tonne mit Schnee belastet ist, dürfen auch die Xn nur im
selben Feld angebracht werden. Diese A1Xf>tP+1 der Gl. (63) sind nun in der
Rekursionsformel (62) an Stelle der X +1 zu setzen. Die so erhaltenen Ergebnisse

setzt man in Gl. (62) wieder an Stelle der Xp +1, und dies solange, bis
die Reste praktisch verschwinden. In unserem Falle lauten nach 18 Schritten
diese der Reihe nach

+ 0,000071; -0,00015; +0,00010; -0,00011; +0,00008; 0; 0.

Summiert man alle Teilwerte, so erhalten wir genügend genau die
Stützenmomente der steifknotigen Durchlauftonne der Reihe nach zu

+ 0,745; -1,191; -0,250; +0,383; +0,415; +0,036; -0,451; +0,412. (64)

Setzt man zur Kontrolle diese Ergebnisse wieder in die Gl. (62) und fügt die
Werte (63) hinzu, so müssen sich wieder die Momente (64) ergeben. Aus diesen
Stützmomenten folgen nach Gl. (41) die dazugehörigen Achsialkräfte und
somit die Längsspannungen er. Setzt man die Stützenmomente (64) in die
Zwischengleichungen, in welchen die Xn als lineare, homogene Funktion der
Stützenmomente X p+1 dargestellt sind, so folgen die Xn zu
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X2= -0,26098^^ x + 0,1088sin-=-0.-0,0446sin-£x
Ju Li Li

+ 0,0224 sin -£-x- 0,0126 sin^x+ 0,0077 sin ~xLi Li Li

X3= -0,292581»-=- »+0,1016sin-=-a:-0,0322sin-^a;
Li JU Li

+ 0,0127 sin -£x- 0,0060 sin ^#+0,0039 sin ^#Li Li Li

X4= -0,0428sin^x-0,00619sin^a_ + 0,0057sin^:r (65)
Jb Li Li

- 0,0043sin-=?a+0,0159sin ~x- 0,0016sin ^xLi Li Li

X5= -0,0857sin-^ o_- 0,0864sin-^£ + 0,0260sin~xLi Li Li

- 0,0095 sin^o;+ 0,0041 sin^£- 0,0024sin^-x
Li Li Li

X6= -0,0913 sin -^ a- 0,0739 sin-^o;+ 0,0228 sin -^aLi Li Li

- 0,0109 sin^_^+ 0,0064sin^;r- 0,0041 sin~xLi Li Li

Diese stellen gleichzeitig die Knotenmomente im unbelasteten Feld der
Durchlauftonne dar. Addiert man Gl. (61) und (65), so erhalten wir die
Knotenmomente des belasteten Feldes. In Fig. 9b sind alle Xn dargestellt. Belastet
man die linke gelenkige Balkentonne mit dem Schnee, den Xn, den Xn und
den Wirkungen Xp>p+1, Xp>p+1 an den Stützen, so ergeben sich aus den
dazugehörigen ylYp+1 die Biegemomente MptP+1 der einzelnen Falten. Daraus folgen
nach Gl. (41) die Normalkräfte Np +1, so daß die Längsspannungen o- daraus
folgen. Für die beiden Feldmitten sind diese für die gelenkige und steifknotige
Durchlauftonne sowie für die steifknotige Balkentonne in Fig. 9 a dargestellt.
Da es sich um ein gleichartig gestaltetes und belastetes Faltwerk handelt, sind
für die gelenkige Tonne diese Diagramme zueinander affin. Bei der
steifknotigen Tonne trifft dies nicht mehr zu, da wohl die einzelnen Glieder der
Gl. (61) und (65), aber nicht die vollständigen Funktionen der Xn und Xn
gleichartige Belastungen darstellen. Aus den y1Y folgen auch leicht die
Durchbiegungen y selbst, aus welchen man in bekannter Weise die gesamten
Verformungen bestimmen kann (siehe Fig. 9c). Setzt man die Xn bzw. Xn in die
Gl. (55) und die so gewonnenen p in die Gl. (54), so erhalten wir die Schubflüsse

der Balkentonnen und daraus mittelst der Gl. (35) diejenigen der
durchlaufenden Tonnen.

Infolge der Symmetrieverhältnisse ergeben sich durch Spiegelung und
Gegenspiegelung die Werte für Vollbelastung eines oder beider Felder sowie
für gleich- oder wechselständige halbseitige Belastung beider Felder.
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H. Zusammenfassung

Das Studium der Fig. 9a,b, c ergibt:

I. Gelenkwerke

a) Die Längsspannungen weisen bei alternierenden VorZeichenwechsel
scharfe Spitzen auf.

b) Die lastfreie Hälfte trägt nur wenig mit.
c) Bei Belastung beider Hälften eines Feldes verschlimmern sich die

Übelstände a).
d) Große Durchbiegungen bis 18 cm. Die dadurch bedingten Wirkungen

2. Ordnung gefährden wahrscheinlich schon den Bestand des Tragwerkes.
Aussteifende Zwischenscheiben sind unbedingt erforderlich.

e) Die Durchlaufwirkung beseitigt diese Übelstände nicht grundsätzlich,
sondern mildert sie nur quantitativ.

f) Das unbelastete Feld wird noch erheblich beansprucht. 3:2:1.
g) Die (j-Diagramme sind zueinander affin.

LL. Steifknotige Systeme

Die Nachteile a) und b) verschwinden.

c) Bei diesem Lastfall wird die Verteilung der a ober- und unterhalb der
waagrechten 1—7 fast vollständig linear, wodurch der innere, innige
Zusammenhalt des Tragwerkes erwiesen ist.

d) Kleine Durchbiegungen bis 1,1 cm. Zwischenscheiben nicht nötig.
e) Die Durchlaufwirkung verbessert alle Belange.
f) Das unbelastete Feld trägt nur wenig mit 1:1:0,25. Ähnlich wie bei

durchlaufenden, rings gelagerten Platten bleibt die Wirkung im wesentlichen
auf das belastete Feld beschränkt.

g) Die o"-Diagramme sind fast affin.

Zusammenfassend kann gesagt werden, daß die Steifknotigkeit und die
Durchlaufwirkung das Tragverhalten der Faltwerke außerordentlich verbessern.

Bedenkt man, daß diese beiden konstruktiven Maßnahmen im
Stahlbetonbau keinerlei Mehrkosten verursachen, ja sogar die absichtliche Ausschaltung

dieser statischen Wirkungen meistens zusätzliche Kosten verursachen, so

kommt den gewonnenen Ergebnissen eine große Bedeutung zu.
Die hier behandelten Tragwerke haben einen hohen Grad von statischer

Unbestimmtheit. Diese weist 3 Stufen auf.

a) Die eigentliche FaitwerksWirkung, erfaßt durch die Gl. (5), (5').
b) Die Steifknotigkeit, erfaßt durch die Gl. (30), (30').
c) Die Durchlaufwirkung, erfaßt durch Gl. (38) und (50).
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Diese Stufen werden nacheinander aufgelöst. Und zwar

1. bei der gelenkigen Durchlauftonne durch aufeinander folgende Anwendung

der Gl. (5) und (38),

2. bei den steifknotigen Balkentonnen durch aufeinander folgende Benutzung
der Gl. (5) und (30), und schließlich

3. bei den steifknotigen, durchlaufenden Systemen durch aufeinander folgende
Auswertung von Gl. (5), Gl. (30) bzw. (30') und nachheriger Verknüpfung
von b) und c) durch Gl. (50).

Eine weitere Aufspaltung einer exakten Gesamtlösung ist nicht mehr möglich.

Dies ist auch gut so, denn ist die Behandlung eines unbestimmten
Tragwerkes einer stufenweisen Aufgliederung gar zu leicht zugänglich, so hat das
System meist nur einen geringen Grad von innerem Zusammenhang und von
Flächenwirkung, was wir ja bei unseren Faltwerken nicht wünschen.

J. Stützenbewegungen

a) Voruntersuchungen

Man kann eine solche genügend genau als kleine Drehung # um eine
Momentenachse 0 darstellen, solange sie die übliche Größenordnung von
Verformungen nicht überschreiten.

Wir zerlegen das durchlaufende System wieder in einzelne Balkenfaltwerke
und hängen diese in achsialer Richtung nach Fig. 8 in je einem Punkte C
zusammen. Jede Lagerscheibe ist durch 3 in ihrer Ebene liegende, lineare
Festhaltungen gelagert, die in Richtung der Faltwerksachse verschieblich
sind. Die Stützungsscheiben sollen wieder so geartet sein, daß sie normal zu
ihren Achsebenen gerichtete Kräfte nicht aufnehmen können.

Zunächst müssen wir die inneren Kräfte erfassen, die in den Balkenfaltwerken

entstehen, wenn sich die Stützscheiben zueinander achsnormal
verschieben. Die Anschauung ergibt, daß dadurch in den achsialen Verbindungsstellen

c keine Kräfte entstehen, so daß man die einzelnen Balkenwerke auch
getrennt voneinander behandeln kann. Die Auflagerreaktionen dieser Balkensysteme

können nach dem bisher gesagten nur aus ebenen, in den Lagerscheiben
wirkenden Kräftesystemen bestehen. Da nur die Wirkungen der

Stützenbewegungen allein untersucht werden sollen, das heißt, daß zwischen den
Lagerscheiben keine äußeren Lasten angreifen, ergibt die Momentengleichung
um irgend eine in den Lagerscheiben liegende Achse, daß die Auflagerreaktionen

nur zwei Torsionsmomente MT sein können.
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b) Gelenkige Balkensysteme

Da nun achsiale Lasten nv_1>v nicht vorhanden sein können, verschwinden
nach den bisherigen Darlegungen die rechten Seiten der Gl. (5'), und es wir

rnr 0 und rn konstant. (66)

a) Offene Querschnitte

Bildet man für einen solchen die Gl. (14), so ergibt sich bei Berücksichtigung
der beiden freien Ränder ro rm 0, daß alle rn 0 werden, was nach dem bisher

gesagten ein Verschwinden aller inneren Kräfte zur Folge hat. Die Kanten
erfahren keine Längsdehnungen.

ß) Geschlossene Querschnitte

Auch bei diesen folgen aus den Gl. (5') wieder die Gl. (66). Bezeichnet man
Tn rn-L, so ergeben die Gl. (14)

T1 T2 T. (67)

Die Momentengleichung einer Falte n — 1, n liefert

Q m>n m>n+1 fp n~1>w fp ((\R\
' Li Li

Beachtet man, daß die Achsiallasten nv_1>v 0 sind, so folgt durch Einsetzen
von (67) und (68) in Gl. (5), daß diese dadurch identisch befriedigt werden.

Stellt man für irgend eine achsparallele Gerade die Momentengleichung
für eine Lagerscheibe auf, so erhalten wir mit Gl. (68) das Torsionsmoment zu

MT ^Qv-i,v^v-i,v=-^ Z-K-i,v'rv-1}V= jj'^F, (69)

wenn F den Flächeninhalt des Querschnittes darstellt. Setzen wir den in der
Lagerscheibe wirkend gedachten Hilfsangriff (i_r1=l) an, so folgt der
Verdrehungswinkel zu

L

»=Z"J%1.^^1"'<fa, (70)

0

wobei die £lv_ljV die zu (MT 1) gehörigen Querkräfte darstellen. Mit (68) und
(69) geht dies in

L

P 4F*G^V Jdv_liVdX- 4F*G^V dv_lv
(71)

0

über, wenn dv__lv die Faltendicken bedeuten. Daraus folgt mit (69) die für alle
Kanten gleiche Schubkraft T zu
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2FGT=— » (72)
2 "V-1, v

"d"V-1, v

Bei dieser Torsion bleibt nur die Drillungsachse in Ruhe. Fällt diese mit der
Momentenachse nicht zusammen, so erfährt die Auflagerscheibe noch zusätzlich

eine Translation &-a. Nach den unter Punkt a) dieses Abschnittes
dargelegten Auflagerbedingungen kann das Balkenwerk diese letzte Bewegung
als starres Gebilde mitmachen, ohne daß hierbei neue Zwänge auftreten, so
daß durch Gl. (72) die inneren Kräfte ganz erfaßt sind.

c) Steifknotige Balkensysteme

Bringen wir im Knotenpunkt n des gelenkigen Balkenwerkes ein konzentriertes

Knotenmoment (Xn=l) an, so entstehen in der Falte n— \,n die
Querkräfte

n(Z) —i_.£ • n(r) - ^ fr nf\\*J>n—l,n— j ^n-l,n> *^>n-l,n— j ^n—l.n \'°)
und außerdem 9Ä^_ijn, W>n-i,n- ^e Winkeländerung Ad^ ergibt sich, wenn
Mn-lt7h\ Nn_ltn\ Qn-1}n die durch relative Stützenbewegung verursachten
inneren Kräfte bedeuten, zu

A S*> 2> j(Mv-^Vj^v-Uv + Nv~EVF^r1,V + QV~GF€^~1'V) dx ¦ (74)

Da Mv_1 iV und Nv_1 jV Null werden, verschwinden zunächst die beiden ersten
Glieder. Beachtet man, daß die Qv_lfV je Falte konstant sind, so ergibt sich
mit (73) auch das dritte Glied zu Null, so daß Winkeländerungen A {rn und
somit auch Knotenmomente Xn nicht auftreten. Wir können daher zusammenfassend

sagen:
Verschieben sich bei einem nach Fig. 3 gelagerten, steifknotigen oder

gelenkigen Balkenfaltwerk die Lagerscheiben achsnormal zueinander, so
entstehen nur bei Tragwerken mit geschlossenen Querschnitten Torionsspannungen

nach Gl. (72). In allen übrigen Fällen bleiben bei diesen Verformungen
die Tragwerke spannungslos/'

Die Auflagerverschiebungen in Richtung der Faltenebene ergeben sich
nach der Kinematik zu

Ä» *-^i.v. (75)

wenn die rjv_ltV die lotrechten Abstände der Falten vom Momentanpol 0
bedeuten. Sind 3 von ihnen bekannt, so kann die Momentenachse und der
dazugehörige Drehwinkel bestimmt werden, oder anders ausgedrückt: Durch
3 von ihnen können die anderen linear homogen ausgedrückt werden. Also

tffi-l,^ a'yn-l,n + b'yn,n+l + c'yn+l,n+l- (76)
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d) Durchlaufende Systeme

Mit diesen Ergebnissen können wir nun leicht die Einflüsse der
Stützenbewegungen auf diese Tragwerke ermitteln.

a) Gelenkwerke

Da in den durch Zerschneidung gewonnenen Balkenwerken auch die
Stützenbewegungen keine oder nur konstante Schubflüsse entstehen, bleibt die

Gültigkeit der Gl. (37) bestehen. Durch die Verschiebungen ^/^ v entstehen aber

an den Lagerscheiben gegenseitige Verdrehungen der Faltenenden von der
Größe

(^-1) (fi) (/_) y(P+Vtfy—l,y iyy-\,v tty—l,v Uy—l,v /77\
-L'fl-lifl ^[1.-1,1*. ^,/X+ l -^jLt./Lt+ l

Dabei können die y entweder nach (75) oder nach (76) angegeben werden. Fügt
man die (77) zur rechten Seite der Gl. (38) hinzu und löst diese auf, so erhalten
wir die Einflüsse der Stützenbewegungen auf die Stützenmomente AstüXv_lv.
Der weitere Gang der Rechnung ist der gleiche wie bei Abschnitt Ea. Handelt
es sich um geschlossene Querschnitte, so sind zu den übrigen Schubflüssen die
der Gl. (72) hinzuzufügen.

ß) Steifknotige Tragwerke

Führt man die in Abschnitt Eb geschilderten Überlegungen im Geiste nochmals

durch, und bedenkt, daß durch die Stützenbewegungen in den
steifknotigen Balkenwerken keine Knotenmomente entstehen, so erkennt man,
daß zunächst die übliche Iteration, jedoch mit den vorherigen AstüX(v^lv des

gelenkigen Durchlaufsystems als Eingangswerte durchzuführen ist. Fügt man
das Summenergebnis zu den AstüX(J^ltV hinzu, so erhalten wir die durch die
Stützenbewegung verursachten Stützenmomente des steifknotigen Durchlaufwerkes.

Der weitere Verlauf der Rechnung bleibt ungeändert. Handelt es sich

um geschlossene Querschnitte, so sind zu den übrigen Schubflüssen die Werte
(72) hinzuzufügen.

Zusammenfassung

Steift man prismatische Faltwerke durch Querscheiben aus und lagert
diese fest auf, so erhält man Durchlaufende Faltwerke", welche hier
erstmalig genau untersucht werden. Hierfür wird zunächst der Sachverhalt an
den gelenkigen Balkenfaltwerken geklärt, wenn an diesen konzentrierte Einzel-
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lasten und Momente angreifen. Mit diesen Ergebnissen wird dann für gelenkige

Durchlaufwerke bewiesen, daß man bei diesen immer dann, wenn die
von den Querkräften herrührenden Verformungen vernachlässigt werden
können, die verschiedenen Falten einzeln als gewöhnliche Durchlaufträger
behandeln kann. Nach einer Betrachtung über steifknotige Balkenfaltwerke
wird die Theorie der steifknotigen durchlaufenden Faitwerke erörtert. Der
dabei auftretende hohe Grad der statischen Unbestimmtheit wird bewältigt,
indem man die drei Ursachen der letzteren, nämlich die eigentliche Faltwerks-
wirkung, die Steifknotigkeit und endlich die Durchlaufwirkung entsprechend
ihrer kettenartigen Zusammenhänge nacheinander auflöst. Während bei den
gelenkigen Tragwerken die bekannten Mängel durch die Durchlaufwirkung
nur quantitativ, aber nicht qualitativ gemildert werden, tritt durch letztere
bei den steifknotigen Systemen in jeder Hinsicht eine wesentliche Verbesserung

des gesamten Tragverhaltens ein. Im letzten Abschnitt wird der Einfluß
der Stützenbewegungen sowohl für offene als auch für geschlossene, gelenkige
und steifknotige Tragwerke untersucht.

Resume

Si l'on renforce des poutres-cloisons prismatiques ä l'aide de parois
transversales et si on les fait porter sur des appuis fixes, on realise des ,,systemes
Continus de parois portantes", qui sont etudies ici avec precision pour la
premiere fois. L'auteur expose tout d'abord le comportement special de ces

systemes sur les poutres en parois portantes articulees, auxquelles on applique
des charges concentrees et des moments. En tablant sur ces resultats, l'auteur

montre que dans le cas des ouvrages Continus articules et lorsque les
deformations provoquees par les efforts t^ansversaux peuvent etre negligees,
on peut toujours traiter les differentes „cloisons" individuellement comme
des poutres continues ordinaires.

Apres avoir examine les systemes de poutres-cloisons ä noeuds rigides,
l'auteur expose la theorie des parois portantes continues ä noeuds rigides.
Le haut degre d'indetermination statique qui se manifeste ici peut etre sur-
monte par analyse separee de ses trois causes: effet particulier de paroi por-
tante, rigidite des noeuds et enfin effet de continuite. Tandis que dans les

systemes porteurs articules, on ne peut remedier que quantitativement, mais
non pas qualitativement aux defauts connus en faisant intervenir l'effet de
continuite, dans les systemes ä noeuds rigides, cet effet permet de realiser
a tous egards une notable amelioration du comportement general.

Dans un dernier chapitre, l'auteur etudie l'influence des mouvements des

appuis, tant dans les systemes porteurs ouverts, que dans les systemes fermes,
articules et rigides.

14 Abhandlung XII
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Summary

If cylindrical beams of prismatic cross-section are stiffened by transverse
slabs and these beams are fixed at the ends, "continuous cylindrical beams of
prismatic cross-section" are obtained which are here accurately examined for
the first time. For this purpose, what happens in the case of hinged
cylindrical beams is first explained, when these are subjected to concentrated single
loads and moments. With these results it is then shown for such hinged
continuous structures that with these, if the deformations originating from the
transverse forces can be neglected, the different plates may be treated sepa-
rately as ordinary continuous girders. After a consideration of rigidly jointed
cylindrical structures, the theory of rigidly jointed continuous cylindrical structures

is discussed. The high degree of static indetermination then occurring
is got over by solving the three causes of the latter one after the other, namely
the actual structural action, the Joint stiffness, and finally the continuous
effect corresponding to the chainlike connections. Whilst in the case of jointed
supporting structures the well-known defects are diminished by the continuous
action only quantitatively and not qualitatively, in the case of the rigidly
jointed system the latter cause a considerable improvement in the whole
supporting behaviour in every respect. In the last section of the paper, the
influence of movements in the supports is considered for various kindsTof
supporting structures, open and closed, hinged and rigidly jointed.
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