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Approximations Following from the Maximum Condition Applied in
Theories of Plasticity and Earth Pressure

Aus der Maximalbedingung abgeleitete Näherungen in der Plastizitätstheorie
und bei Erddruckproblemen

Approximations resultant de la condition du maximum appliquee dans les theories
de la plasticite et de la pression des terres

Prof. Dr. Ing. habil. Hermann Cräemer

Statically indeterminate problems cannot be solved by equilibrium only,
but a further condition is to be added. In the theory of elasticity Hooke's law
is introduced but it is well known that, for most materials, it no more holds
good in the higher ranges of stress, i.e. near failure. For the theoretical
investigation of this state of a structure, therefore, the theory of plasticity has
been created which, in its simplest form, is based on the assumption of a
so-called ideally-plastic behaviour, i.e. independence of stress from strain
after a maximum value, the yield stress ay, has been reached. The plastic
theory has been applied to beams and frames and, recently, to slabs.

A quite similar yield condition has been in use in the theory of earth-
pressure for more than a Century, assuming that in the ultimate state of the
elements concerned the angle 9 be tween the resultant stress and the normal
to the element reaches a maximum, i. e. the frictional angle or angle of repose,
p, which is independent of the strain in the element.

Thus, since the yield conditions are similar and further analogies will
appear later, beams, frames, plates and soil problems can be investigated
along corresponding lines as far as the failure ränge is concerned, and approximations

devised for one field may be transfered to the other.
1. Beams and frames. A cross-section of a beam or frame is in its limiting

state when all of its elements are stressed with vy. Then, if there is no normal
force, the bending moment is equal to the füll plastic moment

My ayS, (1)

whereby S is the term replacing the section modulus occuring in the theory
of elasticity, e.g. S bh2/4: for a rectangle. The strains at the edges then afre

infinitely great and the cross-section acts as a plastic hinge, i. e. a part without
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bending stiffness submitted to a constant moment. The structure, for its part,
enters the limiting state when so many hinges have formed that the system
has obtained at least one degree of kinematic freedom.

If the position of the plastic hinges is known, My for a given load is readily
determined by equilibrium; this is the case under single loads and under
distributed loads if there is symmetry. Thus, in fig. 1, if 8 is assumed to be a
constant, the hinges can only be at the righthand support and under the load;
equilibrium therefore yields Ba-Bb P, Ralj2 My, Rbl/2 2My, thus

M =P1.
v 6 (2)

This result could have been got easier by the principle of Virtual work,
which states _=_e+ _,_(), (3)

Lp and L,- being the external and internal work for any assumed deformation,
By imposing at the load a deflection equal to unity, we make the two halves
of the bar rotate by an angle 2/1 and, as the two parts remain straight-lined,
only the plastic moments do internal work; it amounts to — My-2jl for the
left hand part and —2My-2/l for the right hand one, thus —6Myß in all. As
the external work is PI, we immediately obtain eq. (2).

_^_

1/2 W

Fig. 1 Fig. 2

JTa

For a load of constant intensity, p, fig. 2, the position of the second plastic
hinge is not known. We therefore first consider a state of equilibrium in which
at an arbitrary section x the bending moment M is equal to that at the support.
A Virtual displacement similar to that previously used then yields an internal
work —M'ljx at the left and —2Mj—~ at the right, thus Li — M:l—x &> i x(l — x)~
the shear forces do not contribute. The two resultants of the load acting left
and right of the hinge both deflect by 1/2, thus Le pl/2 or, by eq. (3)

M pl x(l
~2

-x)
l + x

(4)

Now, in order to make the above state a limiting state, the position x must
be fixed so as to make the moment at x a maximum with respect to the
adjoining cross-sections. By deriving for x we find
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x (]/2-1)1 OAUl and, by eq. (4)

My l(i2-\Ypl* 0.0858 p?2.

(5)

(6)

It is obvious that the above-used "maximum condition" can be generalised
if the position of more than one plastic hinge is unknown; so we obtain

dM
dx,

0, M My, i l, 2,. .n. (V

If the Virtual deformation is assessed in such a way that only the bending
moments do internal work, the total Virtual work appears in the form

L f (M,x1,x2. 0 and from this we can get

dJ_7--_ dL dL 7 dL _

0 -^rzdM +-^rdx1 + -^-ax2. +-—dx„dM dx1 dx9 d x„

Now, comparing this with the n conditions given by eq. (7) we find that
the latter can only be fulfilled if also

HLe + L,
dx,

0, i l,2, .n. (8)

This modified form of the maximum condition leads sometimes to shorter
arithmetic.

Now, since in the vicinity of the correct position of a plastic hinge deter-
mined according to eq. (7) or (8), the value of dMjdx is still small and thus
the bending moment is only slightly dimin-
ished with respect to the plastic moment, we
can frequently obtain a fair approximation
by using an estimated value for the position of
the plastic hinge.

If, for instance, in the problem of fig. 2,

instead of using eq. (5), we had just estimated
x — 0.51, and inserted this into eq. (4), we
should have got My 0.0833 p Z2 which is only
3% less than the correct value after eq. (6).

This reasoning, however, does not hold for
the plastic hinge at the support, since the
moment at this place is not a maximum in
the sense of eq. (7), dMjdx being far from
zero. It is also not valid for the hinge under
a single load — but there is no necessity
for an estimation in this case anyhow.

Let us now consider the frame shown in
fig. 3a and let it be loaded by 12 kip/ft. run Fig. 3

minimumum ^
3

30

'///////

b)
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on the beam and by 9 kip/ft. wind suction on the strut; S is assumed a
constant for all cross-sections. Since at the corner C the moments due to the
vertical and horizontal loads partly cancel each other, the plastic hinges will
occur anywhere at E and F.

It has been pointed out by other authors that the normal forces acting in
frame members do not influence the position of the plastic hinges materially.
We therefore examine a state of equilibrium for which the absolute value of
the bending moment is the same at 2 arbitrary sections E and F and at the
clamped-in sections B and D. The Virtual deformation is chosen such as to
make part ECF rotate by an angle equal to unity, see fig. 3b. The deflection
then is x1 at E, x2 at F and parts BE and FD rotate by xJföO — x^) and
#2/(30 — x2) respectively.

The external work thus follows to be

Le 12-30-i^-j-9-30-1^2,

while the internal work, computed in the sequence B E, E C F, F D is

L^-2Mw^--2M-l-2M^ hence

180*1+135*2-2i_(l +^ + ^)=0. (9a)

By use of eq. (8) we find two more conditions:

(30
180-2_W — - 0 and (9b)

135-2^(3Ö^P °- <9C>

The Solution of the 3 equations is easily got by iteration, viz.

xx 13.5 ft., x2 11.0 ft., M My 815 kip-ft. (10)

Without the use of the maximum condition, by estimating x± x2 15 ft.,
eq. (9a) would have rendered My 188, thus only 3.5% less than the correct
moment. This result is remarkable, as x2 deviates rather much from the
precise value.

We now shall briefly examine the case when S is a variable. Then, of
course, not the moments but the stresses, a MjS will equalise and, instead
of eq. (7), the maximum condition runs

da
— =0, <j ay, ^ l,2,. ..n, (11)

while eq. (8) remains unchanged if the work is expressed in the form L f(o,
xly x2.
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We apply this to fig. 2 and assume

S £a(l+f), (12)

Sa and 2 8a being the corresponding values at the two supports. The moment
at any place x then is

px(l — x) x
~2 7jfx ___l_LZ_____^jlf6>

if Mb denotes the moment over the support B; the stress at x is

plx(l — x) — 2xMb

Mb
2 8a(l + x)

and the same at the support

ab ^-~. By inserting Mb from the last equation into the penultimate and
a pllx — x2

equating orx crb or, we get & ¦£--'-—-—. Finally, if the condition (11)
A toa t -j- o X

is applied, we find x and, in connection with the other equations, Mx and
Mb. The result is

x \> M* ^vl2> \M*\=\pV- (13)

By use of x 0.5l we should have got Mb 0.l00pl2, thus only 11% error
in spite of the rough estimation.

It should be noted that, of course, an estimated Solution will lead the more
safely to success, the more and more care and consideration has been spent
on the estimation. For instance, in the case of fig. 2 it is obvious from the
bending moment diagram that the maximum moment occurs to the left of
midspan, thus x<0.5l. If, however, 8 diminishes to the left, the most stressed
cross-section will be still more to the left than for a constant cross-section.

One of the few problems which, partly, are solved less simply by the
theory of plasticity than by elasticity, is the superposition of two or more cases
of loading. If, for instance, the loads shown in figs. 1 and 2 act simultaneously,
the moment at failure is, at least strictly speaking, not equal to the sum of the
terms in eqs. (2) and (6). This follows from the fact that at x 0.51 the moment
due to the distributed load is less than 0.0858pl2, since this is a value occuring
as a maximum at a; 0.414/ and correspondingly the value due to the single
load after eq. (2) occurs at x 0.5l and its influence is smaller at x 0.4141.

Thus, if we write nevertheless

My' ~+ i;(i2-l)Zpl\ (14)

we obtain at any rate more than the correct value. This applies always when
the plastic hinges for the superposed cases are at different places. Only if, excep-
tionally, the hinges occur at the same place — say, if a single load would
stand at # 0.414 Z — the superposition will be rigidly correct.
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Now, we have already pointed out that near a plastic hinge the moments
decrease but slowly; the error due to the superposition therefore will be the
smaller, the smaller the distance between the two hinges for the considered
cases. Moreover, the error will decrease if one of the cases dominates; eq. (14),
for instance, is perfectly correct for both p 0 and P 0.

Let us now derive the strict Solution for the above combined case of loading,
assuming 8 const. Then the hinge will be at a cross-section x^^l and,
considering equal moments at this place and at the support, we have

M —^ + Px{< ~~x> _ xm an(i from eqm (7) we gn(j
_¦ Ai

x M/2+~-UZ and ,(_5a)

M« v-r{i2+vr1)2- <15b>

As x^\l, this holds good as long as

pl 4 (15c)

For P 0, i.e. distributed load only, this leads back to eqs. (5) and (6). If,
however, p -.

—- ^ -, the hinge will always be at (16 a)

x \l, therefore (16b)

*.-£ + £. (.60

M '-MThe relative error in eq. (14) is —^= and depends only on the term
P Mv P
— In the ränge of eqs. (15) it has a maximum of 2.5% corresponding to —¦=
P v ' p V

0.21; in the ränge of eqs. (16) the error is even less. Thus, in this example, the
superposition is completely justified.

2. Plates. In the following we restrict ourselves to plates with constant
thickness. The application of theory of plasticity to plates has been established
by K. W. Johansen [1], see also a brief representation by the author [2]. The
plastic hinges here are replaced by the "fracture lines" about which the
adjoining parts rotate at failure; along these lines the moment then is equal
to the füll plastic moment which will be denoted by my per unit run. Mostly
the fracture lines are straight -lined. If the "fracture pattern", i.e. the totality
of the fracture lines, is known, my can be determined by equilibrium.

If this is not the case, we first assume a pattern with n geometrical un-
knowns xi and consider a state of equilibrium for which in each of the assumed
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lines the moment has the same amount m per unit length. Now, this pattern
will be the fracture pattern if the maximum condition

dm a • 1 O-— 0, m mv, i \,2,...ndxi
is fulfilled. Eqs. (3) and (8) can be applied as before.

(7a)

Fig. 4

In fig. 4 we examine an equilateral triangle equally loaded with intensity p
and clamped in at the edges. The fracture lines are marked by double lines;
hereby the moments along MD and DB are positive and along EB and CB
negative, compare the cut shown in the figure; x1 and x2 are the geometrical
unknowns. For symmetry it is sufficient to examine a sixth of the slab, viz.
MCA, and from geometrical relations we readily get MA=2r, __C=1.733r,
AB =l.l55x1 and EB 0.518xv

Now we impart to the system a Virtual deflection such as to leave the
pieces between the assumed lines plane and make point M deflect by unity.
Then the deflection at D is (x1Jrx2)j2r. In the piece MC BD the bending
moments have a component 2 m. CB turning round an axis parallel to CB
and the piece rotates by an angle 1/r; the internal work therefore is insofar
2mCBjr. Similarly in the piece BDE the component is 2mEB and the-angle
of rotation is (x1Jrx2)j2rx2. Using this and inserting the above-stated
geometrical relations, we obtain

L< 2m (l.733 -1.555^ + 0.578^^^1.
\ r 2 r x2

To find the external work, we consider the parts MCA, DBE, ABE with
the areas \ 1.733r2, JO.578^X2 and JO.578^2 respectively. In order to carry
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out the agreed Virtual deformation, the centroid of the first part has to deflect

by J and those of the two others have to move upwards by -~ each with
respect to the first. Thus the external work is

Le 0.289 pr2- 0.0481 px2^**.
By inserting into eq. (3) and introducing the abbrevations:

12 m x, x2 __,.
f* j^> * 7' v ~i (17)

we arrive at

4-u+^)-Nptf+,)] 0 (18)

and, by deriving for £ and rj according to eq. (8),

From the last equation follows

7] l/jjil (19a)

inserting this into the two other equations and transforming, we come to

^i-iPtf+fr) and (20a)

!*(-?)¦ (20b)

In this form the last two equations are easily solved by iteration in the following

way

/x=l 1.165 1.175 1.180
£ =0 0.75 0.42 0.69 0.48. We therefore have finally

m2/ 1.18^-, x± 0A8r, #2 1.085r. (21)

In'the above iteration it is seen that already its first step leads to to a very
reasonable term for the moment, viz. jjl 1.165 whereas the first value for
^x 0.75r is far from the final one. This is another proof of the possibility of
getting a good approximation even from a rather inexact geometrical pattern.
In practice therefore small deviations in the properties of the building material
will often produce remarkable deviations in the geometrical aspect of the
fracture pattern with respect to the theoretical one, without influencing the
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bearing capacity. As a consequence, in analyses of test results, the observed
and the theoretically predicted failure loads coincided well, but the fracture
often pattern did not.

The condition that the geometrical pattern is to make the moment a maximum

cannot always be fulfilled by a derivation according to eqs. (7) or (8),
since it may happen that principally different types of patterns must be
compared.

Consider a quadratic slab after fig. 5, equally loaded by p and freely
supported along two sides AB and AD, but completely free at CD and CB. We
can first take into account a fracture line DB with negative moment. By
imparting to point C a unit Virtual deflection, we get Le \pa2-\. The rotation
about DB of the piece DBC is ]/2/a, thus

l/2 pa2
—, hence m„n y

L< — my a ]/2 ¦

12

l\ ]f \C

A

1

V 1

d)
Fig. 5

The positive fracture line AC in fig. 5b, however, is more unfavorable. By
defiecting C by unity we get Le pa2-^] the rotation of the parts about AD
and AB is \\a, the corresponding moments have a component of my-a each,

therefore Li= — 2my- or my pa2/ß. Since in this case two different types
have to be distinguished, the decision cannot be made by using eqs. (7)'or (8).

As a further example for the use of estimated fracture patterns, the equally
loaded irregulär pentagon with the dimensions inscribed in fig. 6 will be
examined. The edges shall be freely supported, the total load be 3 kip. In a

compact figure like this we may well assume that all fracture lines meet at the
same point A. By imposing at this point a unit deflection, we get Le 3 • J 1.

The angles of rotation about each side of the polygon are 1/A if by h the height
of the corresponding triangle is denoted which may be picked out of a plan
drawn at a sufficient scale. In this way we obtain

Li= ~mv\^
my 0.131 kip. ft./ft. run.

.4 3.2 6.3 5.7 6

Ö + 5X) + 378 + 3~E + 3D- hence

Now, if a is the length of any side, the equilibrium yields mya \pah •-
or my ph2/6. The fracture pattern therefore can only be strictly correct if all

7 Abhandlung XII
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heights are equal. This, however, is only possible for a polygon which possesses

an inscribed circle. Notwithstanding we can approach to this condition by
chosing a shifted point B and thus more or less equalising the heights which,
in the first trial, deviated between 3.5 and 5.0'. We thus get the heights 3.65,

4.40, 3.55, 4.00 and 4.15 and my 0.132.

Of course we could have chosen the intersection point more carefully just
from the beginning, but what we wanted to demonstrate was just the small
influence of the position of this point. Although the Solution is not and cannot
be "rigid", it is of no practical use trying to improve the result by more com-

plicated patterns.

6.9

5.7

7U

6,3'

3.2

W2' |

13.12-

// aw.uo

Fig. 6 Fig. 7

3. Earth pressure.
limiting state if

In earth and similar materials an element is in the

t/o- tanp, (22)

o and t being the normal and shear stresses and p the frictional angle; possible
cohesion is not taken into account. For every other element, however, the
angle between a and r is

cp<p. (23)

In turn, the system as a whole reaches the limiting state when the above
state has spread along certain continuous surfaces and the latter are arranged
in such a way that the parts on both sides of such a "sliding surface" may
glide on each other, the system thus obtaining at least one degree of kinematic
freedom.

This occurence has its counter-part in beams when the yield stress is first
reached at the edges and after this spreads over a whole cross-section; the
sliding surfaces in soil mechanics hereby correspond to the plastic hinges in
the plastic theory of beams and frames.
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Coulomb's theory is based on plane sliding surfaces, thus only a special
type of fracture pattern is considered; we also adopt this assumption. It follows
that all stresses acting on such a sliding plane and, consequently, their resultant

are parallel. The corresponding angle cp therefore is a maximum with
respect to neighboring planes, or

äf 0, <P P, i=l,2,...n. (24)

This maximum has its analogy in eqs. (7) and (11). By &t the angles are
denoted which fix the fracture pattern geometrically. In this general form the
maximum condition can be used for a fuller investigation of several problems
on earth pressure and bearing capacity of soils to which we shall refer at
another occasion.

We examine the earth pressure against the wall shown in fig. 7; p 30°
and a specific weight of the soil of 125 lb./cub. ft. is supposed. By P a load
distributed along a line parallel to the wall is denoted; regarding its position
it is only supposed that it Stands between the wall and the sliding plane,
a ^ #. The back of the wall is supposed to be perfectly frictionless.

Then, the weight per ft. run between wall and sliding plane is G 54500 cot
#— 10750+ P and from the equilibrium against shifting normally to the force
Q acting in the sliding plane we get

E (54500 cot # - 10750 + P) tan (# - cp). (25)

Carrying out the Operation after eq. (24) we get after arithmetic

oot9 2^|_ + „.1975--£-, ,„,2sm2# 54500

which can be easily solved by iteration. If, for the moment, we leave P out of
consideration, we arrive at

# 52.5°, E= 12850 lb./ft. run, P 0. (27)

It is seen that, by utilisation of the iteration method, the analytical way
leads more rapidly to a Solution than old-fashioned graphic methods. The
arithmetic, however, can still be simplified by using an estimated value for #,
e.g. the value #' 60° which applies for horizontal ground level; we then get
directly from eq. (25)

#' 60°, _£' 11950 lb./ft. run, P 0. (28)

and need not consider eqs. (24) and (26). The error is 7%; as the assumption
of plane sliding surfaces is an approximation in itself and, moreover, the
frictional angle is usually but roughly guessed, the above Solution is allowable.
It should be remembered that a decrease of p, say from 30 to 25°, produces
a much bigger error, viz. 22%.
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For various magnitudes of P the following strict results have been com-
puted according to eq. (25) and (26):

P 6720 lb./ft., & 57°, E 15900 lb./ft. (29)
P 13440 lb./ft., & 62.5°, E 19700 lb./ft.

If, instead, #' 60° is assumed and eq. (25) used directly, the results deviate
less than 1%, due to the close coincidence of the &' s.
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Summary

In the critical sections of beams, frames and plates, the moments are a

maximum with respect to neighboring sections; this fact can be used for
either a rigorous computation or a fair approximation. Similarly, in the critical

surfaces of soil, the angle between the stress and the normal to this surface
is a maximum; hence, soil problems can be examined along similar lines.

Zusammenfassung

In den maßgebenden Schnitten von Balken, Rahmen und Platten sind die
Momente Maxima in bezug auf die Nachbarschnitte. Diese Tatsache kann
sowohl zur genauen Berechnung als auch zu guten Näherungen benützt werden.

Auf ähnliche Weise können auch Erddruckprobleme untersucht werden,
da in den Gleitflächen der Winkel zwischen der Spannung und der Normalen
zu dieser Gleitfläche ein Maximum wird.

Resume

Dans les sections critiques des poutres, cadres et dalles, les moments sont
maxima par rapport aux sections voisines; ce fait peut etre utilise en vue d'un
calcul rigoureux ou d'une approximation süffisante. De meme, dans les
sections critiques du sol, l'angle entre la contrainte et la normale ä la surface

presente une valeur maximum; les problemes relatifs aux sols peuvent donc
etre etudiee sur des bases analogues.
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