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Approximations Following from the Maximum Condition Applied in
Theories of Plasticity and Earth Pressure

Aus der Maximalbedingung abgeleitete Ndherungen in der Plastizitdtstheorie
und bei Erddruckproblemen

Approximations résultant de la condition du maximum appliquée dans les théories
de la plasticité et de la pression des terres

Prof. Dr. Ing. habil. HERMANN CRAEMER

Statically indeterminate problems cannot be solved by equilibrium only,
but a further condition is to be added. In the theory of elasticity Hooke’s law
is introduced but it is well known that, for most materials, it no more holds
good in the higher ranges of stress, i.e. near failure. For the theoretical
investigation of this state of a structure, therefore, the theory of plasticity has
been created which, in its simplest form, is based on the assumption of a
so-called ideally-plastic behaviour, i.e. independence of stress from strain
after a maximum value, the yield stress o,, has been reached. The plastic
theory has been applied to bears and frames and, recently, to slabs.

A quite similar yield condition has been in use in the theory of earth-
pressure for more than a century, assuming that in the ultimate state of the
elements concerned the angle ¢ be tween the resultant stress and the normal
to the element reaches a maximum, i.e. the frictional angle or angle of repose,
p, which is independent of the strain in the element.

Thus, since the yield conditions are similar and further analogies will
appear later, beams, frames, plates and soil problems can be investigated
along corresponding lines as far as the failure range is concerned, and approxi-
mations devised for one field may be transfered to the other.

1. Beams and frames. A cross-section of a beam or frame is in its limiting
state when all of its elements are stressed with o,. Then, if there is no normal
force, the bending moment is equal to the full plastic moment

M,=o0,8, (1)

whereby § is the term replacing the section modulus occuring in the theory
of elasticity, e.g. S=5bh?%/4 for a rectangle. The strains at the edges then are
infinitely great and the cross-section acts as a plastic hinge, i. e. a part without
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bending stiffness submitted to a constant moment. The structure, for its part,
enters the limiting state when so many hinges have formed that the system
has obtained at least one degree of kinematic freedom.

If the position of the plastic hinges is known, M, for a given load is readily
determined by equilibrium; this is the case under single loads and under
distributed loads if there is symmetry. Thus, in fig. 1, if S is assumed to be a
constant, the hinges can only be at the righthand support and under the load;
equilibrium therefore yields R,— R,=P, R,1/2=M,, R,1/2=2M,, thus

Pl
My=—6—. (2)

This result could have been got easier by the principle of virtual work,
which states L=L,+L;=0, (3)

L, and L, being the external and internal work for any assumed deformation.
By imposing at the load a deflection equal to unity, we make the two halves
of the bar rotate by an angle 2/l and, as the two parts remain straight-lined,
only the plastic moments do internal work; it amounts to —Af,-2/l for the
left hand part and —2 M -2/l for the right hand one, thus —6 M/l in all. As
the external work is P-l, we immediately obtain eq. (2).

p | . P
: L s AT
/N i 2 N2 BE
Ry [ A |
Yot lf—A, |

‘ |

V <| ' bﬁ
s |

z |

= —{ e

{

! |
———+
- [

For a load of constant intensity, p, fig. 2, the position of the second plastic
hinge is not known. We therefore first consider a state of equilibrium in which
at an arbitrary section z the bending moment M is equal to that at the support.
A virtual displacement similar to that previously used then yields an internal

» work — M -1l/xz at the left and —ZMZ—_Z_E at the right, thus L, = btz M:

T z(l—2)
the shear forces do not contribute. The two resultants of the load acting left
and right of the hinge both deflect by 1/2, thus L,=pl/2 or, by eq. (3)

_?_lx(l—x)
= 2 l+x

(4)

Now, in order to make the above state a limiting state, the position x must
be fixed so as to make the moment at » a maximum with respect to the
adjoining cross-sections. By deriving for x we find
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x = (Y2—1)1=0.414] and, by eq. (4) (5)
M,=3%(V2-1)2pl? = 0.0858 pi2. (6)

It is obvious that the above-used “maximum condition’’ can be generalised
if the position of more than one plastic hinge is unknown; so we obtain

oM
ox;

=0, M= M s =12, .1 (7)

If the virtual deformation is assessed in such a way that only the bending
moments do internal work, the total virtual work appears in the form

L =f(M,x;,z,...) =0 and from this we can get

oL ¢ L oL oL
0 mdM dxl 8x2dx2... +den.
Now, comparing this with the n conditions given by eq. (7) we find that
the latter can only be fulfilled if also

-3-(—%%’5):0,#1,2,...7@. ' (8)
This modified form of the maximum condition leads sometimes to shorter
arithmetic.

Now, since in the vicinity of the correct position of a plastic hinge deter-
minéd according to eq. (7) or (8), the value of 9 M/« is still small and thus
the bending moment is only slightly dimin-
ished with respect to the plastic moment, we
can frequently obtain a fair approximation
by using an estimated value for the position of < 30
the plastic hinge.

If, for instance, in the problem of fig. 2,
instead of using eq. (5), we had just estimated 90
=0.50, and inserted this into eq. (4), we
should have got M, =0.0833 pl? whichisonly
39, less than the correct value after eq. (6).

This reasoning, however, does not hold for
the plastic hinge at the support, since the
moment at this pla.ce is not a maximum in
the sense of eq. (7), oM /ox being far from
zero. It is also not vahd for the hinge under
a single load — but there is no necessity
for an estimation in this case anyhow.

Let us now consider the frame shown in
fig. 3a and let it be loaded by 12 kip/ft. run

ﬁlgHHlHHHHHHH

’




82 . Hermann Craemer

on the beam and by 9 kip/ft. wind suction on the strut; S is assumed a
constant for all cross-sections. Since at the corner ' the moments due to the
vertical and horizontal loads partly cancel each other, the plastic hinges will
occur anywhere at E and F.

It has been pointed out by other authors that the normal forces acting in
frame members do not influence the position of the plastic hinges materially.
We therefore examine a state of equilibrium for which the absolute value of
the bending moment is the same at 2 arbitrary sections E and F and at the
clamped-in sections B and D. The virtual deformation is chosen such as to
make part E C F rotate by an angle equal to unity, see fig. 3b. The deflection
then is z; at E, z, at F and parts B X and F D rotate by z,/(30 —z,;) and
Z,/(30 — z,) respectively.

The external work thus follows to be
L,=12-30-12,4+9-30-1x,,

while the internal work, computed in the sequence BE, ECF, F D is

= 2 — —2
L, M30 - 2M-1 M30_ , hence
1802, + 135z, —2 M (1+ -2 4+ %2 ) _ (9a)
re 2 30—z, 30-mz,)
By use of eq. (8) we find two more conditions:
30
. 20 :

The solution of the 3 equations is easily got by iteration, viz.
2, =13.5 ft., 2, = 11.0 ft., M = M, = 815 kip-ft. (10)

Without the use of the maximum condition, by estimating x, =z, 15 ft.,
eq. (9a) would have rendered M, =788, thus only 3.59%, less than the correct
moment. This result is remarkable, as x, deviates rather much from the
precise value.

We now shall briefly examine the case when 8 is a variable. Then, of
course, not the moments but the stresses, o =M/S will equalise and, instead
of eq. (7), the maximum condition runs
i=1,2,...n, (11)

— =0, o=c¢
y’
ox,

while eq. (8) remains unchanged if the work is expressed in the form L=f (o
Ty, Ly. .. ). '
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We apply this to fig. 2 and assume

S:Sa(1+%), (12)

S, and 2§, being the corresponding values at the two supports. The moment
at any place « then is

o _px(l—2x) be’

e 2 l
if M, denotes the moment over the support B; the stress at z is

_plx(l—x)—-22 M,

oy 58, (1+2) and the same at the support
op = E_Sg' By inserting M, from t}lle %ast eguation into the penultimate and
a —
equating o,=0,=0, we get o = sz : ;:_ 39; . Finally, if the condition (11)
a

is applied, we find x and, in connection with the other equations, M, and
M, . The result is

x

_t
==,

By use of x=0.51 we should have got M, =0.100p!2, thus only 119, error
in spite of the rough estimation.

It should be noted that, of course, an estimated solution will lead the more
- safely to success, the more and more care and consideration has been spent
on the estimation. For instance, in the case of fig. 2 it is obvious from the
bending moment diagram that the maximum moment occurs to the left of
midspan, thus « <0.5/. If, however, S diminishes to the left, the most stressed
cross-section will be still more to the left than for a constant cross-section.

One of the few problems which, partly, are solved less simply by the
theory of plasticity than by elasticity, is the superposition of two or more cases
of loading. If, for instance, the loads shown in figs. 1 and 2 act simultaneously,
the moment at failure is, at least strictly speaking, not equal to the sum of the
terms in eqs. (2) and (6). This follows from the fact that at x=0.5[ the moment
due to the distributed load is less than 0.0858 p /2, since this is a value occuring
as a maximum af x=0.4147 and correspondingly the value due to the single
load after eq. (2) occurs at x=0.51 and its influence is smaller at x=0.4141.

2 1
M,=5-pl, M| = 5Pl (13)

Thus, if we write nevertheless

, Pl o~
M) = (-1l (14)

we obtain at any rate more than the correct value. This applies always when
the plastic hinges for the superposed cases are at different places. Only if, excep-
tionally, the hinges occur at the same place — say, if a single load would
stand at x=0.4147 — the superposition will be rigidly correct.
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Now, we have already pointed out that near a plastic hinge the moments
decrease but slowly; the error due to the superposition therefore will be the
smaller, the smaller the distance between the two hinges for the considered
cases. Moreover, the error will decrease if one of the cases dominates; eq. (14),
for instance, is perfectly correct for both p=0 and P =0. v

Let us now derive the strict solution for the above combined case of loading,
assuming S = const. Then the hinge will be at a cross-section x < 1! and, con-
sidering equal moments at this place and at the support, we have

5]

M = I’C)x+px(l—x)_9§M and from eq. (7) we find

/o P |
_pl? P\
My_T(l/.‘Z—}—ﬁ— ) . (15b)
As x < }1, this holds good as long as
P 1 -
}TZ é 1. (].OC)

For P=0, i.e. distributed load only, this leads back to egs. (5) and (6). If,
however, P

o1 = %, the hinge will always be at (16a)

x = %1, therefore ) (16b)

M, = pl_l;_ + % (16¢)

The relative error in eq. (14) is J;”;y and depends only on the term
;:l. In the range of egs. (15) it has a maximum of 2.59, corresponding to Eolil =

0.21; in the range of eqs. (16) the error is even less. Thus, in this example, the
superposition is completely justified.

2. Plates. In the following we restrict ourselves to plates with constant
thickness. The application of theory of plasticity to plates has been established
by K. W. JoHANSEN [1], see also a brief representation by the author [2]. The
plastic hinges here are replaced by the ‘“fracture lines’’ about which the
adjoining parts rotate at failure; along these lines the moment then is equal
to the full plastic moment which will be denoted by m, per unit run. Mostly
the fracture lines are straight-lined. If the “fracture pattern’’, i.e. the totality
of the fracture lines, is known, m, can be determined by equilibrium.

If this is not the case, we first assume a pattern with »n geometrical un-
knowns z; and consider a state of equilibrium for which in each of the assumed
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lines the moment has the same amount m per unit length. Now, this pattern

will be the fracture pattern if the maximum condition
g;’:=0, m=my,, i=12,..n (7a)

is fulfilled. Egs. (3) and (8) can be applied as before.

Fig. 4

In fig. 4 we examine an equilateral triangle equally loaded with intensity p
and clamped in at the edges. The fracture lines are marked by double lines;
hereby the moments along M D and D B are positive and along # B and C B
negative, compare the cut shown in the figure; x; and x, are the geometrical
unknowns. For symmetry it is sufficient to examine a sixth of the slab, viz.
MCA, and from geometrical relations we readily get M A =2», AC=1.7337,
AB=1.155x, and E B=0.5782,.

Now we impart to the system a virtual deflection such as to leave the
pieces between the assumed lines plane and make point M deflect by unity.
Then the deflection at D is (z;+w,)/27. In the piece M C BD the bending
moments have a component 2 m. C'B turning round an axis parallel to C B
and the piece rotates by an angle 1/r; the internal work therefore is insofar
2m-C B/r. Similarly in the piece BD E the component is 2m E B and the angle
of rotation is (x;+x,)/27x,. Using this and inserting the above-stated geo-
metrical relations, we obtain

L, = _2m(1.733— 1.555ﬁ+0.578x1”1+x2).
r 27z,

To find the external work, we consider the parts M CA, DBE, A BE with
the areas $1.73372, $0.578 2, x, and 10.578x,2 respectively. In order to carry
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out the agreed virtual deformation, the centroid of the first part has to deflect

xlr each with

by % and those of the two others have to move upwards by Y

respect to the first. Thus the external work is

L, = 0.289 pr?—0.0481 pa,2 1T %2

By inserting into eq. (3) and introducing the abbrevations:

_12m o _ %
p="as =2, g=" (17)
we arrive at
1-pé+ )= [1-te@an| o (18)
and, by deriving for £ and » according to eq. (8),
§ €
145 1g2, 87
3 W
13 ( - 6 7}2 + F = 0.
From the last equation follows ‘
n = Vp; (19a)

inserting this into the two other equations and transforming, we come to

_ —18(¢+ V) d 20
Thcienene o

g=21/,1<1—%2). (20D)

In this form the last two equations are easily solved by iteration in the follo-
wing way

1 1.165 1.175 1.180
0 0.75 0.42 0.69 0.48. We therefore have finally

It

u
3

pr ,
m,, = 1.18—1~2—, x; = 0.487, Zy=1.0857. (21)
In’'the above iteration it is seen that already its first step leads to to a very
reasonable term for the moment, viz. p=1.165 whereas the first value for
2,=0.757 is far from the final one. This is another proof of the possibility of
getting a good approximation even from a rather inexact geometrical pattern.
" In practice therefore small deviations in the properties of the building material
will often produce remarkable deviations in the geometrical aspect of the
fracture pattern with respect to the theoretical one, without influencing the
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bearing capacity. As a consequence, in analyses of test results, the observed
and the theoretically predicted failure loads coincided well, but the fracture
often pattern did not.

The condition that the geometrical pattern is s to make the moment a maxi-
mum cannot always be fulfilled by a derivation according to egs. (7) or (8),
since it may happen that principally different types of patterns must be
compared.

Consider a quadratic slab after fig. 5, equally loaded by p and freely sup-
ported along two sides 4 B and A D, but completely free at C D and C B. We
can first take into account a fracture line D B with negative moment. By
imparting to point C' a unit virtual deflection, we get L,=3 pa?-%. The rotation
about D B of the piece D BC' is y2/a, thus

V2

L, = —mya]/2-7, hence m, = ~—.

Fig. 5

The positive fracture line 4 C in fig. 5b, however, is more unfavorable. By
deflecting C' by unity we get L,=pa?-}; the rotation of the parts about 4D
and 4 B is 1/a, the corresponding moments have a component of m,-a each,

therefore L= —2myg or m,=pa?/6. Since in this case two different types

have to be distinguished, the decision cannot be made by using egs. (7) or (8).

As a further example for the use of estimated fracture patterns, the equally
loaded irregular pentagon with the dimensions inscribed in fig. 6 will be
examined. The edges shall be freely supported, the total load be 3 kip. In a
compact figure like this we may well assume that all fracture lines meet at the
same point 4. By imposing at this point a unit deflection, we get L,=3-{=1.
The angles of rotation about each side of the polygon are 1/h if by A the height
of the corresponding triangle is denoted which may be picked out of a plan
drawn at a sufficient scale. In this way we obtain

L — —m (74 3.2 6.3 5.7 6.9

40+56+§§+35+37) hence

m,, = 0.131 kip. ft./ft. run.

Now, if a is the length of any side, the equilibrium yields m,a=3%pah g

or m, =ph?/6. The fracture pattern therefore can only be strictly correct if all

7 Abhandlung XII
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heights are equal. This, however, is only possible for a polygon which possesses
an inscribed circle. Notwithstanding we can approach to this condition by
chosing a shifted point B and thus more or less equalising the heights which,
in the first trial, deviated between 3.5 and 5.0’. We thus get the heights 3.65,
4.40, 3.55, 4.00 and 4.15 and m,,=0.132.

Of course we could have chosen the intersection point more carefully just
from the beginning, but what we wanted to demonstrate was just the small
influence of the position of this point. Although the solution is not and cannot
be “rigid’’, it is of no practical use trying to improve the result by more com-
plicated patterns.

Fig. 6 Fig. 7

3. Earth pressure. In earth and similar materials an element is in the
limiting state if - (22)
o and 7 being the normal and shear stresses and p the frictional angle; possible
cohesion is not taken into account. For every other element, however,-the
angle between o and 7 is 2 <0 (23)

In turn, the system as a whole reaches the limiting state when the above
state has spread along certain continuous surfaces and the latter are arranged
in such a way that the parts on both sides of such a “‘sliding surface’’ may
glide on each other, the system thus obtaining at least one degree of kinematic
freedom.

This occurence has its counter-part in beams when the yield stress is first
reached at the edges and after this spreads over a whole cross-section; the
sliding surfaces in soil mechanics hereby correspond to the plastic hinges in
the plastic theory of beams and frames.
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Coulomb’s theory is based on plane sliding surfaces, thus only a special
type of fracture pattern is considered; we also adopt this assumption. It follows
that all stresses acting on such a sliding plane and, consequently, their resul-
tant are parallel. The corresponding angle ¢ therefore is a maximum with
respect to neighboring planes, or

a(’D=O, P =p, 1=1,2,...n. (24)

This maximum has its analogy in egs. (7) and (11). By &, the angles are
denoted which fix the fracture pattern geometrically. In this general form the
maximum condition can be used for a fuller investigation of several problems
on earth pressure and bearing capacity of soils to which we shall refer at
another occasion.

We examine the earth pressure against the wall shown in fig. 7; p=30°
and a specific weight of the soil of 125 1lb./cub. ft. is supposed. By P a load
distributed along a line parallel to the wall is denoted; regarding its position
it is only supposed that it stands between the wall and the sliding plane,
a=9. The back of the wall is supposed to be perfectly frictionless.

Then, the weight per ft. run between wall and sliding plane is G'= 54500 cot
$ — 10750 + P and from the equilibrium against shifting normally to the force
() acting in the sliding plane we get

E = (54500 cot ¢ — 10750 + P) tan (¢ — ). (25)
Carrying out the operation after eq. (24) we get after arithmetic

sm2(0—30)+01975_~ P (26)

t - 3 . ’
oo 2s8in2 9 54500

which can be easily solved by iteration. If, for the moment, we leave P out of
consideration, we arrive at

9 = 52.5°, B = 12850 Ib./ft. run, P = 0. (27)

It is seen that, by utilisation of the iteration method, the analytical way
leads more rapidly to a solution than old-fashioned graphic methods. The
arithmetic, however, can still be simplified by using an estimated value for &,
e.g. the value 4’ =60° which applies for horizontal ground level; we then get
directly from eq. (25)

& =60°, E'=11950lb./ft. run, P=0. (28)

and need not consider eqgs. (24) and (26). The error is 79%,; as the assumption
of plane sliding surfaces is an approximation in itself and, moreover, the
frictional angle is usually but roughly guessed, the above solution is allowable.
It should be remembered that a decrease of p, say from 30 to 25°, produces
a much bigger error, viz. 229%,.
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For various magnitudes of P the following strict results have been com-
puted according to eq. (25) and (26):

P = 67201b./ft., 9 =57°, K = 15900 Ib./ft. (29)
P = 13440 1b./ft., § = 62.5°, E = 19700 lb./ft.

If, instead, &' =60° is assumed and eq. (25) used directly, the results deviate
less than 19, due to the close coincidence of the §'s.
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Summary

In the critical sections of beams, frames and plates, the moments are a
maximum with respect to neighboring sections; this fact can be used for
either a rigorous computation or a fair approximation. Similarly, in the criti-
cal surfaces of soil, the angle between the stress and the normal to this surface
is a maximum; hence, soil problems can be examined along similar lines.

Zusammenfassung

In den malgebenden Schnitten von Balken, Rahmen und Platten sind die
Momente Maxima in bezug auf die Nachbarschnitte. Diese Tatsache kann
sowohl zur genauen Berechnung als auch zu guten Naherungen beniitzt wer-
den. Auf dhnliche Weise konnen auch Erddruckprobleme untersucht werden,
da in den Gleitflichen der Winkel zwischen der Spannung und der Normalen
zu dieser Gleitflaiche ein Maximum wird.

Résumé

Dans les sections critiques des poutres, cadres et dalles, les moments sont
maxima par rapport aux sections voisines; ce fait peut étre utilisé en vue d’un
calcul rigoureux ou d’une approximation suffisante. De méme, dans les
sections critiques du sol, ’angle entre la contrainte et la normale & la surface
présente une valeur maximum; les problémes relatifs aux sols peuvent donc
étre étudiée sur des bases analogues.
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