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Statics of the Vierendeel Girder

Statik des Vierendeel-Trägers

Statique de la poutre Vierendeel

Prof. Dr. I. A. el Demirdash, Dr. sc. techn. (E.T.H. Zürich). Professor of Bridges and
Theory of Structures, Faculty of Engineering, Fouad I University, Giza

Introduction

The Vierendeel girder, fig. la, is a framed structure with a high degree of
redundancy. In this respect, it is similar to a truss with rigid joints, fig. lc.
An exact treatment of the problem necessitates the Solution of 3 m equations
of elasticity, where m is the number of closed panels in the system. Such a
procedure involves tedious mathematical calculations and requires a good
deal of time. For this reason, the designer is ready to welcome any assumptions,
provided that they lead to fairly good results.

In the case of a truss, the general practice is to neglect the effect of rigid
connections entirely, and to assume all members to be hinged at their ends,
fig. Id. The structure is thus transformed into a perfect truss, which is stiff
enough to carry the external loads. Here, the stiffness of the structure does
not require rigid joints.

Obviously, the assumption of a hinged truss renders the Solution of the
problem very simple. Loads acting at the panel points produce axial forces in
the different members. Results thus obtained coincide fairly well with the
axial forces produced in a truss with rigid joints, at least for simple triangulär

Fig. la. Vierendeel Girder

Fig. lc. Truss with Rigid Joints

Fig. lb. Deficient Hinged System

Fig. 1 d. Truss with Hinged Joints
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Systems. Further, the end moments which exist in the latter cause bending
stresses of about 1/3 the normal stresses due to the axial forces. It is understood,
that these are accounted for in deciding the working stresses.

In short, the hinged truss can be used, in routine calculations, as a fairly
good approximation for the actual case of rigid connections. It gives almost
correct axial forces and Joint displacements. Consequently, it is suitable also

as a main system for an accurate calculation of the rigid truss.
Such an approximation, however, is not possible in the case of a Vierendeel

girder. The absence of the diagonal members renders the system with hinged
connections, fig. lb, deficient, and thus incapable of resisting the external
loads. Here, rigid joints are necessary for the stiffness of the structure. Further,
the end moments produce bending stresses in the different members which
cannot be neglected. In tbis respect, the Vierendeel girder differs from the
rigid truss.

Approximate Methods

For the sake of an approximate Solution of the Vierendeel girder, the
relatively slender verticals may be assumed hinged at their ends to the chord
members, fig. 2. In this way, the number of redundants is reduced to m + 2,

where m is the number of closed panels in the system.

Mjj and ML — Bending Moments.

Ijj and IL Moments of Inertia.
: LengthsML ; /, Sjj and SL ¦

Jf—=^_ *

Fig. 2. System with Hinged Verticals

Further, by neglecting the effect of normal forces on deformations, the
vertical displacements of the upper chord joints will be equal to those of the
corresponding lower chord joints. If, now, a constant ratio of stiffness
T • S'
tf__£ c is maintained between the two chords of the Vierendeel girder, the

moments produced in the two chords, under vertical loads acting in the panel

points, will bear the same ratio tp one another, i. e. ^ =c. Further, by

adopting the same chord stiffness throughout, the moments of the upper and
lower chords will be equal.

In this way, the problem is so simplified that with vertical loads in the
panel points, it can be refered to an once indeterminate system. By introducing
a hinge at one end, and a movable bearing at the other, fig. 3, the elastic line
due to H ±lt gives the influence line of the thrust H, which is the only
redundant value.
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The internal forces in the upper and lower chords at any vertical section
s — s give two equal and opposite forces Rv and RL which act at a point
intermediate between the two chords such that its distance from the two chords is

in direct ratio to their relative stiffness, i. e. -^ =c. Consequently, the R-

polygon gives the bending moment diagrams of the two chords due to H ±lt,
and hence the required elastic line of the thrust H can be obtained.

R^PqJxgqn^ SBlZT ffi___>/r#

r3
Fig. 3. Case of Loading H — ± 1 on Main System

Another simplification of the problem is made in case of one chord being
very stiff, while the other relatively weak. Here the Vierendeel girder is
referred to as a tied arch, fig. 4a, or as a bow-string girder, fig. 4b, according
to whether the top or bottom chord is stiff. The end connections of the verticals,

as well as those of the non-stiff chord, are assumed to be hinged. The two
simplified Systems are once statically indeterminate.

Fig. 4 a. Arch with a Tie Fig. 4 b. Bow String Girder

It is also possible to render the redundant Vierendeel girder statically
determinate by introducing hinges in the mid-points of the members, fig. 5.

Such a hinged system is easily calculated. It has been accepted as a fair
approximation in the calculation of battened compression members, and even
in the preliminary design of Vierendeel girders. In the case of equal chord
stiffness, the moments obtained by this assumption are not very far from the
true values of the indeterminate system. The discrepencies are limited to the

Fig. 5. System with Hinges in the Mid-Points
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panels which lie in the vicinity of the loading. Besides, bending moment
diagrams of the two Systems are more or less similar. This means that the
elastic behaviour of the hinged system, as well as its Joint displacements do

not differ much from those of the actual girder.

Exact Methods

The general rule is to refer the redundant Vierendeel girder to a statically
determinate main system. This is usually done by cutting one of the chord
members in every panel, fig. 6. The so-formed main system is a simply
supported beam. The effect of the redundant values is here limited to one panel
only. This is an advantage of the main system. However, the statical behaviour
of the Vierendeel girder is far from being similar to that of the simple beam.

rvtt> M|> Mr Ml->

Fig. 6. The Simple Beam as Main System

On the other hand, if hinges are introduced in the mid-points of the
different members, fig. 5, a more suitable main system is supplied. This main
system behaves more or less similarly to the redundant Vierendeel girder. In
the latter, the bending moments produced at the ends of the members are
much bigger than those which occur at the mid-points. Consequently, the
redundant moments at the introduced hinges will be mere corrections. Their

0<&-^A A^-7 t 6Zt 1

Fig. 7. Moment Groups as Virtual Cases of Loading

values, and subsequently their effect upon the system, will be less than those
in other main Systems. Further, if suitable groups of moments instead of single
couples are introduced as Virtual cases of loading, fig. 7, the effect of such

groups can be restricted to the individual panels where they occur. In this way,
the number of unknowns in each equation of elasticity will be reduced, and
the exact Solution of the problem is simplified.
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In short, the statically determinate main system, which is formed by
introducing hinges in the mid-points of the members, is suitable as an approximate

method, and also as a main system for an exact calculation of the actual
case. As will be seen later, the same hinged system adapts itself very well for
the Solution of the problem by successive approximations.

Further, in the case of a symmetrical Vierendeel girder, it is advisable to
split up the loads into symmetrical and oppositely symmetrical half loadings.
In this way, the number of unknowns and equations will be halved. Finally,
in most cases, the coefficients which appear in the elastic equations can be

simplified by neglecting the effect of the normal forces on the deformations of
the structure. For slender members, this effect is relatively small.

Method of Elastic Weights

Similar to a continuous beam, which can be split up into a number of
simple spans, the Vierendeel girder may also be divided into successive closed
panels. The bending moment diagrams of these closed panels possess certain
properties which lead to the determination of certain fixed poles which are
similar to the fixed points of the continuous beam.

wer

^ed

iwcr

™af

Fig. 8 a. Equilibrium of the Elastic
Weights in a Closed Panel

P=1

Fig. 8 b. The Moment Diagram
of the "Free Main System"

Neglecting the effect of normal and shearing forces, elastic weights are

given simply by the^-= diagrams of the different members. Areas and moments

of these diagrams give relative slopes and displacements of the structure. It is
thus easy to understand why the elastic weights in a closed panel with rigid
joints must be in equilibrium, fig. 8a. Here, the elastic weights are assumed
to act along the centre lines of the different members, and in a direction per-
pendicular to the plane of the closed panel. Positive values may be assumed
pointing towards the reader, while negative values point away from him.



130 I. A. el Demirdash

In order to prove this statement, the closed panel is referred to a statically
determinate main system by cutting one of its sides, fig. 8b. Two equal and
opposite forces P= ± 1 are applied at the severed ends. This Virtual loading
represents a system of external loads in equilibrium, which are applied to a

just-stiff part of the structure.
Since no relative displacement of the two ends can take place in the

indeterminate structure; —^j— 0, where Mx bending moment due

to P ± 1 in the main System, and M bending moment in the indeterminate

structure. But M1 y and ¦=-= -ds dW, hence \y-dW 0. In other

words, statical moment of the elastic weights about the line of action of the
Virtual loads is zero. This condition is true for any position of the severed ends"

as well as any direction of the Virtual loads P. Hence, elastic weights of the
closed panel are in equilibrium.

The fore-going analysis shows that it is not at all necessary to refer the
indeterminate structure to one and the same main system throughout the
calculation. On the contrary, the main system may be altered by changing
the position of any introduced hinges or severed ends. By means of this "free
main system", it is possible to limit the integrations to few members, and
thus to simplify the equations of elasticity.

Further, in the case of an externally indeterminate problem, Supports may
be removed altogether, and reactions introduced as external forces. The structure

thus becomes a deformed free body with definite boundary conditions.
Any stiff part of this elastic body can be used as a "free main system". However,

the Virtual loads and couples applied to this part of the structure must
be in equilibrium. The elastic equations are formed by equating external and
internal work in such a way as to satisfy the boundary conditions of the
indeterminate structure. In this manner, every equation will contain a few
number of redundant terms, and the mathematical computation will be simpler.

The fact that the elastic weights in a closed panel must be in equilibrium
can be utilised in solving the Vierendeel girder. First a single closed panel,
fig. 9 a, is considered. The indeterminate system is then referred to a convenient
main system. The bending moments of the closed panel are given by the
expression: M M0 + Mr, where: M0 the bending moments in the main
system due to the external loads, fig. 9b, and Mr the bending moments due
to the redundant values, fig. 9c. Superposition of the corresponding values
should satisfy the equilibrium, as well as the elastic conditions of the closed
frame.

Now the __f0-diagram depends on the external loading and on the type of
main system. On the other hand, the JM^-diagram has a Standard form, fig. 9c.
Further, the pairs of equal and opposite redundant values produce no external
reactions. The corresponding internal forces at any vertical section will be in
equilibrium. In other words, the difference between the upper and lower chord
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moments produced by the redundant values in a vertical section through the
frame will be proportional to the height of the frame at this section.
Consequently, the Standard shape of the _Jfr-diagram will depend on the values of
the end moments M1 and M2, and the difference mx. These three values
represent the 3 unknowns of the indeterminate system.

Fig. 9 a

Single Closed Panel

'M,+m.

tM, w W0 M,L£\b

rsa\
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__\

m,

Mt
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w2=b2%

Mr-T)i agi

Fig. 9 c

'ams and TTr-Elastic Weights

Fig. 9 b

ikfo-Diagram and PT0-Elastic Weights

If now the geometrical shape and cross sections of the closed frame are

known, the elastic weights ^-jds acting along the elemental length ds of
every member can be expressed as function of M1, M2 and mx. These are
combined into the resultant elastic weights r'ah-M1, r'ah-M2, etc. shown in

"fig. 9c. The coefficients r' and r depend of course on the dimensions of the
different members.

Further, all the elastic weights which depend on the 3 unknown moments
Ml9 M2, and mx can be added together giving the 3 common resultants:
W1 6X• M1, W2 b2• M2, and w1 bs-m1. The coefficients bx,b2, and b3 depend
entirely on the dimensions of the frame, and not on the external loading. The
same applies also to the positions of the 3 resultant elastic weights, which are
termed the "elastic poles" of the closed frame.

Since all the joints of the frame are rigid, all the elastic weights must be
in equilibrium. In other words, the 3 resultant elastic weights W1, W2 and wx
due to the redundant values should keep the resultant elastic weight W0, due
to external loads, in equilibrium. Consequently, if the frame is considered to be
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a slab supported at its 3 elastic poles and loaded by the elastic weight W0, the
corresponding reactions will be simply W1, W2, and w1. Hence the unknown
moments M1, M2, and m± are obtained.

A similar procedure can be applied to the Vierendeel girder. It must be

remembered, however, that successive panels of the Vierendeel girder have

common verticals, so that elastic weights along these verticals will depend on
the upper and lower chord moments on either side of each vertical. In this
way, the elastic weights in an end panel involve 5, while those in every
intermediate panel involve 7 unknown moments. The Solution of the problem,
however, can be simplified in the following manner.

Starting at the left hand panel I, fig. 10 a, its elastic weights must be in
equilibrium. Hence, the moments m2 and Ms can be expressed in terms of ml9
M2 and W^. Going over to panel II, the elastic weights in m± and M2 are
expressed in terms of m2, M3 and W-^. The condition of equilibrium of all
elastic weights in this panel gives m3 and Mb as funetions of m2, __T4, W^
and W2°.

M2+mr-J> M3+m2 M¥+m2.£ M5 + m3

rW'm2 r< t^i
^<&^3 h

M(i_r>vKfo«, >>)Mr+mr
rh"m. •/% 3T&

rbb' 'm2 rcc"7%'h2'mz"w-fa 73 rc'd"M6rcc'm.rJ't'A

M '""fr*j.
riVMi »ur», rCC-M5

JT
rcc"M*0V'"7'

WMi lu-A
I w?IV,w;

*' *•", ''*¦* rcd-rli «-Mr*%-"j

Fig. 10 a. The Elastic Weights of the Vierendeel Girder

*+4-
3jt&l

*r*<#
± i w ü

WL3 WL"3

_______fib
m -**¦

Fig. 10b. The corresponding Elastic Poles

Similarly for panel III, elastic weights in m2 and M± are expressed in terms
of m3, M5, W^ and W2°. Equations of equilibrium of all elastic weights in
this panel supply the values of the unknown moments m3, M5 and M6. If the
steps are retraced back to panel II, and finally to panel I, the rest*of the
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moments can be obtained. This successive Solution of the Vierendeel girder
from left to right and then back to left replaces the Solution of the equations
of elasticity as a matrix.

The problem may also be solved by using the elastic poles. These poles are
first determined by neglecting the effect of the adjacent panels, fig. 10b.

Starting at panel I, it may be considered as a slab supported at its 3 poles
w1, W± and W2. Assuming elastic weights r'w-ni2 and rw-M3 to be external
loads, and leaving out for the time being the elastic weight W-f, the relation
between ml7 M2 and m2, M3 may be found.

h
Going over to panel II, and expressing the elastic weights r'w • -~ ' mi an(l

rw-M2 in terms of m2 and M3, these elastic weights are added to w2 and W3

respectively in order to obtain the new elastic poles wL2 and WL3. The index L
means that the effect of the left hand panel is included. Panel II is then
considered as a slab supported at the two shifted poles wL2 and WL3 and at JF4.

Assuming the elastic weights r'cc,-m3 and rcc,-Mh to be external loading, and
leaving out the effect of the elastic weight W2°, the relation between m3, M5
and m2, J_r4 may be found.

Similarly for panel III, elastic weights r' .- ^ m2 and rc&-M^ are expressed

in terms of m3 and M5. These elastic weights are included in the resultants by
shifting w3 and W5 to wL3 and WL5 respectively. Needless to say, leaving out
the effect of the elastic weights W°, the positions of the new elastic poles are
made independent of the external loading. These positions are thus valid for
all cases.

In order to determine the effect of the elastic weights W° for a certain case
of loading, panel I is again considered first with Wj° acting. The corresponding
values of m1 and M2 are determined as funetions of W^. Going over to panel II,
elastic weights r'w --^-mx and rw • M2 are calculated in terms of W-f, and added

into a resultant w\2 on the common vertical bb'. Further, uPL2 and W2° are
combined into a new elastic weight WQL2.

Panel II is then considered as a slab supported at the poles wL2, WL3 and
W±, and loaded by W®L2. The values of m2 and i)_"4 are found in terms of WQL2.

Hence, elastic weights r'cc,- -~ • m2 and rcc, • J_"4 are calculated. These are

expressed in terms of W°L2 and give together an additional elastic weight vPLZ

along the vertical cc'.

Finally, for panel III, uPL3 and W3° are combined into the resultant elastic
weight W^3. Hence, m3, M5 and M6 are determined. Returning back to panel
II, and introducing the values of m3 and Mb, m2, M3 and i¥4 are found. Finally,
for panel I, the values of m2 and M3 are introduced, and the remaining moments
m1? __T1? and M2 are computed.

The method of the elastic weights is applicable to direct as well as indirect
loading. Besides, the effect of variable moments of inertia and haunched ends,



134 I. A. el Demirdash

if any, is included in the coefficients r. These coefficients are of course much
simpler in cases where the moment of inertia is constant over the whole length
of each member. This method is also suited for drawing the influence lines.

Referring to fig. 11, the influence line of the moment Me is simply the elastic
line of the loaded chord for a unit elastic weight We =1 at e. The structure is
assumed to be subject to such a loading as would produce a unit elastic weight
at e. The corresponding values of Wr are obtained from the conditions of
equilibrium of the elastic weights in every closed panel. They supply bending
moment diagrams of the different members. Finally, deflections are found
graphically by drawing the funicular polygon of the elastic weights, or analyti-
cally by Virtual work.

Fig. 11

we t
b e c

a) Unit Elastic Weight We= 1

b) Bending Moment Diagram of Loaded Chord

a/7 OCfl

ran oc=i

direci loading

indireci loading

c) Influence Line of M

This method complies with the general rule of introducing a hinge at e and

applying two equal and opposite couples M ± 1 on either side of the hinge.
The elastic line of the loaded chord due to this Virtual loading gives, to the
scale of the relative slope an, the required influence line. In other words, the
influence line of Me can be obtained directly by assuming two Virtual couples

M ± —at the hinge e. Such a loading, however, produces unit relative slope
„n

at e, and is thus equivalent to the action of a unit elastic weight We=l.
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If the influence lines are completed between the panel points by the curved
centre lines of the deflected members, the effect of direct loads can be ascer-
tained. On the other hand, if the ordinates under the panel-points are connected
by straight lines, the effect of indirect loads only is obtained. It is interesting to
remark here that the moments produced by direct and indirect loads are
nearly of the same order. Consequently, the effect of Joint displacements and
rotations must be included in the computation both for direct as well as for
indirect loading. In this respect, the Vierendeel girder differs from a truss with
rigid joints. The effect of direct loading in the latter case is much more pro-
nounced. The corresponding end moments can be determined by assuming
the joints to rotate while in their original positions, i.e. without any displacement.

Such an assumption would be wrong for the Vierendeel girder.

¦H
mi*^->"n

Qn

i
M̂„r^

1
% + 4

Z.' ni-

____^

Mh-A8 &h EI h

but eh= =±h As h AQ

Thus Ch Wh-As Ah

And O =_L

Fig. 12. The Elastic Couples Ch and Cv

In all the fore-going investigations, the effect of the longitudinal
deformations due to normal forces has not been included in the Solution of the
statically indeterminate rigid frames. These deformations produce no changes
of slope in the statically determinate main system, which is formed by cutting
the closed panel. The members are displaced parallel to themselves, and a gap
is formed at the section where the frame is cut. In order to include the effect
of the normal forces in the method of elastic weights and elastic poles, it is
necessary to replace these axial forces by another system of loading, which

10 Abhandlung XII
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gives the same gap as the normal forces without change of slope, and which is
of the same nature as the elastic weights. These conditions are fulfilled by the
elastic couples Ch Ah, and CV AV, fig. 12, where Ah and Av are the horizontal
and vertical components of the gap.

Remembering that in the closed panel the gap and the change of slope due
to the bending moments and axial forces are equal to zero, the elastic weights
and the introduced elastic couples must be in equilibrium, which condition
supplies the redundant moments of the closed panel. The introduced elastic
couples are subdivided into separate elastic couples corresponding to the
redundant moments and to the external loading respectively. The first group
of elastic couples shift the elastic poles horizontally and vertically, while the
latter group shift the elastic weight W0 due to the external loading. The
corresponding coefficients remain unaltered. The shifted elastic poles give the
new points of support of the closed panel.

The idea involved in the elastic couples can be utilised in determining the
influence lines of the shearing forces. For example, the influence line of Qe,

fig. 11, is the elastic line of the loaded chord due to a unit relative displacement
at c in the transverse direction without any change in slope. Such a sliding,
however, can be produced by a unit elastic couple acting at e. Consequently,
the influence line of the shearing force Qe is simply the elastic line of the loaded
chord due to a unit elastic couple at e.

Method of Elastic Couples

This method is applicable to the special case of a Vierendeel girder with
equal chord stiffness subject to indirect panel-point loading. Neglecting the
effect of normal forces, the deflections of the upper and lower chords will be

equal. Consequently, the corresponding moments in both chords will be the
same, fig. 13 a. Further, judging by the stresses produced in the flanges of each
chord, the corresponding elastic weights will be equal and opposite. These can
be combined into "elastic couples", which are represented by vectors in the
plane of the structure. The verticals give also similar elastic couples.

If, now, the Vierendeel girder is referred to the main system shown in
fig. 13 b, the moments M° due to the external loads will give the elastic
couples C°. Similarly, moments Mr produced by the redundant values will
give elastic couples Cr. However, the redundant values being pairs of equal
and opposite moments, or forces, produce no reactions. Consequently,
corresponding internal forces produced in the upper and lower chords at any
vertical section s — s are in equilibrium, fig. 13 c. In other words, the chord
moments in each panel are proportional to the corresponding height. Thus

every panel provides one unknown value and the number of closed panels m
gives the degree of redundancy of the system.
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The equilibrium of the elastic couples in every end panel involves two
unknown moments, while that of an intermediate panel involves 3 unknown
moments. The Solution can be carried out in a progressive manner from panel
to panel. Starting, for example, at panel I, the equilibrium of the elastic
couples supplies a relation between the two moments M1 and M2. This relation
can be utilized in eliminating M± from the elastic couples of panel II. In this
way, the equilibrium of the elastic weights in panel II supplies a relation
between M2 and M3.

Finally, for panel III, M2 is first eliminated. All the elastic couples in this
panel are then funetions of M3, which can be determined. The relations
between the different moments hitherto obtained enable the calculation of the
remaining values. The introduction of the term "elastic couple" reduces the
equilibrium of the elastic weights to a simple algebraic summation of the
elastic couples in each panel.

In order to render the Solution independent of the different cases of external
loading, the effect of the elastic couples C° is first neglected. The relations
obtained in this way between M1, M2, and M3 will be valid for all cases of loading.

For a certain load, however, panel I is again considered, and the effect of
the next panel is neglected. Mx is determined as function of C^0, and introduced
in the couple C*1 of the vertical bb'. The new value of C*1 is then added to the
elastic couple C2° giving C®L2. Equilibrium of the elastic couples in panel II is
then considered, leaving out the effect of panel III. All elastic couples are now
funetions of M2 which can be determined from G°L2. This value is used in
determining the couple C™ of the vertical cc'. The new value of this couple is
added to C3° to get C®L3. M3 is found from equilibrium of the elastic couples in
panel III. Going back to panel II, M2 is determined. Finally, Mx is determined
from panel I. The progressive method just explained is in a way similar to the
elimination method of Gauss which is generally used in solving the matrix of
the elastic equations.

Method of Successive Approximations

In order to avoid the Solution of the complicated elastic equations of a

highly indeterminate structure, iteration methods are used. The general rule
is to simplify the original system by making a suitable assumption of hinges,
certain end conditions, approximate Joint displacements, etc. The corresponding
forces and moments are then determined. They are of course not the same as

those of the original structure. Nevertheless, they are used in correcting the
first*assumption, and the whole calculation is repeated for the new conditions.
This second step is followed by a third, and so on until the required degree of
accuracy is obtained.

The success of iteration depends on its convergency. Results of successive

approximations should gradually approach the correct values. The number of
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steps needed for the Solution differs according to the nature of the problem,
and depends on the choice of a suitable assumption. The first obtained values
should be real approximations, which are not very far from the accurate
results. In this way, successive corrections tend to vanish. Otherwise, the
computation will take a long time, involving many steps and corrections, and
may not lead to the required results.

In the case of a truss with rigid connections, the Joint displacements are
first assumed to be the same as those of a hinged system. The end moments
are then calculated, either directly from the Joint rotations by Mohr's method,
or successively by relaxation methods. In the latter case, the members are
assumed to be fixed at their ends and then relaxed one by one until finally all
the system is eased. Either the moments themselves, or rotations of the joints
are successively corrected. The end moments obtained by the first approximation

can be used in correcting the displacements of the joints which have
been assumed at first. The calculations are then repeated for the new values.
and a second approximation of the end moments obtained. The whole process
may be continued until no further corrections are needed. This condition,
however, is not always fulfilled, specially for a complicated system of tri-
angulations.

Unfortunately, the Vierendeel girder cannot be treated in the same way.
It is impossible to assume all members to be hinged at their ends. However,
a girder with equal chord stiffness can be solved successfully by the "Panel
Method".

The Panel Method

The idea involved in this method is to split up the Vierendeel girder into
single closed panels, fig. 14a, and to consider the equilibrium of each panel
separately. Assuming every panel to be hinged at both sides to the rest of the
structure, the effect of external loads gives the so-called primary moments,
fig. 14b. The connecting moments at the introduced hinges just outside the
four corners produce secondary moments in the closed panel, fig. 14c. The
sums of the primary and secondary moments give the required moments of
the Vierendeel girder.

In the special case of a Vierendeel girder with equal chord stiffness, the
corresponding moments in the upper and lower chords will be equal. It is,
therefore, possible to derive a simple expression for the primary and secondary
moments which can be applied to every closed panel in the system. Referring
to figs. 14b and 14c:

otM — Varn /rt ._, __„ r s(l-fa)
__________ [3+ 5 + a (2+ *)] jfJ2=_.jtf1__J___
ocM-Va /0 x ___ r(l + a) s(l + x)2

2D -(3 + r + a) Jf;i= ________ Jf2 + _________

Hence M12 M'12 + M'[2 and M21=M'21+M'21
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Fig. 14 a. Equilibrium of Panel 1—2
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At first, the primary moments are determined for the whole girder. They
are considered to be first approximations of the actual end moments.
Consequently, the secondary moments in each panel can be calculated. The sums of
corresponding values give a second approximation of the end moments, which
can be used in correcting the secondary moments obtained before. In this way
a third approximation of the end moments is obtained, and so on. The process
is continued until it converges.

Modifikation of the "Panel Method"

The panel method just explained assumes every closed panel to be hinged
at its four corners to the rest of the structure. Unfortunately, the bending
moments of the Vierendeel girder are maximum at these points, and big values
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of connecting moments are expected. Moreover, the so-called secondary
moments will not be small compared with the primary moments, being some-
times almost of the same order. This explains why several steps are needed to
bring the successive approximations to an end.

In order to simplify calculations, and to reduce the number of corrections,
it is necessary to adapt the assumption to the real behaviour of the structure.
This can be done by introducing the hinges at the mid-points of the different
members where the bending moments are small. In this way, every element is
considered to be built up of a closed panel with overhanging arms, which
extend to the middle of the adjacent panels, fig. 15a. The secondary moments
produced by the connecting moments, fig. 15 c, are very small compared with
the primary moments due to the external loading, fig. 15b. They are real
corrections of small magnitude. The process converges after very few successive

approximations.
In determining the values of the primary moments, the forces acting at the

ends of the overhanging arms, fig. 15b, are shifted parallel to themselves to
sections 1 — 1 and 2 — 2 respectively. Four couples are introduced at the
4 corners of the closed frame. Owing to the fact that the Vierendeel girder has
in this case equal chord stiffness, the additional couples at the corresponding
joints of the upper and lower chords will be the same. They are represented
by Mx' and M2 respectively. Thus:

and

or

and
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Fig. 15b. Primary Moments Fig. 15 c. Secondary Moments
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The loading thus obtained is further split up into cases of partial loading
similar to those of fig. 14. In this way, it is possible to use the relations found
before in determining the new primary moments M[2 and M21. Thus:
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or

and

^2 ^4^[3 + * + «(2 + *)] + ^'-^-^2D D D
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The other cases of secondary moments are treated in a similar manner.

They supply the new secondary moments M'[2 and M'21, thus:

Ml2~ D h^ Mm

m21 — D h„

D 'h„ n

r(l + a)h1_ m, x
s(l + a)2 h2 ^D K

Finally: M12 M'12 + M\2, and M21 M21 + M'21.
The steps followed in the successive Solution are the same as for the panel

method. The primary moments, which serve as first approximation of the
actual moments, are first determined. The secondary moments are then
calculated, and a second approximation of the actual moments is obtained. There
is generally no need for a further correction.

Needless to say that the panel method explaind before as well as its modi-
fication are suitable only for indirect loading and equal chord stiffness of the
Vierendeel girder. If, however, the loads are applied directly between the panel
points, the deformations of the loaded chord will not be followed by the other
chord. Further, for different chord stiffness, the moments of the upper and
lower chords will not be equal, rendering the calculations more difficult.

However, in the case of a Vierendeel girder with a constant ratio between
the upper and lower chord stiffness up to say 1.3, the panel method may be
used as a fair approximation. The two unequal chords are assumed to have
an equal average stiffness. The approximate moments obtained in this way lie
between the two unequal real values of the upper and lower chords.
Consequently, the normal forces found by the approximate method will be almost
equal to the real values. Remembering, now, that the stresses are due partly
to the bending moments, and partly to the axial forces, the error involved in
the total stresses found approximately will be less. This proves that the
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proposed method of average chord stiffness may be used as a practical approximation

for differences of 30 and even 50% between the stiffness of the two
chords.

Conclusion

The statics of the Vierendeel girder should no more be considered as an
obstacle in the way of adopting this type in competitive structural work. The
exact calculations can be often replaced by successive approximations. Even
if such a procedure seems to be complicated, the designer can resort to fairly
good approximate methods by making appropriate assumptions, or by
experimental and semi-experimental methods.

Specially in the case of steel, the construction of the joints in the Vierendeel
girder is simplified by welding. There is also no need of having plate girder
sections, the members of the Vierendeel girder may be of the open web or
truss form. Finally, the statics of the Vierendeel girder may be applied in the
design of battened compression members, framed buildings, and in similar
structures.
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Summary

The Vierendeel girder is a highly indeterminate system whose exact
calculation necessitates the Solution of a big number of elastic equations. However,
if the verticals are assumed to be hinged at their ends the number of redundants
is heavily reduced. Further, if a constant ratio of stiffness is maintained
between the two chords, the problem can be referred to an once indeterminate
system. Moreover, if the top or lower chord is non-stiff, the Vierendeel girder
becomes a bow string girder or a tied arch with one redundant only. A statically

determinate system, which has more or less a similar statical behaviour
as the indeterminate Vierendeel girder, may be formed by introducing hinges
at the mid-points of the different members.

The equilibrium of the elastic weights in any closed panel with rigid joints
can be easily proved by using a "free main system" i. e. a main system which
is changed for every case of Virtual loading. This fact can be utilized in solving
the Vierendeel girder. The conditions of equilibrium of the elastic weights in
every panel replace the ordinary elastic equations.
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Moreover, the elastic weights due to the redundant values in a closed
panel may be combined into three resultants acting in the so-called "elastic
poles", and depending only on the dimensions of the panel.

In the special case of a Vierendeel girder with equal chord stiffness, the
elastic weights of the upper and lower chords, as well as those of the verticals
form elastic couples. The equilibrium of the elastic weights in each panel is
reduced to an algebraic summation of the corresponding elastic couples. This
special case of equal chord stiffness may be also solved by successive approximations

using the so-called "panel method".
Finally, a Vierendeel girder whose two chords have constant ratio of

stiffness may be approximately solved by assuming an equal average stiffness.
This approximation gives good practical results up to 30 and even 50% difference

in the stiffness of the two chords.

Zusammenfassung

Der Vierendeel-Träger ist ein vielfach statisch unbestimmtes System, dessen

Berechnung die Auflösung einer großen Zahl von Elastizitätsgleichungen
erfordert. Wenn die Pfosten als an den Enden gelenkig angenommen werden,
kann die Zahl der Überzähligen stark vermindert werden. Überdies kann das
Problem auf ein einfach statisch unbestimmtes System zurückgeführt werden,
wenn ein konstantes Verhältnis zwischen den Steifigkeiten der beiden
Gurtungen beibehalten wird. Ferner wird der Vierendeel-Träger zu einem
versteiften Stabbogen oder zu einem Bogen mit Zugband mit nur einer
Überzähligen, wenn die obere oder die untere Gurtung keine Steifigkeit hat. Ein
statisch bestimmtes System, das mehr oder weniger ein dem statisch
unbestimmten Vierendeel-Träger ähnliches statisches Verhalten zeigt, kann durch
Einführen von Gelenken in den Mittelpunkten der einzelnen Stäbe erhalten
werden.

Das Gleichgewicht der elastischen Gewichte in jedem geschlossenen Feld
mit steifen Knotenpunkten kann leicht überprüft werden, indem man ein
,,freies Grundsystem" einführt, d.h. ein Grundsystem, das für jeden virtuellen
Belastungsfall geändert wird. Diese Tatsache kann für die Berechnung des

Vierendeel-Trägers ausgenützt werden. Die Gleichgewichtsbedingungen der
elastischen Gewichte in jedem Feld ersetzen die gewöhnlichen Elastizitätsgleichungen.

Die elastischen Gewichte infolge der überzähligen Größen können in jedem
Feld zu drei Resultierenden zusammengesetzt werden, die in den sogenannten
,,elastischen Polen" angreifen und nur von den Abmessungen des Feldes
abhängen.

Im Spezialfall eines Vierendeel-Trägers mit gleichen Steifigkeiten der
Gurtungen bilden die elastischen Gewichte sowohl der Gurtungen als auch der
Pfosten „elastische Kräftepaare". Die Herstellung des Gleichgewichts der
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elastischen Gewichte in jedem Feld wird zurückgeführt auf eine algebraische
Summation der entsprechenden elastischen Kräftepaare. Dieser Spezialfall
der gleichen Gurtsteifigkeiten kann auch durch eine sukzessive Approximation
gelöst werden bei Verwendung der sogenannten ,,Feld-Methode".

Schließlich kann ein Vierendeel-Träger, dessen beide Gurtungen konstantes
SteifigkeitsVerhältnis besitzen, näherungsweise unter der Annahme einer
konstanten mittleren Steifigkeit berechnet werden. Diese Näherung ergibt praktisch

gute Resultate bis zu Steifigkeitsdifferenzen der Gurtungen von 30 oder

sogar 50%.

Resume

La poutre Vierendeel est un Systeme qui presente un degre multiple
d'hyperstatisme, dont le calcul exige la resolution d'un grand nombre d'equations

d'elasticite. Si l'on admet que les elements verticaux sont articules a
leurs extremites, le nombre des barres surabondantes peut etre considerable-
ment reduit. De plus, il est possible de ramener le probleme a une indetermina-
tion statique simple en conservant un rapport constant entre les rigidites
des deux membrures. La poutre Vierendeel peut en outre prendre la forme
d'un are simple renforce ou d'un are avec tirant avec un seul element sur-
abondant, lorsque l'une des deux membrures, superieure ou inferieure, ne
presente aueune rigidite. Un Systeme isostatique qui offre un comportement
statique plus ou moins analogue ä celui de la poutre Vierendeel hyperstatique
peut etre realise par introduction d'articulations aux milieux des differentes
barres.

II est possible de contröler aisement les conditions effectives d'equilibre des

poids elastiques dans tout champ ferme avec noeuds rigides, en y introduisant
un ,,Systeme de base libre", c'est-ä-dire un Systeme de base se modifiant pour
chaque cas virtuel de charge. Ce fait peut etre utilise pour le calcul de la poutre
Vierendeel. Les conditions d'equilibre des poids elastiques dans chaque champ
de charge peuvent etre composees en trois resultantes, appliquees aux points
dits ,,poles elastiques" et qui ne dependent que des dimensions du champ.

Dans le cas particulier d'une poutre Vierendeel dont les deux membrures
presentent une meme rigidite, les poids elastiques des membrures aussi bien
que ceux des montants forment des ,,couples elastiques". La realisation de

l'equilibre des poids elastiques dans chaque champ est ramene ä une som-
mation algebrique des couples elastiques correspondants. Ce cas particulier
de l'egalite des rigidites peut egalement etre resolu par approximations
successives, en appliquant la methode dite ,,du champ".

Enfin, une poutre Vierendeel dont les deux membrures presentent un
rapport constant de rigidite peut etre calculee d'une maniere approchee dans
l'hypothese d'une rigidite constante moyenne. Cette approximation donne de
bons resultats pratiques jusqu'a des ecarts de rigidite atteignant 30, voire
50% entre les deux membrures.
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