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Model Verification of the Classical Flutter Theory as Adapted to the
Suspension Bridge '

Bestitigung der klassischen Schwingungstheorie der Hdangebriicken
durch Modellversuche

" Vérification sur modéles de Papplication aux ponts suspendus de la théorie
classique du battement

F. B. FARQUHARSON, Director Engineering Experiment Station and Professor Civil
Engineering, University of Washington

Introduction

In the course of laboratory investigations, in the year 1943, of a full model
of the original Tacoma Narrows Bridge, a modification of the original section
was made involving a complete fairing of the form shown in Fig. 1.

When this model was subjected to horizontal winds up to the equivalent
of 117 mph on the prototype in successive increments it was found to be
stable in all regards?!). At each wind increment several modes of notion, both
vertical and torsional, were forced to rather substantial amplitudes only to

r—r—rrT

Fig. 1

decay almost instantly. At wind velocities above the equivalent of 117 mph
it was found that a forced torsional oscillation beyond a certain moderate
amplitude resulted in a rapid augmentation of amplitude which was almost
explosive in nature whence it became necessary to secure the model by hand
in order to prevent its destruction.

1) “Aerodynamic Stability of Suspension Bridges with Special Reference to the
Tacoma Narrows Bridge”, University of Washington, Bulletin No. 116. “Part I1I —
The Investigation of Models of the Original Tacoma Narrows Bridge under the Action
of Wind”’, by F. B. FARQUHARSON.
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Although it was not recognized at the time, there was witnessed here a
typical manifestation of flutter in which a vertical mode and a torsional mode
of similar wave form and frequency were coupled.

This phenomenon was not remarked again until the construction of a new
full model for the proposed rebuilding of the Tacoma span was complete. In
its original form the design incorporated a topdeck — truss-stiffened arrange-
ment in which the deck was essentially a thin flat plate modified by sidewalk
curbs on top and stringers underneath. During early tests on this model, it
was observed that the fundamental torsional motion forced by an appropriate
wind developed a frequency somewhat less than the natural frequency for
this mode. It was likewise noted at this time that the center of rotation in
torsion was often sharply shifted up-stream. Again the significance of these
typical indications of flutter remained unappreciated although the shift of the
center of rotation was recognized as the result of the coupling of a vertical
and a torsional mode. Subsequently similar indications of flutter were observed
on section models with both one and two degrees of freedom. Dr. FRIEDRICH
BLEICH was the first to recognize the significance of these experimental findings
and his investigation into their meaning resulted in the rationalization of the
classical flutter theory for application to the suspension bridge?).

Model Testing Procedure

In the course of Dr. BLEICH’S theoretical studies of the flutter problem on
suspension bridges, certain laboratory tests were proposed for the purpose of
examining the applicability of the theory. These tests were carried out at the
University of Washington on a thin flat plate mounted as a section model with
two degrees of freedom. Since it was desirable to investigate several variations

L[: b=6" ‘&
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(‘t Flat plate square edge ‘(
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Rounded edge E 17 %
0. ‘?0”
Sharp edge £ Yz 2z
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2) “Dynamic Instability of Truss-Stiffened Suslc}ension Bridges under Wind Action”,
by FriepricH BLeicH, A.S.C.E. Transactions Vol. 114, 1949 p. 1177.



Model Verification of the Classical Flutter Theory as Adapted to the Suspension Bridge 149

of the condition at the leading and trailing edges of this model a basic model
was constructes from magnesium sheet and copper.

The basic model was a built-up section 12 in. wide and 60.75 in. long, and
0.25 in. thick. For model A, the edges were square, while for models B and C
the edges were semi-circular and sharp respectively, to minimize vortex
discharge in a horizontal wind and thus approach the theoretical conditions
of an infinitely thin flat plate (see Fig. 2). For model A, with square edges,
the depth-to-width ratio was 0.0208, bringing into play small vortex forces.

For models G-1 and G-2, model A was used with rudimentary girder webs
of fiberboard 0.012in. thick, attached to the edges to give depth-to-width
ratios of 0.05 and 0.067 respectively. A wood model, H, 13.21 in. by 1.58 in.,
with semi-circular edges was available and was tested for purposes of com-
parison, although its depth-to-width ratio was 0.12. '

]]/' Statham gage
Spring housing
"‘
Spring connection
= |

Restraining wires

Flexure

Fig. 3

The mass properties of the various models (including attachments, end
plates, and one-third of the mass of the springs) are shown in Table I. These
properties differed little and all models were tested on the same set of carefully
matched coil springs which provided two degrees of freedom and permitted
the model to move vertically and at the same time to rotate about a longi-
tudinal axis. However, models G-1 and G-2 were also tested with added mass
to alter the vertical and torsional frequencies and again with torsional spring
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action of three different values acting in parallel with the vertical springs in
order to further modify the relative vertical and torsional frequencies.

Details of the coiled spring mountings are shown in Fig. 3, and the arrange-
ment of double restraining wires (Type II), used to resist the static wind
pressure and to prevent sway and interference with the spring housing, is
- shown in Fig. 6 of the paper “Mathematical Prediction of Suspension Bridge
Behavior in Wind from Dynamic Section Model Tests’” by GEORGE S. VINCENT
(Page 303 of this volume). Figure 4 illustrates the restraining wire arrange-
ment (Type I) used when it was desired to increase the torsional resistance.
In both arrangements the wires were anchored so far from the model that the
vertical component of their tension was small and offered negligible resistance
to the vertical oscillation. However, when the single wire was attached to
both supports of the model (Fig. 4) the vertical component of that portion

Fig. 4

between the two model supports was significant and for small angular motion,
increased nearly in proportion to the angle of rotation. Alteration in the
magnitude of the tensioning weight shown in Fig. 4 acted to vary the stiffness
of this parallel spring action and provided a considerable range of variation in
torsional frequency. This device acted as a spring which opposed the torsional
motion, but not the vertical motion, corresponding to the torsional rigidity
of the towers and the suspended structure of a suspension bridge.

End plates were used on all of the models as a device for providing a con-
dition of infinite aspect ratio by preventing air circulation around the ends of
the models. However, it has appeared, in connection with many comparison
tests with and without end plates, that for any aspect ratio (length to width)
in excess of 4.5 the end effect is negligible.

11 Abbandlung XII
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The motion of the model was recorded on a Brush magnetic oscillograph,
receiving the amplified output of & Statham unbonded wire resistance strain
gage incorporated in the support of one of the springs. This gage responds to
the changing inertial force on the spring, and can be calibrated to record the
motion. ' '

The values of w, and w,, the circular frequencies (radians per second) of
the vertical and torsional oscillations of the models, were determined by manual
excitation of these modes in still air. When the model was excited in torsion
in a wind stream the frequency was less than in still air and the axis of rotation
was no longer on the longitudinal axis of the model but was shifted up-stream
several inches. The flutter frequency, w, at the critical velocity, V, (ft. per sec),
is recorded in Table I, at zero degrees angle of attack, for each model, together
with the observed value of k,=wb/V,.

The logarithmic decrements, 8, in still air at a double amplitude of 0.95in.
in the case of vertical oscillations and at 9° in the case of torsion, are shown
for comparative purposes only in Figs. 5 to 10. Previous tests of the same
springs with streamlined weights of about the same mass as these models
showed 6, the logarithmic decrement due to structural damping, to be about
0.002. This value, when subtracted from the recorded values of §,, leaves §,,
the logarithmic decrement arising from aerodynamic damping. These tests
demonstrated that the aerodynamic damping, as measured by the logarithmic
decrement, increases with amplitude — that is, with the velocity of vibration.
This increase is an indication that the air forces opposing the oscillation vary
as the square of the velocity in accordance with Froude’s Law.

Analysis of Tests on Various Models

When model A was subjected to a wind at angle of attack 8=0 and manu-
ally excited as the wind velocity was increased by small increments, the center
of rotation was observed to shift up-stream on a steadily steepening curve
until a velocity of 11.0 fps was reached (see Fig. 5). This wind velocity cor-
responded very closely to the observed critical velocity V, (the flutter velocity)
in coupled motion. Further increase in wind velocity caused the center of
rotation to move further up-stream but along a line of much reduced slope.
The range of wind velocities used in this test was limited to 16.5 fps by the
increasing violence of the motion beyond V, where the model was self-excited
and rapidly reached catastrophic amplitudes. At the maximum wind velocity
reached in this test the center of rotation had moved to a position 1.4 in. ahead
of the leading edge of the model. N

Observations of variation in frequency with wind velocity are also recorded
in Fig. 5 where the shift was from N =84 cpm in still air to N =74.7 cpm at
the maximum velocity reached. :
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Between V =10.1fps and 10.8 fps, the frequency was found to remain
constant at 78 epm (w = 8.16 radians, which is seen to lie between the observed
values for w; and w,) and the response curve characteristic of this condition

shows a backward slope and is unstable — that is, there is no steady state
amplitude (see curve 8=0 in Fig. 6). This condition characterizes the flutter
phenomenon.

It is interesting to note that another region of constant frequency with
increase in velocity exists between V =7.5 fps and 8.2 fps. It is possible that
a mild non-catastrophic torsional response would have been developed in this
region if the damping could have been sufficiently reduced.

For the flat plate models A, B, and C, the theoretical flutter velocity, V,,
and the flutter frequency, w, were computed according to the method of
BLricH?). The application of this theoretical equation is simplified on a section
model (with two degrees of freedom) where the frequencies w; and w, are
associated with the same displacement form. The logarithmic decrement of
structural damping 8,=0.002 which applied in these tests had a negligible
effect on V, as was demonstrated by BLEIcH where it was found that a damping
equivalent to 6 =0.05 increased V, by only about 69, %). The structural damping
arising from the model suspension was therefore neglected in these tests.

The curves in Figs. 6 to 10 show amplitude plotted against wind velocity
for various models. The critical velocity is that velocity at which the curve
intersects the velocity axis. It will be observed that some of these curves slope

%) BLEICH, op. cit., equ. 59 (with D=1), p. 1200.
%) BLEICH, op. cit., p. 1207.
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backwards and others forward. The plotted points on these two types of curve
are obtained by two entirely different procedures. When, for a condition which
yields a backward sloping curve (for example 8 =0 in Fig. 6), the wind velocity
is slowly increased, no motion will be observed until the critical velocity is
surpassed, whereupon motion begins spontaneously and the amplitude increa-
ses indefinitely. However if, at a velocity V =11.1 fps the model is manually
excited to a double amplitude of 6.8° motion will quickly decay to rest. If,



Model Verification of the Classical Flutter Theory as Adapted to the Suspension Bridge 155

Flat plate
12"x 6075”2 025" d/2b = 00208
With end plstes Free springs
Sharp edges
Symbol | 8 w 7 Motion Frequency & AT DA.
% Radjsec | FPS Vertical w, = 672 | 00217 - 095"
) 0°| 465 1232 - — - -
lorsional = 942 0071 - 9°
7 o | 2°| ge3 L T 22 ’9 0 i
a 41 87 165 = A ’/0
2 ™ 6° 888 933
(o] 8° 890 890 A
0
, \

Double amplitude - degrees

Theoretical Vp AT 8 =0°

e — e e ]

\
|
1
|
\

0 2 . 4 6 8 ” ”? % 15
Wind velocily — Ft/sec

Fig. 8
Thick plate
1321" x 158" x 60, 75" d/2b = 0197"
With end plates Free springs
Rounded edges
Symbol | 8 B ;o Fl:g-s Motion Freguency dop AT DA
- aa/sec Vertical w, = 692 | 00046 -095"
° ; 7
a4 eeT " | e Torsional | w, = 972 | 040031 - 9°
% D 2° 875 1,50 | |
4°| 876 10,98 B=  4°2°0°

A
2 %

0

: ]
; |
|

|

Dovble amplitude - degrees

0 2 4 I3 8 0 4 7 3
Wind velocity - Ft/sec

Fig. 9

while maintaining this same velocity, motion is excited beyond 7.2° of double
amplitude, then the motion will increase indefinitely. The plotted points are
obtained through experimentally applied amplitudes until the unstable point,
below which motion will decay, is revealed.

A backward sloping curve also indicates that if, at velocities slightly below
the critical value, the model is disturbed by any means so that its displacement
reaches the amplitude indicated by the curve for that velocity, then the
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motion will increase indefinitely. In other words, an increase in either velocity
or displacement which plots to the right or above the curve precipitates
instability.

A response curve which slopes forward has an entirely different meaning.
At any velocity above the critical, it shows the steady state amplitude which
will be built up and maintained until the velocity is increased or decreased.
Though this type of response often becomes catastrophic when the velocity
increases, its stability or steadiness of amplitude at a given velocity is in
contrast to the instability of pure flutter. This condition is attributed to the
combined action of the flutter forces and other forces induced by vortex action
discharged from the leading edge. (For different shapes, the relative influence
of flutter and vortex force can vary over a widerange including many shapes
for which flutter is essentially non-existent.) These vortices, readily visualized
by smoke stream tests on stationary and oscillating models, may at first be
discharged at some multiple of the natural frequency of the model, but when
vibration begins they rapidly take on the frequency of the vibration, giving
rise to zones of modified pressure moving periodically across the section.

This type of response curve (with a positive slope) was found in a horizontal
wind on model G-2 only, having a d/2b ratio of 0.0667 (0.8 in. girder, Fig. 10).
When the angle of attack was increased to -+ 8°, it also appeared on model B,
the round-edged plate, Fig. 7. The vortex forces influence all of the other
response curves also, even though they do not reverse the slopes. A measure
of their influence is indicated by the difference between the observed critical
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velocities and the theoretical values, at 8=0, which are shown in Figs. 6, 7,
and 8.

In Fig. 11 the amplitude response curves for the various sections in a
horizontal wind are plotted against k, which places them on a common basis,
except for the small effect of minor differences in mass distribution. (The slope
of these curves is reversed as compared with that obtained when amplitude
was plotted against V.) The presence of the vortex forces tends to reduce the
critical velocity and increase k,, this effect naturally being greatest for the
blunt sections and least for the round-edged and sharp-edged ones. The marked
influence of streamlining is shown by the relative position of the curve for
model H (Fig. 11), which has a d/2b ratio nearly twice that of the deeper
girder section, yet shows a vortex effect only 129, greater than does the thin,
square-edged model A. It should not, however, be concluded that streamlining
affords the solution to objectionable oscillation. While it does reduce vortex
forces and therefore increases the critical velocity, it does not insure a safe
section, if a violent flutter, which it cannot eliminate, falls within the range of
possible wind velocity. Such a streamlined section was mentioned in the
opening paragraph where d/2b=0.17, yet the full model predicted a violent
flutter on the prototype at wind velocities above 120 mph.

Generalized Theory and Its Application

In his generalized theory of the dynamic stability of truss-stiffened suspen-
sion bridges, Dr. BLEICH has extended the classical flutter theory of THEO-
DORSEN %), which assumed a perfectly streamlined thin flat plate, by taking into -

5) “General Theory of Aerodynamic Instability and the Mechanism of Flutter’’, by

T. THEORDORSEN, Technical Report No. 496, National Advisory Committee for Aero-
nautics, Washington, D. C., 1935, p. 419, equations XVIII and XX,
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account the more or less marked effect of the particular shape of the cross-
section of the suspension bridge in the vicinity of the leading edge. The resul-
ting theory is based on three assumptions as follows:

1. The air forces acting on the flat plate, as defined by the Theodorsen equa-
tions are not unduly influenced by the periodic lift force ¥, which is assumed
to be of a magnitude comparable to that of the flat plate forces.

2. The frequency of the vortex shedding at the windward edge of the section
— the vortices assumed to be the source of the alternating force F, — is
controlled by the frequency of the oscillating structure.

3. The lift force F, is assumed to be a function of the wind velocity V, the
torsional amplitude @, and the first derivative 7 of the vertical amplitude.

The periodic lift force ¥, has been mathematically defined as:

- b 17\°)
F =2npbV2(A,+ B,i) ¢+7—)
n which 4, and B, are parameters depending on the shape of the cross-section
which may be determined by appropriate tests on section models of the design
under consideration. In simpler form, the above equation may be written

F,=2mpbV2{, (¢>+%}7—)

where f, = A,+ B,t

The magnitude and phase of the vortex force as represented by 4, and B,
was computed for model G-2 with a pivot installed on the axis of symmetry,
thus eliminating vertical motion. The appropriate Bleich equation?) was used
in which the experimental values of w, w, and k, obtained from the pivoted
test were employed. Experience had demonstrated that the steadier torsional
motion arising with a fixed center of rotation more than compensated for the
very slight pivot friction. Values of 4, and B, computed in this manner are
plotted against K in Fig. 12.

The theoretical values of w, V, and k, for the unpivoted model G-2 were
computed using values of 4, and B, taken from the curves of Fig. 12. These
theoretical values shown in Table I are in good agreement with the observed
values.

Although it might seem logical to compute A, and B, from tests on the
model with two degrees of freedom using the Bleich equation 82 with equation
598) substituted for 4, it has been pointed out by Dr. BLEICH that: “There is
no method of obtaining reliable values of these parameters [4, and B,] other
than computing them from observations on a model with fixed center of
rotation ...”’ ’

6y BLEICH, op. cit., equ. 71, p. 1209.
7y BLEICH, op. cit., equ. 89, p. 1214.
8) BLEICH, op. cit., p. 1211.
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As a demonstration of the lack of reliability of values of 4, and B, derived
from a model with two degrees of freedom these parameters were computed
for model G-2 with the pivot removed. Inspection of the last column in Table I
for models G-1 and G-2 show these values widely scattered. Values of 4, and
B, for model G-2 have been plotted in Fig. 12 where the scattering is evident,
especially for B, . ‘
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Effect of Fixed Center of Rotation on Response Characteristics

Section model tests in which the vertical mode was inhibited by fixing the
center of rotation were run during the design of the new Tacoma Narrows
Bridge. The center of rotation was fixed at the point observed for the natural
torsional mode excited in still air, with two degrees of freedom. The critical
velocities obtained in these tests were in surprisingly good agreement with
results obtained on the section model mounted with two degrees of freedom
and also with observations on the full model. It is now quite clear that this
agreement was purely fortuitous, and was brought about by an accidental
relationship between the magnitude of the flutter forces and the vortex forces.

As BLEICcH has pointed out for an oscillating system with two degrees of
freedom?): “The critical velocity and the flutter frequency... are controlled

%) BrEeICH, op. cit., p. 1211.
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by both the dynamic properties of the system and the lift force F,, the latter
depending on the particular shape of the cross section. With increasing magni-
tude of F,, the critical velocity V, decreases, whereas the flutter frequency w
increases, tending to approach the frequency of the natural torsional mode
which forms one of the components of the excited motion’’.

Now if the oscillating system is reduced to one degree of freedom by fixing
the center of rotation on the centerline of the model, the lift force ¥, at a
certain wind velocity at which the structural damping is voercome would
generate excited vibrations. Again quoting BLEICH regarding the effect of fixing
the center of rotation!?): ... the flat plate air forces, which are thought of as
acting simultaneously on the model, are damping forces, ... and delay the
excitation until a wind velocity is reached at which equilibrium exists between
the exciting and damping forces. ... The air forces that act on the flat plate
play the role of damping forces with the effect of delaying the start of the self-
excited vibration. The frequency of the excited vibration is reduced as com-
pared with the frequency of the motion in still air’’.

It is thus evident that the vortex force is the only force exciting vibrations
on a model restricted to one degree of freedom, whereas with two degrees of
freedom the model is subjected to excitation growing out of the flutter forces
as well as the vortex forces. There may be some value in examining the effect
of fixing the center of rotation on models A and G-2 where the vortex force is
much greater on model G-2 which was constructed by adding an 0.8 in. girder
to model A.

In fig. 13 the response curves with two degrees of freedom are replotted
from Figs. 6 and 10 and pertinent data from these tests will not be repeated.
Fixing the center of rotation on model G-2 resulted in a torsional response not
greatly different from that obtained with two degrees of freedom. The curves
are nearly parallel and the critical velocity was increased from 9.42 fps to
9.6 fps. The reduction in frequency (from the natural frequency in still air)
was about 49, in each case.

When the shallow girder was removed from the model, leaving model A,
the effect of fixing the center of rotation yielded a vastly different response.
With two degrees of freedom V,=11.3 fps, whereas with one degree of freedom
the critical velocity was well above V,=22.0 fps, which was the maximum
attainable in the tunnel. However, a few high amplitude points were obtained
on an unstable response curve as shown in Fig. 13. This portion of the response
curve was obtained in the same manner as that described previously for back-
ward sloping curves.

Again the excited frequencies were below that found for the torsional mode
in still air, but where the réductions on model G-2 were of the order of 49,
the removal of the girder raised the reduction from still air frequency to 119,

10y BLEICH, op. cit., p. 1213.
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at the highest amplitude recorded, and 279, at the lowest amplitude, with the
curve still falling off steeply. A curve of frequency as a function of wind
velocity, for model A — center fixed — has been added in Fig. 13. These
frequencies were measured on the unstable side of the amplitude curve, that
is, at the amplitude which just precipitated a flutter. This flutter response is so
vigorous that six or seven cycles only are required for the development of a
prohibitive amplitude, thus exact evaluation of frequency is difficult.

This brief investigation suggests that tests on section models with one
degree of freedom in the torsional mode will yield very misleading information
if the vortex force is reduced below some certain value which can only be
ascertained in the wind tunnel. This lack of correspondence between tests with
one and two degrees of freedom does not impair the value of the BLEICcH analysis
where the validity of the test with center of rotation fixed is amply sustained
as a legitimate device for evaluating the vortex force, ¥, ).

Verification of Theory. Illustrative Example

A series of tests were run on a /,; scale section model of the Golden Gate
Bridge and an instructive example is at ahnd in which the data recorded for
the model mounted with two degrees of freedom (8,=0.003) is in excellent

1) BrEIcH, op. cit., p. 1218.
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agreement with computations involving values of A, and B, derived from
tests with a fixed center of rotation, that is, one degree of freedom. The results
are recorded in Table II with the last column showing a conversion to proto-
type terms.

Table 11. Golden Gate Bridge

Prototype
Value Model Model Based on
) Observed Computed Computations
w (rad/sec) 11.40 11.17 1.29
N (cpm) 109.00 107.00 12.80
V, (fps) 9.40 9.20 54.30 (mph)

On the model with two degrees of freedom it was observed that the center
of rotation was shifted up-stream about 0.75 in. The computations based on
the pivoted model suggest that the angular amplitude was about seven times
as great as the vertical amplitude and the computed shift of the center of
rotation was 0.67 in. The close agreement between the theoretical and observed
" values of the flutter characteristics indicates that the basic assumptions under-
lying the generalized theory are approximately correct.

- Conclusion

For angles of attack up to 2° the response differs little from that in a
horizontal wind. From the limited observations available, it is believed that
the wind at some bridge sites may have an upward angle up to 6° or 8°. (Values
of this order were measured by the writer on the Golden Gate Bridge, San
Francisco Bay, California, during August, 1944.)

The conclusion seems inescapable that any truss-stiffened suspension bridge
will be subject to vortex forces in addition to flutter forces and that it will be
necessary to run wind tunnel tests on an oscillating model to determine the
values of 4, and B, in the air force function, f,=A4,+ B, .

Dr. BLEIcH’S mathematical treatment of the problem is especially valuable
because it takes into account both the flutter and vortex forces in the varying
proportions in which they may act on a given structure, particularly where
trusses and shallow girders are present in the stiffening system. It is a distinct
advantage that this method can make use of data from oscillating section
model tests; it does not rely on purely theoretical considerations for deter-
mining the important and sensitive parameters representing the vortex
influence. The analysis should be extended to cover vertical angularity of the
wind, if stability is to be assured for bridges at some sites.
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Appendix. Notation

A, and B, = coefficients in the expression for the lift force F;
b = half bridge width;
d = depth of girder;
F, = a periodic lift force acting at the leading edge;
f, = air force function (f,=A4,+ B,1);
i = imaginary unit (= y—1);
k = a dimensionless ratio (= “’76), k, = critical value of k; .
N = frequency in cycles per minute
N, = vertical motion;
N, = torsional motion;
V = wind velocity; V, = critical wind velocity;
B = angle of attack;
4 = a determinant;
0 = logarithmic decrement;
8o = logarithmic decrement in still air;
3, = logarithmic decrement of aerial damping;
8, = logarithmic decrement of structural damping;
n = dimensionless vertical amplitude (= %) ;
7 = first derivative with respect to time;
7 = vertical or bending amplitude;
p = mass density of air (assumed 0.00238 slug);
® = torsional amplitude;
w = flutter frequency;
w; = frequency of the vertical component of motion;
w, = frequency of the torsional component of motion.

12) “Mathematical Theory of Vibration in Suspension Bridges” by FRIEDRICH ByrEeICH,
C. B. McCurroucH, RICcHARD ROSECRANS, and GEORGE S. VINCENT. United States
Bureau of Public Roads, Government Printing Office.
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Summary

In the course of experimental observations on the behavior of wind actuated
suspension bridge models of girder-stiffened section similar to that of the
original Tacoma Narrows Bridge, it was noted that a reduction of the d/2b
ratio below 0.06 disclosed aerodynamic characteristics similar to those of a
thin flat plate.

The extension of this field of investigation to cover truss-stiffened sections
with a closed deck revealed a response under wind action which was also
characteristic of the behavior of a thin flat plate. The aerodynamic perfor-
mance of this type of section is controlled by the details of the structure in
close proximity to the windward edge of the deck.

~ Dr. FriepricH BLeicH has adapted the classical theory of wing flutter to the
requirements of the more complex structure of the suspension bridge and has
demonstrated that the vortex discharged by portions of the structure in the
vicinity of the windward edge of the deck always cause reduction of the critical
velocity which would occur on a flat plate of finite thickness at the onset of
flutter. In view of the wide variety of configurations at:the deck level of
existing structures, the determination of the aerodynamic forces acting on the
oscillating structure must remain a subject for laboratory investigation.

A series of tests were made involving a number of different models on
 which varying degrees of vorticity were developed at the windward edge of the
models by changing the form of the edge of the flat plate or by adding very
shallow girders. The models with minimum vorticity showed a critical velocity
approximately thirteen per cent lower than that predicted by Dr. BLEICH’S
analysis.

An additional series of tests were also available from a section model of the
Golden Gate Bridge from which the predictions are in good agreement with
calculated values. This model exhibited all of the typical characteristics of a
flutter phenomenon.

These verification tests have shown that the generalized theory developed
by Dr. BLEICH is capable of predicting the aerodynamic behavior of a certain
classification of suspension bridges with an accuracy which is entirely satis-
factory for evaluation of preliminary designs. A distinct advantage of the
method lies in its reliance on oscillating section model tests for the deter-
mination of the very sensitive parameters associated with the shape of the
bridge section.

Zusammenfassung
Im Laufe der Versuche iiber das Verhalten von Héngebriickenmodellen

mit Versteifungstrigerquerschnitt #dhnlich demjenigen der urspriinglichen
Briicke iiber die Meerenge von Tacoma’ unter Windbeanspruchung zeigte sich,
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daB eine Verkleinerung des Verhéltnisses d/2b unter den Wert 0.06 der diinnen:
ebenen Platte ahnliche aerodynamische Eigenschaften aufdeckt.

Die Ausdehnung dieser Forschungen auf fachwerkférmige Versteifungs-
triger mit geschlossener Fahrbahndecke ergab ebenfalls ein Verhalten unter
Windkriften, wie es fiir die ebene diinne Platte charakteristisch ist. Die Einzel-
heiten der Konstruktion in unmittelbarer Niihe des windseitigen Randes der
Fahrbahn bestimmen die aerodynamische Wirkungsweise dieses Querschnitts-
typs.

Dr. F. Bleich hat die klassische Theorie der Schwingungen von Fliigeln
den Erfordernissen des komplizierteren' Aufbaus der Héngebriicke angepaf3t
und gezeigt, dall der Wirbel, der sich stoBweise in der Niéhe des windseitigen
Randes von der Konstruktion ablost, immer eine Reduktion derjenigen kri-
tischen Geschwindigkeit verursacht, welche bei einer ebenen Platte endlicher
Dicke beim Beginn des Schwingens auftreten wiirde.

In Anbetracht der groBen Mannigfaltigkeit von Formen der Fahrbahn-
decken bestehender Konstruktionen mufl die Bestimmung der aerodynami-
schen Krifte, die auf eine schwingende Konstruktion wirken, Sache von
Laboratoriumsversuchen bleiben.

In einer Versuchsreihe an verschiedenen Modellen wurden an der wind-
seitigen Kante veranderliche Grade der Wirbelung entwickelt durch die Ver-
dnderung der Kantenform der ebenen Platte oder durch Anbringen sehr
niedriger Tréiger. Die Modelle mit minimaler Wirbelbildung zeigten eine kri-
tische Geschwindigkeit, die ungefihr 139, unter dem mit der Bleich’schen
Theorie berechneten Wert liegt.

Niitzlich war auBlerdem eine weitere Versuchsreihe mit einem Modell der
Golden-Gate-Briicke, bei dem die Voraussagen gut mit den berechneten Wer-
ten iibereinstimmen. Dieses Modell zeigte alle typischen Kennzeichen des
Schwingungsvorganges auf.

Diese Kontroll-Versuche haben bewiesen, dafl die allgemeine Theorie von
Dr. Bleich geeignet ist, das aerodynamische Verhalten einer bestimmten Art
von Hingebriicken mit einer fiir Vorprojekte durchaus befriedigenden Genauig-
keit vorauszubestimmen. Ein deutlicher Vorteil der Methode liegt darin, daB
sie sich fiir die Bestimmung der sehr empfindlichen, von der Form des Briicken-
querschnittes abhingigen Kennzahlen auf Schwingungsversuche mit Quer-
schnittsmodellen stiitzt. '

Résumé

Au cours des observations expérimentales sur le comportement vis-a-vis
du vent des modéles de ponts suspendus ayant une section renforcée par des
poutres, semblable & celle du pont original de Tacoma Narrows, il a été cons-
taté qu'un abaissement au-dessous de 0,06 du rapport d/2b mettait en jeu des
caractéristiques aérodynamiques analogues & celles d’une plaque mince.
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L’extension de ces recherches & des sections renforcées du type a contre-
fiches avec tablier fermé a mis en évidence un comportement a 1’égard du vent
qui est également caractéristique de la plaque mince. Le comportement aéro-
dynamique de ce type de section est conditionné par les éléments secondaires
de ’ouvrage, jusqu’a proximité immédiate du bord du tablier exposé au vent.

Le Dr. Friedrich Bleich a adapté la théorie classique du battement des
ailes aux exigences de la structure plus complexe que constitue le pont sus-
pendu; il a démontré que les tourbillons mis en jeu par les parties de 'ouvrage
situées au voisinage du bord sous le vent du tablier donnent toujours lieu &
une réduction de la vitesse critique qui se manifesterait sur une plaque mince
d’épaisseur finie au début du battement. Etant donné la large variété des
configurations que l'on peut trouver au niveau du tablier sur les ouvrages
existants, la détermination des efforts aérodynamiques qui agissent sur la
structure oscillante doit rester dans le domaine des investigations de labora-
toire.

I1 a été procédé a une série d’essais impliquant un certain nombre de modéles
différents sur lesquels on a fait agir des mouvements tourbillonnaires, au bord
sous le vent, en changeant la forme du bord ou en ajoutant des poutres de treés
faible hauteur. Les modéles qui présentaient le régime tourbillonnaire le
moins marqué accusaient une vitesse critique inférieure d’environ 139, a la
valeur prévue d’apres 'analyse du Dr. Bleich. .

, On a procédé également & une série d’essais supplémentaires sur un modele

de la section du Golden Gate Bridge; on a pu constater que les prévisions
étaient conformes aux valeurs calculées. Ce modéle présentait toutes les carac-
téristiques typiques du phénoméne de battement.

Ces essais de vérification ont montré que la théorie généralisée établie par
le Dr. Bleich est susceptible de fournir des prévisions concernant le comporte-
ment aérodynamique d’une certaine catégorie de ponts suspendus, avec une
précision entierement satisfaisante pour les études préliminaires. Un avantage
trés net de cette méthode réside dans ce fait qu’elle s’appuie sur des essais
d’oscillation de modeéles de sections pour la détermination des parameétres tres
sensibles qui sont associés avec la forme de la section du pont.
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