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Statics of the Vierendeel Girder
Statik des Vierendeel-Trigers

Statique de la poutre Vierendeel

Prof. Dr. I. A. EL. DEMIRDASH, Dr. sc. techn. (E.T.H. Ziirich). Professor of Bridges and
Theory of Structures, Faculty of Engineering, Fouad I University, Giza

Introduction

The Vierendeel girder, fig. 1a, is a framed structure with a high degree of
redundancy. In this respect, it is similar to a truss with rigid joints, fig. 1c.
An exact treatment of the problem necessitates the solution of 3 m equations
of elasticity, where m is the number of closed panels in the system. Such a
procedure involves tedious mathematical calculations and requires a good
deal of time. For this reason, the designer is ready to welcome any assumptions,
provided that they lead to fairly good results.

In the case of a truss, the general practice is to neglect the effect of rigid
connections entirely, and to assume all members to be hinged at their ends,
fig. 1d. The structure is thus transformed into a perfect truss, which is stiff
enough to carry the external loads. Here, the stiffness of the structure does
not require rigid joints.

Obviously, the assumption of a hinged truss renders the solution of the
problem very simple. Loads acting at the panel points produce axial forces in
the different members. Results thus obtained coincide fairly well with the
axial forces produced in a truss with rigid joints, at least for simple triangular
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Fig. 1a. Vierendeel Girder Fig. 1b. Deficient Hinged System

Fig. 1c. Truss with Rigid Joints Fig. 1d. Truss with Hinged Joints
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systems. Further, the end moments which exist in the latter cause bending
stresses of about 1/; the normal stresses due to the axial forces. It is understood,
that these are accounted for in deciding the working stresses.

In short, the hinged truss can be used, in routine calculations, as a fairly
good approximation for the actual case of rigid connections. It gives almost
correct axial forces and joint displacements. Consequently, it is suitable also
as a main system for an accurate calculation of the rigid truss.

Such an approximation, however, is not possible in the case of a Vierendeel
girder. The absence of the diagonal members renders the system with hinged
connections, fig. 1b, deficient, and thus incapable of resisting the external
loads. Here, rigid joints are necessary for the stiffness of the structure. Further,
the end moments produce bending stresses in the different members which
cannot be neglected. In this respect, the Vierendeel girder differs from the
rigid truss.

Approximate Methods
For the sake of an approximate solution of the Vierendeel girder, the
relatively slender verticals may be assumed hinged at their ends to the chord

members, fig. 2. In this way, the number of redundants is reduced to m+ 2,
where m is the number of closed panels in the system.
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Fig. 2. System with Hinged Verticals

Further, by neglecting the effect of normal forces on deformations, the
vertical displacements of the upper chord joints will be equal to those of the
corresponding lower chord joints. If, now, a constant ratio of stiffness
zg; = ¢ is maintained between the two chords of the Vierendeel girder, the
moments produced in the two chords, under vertical loads acting in the panel

M
a7 =¢- Further, by

adopting the same chord stiffness throughout, the moments of the upper and
lower chords will be equal.

In this way, the problem is so simplified that with vertical loads in the
panel points, it can be refered to an once indeterminate system. By introducing
a hinge at one end, and a movable bearing at the other, fig. 3, the elastic line
due to H= + 1t gives the influence line of the thrust H, which is the only
redundant value.

points, will bear the same ratio to one another, i.e.
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The internal forces in the upper and lower chords at any vertical section
s —s give two equal and opposite forces E;; and E; which act at a point inter-
mediate between the two chords such that its distance from the two chords is

in direct ratio to their relative stiffness, i. e. %Q =c. Consequently, the R-

polygon gives the bending moment diagrams of the two chords due to H — + 14,
and hence the required elastic line of the thrust A can be obtained.

Fig. 3. Case of Loading H = + 1 on Main System

Another simplification of the problem is made in case of one chord being
very stiff, while the other relatively weak. Here the Vierendeel girder is
referred to as a tied arch, fig. 4a, or as a bow-string girder, fig. 4b, according
to whether the top or bottom chord is stiff. The end connections of the verti-
cals, as well as those of the non-stiff chord, are assumed to be hinged. The two
simplified systems are once statically indeterminate.
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Fig. 4a. Arch with a Tie Fig. 4b. Bow String Girder

It is also possible to render the redundant Vierendeel girder statically
determinate by introducing hinges in the mid-points of the members, fig. 5.
Such a hinged system is easily calculated. It has been accepted as a fair
approximation in the calculation of battened compression members, and even
in the preliminary design of Vierendeel girders. In the case of equal chord
stiffness, the moments obtained by this assumption are not very far from the
true values of the indeterminate system. The discrepencies are limited to the

Fig. 5. System with Hinges in the Mid-Points
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panels which lie in the vicinity of the loading. Besides, bending moment
diagrams of the two systems are more or less similar. This means that the
elastic behaviour of the hinged system, as well as its joint displacements do
not differ much from those of the actual girder.

Exact Methods

The general rule is to refer the redundant Vierendeel girder to a statically
determinate main system. This is usually done by cutting one of the chord
members in every panel, fig. 6. The so-formed main system is a simply sup-
ported beam. The effect of the redundant values is here limited to one panel
only. This is an advantage of the main system. However, the statical behaviour
of the Vierendeel girder is far from being similar to that of the simple beam.

H‘ ,l( » <

_Cﬂ) Wl

Fig. 6. The Simple Beam as Main System

On the other hand, if hinges are introduced in the mid-points of the
different members, fig. 5, a more suitable main system is supplied. This main
system behaves more or less similarly to the redundant Vierendeel girder. In
the latter, the bending moments produced at the ends of the members are
much bigger than those which occur at the mid-points. Consequently, the
redundant moments at the introduced hinges will be mere corrections. Their
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Fig. 7. Moment Groups as Virtual Cases of Loading

values, and subsequently their effect upon the system, will be less than those
in other main systems. Further, if suitable groups of moments instead of single
couples are introduced as virtual cases of loading, fig. 7, the effect of such
groups can be restricted to the individual panels where they occur. In this way,
the number of unknowns in each equation of elasticity will be reduced, and
the exact solution of the problem is simplified.
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In short, the statically determinate main system, which is formed by
introducing hinges in the mid-points of the members, is suitable as an approxi-
mate method, and also as a main system for an exact calculation of the actual
case. As will be seen later, the same hinged system adapts itself very well for
the solution of the problem by successive approximations.

Further, in the case of a symmetrical Vierendeel girder, it is advisable to
split up the loads into symmetrical and oppositely symmetrical half loadings.
In this way, the number of unknowns and equations will be halved. Finally,
in most cases, the coefficients which appear in the elastic equations can be
simplified by neglecting the effect of the normal forces on the deformations of
the structure. For slender members, this effect is relatively small.

Method of Elastic Weights

Similar to a continuous beam, which can be split up into a number of
simple spans, the Vierendeel girder may also be divided into successive closed
panels. The bending moment diagrams of these closed panels possess certain
properties which lead to the determination of certain fixed poles which are
similar to the fixed points of the continuous beam.

Fig. 8a. Equilibrium of the Elastic Fig. 8b. The Moment Diagram
Weights in a Closed Panel of the “Free Main System”’

Neglecting the effect of normal and shearing forces, elastic weights are
given simply by the E£I diagrams of the different members. Areas and moments

of these diagrams give relative slopes and displacements of the structure. It is
thus easy to understand why the elastic weights in a closed panel with rigid
joints must be in equilibrium, fig. 8a. Here, the elastic weights are assumed
to act along the centre lines of the different members, and in a direction per-
pendicular to the plane of the closed panel. Positive values may be assumed
pointing towards the reader, while negative values point away from him.
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In order to prove this statement, the closed panel is referred to a statically
determinate main system by cutting one of its sides, fig. 8b. Two equal and
opposite forces P= +1 are applied at the severed ends. This virtual loading
represents a system of external loads in equilibrium, which are applied to a
just-stiff part of the structure.

Since no relative displacement of the two ends can take place in the
M,-M-ds
EI
to P=+1 1n the main system, a.nd M = bending moment in the indeter-

minate structure But M,=y and ds—d W, hence [y-d W=0. In other

words, statical moment of the elastlc Welghts about the line of action of the
virtual loads is zero. This condition is true for any position of the severed ends
as well as any direction of the virtual loads P. Hence, elastic weights of the
closed panel are in equilibrium.

The fore-going analysis shows that it is not at all necessary to refer the
indeterminate structure to one and the same main system throughout the
calculation. On the contrary, the main system may be altered by changing
the position of any introduced hinges or severed ends. By means of this ‘‘free
main system’’, it is possible to limit the integrations to few members, and
thus to simplify the equations of elasticity.

Further, in the case of an externally indeterminate problem, supports may
be removed altogether, and reactions introduced as external forces. The struc-
ture thus becomes a deformed free body with definite boundary conditions.
Any stiff part of this elastic body can be used as a ““free main system’’. How-
ever, the virtual loads and couples applied to this part of the structure must
be in equilibrium. The elastic equations are formed by equating external and
internal work in such a way as to satisfy the boundary conditions of the
indeterminate structure. In this manner, every equation will contain a few
number of redundant terms, and the mathematical computation will be simpler.

The fact that the elastic weights in a closed panel must be in equilibrium
can be utilised in solving the Vierendeel girder. First a single closed panel,
fig. 9a, is considered. The indeterminate system is then referred to a convenient
main system. The bending moments of the closed panel are given by the
expression: M =M + M,, where: M, = the bending moments in the main
system due to the external loads, fig. 9b, and M, = the bending moments due
to the redundant values, fig. 9¢. Superposition of the corresponding values
should satisfy the equilibrium, as well as the elastic condltlons of the closed
frame.

Now the M -diagram depends on the external loading and on the type of
main system. On the other hand, the M -diagram has a standard form, fig. 9c.
Further, the pairs of equal and opposite redundant values produce no external
reactions. The corresponding internal forces at any vertical section will be in
equilibrium. In other words, the difference between the upper and lower chord

indeterminate structure; =0, where M, = bending moment due
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moments produced by the redundant values in a vertical section through the
frame will be proportional to the height of the frame at this section. Con-
sequently, the standard shape of the M,-diagram will depend on the values of
the end moments M, and M,, and the difference m,. These three values
represent the 3 unknowns of the indeterminate system.

It

/72
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b

Fig. 9a
Single Closed Panel

Fig. 9c¢
M ,-Diagrams and W, -Elastic Weights

Fig. 9b
M,-Diagram and W,-Elastic Weights

If now the geometrical shape and cross sections of the closed frame are
known, the elastic weights %d s acting along the elemental length ds of

every member can be expressed as function of M,, M, and m,. These are
combined into the resultant elastic weights r,,- M, 7,,- M,, etc. shown in
‘fig. 9¢. The coefficients »’ and r depend of course on the dimensions of the
different members.

Further, all the elastic weights which depend on the 3 unknown moments
M,, M,, and m, can be added together giving the 3 common resultants:
Wi=b-M,, Wy=by-M,, and w; =bs-m,. The coefficients b,, b,, and b; depend
entirely on the dimensions of the frame, and not on the external loading. The
same applies also to the positions of the 3 resultant elastic weights, which are
termed the “‘elastic poles’’ of the closed frame.

Since all the joints of the frame are rigid, all the elastic weights must be
in equilibrium. In other words, the 3 resultant elastic weights W,, W, and w,
due to the redundant values should keep the resultant elastic weight W, due
to external loads, in equilibrium. Consequently, if the frame is considered to be
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a slab supported at its 3 elastic poles and loaded by the elastic weight W, the
corresponding reactions will be simply W,, W,, and w;. Hence the unknown
moments M,, M,, and m, are obtained.

A similar procedure can be applied to the Vierendeel girder. It must be
remembered, however, that successive panels of the Vierendeel girder have
common verticals, so that elastic weights along these verticals will depend on
the upper and lower chord moments on either side of each vertical. In this
way, the elastic weights in an end panel involve 5, while those in every inter-
mediate panel involve 7 unknown moments. The solution of the problem,
however, can be simplified in the following manner.

Starting at the left hand panel I, fig. 10a, its elastic weights must be in
equilibrium. Hence, the moments m, and M, can be expressed in terms of m,,
M, and W,° Going over to panel II, the elastic weights in m, and M, are
expressed in terms of m,, M, and W,° The condition of equilibrium of all
elastic weights in this panel gives m; and M, as functions of m,, M,, W,°
and W,0.
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Fig. 10a. The Elastic Weights of the Vierendeel Girder
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Fig. 10b. The cc;rresponding Elastic Poles

Similarly for panel I11I, elastic weights in m, and M, are expressed in terms
of my, My, W and W,%. Equations of equilibrium of all elastic weights in
this panel supply the values of the unknown moments m,, M, and M. If the
steps are retraced back to panel II, and finally to panel I, the rest"of the
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moments can be obtained. This successive solution of the Vierendeel girder
from left to right and then back to left replaces the solution of the equations
of elasticity as a matrix.

The problem may also be solved by using the elastic poles. These poles are
first determined by neglecting the effect of the adjacent panels, fig. 10b.
Starting at panel I, it may be considered as a slab supported at its 3 poles
w,, W, and W,. Assuming elastic weights r{,é~m2 and 7, - M, to be external
loads, and leaving out for the time being the elastic weight W,°, the relation
between m,, M, and m,, M, may be found.

Going over to panel II, and expressing the elastic weights ;.- Z - m,y and
1

Ty Mo in terms of my, and M, these elastic weights are added to w, and W,
respectively in order to obtain the new elastic poles w; , and W . The index L
means that the effect of the left hand panel is included. Panel 1I is then con-
sidered as a slab supported at the two shifted poles w;, and W, and at W,.
Assuming the elastic weights r,,-m, and .- M; to be external loading, and
leaving out the effect of the elastic weight W,°, the relation between m,, M,
and m,, M, may be found.

Similarly for panel ITI, elastic weights 7 - g -my and r,,- M, are expressed

h
in terms of m, and M. These elastic weights arze included in the resultants by
shifting w,; and Wy to w;, and W, respectively. Needless to say, leaving out
the effect of the elastic weights W0, the positions of the new elastic poles are
made independent of the external loading. These positions are thus valid for
all cases.

In order to determine the effect of the elastic weights W? for a certain case
of loading, panel I is again considered first with W,° acting. The corresponding
values of m, and M, are determined as functions of W,°. Going over to panel 11,

Z -my and ry,,- M, are calculated in terms of W%, and added
into a resultant w}, on the common vertical bb’. Further, v}, and W,0 are
combined into a new elastic weight W9 ,.

Panel II is then considered as a slab supported at the poles w;,, W ; and

W,, and loaded by W9 ,. The values of m, and M, are found in terms of WY ,.

elastic weights r;,, -

. . h
Hence, elastic weights r,,.- -*-m, and r, - M, are calculated. These are

3
expressed in terms of W9, el,nd2 give together an additional elastic weight w ;
along the vertical cc’.

Finally, for panel IIT, w9}, and W.° are combined into the resultant elastic
weight W9 .. Hence, ms, M, and Mg are determined. Returning back to panel
11, and introducing the values of m, and M, my, Myand M, are found. Finally,
for panel I, the values of m, and M ; are introduced, and the remaining moments
my, M,, and M, are computed.

The method of the elastic welghts is applicable to direct as well as indirect

loading. Besides, the effect of variable moments of inertia and haunched ends,
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if any, is included in the coefficients ». These coefficients are of course much
simpler in cases where the moment of inertia is constant over the whole length
of each member. This method is also suited for drawing the influence lines.
Referring to fig. 11, the influence line of the moment M, is simply the elastic
line of the loaded chord for a unit elastic weight W,=1 at e. The structure is
assumed to be subject to such a loading as would produce a unit elastic weight
at e. The corresponding values of W, are obtained from the conditions of
equilibrium of the elastic weights in every closed panel. They supply bending
moment diagrams of the different members. Finally, deflections are found
graphically by drawing the funicular polygon of the elastic weights, or analyti-
cally by virtual work.

Fig. 11
& c

a a
W=7

o o 6 e c .0

a) Unit Elastic Weight W,=1
: T l :. 1 1: g —
b) Bending Moment Diagram of Loaded Chord
m
direct loading
————— indirect loading

c) Influence Line of M,

This method complies with the general rule of introducing a hinge at ¢ and
applying two equal and opposite couples M = + 1 on either side of the hinge.
The elastic line of the loaded chord due to this virtual loading gives, to the
scale of the relative slope «;;, the required influence line. In other words, the
influence line of M, can be obtained directly by assuming two virtual couples

M=+ aia,t the hinge e. Such a loading, however, produces unit relative slope
11

at e, and is thus equivalent to the action of a unit elastic weight W,=1.
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If the influence lines are completed between the panel points by the curved
centre lines of the deflected members, the effect of direct loads can be ascer-
tained. On the other hand, if the ordinates under the panel-points are connected
by straight lines, the effect of indirect loads only is obtained. It is interesting to
remark here that the moments produced by direct and indirect loads are
nearly of the same order. Consequently, the effect of joint displacements and
rotations must be included in the computation both for direct as well as for
indirect loading. In this respect, the Vierendeel girder differs from a truss with
rigid joints. The effect of direct loading in the latter case is much more pro-
nounced. The corresponding end moments can be determined by assuming
the joints to rotate while in their original positions, i.e. without any displace-
ment. Such an assumption would be wrong for the Vierendeel girder.

54, *7"]/7
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I/th lh,;v] 2 =@h
Yi| 4
but @,= -~ -, W,==%
h As Y/ As
Thus =Ch= Wh'AS=Ah
And C,=4,

Fig. 12. The Elastic Couples C}, and O,

In all the fore-going investigations, the effect of the longitudinal defor-
mations due to normal forces has not been included in the solution of the
statically indeterminate rigid frames. These deformations produce no changes
of slope in the statically determinate main system, which is formed by cutting
the closed panel. The members are displaced parallel to themselves, and a gap
is formed at the section where the frame is cut. In order to include the effect
of the normal forces in the method of elastic weights and elastic poles, it is
necessary to replace these axial forces by another system of loading, which

10 Abhandlung XII
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gives the same gap as the normal forces without change of slope, and which is
of the same nature as the elastic weights. These conditions are fulfilled by the
elastic couples C), =4,, and C,=4,, fig. 12, where 4, and 4, are the horizontal
and vertical components of the gap.

Remembering that in the closed panel the gap and the change of slope due
to the bending moments and axial forces are equal to zero, the elastic weights
and the introduced elastic couples must be in equilibrium, which condition
supplies the redundant moments of the closed panel. The introduced elastic
couples are subdivided into separate elastic couples corresponding to the
redundant moments and to the external loading respectively. The first group
of elastic couples shift the elastic poles horizontally and vertically, while the
latter group shift the elastic weight W, due to the external loading. The cor-
responding coefficients remain unaltered. The shifted elastic poles give the
new points of support of the closed panel.

The idea involved in the elastic couples can be utilised in determining the
influence lines of the shearing forces. For example, the influence line of @,,
fig. 11, is the elastic line of the loaded chord due to a unit relative displacement
at e in the transverse direction without any change in slope. Such a sliding,
however, can be produced by a unit elastic couple acting at e. Consequently,
the influence line of the shearing force @, is simply the elastic line of the loaded
chord due to a unit elastic couple at e.

Method of Elastic Couples

This method is applicable to the special case of a Vierendeel girder with
equal chord stiffness subject to indirect panel-point loading. Neglecting the
effect of normal forces, the deflections of the upper and lower chords will be
equal. Consequently, the corresponding moments in both chords will be the
same, fig. 13a. Further, judging by the stresses produced in the flanges of each
chord, the corresponding elastic weights will be equal and opposite. These can
be combined into “elastic couples’’, which are represented by vectors in the
plane of the structure. The verticals give also similar elastic couples.

If, now, the Vierendeel girder is referred to the main system shown in
fig. 13b, the moments M° due to the external loads will give the elastic
couples C°. Similarly, moments M, produced by the redundant values will
give elastic couples C,. However, the redundant values being pairs of equal
and opposite moments, or forces, produce no reactions. Consequently, cor-
responding internal forces produced in the upper and lower chords at any
vertical section s—s are in equilibrium, fig. 13¢. In other words, the chord
moments in each panel are proportional to the corresponding height. Thus
every panel provides one unknown value and the number of closed panels m
gives the degree of redundancy of the system.
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The equilibrium of the elastic couples in every end panel involves two
unknown moments, while that of an intermediate panel involves 3 unknown
moments. The solution can be carried out in a progressive manner from panel
to panel. Starting, for example, at panel I, the equilibrium of the elastic
couples supplies a relation between the two moments M, and M,. This relation
can be utilized in eliminating M, from the elastic couples of panel II. In this
way, the equilibrium of the elastic weights in panel II supplies a relation
between M, and M.

Finally, for panel 111, M, is first eliminated. All the elastic couples in this
panel are then functions of M,;, which can be determined. The relations
between the different moments hitherto obtained enable the calculation of the
remaining values. The introduction of the term ‘‘elastic couple’” reduces the
equilibrium of the elastic weights to a simple algebraic summation of the
elastic couples in each panel.

In order to render the solution independent of the different cases of external
loading, the effect of the elastic couples C° is first neglected. The relations
obtained in this way between M, M,, and M, will be valid for all cases of load-
ing. For a certain load, however, panel I is again considered, and the effect of
the next panel is neglected. M, is determined as function of C,°, and introduced
in the couple CI of the vertical bb’. The new value of C! is then added to the
elastic couple C,0 giving €Y% ,. Equilibrium of the elastic couples in panel 1T is
then considered, leaving out the effect of panel III. All elastic couples are now
functions of M, which can be determined from C9%,. This value is used in
determining the couple CI! of the vertical cc’. The new value of this couple is
added to C,0 to get C% ;. M, is found from equilibrium of the elastic couples in
panel ITI. Going back to panel II, M, is determined. Finally, M is determined
- from panel I. The progressive method just explained is in a way similar to the
elimination method of Gauss which is generally used in solving the matrix of
the elastic equations.

Method of Successive Approximations

In order to avoid the solution of the complicated elastic equations of a
~highly indeterminate structure, iteration methods are used. The general rule
is to simplify the original system by making a suitable assumption of hinges,
certain end conditions, approximate joint displacements, etc. The corresponding
forces and moments are then determined. They are of course not the same as
those of the original structure. Nevertheless, they are used in correcting the
ﬁrst:a.ssumption, and the whole calculation is repeated for the new conditions.
This second step is followed by a third, and so on until the required degree of
accuracy is obtained.

The success of iteration depends on its convergency. Results of successive
approximations should gradually approach the correct values. The number of
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steps needed for the solution differs according to the nature of the problem,
and depends on the choice of a suitable assumption. The first obtained values
should be real approximations, which are not very far from the accurate
results. In this way, successive corrections tend to vanish. Otherwise, the
computation will take a long time, involving many steps and corrections, and
may not lead to the required results.

In the case of a truss with rigid connections, the joint displacements are
first assumed to be the same as those of a hinged system. The end moments
are then calculated, either directly from the joint rotations by Mohr’s method,
or successively by relaxation methods. In the latter case, the members are
assumed to be fixed at their ends and then relaxed one by one until finally all
the system is eased. Either the moments themselves, or rotations of the joints
are successively corrected. The end moments obtained by the first approxi-
mation can be used in correcting the displacements of the joints which have
been assumed at first. The calculations are then repeated for the new values.
and a second approximation of the end moments obtained. The whole process
may be continued until no further corrections are needed. This condition,
however, is not always fulfilled, specially for a complicated system of tri-
angulations.

Unfortunately, the Vierendeel girder cannot be treated in the same way.
It is impossible to assume all members to be hinged at their ends. However,
a girder with equal chord stiffness can be solved successfully by the ‘“Panel
Method’’.

The Panel Method

The idea involved in this method is to split up the Vierendeel girder into
. single closed panels, fig. 14a, and to consider the equilibrium of each panel
separately. Assuming every panel to be hinged at both sides to the rest of the
structure, the effect of external loads -gives the so-called primary moments,
fig. 14b. The connecting moments at the introduced hinges just outside the
four corners produce secondary moments in the closed panel, fig. 14c. The
sums of the primary and secondary moments give the required moments of
the Vierendeel girder.

In the special case of a Vierendeel girder with equal chord stiffness, the
corresponding moments in the upper and lower chords will be equal. It is,
therefore, possible to derive a simple expression for the primary and secondary
moments which can be applied to every closed panel in the system. Referring
to figs. 14b and 14ec:

, M~Va , T s(1+
M12=°‘—W[3+s+a(2+s)1 M12=3-M1——(-D—i)-M2

, M—-Va ” r(1+ S(1+oa)2
M21=EC_21)__.(3+7-+“) M21=_ (D OC)_M1+ ( DOC) 'Mz
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Fig. 14a. Equilibrium of Panel 1—2
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At first, the primary moments are determined for the whole girder. They
are considered to be first approximations of the actual end moments. Conse-
quently, the secondary moments in each panel can be calculated. The sums of
corresponding values give a second approximation of the end moments, which
can be used in correcting the secondary moments obtained before. In this way
a third approximation of the end moments is obtained, and so on. The process
is continued until it converges.

Modification of the ““Panel Method”

The panel method just explained assumes every closed panel to be hinged
at its four corners to the rest of the structure. Unfortunately, the bending
moments of the Vierendeel girder are maximum at these points, and big values
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of connecting moments are expected. Moreover, the so-called secondary
moments will not be small compared with the primary moments, being some-
times almost of the same order. This explains why several steps are needed to
bring the successive approximations to an end.

In order to simplify calculations, and to reduce the number of corrections,
it is necessary to adapt the assumption to the real behaviour of the structure.
This can be done by introducing the hinges at the mid-points of the different
members where the bending moments are small. In this way, every element is
considered to be built up of a closed panel with overhanging arms, which
extend to the middle of the adjacent panels, fig. 15a. The secondary moments
produced by the connecting moments, fig. 15¢, are very small compared with
the primary moments due to the external loading, fig. 15b. They are real
corrections of small magnitude. The process converges after very few successive
approximations.

In determining the values of the primary moments, the forces acting at the
ends of the overhanging arms, fig. 15b, are shifted parallel to themselves to
sections 1 —1 and 2—2 respectively. Four couples are introduced at the
4 corners of the closed frame. Owing to the fact that the Vierendeel girder has
in this case equal chord stiffness, the additional couples at the corresponding
joints of the upper and lower chords will be the same. They are represented
by M," and M, respectively. Thus:

M:Mm+ﬂ-%=—]}lb~[ﬁ-hl+2M1'
and M'=Mn—V2-%=%-k2+2M2’

r_ 4 m(km_kl) X a_h M Mm
L A VA

r__ Mn(hn—kz) a_hz M’ Mn
and 3y = Sty G (-5

Fig. 15a. Equilibrium of Element m—n
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Fig. 15b. Primary Moments
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The loading thus obtained is further split up into cases of partial loading
similar to those of fig. 14. In this way, it is possible to use the relations found
before in determining the new primary moments M7, and M, . Thus:
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The other cases of secondary moments are treated in a similar manner.
They supply the new secondary moments M7, and M7, , thus:

” r h , s(l+a) A ,
s or(a) by o, s(l4+a)? by o,
1421‘_ D 'Enlem_‘_ D knldn

Finally: M,,=M7{,+ M7,, and My, =M}, + M3, .

The steps followed in the successive solution are the same as for the panel
method. The primary moments, which serve as first approximation of the
actual moments, are first determined. The secondary moments are then cal-
culated, and-a second approximation of the actual moments is obtained. There
is generally no need for a further correction.

Needless to say that the panel method explaind before as well as its modi-
fication are suitable only for indirect loading and equal chord stiffness of the
Vierendeel girder. If, however, the loads are applied directly between the panel
points, the deformations of the loaded chord will not be followed by the other
chord. Further, for different chord stiffness, the moments of the upper and
lower chords will not be equal, rendering the calculations more difficult.

However, in the case of a Vierendeel girder with a constant ratio between
the upper and lower chord stiffness up to say 1.3, the panel method may be
used as a fair approximation. The two unequal chords are assumed to have
an equal average stiffness. The approximate moments obtained in this way lie
between the two unequal real values of the upper and lower chords. Con-
sequently, the normal forces found by the approximate method will be almost
equal to the real values. Remembering, now, that the stresses are due partly
to the bending moments, and partly to the axial forces, the error involved in
the total stresses found approximately will be less. This proves that the
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proposed method of average chord stiffness may be used as a practical approxi-
mation for differences of 30 and even 509, between the stiffness of the two

chords.
Conclusion

The statics of the Vierendeel girder should no more be considered as an
obstacle in the way of adopting this type in competitive structural work. The
exact calculations can be often replaced by successive approximations. Even
if such a procedure seems to be complicated, the designer can resort to fairly
good approximate methods by making appropriate assumptions, or by experi-
mental and semi-experimental methods.

Specially in the case of steel, the construction of the joints in the Vierendeel
girder is simplified by welding. There is also no need of having plate girder
sections, the members of the Vierendeel girder may be of the open web or
truss form. Finally, the statics of the Vierendeel girder may be applied in the
design of battened compression members, framed buildings, and in similar
structures. '
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Summary ‘

The Vierendeel girder is a highly indeterminate system whose exact cal-
culation necessitates the solution of a big number of elastic equations. However,
if the verticals are assumed to be hinged at their ends the number of redundants
is heavily reduced. Further, if a constant ratio of stiffness is maintained
between the two chords, the problem can be referred to an once indeterminate
system. Moreover, if the top or lower chord is non-stiff, the Vierendeel girder
becomes a bow string girder or a tied arch with one redundant only. A stati-
cally determinate system, which has more or less a similar statical behaviour
as the indeterminate Vierendeel girder, may be formed by introducing hinges
at the mid-points of the different members.

The equilibrium of the elastic weights in any closed panel with rigid joints
can be easily proved by using a ‘“free main system’’ i. e. a main system which
is changed for every case of virtual loading. This fact can be utilized in solving
the Vierendeel girder. The conditions of equilibrium of the elastic weights in
every panel replace the ordinary elastic equations.
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Moreover, the elastic weights due to the redundant values in a closed
panel may be combined into three resultants acting in the so-called ‘‘elastic
poles’’, and depending only on the dimensions of the panel.

In the special case of a Vierendeel girder with equal chord stiffness, the
elastic weights of the upper and lower chords, as well as those of the verticals
form elastic couples. The equilibrium of the elastic weights in each panel is
reduced to an algebraic summation of the corresponding elastic couples. This
special case of equal chord stiffness may be also solved by successive approxi-
mations using the so-called ‘“panel method’’.

Finally, a Vierendeel girder whose two chords have constant ratio of
stiffness may be approximately solved by assuming an equal average stiffness.
This approximation gives good practical results up to 30 and even 509, diffe-
rence in the stiffness of the two chords.

Zusammenfassung

Der Vierendeel-Tréager ist ein vielfach statisch unbestimmtes System, dessen
Berechnung die Auflésung einer grolen Zahl von Elastizitétsgleichungen er-
fordert. Wenn die Pfosten als an den Enden gelenkig angenommen werden,
kann die Zahl der Uberzihligen stark vermindert werden. Uberdies kann das
Problem auf ein einfach statisch unbestimmtes System zuriickgefiithrt werden,
wenn ein konstantes Verhiltnis zwischen den Steifigkeiten der beiden Gur-
tungen beibehalten wird. Ferner wird der Vierendeel-Triger zu einem ver-
steiften Stabbogen oder zu einem Bogen mit Zugband mit nur einer Uber-
zahligen, wenn die obere oder die untere Gurtung keine Steifigkeit hat. Ein
statisch bestimmtes System, das mehr oder weniger ein dem statisch unbe-
stimmten Vierendeel-Triger dhnliches statisches Verhalten zeigt, kann durch
Einfiithren von Gelenken in den Mittelpunkten der einzelnen Stibe erhalten
werden.

Das Gleichgewicht der elastischen Gewichte in jedem geschlossenen Feld
mit steifen Knotenpunkten kann leicht iiberprift werden, indem man ein
,,freies Grundsystem‘‘ einfiihrt, d.h. ein Grundsystem, das fiir jeden virtuellen
Belastungsfall gedndert wird. Diese Tatsache kann fiir die Berechnung des
Vierendeel-Tréigers ausgeniitzt werden. Die Gleichgewichtsbedingungen der
elastischen Gewichte in jedem Feld ersetzen die gewohnlichen Elastizitéts-
gleichungen.

Die elastischen Gewichte infolge der tiberzihligen GroBlen kénnen in jedem
Feld zu drei Resultierenden zusammengesetzt werden, die in den sogenannten
,elastischen Polen angreifen und nur von den Abmessungen des Feldes .
abhingen.

Im Spezialfall eines Vierendeel-Trigers mit gleichen Steifigkeiten der Gur-
tungen bilden die elastischen Gewichte sowohl der Gurtungen als auch der
Pfosten ,elastische Kriftepaare“. Die Herstellung des Gleichgewichts der
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elastischen Gewichte in jedem Feld wird zuriickgefithrt auf eine algebraische
Summation der entsprechenden elastischen Kriftepaare. Dieser Spezialfall
der gleichen Gurtsteifigkeiten kann auch durch eine sukzessive Approximation
gelost werden bei Verwendung der sogenannten ,,Feld-Methode‘ .

Schliellich kann ein Vierendeel-Triager, dessen beide Gurtungen konstantes
Steifigkeitsverhéltnis besitzen, ndherungsweise unter der Annahme einer kon-
stanten mittleren Steifigkeit berechnet werden. Diese Naherung ergibt prak-
tisch gute Resultate bis zu Steifigkeitsdifferenzen der Gurtungen von 30 oder
sogar 509%,.

Résumé

La poutre Vierendeel est un systéme qui présente un degré multiple
d’hyperstatisme, dont le calcul exige la résolution d’un grand nombre d’équa-
tions d’élasticité. Si I’on admet que les éléments verticaux sont articulds a
leurs extrémités, le nombre des barres surabondantes peut étre considérable-
ment réduit. De plus, il est possible de ramener le probléme & une indétermina-
tion statique simple en conservant un rapport constant entre les rigidités
des deux membrures. La poutre Vierendeel peut en outre prendre la forme
d’un arc simple renforcé ou d’un arc avec tirant avec un seul élément sur-
abondant, lorsque 1’une des deux membrures, supérieure ou inférieure, ne pré-
sente aucune rigidité. Un systéme isostatique qui offre un comportement
statique plus ou moins analogue a celui de la poutre Vierendeel hyperstatique
peut étre réalisé par introduction d’articulations aux milieux des différentes
barres. '

I1 est possible de contrdler aisément les conditions effectives d’équilibre des
poids élastiques dans tout champ fermé avec nceuds rigides, en y introduisant
un ,,systeme de base libre*, c’est-a-dire un systéme de base se modifiant pour
chaque cas virtuel de charge. Ce fait peut étre utilisé pour le calcul de la poutre
Vierendeel. Les conditions d’équilibre des poids élastiques dans chaque champ
de charge peuvent étre composées en trois résultantes, appliquées aux points
dits ,,poles élastiques* et qui ne dépendent que des dimensions du champ.

Dans le cas particulier d’une poutre Vierendeel dont les deux membrures
présentent une méme rigidité, les poids élastiques des membrures aussi bien
que ceux des montants forment des ,,couples élastiques. La réalisation de
Péquilibre des poids élastiques dans chaque champ est ramené & une som-
mation algébrique des couples élastiques correspondants. Ce cas particulier
de I’égalité des rigidités peut également étre résolu par approximations sue-
cessives, en appliquant la méthode dite ,,du champ®.

Enfin, une poutre Vierendeel dont les deux membrures présentent un
rapport constant de rigidité peut étre calculée d’une maniére approchée dans
I’hypothese d’une rigidité constante moyenne. Cette approximation donne de
bons résultats pratiques jusqu’a des écarts de rigidité atteignant 30, voire
509, entre les deux membrures.
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