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Die durchlaufenden, prismatischen Faltwerke
Les systemes continus de parois portantes prismatiques

Continuous cylindrical beams of prismatic cross-section

Dr. Ing. habil ErNsT GRUBER, Oberregierungsbaurat z. Wv.,
Eldingen /Celle, Deutschland

A. Einleitung

Im Stahlbeton- und Stahlbau finden Schalenkonstruktionen in steigendem
" MaBe Verwendung. Wéhrend nun die stetig gekriimmten Schalen in ihrer
Theorie schon weitgehendst erforscht sind, wurden iiber die sogenannten Falt-
werke — das sind Schalen bzw. Membranen, welche aus ebenflichigen Teilen
zusammengesetzt sind — bisher nur Untersuchungen iiber die Balken- und
Kragsysteme angestellt!). In der Folge sollen nun die sogenannten ,,Durch- .
laufenden Faltwerke®, die ein- oder mehrfach zwischengestiitzt sind, behandelt
werden. Um den Zusammenhang mit den bisherigen Entwicklungen des Ver-
fassers herzustellen, werden vorerst die ,,gelenkigen Systeme‘‘, welche lings
der Kanten n nur scharnierartig zusammenhéngen, kurz behandelt.

B. Gelenkwerke

Im allgemeinen wird das Tragwerk von Linienlasten p ergriffen werden,
die zwischen den Kanten n und n+1 liegen. Diese p ersetzt man zunichst
durch zwei gleichwertige, in » und n + 1 wirkende Knotenlasten p, und p,,,,
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welche man, solange in einer Kante » nur zwei Falten zusammenstoBen, auf
statisch bestimmtem Wege in die Komponenten s, ,., und s, , , zerlegen
kann (Fig. 1)2). Die Reihenfolge der Indices gibt hierbei die Kraftrichtung
an. Fir jede Falte n,n+ 1 erhilt man zwei Kraftwirkungen s, , ; und s, ,,
die sich zur Transversallast p, ., ,=8,,1 n—Sn nt1 Zusammensetzen. Neben
diesen werden im allgemeinen noch in den Achsen der Falten »,n + 1 wirkende
stetig verteilte Achsiallasten =, ,,, und stetig verteilte Momentenlasten
My, p1 VOrhanden sein.

Fig. 1

Schneiden wir aus zwei benachbarten Falten n—1,7n und n,n+1 zwel
Elemente m und m+ 1 heraus und bringen an deren Schnittstellen die frei-
werdenden inneren Wirkungen ¢, N und M neben 7,-dx an, so miissen diese
mit den obigen Belastungen p, » und m ein ebenes Gleichgewichtssystem bil-
den. In Fig. 2 sind die Elemente m und m+1 in eine Ebene geklappt zur
Darstellung gebracht. Es gilt nun fiir m

;z—l, n = " Pn-1,n (1)'
7’@—1, n= Tan-1""Tn Nyp-1,n (2)
M;’L—l, n= " Ty’ km, n " Tn—1° hm, n-1t Qn—l,n —My—_1,n> (3)

woraus sich durch Vermehrung der Indices um 1 die fiir m + 1 giiltigen ana-
logen Gleichungen (1’), (2) und (3’) ergeben. AuBlerdem miissen lings der

?) Sogenannte zweiteilige Faltwerke.
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Kanten n die bezogenen Dehnungen der anliegenden Rénder zweier benach-
barter Falten punktweise iibereinstimmen. Das hei3t

1 (Mn——l,nh + Nn——l,n) — 1 (__ Mn,n—!—lh 1nt N'n.’n+1) (4)
En—l, n Jn——l, n e F’n—l, n En, n+1 Jn, n+1 mLn F’n, n+1
m pﬂf’,ﬂ
. 0/1#7. n t’dx‘l
Tntr n+t

g S

hmvl narl_f ””” 7 Mer Mnol,n *0'””‘,‘ ”
* - r%' N/r«l,n'd”n.‘/,n
Pmes n L/V/m,n Tn+tyn 7

n

—_—=1 — 7,
a/nl,n "dg/n/,n

Q-1 m Pnn-1

2-17 - e b e — [

bmn Y, o Tpgn| Mot * Mooy n

e :7} 7 No-ta+dWNpopn
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e —— I,

&n-/,n*dan-rln
Fig. 2

Differentiert man dies bei konstanten J und F einmal nach x, setzt Gl. (2)
und (3) sowie Gl. (2’)‘und (3') ein, so folgen die Beziehungen

km,n : hm, n—1 1 h%n,n k?nJrl,n 1 1
'rn_1‘( 7 -7 - + 7, + + +

Jn~1, " ']n, n+1 F n—1,n F n,n+1

n—1,n
S~ (hm—i-l,n ) km-{—l, n+1 1 ) _ Np—1,n + N, n+1 (5)
n+ - :
Jn, n+1 Fn, n+1 Fn—l, n Fn, n+1

h )
- (“Qnﬁl,n'{—mn*l,n)J—m”p’“”“(—Qn’n+1+mn’n+1) jﬂ+1,n,
n—1,n n, n+1

die man aber nur unmittelbar anwenden kann, wenn man die ¢, ,, fiir ein-
zelne Punkte ad hoc so angeben kann, dafl sich daraus die Integrationskon-
stanten der Gl. (1) und (1’) ergeben. Ist dies nicht mdoglich, so mufl man Gl. (5)
nochmals nach z differentieren und es folgt mit Benutzung von Gl. (1) und (1’)
fiir jede Kante n eine Bedingung

R T S 1 (P Man, 1 1
S Aeveeb e Rl /ARl wvets sewats e

n—1,n Jn—l, n J ,n+1 Fn—l,n Fn, n+1
7 4
+ 7 hm—f—l, n’ km+1, n+l 1 _ N1, | Mayn—1 5’
Tp+1 J F - = F + F ( )
n n+1 n,n+1 n—1,n n, n+1

h h
’ m,n ’ m+1l,n
- (pn—l,n + mn—l,n) J - (pn, n+1 + mn,+1) J .
n—1,n n,n+1

Bei der Bildung dieses Systems sind jeweils die Randbedingungen zu beriick-
sichtigen. So ist z. B. fiir einen freien Rand 7,=0 (Fig. 1), fiir symmetrische
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Tragwerke werden bei symmetrischer Belastung die in der Symmetrieebene
liegenden 7=0 und bei antimetrischer Belastung die zur Symmetrieebene
symmetrisch liegenden = einander gleich usw., so dal wir ebenso viele Gl. (5)
bzw. (5') aufstellen konnen, als unbekannte Funktionen =, () vorhanden sind.
Da bei der Herleitung dieser Beziehungen iiber die Art der Belastung und der
Lagerung des Tragwerkes keinerlei einschrinkende Voraussetzungen getroffen

werden muliten, gilt (5) bzw. (5') ganz allgemein fiir jedgs prismatische,
gelenkige Faltwerk.

C. Das gelenkige Balkenfaltwerk

a) Allgemeine Betrachtung

Lost man die Gl. (5') nach den 7, algebraisch auf und integriert die Ergeb-
nisse, so ergibt sich

T, =[7,/dx+C, =7,+C,. (6)

Konnen hingegen die Gl. (5) benutzt werden, so folgen die obigen 7, unmittel-
bar.

T
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Fig. 3

Die in Gl. (6) vorhandenen Integrationskonstanten C, ergeben sich aus
der Belastungsart des Balkenfaltwerkes, bei welchem die einzelnen Falten nur
in zwei Lagerscheiben 4 und B gestiitzt sind. Die letzteren sollen so beschaffen
sein, daf} sie nur in ihren Achsebenen liegende Stiitzkrifte aufnehmen konnen.

Im allgemeinen werden die Lasten nur abteilungsweise stetig sein, wie es
in Fig. 3, in der das Faltwerk in eine Ebene geklappt zur Darstellung gebracht
ist, ersichtlich ist. Legt man durch jede Unstetigkeitsstelle der Belastung eine
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zu den Auflagerscheiben A und B parallele Ebene, so wird das Faltwerk in
p Sektionen zerlegt. Schreibt man fiir jede von diesen ein System (5’) an, so
ergibt sich fiir jede Sektion ein Losungssatz

p=m =m :
Z f ppp+1 v+m , p+1; v)d.’L’-{- anp p, pt+1; v+0n ';-'n,v—’_on,v' (7)
Stellt man in jeder Falte fiir die beiden, jeweils einer Sektionsgrenze v,v+ 1
unmittelbar anliegenden Faltenelemente die Gleichgewichtsbedingung (1) bzw.
(1') auf, so ergibt sich, daB beim Uberschreiten von »,v+1 die Querkrifte
keine endlichen Spriinge machen, wenn zunichst unendlich konzentrierte
Lastwirkungen, wie z. B. Einzellasten, nicht vorhanden sind. Es gilt daher
(xV —_— xV )

Qn nTi—ll v Qn nﬁ—ll sv+1” (8)
Bildet man also fiir zwei benachbarte Sektionen die Gl. (5), lost diese nach
ny und 7, ., auf, setzt x=x,,, und bildet 7., —7,.,=47,., .., so folgt
wegen Gl. (8)

T

=m
ATn vv+1_zanpAmpp+1 vv+1+zbnpAnpp+1 v,v+1> (9)

p=0
wobei die 4 die Spriinge bedeuten, welche die 7, m, ,.; und n, ,,, beim Uber-
gang liber die Sektionsgrenze v,v+ 1 erleiden. An dieser gilt unter Benutzung
von Gl. (7)

(xv+1) + O + 4 Triv,v+1 = T(xw-l) + Cn v+1 (10)
oder
O'n; v On y+1 " 'T-,be:-:_ll) 7_-7(:?:;'—1) -4 Tn;v,v+1 = An; v, v+1° (1 1)

Solche Gleichungen gibt es p—1 je Falte. Addiert man hiervon die ersten v
Stiick, so ergibt sich

v=y

On;v = - ZOAn; v,v+1+0n 0° (12)

=

womit fir jede Kante n alle C, , durch O, , ausgedriickt sind. Aus GI. (7)
und (12) folgt also

Tn =; Z n; V,v+1+0n,o' (13)
0
Da die Auflagerscheiben nur normal zu den Faltenachsen gerichtete Reak-

tionen libernehmen koénnen, lautet fir die Falte n,n+1 die Gleichgewichts-
bedingungen gegen achsparallele Verschiebung

n
é f (_Tn;u+7n+1:v+np,p+1;v)dx= 0, (14)

was mit Gl. (13) in
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v=p—1 v
L (0n+1,0 - On,o) = — [(xv+1 - xv) Z (A n+1; v,v+1 _An; v,v+1)
T 0 v+1
+ J' (Fn; V_'Fn+1; v—np,p+1; v)dx] (15)
14

ibergeht, woraus man unter Beriicksichtigung der zu den Gl. (5) bzw. (5')
gehorigen Randbedingungen die Konstanten C,, , durch einfache algebraische
Additionen bestimmen kann.

Da im allgemeinen die Summe der Achsialkrifte aller Falten nicht Null
sein wird, muBl das Faltwerk gegen achsparallele Verschiebung gesichert wer-
den. Bei unserem Balkenfaltwerk geniigt es, wenn bei einer Falte eine achs-
parallele Lagerung vorgesehen wird (Fig. 3). Man beginnt dann mit der Auf-
16sung der Gl. (15) an einem der kraftfreien Rénder, oder bei symmetrischen
Verhiltnissen an der Symmetrieebene und arbeitet sich bis zu Kante n der
waagrecht gestiitzten Falte n, n+1 vor. Sodann beginnt man vom zweiten
kraftfreien Rand und geht bis zur Kante n + 1. Stellt man dann auch fiir die
Falte n, n+1 die Gleichgewichtsbedingung gegen achsparallele Verschiebung
her, so erhalten wir daraus die seitliche Stiitzkraft des Balkenwerkes.

B
—

L n+l 4
’_ T Aeern !
N , |
3 |°°
kS 3
N I e -7 S
[ 3
. n=-7 ,"5

|
Cz, s 3
L N
Fig. 4

b) Transversale Einzellasten

Wie rasch dieses Verfahren zum Ziele fiihrt, soll an dem Belastungsfall der
Fig. 4 gezeigt werden. Teilt man das Tragwerk in 3 Sektionen, so werden nach
GL (9) alle 47,., ,,;=0. Da fiir die erste und dritte Sektion p=0 wird, folgt

unmittelbar
p=m

! . 4 _ p 14 _—
7-n,l = 07 T'n,2 - Zoan,p'pp,p-i-l’ Tn,3 - 0
p=
oder pem (16)
Tn,1 = On,o; T2 =" Zoan,p : pp,p+1+on,2; Thn,3 = Cn,3'
p:

Mit Hilfe der Gl. (11) und (12) oder durch Gleichsetzen der =, an den Sektions-
grenzen v,v + 1 folgt aus Gl. (16)
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Tp,1= On, 0

p=m

Tn,2= Zoan,p'pp,p+1'(x—l1)+On,o (17)
p=

p=m
Tn,3= l2 Zoan,p "Pp,p+1 + On,o »
p= ;

Setzt man dies in Gl. (14) ein, so ergibt sich

1/ pm
O’n,o - On+1,o = _L‘ (52 + l3) PZO(a’n,p - a’n+1,p) 12 ’ pp,p+1 . (18)
= N ,
Pp,p+1

Sind die Kanten 0 und m kraftfrei, so mull r,=7,=0 oder nach Gl. (17)
Co,0=0Cpn,o=0 sein. Da auflerdem fiir n=0 und n=m die a, , nicht bestehen,
lautet die diesen Randbedingungen angepalte Losung von Gl. (18)

Cro= (2 41,)" 3 1a, P
no~ T, §+ 3 p;l_“n,p p,p+1 (19)

n=1,2,3,...m—1.

Schrumpft 1, auf Null zusammen, so gelangen wir zu Einzellasten P, 1-
Gl. (19) geht dann {tber in

=m—1
C §P a, .- P

n,o=L pZ=O %, 4 p,p+1" (20)

Aus Gl. (19) bzw. (20) ergeben sich mit Gl. (17) die Schubfliisse 7,,. .

¢) Einzelmomente als Lasten

Aus diesen Ergebnissen folgen leicht die Losungen fiir Kriftepaare M, ,

an Stelle der P, ,., (Fig. 5a). Es ergibt sich nach GI. (20) fiir den Abschnitt 1 A

l2 p=m—1 A3 p=m—1
Tn= T le —an,p'Pp,pH_ T p;l —pp° PP’P+1
a
1 p=m—1—""—""
L Mp,PH
fiir den Abschnitt 12
Zl p=m—1 A, p=m—1
=T, p§1 @ Pp,p+1_ f p§1 _“n,p'Pp,PH

p=m—1 M 1 p=m—1

und fiir den Abschnitt 2B
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[, p=m—1 A, p=m—1
Tn= = IL = —a’n’P.})P,p-l-l + Zl p§1 “‘“n,p'Pp,pﬂ
1 p=m—1
~ M (210)
| Pn,m! |
2
T P 2
ll L —! Fig. 5a
— &2 |
| — & |
i 1, 1 ]’
| = lzpin‘;’: '/l‘fp pr1
' | _//’/T—?L? # /e,
TR AT ] JIHHHHIWHIH il Fig. 5b, Schubfliisse
R e
! Fo,pe1
l m g, Lem
V nnet L—/{:,— aP—a”"’P)%P*’

\

‘ A, P30, p) M,
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]

|

P
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Imm'mp — L g 2 Mo 1 Fig. 5e. Normalkrifte

|
7 p=m-1
TZ,;(2npdneip) Mppei]

Der Verlauf der 7, ist in Fig. 5b dargestellt. An den Orten der P, , .,
erleiden die 7, den endlichen Sprung

p=m—1

—an7p._PpsP+1.
p=1

Von Wichtigkeit ist auch der dazugehorige Verlauf der Normalkrifte einer
Falte, der wieder in Fig. 5¢ veranschaulicht ist. Es wird fiir den Punkt 1
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Ngzlzz—}—l =(Tn Tn, Zl ; an+1,p)Mp,p+1 (22a)

und fiir den Punkt 2

)\ m—1
N§z2,)n+1 = (Tn _Tn+1 Z n,p a’n+1,p) Mp,p+1 . (22b)

Zwischen 1 und 2 verlauft N, ,.; geradlinig.

Konvergiert a -0 und P, ., — w0, so daB der Grenzwert a- P, 1
M, ,.1 besteht, so stellen die gefundenen 7, die Schubfliisse fiir den Fall dar,
daB in allen Falten in x =/, je ein konzentriertes Moment M, ,., angreift. Der
Verlauf der Schub- bzw. Normalkrifte entartet im Sinne der Fig. 5d bzw. 5e.
Innerhalb der Kriftepaare werden die Schubfliisse in jeder Falte oco-groB,
withrend die N, ,; auch dort endlich bleiben.

Wir haben bei dieser Betrachtung die M, ,,, als Grenzfall eines Kréfte-
paares a- P, ., zweier Transversallasten aufgefalt. Es ist leicht zu zeigen, daB
man zu den gleichen Ergebnissen kommt, wenn man von einer lings der
Strecke a stetig verteilten Momentenlast m, ,,, ausgeht. Fiir eine solche gilt

zunétchst1 M, ,1=a-m, .. Nach Gl. (9) tritt bei 1 ein endlicher Sprung von

i

Adr,=2 +a,, m,,; und bei 2 ein solcher von —4 7, auf. Macht man von
1

der Bedingung (14) Gebrauch, so folgt bei ry=7,,=0

7, (I +A5) [Z + @y, pp+1+7n]a=0,

woraus wieder

’Tn=Z‘ ; —an’p-Mp’mq (210)
wird. - L
Die Konstante der =, innerhalb der Abschnitte 12, A1 und 2B wiirde

auch aus den GI. (5') folgen da in diesen die m, ,,, =0 werden.

d) Achsiallasten

Greifen in den Falten zwischen den beiden Punkten 1 und 2 stetig verteilte

Achsialkrifte n, pt1 21, 8O folgt zunéchst wegen 7, ,,, =0 aus den Gl. (5), daB

die Schubfliisse in den Abschnitten Al 12 und 2B wieder konstant sein
p=m—1

miissen. Bei 1 tritt nach Gl. (9) ein endlicher Sprung 47, = 2 b My, pr1 UNA
bei 2 ein solcher von —4 7, auf. Bildet man wieder die Glemhgewwhtsbedln—
gungen (14) fiir die ersten n Falten, so erhalten wir mit ry=7,=0

p=n
T, (l1+23) [ Z bn " pp+1+'rn] a+p§1a-np_1,P=O

und daraus
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1 p=m—1 1 p=n
Ty = I Zl—bn’p.a.np,pﬂ—zpél M,y ,- (23)

p=
Wp, pt+i w

p—1,p

Dabei ist wieder vorausgesetzt, dall nur eine Falte achsial gestiitzt ist.
Man arbeitet sich dann wieder von den beiden kraftfreien Réndern zu der
achsial gestiitzten Falte vor und stellt fiir sie die Gl. (14) auf, woraus die seit-
liche Auflagerkraft des Balkenwerkes folgt. Liegt die Stiitzung dieser einen
Falte nicht in deren Achse, so ist das Exzentrizititsmoment nach Punkt c)
dieses Abschnittes weiter zu verfolgen.

Diese Belastungsart hat Bedeutung, wenn Faltwerke fiir die Ableitung
achsialer Windkrafte herangezogen werden miissen.

D. Das steifknotige Balkenwerk

Die bisher besprochenen Gelenkwerke werden bei stihlernen Fachwerks-
faltwerken ohne Querscheiben in hohem MafBle verwirklicht. Bei Bauwerken
aus Stahlbeton sind, dem monolitischen Charakter dieses Baustoffes ent-
sprechend, die einzelnen Falten miteinander starr verbunden, so da3 wir uns
~auch mit den sogenannten steifknotigen Systemen beschiftigen miissen. Fir

Fig. 6

diese wihlen wir jeweils das zugehorige Gelenkwerk als Grundsystem und
bringen an diesem, neben den gegebenen Lasten, die als Unbekannte gewihlten
Knotenmomente X, ebenfalls als dulere Kréifte an. Diese X, ersetzen wir
durch die, in den Kanten n angreifenden, zueinander parallelen Linienlasten

X _( X, +§)+_Xm -

n = b4
ln—l, n ln

ln—l, n ln, n+1

aus welchen sich nach den Darlegungen des Abschnittes B z.B. fiir Faltwerke
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mit reguliren Polygonen als Querschnitt die dazugehorigen Faltwerkslasten
des steifknotigen Systems zu

lﬁn,nﬁlsind = _Xn—2+(X'n——1_X ) L

") T 96054 + X1+ Doyt (25)

ergeben. Hierin bedeutet I die Lénge der Polygonseiten und 4 deren gegen-
seitigen Neigungswinkel (Fig. 6). v

Setzt man diese Werte in die rechten Seiten der Gl. (5’) ein und 16st diese
auf, so ergeben sich die Ableitungen 7,” der lings der Kanten n wirkenden
Schubfliisse 7, des steifknotigen Systems als lineare Funktionen der X,,. Aus
den Durchbiegungen y,, ., der einzelnen Falten »,n+1 ergeben sich nun in
bekannterweise die Differenzen 49, der beiden, dem Knoten n benachbarten
Sehnendrehwinkel als lineare 4-gliederige Formen, deren 4. Ableitungen bei
einem 6-seitigen regulidren Polygon mit daran beiderseits lotrecht angehéngten
Endfalten die Gestalt (Fig. 9c¢)

1-49% -sind = yIvsmf —yy(L+cosd+sind-tga,)+ ypy (1+2cosd) —y'5y
1
1- 4937 sind=y13 —(1+2cos ) (y23 —y51) ~Yis (26)

1-49%Y .sin4 =y£§—y§g (1+2cos4d) +y%¥ (14+cosd +sind-tg ay) —y%’ sind

COS oy
annehmen. Damit kénnen wir unter Verwendung der iiblichen Bezeichnungen
fir die Faltwerksquerschnitte die 4. Ableitungen der bekannten Dreimomen-
tengleichungen bilden. Es wird

Loy 2 (1, yn |
“n=1n X’}Lﬁi + (ZL 1,n + nn+1)XIV
6Jn—1,nE ! 6 K Jn—l,n Jn n+1
l
+ﬁXl+l+dﬂ1V+NIn 1+Nnn+1"‘0 (27)
n,n

wobei die 7,,_; ,,, I, n41 die Sehnenlingen bedeuten und die J,, ,,; die Grofen
d3 ..1/12 annehmen, wenn die d,, ,,; die Dicken der einzelnen Falten n,n + 1
darstellen. Die Durchbiegungen ¥, , ., deren 4. Ableitungen noch in den 4 ;.Y
der Gl. (27) enthalten sind, geniigen den Bedingungen

EJ n+1ym n+l1= Mn,n+1> (28)

woraus sich nach 2maliger Differentiation und mit den GI. (3)

v = . = —m
EJn,n+1 Yn,n+1 =Tp km+1,n+7n—1 km+l,n+1 Pr,n+1 (29)

ergibt. Setzen wir hierin die Gl. (25) und die daraus im obigen Sinne errech-
neten 7,’ ein, so ergeben sich die ,",,, in der Form

3) «, und «, siehe Fig. 9b.
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IV P '
Yn,nt1 = ern,vn+1;p'Xp+Rn,n+1 (n=1>2>- . ) (29 )
p=

Setzt man nun diese in die Gl. (26), so folgt

49, = Z o X+ B, (26")

wobei die Absolutglieder PV nur von den gegebenen Lasten herriihren.
Gl. (26') in (27) eingesetzt, ergeben nun die Bestimmungsgleichungen fiir die
X, zu

ln—l,n XIV 2 (ln 1,n + lz@, n+1) XIV + Zn, n+1 XIV

J— + _
6Jn——1,nE ol 6E " 6Jn n—l—lE w1

v
T Z p Xyt Py AN 14+ Nivui =0, (30)

Jn—l n Jn n+1

in welchen die N von den zwischenknotlichen Wirkungen der dulleren Lasten
herriihren.
Das System wird am einfachsten mittelst Fourier’schen Reihen gelost?).

E. Die durchlaufenden Systeme

a) Gelenkwerke

Schneidet man ein solches Tragwerk iiber den Auflagerscheiben durch, so
entstehen Balkenfaltwerke, an deren Auflagerenden [/ und r je Falte die
Stiitzenmomente X0, und X9, die Achsialkrifte Y,  , und ¥Y{,,,,
sowie die Querkrifte Z®, ., und Z{), , frei werden. Selbstverstindlich miissen
bei dieser Zerlegung diese Balkenfaltwerke an ihren Auflagern durch die
Lagerscheiben ausgesteift bleiben. Die Querkrifte werden also dort unmittel-
bar aufgenommen und interessieren uns zunéchst noch nicht. Die X bzw. Y
sind dann positiv, wenn sie am Rande n der Falte n,n 41 Zug bzw. in letzterer
nur Druck erzeugen (Fig. 7).

Denkt man sich zunichst die X{, ., und Y{), ., vorerst auf einen kurzen
Bereich a gleichmiBig verteilt und 148t man nur diese letzteren am rechten
Ende r der Balkentonne /,r angreifen, so ergeben sich nach Gl. (21¢) und (23)
die Schubfliissse aulerhalb des Bereiches a zu

( y® 1 &
ZP Xﬁp+1+L ZP”" prp+1_“L—l;;P Y;Ql,p (31)

l,r

und innerhalb von «a zu

4) Einzelheiten siehe Fuinote 1 Pkt. 1, 3, 4, 5, 6.
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LSS! - X0 LS
Tn,a= ? lp—“n,p‘Xp,p+1+ Zpanp p,p+1+T Z” Jpt1
LT
(r) (32)
1P+¥ Zpbanpp—l-
2
N Q=
|.
% 3
g S
< bewegl. — beweg/.
T, =0 Ffreier Rand p
LB -
m-1 g A
)
g e 147 a4 Za e
hﬂ'l*/,ﬂ*/ X:J/.)Ilf 7
_________ D . {‘F—Vn’rn}/
—————s !
x — !“—'—
7
\ ‘/ _
-] \4-_
o J .
T, =0 freier Rand
Ll,/-
Fig. 7

Macht man zunéchst das logische Postulat, dafl der Ubergang von , nach
stetig erfolgen soll, das heillt, es wird

Tn = Tn,a> (33)
so ergibt die Gleichsetzung der rechten Seiten von Gl. (31) und Gl. (32)
m—1 " m—1 )
gpa’n,p'Xp,pAl—l'{' lepbn.p' Yp p-%—l—0 a=0, (34)
woraus mit Gl. (31)
Tn (r)p-i-l (35)

folgt. Das durch die Gl. (32) anfangs bedingte Unendlichwerden der 7, inner-
halb des nun unendlich kleinen Bereiches a ist nun durch die Annahme (33)
verhindert. Diese wird sich noeh im Laufe der weiteren Entwicklung exakt
bestétigen.

Lost man weiters die Falte n,n+1 aus dem Tragwerksverband und stellt
um den rechten Achspunkt r die Momentengleichung auf, so ergeben sich die
linksseitigen Querkrifte der Balkenfaltwerke zu

A Llr (1')
Zizl)n-i-l — m+1,n+1f n+1d$ + m+1 nf dx+ n n+1 (36)

0
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mit welcher, da sich infolge der Konstanz der Schubfliisse die Glieder mit 7,
und 7, ., heben, das Biegemoment der Falte n,n+ 1 im Punkte x den Wert

Ll,r Ll,r
() x x T 3 (r)
Mn,n+1 = h’m+1,n+lz~ f Tn+1 dx +km+1,n f_ f Tn dx + L—Xn,n+1
Lr S Lr . Lr

z x
h dz—h do= X 37)
—Mpi1,041 | Tn+1 @F m+l,n | Tn @ = Ll n,n+1 ( )
7
0 0

annimmt. Fiir die am linken Ende angreifenden Momente X ., und Achsial-
krifte Y{ ; erhalten wir analoge Werte.

Diese Ergebnisse sagen,nun aus, daB die von allen Momenten X%, ., X0 .
und allen Achsialkriften Y% .., ¥ ., herrithrenden Biegemomente M, , .,
der Falte n,n+1 und somit auch deren’ Endverdrehungswinkel 9% ., und
9 .y nur von den unmittelbar an n,n+ 1 angreifenden Kraftwirkungen
xX® X0 yund YO ., YD ., abhingen. Man kann somit fiir jede der

n,n+1>
Falten p,p+ 1 gesondert einen Clapeyron’schen Gleichungssatz
(v—1) Lv—l,v + ») v—1,v Lv, v+1 (v+1) Lv, v+1
pspt+1 J(V—l,v) psp+1 J(V—l,v) J(v,v—l—l) p,p+1 J(V,v-l—l)
pspt+1 psptl pspt+1 psp+1

+690, 1 46900 =0 (p=1,2,...m)  (38)

aufstellen, in welchen die J,,., die Endverdrehungswinkel an der Stiitzen-
scheibe v der Falten p,p+ 1, der nach Abschnitt C behandelten Balkenfalt-
werke v—1,v und »,v+ 1, bedeuten. Sie ergeben sich fiir das Feld v—1,v aus

2
v 1
619‘;(7,[)‘1{)1 = Sv—1,v) f [pp,p+1'x(2 L12/—'1,V_3xLV—-1,V + xZ)
Jp,p+1 ' Lv—l,v 9
' +uppt1 (2 Ly—y,—62 L, , ,+32%)]dx (39a)
2
2 2
619},";,+1 = =3 )1 f [Dp,pr1°% (Lv—l,v_xz)_ll"’p,p+1 (Ly—1, —32?)] dz, (39Db)
Jp,p+’1 : Lv-—l,v 1

wobei p, ,q =My g1+ Tpi1 Py pr1+7, Py, bedeutet.

Sind Achsiallasten n,, ,., vorhanden, so ist zunichst das durchlaufende
System durch Festhaltung eines Punktes ¢ gegen Verschiebung in achsialer
Richtung zu sichern. Wir zerschneiden das durchlaufende Tragwerk wieder
iiber den Stiitzen, verbinden aber die so entstandenen Balkenwerke iiber jedem
Auflager in je einem Punkte ¢® so, dal von einem Feld auf das andere nur
achsiale Krifte A® iibertragen werden koénnen. ZweckmifBig legt man alle:
Punkte ¢® in die Achse ein und derselben Falte n,n+ 1 des Durchlauftrag-
werkes (Fig. 8). Man beginnt nun mit der Auflosung der einzelnen Balken-
werke bei den beiden Randfeldern und schreitet gegen die im Punkte ¢ gestiitzte:
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Mitteltonne vor, die man schliefllich auch so wie die anderen berechnet. Dabei
ist zu beachten, dal sich die, in den ¢ entstehenden Verbindungskrafte 4%
der weiter auflen liegenden Balkenwerke durch die Gelenkpunkte ¢ nach den
jeweils benachbarten Feldern gegen die Mitte hin bis zu der in ¢ gelagerten
Mitteltonne fortpflanzen, wo sie mit den duleren Achsiallasten der letzteren
den gesamten Auflagerdruck A4, ergeben.

e
N
83
Randtonne (71 E Randfonne
(s T Al u
, ........ {)u ..... Prreienn L ./.7 ..... Achse von n, ﬂf/"'L,;( ne
L j“ . 7, nner I[ A0
[ 4 - ‘,l /
< P—n—.—-‘ p-y a=w, s
l[l“’ n-1,n n-1,n l|
" I
i , g A; '
—“::
-]/ I
'. fom — e 77, , |
7a ,

freier Rand
=0

YA

Au/‘/ayersc/)e/be_L ) JJ

Auvflagerscheibe,
v

Fig. 8

Betrachtet man die A® und fiir das in ¢ gestiitzte Mittelfeld auch 4, als
dullere Lasten, so steht im zerschnittenen System jedes Feld fiir sich im
achsialen Gleichgewicht. Bringt man daher die X{,,,, ¥, ., und X9 ., Y® .,
an den Enden der Balkenwerke nun zusétzlich als dullere Lasten an und stellt,.
von einem Randfeld beginnend, fiir jedes Feld gesondert die Gleichgewichts-
bedingung gegen achsiale Verschiebung auf, so folgt fiir jede Auflagerscheibe
des Durchlaufsystems die Bedingung

le Yp,p+1 =0. (40)

Wir sind nun mit Hilfe der Gl. (38) im Stande, die Stiitzenmomente X, .,
der einzelnen Falten zu bestimmen. Die Ermittlung der dazugehorigen Achsial-
krifte Y, ,.; gelingt uns aber leicht mittelst der Beziehungen (34), von der ja
nun die linken Glieder bekannt sind. Setzt man in die Grundgleichungen (5’)
an Stelle der —n/,_, , bzw. —mn,, ,_; die ¥ "1 bzw. YO ., und fir (p, 4, +
My, _y ) DZW. (Py pia+my, myq) die XO  bzw. X1, so lautet bei Beriick-
sichtigung der Randbedingungen 7,=7, =0 nach Gl. (7) die Losung des so
entstandenen Systems (5'')

m—1 m—1
Sea, - X1+ Seb, - Y L. (7"
1 n,p popt1 1 n,p pspt1
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Dies in Gl. (5"") eingesetzt, muf} also letztere identisch befriedigen. Hierbei
werden wegen (34) die linken Seiten gleich Null, so dafl die Beziehungen

I7(721 Y(r) +1 h h +1,p+1
— P b PP = XD, X (41)
p—Lp p,p+1 p—1,p p,p+1

folgen, welche mit Gl. (40) zusammen fiir die Bestimmung der ¥ X)p 41 geniigen.
Fiir die Auflosung dieses Systems driickt man mittelst der zweigliederigen
Gleichungen (41) eine der Unbekannten, z. B. Y, ,,.,, durch die iibrigen aus
und setzt diese KErgebnisse in Gl. (40) ein, wodurch sich dann auch Y, ,
ergibt.

Man sieht ohne weiteres, dafl die Gl. (41) auch fiir die Stiitzen des Durch-
laufsystems die Tatsache bestitigen, dal die aus X, , , und Y, , , ermittelte
Randspannung des Randes n der Falte n—1,n gleich ist der aus X, ,.; und
Y, n41 errechneten Randspannung des Randes n der Falte n,n+1. Die
Bedingungen (38), die vorhandenen Auflagerscheiben und der nun auch dort
vorhandene kantenweise Zusammenhang der einzelnen Falten geben die
Gewihr, daB nach der Verformung die Rénder, der durch X% .., X7 .,
Y® i, Y., und den duBeren Lasten p, .., m,,., und n, ., ergriffenen
Balkensysteme, zueinander parallel verlaufende Poligonziige sein miissen, so
daB durch achsiale Verschiebungen alle Schnittrinder zur Deckung gebracht
werden konnen. Es sind also alle Vertraglichkeitsbedingungen erfiillt. Man
ersieht nun auch, daf3 alle Auflagerscheiben, bis auf eine, achsparallel ver-
schieblich gelagert sein miissen (Fig. 1).

Damit ist auch, wie vorausgesagt, die Annahme (33) nachtriaglich bestétigt.

Nach Bestimmung der Y, ., folgen aus Gl. (35) die von den Hilfsangriffen
Y, 1 und X, ., herrithrenden Schubflisse, welche mit denen der Balken-
systeme zu iiberlagern sind.

Es ist notig, noch daran zu erinnern, dafl die durch die Gl. (38) bedingten
Vereinfachungen bei der Berechnung der durchlaufenden, zweiteiligen Falt-
werke nur dann eintreten, wenn man, wie wir es getan haben, den Einflu} der
Querkrifte auf die Verformung vernachlissigt. Wiirde man némlich bei der
Bestimmung der Beiwerte der X, ,,, in Gl. (38) die durch Gl. (36) dargestellten
Auflagerdriicke Z,, ,,.,, die den @, , ., gleich sind, berticksichtigen, so wiirden
wegen der Gl. (35) in der Gl. (38) neben den drei X, ,,., etner Falte die ¥ f,";j{ ,

Y .y, YOI aller Falten vorkommen. Driickt man darin mittelst der Gl. (40)
und (41) die Y, ., durch die X, ., aus, so ergeben sich Beziehungen, in

denen nur mehr die Stiitzenmomente X, ., allein vorkommen. Trotzdem in
jeder dieser Gleichungen die Beiwerte gewisser Unbekannten gegeniiber den
anderen Unbekannten dominieren, konvergieren die dadurch ermdoglichten
Iterationsverfahren nicht sehr rasch, was mit einer erheblichen Rechenarbeit
verbunden ist, die sich nicht lohnt, da bei zweiteiligen Faltwerken der Einflul
der Querkrifte auf die Verformungen ¢mmer vernachlissigt werden kann.
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Wir nehmen nun im besonderen an, dafl zwischen den Trigheitsmomenten

JAY bzw. Randfaserabstinden b vtV der einzelnen Felder v,v+ 1 die Be-

ziehungen
(v+u, v+p+1) (v,v+1)
JPI:p+1 K Za[.L.JP,P‘i"I (4:23;)
h%’:i"nll«,v-{—[ﬁ-l) =ﬁ#'h%j;:+1) (42D)

bestehen. AuBerdem soll vorerst nur ein Feld, und zwar so belastet sein, daf3
die Belastungen der einzelnen Falten p,p+1 des Feldes v,v+1 zueinander
affin sind. Das heif3t, es gilt, symbolisch geschrieben

Pp+”,p+u+l=y“-Pp’p+1 (r=1,2,8,..... ). (43)

Wir nennen dann das Faltwerk gleichartig gestaltet und gleichartig belastet.
Dann wird auch in den Gl. (38)

(v—1,v) (v—1,v)

Fprpotu+1 =Yu Fpptl (44a)
(v,v+1) (v,v+1)

ﬁp:—;}i,p+u+1 ='}’,u‘l9p,p+1 . (44b)

Es folgt daraus einerseits, daBl fiir jede Stiitze

» »
Xpljm,pwﬂ =V Xppt1 (45)

werden muB, und daB andererseits wegen der Gl. (42a) innerhalb jeder durch-
laufenden Falte die Beziehungen

X0 =0, X0 (46a)

bestehen miissen. Daraus ergeben sich fiir die Biegerandspannungen oy, die
Bedingungen

() Bu o
Opup 1300 =0y F Oppinars (46b)
14

aus welchen sich nach den Gl. (41) fiir die Lingsspannungen oy in den Achsen
der einzelnen Falten die analogen Gleichungen

o on =9, ol i (46¢)
"
ergeben. Wir konnen also folgenden Satz aussprechen:
,,Ist ein durchlaufendes, gelenkiges, prismatisches Faltwerk gleichartig
gestaltet und belastet, so sind die Langsspannungsdiagramme durch die Fak-
toren 4, 'i—” miteinander affin verbunden. §, folgt dem Momentenverlauf irgend

s
einer durchlaufenden Falte‘.

Sind mehrere Felder belastet, so sind die Ergebnisse zu superponieren.

13 Abhandlung XII
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b) Steifknotige Systeme

Bei diesen zerschneiden wir wieder das System iiber den Stiitzen, so wie
wir es bei den gelenkigen Faltwerken getan haben, so daB wir nun lauter
steifknotige Balkenwerke vor uns haben. In diesen erzeugen die auf diese
Weise freiwerdenden Stiitzenmomente X¢), ., und die von diesen nach Gl. (41)

abhiingigen Normalkriifte Y) ., wieder Knotenmomente X{***", mit denen

wir uns zuerst beschéiftigen miissen. Denken wir uns im Feld v,v+ 1 vorlaufig

nur die X¢+1 und Y'+1} an den Gelenktonnen als duBere Kriifte wirkend, so

betragen nach Punkt a) dieses Abschnittes die Biegemomente der Falte p,p + 1

X(v+1)

M =,

psp+1 =
Lv, v+1

woraus sich die Durchbiegungen des gelenkigen Balkenwerkes zu
(v+1)

X
p-pt+i a (L2, — a?) (47)
v,V b +1
6 EJ( p++11) LV v+1 ’

yp,p+1; RS

ergeben. Entwickeln wir dies in Fourier’sche Reihen und differentieren wir
diese 4mal nach z, so erhalten wir fiir das Gelenkwerk

X(v-l—l)

__“4pptl i
L) 1
E'] ,pt+1 va+1 1 L

— 1)ksin

v v+1 v,v+1

v
Yp,p+1;v+1 = x. (48)

Setzt man dies in die Gl. (26) ein, so ergeben sich wieder sin-Reihen P,1v, deren
Koeffizienten lineare, homogene Funktionen der konstanten Stiitzenmomente
X,(,”;r_}l.)l sind. Da bei diesem Kraftangriff zwischenknotliche Belastungen nicht
auftreten, und die obigen P,v den von den, als duBere Lasten gedachten,

X,(,"I',"i)l herrithrenden Anteil der 4 91v darstellen, erhalten wir die zu den X,

gehorigen Bestimmungsgleichungen (30’) aus den Gl. (30), indem wir darin
P, =P v machen und alle N gleich Null setzen. Fiir die Auflésung der (30’)
ist wichtig zu bemerken, dafl die homogenen Teile von (30’) und (30) identisch
sind, so daBl man fiir (30") die Losungsmatrixen von (30) benutzen kann.

Fiir die am anderen Ende v des Balkensystems v, v + 1 angreifenden Stiitzen-
momente X ., gelten analoge Bezichungen.

Wir denken uns nun jede der steifknotigen Balkensysteme v,v+1 mit
seinen gegebenen Lasten P(”’ ’fll), mit den Stiitzenmomenten Xl(,”;,ﬂ, X(",ﬂ)l
und den Normalkriften Y (V3>+1 , Y ‘f,”jj) belastet und bestimmen nach Abschnitt
D die von den P(";,’fll) herriihrenden Knotenmomente X% *™" und auBerdem
nach den soeben durchgedachten Uberlegungen die zu den X o041 gehorigen
Knotenmomente X*”*. Nun belasten wir das durchlaufende Gelenkwerk
mit allen P, ., X, und X, und bestimmen die dazugehorigen Stiitzen-
momente. Die von den P, ,,, und X, stammenden ergeben sich nach Punkt a)
dieses Abschnittes. Da die letzteren als sin-Reihen vorliegen, stellen die Glie-
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der der sin-Reihen der X, eine gleichartige Belastung dar. Die aus den P, .,
und X, folgenden Stiitzenmomente mogen 4 Xp +1 heiBen. Die X, liegen
wieder als sin-Reihen vor, deren Beiwerte lineare, homogene Funktionen aller

als dullere Krifte angreifenden Stiitzenmomente Xf,”;,ﬂ sind. Setzen wir diese

X, in die Gl. (29") ein, so ergeben sich die yfbvn L v, pi1> WODEL 7, 0y, L die
Durchbiegung der Falte n,n+1 des steifknotigen Feldes v,v+1 bedeutet.
Daraus kann man bei Beriicksichtigung der Randbedingungen y; , .4, , ,11="0;
Ynntts vpe1=0 fuir =0 und =1L, ,,, die Enddrehwinkel y,, ,,.;., ,.; durch
4-fache Integration und darauf folgende Differentiation bestimmen. Fiihrt
man diese Operationen im einzelnen durch, so ergibt sich bei Beriicksichtigung

derselben Vorzeichenregeln wie in den Gl. (38)

1, (v, 741 P L, , Lys,\?
19“(Verlv) + G p = Z 2 {ep,P+1;k (—]ch%—v) X(Vp+1 + [ep,pﬂ;k( ]';; -

k=1 p=1

L L, o\ ot (49)
+ W 0+1: k ( };’::_1) ] ngo-l-l + Wo p+1: & ( Z;;+1) Xg,}_;;+)1} ’

so daB nach (38) die zu den X, gehorigen Stiitzenmomente sich zu
A X(v) —p" X(v 50)
2 “p,p+1 psp+1° Ap,p+1 (

ergeben. Dabei handelt es sich um eine symbolische Schreibweise, bei welcher
® eine lineare homogene Funktion bedeutet. Die vollstindigen Stiitzen-
momente betragen nun

X1 =, X + 4, X0 (51)

Da hierin der erste Teil der rechten Seite nur von den P, ., abhingt, handelt
es sich bei (51) um ebenso viele lineare, nicht homogene Gleichungen wie
unbekannte X$) ., vorhanden sind. Man konnte letztere daraus bestimmen.
Leider sind in jeder Gleichung alle X{),,, enthalten. Da aber in jeder Gleichung
in erster Linie die Beiwerte der X,‘;’)J +1 und in zweiter Linie diejenigen der
X4, unmittelbar benachbarten Momente X, , X®, .. X0-1 Xe+b

—1,p> , p+12
gegeniiber den anderen Beiwerten dominieren, ‘iaﬁ‘t)a sich immer dP;s folgende
Iterationsverfahren anwenden. Man bestimmt zuerst die von den P, v p+1 und
den X, stammenden Stiitzenmomente 4, X! p"p 11, kurz mit 4, bena,nnt Diese
erzeugen Knotenmomente X, , welche Wleder Stiitzenmomente zur Folge haben,
die man durch Einsetzen von 4, in die Rekursionsformel (50) zu @-4,; erhilt,
so daBl die verbesserten Stiitzenmomente 4, +®-4, lauten. Wendet man nun
denselben Gedankengang auf diese verbesserten Momente an, so heiBt dies,
daB wir diese wieder in Gl. (50) einzusetzen haben. Es ergibt sich @ (4, +®-4,)
=0-4,+D-(D-4,), woraus das nochmals verbesserte Moment 4,+®-4,+P
-(@-4,) folgt. Dies setzen wir solange fort, bis die Gliederfolge @-(P-4,);

D[P (P-4,)] auf Null ausklingt.
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F. Mehrteilige Faltwerke

Das sind solche, bei welchen in einer Kante mehr als zwei Falten zusammen-
stoBen. Die zu Beginn des Abschnittes B dargestellte Kriaftezerlegung ist dann
statisch unbestimmt.

Der Umstand, daf} in jeder der Gl. (38) nur immer die drei Stiitzenmomente
derjenigen Falte vorkommen, fiir welche sie aufgestellt wurde, beruht auf der
Tatsache, daB sich in den Gl. (32) die Glieder, in welchen die =, bzw. 7,
vorkommen, aufheben. Das heiflt, es mufl immer

Iy, z
h

g LR f T @t ="hp 1 f 7, A (52)
0

Ll,r
0

sein. Differenziert man dies nach z, so ergibt sich

Ly

! T, dx =T, = konstant, (53)
Ll,r

0

so daB die Vereinfachungen nur dann auftreten, wenn fiir die Hilfsangriffe
X, o1 und Y, ., die Schubfliisse in den einzelnen Kanten konstant werden.
Aus den Abhandlungen 3. und 4. des Verfassers (siehe FuBlnote 1) geht hervor,
dafl bei mehrteiligen Faltwerken #ufBlere Lasten, die in einer mehrteiligen
Kante angreifen, in den anschlieBenden Falten nur dann zueinander affine
Faltenbelastungen ergeben, wenn man den Einflu der Querkrifte der achs-
normalen Dehnungen und der Poisson’schen Querdehnungszahl vernachlissigt.
Da nun fiir die an den Balkensystemen angreifenden Lastwirkungen X, .,
und Y, ., zwischen den Auflagerscheiben die Lasten in den mehrteiligen
Kanten und somit auch die Faltenbelastungen p,, , 1, 7, ,4; und n, ,., der
anschlieBenden Falten Null werden, ergeben sich aus den, den Gl. (5’) analogen,
viergliedrigen Bestimmungsgleichungen bei mehrteiligen Faltwerken die +'=05),
das heifit, die Schubfliisse sind konstant.

Fassen wir alle bisherigen Ergebnisse zusammen, so konnen wir den fol-
genden Satz aussprechen:

Bei durchlaufenden zweiteiligen Faltwerken kann jede Falte einzeln als
Durchlauftriger, der mit den gegebenen dulleren Lasten und den faltwerks-
méflig ermittelten Schubfliissen der Balkenwerke belastet ist, berechnet wer-
den. Bei durchlaufenden, mehrteiligen Faltwerken hingegen gilt dies nur
solange, wie man den Einflul der Querkrifte, der achsnormalen Dehnungen
und der Poisson’schen Querdehnungszahl auf die Verformungen unterdriicken
kann.

%) Siehe Abhandlung 3, FuBinote 1.
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G. Anwendung

Wir wollen nun eine 2-feldrige steifknotige Tonne fiir halbseitige Schnee-
last eines Feldes berechnen. In den Fig. 1 und 9b ist das Tragwerk mit seinen
MaB-, Steifigkeits- und Belastungsverhiltnissen dargestellt. Nach Abschnitt B
ergeben sich aus der Schneebelastung die Linienlasten p, daraus folgen aus

coS «,, coS a,,_4
s 5 Sn n+1 = pn . ’

sin4 g sin A4

und deren Differenzen die Transversallasten der Falten zu

P10 = +0,0758; pyy = +7,6489
Psa-= +1,4390; pyg = —3,8186; pgy = —4,3187 t/m.

Sn,n—1=Pn"

Die Gl. (5’) fiir die Balkentonne lauten

30,725 7,"+ 8,697, = —13,333 pyo— 11,342 p,,
8,697 7" +42,236 1, + 12,4227, = — 11,342 Po1 — 16,203 py,
Ty + 475 + 7y =— 1,304 py— 1,304 p,,
Ty + 47, + 75 =— 1,304 p,5— 1,304 pg, (54)
7 + 47+ 76 = — 1,304 pyg,

12,422 74 + 42,236 7'+ 8,6967,'= 0
8,696 74" + 30,7257, = 0

Wir befassen uns zunichst mit der steifknotigen Balkentonne und erhal-
ten die Gl. (25) in der Form

Do = 0,4948X, +0,0758
Doy = —4,5914 X, +2,1994 X, 17,6489
Pse = +6,56121 X, —6,5121 X,+2,1994 X, +1,4390

Pas = —2,1994 X, +6,51074 X;— 6,51074 X, + 2,1994 X, — 3,8186  (55)
Psa = —2,1994 X;+6,51074 X, — 6,51074 X, + 2,1994 X, — 4,3187

Pes = —2,1994 X,+6,51074 X, —6,5121 X,
Pe7 = —2,1994 X,+4,5914 X,
Ps7 = —0,4948 X ..

Setzt man diese p in die Gl. (54) ein, 16st diese auf und substituiert die so
gefundenen 7,” in die GI. (29), so folgen diese als

Yoi =+33,1947 X, 19,3070 X3+ 54651 X, — 1,4535 X+ 0,3644 X, — 27,6832
yg_—38,5413X2+30,7604X3—11,7753X4+ 3,1319 X, — 0,7851 X+ 23,5285
Yz3 =+49,3361 X, — 57,6363 X, + 36,1708 X, — 13,7493 X, + 3,4449 X,— 5,2898
Y31 =~ 34,9168 X, + 62,2380 X; — 63,0890 X, + 38,2082 X, — 13,4635 X, — 4,5763 (56)
Yg3 =+13,4635 X, — 38,2082 X, + 63,0904 X, — 62,2380 X, + 34,9155 X, — 9,9263
yg‘g =— 3 4448X2+ 13,7398 X3 — 36,1694 X, 4 57,6349 X, — 49,3361 X6+ 10,3232
Yoy =+ 0,7852X,— 3,1317 X, + 11,7753X4—3O,7587X5+38,5414X6— 2,3530
Ys =— 0,3643X,4 1,4535X,— 5,4649 X,+ 19,3072 X, — 33,1952 X, + 1,0921
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pelastetes Feld
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Verformungen in Feldmitte
belastetes Feld

———— Balkentonne !
EndFfslte 8
Fig. 9b
Balkent
‘ : entonne be/a&/':ee/{:s [-1173]
0, A 3 12, \ 1, (-g108)
L S ()17 R W— “ <1280 unbelastetes Feld
| 4 [-0757]
ao07 |\ ;
B e 8 | (-0108)
) 2 | -0865
W= 2y (-guss) SO 5 4
P SN0 s
on o5 = [-0073] :
) ’ M 77°06'09"
% W= ‘ez 6
—==\0,047 (-0,266)
NS *1234
7 | & R 04y (-0.229) [#1500] HAnolfenmomente in tmfm 28°3075"
F1.460) n Feldmitte 7
' [*1689)
| o -+ 1234 belasletes Feld
N =
|20 ~| belastete Hilfte T (~0.265) unbelastetes Feld unbelastete Hslfrel
| ———= [*1500] Balkentonne
8
2021 2198 2289 2.289 2,198 2021
Fig. 9¢

Die Gl. (26) lauten bei Beriicksichtigung der bekannten Ra,ndbedingungen und
mit o; = o, =28930" 15"

1-49%Y =1,13794 1Y — 10,5604 y1y + 14,9761 41y —5,0586 3y
[-49LY = 5,0586 yiy — 14,9761 5Ly + 14,9761 y5y — 5,0586 ;Y

1-49Y = 5,0586 gLy —14,9761 1Y + 14,9761y —5,0586 yLy

(57)

1-491Y = 5,0586 yiy —14,9761y1Y + 14,9761 yi¥ —5,0586 y¢y
[- 49 = 5,0586 yiy —14,9761y1y +10,5604 y¢Y —1,1379y1¥

Setzt man hierin die Gl. (56) ein, so erhalten wir mit J,,= %0,103- 1,00 =
0,0083 m* und J,, = Tlé .0,07%-1,00 = 0,00583 m* die Gl. (30) zu

591,421 X, — 662,975 X, + 431,072 X, — 188,607 X ; + 55,848 X
+2,30[15661,88 X1V 4 5830,94 X1V]— 146,104+ N3y + N3y = 0
— 662,975 X, + 932,223 X, — 810,997 X, + 482,027 X ; — 188,607 X,
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2,30[5830,94 X1V +4-5830,94 X1V + 5830,94 X1V] + 78,226 + N3y + N3y = 0

+431,072 X, — 810,997 X, + 980,703 X, — 810,997 X, + 431, 072X
 +2,30[5830,94 X3V +4- 5830, 94XIV+5830 94 X1V]— 69, 174+N’fV =0

— 188,607 X, + 482,027 X, — 810,997 X, + 932,223 X, — 662,975 X +

+ 2,30 [5830,94 X§V+4.5830,94 X§V+5830,94X§V]+ 126,961 = 0

+ 55,848 X, — 188,607 X, + 431,072 X, — 662,975 X ; + 591,421 X +

+2,30[5830,94 X1V +15661,88 X{V] — 100,396 = 0 (58)

p13 cos2

Die Belastungsglieder lauten im besonderen N, = 76,598-2,30;

N;,=528,333-2,30; Ny, =572 "o2 2,30. Die Auflosung von (58) erfolgt mit-

telst Fourier’scher Reihen X, = ZkA ke ska

Entwickelt man die Absolutgheder ebenfalls in sin-Reihen Zk Qp, 1+ SID wa
und setzt die Reihen fiir die X, ein, so ergeben sich fiir jeden Index k lineare
Gleichungen fiir die 4, ;. Die Liisungen wurden fir k=1, 2, 3, 4, 5, 6 durch-
gefiihrt.

Wir geben nur die Werte fiir k=1 zu

Ay = —0,0198261-a,; —0,0255963-a,, —0,0162385-ay, — 0,00444810-a,,
+0,0005668-a.,

Ay = —0,0255961-a,, —0,040964 - a,, —0,0343043-ay, —0,0168390-a,,
—0,00444795 - a;,

Ay, = —0,0162385-a,, —0,0343056-a,, — 0,0431234 -y, —0,0343056 - a,,
—0,0162386- a5,

Ay = —0,0044810-a;;, —0,0168390-a,, —0,0343043 - ag; — 0,0409640-a,,
—0,0255960- a.,

Ay, = +0,0005668-a,; —0,00444810-ay; — 0,0162385- ag; — 0,0255963 - a,,
—0,0198261 -y, (59a)

und, um einen Begriff fiir die Stdrke der Konvergenz zu erhalten, auch die-
jenige fiir k=6 zu

100-Ag = —0,0183304-ag; +0,00260646-ag, -+ 0,000668030 -y, —
— 0,000694105 - 2, + 0,000367100 - 5

100+ Agy = +0,00260644 a5, —0,0124119-a4 -+ 0,00138040- qy, —
—0,00068955-a;, —0,000694130- ag,

100- Agy = +0,00066850- a5, +0,00138005-ag, —0,0121546- ag, +
+0,00138095-ag, +0,0006733 - aqs

100- Ag, = —0,00069413 a4, + 0,000689550- ag, +0,00138035 - g, —
—0,0124119-a4, +0,00260644-ay,

100- Agy = +0,00036710-a5; —0,000694105 - @, + 0,000668030 - g, +
+0,00260647 - ag, —0,0183304 - ag, (59e)
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bekannt. Die Beiwerte der rechtsfallenden Diagonale sinken also auf 1/,,, bis
1/,00- Die sin-Reihen fiir die Absolutglieder lauten

— 185,233 sin — x — 56,822 sin > — 13,197 sin "

L L L
+ 99,950sin%x+ 42,638sin%x+ 63,197sin§L3x
- 87,893sin%x—24,450sin3%x+ 5,112sinisz (60)
+161,652sin—}j—x+53,884sin§£x+32,3305in5%x
— 127,828 sin%x — 42,609 sin%ﬂx — 25,566 sin%’x

Dies in (59a,c,e) eingesetzt, ergibt die Knotenmomente der steifknotigen
Balkentonne zu

Xy=+1,7498 sin%aﬁ— 0,06573%x+ 0,0052 sin5—£x
X,= +1,5085 sin%x—0,0005§g9&—0,0132 sinégx
X,=—0,1005 sin%x—0,0QQS%x—0,00QOsin%x (61)
X,=—1,1941 sin%x—0,02723—fﬂx—0,0059 sin%”x
Xg= —0,7257 sin%x+(),03973—£m—0,0083 sin5—L77x

Nun wenden wir uns der steifknotigen Durchlauftonne zu. Entwickeln wir
die 4. Ableitungen der durch die Stiitzenmomente X, , ., an der Balkengelenk-
tonne verursachten Biegelinien nach Gl. (48) in sin-Reihen, setzen diese in
Gl. (57) ein, so erhalten wir die Absolutglieder Prv der Gl. (30’) in Form von
sin-Reihen, deren Koeffizienten lineare, homogene Funktionen der X, ., sind.
Wertet man mit diesen die Matrixen (59a, b, ¢, d, e, f) aus, so ergeben sich die
sin-Reihen der durch die X, ., verursachten Knotenpunktsmomente X,.
Setzt man diese in die Gl. (56) unter Weglassung deren Absolutglieder ein, so
ergeben sich die 4. Ableitungen der durch die X, ,.; und Y, ., verursachten
Durchbiegungen 7 der steifknotigen Balkentonne. Bestimmt man mit diesen
nach Gl. (49) die Belastungsglieder der Gl. (38) und 16st diese nach den X, ,,
auf, so folgen die zu den X, gehorigen Stiitzenmomente 4, X ,., der Gl. (50).
Dabei ist nicht zu vergessen, dafi die X, in beiden Feldern der Durchlauftonne
wirken. Es wird also
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XOI X12 X23 X34 X45 XSG X67 X78
4, Xo; = +0,0823—0,254 +0,207 +0,186 +0,0391 —0,0586 — 0,0380 +0,0134
4y Xjp= —0,097240,393 —0,520 —0,138 +0,0493 40,0745 +0,0161 — 0,0159
4y Xpy= +0,0182—-0,167 +0,483 —0,256 —0,0538+0,0344 +0,0218 — 0,0086
dy Xoy=+0,190 —0,0231-0,242 +0,516 —0,240 —0,0477+0,0245+0,0060 .
4, X,5= +0,0060 +0,0245 — 0,0477 — 0,240 +0,516 —0,242 —0,0231+0,0190
4y Xgo= —0,0086+0,0218 + 0,0344 — 0,0538 — 0,256 + 0,483 — 0,167 +0,0182
4y Xg;= —0,0159+0,0161 +0,0745 + 0,0493 — 0,138 —0,520 +0,393 —0,0972
4y Xp9= +0,0134—0,0380 — 0,0586 +0,0391 + 0,186 +0,207 —0,254 +0,0823

Um nun diesen Gleichungssatz durch Iteration auswerten zu konnen, miissen
wir die gelenkige Durchlauftonne mit der halbseitigen Schneelast und den
dazugehorigen Knotenmomenten X, der steifknotigen Balkentonne belasten
und hierfiir die Stiitzenmomente 4, X, ., nach Abschnitt £, ermitteln. Zu
diesem Behufe setzen wir die Gl. (61) in die Gl. (56) ein und entwickeln die
Absolutglieder der letzteren in sin-Reihen. Integrieren wir dann unter Beriick-
sichtigung der Randbedingungen y'’ =0; y =0 fiir x =0, x = L und differentieren
einmal nach z, so ergeben sich die Enddrehwinkel &, ., der Gl. (38) und
daraus die gesuchten Stiitzenmomente zu

4y Xoy= —1,686+2,011= +0,325; 4, X,;= —0,614+0,910= + 0,296
Ay Xpp= +2,344— 3,081 = —0,737; 4, X55= +1,050— 0,946 = + 0,104
4y Xp3= — 0,694 +0,485= —0,209; 4, X4, = —0,437 +0,308= — 0,129
4y Xgp= —0,226+0,419= +0,193; 4; X,5= +0,173—0,079= + 0,094

(63)

Da nur ein Feld der Tonne mit Schnee belastet ist, diirfen auch die X, nur im
selben Feld angebracht werden. Diese 4, X, ,., der Gl. (63) sind nun in der
Rekursionsformel (62) an Stelle der X, ,,, zu setzen. Die so erhaltenen Ergeb-
nisse setzt man in Gl. (62) wieder an Stelle der X, , ;, und dies solange, bis
die Reste praktisch verschwinden. In unserem Falle lauten nach 18 Schritten
diese der Reihe nach

+0,000071; —0,00015; +0,00010; —0,00011; 4-0,00008; 0; 0.

Summiert man alle Teilwerte, so erhalten wir geniigend genau die Stiitzen-
momente der steifknotigen Durchlauftonne der Reihe nach zu

1+0,745; —1,191; —0,250; +0,383; +0,415; +0,036; —0,451; +0,412. (64)

Setzt man zur Kontrolle diese Ergebnisse wieder in die Gl. (62) und fugt die
Werte (63) hinzu, so miissen sich wieder die Momente (64) ergeben. Aus diesen
Stiitzmomenten folgen nach Gl. (41) die dazugehérigen Achsialkrifte und
somit die Lingsspannungen o¢. Setzt man die Stiitzenmomente (64) in die
Zwischengleichungen, in welchen die X, als lineare, homogene Funktion der
Stiitzenmomente X, ., dargestellt sind, so folgen die X,, zu
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2
Tﬂx— 0,0446sin >7 &

X,=—0,2609sin— x+ 0,1088 sin s

L

. 4 . b .
+0,02243111—1.1196——0,01265111%%—{—0,0077s1n6—L7Ix
. . 2 .
X,= —0,2925sm% -+ 0,10168111%910—0,0322 smg’gx
X . ba . 61
40,0127 sm—fx — 0,0060 sin —E—x 4+ 0,0039 sin I x
. . 2 .
X, = —0,0428 sm%x— 0,00619 smTTrx+ 0,0057 sm—ngx (65)
. 47 . ba . 67
—0,0043s1n—L—x+O,Ol59s1nTx—0,0016s1nTx
. 2 .
Xy;=—0,0857 sin—Z— x—0,0864 s1n—j.:7zx+ 0,0260 smgfwx
. 4 . b .
—0,0095 smT’Tx +0,0041 sm—i—rx —0,0024 sin 9—; x
. . 27 . 37
Xe=—0,0913 smf x—0,0739 81n—E—w+ O,OQQSSIHTw
. 4 . b .
—0,010981n—-L71x+O,OO64Sln{—x—O,OO41s1n67?x

Diese stellen gleichzeitig die Knotenmomente im unbelasteten Feld der Durch-
lauftonne dar. Addiert man Gl. (61) und (65), so erhalten wir die Knoten-
momente des belasteten Feldes. In Fig. 9b sind alle X, dargestellt. Belastet
man die linke gelenkige Balkentonne mit dem Schnee, den X,, den X, und
den Wirkungen X, ,.,, X, ., an den Stiitzen, so ergeben sich aus den dazu-
gehorigen y1V ., die Biegemomente M o,p+1 der einzelnen Falten. Daraus folgen
nach Gl. (41) die Normalkréifte N, ., so dal die Léngsspannungen ¢ daraus
folgen. Fiir die beiden Feldmitten sind diese fiir die gelenkige und steifknotige
Durchlauftonne sowie fiir die steifknotige Balkentonne in Fig. 9a dargestellt.
Da es sich um ein gleichartig gestaltetes und belastetes Faltwerk handelt, sind
fiir die gelenkige Tonne diese Diagramme zueinander affin. Bei der steif-
knotigen Tonne trifft dies nicht mehr zu, da wohl die einzelnen Glieder der
Gl. (61) und (65), aber nicht die vollstindigen Funktionen der X, und X,
gleichartige Belastungen darstellen. Aus den 4V folgen auch leicht die Durch-
biegungen y selbst, aus welchen man in bekannter Weise die gesamten Ver-
formungen bestimmen kann (siehe Fig. 9¢.). Setzt man die X, bzw. X, in die
Gl. (55) und die so gewonnenen P in die Gl. (54), so erhalten wir die Schub- .
fliilsse der Balkentonnen und daraus mittelst der Gl. (35) diejenigen der durch-
laufenden Tonnen.

Infolge der Symmetrieverhiltnisse ergeben sich durch Spiegelung und
Gegenspiegelung die Werte fiir Vollbelastung eines oder beider Felder sowie
fiir gleich- oder wechselstindige halbseitige Belastung beider Felder.
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H. Zusammenfassung

Das Studium der Fig. 9a, b, ¢ ergibt:

1. Gelenkwerke

a) Die Lingsspannungen weisen bei alternierenden Vorzeichenwechsel
scharfe Spitzen auf.

b) Die lastfreie Héalfte tragt nur wenig mit.

c) Bei Belastung beider Halften eines Feldes verschlimmern sich die
Ubelstinde a).

d) GroBle Durchbiegungen bis 18 cm. Die dadurch bedingten Wirkungen
2. Ordnung gefihrden wahrscheinlich schon den Bestand des Tragwerkes. Aus-
steifende Zwischenscheiben sind unbedingt erforderlich.

e) Die Durchlaufwirkung beseitigt diese Ubelstdnde nicht grundsitzlich,
sondern mildert sie nur quantitativ.

f) Das unbelastete Feld wird noch erheblich beansprucht. 3:2:1.

g) Die o-Diagramme sind zueinander affin.

11. Steifknotige Systeme

Die Nachteile a) und b) verschwinden.

c) Bei diesem Lastfall wird die Verteilung der o ober- und unterhalb der
waagrechten 1—7 fast vollstdndig linear, wodurch der innere, innige Zusam-
menhalt des Tragwerkes erwiesen ist.

d) Kleine Durchbiegungen bis 1,1 cm. Zwischenscheiben mcht notig.

e) Die Durchlaufwirkung verbessert alle Belange.

f) Das unbelastete Feld trigt nur wenig mit 1:1:0,25. Ahnlich wie bei
durchlaufenden, rings gelagerten Platten bleibt die Wirkung im wesentlichen
auf das belastete Feld beschrinkt.

g) Die o-Diagramme sind fast affin.

Zusammenfassend kann gesagt werden, dafl die Steifknotigkeit und die
Durchlaufwirkung das Tragverhalten der Faltwerke aullerordentlich verbes-
sern. Bedenkt man, dall diese beiden konstruktiven MaBnahmen im Stahl-
betonbau keinerlei Mehrkosten verursachen, ja sogar die absichtliche Ausschal-
tung dieser statischen Wirkungen meistens zusétzliche Kosten verursachen, so
kommt den gewonnenen Ergebnissen eine grofle Bedeutung zu.

Die hier behandelten Tragwerke haben einen hohen Grad von statischer
Unbestimmtheit. Diese weist 3 Stufen auf.

a) Die eigentliche Faltwerkswirkung, erfaflt durch die GI. (5), (5').
b) Die Steifknotigkeit, erfat durch die Gl. (30), (30").
¢) Die Durchlaufwirkung, erfat durch Gl. (38) und (50).
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Diese Stufen werden nacheinander aufgelést. Und zwar

1. bei der gelenkigen Durchlauftonne durch aufeinander folgende Anwen-
dung der Gl. (5) und (38),

2. bei den steifknotigen Balkentonnen durch aufeinander folgende Benutzung
der Gl. (5) und (30), und schlieB3lich

3. bei den steifknotigen, durchlaufenden Systemen durch aufeinander folgende
Auswertung von GI. (5), Gl. (30) bzw. (30") und nachheriger Verkniipfung
von b) und ¢) durch Gl. (50).

Eine weitere Aufspaltung einer exakten Gesamtlésung ist nicht mehr mog-
lich. Dies ist auch gut so, denn ist die Behandlung eines unbestimmten Trag-
werkes einer stufenweisen Aufgliederung gar zu leicht zugéinglich, so hat das
System meist nur einen geringen Grad von innerem Zusammenhang und von
Flachenwirkung, was wir ja bei unseren Faltwerken nicht wiinschen.

J. Stiitzenbewegungen

a) Voruntersuchungen

Man kann eine solche geniigend genau als kleine Drehung & um eine
Momentenachse 0 darstellen, solange sie die iibliche Groflenordnung von Ver-
formungen nicht iiberschreiten.

Wir zerlegen das durchlaufende System wieder in einzelne Balkenfaltwerke
und héngen diese in achsialer Richtung nach Fig. 8 in je einem Punkte C
zusammen. Jede Lagerscheibe ist durch 3 in ihrer Ebene liegende, lineare
Festhaltungen gelagert, die in Richtung der Faltwerksachse verschieblich
sind. Die Stuitzungsscheiben sollen wieder so geartet sein, dal} sie normal zu
ihren Achsebenen gerichtete Krifte nicht aufnehmen konnen.

Zunichst miissen wir die inneren Krifte erfassen, die in den Balkenfalt-
werken entstehen, wenn sich die Stutzscheiben zueinander achsnormal ver-
schieben. Die Anschauung ergibt, dafl dadurch in den achsialen Verbindungs-
stellen ¢ keine Krifte entstehen, so da3 man die einzelnen Balkenwerke auch
getrennt voneinander behandeln kann. Die Auflagerreaktionen dieser Balken-
systeme konnen nach dem bisher gesagten nur aus ebenen, in den Lagerschei-
ben wirkenden Kriaftesystemen bestehen. Da nur die Wirkungen der Stiitzen-
bewegungen allein untersucht werden sollen, das heit, dall zwischen den
Lagerscheiben keine dulleren Lasten angreifen, ergibt die Momentengleichung
um irgend eine in den Lagerscheiben liegende Achse, daf3 die Auflagerreaktio-
nen nur zwei Torsionsmomente M, sein kénnen.
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b) Gelenkige Balkensysteme

Da nun achsiale Lasten n,_; , nicht vorhanden sein kénnen, verschwinden
nach den bisherigen Darlegungen die rechten Seiten der Gl. (5’), und es wir

7,/ =0 und 7, = konstant. (66)

«) Offene Querschnitte

Bildet man fiir einen solchen die Gl. (14), so ergibt sich bei Beriicksichtigung
der beiden freien Rénder 7,=7,, =0, daB alle 7, =0 werden, was nach dem bis-
her gesagten ein Verschwinden aller inneren Kréfte zur Folge hat. Die Kanten
erfahren keine Lingsdehnungen.

B) Geschlossene Querschnitte

Auch bei diesen folgen aus den Gl. (5") wieder die Gl. (66). Bezeichnet man
T,=,-L, so ergeben die Gl. (14)

T,=T,=....="T. (67)

Die Momentengleichung einer Falte n — 1, n liefert

_ km,n+ h’m, n+1 _ kn——l,n
Qn,n= 7 T=—52T. (68)
Beachtet man, daBl die Achsiallasten n, ; ,=0 sind, so folgt durch Einsetzen
von (67) und (68) in Gl. (5), dal diese dadurch identisch befriedigt werden.
Stellt man fiir irgend eine achsparallele Gerade die Momentengleichung

fiir eine Lagerscheibe auf, so erhalten wir mit Gl. (68) das Torsionsmoment zu

T
MT = ZV Qv-—l,v'rv—l,v L ZV 1,v Ty—1,v= L : 2F7 (69)

wenn F den Flicheninhalt des Querschnittes darstellt. Setzen wir den in der
Lagerscheibe wirkend gedachten Hilfsangriff (M;=1) an, so folgt der Ver-
drehungswinkel ¢ zu

9= Z va-—lv v— lvdx, (70)

v—l v

wobei die O, ; , die zu (M, =1) gehorigen Querkrifte darstellen. Mit (68) und
(69) geht dies in

L
— MT hv~1,v M L vl,v
b=ima fd = iral g ()
0

v—1,»v v—l, v

iiber, wenn d,_, , die Faltendicken bedeuten. Daraus folgt mit (69) die fiir alle
Kanten gleiche Schubkraft 7' zu
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T=__g£_q—.ﬁ (72)

v—1,v
ZV dv—l,v
Bei dieser Torsion bleibt nur die Drillungsachse in Ruhe. Fillt diese mit der
Momentenachse nicht zusammen, so erfihrt die Auflagerscheibe noch zusétz-
lich eine Translation &-a. Nach den unter Punkt a) dieses Abschnittes dar-
gelegten Auflagerbedingungen kann das Balkenwerk diese letzte Bewegung
als starres Gebilde mitmachen, ohne dafl hierbei neue Zwinge auftreten, so
dafl durch Gl. (72) die inneren Kréfte ganz erfal3t sind.

c) Steifknotige Balkensysteme

Bringen wir im Knotenpunkt » des gelenkigen Balkenwerkes ein konzen-
triertes Knotenmoment (X, =1) an, so entstehen in der Falte n—1,n die

Querkrifte

! " !
Q%ll,n:fkn—l,n; Q;zz—l,nz __Ll“kn—l,n (73)

und auBerdem M, ; ,, N,,_;,. Die Winkelinderung 49{" ergibt sich, wenn
M, 1, Nyvns @n1, die durch relative Stitzenbewegung verursachten
inneren Krifte bedeuten, zu

n M, — N, 1, N, —1Lv ~My—1,v
A&;)=ZVJ< VEVJSJI'&V 1,V+ V_El’;w gaV l,v_’_Qvé,}Fg’ 1, )dx (74)
v—1,v v—1,v

v—1,v

Da M, ; ,und N, ,, Null werden, verschwinden zunichst die beiden ersten
Glieder. Beachtet man, daB die ¢, , , je Falte konstant sind, so ergibt sich
mit (73) auch das dritte Glied zu Null, so dal Winkelinderungen 4, und
somit auch Knotenmomente X, nicht auftreten. Wir kénnen daher zusammen-
fassend sagen:

,,Verschieben sich bei einem nach Fig. 3 gelagerten, steifknotigen oder
gelenkigen Balkenfaltwerk die Lagerscheiben achsnormal zueinander, so ent-
stehen nur bei Tragwerken mit geschlossenen Querschnitten Torionsspan-
nungen nach Gl. (72). In allen iibrigen Fillen bleiben bei diesen Verformungen
die Tragwerke spannungslos.*

Die Auflagerverschiebungen in Richtung der Faltenebene ergeben sich
nach der Kinematik zu

l(/‘i)l,v = 0 7]1/—1,1/? (75)

wenn die 7, ,, die lotrechten Abstéinde der Falten vom Momentanpol 0
bedeuten. Sind 3 von ihnen bekannt, so kann die Momentenachse und der
dazugehorige Drehwinkel bestimmt werden, oder anders ausgedriickt: Durch
3 von ihnen kénnen die anderen linear homogen ausgedriickt werden. Also

y[x,—l,[.b = a'yn—l,n+b'yn,n+1+c'yn+1,n+1° (76)
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d) Durchlaufende Systeme

Mit diesen Ergebnissen kénnen wir nun leicht die Einfliisse der Stiitzen-
bewegungen auf diese Tragwerke ermitteln.

«) Gelenkwerke

Da in den durch Zerschneidung gewonnenen Balkenwerken auch die
Stiitzenbewegungen keine oder nur konstante Schubfliisse entstehen, bleibt die
Giiltigkeit der GL. (37) bestehen. Durch die Verschiebungen y{*; , entstehen aber

an den Lagerscheiben gegenseitige Verdrehungen der Faltenenden von der
GroBe

(p—1 (w) +1
V’il,l)! Vlil,v Sz’i)l,v ysfil,z

7 T -7 + 7 . (77)
pn—1, w1 pu oy pt1 s pt1

Dabei konnen die y entweder nach (75) oder nach (76) angegeben werden. Fiigt
man die (77) zur rechten Seite der Gl. (38) hinzu und 16st diese auf, so erhalten
wir die Einfliisse der Stiitzenbewegungen auf die Stiitzenmomente dg,; X, , .
Der weitere Gang der Rechnung ist der gleiche wie bei Abschnitt £,. Handelt
es sich um geschlossene Querschnitte, so sind zu den iibrigen Schubfliissen die
der GI. (72) hinzuzufiigen.

B) Steifknotige Tragwerke

Fiihrt man die in Abschnitt £, geschilderten Uberlegungen im Geiste noch-
mals durch, und bedenkt, daB durch die Stiitzenbewegungen in den steif-
knotigen Balkenwerken keine Knotenmomente entstehen, so erkennt man,
daB zundchst die iibliche Iteration, jedoch mit den vorherigen Ag,,; X%, , des
gelenkigen Durchlaufsystems als Eingangswerte durchzufiihren ist. Fiigt man
das Summenergebnis zu den dg, X%, , hinzu, so erhalten wir die durch die
Stiitzenbewegung verursachten Stiitzenmomente des steifknotigen Durchlauf-
werkes. Der weitere Verlauf der Rechnung bleibt ungedndert. Handelt es sich
um geschlossene Querschnitte, so sind zu den iibrigen Schubfliissen die Werte

(72) hinzuzufiigen.

Zusammenfassung

Steift man prismatische Faltwerke durch Querscheiben aus und lagert
diese fest auf, so erhilt man ,,Durchlaufende Faltwerke‘‘, welche hier erst-
malig genau untersucht werden. Hierfir wird zunéchst der Sachverhalt an
den gelenkigen Balkenfaltwerken geklirt, wenn an diesen konzentrierte Einzel-
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lasten und Momente angreifen. Mit diesen Ergebnissen wird dann fiir gelen-
kige Durchlaufwerke bewiesen, dall man bei diesen immer dann, wenn die
von den Querkriften herrithrenden Verformungen vernachlissigt werden
kénnen, die verschiedenen Falten einzeln als gewohnliche Durchlauftriger
behandeln kann. Nach einer Betrachtung iiber steifknotige Balkenfaltwerke
wird die Theorie der steifknotigen durchlaufenden Faltwerke erortert. Der
dabei auftretende hohe Grad der statischen Unbestimmtheit wird bewiltigt,
indem man die drei Ursachen der letzteren, namlich die eigentliche Faltwerks-
wirkung, die Steifknotigkeit und endlich die Durchlaufwirkung entsprechend
ihrer kettenartigen Zusammenhénge nacheinander auflost. Wiahrend bei den
gelenkigen Tragwerken die bekannten Mingel durch die Durchlaufwirkung
nur quantitativ, aber nicht qualitativ gemildert werden, tritt durch letztere
bei den steifknotigen Systemen in jeder Hinsicht eine wesentliche Verbesse-
rung des gesamten Tragverhaltens ein. Im letzten Abschnitt wird der Einfluf3
der Stiitzenbewegungen sowohl fiir offene als auch fiir geschlossene, gelenkige
und steifknotige Tragwerke untersucht.

Résumé

Si I’on renforce des poutres-cloisons prismatiques a ’aide de parois trans-
versales et si on les fait porter sur des appuis fixes, on réalise des ,,systémes
continus de parois portantes‘, qui sont étudiés ici avec précision pour la
premiére fois. I.’auteur expose tout d’abord le comportement spécial de ces
systemes sur les poutres en parois portantes articulées, auxquelles on applique
des charges concentrées et des moments. En tablant sur ces résultats, 1’au-
teur montre que dans le cas des ouvrages continus articulés et lorsque les
déformations provoquées par les efforts transversaux peuvent étre négligées,
on peut toujours traiter les différentes ,,cloisons individuellement comme
des poutres continues ordinaires.

Apres avoir examiné les systémes de poutres-cloisons a nceuds rigides,
l’auteur expose la théorie des parois portantes continues & nceuds rigides.
Le haut degré d’indétermination statique qui se manifeste ici peut étre sur-
monté par analyse séparée de ses trois causes: effet particulier de paroi por-
tante, rigidité des nceuds et enfin effet de continuité. Tandis que dans les
systémes porteurs articulés, on ne peut remédier que quantitativement, mais
non pas qualitativement aux défauts connus en faisant intervenir 1’effet de
continuité, dans les systémes & nceuds rigides, cet effet permet de réaliser
a tous égards une notable amélioration du comportement général.

Dans un dernier chapitre, I’auteur étudie I'influence des mouvements des
appuis, tant dans les systemes porteurs ouverts, que dans les systémes fermés,
articulés et rigides.

14 Abhandlung XII



200 Ernst Gruber
Summary

If cylindrical beams of prismatic cross-section are stiffened by transverse
slabs and these beams are fixed at the ends, ‘“‘continuous cylindrical beams of
prismatic cross-section’ are obtained which are here accurately examined for
the first time. For this purpose, what happens in the case of hinged cylin-
drical beams is first explained, when these are subjected to concentrated single
loads and moments. With these results it is then shown for such hinged con-
tinuous structures that with these, if the deformations originating from the
transverse forces can be neglected, the different plates may be treated sepa-
rately as ordinary continuous girders. After a consideration of rigidly jointed
cylindrical structures, the theory of rigidly jointed continuous cylindrical struc-
tures is discussed. The high degree of static indetermination then occurring
is got over by solving the three causes of the latter one after the other, namely
the actual structural action, the joint stiffness, and finally the continuous
effect corresponding to the chainlike connections. Whilst in the case of jointed
supporting structures the well-known defects are diminished by the continuous
action only quantitatively and not qualitatively, in the case of the rigidly
jointed system the latter cause a considerable improvement in the whole
supporting behaviour in every respect. In the last section of the paper, the
influence of movements in the supports is considered for various kindsxof
supporting structures, open and closed, hinged and rigidly jointed.
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