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Some New Points of View in Calculating Suspension Bridges

Einige neue Gesichtspunkte zur Berechnung von Hängebrücken

Quelques points de vue nouveaux concernant le calcul des ponts suspendus

A. D. de Pater, Engineer of the Netherlands Railways, Utrecht
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42 A. D. de Pater

§ 1. Introduction

1. Introduction. As it is generally known, until now only very few
Suspension bridges have been built for railway traffic. Intuitively one feels already
that such a bridge (and specially one with a perfectly or nearly perfectly
flexible main girder) will undergo great deflections, when it bears a load, which
extends over a great length and moves at a high speed; for that reason it is
not suitable for railway purposes.

When the author of this article was invited to demonstrate the things
mentioned for a certain bridge quantitatively, it appeared, when reading the
literature, that the dynamical behaviour of a Suspension bridge had almost
nearly not been studied until now, and that attention had only been given to
the questions of free oscillations and to the so called phenomena of flutter,
which appears when a horizontal current of air brushes past the girder.

For this reason he studied the question of the forced vibrations of a

Suspension bridge, caused by a load moving over the girder. In the article to be

published the Solution of this problem has been given for some simplifying
suppositions mentioned a. o. at the end of this number; in § 4, where this
problem has been treated, the question of free oscillations has also been studied.

In the main the derivation, given in § 2, of the formulae which are
fundamental for the further calculations, has already been published by other
investigators. Nevertheless the author reproduced them in this (as succinct as

possible) form, in order to get the article complete in itself.
He also paid attention (in § 3) to some points in the domain of the statical

calculations, which have nearly not been studied by other investigators.
In this article we have restricted ourselves to the following simplifying

assumptions :

a) The bridge has only one span, and the girder is hinged at both ends at the
centre lines of the pylons. The extension to cases of a girder protruding
beyond the pylons, of a bridge with more than two pylons etc. is for the
rest not difficult.

b) The suspenders are perfectly inextensible.

c) The suspenders are so closed together, that they may be replaced with
little objection by a continuous fastening.

d) The dead weight of the bridge is estimated to apply only on the girder
of the bridge.

e) When no live load is placed on the bridge, this being in its state of equi¬
librium, the girder is perfectly straight, while the suspenders are vertical.

f) When a live load is placed on the girder, causing both a vertical and a
horizontal cable displacement, the suspenders being no more perfectly
vertical, the horizontal component of the force which each suspender
element exerts on the cable is to be neglected.
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g) In that case the vertical displacement of a cable element is equal to the
vertical displacement of the girder element belonging to it.

h) The cable is of constant area throughout its whole length.
i) In this article we only deal with the case of the bridge, the live load and

the displacement of the girder being symmetrical in respect to a vertical
plane parallel to the longitudinal axis of the bridge. The important
torsional deformations and vibrations are thus left out of consideration.

j) The derivation of the equations for the girder deflection and the cable
force has been given in chapter 2 for any values of the mass per unit of
length and the stiffness of the girder. But in chapter 3 and the remaining
chapters we always restrict ourselves to the case of constant mass per unit
of length and constant stiffness of the girder.
The author wishes to express his acknowledgements to Mr. H. J. A.

Duparc, with whom he discussed the calculation of the integrals and funetions
mentioned in chapter 17, and to Mr. E. J. G.Scheffer, who was so kind to
assist him with a number of linguistic difficulties.

§ 2. Derivation of the fundamental equations

dsW\ts
w+W*

q„dx

qwdx

__T
' wdx

x4l*+f)

äsyt<
s*

qd(x+%)

dx
ü.6MM+xgrdöcqdx^ rw
W=r^^ JD _,«0\ ^+W-dx

Ppdz

a) The girder bears only
the dead load

?!$*«*+*

b) The live load also
applies on the girder

Fig. 1. Derivation of the differential equation for the stiffening girder
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2. Derivation of the equations for the girder deflection and the cable force. In
this number we shall derive the fundamental equations by considering in
succession the three principal elements which form part of the bridge. The
indices w herewith refer to the state indicated in the left part of fig. 1, that
only the dead load w applies on the girder being in rest, while the indices p,
added only if need be, indicate the state, represented in the right part of
fig. 1, that the girder is deflected and bears the live load

PP P + w>

while the cable temperature increases by an amount #. As we suppose, that
in the first mentioned state the suspenders are exactly vertical, the position
of a cable element and that of a girder element can be indicated by the same
coordinate x. This quantity and the other quantities of length f, l, y, y, s,

rj(x) y{x + £)-y(x) (2)

and / are shown in fig. 1.

At first we regard the cable. For a cable element we can write down the
condition of length as follows:

ds*=dx* + dy*, dsp* {d(x + £)}* + {d{y + fj)}*; (3)

when we denote the cable pull by S, the Young's modulus of the cable material
by Ec, the area of the cross section of the cable by Fc, the temperature
coefficient by ß, we have

{l + ~§^j(l+ß^)ds dsp,

or approximately

From (3) and (4) we can derive

For the cable element also holds the condition of equilibrium, which yields
for the relation between the cable pull Sw c. q. S and the suspender pull
3u,c.q. q (see fig. 1):

j=(Swco$<Pw) + qw 0, j= (£cos</r) + g 0,
(6)

Swco^if;w Hw, Scosif; Hp.

By eliminating Slv. S, iplv and i/j from this equations there can be found, with

**•-„)• "»"Ä (7)
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*~=-H~% ^^^-^dwh*- (8)

With H*>
TT TT TT TT & ta\

we now can Substitute in (5) approximately

S-8W= Hp Hw YH ds
ECFC EeFccosfw EcFccosjjw cos</<„, dx'

so that

my +2ii +,& ü+(<!)¦ _,,_&)¦ _^,(*i)v (u,
\<2#/ dx dx dx \dx] \dx) \dx]

resolving d^\dx from this equation we find, suppressing all terms containing

(drjjdx)3, y2, (ß#)2 or higher powers of-^f, y or ß&:
ax

dj
d x dx dx 2 \dx) \dxj y \dxj P \dxj

Secondly we consider the suspender construction. For the case of the non
deflected girder we have

qw w, (13)

so that with (8)

^=--^-. (14)dx* HJ
K ]

This is a differential equation for the cable deflection y, which can be solved,
when w is known as a function of x. We shall do this in chapter 3 for the case

w const.
We now can derive a condition with the aid of which the cable pull can be

found. Dropping the term with (dy/dx)2 in (12) and integrating both members
of this equation to x we find, introducing the quantities

+_z +_z

W (_?)"**• Wisi)"**' (15)

-JZ -_z
-HZ

_
+_Z

"

%¥** -£dx dxi + yHl3 + ß&l2. (16)

-_z -_z

By partially integrating the left member, applying the conditions

rj 02 for x ± 11,

H + \l)-H-¥) -vH (17)

(v being the horizontal stiffness of the pylons) and making use of (14) we find
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+ .Z

-jj- wrjdx (yl3 + vHw)H +ß&l2. (18)

-_z

For the case of the deflected girder we learn from the vertical equilibrium
of a suspender element

q (x) dx q(x + g)d(x + g).

Substituting this in the second equation (8) yields, with (9),

d2y d(x + £)

'd(x + £)2 dxq(x) -{Hw +H)T^^2^^. (19)

Now we can derive from (2) and (12), neglecting all terms containing (drj/dx)2
and higher powers of drj/dx,

dy(x + £) /d^ drj\ dx ldy_ + drj\ /
_ dj\

d(x + £) \dx dx/d(x + £) \dx dx] \ dx)

d2y'(% + £)_ d ldy(x + t;)) dx
d(x + £)2 ~dx~\ d(x + £) ]d(x + €)

rf J / nds \ lds\2drj\ dx
+ dx7\ \ y dx7"? )\dä) dü]d{z + £);

combining this with (19) yields

9(„ -Ä+«,[[i-r„{. + *(g)]§-^{i + s(|)')]g

In future we shall restrict ourselves to the case of an inextensible cable or to
the case, in which (dyjdx)2 is neglected with respect to 1 (so that ds/dx can
be replaced by l)1). In these cases we can simplify (20) respectively to

di+dx\\di) äi/J (21a)q(x) -(Hw + H)

and

q{x) -(Hw +H)(l-yH-ß»)(^ + 8^j. (21b)

In the last formulse we replaced the ordinary differentiations of rj to x by

x) The inaccuracy caused by this simplification will be computed for the case of an
inextensible cable and a perfectly slack girder in chapter 7.
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partial differentiations, because we shall henceforth consider rj as a function
both of x and t in general.

At last we examine the girder itself. From the law of Newton written down
for a girder element dx (see fig. 1) we learn

3D w d2ij

Denoting Young's modulus of the girder material by E and the moment of
inertia of its cross section by / we have

combining this with (22), (1) and (21a) or (21b) we obtain respectively

£("§_) -<*.+s>„{(»)'HK£-'<*"+fi£i <24a)

for the case of an inextensible cable and

-(ff„ + fl)<rfl+/3*)g (24b)

for the case of an extensible cable, in which (dy/dx)2 is neglected with respect
to 1. In these equations H(t) always is a function of i, which can be deter-
minated by the condition (18), while the boundary conditions for rj are

ij 0, g 0 for_ ±iZ. (25)

In the statical case we can simplify (24b) to

d2

dx2 'i(^)-(^+^)(i-y^-^)S p(*)+Äg
(Hw + H)(yH +ß&)^l,

and this equation can immediately be integrated twice to x, by introducing
the bending moment Mx (x) caused by the live load p (x) in the girder, when
this is not coupled to the suspenders:

_ x jz

M^x) -?^ j ($l + z)p(z)dz-^^ j ($l-z)p(z)dz; (26)

then we find the differential equation for the girder deflection rj:

EII^-(Hw + H)(l-yH-ßd)fj M1 + Hy-(Hw + H)(yH+ß&)y, (27)
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and the ordinary equation for the bending moment M I =EI-p~\ in the
girder

M M1 + Hy-(Hw + H)(yH + ß&)y + (Hw + H)(l-yH-ß&)rj. (28)

3. The case of constant mass per unit of length and constant stiffness of the

girder. Dimensionless quantities. For the case w const. the differential
equation (2, 14) can be integrated twice without difficulty. With the conditions
(see fig. 1)

?/= 0 for ir + ^Z, y / for x 0 (1)
we find

7 /, 4#2\ dy

TT
WP t9\Hw Tf- (3)

As also EI const., the differential equations (2, 24a) and (2, 24b) and the
cable conditions (2, 18) now can be simplified to

^/^-(^ +^)^j(l + 64^j^|) + _^ ?>(a;,<)-8^-) (4a)

_i/^-(_r.+_f,(i-yi_-^,g +^:?M-8^
+ 8^(Hw + H)(yH + ß^, (4b)

Z2

_ TP
U 7Jdx (yl3 + vHw)H + ßM2. (5)

-_z

We now introduce the dimensionless quantity

2 _ -"tfl^
C° ~4#J

and the dimensionless quantities
4/ _2x _2ij _-1/^g _£ i _2h_2L 1/_T' X~~X' ^""/T' *~*y /]"' V~w' l*-f*i~f* + ~3'

^rMww^r)- -1Jfr- "W H&
With their help the differential equations (4a), (4b), the cable condition (5)
and the boundary conditions (2, 25) can be written in the form

(6a)

(6b)

1 g*ij
c0>3x* -il+m^lil +r^ + ^-pM-Hit), (7a)

^^-{l+H)(l-yH-ß9)^ + ^=p{x,t)-H(t)HYH+ß»)(l+H), (7b)



Some new points of view in calculating Suspension bridges

+ 1

J" r]dx (yls + v)H + l2ß&,
-l

d2v
v 0, 7—i 0 for x ± 1.' cx1

49

(8)

(9)

The differential equation (2, 27) and the equation (2, 28) can also be simplified:

^d^-(\^H){\-yH-ß&)v Mx^H(l-x^)-k{UH){yH+ß&){l-x^), (10a)
lyrj a X

M^Mi + ^Hil-x^-iil+^iyH+ß^il-x^ + il+^il-yH-ß^r), (10b)

in which formulae the moment M± is determinated by
X 1

2M±(x) -(l-x)S (l+z)p(z)dz-(l+x)$ (l-z)p(z)dz. (11)
-1 x

The form of the equations (7a), (7 b) and (10a) indicates that the stiffening
influence of the girder will be the less as the value of c0 is greater. We have
computed for some bridges (which are all considered here as one-span bridges)
the quantity c0 with the aid of (6a); the numerical values are shown in table I.

Table I. Values of c0 for some Suspension bridges

w l f _ 4/ E I H»„
Bridge kg/cm cm cm f=T kg/cm2 cm4

w
kg

c0

Breslau 1910 108 12.000 1.200 0,4 2,1-106 0,26-108 1,62-106 1,034
Manhattan 1910 85 44.800 4.360 0,390 2,1-106 3,9-108 4,88-106 1,728
Delaware 1926 194 53.000 6.100 0,460 2,1-106 7,2-108 11,18-106 2,28
Second Tacoma-

bridge + 1945 126 85.500 8.550 0,4 2,1-106 5,4ä5,7.108 13,45-106 4,53 ä 4,65
Triborough 1938 300 42.000 4.200 0,4 2,1-106 0,91-108 15,75-106 6,03
Zweden 1941 13,62) 14.000 1.680 0,48 EI

0,196-1012 kgcm2
0,198-1062) 7,04

Mount Hope bridge 394 36.200 3.620 0,4 EI
51,9-1012 kgcm2

17,81-106 10,6

Example 3) 800 43.000 4.300 0,4 0,3-106 4,108 43,106 12,86
New York
Washington bridge 106.700 0,4? 17,54)
First Tacoma- EI

bridge 19405) 84 85.300 7.100 0,333 2,49-109 kgcm2 10,78-106 2810

2) Per main girder.
3) Conform to the figures mentioned in the article W. C. Coepijn, Enige beschou-

wingen over vormvastheid en de berekeningsgrondslagen van open hangbruggen, De
Ingenieur 60 (1948) p. B 126.

4) H. H. Bleich, Die Berechnung verankerter Hängebrücken, Wien (1935) p. 27.
5) H. Beissner, Oscillations of Suspension bridges, J. appl. mech. 10 (1943) p. A-23;

J. Versloot, Het instorten van de "Tacoma" brug, Polytechnisch Tijdschrift A 5 (1950)

p. 190a, B 5 (1950) p. 190b.
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§ 3. Statical calculations

4. Survey of the calculations to be performed for the statical case. In this
paragraph, treating some statical calculations, we are to indicate the general
formulse for the girder deflection r) and the cable force H:

a) in chapter 5 and 6 for the case of an inextensible cable, in which the
horizontal cable deflection is neglected;

b) in chapter 7 for the case of an inextensible cable and a perfectly slack
girder, in which the horizontal cable deflection is taken into account;

c) in chapter 8 and 9 for the case of an extensible cable and a perfectly slack
girder, in which the horizontal cable deflection is neglected.

Further on we shall compute in chapter 10 the amounts of work accu-
mulated in the various parts of the bridge, a live load being placed on the girder.

5. Inextensible cable. We start from the equation (3, 10a) simplified to

±idLll-{l+H)1 M1 + \H(l-x*), (1)

with the cable condition (3, 8), simplified to

$r)dx 0 (2)
-l

and the boundary conditions (3, 9). Introducing the quantities

c cJl+H, (3a) m(x) c02{M1(x) + ±H(l~x2)}, (3b)

we can immediately write down the Solution of (1) which satisfies the boundary
conditions (3, 9) with the help of the method of Variation of constants:

x +1
cr18h2c=-shc(l-x)$W(z)shc(l+z)dz-8hc(l+x)]<M(z)shc(l-z)dz. (4)

-1 x

In this formula we Substitute the expression (3b) for W (x) and (3, 11) for
M^x):

2(1 +H) sh 2 c x z1 / V shc(l-x)S(l-z)shc(l+z)dz$(l + Optt)di;
C _! __x

x +1
+ shc(l-x)$l+z)shc(l + z)dz] {l-i)p{l)dl

— 1 Z

+ shc(l+x)$ (l-z)shc(l-z)dzj(l + 0p(0d£
x -1

+shc(l+x)f (l+z)8hc(l-z)dz+j {l-t,)p{t)di
X z

-H{shc(l-z)]-(l-z2)shc(l + z)dz + shc(l + x)$ {l-z2)shc(l-z)dz. (5)
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The four double integrals can be reduced to simple integrals by changing the
sequence of integration, while the two last integrals may be worked out in an
elementary way. This yields

X +1
2(l+_50i? (l-x)f(l+z)p(z)dz + (l+x)](l-z)p(z)dz

-1 x
2 x +i
r-^-{shc(l — x) J shc(l +z)p(z)dz-\-shc(l +x) J* shc(l —z)p(z)dz}

C Sil ZC -—i %

-*{'--p('-£r)}- <«>

Next the cable force can be calculated with the aid of the formula (2). By
applying this formula to (6) an equation is found, in which H occurs apparently
only linearly; solving it to H yields

f(1 — x2)p(x)dx f ll =—\p(x)dx

* \ 3 c2 /

But in reality the righthand term is via c (3 a) a function of H, so that the
determination of H from this equation requires some forethought. We shall
discuss this question further when treating some special live loads p (x). One
also sees that for the case of more live loads applying simultaneously on the
bridge, the cable force which they cause is not the sum of the cable forces
caused by each live load individually, so that generally the principle of
superposition holds no more for the cable force than for the deflection!

The bending moment in the girder follows from (3, 10b) (with y 0, j8 0),
(3, 11) and (6):

X +1
sh c (1 — x) j* sh c (1 + z) p (z) d z + sh c (1 + x) | sh c (1 — z) p (z) d z

M =*
csh2c

# / chc;r\ /0.
c*

Formulae like (6)—(8) were already derived by v. Kärmän and Biot 6),

Aas-Jakobsen 7) and Emmen8). However, Aas-Jakobsen restricted himself
to some special caso.3 of loading, i. e. to the concentrated force and to the load

6) Th. v. KArmAn and M. A. Biot, Mathematical methods in engineering, New York
and London (1940) p. 317.

7) A. Aas-Jakobsen, Berechnung der verankerten Hängebrücken für vertikale und
horizontale Belastung, Memoires de l'Ass. Int. des Ponts et Charpentes 7 (1943/44) p. 18.

8) J. Emmen, Nieuwe methode voor het berekenen van hangbruggen, De Ingenieur 60

(1948) p. B 37.
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uniformly distributed over a part of the girder; the formulse for the last
mentioned case were derived from the formulse for the concentrated force,
which is incorrect owing to the non linear behaviour of the considered quantities.

Emmen restricted himself to the case of a perfectly slack girder (c oo):
before treating some important live load funetions we shall indicate how the
formulse (6)—(8) are altered for this case and for c 0.

For c oo we also have c0 — oo, so that, according to (3, 6a), EI 0; in
other words the girder is perfectly slack. We have in this case

X +1
2(l+H)v (1-x) f (1 +2)p(z)dz + (l+x) f (l-z)p(z)dz-H(l-x2), (6a)

-1 X

H f j (l-x2)p(x)dx,(7a>) M 0. (8a)
-l

For c 0 we also have c0 0; according to (3, 6a) this case arises, when the
live load w 0 or when the girder rigidity E I oo. But for w 0 we have,
according to (3, 3), Hw 0 and consequently, according to (2, 9), H co, so

that the formulse (6)—(8) lose their importance. However they remain usable
for E1 oo; in this case we have to apply de l'Hopital's rule and we find

v 0, (6b) H ^jtl-x*)(5-x*)p(x)dx. (7b)

X +1
2M -{l-x)] (l+z)p{z)dz-(l+x) j(l -z)p{z)dz + H(1 -x2). (8b)

-1 X

The form of the formulae (7 a) and (7 b) indicates that the principle of
superposition, in contradiction to the general case, does hold for the cases

c 0 and c oo.

Now we illustrate the just found results by applying the formulae (7), (6)
and (8) to the three important cases of loading

p(x)==p for — l^xS 1, (9a)

(9b)
b) p (x) 0 for — 1 S x < 0

p for 0 < x ^ 1

C) p (X) : 0

V
0

for
for
for

—l^x<-
— \<x<
\<x^

1
2?
1
25

1.

The just mentioned formulse yield respectively

H -- P>

H ¦- \v«

(9c)

(10a)

(10b)
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11
1 24

cthjc
H pfH (c) with fH (c) ~ ^-

1 c

V 0,

1+H x shc#-shc(l+x) + shc _^ ^_77 x(l+:r) + 2 j\ -for -l^x^O,4- 77

a?(l-a?) + 2

c2shc

shc# + shc(l—x) — shc
c2shc

for 0 ^ ^ g 1,

^l+# _ 2shicshc(l+^)
P c2chc

l—x

2 / ch|cchc;r\
c2 \ ch c /
l-x2 ('-^01'-(•>•»-**»*»¦

1 — # —
2sh^cshc(l — #)

c2chc

and
{'-^-K1-^)}'-<•»*-*s*si-

2 c'

ilf 0,

il_f
_

sh c # — sh c (1 + x) + sh c

p shc

sh c x + sh c (1 — x) — sh c

shc

for -l^^O,
for Oga^l,

M sh|cshc(l+^)
P che (.-*$_(.>** -l_Sa^-i

__
/ ch|cchcx\/ chicchcx\ / chcaA r -^ -

l1—söh_—j + l1-^) Mc) for -*=x=*'
sh|cshc(l — #) / chc#

che i1-^)/^)^*^1-

(10c)

(IIa)

(IIb)

(11c)

(12a)

(12b)

(12c)

The cable force may be calculated with the aid of the formulse (10a), (10b).
For the case c there arise some difficulties, the righthand term of equation
(10c) being a function of H via c (3a). But from the table II and the figure 2,

in which we plotted fH (c) against c, we learn that fH (c) is almost independent
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Fig. 2. Graphical representation of the function fH (c)

Table II. Some values of the function fH (c)

c /ffW c tnM
0 0,7051 8 0,6927
1 0,7042 9 0,6919
2 0,7026 10 0,6912
3 0,7006 15 0,6894
4 0,6981 20 0,6887
5 0,6963 50 0,6877
6 0,6947 oo 0,6875
7 0,6936

of c, this function falling monotonously from the value ^^ (for c 0) to512 16

(for c oo). So we can put in a first approximation fH(c) 0,l, c c0]/l + 0,lp,
after which we can compute an exacter value of fH(c) with this value of c;
this method may, if necessary, be repeated a number of times. For a bridge
with dimensions mentioned in table I as "example", and with p= 128 kg/cm,
we thus getjrom (2, 9), (3, 6b) and (10c) p 0,16, c= 13,55, fH(c) 0,6899,
# 0,1104, # 4,747 106 kg, Hp 47/747 • 106 kg for the case c; while for the
same values of p and p H =j? 0,16, # 6,880-106 kg, #p 49,880-106 kg for
the case a; H \p 0,08, # 3,440-106 kg, #^ 46,440-106 kg, c 13,36 for
the case b.

We have for the same bridge, equipped with a perfectly slack girder
(c0 oo, c oo) the same values for H, H and Hp for the cases a and 6, while
forthecasec fH (c) 0,6875, # 0,11, # 4,730-106 kg, Hp 47,730-106 kg.

For this bridge and the same values of p and p we also computed the girder
deflection 77 for the cases b and c both for c0 12,86 and c0 oo. The thus
found values of 77 are given in the tables III and IV and plotted in the figures 3

and 4 against x. The dotted and the chain dotted curves drawn in these figures
will be treated in the chapters 6 and 7.
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^ß^ff/JrVCCOr^ b Ch-^iUnear method)
s'-Z*

//A

Mibkirder\äccord'n9 b ch-$-(exad method)

¦-slackgirder according fo ch.Z(with due observance ofttie
-6\ horizontal cable displacement)

/#
-tfO

0.2 OM 0,6 0,80,6 -0M

l
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^ *'
_____A___.

tOn^T)

Fig. 3. The girder deflection with an inextensible cable, a
constant live load being placed on one of the two halves of the girder

,s/ack girder according to ch. 1 (with due observance ofthe horizontal cable displacement)

//ffck girder \ according to ch ß (quasi linear method)//flexible girder] \ -u\ I

"f~<Jslack girder f~—t I, I.
fexJb/e girder) accord'n9 fo ch. 5 (exact method) Z^\s*

**¦ %
—20

1 -0,8 -0,6 -OA
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\ /W^
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Fig. 4. The girder deflection with an inextensible cable and a constant
symmetrical live load extending over half the girder

•5 Abhandlungen XI
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Table III. The girder deflection for some values of x with an inextensible cable,

a constant live load being placed on one of the two halves of the girder

X

according to ch. 5 (exact method) according to ch. 6 (quasi linear method)

flexible girder slack girder flexible girder slack girder

103T7 t] cm 10377 rj cm 10317 rj cm 10377 rj cm

-1 0 0 0 0 0 0 0 0

-0,8 - 5,540 -47,6 -5,926 -51,0 -5,952 -51,2 -6,4 - 55,04
-0,6 -8,476 -72,9 -8,889 -76,4 -9,120 -78,4 -9,6 -82,56
-0,4 -8,476 -72,9 -8,889 -76,4 -9,120 -78,4 -9,6 -82,56
-0,2 -5,540 -47,6 -5,926 -51,0 -5,952 -51,2 -6,4 -55,04

0 0 0 0 0 0 0 0 0

0,2 5,540 47,6 5,926 51,0 5,952 51,2 6,4 55,04
0,4 8,476 72,9 8,889 76,4 9,120 78,4 9,6 82,56
0,6 8,476 72,9 8,889 76,4 9,120 78,4 9,6 82,56
0,8 5,540 47,6 5,926 51,0 5,952 51,2 6,4 55,04
1 0 0 0 0 0 0 0 0

Table IV. The girder deflection for some values of x with an inextensible cable

and a constant symmetrical live load extending over half the girder

X

according to ch. 5 (exact method) according to ch. 6 (quasi linear method)

flexible girder slack girder flexible girder slack girder

10377 rj cm 103?7 7) cm 10377 7] cm 10317 7] cm

0 4,09 35,2 4,50 38,7 4,50 38,7 5 43

0,1 3,87 33,3 4,28 36,8 4,25 36,6 4,75 40,85
0,2 3,20 27,5 3,60 31,0 3,51 30,2 4 34,4
0,3 2,10 18,1 2,48 21,3 2,30 19,8 2,75 23,65
0,4 0,61 5,2 0,90 7,7 0,66 5,7 1 8,6
0,5 -1,11 - 9,5 -1,12 - 9,6 -1,22 -10,5 -1,25 -10,75
0,6 -2,56 -22,0 -2,88 -24,8 -2,81 -24,2 -3,2 -27,52
0,7 -3,23 -27,8 -3,65 -31,4 -3,54 -30,4 -4,05 - 34,83
0,8 -2,98 -25,6 -3,42 -29,4 -3,27 -28,1 -3,8 -32,68
0,9 -1,84 -15,8 -2,21 -19,0 -2,01 -17,3 -2,45 -21,07
1 0 0 0 0 0 0 0 0

6. Approximate Solution with the aid of the quasi linear method. Discussing
the formula (5, 7) we remarked already that the principle of superposition
generally does not hold for the cable force # when c =)=0 and c 4=oo. A look at
the formulse (5, 6) and (5, 8) shows that this principle neither holds for tho
deflection and the bending moment. In other words: the cable force, the
deflection and the bending moment are not linearly dependent on the live
load p(x).
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From (5, 6 a) we learn that for c oo the deflection neither depends linearly
on p (x).

We can find an approximate Solution which does depend linearly on the
live load by putting # 0 in the formula (5, 3a). By this alteration the values
of c are replaced by c0 a.o. in the Solutions (5, 6)—(5, 8) derived from the
differential equation (5, 1) while moreover in the lefthand terra of the formula
(5, 6) for 77 1 +# must be replaced by #. It is obvious that this approximation
may only be executed reasonably at low values of #.

In order to check this we computed the cable forces and deflections,
determined sub b and c of nr. 5, as well according to the just mentioned so called
quasi linear method9); in other words: by help of the formulse (5, 6) and
(5, 7) at which c is replaced by c0, and in the lefthand term of (5, 6) 1 +# is

replaced by 1. The values of the cable force are the same as the corresponding
values found in chapter 5 with the exception of the case of loading c for a
bridge equipped with a flexible girder, where we now have fH(c) 0,6902,

# 0,1105. The results for the deflections are shown in the tables III and IV
and in the chain dotted curves in the figures 3 and 4, from which may be
concluded that this approximate method can be applied to such a bridge as is
mentioned under "example" in table I. Furtheron it can be verified that the
bending moments increase with amounts of the same order of magnitude.

Now one of the great advantages of this method is that it allows to draw
lines of influence for certain deflections and bending moments in the usual

way and to determine the most unfavourable load system from these lines.
This having been done the deflections and tensions may be computed after-
wards, if necessary, with the aid of the more exact method treated in nr. 5.

For the case c0 oo the above-mentioned method reduces the formula
(5, 6 a) for the deflection to

X +1
277 (l-x)$ (l+z)p(z)dz + (l+x)$ {l-z)p{z)dz-H(l-x2), (1)

-1 x

while the cable forces (5, 7 a) remains equal to

# f \{\-x2)p{x)dx. (2)
-l

We wrote down these formulse explicitly here as we shall need them later on
in chapters 16—19.

7. The influence of the horizontal cable displacement. In order to examine
whether it is allowed to neglect the horizontal cable displacement we shall
repeat the computations of chapter 5, but now taking in account this
displacement. Now the starting point of the calculations is the differential
equation (3, 7 a). We shall restrict ourselves to the case of a perfectly slack

9) H. H. Bleich, Die Berechnung verankerter Hängebrücken, Vienna (1935) p. 26.
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girder, for which c0= oo. For this value of c0 the deflection computed observing
the horizontal cable displacement will show the greatest difference with the
deflection computed without this displacement: for then the balancing
influence of the terra —^ ^\, which is apparent for other values of c0, is

Cq u X

eliminated.
For c0 oo and for the statical case (3, 7 a) reduces to

with the boundary conditions
77 0 for x ± 1. (2)

The Solution of the homogeneous equation to be derived from (1) reads

(l+H)v=Abgtgfx + B; (3)

from this we calculate the general Solution of (1) by the methods of Variation
of constants, admitting for that purpose A and B to be funetions of x. This
yields

<1+Ä>„!-r&?- <>+*>£{<>+/¦«¦>„?}-'£--»«+*. w

at which we put moreover
x dA dB /e.b^/x^+^ 0- (5)

By substituting (4) in (1) we find that A is determinated by

d A

rix=-p(x) + H, (6a)

so that, according to (5), B can be found afterwards from
J D

^dx P(x)h^t^fx~HhStSfx' (6b>

This yields for A and B

2/_4 - Jp(z)dz+ jp(z)dz- j-—7 jp(x)bgtgfxdx + 2Hx, (7a)

X +1 +1
2/-B== $ P(*)bgtgfzdz- f p(z)bgtgfzdz + bgtgf$p(x)dx

-1 x -1

.H(2xbgtgfx+j]n^±^j. (7b)

In these formulse we have chosen the constants of integration in the Solutions
for A and B obtained from (6a) and (6b) in such a way that 77 (3) satisfies the
boundary conditions (2). We then find for 77
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2/(1+#)t7 - J(bgtg/a-bgtg/z)jp(z)_fe+ J (bgtg f x-bgtg fz)p(z) dz
-1 X

i ,+r1 L bgtg/;rbgtg/;z) /v, #_ 1+/2
+ bgtg/f 1--^—^-, B*j \p{z)dz- -r\n '

8 *L{ \ bgtg/2 Jy *f l+f2x2
(8)

Next we can determinate the cable force # with the help of the cable condition
(5, 2), which yields after some calculations

ln(l+/2) jp(x)dx- $ ln(l+f2x2)p(x)dx
4# bgtg/

/

(9)

The formulse (8) and (9) show that (just as was the case in nr. 5 for c oo)

the principle of superposition does hold for the cable force, but not for the
girder deflection.

We illustrate the just described method from the load cases treated in
chapter 5 sub b and c. For the first mentioned case, at which the load is
indicated by (5, 9b), we have

4/ l+#
P

V
bgtg/x
bgtg/

bgtgfx

H \p,

ln(l+/2)+ln(l+/2^2) for -l^^O,
ln(l+/2)-ln(l+/2£2) for O^sgl.bgtg/

For the second case the formulse (8), (9) and (5, 9a) yield

(10)

(11)

H p
__ln_____ +4 1+if 2

bgtgj/
/

1

2f*~1V /(bgtg/ + bgtg/_)- —In

bgtg/
/

1+/2

(12)

P 1 + / 2 #2

1+/2.___ln-1+/2

for -l<x<-i.

/(bgtg/-bgtg_/) + ln1+^a;i- — ln1 + /2x2
for -__;*:__,

# 1 + /2
/(bgtg/-bgtg/„)-— foYTfh* for J ^ a; ^ 1.

(13)

For a bridge with dimensions as mentioned in table I as ''example" we
found, with 39= 128 kg/cm, p 0,l6 for the first load case # 0,08, and for
the second case # 0,6937 p 0,1110. The deflections belonging to them have
been given in table V and they are plotted in the figures 3 and 4 (see the dotted
curves
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Table V. The girder deflection for some values of x with an inextensible cable

calculated with due observance of the horizontal cable displacement

constant live load placed on one
of the two halves of the girder

constant symmetrical live load
extending over half the girder

X 10377 7] cm X 1037? 7] cm

-1
-0,8
-0,6
-0,4
-0,2

0

0,2
0,4
0,6
0,8
1

0

-5,39
-8,31
-8,47
-5,74

0

5,74
8,47
8,31
5,39
0

0

-46,4
-71,5
-72,8
-49,4

0

49,4
72,8
71,5
46,4

0

0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

4,40
4,18
3,50
2,38
0,82

-1,16
-2,83
-3,51
-3,24
-2,06

0

37,8
35,9
30,1
20,5

7,1

-10,0
-24,3
-30,2
-27,9
-17,7

0

One may conclude from them that for the bridge treated as example the
deflections are at most 15% too large, the girder rigidity and the horizontal
cable deflection being neglected in the calculations, while the deflections are
at most 22% too large when the quasi linear method is used in addition.

8. Extensible cable. We are now to perform calculations analogous to those
made in chapter 5 for the case of an extensible cable. We here restrict ourselves
to the case of a perfectly slack girder, for which c0 oo. Then the equation
(3, 10a) for the deflection yields immediately

(l+H)(l-yH-ß&)71 -M1-±H(l-x2) + ±(l+H)(yH + ß&)(l-x2). (1)

Now the quantity y Hw/EcFc is smaller than the maximum tension admis-
sible in the cable, divided by Young's modulus, and thus is of the same order
of magnitude as 104 kg/cm2: 2 • 106 kg/cm2 0,5%. The product y# is still
smaller, while the product ß& is small compared with 1 as well. Thus we can
without objection, making use of (3, 11), reduce (1) to

2(1+#)t7 (l-x)Jl+z)p(z)dz + {l+x)} (l-z)p(z)dz-H(l-x2)
+ {\+H)ß&(l-x2). (2)

The cable force now can be calculated with the aid of the condition (3, 8),
which yields with (3, 6b) the equation for #

with

tH2+ (l + *+ ~ß$\H-J+ j2ß& 0,

3 3 +1
a -^{Yh + V), J -j J (l-x2)p(x)dx.

(3)

(4)
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The Solution of (3) which, as it should, for a -> 0, & -> 0 satisfies the relation
(5, 8a), i.e. H J, reads

with

aH ±U+x+~ß&\(-l+ •l+4c)

oc(j-j,ßö)
€ 7 ^ \~2 '

(l+a+^j8.)

(5)

(6)

The second factor of the righthand terra of (5) being the difference of two
almost equal numbers, it is advisable to develop the radical quantity in a
series. This yields with (6)

J
H r-

ß&

l+a + ^ß&
(l-€ + 2e2-5e3...). (7)

according to ck 8. (exacf me/nod)

according to ck 9_ fquas///near me/hoc/J

¦=m

Fig. 5. The girder deflection with an extensible cable
and a constant live load placed on the whole length

We illustrate the just developed method of calculations by applying it to
a number of cases of loading. To this we add the case of a change of the cable

temperature, no live load being placed on the girder.

a) Only a change of temperature. In this case we have p (x) 0, so that (4),
(6), (7) and (2) yield respectively

J 0, e -
ccjtßö

(l+a+A^)2'
(8a)
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# P
ß&

l+a + -£j8#/2

(l-€ + 2€2-5€3), (9a) 277= (-^+ßA(l-x2). (10a)

With the data of table I, to which we add Ec= 1,8-106 kg/cm2, _?c 7140 cm4,

y #J_fc_?c 3,346-10~3, v= 1,23-10~6 cm/kg, # 15°C,j8= 12,5-10~6 per °C,
/}# 0,1875-10-3, we have l2= 13,667, Z3= 13,524, v 0,015-375, a 0,090-939,
e -2,9350-10-3, # -0,003-221. We assembled in table VI the values of
rj and rj calculated with the aid of (10a) and plotted them in figure 5 against x.

Table VI. The girder deflection for some values of x with an extensible cable and
a constant live load placed on the whole length

X

according to ch. 8 (exact method) according to ch. 9 (quasi linear method)

103?7 7j cm 10377 7) cm

p=0 p 0,16 p 0,16 v 0 p 0,16 p 0,16 p 0 p 0,16 p 0,16 p 0 p 0,16 p 0,16
# 15°C # 0 #=15°C #=15°C #=o #=15°C # 15°C # 0 #=15°C # 15°C # 0 #;=15°C

-1 0 0 0 0 0 0 0 0 0 0 0 0

-0,8 0,614 2,371 2,980 5,28 20,39 25,63 0,614 2,401 3,015 5,28 20,65 25,93
-0,6 1,092 4,215 5,298 9,39 36,25 45,56 1,091 4,268 5,359 9,38 36,70 46,09
-0,4 1,433 5,532 6,954 12,32 47,58 59,80 1,432 5,602 7,034 12,32 48,18 60,49
-0,2 1,638 6,323 7,947 14,09 54,38 68,34 1,637 6,402 8,039 14,08 55,06 69,14

0 1,706 6,586 8,278 14,67 56,64 71,19 1,705 6,669 8,374 14,66 57,35 72,02
0,2 1,638 6,323 7,947 14,09 54,38 68,34 1,637 6,402 8,039 14,08 55,06 69,14
0,4 1,433 5,532 6,954 12,32 47,58 59,80 1,432 5,602 7,034 12,32 48,18 60,49
0,6 1,092 4,215 5,298 9,39 36,25 45,56 1,091 4,268 5,359 9,38 36,70 46,09
0,8 0,614 2,371 2,980 5,28 20,39 25,63 0,614 2,401 3,015 5,28 20,65 25,93
1 0 0 0 0 0 0 0 0 0 0 0 0

b) Constant live load placed on the whole length. In this case the load can
be represented again by (5, 9a), with which the equations (4), (6), (7) and (2)
yield respectively

*(p-lß»)
J P> e 7-^ h Ts > (8b)

(i+a+^ß&y

H
_3_

V-~nßd

l+oc+~ß&
(l-e + 2e2-5e3), (9b) 2 v m^) (l-x2). (10b)

In particular for & 0

ap
(i+«)

H V
l + <

(l-e + 2e2-5e3...), 2(\+H)-q (p-H) (1 -x2).



Some new points of view in calculating Suspension bridges 63

For this case we have, with the principal dimensions as under a and p= 128

kg/cm, p 0,16: e= 12,33-10-3, # 0,14492, while the values of 77 and rj
belonging to it are shown in table VI and plotted in fig. 5 against x.

For the same values of p and # 15°C we get: e 11,88-10~3, # 0,14132;
the deflections 77 and rj also are listed in table VI and plotted in fig. 5 against x.

fc
according to cA£(exdcfA7e//?cx/)

according to ct>._9(quasi' linear method)

=3* 02 M 06 Ö~G1-0.4 -0,2

-HO

J
80 \

7

/oy

Fig. 6. The girder deflection with an extensible cable
and a constant live load placed on one of the two halves

of the girder

c) Constant live load on one of the two halves of the girder. For the load (5, 9 b)
and # 0 the formulse (4), (6), (7) and (2) yield respectively

J =$p, €
ocp

# p

2 77

P
{l+x)

2(l + a)

1 #

2(l+a)2'

(l-£ + 2£: -5e3...),

P
(l-x) for -l^a^O,

(l~x) { IT +x (1+^)1 2 p
for 0^^<1.

(8c)

(9c)

(10c)

With the principal dimensions as under a and p=\2S kg/cm, p 0,l6 these
formula3 yield e 6,113-10~3, #/^ 0,4556, # 0,07289; the values of 77

and rj belonging to it are shown in table VII and plotted in fig. 6 against x.
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Table VII. The girder deflection for some values of x with an extensible cable

and a constant live load placed on one of the two halves of the girder

X

according to ch. 8

(exact method)
according to ch. 9

(quasi linear method)

1039? 7) cm 10377 7] cm

-1
-0,8
-0,6
-0,4
-0,2

0

0,2
0,4
0,6
0,8
1

0

-4,77
-6,83
-6,17
-2,79

3,31
9,14

11,73
11,07

7,16
0

0

-41,0
-58,7
-53,1
-24,0

28,5
78,6

100,9
95,2
61,6

0

0

-5,12
-7,47
-6,80
-3,20

4,14
9,60

12,40
11,74
7,60
0

0

-44,0
-64,2
-58,5
-27,5

35,6
82,6

106,6
101,0
65,4

0

- according to ch.8 (exact method)
-according fo cn. 9 (quasi linearmethod)

"* -4

--2D

/£>-

j

'S*/7
^N

/ -o,8 -o} K ~a* -02 0 02 0, ' 1
V,6 0 6> l

'

-20

V

4*

-IfO

6

-60 /
:do^

I0*n< V
cm

Fig. 7. The girder deflection with an extensible cable and
a constant symmetrical live load extending over half the

girder

d) Constant symmetrical live load extending over half the girder. For the
load case (5, 9c) and # 0 the formulse (4), (6), (7) and (2) yield respectively

11 11 ap
l6^' €= 16(l + a)2'

# llp
16(l + a) (l-e + 2€2-5<

(8d)

(9d)
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l+#
P

H
P

77 (1+x) 1 (l-x)\ for -l^xS-L
H,f — x2 — — (1 — x2)* p

(l-x) Jl-|(l+a?)

for -^x^h
for l^x^l,

(lOd)

With the principal dimensions as under a and ^=128 kg/cm, £> 0,16 these
formulse yield € 8,405-10~3, Hjp 0,6250, # 0,1000; the values of 77 and rj
belonging to it are shown in table VIII and plotted in fig. 7 against x.

Table VIII. The girder deflection for some values of x with an extensible cable

and a constant symmetrical live load extending over half the girder

according to ch. 8 according to ch. 9

X (exact method) (quasi linear method)

lO3?? 7] cm 103?7 7] cm

0 9,17 78,8 9,58 82,4
0,1 8,89 76,5 9,29 79,9
0,2 8,07 69,4 8,40 72,2
0,3 6,69 57,5 6,92 59,5
0,4 4,77 41,0 4,85 41,7
0,5 2,29 19,7 2,19 18,8
0,6 0,00 0,0 -0,26 - 2,3
0,7 -1,38 -11,9 -1,71 -14,7
0,8 -1,83 -15,8 -2,15 -18,5
0,9 -1,38 -11,9 -1,58 -13,6
1 0 0 0 0

9. Approximate calculation with the aid of the quasi linear method. We can
execute an approximate calculation, in which the deflection depends linearly
on the live load, as well with an extensible cable as with an inextensible cable.
Also with an extensible cable the method is only utilisable when the live load is
small compared with the dead weight of the bridge.

For that purpose we simplify (8, 2) to

277 (1-x)] (l + z)p(z)dz+(l+x)$ (l-z)p(z)dz-H(l-x2)+ß&{l~x2). (1)

Now the formula (8, 4) remains valid, but (8, 3) and (8, 5)—(8, 7) must be

replaced by

# 1+a (2)
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We applied the just derived formulse to the load cases which are treated
in nr. 8 under a—d. No more than in chapter 6 we wrote down the formulse for
the cable force and the deflection; we found for the cable force respectively

for case a: # -0,0032;
for case b with # 0: # 0,1466; with & 15°C: # 0,1434;
for case c: H/p 0,4583, # 0,0733;
for case d: H/p 0,6302, # 0,1008,

while the results for the deflection are collected in tables VI—VIII and plotted
in figures 5—7.

10. The work accumulated in the bridge. We shall now calculate the amounts
of work accumulated in different parts of the bridge, a live load being placed
on the girder. In this calculation we leave the temperature change out of
consideration. In the general statical case we have three kinds of work:
a) the potential energy of gravity w acting on the girder

__ +_z
_U — j wrjdx; (1)

-\i
b) the deformation energy accumulated in the girder

+ H _f M2
ÄM== J YEld*; (2)

c) the deformation energy accumulated in the cable and the pylons; when
a live load is placed on the girder, this energy increases by an amount

+_z
CS2-S 2 1

Ah Jtj^^+¥*(^2-^2)- (3)

x=— ll
In the particular case of a bridge with a perfectly slack girder and an

inextensible cable, the amounts of energy AM and AH are zero. Apparently
the same holds for the energy U, owing to the condition (2, 18), which for
this case can be simplified to

+_z
J* wrjdx 0. (4)

-hl

This seems to be paradoxical, as in general the live load performs a certain
amount of work when it is applied to the girder. However we must consider
that the condition (4) was derived from the equation (2, 12) by dropping the
term with (drj/dx)2. In calculating the work it is not allowed to do so, but
here we must start from the complete equation (2, 12).
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In the more general case y 4=0 (but # 0) this equation reads

^1= -^ ___? _ _L/___!V/___?V
+ h(—Y (5)dx dx dx 2 \dxj \dxj \dx)

Integrating both members to x we find, with (2, 14), (2, 15) and (2, 17)

+_z +_z

^-Jw,-___,(yW^)H-4j(^),(|),__. (6)

Further on the expression for ÄH (3) can be worked out, with (2, 6), (2, 9),
(2, 10), (2, 15), dsjdx 1/cosj/t^ and putting approximately S cos if/w Hp, to

_iH=_Ul + __0(vff_+ygff. (7)

Thus the sum of the amounts _47/ and U is given by

^H >_ J (5=),(S)'^+ ^_<vtf_+yW. (8)

-_Z

For the case of constant mass per unit of length and constant stiffness of the
girder we can simplify this expression, with (3, 2), (3, 3), (3, 6b), (8, 4) and

wfP' H wfP'
U -^TÜ> ^H ^7%, (9)

+ 1

to U + AH ±j(l + f**)(^)*dx+j*H*. (10)

With the exception of chapter 7 we always replace dsjdx in such expressions
by 1: +i

-i
Restricting ourselves to the case c0 oo we can use the expression (8, 2),

with # 0. This yields, with (8, 3) and (8, 4), after some calculations

4{l+H)2{U + AH) ]{l-x)p(x)dx](\+z)p(z)dz
-l -l

+ |(l+^)p(a;)&j+(l-^(2)^-^__2{l + a(l-/_2)}. (12)
-1 cc 5

For an inextensible cable we have _4H 0, a 0, so that (12) can be simplified

to

4{1+H)2U =] (l-x)p(x)dx] (I+z)p(z)dz+] (l+x)p(x)dx] (1^-1 -1 -1 x «>

(13)
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In this case U must equal the work Ap performed by the live load, which can
be calculated by assuming that the live load grows regularly from zero to the
ultimate value p(w)=wp(x). Putting the momentary load to

p* (x) Xp(x) wXp(x) wp* (x), (14)

we have for the cable force belonging to it at the same moment, according
to(5,7a), +1

#* —Xj(l~x2)p(x)dx #A. (15)
4 -l

Now the work performed by the partial force p*(x)dx, when the deflection
increases with an amount d rj, equals

dÄp p* (x)dxdrj p* (x)dx-pt d\;

thus the total work performed by all the partial loads together, when they
grow from 0 to their end values, equals

+ _z i dri
A>=-f $P*(x)~dxdX. (16)

x—-\l A=0 ^/*
With (3, 6b) and -

Ä*-hß (17)

this can be reduced to

Ap= +j1p{x)dxj\^d\. (18)

In this equation we can insert the formula (5, 6) for the deflection 77, which
now must be altered into

2 1+Ajgrj (l-x)J (l+z)p(z)dz + (l+x) ] (l-z)p(z)dz-H(l-x2); (19)
X -1 x

this yields, with (5, 8a) and

1 ln(l+_T)
H

fi(B) 2 J^-^^^ 2 — m^^, (20)
0

XdX
_

V ' ' 1 + H

4 _t_ /x (H) f ]\ 1-*) V (*) dx] (1+z) p (z) dz+j\ 1+x) p (x) dx)\\-z) p (z) dz~~H\
(21)

Comparing (21) and (13) we see that U differ only slightly from Ap for
small values of #. For by developing in series it may be found

/1(_f) i_lj_ +|_r«-|_?»+...,
1

U+i/)2/,(#) „ gxg= l-2H + 3H*-±H*+..., (22)
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so that lim M/7) lim/2(#),
H-^0

while the table IX and figure 8 show the difference
between fx (#) and /2 (#) for other values of #.

That the two just derived expressions (13) and
(21) approach each other only for small values
of # need not create surprise. For we assumed
in all our calculations 77 to be small compared
with y. This involves (for large values of c0) that #
is small compared with 1.

We shall now consider the deformation energy
of the girder ÄM. With (3, 3), (3, 6b) and

AM —
4_4M
wfl2

(23)

we can replace (2) by
+1 +1

AM=±cSJM*d* ^j (*£)***. (24)

ff(ti)
fz(H)

0,9

0,8

06

Of

\\\
fy

0,3

0,2

OJ

>^b

H
Ö 0,2 0& Oß OS r

Fig. 8

Values of fx (H) and f2 (H)

Table IX. Values of /x(#) and f2 (#)

H fi(H) h(H) H fi(H) fAH)

0 1 1 0,6 0,528 0,391
0,1 0,880 0,826 0,7 0,485 0,346
0,2 0,782 0,694 0,8 0,448 0,309
0,3 0,702 0,592 0,9 0,415 0,277
0,4 0,635 0,510 1 0,386 0,25
0,5 0,577 0,444

We shall henceforth restrict ourselves to the case of large c0. Then AM is
small in comparison with U and AH, and without making a great mistake we
can Substitute the formula (8, 2) for 77 (with # 0) in (24). This yields

2c02(l+#)2^=+/{^(^)~#}2^.
-1

(25)

In this case also the formula (12) (which was derived for c0= 00) can be used
without great error.

Under the just mentioned conditions we compute these amounts of work
for the cases of loading treated in nr. 8 sub b, c and d. For a live load working
over the whole length of the bridge (case b) the load can be representated by
(5, 9a) and (12) and (24) yield
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3(l+H)2(U + AH) =p2-H2{l+oc(l-H2)},2c02(l+H)2AM (p-H)2. (26)

When the live load occupies only one of the two halves of the girder (case c)

we have with (5, 9 b)

3(l+H)2(U + AH)=~p2-H2{l+a(l-H2)},
2c02(l+H)2AM (p-H)2 + H2, (27)

and for the case of a symmetrical load over the half of the girder (12) and
(24) give with (5, 9c)

Z(l + H)2(U + AH) %p2-H2{l+oc(l-H2)},
2c02(l+#)2_4M (p-#)2 + #2. (28)

For the bridge mentioned in Table I as "example" we have computed the
different amounts of work numerically for the value ^=128 kg/cm, ^ 0,16.
The results are shown in Table X.

Table X. The amounts of work accumulated in the different parts of the bridge

load-
case

extensible cable,
flexible girder

inextensible cable,
flexible girder

extensible cable,
slack girder

inextensible cable,
slack girder

b
c
d

b
c
d

10*(U+AH) WAM 106 U \WAH 106 AM 10«(U+AH) 106 AM 106 U 10* AH 10«_4M

694,5
638,6
768,8

0,5245
33,885
33,982

0

457,2
189,4

0
0
0

0

33,172
35,826

694,5
638,6
768,8

0
0
0

0

457,2
189,4

0
0

0

0

0

0

IO-^Ü+Äb)
kgcm

10-«_4M
kgcm

io-6 XJ

kgcm
10-MH
kgcm

10-MM
kgcm kgcm kgcm

IO"6 Ü

kgcm
10-*_4H
kgcm

io-mm
kgcm

102,7
94,5

113,7

0,078
5,01
5,03

0

67,6
28,0

0
0

0

0

4,91
5,30

102,7
94,5

113,7

0
0
0

0

67,6
28,0

0
0
0

0

0
0

§ 4. Dynamical calculations

11. Survey of the calculations to be performed for the dynamical case. As we

already mentioned in chapter 1, until now only a few treatises have been

published dealing with the dynamical behaviour of Suspension bridges. The
most important publication is that of Klöppel and Lie10)11), dealing both

10) K. Klöppel and K. H. Lie, Lotrechte Schwingungen von Hängebrücken,
Ingenieur-Archiv 13 (1942) p. 211.

11) Having completed this article, we found that an important study of the dynamical
behaviour of Suspension bridges was also made by G. S. Vincent and others; a summary
of this study has been published in Engineering News-Record 146 (1951) 2 p. 32. It
seems not to deal with the problem of the forced vibrations caused by a moving live load.
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with free and with forced vibrations. We shall discuss some of their results in
the next chapters.

In our study of the dynamical behaviour we restrict ourselves to the case
of a perfectly slack girder and a constant cable temperature, and we neglect
the horizontal cable displacemeut; so we start from the differential equation
(3, 7 b), reduced to

-{l+H)8^ + 8^=p(x,t)-H(t), (1)

the cable condition (3, 8), reduced to

$r)dx (yls + v)H, (2)
-l

and the boundary conditions (3, 9), reduced to

77 0 for x ±1. (3)

In the chapters 12—15 we are to derive the Solutions of (1)—(3) for the
case p (x) 0, corresponding with the so called free vibrations of the bridge.
We shall treat the case of an inextensible cable in the chapters 12 and 13, in
chapter 14 the same case, replacing the term (1 + #) d2 rjjdx2 in (1) by d2 rj/dx2,
according to the quasi linear method, while the case of an extensible cable
will be dealt with in chapter 15, only following the quasi linear method. At
last we shall treat the rather difficult problem of the forced vibrations caused

by a moving live load without mass, at which we restrict ourself exclusively
to the quasi linear case and to a bridge with an inextensible cable; but here
we shall derive at first general formulse for the case of a live load moving
with a constant speed and conserving its form; afterwards we shall illustrate
these calculations by applying them to two examples.

12. Free vibrations of a bridge with an inextensible cable. The characteristic
values and the characteristic funetions. As indicated above we shall at first try
to answer the question whether the girder can execute free vibrations, i.e.
whether it can undergo deflections, a live load p(x,t) being absent; in other
words whether the differential equation

the cable condition
+i
$r)dx 0 (2)
-l

and the boundary conditions
77 0 for x ± 1 (3)

admit Solutions for 77 and # different from 0. For that purpose we try, as it is

generally usual with problems like this, to find a Solution of the form

6 Abhandlungen XI
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Xk being a function (the so called characteristic function) which only depends
on x, and Tk, the so called normal coordinate, being only dependent on t. As
we shall find in the following that there can exist more funetions like that, we
apply to them, in order to be able to distinguish them, already the index k,
and we do the same thing with the funetions # belonging to them. We
substitue (4) in (1) and (2); in evaluating we shall, as henceforth anywhere in
this paper, indicate differentiations with respect to x by accents and differen-
tiations with respect to t by dots. Then we get

(\+Hk)Xk"Tk-XkTk Hk, (5)

+{xkdx Q. (6)
-1

From (5) and (6) we derive a new relation by integrating both terms of (5)
with respect to x between the limits x — 1 and x +1, and by using (6):

\{\+Hk)Tk{Xk'{\)-Xk'(-\)) Hk. (7)

Now the lefthand terms of (5) and (7) must be equal to each other and from
this we can derive after some calculations the relation

Xk"-\{Xk'{l)-Xk'(-!)}_ Tk _
Xk (l+Hk)Tk ~«_a. (8)

Here the quantity — cok2, to which the both terms of this equation can be

equalized, must be considered as constant, as it neither depends on x nor on t.
Further on it will be obvious that there can always be found Solutions Xk
which satisfy the boundary conditions, if this quantity is negative; for this
reason it has already been written in the form of a quadratic preceded by a
minus sign. The opposite quantity, a)k2, we call the kth characteristic value of
the problem. We shall not go into the question whether there can also exist
Solutions for Xk at negative characteristic values; it can be shown without
difficulty that this is not the case.

From (8) we can derive the two following equations for Xk and Tk respectively

Xk' + o>k*Xk l{Xk'(l)-Xk'(-l)}, (9a) fk + a>k*(l+Hk)Tk 0. (9b)

The boundary conditions for Xk are, according to (3) and (4),

Xk 0 for x ± 1. (10)

In calculating the characteristic funetions Xk we start from the assumption
that these funetions always are either even or odd, which can be demonstrated.
We indicate the odd characteristic funetions by an asterisk. Then we have for
the even funetions instead of (9a) more simple

Xk'' + wk*Xk Xk'(l). (Ha)
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The even Solutions of this equation are, as can easily be verified,

Xk Bk cosco^o; £-}. (12a)
\ wk /

From the boundary condition Xk 0 for x=l it is found that the quantities
ajk are roots of the so called conditional equation

tg< (13a)

By drawing both terms of this equation as a function of oo it becomes obvious
that these roots are approximately equal to

COk^(k + i)TT (k= 1, 2, GO). (14a)

The first 5 accurately computed roots12) are given in the table XI. It must be
observed that the root co0 0 of (13 a) gives rise to the function X0 0 and
therefore must be left out of consideration.

Table XI. The characteristic values a>k and cok* for k l, 2,.
with an inextensible cable

o

k 1 2 3 4 5

"k 4,4934 7,7253 10,9041 14,0662 17,2208

°>k 3,1416 6,2832 9,4248 12,5864 15,7080

The characteristic funetions can be written with the help of (13a) in the
somewhat simplified form

Xk Bk(coscükx — cosojk) (k — 1, 2. co). (15)

For the odd characteristic funetions we have the differential equation

d2Xk*
dx2 + a>k**Xk* 0.

Its odd Solution is

(IIb)

(12b)xk* Bk*&ma>k*x,

to which the conditional equation

sin co* 0 (13b)

belongs. The roots of this equation which mean anything for our problem, are

ojk* krr(k 1,2. oo). (14b)

12) Compare F. Emde, Tables of elementary funetions, Leipzig and Berlin (1940)
p. 130.
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The first 5 characteristic values of the odd vibrations have also been
computed and reproduced in table XL

The equations (14a) and (14b) show that indeed only for very distinct
values of cok characteristic funetions different from zero exist, which satisfy
the differential equation and the boundarj^ conditions.

At the further calculations we shall use the so called orthogonal property,
which exists between two different characteristic funetions,

+i
J XmXndx 0 for ajm *oon. (16)
-l

In this expression each of the characteristic funetions Xm and Xn can be

even or odd at choiee. This property can be demonstrated directly by substituting

the expressions for Xk (15), or as the case may be Xfc* (12b), in (16);
however the following way is more attractive. We write down equation (9a)
both for the index m as for the index n, multiply these equations by Xn and
Xm respectively and substract the results:

Xm Xn -Xn" Xm + (c_^ — oon2) Xm Xn

l[{X'm(l)-X'm{-l)}Xn-{Xn' (1)-Xn'(-1)}JJ.
Integrating both terms of this equation between the boundaries x — 1 and

x 1 yields, using (6), the result

+i
(^m~^n2)S XmXndx °>

-1

which owing to com =j=ojn gives rise to the property (16).

By multiplying the equation (9a), written down for the index m, by Xn
and integrating both terms of the thus found equation in the same way, we
find with the aid of (6) and (16) that also

fx*mXndx 0 for tom*oon. (17)
-l

Further on we standardize the constants of integration Bk and Bk* remai-
ning in (12 a) and (12b) by the so called normalizing condition

)1Xk2dx=l. (18)
-l

From (6) and (9a) we find that in that case Xk also satisfies

)1Xk'Xkdx -a>k*. (19)
-1

Applying (18) to (15) and (12b) yields

B* ^7T> B** l> (20)
sm ook
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so that the normalized characteristic funetions are

75

^ COS O0k X — COS CükXk -. -, Xk* sinco^.* #(& 2 co). (21)

We have computed some values of Xk and Xk* (see table XII), which are
plotted in figure 9 against x.

r=/,5

- / "\
*
\y

-0,5

Y_l\^\ __ \

vß -ö,6 / WM ~ 0,2 Ö ^ 0

0,5~\

7

2 *9# \ 06 0,6 J

1,5

*t.x;

Fig. 9 a. The characteristic funetions Xx and Xx*

X2 (/nextensible cab/e)

0,8 z0.6 OA

\

(extensfb/e cab/e)

x2,x:

Fig. 9b. The characteristic funetions X2 and X2*
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Table XIla. The characteristic funetions Xk and Xk* for some values

of x and k l
X -1 -0,8 -0,6 -0,4 -0,2 0 0,2

1

0,4 1 0,6II 0,8 1

inextensible
cable
extensible
cable

0

0

0,6987

0,481

0,7019

0,348

0,0076

-0,309

-0,8605

-1,045

-1,2472

-1,362

-0,8605

-1,045

0,0076

-0,309

0,7019

0,348

0,6987

0,481

0

0

X *k
inextensible
and extensible

cable 0 -0,5878 -0,9511 -0,9511 -0,5878 0 0,5878 0,9511 0,9511 0,5878 0

Table Xllb. The characteristic funetions Xk and Xk* for some values

of x and k — 2

X 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

xk
inextensible
cable
extensible

0,8790 0,5927 -0,1035 -0,8144 -1,1363 -0,8868 -0,2072 0,5165 0,8737 0,6612 0

cable -0,037 0,060 0,318 0,650 0,941 1,094 1,056 0,840 0,520 0,204 0

xk*
inextensible
and exten¬

i

sible cable 0 '

0,5878 0,9511 0,9511 0,5878 0 -0,5878 -0,9511 -0,9511 -0,5878 0

13. Determination of the normal coordinates. The characteristic funetions
and values having been found, we now can pass on to the determination of the
normal coordinates. These satisfy the equation (12, 9b)

Tk + (l + Hk)ook2Tk 0(k=l, 2...oo). (1)

In this equation are found both the W1 normal coordinate and the cable force
change Hk (t) belonging to it. But there exists another relation between these
two quantities, i.e. the relation (12, 7). From these two relations there can be
derived formulse with the aid of which Tk can be expressed in Hk or inversely
Hk in Tk. With the even vibrations we have, according to (12, 21),

and these formulse are
Xk i1) xk (~l) -wfc, (2a)
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T* -,> i?Ih\> (3) ^ "ir!rV- {4a)

By substituting (4 a) in (1) the non linear differential equation

^+r+Sr° (5a)

can be derived, in which Hk is no more found.
The Solution of this differential equation requires some deliberation. It

can be integrated once by introducing the new variable

and by writing ,«,_,, ™J B d2Tk_dz_ dz dTk _
dg

~IW~Ji~dTk ~Ji ~Z dTk'

zdz+^ld{üJfk); ±z2 + a>kTk-ln(l+a>kTk)=Dk; (7)

D^ being a constant of integration. The ultimate result is

^^ ± •2{Dfc + ln(l+a,fc_i)-a,fc_i}. (8)

From this it can be derived that Tk is a periodic function of t for all values

Dk, but we shall not enter further into this question. For small values of Dk
there can be written approximately

Tkg± Akcos (cokt + <pk) with ojkAk ]/2Dk(k= 1, 2 oo). (9a)

With the odd vibrations we have, according to (12, 21) and (12, 14b),

Xk*'(l) 0, _V'(-1) 0, (2b)
so that

Hk 0 (4b)
and (1) reduces to

Tfc* + o^*2^* 0 (fc=l,2...oo). (5b)

The Solution of the last equation is (without restrictions)

Tk* Ak*cos(cok*t + cpk*)(k 1,2. .co). (9b)

The constants of integration occurring in (8), (9a) and (9b) can be

computed, when the starting conditions are known, with the aid of the properties
(12, 16)—(12, 19). We shall not enter further into this question.

A motion governed by a non linear differential equation like (5a), in which
the time itself does not appear, is often called a pseudo harmonic motion.
Thus the even vibrations of a Suspension bridge are pseudo harmonic, the
odd vibratious however are harmonic.
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When only one constant Ak c. q. Ak* differs from zero, the characteristic
value a)k c. q. cok* belonging to it determines the frequency with which the
bridge oscillates. Restricting ourselves with respect to the even vibrations to
small values of Tk, for which the formula (9a) holds sufficiently well, we can
also call the characteristic values the angular frequencies of the bridge. In
quantities with dimensions the angular frequencies are, according to (3, 6b),

From table XI it may be concluded that the lowest characteristic value is
_o1*=77-, so that the lowest frequency vx* and the largest Vibration time f±*
of the bridge can be deduced from

<Si*=7T/"_7 27T'i*! 9i* iij' fi* /f13)- (11)

For the bridge indicated in table I as "example" the last formula yields

ft* =5,91 sec.

14. Application of the quasi linear method. In chapters 6 and 9 we applied
already the so called quasi linear method, by which the non linear connection
between the girder deflection and the live load is simplified to a linear relation.
A reduetion like that we can also execute with dynamical calculations; applying

it on the equation (12, 1) yields

Again we can try to substitue the Solution (12, 4), which gives rise to the
simpler relation

Xk Tk-XkTk Hk, (2)

instead of (12, 5), while the relation (12, 6) remains valid. The relations (12, 7)
and (12, 8) must here be replaced by

iTk{Xk'(l)-Xk'(-l)} Hk (3)

and X/-_W(1)-X_*(-1)} | (4)
Xk *k

Now it can be easily shown that the differential equations (12, 9a), (12, IIa)
and (12, Hb), the boundary conditions (12, 10), the formulae (12, 12a),
(12, 12b), (12, 21) and the properties (12, 16)—(12, 19) for the characteristic

13) This result has already been found by H. Granholm, Beräkning av hängbroar 2,
Göteborg (1945) p. 68.
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funetions as well as the equations (12, 13a), (12, 13b) and the formulse (12, 14a),
(12, 14b) for the characteristic values remain valid, while all the normal
coordinates Tk and _Tfc* now satisfy the equation

Tk + <ok*Tk 0; (5)
thus the latter are equal to

Tk Akcos(a>kt + <pk), Tk* _4fc*cosK*.+9jfc*)(Jfc=l,2 oo). (6)

The cable force is at this case, owing to (3), determined by

Hk -o>kTk)Hk* 0. (7)

15. Free vibrations of a bridge with an extensible cable. We shall now
calculate the free vibrations of a Suspension bridge, which occur when the exten -

sibility of the cable is taken into aecount. Here we start from the differential
equation (11, 1), reduced to

and the conditions (11, 2) and (11, 3).

Again we try to write down as Solution from (1)

¦n xkTk, (2)

Xk being only dependent from x, Tk only from t. Substituting (2) in (1) yields
the equation

xk" Tk ~XkTk Hk (3)

at which the corresponding cable force # (t) now again is indicated with the
index k. Integrating both terms of the last equation to x between the boun-
daries — 1 and + 1 we find

l{Xk'(l)-Xk'(-l)}Tk {l + l(yla + v)^Hk. (4)

By eliminating Hk from (3) and (4) there comes

x„ lXk'(l)-Xk'(-l)Afc -9.—
1 +1 „Tk-*"^ -T* (5)

Xk ™k

in which a is determined by the formula (8, 4). From (5) we can solve Tk\Tk
as a function of Xk and Xk; so, Xk being only dependent from x and Tk only
from t, the ratio TkjTk must again be constant. Hence, putting Tk\Tk —cok2,

we can write down the relations
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Xk'' + cok*Xk^±Xk'{l) *f[ l\ (6a) Tk + cok*Tk Q. (6b)
*-* JL — "o CC Cur.

For the even funetions (6 a) can be further reduced to

Xk +cok Xk - r i 2,1 — gawÄ

the even Solution of this equation is

v t. f sin cok
Xk Bk \ cos cok x ——=-^—^- 1,k k\ k Lok(l-l*a>k2)\> (8)

/y« e/fc-

tgu)

»UJ

t,5 —

tg u

Fig. 10

Determination of the roots of the frequency equation

which, together with the
boundaiy conditions (11, 3)

gives rise to the conditional
equation

tgco a,(l-laa,2), (9)

of which cok must be the
roots. This equation may
best be solved in a graphical
way, as has been drawn in
figure 10 for the bridge trea-
ted in this paper as ,,example",

for which, according
to nr. 8, ol 0,090.939.
Here we find co1 4,24;
co2 5,92.

The root to0 0 gives
rise to a characteristic function

X0 0, and so it makes

no sense. The other characteristic

funetions (8) can,
the quantities cok being roots
of (9), be written down in
the more simple form

Xk Bk(coscokx-coscok)(k=l,2, oo), (10)

which expression can be normalized with the aid of the condition (12, 18) to

COS <x)k x — cos cokxk
sm_ji

(fc=l,2, oo). (11)
1 + (1-1a _.fc2)2
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For the bridge treated as example we have computed some values of Xk;
these are given in table XII and plotted in fig. 9 against x.

With the odd vibrations (6a) also in this case reduces to (12, IIb). Thus
the characteristic values belonging to it are fixed by (12, 12 b), while the
normalized odd characteristic funetions are determined by the second formula
(12, 21).

At last the equation (6b) corresponds with (14, 5). So the normal coordinates

are, like as in the corresponding case of an inextensible cable, determined
by (14, 6), while the cable forces belonging to it are equal to

H* -T~&-*' ^* 0- (12)
1 — 3OC LOk

3A particular case is a -^, in which we have co1 tt, so that the characteristic

value belonging to the even vibrations is equal to the characteristic

value belonging to the odd vibrations; here Xx —^=—. For this value

of a and for greater values of this quantity the first even Vibration has only
two modes, situated at the ends of the bridge. For a > 3/-7T2 co^* is no more the
lowest characteristic value, but now the set of characteristic values, ranged
in growing order, is: co1, co^, co2, a>2* etc.

For the bridge treated as example we have computed the first two even
characteristic funetions Xk; these are given in table XII and plotted in fig. 9

against x. We learn that for this bridge the set of characteristic values, ranged
in growing order, is: a^*, cv1, co2, co2* etc.

Klöppel and Lie14) have treated the problem of free oscillations of a
bridge with an extensible cable and a girder of any stiffness, but they restric-
ted themself to the linearised case. They solved it by developping the deflection
in a Fourier serie. As however the even characteristic funetions of the problem
are no cosinus funetions at all, this way of Solution must have an approximative

character. Moreover it can not be applied at the case of an inextensible
cable, as the cosinus funetions do not satisfy the condition that for this case
the integral of the function taken over the length of the girder is equal to zero.

16. Forced vibrations caused by a moving live load. We now shall enter into
the question how the girder deflection and the cable force can be calculated
when the bridge undergoes a forced Vibration, i. e. when the live load p (x, t)
differs from zero. We restrict ourselves exclusively to the case of the quasi
linear method, which is naturally admissible when the load p(x,t) is small
compared to 1.

Although we could use for this case the method of the characteristic
funetions as well as in the nrs. 12—15, it gives much advantage to make use

14) K. Klöppel and K. H. Lie, loc. cit. p. 220.
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of the so called operational or symbolic calculus, based on the one sided Laplace
integral. For the principles of this calculus we refer to the handbooks15).

The starting point now is the differential equation (11, 1), reduced to

-B+w p^-Hv> <*>

with the cable condition
+1
$r]dx 0 (2)

-l
and the boundary conditions

rj 0 for x ±1, (3)

to which we now add the starting conditions

V °' Jt^0 f°r * °- (4)

Following the rules of the symbolic calculus we introduce the new variable s

and we join to the funetions rj(x,t), p(x,t) and H (t) the so called image
funetions

77* (x, s) J e~st rj (x, t) dt, p* (x,s) J e~stp (x, t) dt,
0 0

00

H*(s) )e-aE{t)ät.
(5)

0

By multiplying both terms of the partial differential equation (1) with e~8t,

integrating with respect to t between 0 and 00 and making use of (5) and the
starting conditions (4) we find the ordinary differential equation

d2r)*
-^-+s2V*=P*(x,*)-H*(s), (6)

to which belongs the cable condition

+ 1

j*n*<fo 0 (7)
-1

and the boundary conditions

77* 0 for x ±1, (8)

as can be shown from (2), (3) and (5).
With the help of the method of Variation of constants we find as the

general Solution of (6) and (8)

15) For instance: G. Doetsch, Theorie und Anwendung der Laplacetransformation,
Berlin (1937); H. S. Carslaw and J. C. Jaegeb, Operational methods in applied'mathe-
matics, Oxford (1941); R.V.Churchill, Modern operational mathematics in
engineering, New York and London (1944).
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2sv*chs $p*{(;,s)ah8(l+£-x)di; + jp*(g,8)8h8(l+x--£j)dij
-1 x

+ 1

^SX p*(£,s)shs£dZ-2chs~sChsXH*(s), (9)shs
-l

from which the cable force #* (s) (5) can be calculated with the help of the
cable condition (7):

-4-1 4-1

211 I #* (s) ;p* (x,s)dx r— p* (x,s)chsxdx. (10)

-l -l
So far the live load could be any function of x and t. But now we shall

use the stipulation, mentioned already in chapter 11, that this load moves,
conserving its form, with a constant speed v, so that we have at any time

p(x,t) p^x-vl), (11)
or with (3, 6b) and

V |/2/
(12)

p(x,t) p1(x — vt). (13)
Moreover we shall assume

px(x) 0 for x>—\. (14)
Now we have

00

p* (x, s) j* e~stp1(x — vt)dt;
o

introducing the new variable
z x — vt (15)

yields, with (14),

p*(x,s) — ]e~li(x~z)p1(z)dz. (16)

At first we Substitute (16) in the formula (10) for the cable force; then we get

/ th <?\ +1 -1 s, 1 +1 -1 s,2v(l--^\H*(s) jdxje~^x~z)p1(z)dz—r— j* chsx dx J* e"^{x~z) Vl(z)dz.
\ S J __! _oo Cll5_i _oo

After changing the order of integration in both double integrals, we can
reduce them to single ones:

2 (\-v2)(s-sb s)H*(s) v(v+ths) j e~^a~z) p1(z)dz-v(v-ths)~j e^(1 + z) p^dz.
— 00 —oo

(17)
Now we apply the reversing formula of the operational calculus:

€+%CO

H(t) ~ I* e°<H*{s)ds; (18)
e—ico

this yields, after changing the Orders of integration another time,
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€+100

— oo e—i oo

— 1 e+too

(19)
— oo e—too

Now it will be shown in nr. 17 that
e+ico

—. f- th*
ds 0 for w<0,

6 3
-r- + -x- u2 — 2 /2 (w) for ^ > 0,
o _j

e+ioo

with

1 f thse^ 7 rJi _;—: ti—ds 0 for u<0,2tti j s — ths
€ — 1 00

3 u + 2 f1 (u) for u > 0,

&=i ^ k=l <*>k

(20a)

(20b)

(21)

ojk being, according to nr. 12, the kth root of the equation (12, 13a). We shall
also demonstrate in nr. 17 that

_ x
1 3

- (i_-l)e"-2 + ~^eu- —u

for 0<^<2,

for 2<^<4,

(u2-5u + 5)eu-*- (u-l)eu~2+ \zu- ~u for 4<w<6,

-(i - u3-8 u2+29 u
\ 13-291 eu~6+(u2-5u+5) eu~*-(u-l) eu~2+ ~^eu-—u

/2W - YeW+T^2+"5

(u-2)eu-2-— eu+ ~u2 -{- 4-
2 4 5

2 2

for 6<w<8,

for 0^u^2,

for 2^u^4,

(22a)

-(u-3)(u-4:)eu-^ + (u-2)eu-2---eu + ~u2 +^ for 4^^6,
(— i62 - 6 u + 131 (__ - 6) ew~6 -(u-3)(u~ 4) eM~4 + (_. - 2) e^~2

13 3- -^ eU + "7- ^2 + ^ for 6 < u < 8.
2 4 5 — -

(22b)
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With the aid of (20a) and (20b) the formula (19) can, replacing z by z-vt,
be reduced to

vt-l

+ 1

vt-l
4 v" " ' 5

By using (22a) and (22b) we can split H(t) into parts

e,-^(Lr)+e,/"(L.i))<fa- (23)

with
vt-l

2+1
BAt) o(!%) J Pi(«-»0« • dz>

2(1
-1

V.-l
flsW - i^ J Px(Ä-t;*)^-2t;+ Y^)^^ 2d«,

s-i
2i7-l

v*-l
#s(*) 2(1^-^) J PiC*-t;*)e~efe,

+1
v*-i

4u-l
u*-l

HAt)

etc.

-1^ J V1(z-vt)(z-2v-y^jeV" '(fe,

2v+l

(24)

(25)

For the speed v l the funetions H2(t), H3(t) etc. become indefinite. But
then we can take together #2 + #3, #4 + #5 etc. and apply the rule of de

l'Höpital; thus we find

HAt) ij1p1(z-t)e^dz,
-1

HAt)+HAt) -£]1p1(z-t)(2z + 3)e'-1dz-pA-t+l),
+1

HAt)+HAt) ^TpAz-t)(z2-S)e^dz + Pl(-t + 3),
+ 3

(26)

etc.

Next we shall compute the deflection. For this purpose we Substitute the
expression (16) for p* (x, s) in (9); after changing the order of integration and
evaluating the integrals as far as possible in the now well known way, we get
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-l
C ~ ^z__ v C üf(1— v2)s2rj* — v Px(z)e s

v dz+ 29i(2;)shs(1 — #)es t> dz

— 00 —00

-1

+ ih2^J Vx(z)^(l+x)e-s^ dz- (l-v^\l- -^) H*(s). (27)
— 00

We now apply the reversing formula and also the composition product rule
of the operational calculus, which reads, <p (t) being any new function of t and
<P*(ä) its image,

€+i°o t

~ f <p*(s)H*(s)estds= t<p(t-T)H(r)d;2| Kfs V _¦ / _.__ \*-> I ^ w« | vf^\l/ f / _._. V l / lA/ T

€—ioo 0
r e+-ioo

2-U Cä(t)_t f <p*(_)e««-*»_T. (28)
0 €—ioo

With their help and by renewed changing of the order of integration the
formula (27) can be reduced to

— 1 €+t°°

2 7Ti(l—v2)rj —v\p1(z)dz -2-es\~V~)ds
— 00 £ — 100

-1 e+i°° /.l+z\ -1 €^£°° /. l-z\
+ *J A(z)&J ^^ ds+Vj *{*)**) ^shü ds

— oo g—ico —oo €—i oo

t e+^°o

-(i-««)J_r(T)_T | J^i-?^)_•»->_.. (29)

The four complex integrals can be evaluated in a way similar to that shown
in nr. 17 for the complex integrals (20a) and (20b). We omit the calculations
and write down only the result:

x v(l+x)-\-l

V =rZ^2[T(1"a?) J Vi{z-vt)(\+z)dz+ ~(l+x) j p1(z-vt)(l-z)dz
i?(l-aj)-l

u^-1 vf-1

-v p1(z-vt)f2*ll-x + -^\dz + v p1(z-vt)f2*ll-x —\dz
-v(l-x)-l i?(l-a;)-l

<y£-l <u<-l

-v p1(z-vt)f2!iill+x —\dz + v p1(z-vt)f2*ll+x+ -—\dz
-ü(l+a;) + l v(l-\-x) + l
v(l-a;)-l
+ «Jpi(*-*"){^.(i-*+i7f),-^)«fa
-v(l-x)-l



v(l+#)+l

-v(l+x)+ l
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(i+a)+l

• J"__<*-*o{^(i+*- L=?)'-^|&]
(l+a?) + l

-$H(r){4:f2*(x + t-T+l)-f2*(2x + 2t-2T)-±(x-t + T)}dT
o

+~fH(r){4:f2*(x--t + T+l)-f2*(2x-2t + 2T)-%(x~t + T)}dT
0

Here a and /2* (w) are defined by

a £ for t^x, a x for £^x,

/2*W =|/-l)fc^^.

(30)

(31)

(32)

In nr. 17 we shall demonstrate that

/.*<«>-n"'-T_ for -2^m^2,

j^(«-4)2-^ for 2£«£6,12

(33)

etc.

With the help of (33) we can further reduce the deflection rj (30). Splitting
this function into parts we have

3 oo

(34)V ____ ___i Vmn
m=l n=l

vt-lvt—L
with (1 — v2) rjn j p1(z — vt)(x — z)dz,

nr.X

vt-lvt-l
(l-v2)rj12 $ p1(z-vt){l+z-v(I+x)}dz,

_>(l+x)-l
vt-l

(l-v2)rj13 =-fp1(z-vt){l-z + v(l-x)}dz,
v{l-x)-\-l

(l-v2)r]M=V-]1p1(z-vt){l+z-v(3-x)}dz,
v(3-a;)-l
<^-l

(!-^2)%5 JPi(Ä-t;0{l-2; + v(3+a?)}(-2;,
v(3+x) + l

v*-l
(i-^Hie $ P!(z-vt){l+z-v(5 + x)}dz,

v(5+x)-l\
vt-l

(l—v2)rj17 - j p1(z — vt){l—z-{-v(5—x)}dz,
v(5-x)-{-l

vt-l
(l-v2)Vl8=-$Pl(z-vt){l+z-v(l-x)}dz,

v(,1-x)-l
v.-l

(l-v2)Vl9 jp1(z~vt){l-z + v(7+x)}dz,
v(7+x) + l

(35a)

etc.,

7 Abhandlungen XI
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yU fH(T)(T-t)dT
0

] H(r){r-t)dr
t+x-1

t-tx—1

-(l-„) $ H(r)dr
0

t+x-1
-(l-„) $ H(r)dr

t+x-3
^23= °

t+x-S
J H(r)(r-t + 2)dr
o

*+:z-3
J H(r)(r-t + 2)dr

t+x-5
*?24 °

#+sc—5

-(3-x) JÄ(t)„t
0

etc.,

for 0 _ l-#,

for 1 — #,

for O^t^l-x,
for l-a;^ 3-a;,

for .^3-#,
for 0^t^3-x,
[for 3-#^^5-#,

for t^5 — x,

for 0^ 5-x,
for 5-#^. 7-a;,

for O^t^l+x,%1 °
2—x— 1

- f #(t)(t-. + 1 + x)cZt for l+x^t^3 + x,
b

- J* #(t)(t-. + 1+^)^t for J 3 + #,
^-a;-3

7732 0 for 0^t^3 + x,
t—x—S

2 J H(r)dr for 3 + # _ 5 + #,
o

t—x—3
2 J H(r)dr for * 5 + #,
tf-rc-5

%3 °

- J #(t)(t-. + 3 + ^)^t for 5 +x^t^l + x,
o

etc.

for 0 _
5 + #,

(35 b)

(35c)

For the speed v=l the funetions ?7l7l become indefinite; with the aid of
de l'Höpitals rule we can write

t-i
Vn + 7)i2 i(l+x) J Vx(z-t)dz,

VlS + Vu
t-i

- J Vi(z~t)dz,
2-x

t-1
Vu + Vu= J* p1(z-t)dz,

4+x
t-1

^17 + ^18 - J PX(z~t)dz,
6-03

etc.

(36)
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In practical calculations we shall split the funetions r]mn(m 2, 3)
further on:

Vmn ^Vmnj(m 2^^ n=l,2, OO);
7 1

(37)

here rjmnj are calculated with the help of (35b) and (35c), in which formulae

#(r) must be replaced by Hj(r) (j =1,2,.. .oo) respectively.
We now have found formulae which give us the cable force (24)—(26) and

the girder deflection (34)—(37) for any live load. In nrs. 18 and 19 we
shall illustrate these formulse by applying them to the two special cases of a
moving concentrated force and a moving homogeneous load extending over
half the length of the bridge.

17. Some integrals and formulee which act a part in the preceding chapter.
At first we shall demonstrate the relations (16, 20a) and (16, 20b). For abbre-
viation we write

thse8U shse8U ^m
\F±(s,u)

s — th s s ch s — sh s
F2(s,u)

s — ths' (i)

We now have to consider the behaviour of
Fx and F2 for all complex values of s. It
can be shown easily that these funetions
only have poles sk on the imaginary axis
(see fig. 11), sk being the Mh root of the
equation

«s ths, (2)

so that, according to (12, 13a),

S0 0> Sk itOk(k=l,2, oo),'

sk= -iw_k(k= -1, -2, -oo).
(3)

5«

*5?

Fig. 11. The contours for the
integration of the funetions Fx and F2

The poles sk(k+0) are simple, but the pole
s0 is a triple pole both for Fx and F2.

Both funetions must be integrated along
the path dotted in fig. 11. We can replace this path by the curve drawn in
heavy lines in this figure. Further on we draw a circle AGBDA with its
mid point at the origin 0 and with such a radius B that the circle is
sufficiently far removed from any pole of F (s). By taking R larger and larger,
2rrJ1 and 2ttJ2 approach to J* Fxds and j* F2ds respectively.

BOA BOA
For „<öwe complete the path of integration to the contour QACBO.

It then can be proved that

lim J F1ds 0, lim J F2ds 0,
__-*oo AGB i?->oo AGB
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and as there are no poles lying within the contour, we also have

J F^s^O, J F2ds 0,
0ACB0 0ACB0

so that in this case

J1 o, J2 0.

For u>0 we complete the path of integration to the contour 0ADB0.
Here we can prove

hm J Fxds 0, lim J F2ds 0.
.R-yoo ADB 2_->oo ADS

Now we have to apply the remainder theorem of the function theory; with
its aid and considering the fact that sk(k +0) is a simple pole but s0 a triple
pole both of the funetions Fx and F2, we easily find the formulse (16, 20a)
and (16, 20b).

Next we come to the funetions f1(u) and f2(u). At first we shall prove

/2(0) 2-^ A- (4)

For this purpose we consider the integral

J ±ri$cF{s)ds, F(s) ^-y /(_)=tg.-_, (5)

C being a circle in the complex s plane with 0 as centre and with such a radius
R, that C is sufficiently far removed from any pole of F (s). The function
F(s) has a triple pole at 0, simple poles at the points s sn (n + \)ir (n

— oo, — 1,0, + 1, + oo) and simple poles at the points s tok (k 4=0).

Now the remainder theorem yields for R -> oo

1 l +00 -. +00 -.

5 tt2ntin (n + \)2 Ä^ooWÄ2'

but it also can be proved that for R-^oo j* F (s)ds ->0, so that
c

M0) i- f _i 1 1 f -1 1

_i| y J__ y _J_I _1_=AVl«^»8 »+i(2w)2| 5~10'

n= i ™2 6

which property can be proved in an analogous manner by evaluating

cosg s ds

as we have

2771 J
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Now we consider the function Xk (12, 21). With the aid of the orthogonal
property (12, 16), the normalizing condition (12, 18) and the property that cok

is a root of (12, 13 a), we can prove
CO -y

l(3x2-\) 2 — for -l<x< +1. (7)
n=l <*>k

Introducing the new variable
u x+l (8)

yields, with the formulse (16, 21),

/1W + /2W =/2(0) + H3™2-6^ + 2) for 0 <^<2. (9a)

Further, it can be proved with the aid of the same formulse

f1(u)Jrf2(u) — f1(u — 2) + f2(u-2) for all values of u. (9b)

As we also have

/,(.,--<$£.>, do
the function f2 (u) can be solved from the differential equation

-^ + / -lu2-~u+~ for 0<^<2, (IIa)du 4 2 5

after which it can be solved in other intervals of u, using also (10), from the
equation

+ /2 -fx(u-2) + f2(u-2) for all values of u. (Hb)dh
du

Thus the formulse (16, 22a) and (16, 22b) can easily be found.
At last we consider the formulse (16, 32). These can be proved by an

integration of the Fourier expansion

^ _., sin^krru 1 r2j (~l)k f --ru for -2<u<2,
&=_i k-n 4

— —-(u — 4:) for 2 < u < 6,

etc.,
making use of (6).

18. Continuation; the moving concentrated load. As a first example of a

moving live load we shall treat the concentrated load. This can at the moment i
be represented by the limit for A x -> 0 of

p (x, t) 0 for x>vt — 1 or x <t>£ — 1 — __i #,

P
-r_r for vt—l—Ax<x<vl—\,Ax

(1)
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or with 2P 2
P —T, Ax -tAx,wl l

(3, 6b) and (16, 12), by the limit for Ax->0 of

p(x,t) 0 for x>vt— 1 or x<vt—l—Ax,

Ax for vt — 1— Ax<x<vt — 1,
(2)

Then, according to (iß, 11), ^(a?) is the limit for Ax->0 of

_c»i(x) 0 for #> — 1 or x< —1—Ax,
P

' Ax for — 1— Ax<x<\,
(3)

so that the condition (16, 14) is satisfied.
At first we calculate the cable force. For v 0 this quantity is determined

by the formula (6, 2) which yields with (2),

tt o rr
-p- —(1—a^2) for — l^a^gl, — 0 for#1=l. (4)

Here we replaced the quantities v and t, which become respectively zero and
infinite for this case, by

x1 vt— 1. (5)

For v^öwe calculate with the help of (16, 25) the partial cable forces Hj(t)
(j=l,2,...) with (18, 3):

for t>0,

for 0<t<2,

for t>2,

B1 V

P

P "

2(1 +

0

v)

v /_ -. v \
r+7r1 + r^)' ,£-2

#, 0

2(1-»)
J-1e v

__4
p 0

1+» \
£2-5« + 12 +

1 —v }

£">
1 fv(«-2)-l *

l-t> 1+t)
1-1-2

e v

for 0<£< —.
v '

for t> —,v

for 0<£<4,

for t > 4,

for 0<£<2+—,
2

for t>2+—,v

(6)

etc.
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For v 1 we can write, according to (16, 26) :

-^el

H2 + Hz

Ei
P 4

0

H, + H,

etc.

—oo

-i(2*+l)e<~2
0

+00
±(t2-2t-2)ef-4

for t>0,

for 0<£<2,

for t 2,

for t>2,
for 0<£<4,

for 4,

for t<4c,

With the help of these formulse and the relation (16, 24) we calculated # (t)
for 0^vt^3 and for v 0; 0,5; 1 and 2. These values are represented in
table XIII and figure 12; they will be discussed afterwards at the end of this
chapter.

Table XIII. The cable force HjP for some values of vt with a moving
concentrated load

vt \^ 0 0,5 1 2

0 0
° i

{ 0,1667 J 1 0,25 j { 0,3333 j
0,2 0,27 0,2486 0,3054 0,3684
0,4 0,48 0,3709 0,3730 0,4071
0,6 0,63 0,5534 0,4555 0,4500
0,8 0,72 0,8255 0,5564 0,4973

1 0,75
f 1,2315
\ 0,5648 j 0,6796 0,5496

1,2 0,72 0,6438 0,8300 0,6074
1,4 0,63 0,6637 1,0138 0,6713
1,6 0,48 0,5472 1,2382 0,7418
1,8 0,27 0,1561 1,5124 0,8199

2 0
f-0,7522 1

{ 0,4145 J

f 1,8473 |

[ 0,5973 ]

f 0,9061 1

{-0,0939 j

2,2 0 0,2220 0,6073 -0,1038
2,4 0 -0,0311 0,5927 -0,1147
2,6 0 -0,2029 0,5416 -0,1268
2,8 0 -0,0326 0,4391 -0,1405

3 0
f 1,1449 1

0,4782 1
0,2644 -0,1548

Next we calculate the girder deflection. For the statical case the formula
(6, 1) yields
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_

H
P

rV
y

^^ i£^~
V-.! _j

1

V=0 ^v > //
1 \ 2 v=2 ^ / 3 *"

^ ^

-o_ K--/

Fig. 12

The cable force as a function

of v t with a moving
concentrated load

-^ (l+x)(l-x1){l-i(l+x1)(l-x)} for -l£x£xl9 J
(8)

(1-^)(1+^1){1-|(l-x1)(l+^)} for x±£x£ +1. j
For the dynamical case we must calculate the funetions r\mnj (17, 34) — (17, 36).

Restricting ourselves to the cases 0,5 ^ v ^ 2 and 0 5^ v 2 2 (i.e. to the time in
which the force is on the girder), we can find that it is only necessary to
determine ^ ^ + ^ + ^4, ]

??2 ^211 + ^221 + ^231 + ^311 + %21 > \ (9)
1% ^212 + 7?222 + 7?312 >

J

being 77 ?h + ??2 + %. (10)

We here omit the elementary intermediate calculations; having executed
them, we get the formulse

1+v
rj1= l+x

v

l-v
0

l+x
V

l-v
2v

l-v
l + x

for —l^x^vt—l,

(l+x-t) for vt-l<:x^t-l,
for t-l^x<: +1,

for — l^x^vt — 1,

(l+a?-J) for vt-l^xS3-t,

l-x) for 3-^x^+1,
for -l^x^3-£,

[l-x) for 3-t^x^vt-l,

(l—x) for vt-l^x^+l,

0^.^2,

1
,_ ,x 2v

-—(l+#-t;tf)+-—1-?; l-v
2v

1+v

4 2

1+v V

and \
_Stf_Sl,

(IIa)
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2l^^ et-x-~i^et+1+x
v P

-ef + t+l
et+x~1-et+l-x

for -l^x^t-l,
for t-l^x^l-t,
for 1-t^x^+l,

z=et-x-l__et+i+x for -l^x^l-t,
=et-x-i + et+x-x_et_t +i for l-t^x^t-l,
==et+x-l__et+i_x for £_!<;£<; _|_1?

_= e*-*-l _|_ et+x-l_et__t +1 for -1^^^-f-l, 2 ^^

0_g^l,

ISt ^2,

2

and J
;__v;gl,

(IIb)

21±^ 0
v P for 0^^2 and |^v^l,

2U-3+-^—\et-2- (2t-2x-7+ ^zr) ^~x~l

1+v
+ t-l l-v (l+x) for -l^x^t-3,

2(t-3+T^-)et-2--2^(t-l) + 2
\ 1 —V] l—v

for t-3<,x<>3-t,

2(_-3-f ~) e*-2- \2t+2x-l +^\ e<+*~3

+ J-1- \^(l-x) for 3-^^+11 —v

and
2^t<:3,

i^ f

or
2<£<-,

4-3+r)«"-(2'-2*-'+£)' d-x—3

+ J-1- 1+V
l-v (l+#) for -1^^3-£,

:2H+i^)e(_2-(2i-2^7fS)

_(2« + 2_-7+I^L) e'+*~3 + (t - 3)
1 —v

for 3-t^x^t-3,

-2{^+ri)et-2~{2t^-7+ä)^ »<+«—3

+ *-!¦ 1+v (l-x) for £-3^^ +1

and

3<t<-,— — V '
1 < 7, < 2.

(llc)

(11 d)

(lie)
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P
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Fig. 13a. The girder deflection as a function of x and vt with a
moving concentrated load
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*.o r-0'5 r0'7

-.0.5

v-2V--O y-.O.S

vt*/,8

Fig. 13b. The girder deflection as a function of x and vt with a
moving concentrated load

2>h
P l+x for — l^x<t— 1,

for t— 1 <x^ +1,

4-^t__3 ==et-x-l_et+l+x for -l^^-l,
-ef + t+l for _-l^xgl-£,
et+x-i_et+i_^x for 1-^x^+1,
e^-a;-l_^+X+x for -l^X^l-t,
et+x-l+et-x-l__et+i_t for 1 _^ X ^ ^ _ 1

e;+x-l_e^+1_a; for f-l^^S _|_19

0^^2,

O^.^l,

1<£<2

and v= 1,

(12)

1+v
Tj1= l+X

l-v
0

for -l^a^J-l,
[1+x — vt) for tf-l^x^vtf-l,

for vt—l^xS + 1,

0<_<-,

2l±!?3__t_Z3 e^--i_c<+i+a: for -l^x^t-l,v P
-et + t+l for t-l^x^l-t,
et+x-i_et+i_x for 1-^x^+1

0^_S1,

=zet-x-l_et+i+x for _l^x^l-if, ]
e*+*-i + e^*-i_e*+1_£ for 1-^x^-1, l^^f
e<+*-i_e<+i-ic for J-l^aS+1, j

and
l<v<2.

(13)
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Si*©r^^HH
0)r«^,^C8^

-
o
o
o
o
o
o
o
o
O

o
o

t>

a>

o
CO

r-H

CM

CO

CM

CO

r*

rH

CO

r^
CO

CO

r-H

00

O
CM

r*

00

o
S

CO

CO

r-H

IQ

lO

rH

r^
rH

<M

o

o
o
rH

O
O
O
O
rH

O

o1

ol

o1

O
1

O
1

O

o
o
O
O

CO

CO

00

IQ

rH

r^
Oi

rH

rH

CO

lO

lO

*Q

IQ

r-
o
00

rH

t-
uo

CO

og
lO

rH

O
lO

CO

<M

r^
t4(

r-i

o

o
rH

CM

o
r-\

r-H

rH

o
o

o1

o1

o1

O
1

o1

o
o
O

o
o

CO

rH

r^
CO

r-
Oi

co

CO

CM

rH

lO

1^

Oi

*Q

00

CM

r*>

CO

t-
IQ

^*

<=>

s
CO

riH

CO

r—1

CM

rH

UO

rH

O

o

o
r-H

r-H

o
r-H

CM

o
O
O

o1

o1

o1

O
1

o1

O
O

o
O
O

1

1

CO

Oi

tH

CO

CO

00

Oi

CO

t>
CM

IQ

O
r-H

Oi

Oi

CO

CM

CO

00

CO

<M

öS

r^

r-
CO

UO

r^
rH

o
US

CM

o

o
rH

o
o
rH

r-H

o
o
o

o1

o1

o1

O
1

o
O
O

o1

o
o

1

1

CO

Oi

CO

00

IQ

CO

o
IQ

rH

rH

lO

o
co

i-H

rH

CO

o
IQ

CO

O

o

<=>

s
«^

T*

an

r—

r-H

CO

CM

r>

co

o
o
O
rH

o
o
O

o
o

o1

o1

oI

o
o
o
o1

O
1

o
o

1

1

CO

Oi

CO

CO

CO

Oi

CO

CO

t>
CM

-<1

lO

o
IQ

!>

Oi

CM

CO

CO

00

CO

°
o

r^
Oi

<M

lO

Oi

<M

o
IC

CM

o

o
o
<N

O

o
r-H

o
o
o

o1

o1

O
O
O
O

1

O
1

o1

o
o

1

1

CO

Oi

CO

r-H

r^
00

rH

r~

CM

rH

rH

IQ

lO

o
r-H

00

CO

CM

CO

I>

IQ

<=>

s
CO

lO

CO

rH

IQ

r^

rH

O

o

o
(M

r-H

o
r-H

o
o
o

o1

o
o
o
o1

O
1

O
1

o1

o
o

1

1

CO

pH

Oi

(M

T*

Oi

h-

(M

rH

CO

CO

lO

p—1

o
r-H

r>-

IQ

r—

CM

t-
U0

o_
r-H

IQ

CO

»o

CO

CO

Oi

rH

r-H

o

<M

rH

O

o
rH

r-H

O
O
O

o1

O
O
O

o1

O
1

o1

o1

o
o

CO

Ttf

CO

o
rH

CM

rH

(M

CM

r*

00

r-H

Oi

CO

r-
CO

CM

IQ

CO

Oi

rH

o
2

Oi

CO

r-H

IQ

00

00

CO

O
Oq

cT

o
o
O
O
O
O

o
O
O

o
o
o
O
O

1

o1

O
1

o1

o
o

7

o
o
o
o
O

o
o
O

o
o
o

^/
<N

tH

co

X

CM

rH

CO

00

o
o
o
o
o

r-H

CM



CS

©_sä•<s>5^©§8r<

OQ

•<>>

ÖD

s

T5

H

Mrü

*e

O

*fc>

£j

s>

©P.3OQbO

"©*

^
CC

II

5S

^

Ö

ö
5

¦s

s>

-il

alcul

1

8

o

CO

r-«5>

ö

^
"^

©

<£>

*+«_.

*KÄ

of
view

CO

©

©

¦e

'¦£_

S

.d

o

0

<^>

PH

03

fc

^_

©©s

^

oW.

Or^^H^r-^rOe^

rH

©
©

©

©

©

©

©

©

©

©

©
rH

rH

CO

CO

00

CM

rH

X

rH

fM

00

US

US

r*-

CM

©

CO

©

CO

rH

rH

US

©

00

^
©

r-H

CO

US

t^

o

CO

I>

CM

t-
CM

©

©

o

©

©

©

©

rH

i-H

rH

CM

CO

CO

©
1

©
1

©
1

©
1

©
1

©
1

©
1

©1

©
©
©

rH

©

CM

rH

©

CO

CM

CM

00

00

Oi

US

CO

©

CO

rH

CO

rH

00

r-H

CO

CO

co

^
©

CM

US

00

CM

l>

CO

©
Oi

©

pH

©

©
©

©

©

©

i-H

rH

CM

CO

rH

rH

CO

©
1

©1

©
1

©
1

©
1

©
1

©
1

©
©
©

©

rH

©

US

©

CO

uo

rH

CO

!>

CO

©

US

CO

US

rH

CO

rH

I>
CM

CO

©

CM

rH

_
©

CM

US

©

us

<M

©
Oi

Oi

Oi

t>

©

©
©

©

©

rH

rH

CM

CO

CO

CM

rH

©

©
1

©1

©1

©1

©
1

©
1

©
©
©

©

©

rH

©

US

rH

CM

r-H

Oi

rH

rH

t-

©

us

CO

US

CO

rH

I>
CM

l>

rH

CM

©

CM

_
©

<M

US

©

t>

US

rH

rH

rH

CM

©

©
©

©

©

r-H

r-H

CM

CO

CM

©

r-H

©
1

©
1

©
1

©
1

©
1

©
©
©

©

©

©

rH

©

us

rH

CO

«HH

i>

__.

00

CO

__,

US

CO

US

CO

Oi

©
©

CM

(M

Oi

00

^
©

CM

us

©

t>
CM

CO

CO

<M

Oi

CO

©

©
©

©

©

r-H

r-H

CO

CM

t—i

©

©

<M

©
1

©1

©
1

©
1

11
©

©

©

©1

©
1

rH

©

us

rH

CO

00

Oi

r-H

Oi

CO

©

CM

US

CO

US

CO

CO

US

CM

t^

00

t-

©

o§

CM

US

©
Oi

CM

rH

rH

US

l>

rH

©

©

©

rH

CM

CM

r—1

©

o

r-H

CO

1

©
1

©
1

©
1

©
©

1

©

©

©

©
l

©
1

©
1

rH

©

us

us

©

rH

US

rH

CO

rH

©

rH

UO

CO

US

rH

Oi

CO

US

l>

CO

©

00

_
©

<N

US

rH

Oi

rH

r-

©

©

©

<M

©

©
©

©

©
CM

r-H

r-H

©

©

r-H

CM

CO

1

©1

©
1

©
©

1

©

©

©

©
1

©
1

©
1

©
1

rH

©T©""

00

CO

©

rH

<M

CM

CM

_H

CO

US

CO

t>

Oi

CO

CO

CO

rH

00

CO

CO

_
©

<M

l>
r*

rH

l>

CM

CO

©

©

00

©

©

o

©
rH

rH

rH

©

©

©

p-H

rH

CM

©
1

©
©
©

©

©

©

©
1

©
1

©
1

©
1

^r~*o

rH

rH

CM

00

rH

00

rH

CM

US

00

US

rH

CM

t^

Oi

CO

©

CO

rH

rH

©

^
©
Oi

00

CO

rH

CM

©

CO

l>

CM

l>

©

©
©
©
©

©

©

©

©

©

©

r-H

rH

©
©
©

©

©

©

©
1

o1

©
1

©
1

©
1

7

©
©

©

©

©

©

©

o

©

©

©

**

^
CM

rH

CO

00

CM

rH

CO

00

ŝ>
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1. There is a nick in the girder at the place of the load, moving with the
speed v. For v < 1 the moving force is in a trough and for v > 1 it is on a peak.

2. For v 4= 1 there exists another nick in the girder which moves with the
speed 1. When this nick reaches one of the ends of the girder, the cable force
shows a jump.

3. For v= 1 the two nicks mentioned under 1 and 2 and the intermediate
part of the girder change into a jump in the girder. When this jump reaches
the right end of the girder (for t 2), the cable force becomes — oo and gets
the character of an impact, so that the velocities of the girder elements undergo
a sudden change. Physically this is impossible, as the total cable force Hp
cannot become negative in reaiity, let alone that the cable force cannot be
infinite at all.

However, we must keep in mind that the reduetion of the non linear
differential equation (11, 1) to the linear equation (16, 1) only has significance
for p(x,t) and H (t) being small with respect to 1. When in the Solution of
(16, 1) H (t) oo this Solution is not valid any more, so that we now must try
to solve the equation (11, 1) with the conditions (16, 2) and (16, 3), p(x,t)
being a concentrated load P moving with the speed 1. Owing to the non linear
character of the problem r\\P is no more independent of P, so that P becomes

a parameter. It would be very interesting to solve this problem.
Further on the figures 12 and 13 show that it is necessary to execute the

calculations for many more values of v if one desires to know H and rj plotted
against v.

19. Continuation; the moving load, uniformly distributed. We shall now
consider the case in which the moving load is constant and extends over half
the length of the girder. Here the load p (x, t) can be represented by

p(x,t) 0 for x>vt— l or x<vt — 2, \

p for vt — 2<x<vt—l, J

so that we have, according to (16, 11),

pt(x) 0 for x> — 1 or x< — 2, \
\ (^)

p for —2<x<— 1, J

and the condition (16, 14) is satisfied.
For v 0 we define the place of the front of the moving load by the coordi-

nate xx, satisfying (18, 5). Then the formula (6, 2) yields for the cable force

H H
— =l(l+x1)2(2-x1) for-l^a^O, — =1(2+3^-3^2) forO^#1=l,

— =l(2-x1)2(l+x1) for l^x1^2, — =0 for a;1 2.

(3)
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For v +0 we use the formulse (16, 25) and (16, 26). Restricting ourselves

to the interval in which the moving load is on the girder, i.e. the interval
0^V-ä_3, and to the values 0,5 v^ 2, it is apparent that we only have to
compute

Hi.
V 2(1+«)

«2

2(14-«)

Ei
p

0

V*

(e'-l) for 0<:t^

1+v
__2W-2_(t-2)e 1 — V'

(e'-2-!)

^2 0
V

2(1-«)
(e-i-l)

#_ 0

for t>

for 0^^2,

for 2<t<2 + —,~~ "" v

for ^2+ —,v

for 0<£< —,~ ~ v

for ~=^-.V V '

for 0^^4,

-—(-2-9. + 21)e^4+1—^{(2£-9)e'-4-fv} for 4^ 4 +1+v l-v2

while for v 1

H2 + H3

p

Ket-e^)

-H(2*-l)e<-2 + l}

for O^.^l,
for ^1,
for 0St<2,
for 2<*<3,

(4)

(5)

-!{(2£-l)_.*-2-(2_-3)e'-3} for *>3.

With the help of these formulae we calculated H(t) for 0^v. 2 and for
v 0; 0,5; 1 and 2. The values are represented in table XV and figure 14.

Next we compute the girder deflection, but owing to the great amount of
Computing labour we shall restrict ourselves to the cases v 0 and v=l. For
v 0 the formula (6, 1) yields with (1) and (18,5)
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4 n 2/7—5 ={2(l-x)-(l-x1)2}(l+x)-—(l-x2)
p

K L/ J x

p

2H
for — 1 ^ x ^ x1,

(1+^)2(l-x)- -—(l-x2) for x^x^l
(3-2^) (1+-»)- — (l-x2) for -1^x^-1,
2(l-x2)-x12(l-x)-(l-x1)2(l+x)- ~(l-x2)

for x1 — l^x^x1,
(l+-2x1)(l-x) (l-x2) for x^x^l

2 77
(2-a;1)2(l+a;) (l-x2) for -l^x^xx-l,

2 77
{2(l+x)-x12}(l-x) (l-x2) for Xi-l^x^l
0

and

-l^x^O,

and

0_gxx^l,

and

l^x1 2,

(6)

for xx ^ 2.

For v 1 we write down the formulse for all partial deflections rj^, r]12.

r]211 etc. being considered, as it presents no advantage at all to combine them.
We find with (16, 36) for Vln

2
(^n + Vi*) 1 + x for x^t-2,

(l+x)(£-l-x) for t-2^x^t-l,
0 for x .-l, l (7)

2
(^13 + W ° for x^3-t,

2(3-x-£) for 3-t^xS^-t.

p

V

Further on we find with (16, 35b), (16, 35c) and (5) for r]mnj (m 2 and 3)

4

p
r}211=~et + 12t2 + t+l for x ^ 1 — t,

-ei + (2-x)ei+x-1 + $(l-x)2 for x^l-t
—e* + e*-1 + t + % for x<; 1-.,
-e' + 6^-i+-(2-x)6^-1-f.2 + i(l-x)2-|-

for l-t^x^2-t,
-ef + e1-1 -+ (2 - x) (e'+*-i - et+x~2)

for x>2—£

and
0^£=1,

and

(^212+^213) ° for 0^.^2,
(2£-5)e'-2 + ^2-3£ + 5 for x^3-t,
(2£-5)e'-2 + {2(3-x)2-(2. + 3)(2-x)}e'+*-3
+ J(l-x)2 for x>3-£

and

2^t^3,

(8a)

8 Abhandlungen XI
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p
^221 ° for 0^^1-X,

=-(l-x)(e^-1~.-x) for l-x<:t^2-x,
-(l-x)(et+x-l-et+x~2-l) for 2-x^. 3-x,
-(l-x) (pt+x-i^et+x-2_et+x-^t+x_^\ for 3-xSt£4:-x,

p

p

(7?222 + 7?223) ° for 0^.^3-x,
(l-x){(2_ + 2x-5)e'+*-3 + / + x+4} for 3-x^.^4-x,

^231 0 for 0^^3-x,
:-(2-x)e^-3-i(l-x)2+|(^2-2i5+2) for 3-x^^4-x,

^311 °

l-i(t~x)2~i
et-x-l _ et-x-2 _ t + x + 1

for 0^t^l+x,
for l+-x^.^2 + x,

f for 2 + x^£=3 + x,
1 3

et-x-l_et-x-2^%et-x-3+ tt_x_l)2 for 3+a:^^4 + X,
_j _j

4
— (%u + %i8) 0 for 0^t^ + x,

-(2t-2x-l)e'-x-3-%(t-x-4)Z-% for 3 +*|^4 + a;,

2>
¦>7321 °

2e'-x-s-2t + 2x + 4:

for 0g^3 + x,

for 3 +x^£^4 + „.

(8b)

(8c)

(9a)

(9b)

-Ol-

-OJ. Vt 0

1 v=0 snc/v-1
/ 0

01-

0,2-

_r

f

-0,2-

-0,3

'__
P

vt*0,2

~L____
jV-o

vt 0fi

vt--0,6

V

-o.i

Fig. 15a. The girder deflection as a function of x and vt with a
moving uniformly distributed load
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With the help of these formul_e we calculated 7? for v 0 and v=l. The
values are represented in tables XVIa, XVIb and figures 15a—15c.

*_0

¦-0,1
,v*0

vt=1

/•v /_

'\_>"
-0,1

1

-0,2

-0,3

1

/Vv v-0
Z2L

v*1 vt-1,2

vt=tA

-03

vt*1.

vt*f,8-0,1

-0,2

vt*2

V--1

--0,2

/ lv'°
--o,f rt*2.2

Vi
1 0

-0,2

-0,3
\ v

Ai '

Fig. 15b. The girder deflection as a function of x and vt wTith a
moving load, uniformly distributed
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from their statical value. However here the deviations are much smaller,
while moreover the order of magnitude of the lowest critical speed is 1000 km/h,
thus being much higher than the critical speed t\. The figures 12—15 c show
that at a Suspension bridge the deviations are already important at a speed

v \, corresponding to a speed v lv1, which is of the same order of magnitude
as the speeds usual in railway traffic.

These results are quite different from the results obtained by Klöppel
and Lie16). These authors calculated the forced vibrations for the linearised
case of a bridge with an extensible cable and a girder of any stiffness. Just as

at the free vibrations they found a Solution by developing the girder deflection
in a Fourier series, thus applying an approximate method. For this reason
their results cannot inevitably be considered as right.

Of course our treatment of the problem has not been complete at all. It
would be worth while to perform the following supplementary work:

a) Determination of the forced vibrations for other values of v.

b) Determination of the free vibrations after the live load has left the girder.
For another source of danger at a Suspension bridge being used for railway
traffic can be that at the moment at which a train has reached the bridge,
it shows heavy oscillations caused by a previous train, as it is not unlikely
that a Suspension bridge has a rather small amount damping.

c) Study of the forced vibrations for the non linear case.

d) Study of the forced vibrations of a bridge with an extensible cable.

e) Study of the forced vibrations of a bridge with a girder of any stiffness.

f) Study of the forced vibrations when taking into account the damping of
the bridge.

g) Study of the forced vibrations when taking into account the mass of the
moving live load.

h) Study of the torsional vibrations.

Nevertheless it seems very unlikely that the result of these additional
calculations will show that a Suspension bridge with a perfectly, or a nearly
perfectly, slack girder in general can undoubtedly be used for railway traffic,
also because reducing the non linear differential equation for the deflection
into a linear equation tends to increase the deflection; the diminution of the
cable elasticitv however decreases the deflection.

16) K.Klöppel and K. H. Lie, loc. cit. p. 230—266.
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Summary

This article shows that a single-span Suspension bridge with perfectly or
nearly flexible girder is not suitable for railway traffic.

The static investigations comprise calculation of the cable pull and the
deflection of the stiffening girder for any given live loads and for various
cases of girder stiffness and cable extension. By reducing the problem to a
linear one, approximate Solutions are obtained. A simple method is given for
taking horizontal displacements of the cable into consideration. Finally, the
work accumulated in various parts of the loaded bridge is discussed.

The dynamical problems of the natural and forced vibrations are examined
for such a bridge under different assumptions. The author shows that the
natural vibrations can be calculated by the method of the characteristic
funetions. As regards the forced vibrations, with the aid of the symbolic
calculus, formulse are derived for calculating the cable pull and the girder
deflections in connection with live loads of any form, moving at a constant
speed and illustrated by applying them on two special cases.

The results demonstrate that, contrary to those obtained by Klöppel and
Lie, the cable pull and the deflections of the stiffening girder caused by moving
loads become much greater than those caused by dead loads. The critical
speed is given at which these values attain their maxima. This critical speed
is comparatively low. It is probable that similar results would be obtained
for other cases than those investigated.

Dimensionless quantities have been used as far as possible in all
calculations, whereby the work involved could be reduced considerably.

Zusammenfassung

Im vorliegenden Aufsatz wird gezeigt, daß eine einfeldrige Hängebrücke
mit vollkommen oder weitgehend biegsamem Versteifungsträger für den
Eisenbahnverkehr nicht geeignet ist.

Die statischen Untersuchungen umfassen die Berechnung der Kabelzugkraft

und der Durchbiegungen des Versteifungsträgers für behebige
Nutzlasten und verschiedene Fälle von Trägersteifigkeit und Dehnbarkeit des
Kabels. Durch Linearisierung des Problems ergeben sich Näherungslösungen.
Ein einfacher Weg zur Berücksichtigung der waagrechten Kabelverschiebungen

wird angegeben. Schließlich werden für die belastete Brücke
Energiebetrachtungen durchgeführt.

Die dynamischen Probleme der Eigenschwingungen und erzwungenen
Schwingungen einer solchen Brücke unter verschiedenen Voraussetzungen
werden studiert. Der Verfasser zeigt, daß die Eigenschwingungen mit der
Methode der Eigenfunktionen berechnet werden können. Hinsichtlich der
erzwungenen Schwingungen werden mit Hilfe einer symbolischen Rechnungs-
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weise Formeln für die Berechnung der Kabelzugkraft und der Trägerdurchbiegungen

für beliebig verteilte Nutzlasten abgeleitet, die sich mit konstanter
Geschwindigkeit bewegen; diese Formeln werden durch Anwendung auf zwei
besondere Fälle veranschaulicht.

Die Resultate zeigen, daß, im Gegensatz zu den Ergebnissen von Klöppel
und Lie, die Kabelzugkraft und die Durchbiegungen des Versteifungsträgers
infolge sich bewegender Lasten bedeutend größer werden als infolge ruhender
Belastungen. Es wird die kritische Geschwindigkeit angegeben, bei der diese
Werte ihr Maximum erreichen. Diese kritische Geschwindigkeit ist verhältnismäßig

klein. Für andere als die untersuchten Fälle dürften sich ähnliche Resultate

ergeben.
Allen Berechnungen wurden dimensionslose Größen zugrunde gelegt,

wodurch der Arbeitsaufwand beträchtlich beschränkt werden konnte.

Resume

L'auteur montre qu'un pont suspendu ä une seule travee avec poutre
raidisseuse integralement ou, tout au moins, largement flexible, ne convient
pas pour le trafic ferroviaire.

Les investigations d'ordre statique portent sur le calcul de l'effort de
traction dans les cables et des flechissements de la poutre raidisseuse pour des

charges utiles arbitraires et differents cas de rigidite de la poutre et d'exten-
sibilite du cäble. Le traitement lineaire du probleme permet d'obtenir des
Solutions approchees. L'auteur indique un moyen simple pour tenir compte
des deformations horizontales des cables. Enfin, il fait intervenir des conside-
rations d'energie dans le cas de la mise en charge du pont.

II etudie les problemes dynamiques des oscillations propres et des
oscillations forcees d'un tel pont dans differentes hypotheses. II montre que les
oscillations propres peuvent etre calculees par la methode des fonctions
propres. En ce qui concerne les oscillations forcees et a l'aide d'un mode de
calcul symbolique, il etablit des formules pour le calcul de l'effort de traction
dans les cables et des flechissements des poutres, dans le cas de charges utiles
d'une forme quelconque, se deplacant avec une vitesse constante; il eclaircit
ces formules en les appliquant ä deux cas speciaux.

Les resultats montrent que, contrairement aux conclusions de Klöppel et
Lie, les efforts de traction dans les cables et les flechissements des poutres
raidisseuses provoques par les charges mobiles sont beaucoup plus grands que
ceux qui resultent des charges fixes. L'auteur indique la vitesse critique pour
laquelle ces valeurs atteignent leur maximum. Cette vitesse critique est
relativement faible. Des resultats semblables doivent etre obtenus dans des cas
differents de ceux qui sont ici etudies.

Tous les calculs sont bases sur des grandeurs non dimensionnelles, de sorte
que le travail effectif ä prevoir est considerablement limite.
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