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Some New Points of View in Calculating Suspension Bridges
Einige neue Gesichtspunkte zur Berechnung von Hdngebriicken

Quelques points de vue nouveaux concernant le calcul des ponts suspendus

A. D. pE PaTER, Engineer of the Netherlands Railways, Utrecht
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42 | A. D. de Pater
§ 1. Introduction

1. Introduction. As it is generally known, until now only very few sus-
pension bridges have been built for railway traffic. Intuitively one feels already
that such a bridge (and specially one with a perfectly or nearly perfectly
flexible main girder) will undergo great deflections, when it bears a load, which
extends over a great length and moves at a high speed; for that reason it is
not suitable for railway purposes.

When the author of this article was invited to demonstrate the things
mentioned for a certain bridge quantitatively, it appeared, when reading the
literature, that the dynamical behaviour of a suspension bridge had almost
nearly not been studied until now, and that attention had only been given to
the questions of free oscillations and to the so called phenomena of flutter,
which appears when a horizontal current of air brushes past the girder.

For this reason he studied the question of the forced vibrations of a
suspension bridge, caused by a load moving over the girder. In the article to be
published the solution of this problem has been given for some simplifying
suppositions mentioned a.o. at the end of this number; in § 4, where this
problem has been treated, the question of free oscillations has also been studied.

In the main the derivation, given in § 2, of the formule which are funda-
mental for the further calculations, has already been published by other
investigators. Nevertheless the author reproduced them in this (as succinct as
possible) form, in order to get the article complete in itself.

He also paid attention (in § 3) to some points in the domain of the statical
calculations, which have nearly not been studied by other investigators.

In this article we have restricted ourselves to the following simplifying
assumptions:

a) The bridge has only one span, and the girder is hinged at both ends at the
centre lines of the pylons. The extension to cases of a girder protruding
beyond the pylons, of a bridge with more than two pylons etc. is for the
rest not difficult.

b) The suspenders are perfectly inextensible.

¢) The suspenders are so closed together, that they may be replaced with
little objection by a continuous fastening.

d) The dead weight of the bridge is estimated to apply only on the girder
of the bridge.

e) When no live load is placed on the bridge, this being in its state of equi-
librium, the girder is perfectly straight, while the suspenders are vertical.

f) When a live load is placed on the girder, causing both a vertical and a
horizontal cable displacement, the suspenders being no more perfectly
vertical, the horizontal component of the force which each suspender
element exerts on the cable is to be neglected.
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In that case the vertical displacement of a cable element is equal to the
vertical displacement of the girder element belonging to it.
The cable is of constant area throughout its whole length.
In this article we only deal with the case of the bridge, the live load and

the displacement of the girder being symmetrical in respect to a vertical

1)

plane parallel to the longitudinal axis of the bridge. The important tor-
sional deformations and vibrations are thus left out of consideration.

The derivation of the equations for the girder deflection and the cable
force has been given in chapter 2 for any values of the mass per unit of
length and the stiffness of the girder. But in chapter 3 and the remaining
chapters we always restrict ourselves to the case of constant mass per unit
of length and constant stiffness of the girder.

The author wishes to express his acknowledgements to Mr. H. J. A.

Durarc, with whom he discussed the calculation of the integrals and functions
mentioned in chapter 17, and to Mr. E. J. G.SCHEFFER, who was so kind to
assist him with a number of linguistic difficulties.

§ 2. Derivation of the fundamental equations
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applies on the girder

‘ \
LN
0 s g0 =
T p;d - 0*3-140'.2:
Fig. 1. Derivation of the differential equation for the stiffening girder
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2. Derivation of the equations for the girder deflection and the cable force. In
this number we shall derive the fundamental equations by considering in
succession the three principal elements which form part of the bridge. The
indices w herewith refer to the state indicated in the left part of fig. 1, that
only the dead load w applies on the girder being in rest, while the indices p,
added only if need be, indicate the state, represented in the right part of
fig. 1, that the girder is deflected and bears the live load

Pp=p+w, (1)

while the cable temperature increases by an amount J. As we suppose, that
in the first mentioned state the suspenders are exactly vertical, the position
of a cable element and that of a girder element can be indicated by the same
coordinate Z. This quantity and the other quantities of length ¢, I, v, 7, s,

7(@) =7 @+&) -y (@) (2)
and f are shown in fig. 1.
At first we regard the cable. For a cable element we can write down the
condition of length as follows:

ds? =dz+dy?, ds,? ={d@+E)2+{d(y+ 7)) (3)

when we denote the cable pull by S, the Young’s modulus of the cable material
by E,, the area of the cross section of the cable by F,, the temperature
coefficient by S, we have

S—8,
(1+ ECFC)(1+,819)ds—dsp,
or approximately .
S-S, 0 o

TP +2B80)ds? =ds,>. (4)

c c

(1+2

From (3) and (4) we can derive

dg\e d¢  dydq  (d7\® (S-S5, )(d_s)_
(di) P lmae ) Ew, P aE) =0 O

For the cable element also holds the condition of equilibrium, which yields
for the relation between the cable pull S, c.q. § and the suspender pull

4y C-q. q (see fig. 1):

(Scosf)+q =0,

S~

d
%(SwCOSl)bw)_FQW = 0’ (6)

S,cos, = H

w Scosy = H,.
By eliminating S,,, S, 4, and ¢ from this equations there can be found, with

_dy __ 9y
tg¢1cz - &"%’ tglll - d (E—I—-f)‘ (7)
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N d2y _ a2y
With H, H
y = BF H=H,-H,, H= T, (9)
we now can substitute in (5) approximately
S-8,  H, H, _yH ds
BT, "B, F.eosg, B, F.osg, cosg~ " H iz (10)
so that
dé¢ dé dy dn (d7)\? ds ds
(ﬁ) +2d9? +2d—§ cﬁ+ = -2 H(d 230 ; (11)
resolving df/di from this equation we find, suppressing all terms containing
(dn/dZ)3, ¥y, (BP)? or higher powers ofg~ , yor Bd:
dé¢  dy dy 1 (ds)?[(d7)\? ds ds >
iz~ " dz J%”?(Z%) (;zs—; +v8 (55) +89 (55 ic (12)

Secondly we consider the suspender construction. For the case of the non
deflected girder we have

Qw =W, (13)
so that with (8)
d?y w
i (4

w

This is a differential equation for the cable deflection y, which can be solved,
when w is known as a function of Z. We shall do this in chapter 3 for the case
w = const.

We now can derive a condition with the aid of which the cable pull can be
found. Dropping the term with (d 4/d )2 in (12) and integrating both members
of this equation to # we find, introducing the quantities

+éld ) +éld 5 ‘
B 8 _ = S — e
l2 = (—f) dx, l3 = f (d—_f) dx, (10)
—31 —31
+£~ld P +31
Y 4N gz — 7 I
E didx f] +y Hl;+B,. (16)
—3l . -3l

By partially integrating the left member, applying the conditions
7 =0y for # = +11,
E(+3)—£(~3) = —5H (17)
(7 being the horizontal stiffness of the pylons) and making use of (14) we find
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+31
1

Ff wHdT = (yly+7 H,) H+BS,. (18)

w

Y

For the case of the deflected girder we learn from the vertical equilibrium
of a suspender element

q(@)dx =q([T+&)d(T+E).
Substituting this in the second equation (8) yields, with (9),

= A’y d(x
0(@) = —(H,+ ) 7 20 202D,

Now we can derive from (2) and (12), neglecting all terms containing (d 7/d z)?
and higher powers of d 7/d Z,

el (G, 00 L - (Zi’+§2)(1—3—i)

o] ()5

(19)

]
PyE+€f) _ d ([dy@@+§)| dF
d(x+¢)? di{ (x+£)} d(z+¢) ’
- [1-ra s () g5 -89 1+3(3y) 1 v
vz (17 5 —89) (%) i e ey

combining this with (19) yields

q@) = — (H,+H) [[1 yﬂ{l+4(gy)} B&{1+3(3y) }]%

d ds\2d )
(s -09) () ] e
In future we shall restrict ourselves to the case of an inextensible cable or to

the case, in which (dy/dZ)? is neglected with respect to 1 (so that ds/dZ can
be replaced by 1)!). In these cases we can simplify (20) respectively to

¢(@) = —(H,+H) [;%% {(gi)z 2;’}] (21a)
and
4@ = —(Ho+ F) (1—y H—B) (Fa+ 7)) (21b)

In the last formule we replaced the ordinary differentiations of 7 to Z by

1) The inaccuracy caused by this simplification will be computed for the case of an
inextensible cable and a perfectly slack girder in chapter 7.
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partial differentiations, because we shall henceforth consider 7 as a function
both of Z and # in general.
At last we examine the girder itself. From the law of Newton written down
for a girder element dz (see fig. 1) we learn
= oD w %7
—q@)+pp— == ri
Denoting Young’s modulus of the girder material by £ and the moment of
inertia of its cross section by I we have

(22)

oM o %7
D= oz o= (Ela_") (23)
combining this with (22) (1) and (21a) or (21b) we obtain respectively
82 ds 287; w %9 w3ty
for the case of an inextensible cable and
82 82' - ﬁ w82ﬁ_~__ —d?y

—(H,+H)( yH+/30)dy (24D)

for the case of an extensible cable, in which (dy/d z)? is neglected with respect
to 1. In these equations H(f) always is a function of 7, which can be deter-
minated by the condition (18), while the boundary conditions for 7 are
"
ﬁ:O,%—O_g:o for = +11. (25)

In the statical case we can simplify (24b) to

& (7 . L B
— 2
—(H,+ 1) (y H+89) 24,

and this equation can immediately be integrated twice to Z, by introducing
the bending moment M, (z) caused by the live load P (Z) in the girder, when
this is not coupled to the suspenders:

o | 1
@) = -2 [rropea- 2T [q-ap@es o)

—31 z

then we find the differential equation for the girder deflection 7:

Ezgt ~(H,+H)(1—yH—-B8) 7 =M, +Hy—(H,+H)(yH+ By, (27)
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— 2=

and the ordinary equation for the bending moment M (=E I %:2) in the

girder B v
M=M+Hy—H,+H)(yH+B)y+(H,+H)(1l-yH—-BI)7n. (28)

3. The case of constant mass per unit of length and constant stiffness of the
girder. Dimensionless quantities. For the case w = const. the differential
equation (2, 14) can be integrated twice without dlff iculty. With the conditions
(see fig. 1)

y=0 for z =111, f 0 (1)
we find
o 47%\ dy 8fz%
?/—f(l“?“), iz~ (2)
8f

As also E I = const., the differential equations (2, 24a) and (2, 24b) and the
cable conditions (2, 18) now can be simplified to

pr&i_ (Hw+ii>—3:{(1+e4f2 )?—j}+@32- 5@ -8l (4a)

ozt ox It E g ot 7’
77 #q w @i _ oo o fH
EI P —(H,+H)(1-—yH -9 732 J‘a’ﬁjp(‘”’”_s 2
8 _
S H B HABD),  (4)
_ o+
%fn = (yly+vH,)H+BS1,. (5)
§1
We now introduce the dimensionless quantity
H,?
2 _ Tw
O TLEI (62)
and the dimensionless quantities
f 2% 25 29 P 20, 2 2
.f_ =—>7l=”“>t“t sy P =, l2=‘2—=_2+—,
[ fl fl w _f I f _3 (6b)
_Q%ZL 1 o1 73,0 Pgshfl 20 H, 2M _2M,
ls-le—m{(5+2f )l/1+f + o , V= - fZAlA, M—f*jm, Ml—wal.

With their help the differential equations (4a), (4b), the cable condition (5)
and the boundary conditions (2, 25) can be written in the form

i 847) 2 2 87} i—_ . 7
o= e ey S Tl = p@n-HY, ()
1 Ja% 32

" Q}!—(l +H)(1 -y H- Bz‘f* Q—%+~? = p(x,t)-H ) +(y H+B ) (1+H), (7b)
Co® 0 dx® 0t
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+1

Jdw=Gl+v) H+1L,E8, (8)
2

n =0, %:Oform:il. (9)

The differential equation (2, 27) and the equation (2, 28) can also be simplified:
1 d?n

o d—x2—(l+H) (1-yH-B)n=M+3H(1-2*)-3(1+H) (yH+B)(1-2%), (10a)
M = M,+}H (1-2%)~} (1+ H) (y H+B9) (1-2%)+ (1+ H) (1—y H-B8)n,  (10b)
in which formulee the moment M, is determinated by

2M,(x) = —(1—2) af: (1+2)p(z)dz—(1+2x) } (1=2)p(z)dz. (11)

The form of the equations (7a), (7b) and (10a) indicates that the stiffening
influence of the girder will be the less as the value of ¢, is greater. We have
computed for some bridges (which are all considered here as one-span bridges)
the quantity ¢, with the aid of (6a); the numerical values are shown in table I.

Table 1. Values of c, for some suspension bridges

; w l f 4f E I H
faridge kg/em| cm em | 1= 1 |kg/em? cm? kéu €
Breslau 1910 108 | 12.000| 1.200 | 0,4 2,1-108| 0,26-108 1,62-108 1,034
Manhattan 1910 85 | 44.800| 4.360 | 0,390 {2,1-10%| 3,9-10% 4,88-10¢ 1,728
Delaware 1926 194 | 53.000| 6.100 | 0,460 |2,1.-10¢} 7,2.108 11,18-10¢ 2,28
Second Tacoma-
bridge + 1945 126 | 85.500| 8.550 | 0,4 2,1-10%|5,445,7-10% 13,45-10% |4,53 & 4,65
Triborough 1938 300 | 42.000} 4.200 | 0,4 2,1-10%| 0,91-108 15,75.108 6,03
Zweden 1941 13,62)| 14.000| 1.680 | 0,48 EI = 0,198.10¢2) 7,04
0,196-10'2 kgem?
Mount Hope bridge | 394 | 36.200| 3.620 | 0,4 EI = 17,81.1068 10,6
51,9102 kgem?
Example 3) 800 | 43.000| 4.300 | 0,4 0,3-10%| 4,108 43,108 12,86
New York
Washington bridge ?  1106.700 ? 0,47 ? ? ? 17,54)
First Tacoma- ‘ I = |
bridge 19403) 84 | 85.300| 7.100 | 0,333 2,49-10° kgem? 10,78.10¢ | 2810

2) Per main girder. 7

3) Conform to the figures mentioned in the article W. C. CoErpyN, Enige beschou-
wingen over vormvastheid en de berekeningsgrondslagen van open hangbruggen, De
Ingenieur 60 (1948) p. B 126.

4) H. H. BrricH, Die Berechnung verankerter Hidngebriicken, Wien (1935) p. 27.

5) H. REISSNER, Oscillations of suspension bridges, J. appl. mech. 10 (1943) p. A-23;
J. Versroor, Het instorten van de ‘“Tacoma’ brug, Polytechnisch Tijdschrift A 5 (1950)
p- 190a, B 5 (1950) p. 190b.
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§ 3. Statical calculations

4. Survey of the calculations to be performed for the statical case. In this
paragraph, treating some statical calculations, we are to indicate the general
formulee for the girder deflection n and the cable force H:

a) in chapter 5 and 6 for the case of an inextensible cable, in which the
horizontal cable deflection is neglected;

b) in chapter 7 for the case of an inextensible cable and a perfectly slack
girder, in which the horizontal cable deflection is taken into account;

c¢) in chapter 8 and 9 for the case of an extensible cable and a perfectly slack
girder, in which the horizontal cable deflection is neglected.

Further on we shall compute in chapter 70 the amounts of ‘work accu-
mulated in the various parts of the bridge, a live load being placed on the girder.

§. Inextensible cable. We start from the equation (3, 10a) simplified to
1y
o2 da?

with the cable condition (3, 8), simplified to

—(1+H)yp=M,+}H(1-2?), (1)

+1
jl ndx =0 (2)

and the boundary conditions (3, 9). Introducing the quantities

c=cyV1+H, (3a) M) = c2{M, (x)+}H (1-22))}, (3b)

we can immediately write down the solution of (1) which satisfies the boundary
conditions (3, 9) with the help of the method of variation of constants:

cnsh2c=—shc(1~x)j?SJJt(z)shc(1+z)dz—shc(l+xf z)she(1-2)dz. (4)
=1 »

x

In this formula we substitute the expression (3b) for M (z) and (3, 11) for
M, (z):

2(1+H)sh2c
C

—she(l—2 f —z)shc(l+z)dz_jf(1+§)p(§)d§

k-ﬁ&

+shc(l—z)

1+2)she(l —I—z)dz]’q(l—é)p(é)d{

+ o
[

+she(l+2) [ (l—z)shc(l—z)dzfj(l+C)p(§)d§

+ 8
-

+she(l+2) [ (1 +z)shc(1—z)dz}l(l—g)p({)dC

2

8

—H{shc(1—-2) _gfcl-(1~22)shc(1+z)dz+shc(1+x)4}1(1—zz)shc(l—z)dz. (5)
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The four double integrals can be reduced to simple integrals by changing the
sequence of integration, while the two last integrals may be worked out in an
elementary way. This yields

2(1+H)n = (1—xlf(1+z) (z)dz+(1+x) }L 1-2)p(z)d
cs§2c{sh0(l-jlfx (1+z)p(z)dz+shc(1+x)féhc(l—z)p(z)dz}
s 2 chex
—H{l—x —6—2(1— chc)}. (6)

Next the cable force can be calculated with the aid of the formula (2). By
applying this formula to (6) an equation is found, in which H occurs apparently
only linearly; solving it to H yields

chcx

+1
L _La-anp@da- 21 (-G peaa
e
3 c?

But in reality the righthand term is via ¢ (3a) a function of H, so that the
determination of H from this equation requires some forethought. We shall
discuss this question further when treating some special live loads p (x). One
also sees that for the case of more live loads applying simultaneously on the
bridge, the cable force which they cause is not the sum of the cable forces
caused by each live load individually, so that generally the principle of super-
position holds no more for the cable force than for the deflection!

The bending moment in the girder follows from (3, 10b) (with y=0, 8=0),
(3, 11) and (6):

. (7)

+1
shc(l—x)fshc(l +2)p(z)dz+she(l+x)[she(1—2)p(z)dz
M=—‘ —1 x
csh2c¢
H chcx
+c—2(1‘a7)- (8)

Formulee like (6)—(8) were already dcrived by v. KARMAN and Bror ¢),
AAs-JARKOBSEN 7) and EMMENS®). However, Aas-JAKOBSEN restricted himself
to some special cases of loading, i.e. to the concentrated force and to the load

8) Tr. v. KArRMAN and M. A. Bror, Mathematical methods in engineering, New York
and London (1940) p. 317.

7) A. Aas-JAKOBSEN, Berechnung der verankerten Héangebriicken fur vertikale und
horizontale Belastung, Mémoires de 1’Ass. Int. des Ponts et Charpentes 7 (1943/44) p. 18.

8) J. EmMEN, Nieuwe methode voor het berekenen van hangbruggen, De Ingenieur 60
(1948) p. B 37.
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uniformly distributed over a part of the girder; the formule for the last
mentioned case were derived from the formule for the concentrated force,
which is incorrect owing to the non linear behaviour of the considered quan-
tities. EMMEN restricted himself to the case of a perfectly slack girder (¢ = 0):
before treating some important live load functions we shall indicate how the
formulae (6)—(8) are altered for this case and for ¢=0.

For ¢=o00 we also have ¢,=00, so that, according to (3, 6a), £ I=0; in
other words the girder is perfectly slack. We have in this case

2(14+H)n=(1—= )lfx( ) p)dzt(142) ] (1—2)p@E)dz—H(1—a%), (6a)
+1
H=3[(1-2*)p(x)dx, (7Ta) M =0. (8a)

-1

For ¢=0 we also have c,=0; according to (3, 6a) this case arises, when the
live load w=0 or when the girder rigidity £ I=oco. But for w=0 we have,
according to (3, 3), H,=0 and consequently, according to (2, 9), H=o00, so
that the formulwe (6)—(8) lose their importance. However they remain usable
for B I=o0; in this case we have to apply de I’Hopital’s rule and we find

=0, (6b) 5’5-2 f:l—xz 5— 2% p (2) d . (7b)
OM = —(1—2) (142)p @) dz—(l+a) | (1—2)p(e)dz+H(1—2a2). (8b)
23 x

The form of the formule (7a) and (7b) indicates that the principle of
superposition, in contradiction to the general case, does hold for the cases
c=0 and ¢ = c0.

Now we illustrate the just found results by applying the formulee (7), (6)
and (8) to the three important cases of loading

a) pxy=p for —1=zx=s 1, (9a)
b) px)=0 for —1=Zzxz< O,
p for O<zxs 1, (9Db)
c) p(x)=0 for —1§x<_%,l
p for —j<wz< 4 (9¢)
0 for l<es L
The just mentioned formule yield respectively
H =p, (10a)

H =

DO

P, v (10Db)
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_ the
11 cthic
. 1947 T2
H = pr (C) Wlth f}[ (U) = § —__lv ol
L "'—5:
5 e
n =0,
—she(1 h
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~ (10c)

(11a)

(11b)

(11lec)

(12a)

(12b)

(12¢)

The cable force may be calculated with the aid of the formule (10a), (10b).
For the case ¢ there arise some difficulties, the righthand term of equation
(10c) being a function of H via ¢ (3a). But from the table II and the figure 2,
in which we plotted f (c) against ¢, we learn that f,; (c) is almost independent
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Fig. 2. Graphical representation of the function fg (c)
Table 11. Some values of the function fg (c)
¢ g (c) c fa (©)
0 0,7051 8 0,6927
1 0,7042 9 0,6919
2 0,7026 10 0,6912
3 0,7006 15 0,6894
4 0,6981 20 0,6887
5 0,6963 50 0,6877
6 0,6947 0 0,6875
7 ] 0,6936 ‘
: . : 361 11
of ¢, this function falling monotonously from the value 519 (for ¢=0) to 3

(for c=00). So we can put in a first approximation f; (c)=0,7, c=c¢, /1 +0,7p,
after which we can compute an exacter value of f (c) with this value of ¢;
this method may, if necessary, be repeated a number of times. For a bridge
with dimensions mentioned in table I as “example’’, and with =128 kg/cm,
we thus get from (2, 9), (3, 6b) and (10¢) p=0,16, ¢=13,55, f (c)=0,6899,
H=0,1104, H=4,747-10% kg, H,=47,747-10% kg for the case ¢; while for the
same values of p and p H=p=0,16, H=6,880-10% kg, H ,=49,880-10¢ kg for
the case a; H=4p=0,08, H=3,440-10% kg, H,=46,440-10° kg, c=13,36 for
the case b.

We have for the same bridge, equipped with a perfectly slack girder
(co =00, c=00) the same values for H, H and H, for the cases a and b, while
for the case ¢ fy (c)=0,6875, H=0,11, H=4,730-10° kg, H,=417,730-10¢ kg.

For this bridge and the same values of 7 and p we also computed the girder
deflection 7 for the cases b and ¢ both for ¢,=12,86 and ¢,=oc0. The thus
found values of v are given in the tables IIT and IV and plotted in the figures 3
and 4 against x. The dotted and the chain dotted curves drawn in these figures
will be treated in the chapters 6 and 7.
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Table I1I. The girder deflection for some values of x with an inextensible cable,
a constant live load being placed on one of the two halves of the girder

according to ch. § (exact method) according to ch. 6 (quasilinear method)
z flexible girder slack girder flexible girder slack girder
103 4 7 cm 103 4 7 cm 103 4 7 cm 103 4 7 cm
-1 0 0 0 0 0 0 0 0
—-0,8 |—5,540 | —47,6 [—5,926 | —51,0 |—5,952 | —51,2 - 6,4 — 55,04
—-0,6 [—8,476 | —-72,9 |—8,880 | —76,4 |—9,120 | —78,4 —-9,6 — 82,56
—0,4 |—8,476 | —72,9 |—8,889 | —76,4 [—9,120 | —784 | —9,6 |—82,56
-0,2 |—5,5640 | —47,6 |—5,926 | —51,0 [—5,952 | —51,2 | —6,4 - 55,04
0 0 0 0 0 0 0 0 0
0,2 5,540 47,6 5,926 51,0 5,952 51,2 6,4 55,04
0,4 8,476 72,9 8,889 76,4 9,120 78,4 9,6 82,56
0,6 8,476 72,9 8,889 76,4 9,120 78,4 9,6 82,56
0,8 5,540 47,6 5,926 51,0 5,952 51,2 6,4 55,04
1 0 0 0 0 0 0 0 0

Table IV. The girder deflection for some values of x with an inextensible cable
and a constant symmetrical live load extending over half the girder

according to ch. § (exact method) according to ch. 6 (quasilinear method)
x flexible girder slack girder flexible girder slack girder

103 4 7 cm 103 9 n cm 103 4 7 cm 103 4 n cm
0 4,09 35,2 4,50 38,7 4,50 38,7 5 43
0,1 3,87 - 33,3 4,28 36,8 4,25 36,6 4,75 40,85
0,2 3,20 ’ 27,5 3,60 31,0 3,51 30,2 4 34,4
0,3 2,10 18,1 2,48 21,3 2,30 19,8 2,75 23,65
0,4 0,61 5,2 0,90 . 7,7 0,66 5,7 1 8,6
0,5 | —1,11 — 9,5 - 1,12 -~ 9,6 — 1,22 —10,5 -1,25 |—10,75
0,6 | —2,56 —22,0 —2,88 — 24,8 —2,81 — 24,2 -3,2 — 27,52
0,7 | —3,23 —278 | —38,65 —-31,4 —3,54 — 30,4 —4,05 |—34,83
0,8 | —2,98 — 25,6 —3,42 - 29,4 - 3,27 —28,1 -3,8 — 32,68
09 | —-1,84 | —15.8 -2,21 - 19,0 —2,01 -17,3 —-2,45 |—21,07
1 0 0 0 0 0 0 0 0

6. Approximaite solution with the aid of the quasi linear method. Discussing
the formula (5, 7) we remarked already that the principle of superposition
generally does not hold for the cable force H when ¢ #0 and ¢ +0c0. A look at
the formule (5, 6) and (5, 8) shows that this principle neither holds for the
deflection and the bending moment. In other words: the cable force, the
deflection and the bending moment are not linearly dependent on the live
load p (x).
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From (5, 6a) we learn that for ¢ = co the deflection neither depends linearly
on p(x).

We can find an approximate solution which does depend linearly on the
- live load by putting H =0 in the formula (5, 3a). By this alteration the values
of ¢ are replaced by ¢, a.o. in the solutions (5, 6)—(5, 8) derived from the
differential equation (4, 1) while moreover in the lefthand term of the formula
(9, 6) for » 1+ H must be replaced by H. It is obvious that this approximation
may only be executed reasonably at low values of H.

In order to check this we computed the cable forces and deflections, deter-
mined sub & and ¢ of nr. 5, as well according to the just mentioned so called
quasi linear method?); in other words: by help of the formule (5, 6) and
(5, 7) at which ¢ is replaced by ¢,, and in the lefthand term of (5, 6) 1+ H is
replaced by 1. The values of the cable force are the same as the corresponding
values found in chapter § with the exception of the case of loading ¢ for a
bridge equipped with a flexible girder, where we now have f,; (c)=0,6902,
H =0,1105. The results for the deflections are shown in the tables III and IV
and in the chain dotted curves in the figures 3 and 4, from which may be
concluded that this approximate method can be applied to such a bridge as is
mentioned under “example’’ in table I. Furtheron it can be verified that the
bending moments increase with amounts of the same order of magnitude.

Now one of the great advantages of this method is that it allows to draw
lines of influence for certain deflections and bending moments in the usual
way and to determine the most unfavourable load system from these lines.
This having been done the deflections and tensions may be computed after-
wards, if necessary, with the aid of the more exact method treated in nr. 5.

For the case c,=c0 the above-mentioned method reduces the formula
(9, 6a) for the deflection to

x +1
2y =N—-x)[(L+2)pR)dz+(1+x) [ (1-2)p(z)dz—H (1 —2?), (1)
=1 x
while the cable forces (5, 7a) remains equal to
+1
H=32[(1-2p@)da. (2)
~1

We wrote down these formulee explicitly here as we shall need them later on
in chapters 16—19.

7. The influence of the horizontal cable displacement. In order to examine
whether it is allowed to neglect the horizontal cable displacement we shall
repeat the computations of chapter 4, but now taking in account this dis-
placement. Now the starting point of the calculations is the differential
equation (3, 7a). We shall restrict ourselves to the case of a perfectly slack

) H. H. BreicH, Die Berechnung verankerter Héngebriicken, Vienna (1935) p. 26.
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girder, for which ¢, = co. For this value of ¢, the deflection computed observing
the horizontal cable displacement will show the greatest difference with the
deflection computed without this displacement: for then the balancing in-

fluence of the term -1—

4
T > 1 which is apparent for other values of ¢,, is

eliminated.
For ¢,=co and for the statical case (3, 7a) reduces to

em g el = —pe v, 1)

with the boundary conditions
n=0 for x = +1. (2)

The solution of the homogeneous equation to be derived from (1) reads
(L+H)n = Abgtgfz+ B; (3)

from this we calculate the general solution of (1) by the methods of variation
of constants, admitting for that purpose 4 and B to be functions of x. This
yields

d A
(1+H)S ! = f

de ~ 1+f2a2’

d dA
R e e e LA )

at which we put moreover

dA d B
| bg tg fx + o = 0. (5)
By substituting (4) in (1) we find that A4 is determinated by
dA

so that, according to (5), B can be found afterwards from
dB
dx

This yields for A and B

— p(@)bgtgfo— Hbgtgf . (6b)

+1

1
- 2
bgtgf_flp(x)bgtgfxdx+ Hx, (7a)

2f4 = — fp(z)dz—k f;)(z)dz
-1 x

2fB = fp x)bgtgfzdz—fp bgtgfzdz+bgtgfjp

1 1+4f2
—H|: —In—r—). 7b
H(begtgfx+ 7 1n1+f2x2) (7b)
In these formule we have chosen the constants of integration in the solutions
for A and B obtained from (6a) and (6b) in such a way that 7 (3) satisfies the
boundary conditions (2). We then find for »
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&

2f(L+H)n = £ (bgtg fx—Dbgtgfz) +£ (bgtgfa—bgtgfz)p(z)dz
+1 b t b t H 1472

Next we can determinate the cable force H with the help of the cable condition
(9, 2), which yields after some calculations

In ( 1+f2)fp x)dx — fln (1+f222) p( x)d@

4H = — 1_@&, — (9)

f

The formulee (8) and (9) show that (just as was the case in nr. 5 for ¢ = c0)
the principle of superposition does hold for the cable force, but not for the
girder deflection.

We illustrate the just described method from the load cases treated in
chapter 5 sub b and c¢. For the first mentioned case, at which the load is
indicated by (5, 9b), we have

H=1}p, (10)
4f21+H,7 bgtgfx, In(1+f2)+In(1+f2a2) for —1<z=<0,
p bg tg f (11)
=bgtgfxln(1+f2)-—ln(1+f2x2) for 0<x< 1.

bgtg f
For the second case the formule (8), (9) and (5, 9a) yield

1 14 f2 1 bgtg }f

—In + oo =
4 1+172 2 f
d=g 1__bgtg,f ? (12)
f
1+ H H 14f2
2f* p = f(bgtgf+bgtgfx)— —T—ln—l—r—;i_fzx2 for -1sx<-1,

1+/* H, 1+/*
f22 P 1+f2x2

=f(bgtgf—bgtgfx)— glnll_'_—;g 5 for 1<x=<1.

=f(bgtgf—bgtgsf)+In 1~ (13)

For a bridge with dimensions as mentioned in table 1 as “example’’ we
found, with p =128 kg/em, p=0,16 for the first load case H =0,08, and for
the second case H =0,6937 p=0,1110. The deflections belonging to them have
been given in table V and they are plotted in the figures 3 and 4 (see the dotted
curves).
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Table V. The girder deflection for some values of x with an inextensible cable
calculated with due observance of the horizontal cable displacement

constant live load placed on one ~ constant symmetrical live load
of the two halves of the girder extending over half the girder
x 103 q ;: 7 cm x 10% q } 7 cm
-1 0 0 0 4,40 5 37,8
-0,8 — 5,39 — 46,4 0,1 4,18 35,9
—0,6 — 8,31 —171,5 0,2 3,50 30,1
—-0,4 — 8,47 —-72,8 0,3 2,38 20,5
-0,2 - 5,74 L —49,4 0,4 0,82 7,1
0 0 0 0,5 —1,16 - 10,0
0,2 5,74 49,4 0,6 —2,83 — 24,3
0,4 8,47 72,8 0,7 —3,51 — 30,2
0,6 ' 8,31 | 71,5 0,8 —3,24 —27,9
0,8 5,39 46,4 0,9 — 2,06 - 17,7
1 0 0 1 0 0

One may conclude from them that for the bridge treated as example the
deflections are at most 159, too large, the girder rigidity and the horizontal
cable deflection being neglected in the calculations, while the deflections are
at most 229%, too large when the quasi linear method is used in addition.

8. Huxtensible cable. We are now to perform calculations analogous to those
made in chapter 5 for the case of an extensible cable. We here restrict ourselves
to the case of a perfectly slack girder, for which ¢,=o00. Then the equation
(3, 10a) for the deflection yields immediately

A+H)(1—yH-Bd)n=—-M,-3H(1-2)+3(1+H)(yH+Bd)(1-2?). (1)

Now the quantity y=H,/E,F, is smaller than the maximum tension admis-
sible in the cable, divided by Young’s modulus, and thus is of the same order
of magnitude as 10*kg/em?: 2-106 kg/cm? = 0,5%,. The product vy H is still
smaller, while the product 8¢ is small compared with 1 as well. Thus we can
without objection, making use of (3, 11), reduce (1) to

2(1+H)n = (1—a) [ 1+2)p(z)de+( 1+x)f (1—2)p(2)dz— H (1 —22)
—1
F(1+H)BO(1—a2). (2)

The cable force now can be calculated with the aid of the condition (3, 8),
which yields with (3, 6b) the equation for H

o H? + (1+a+%68)H—J+%Bﬁ=O, (3)
with

w

o= S ylyrn), T =2 [ (10 p @) da (4)

H‘_"‘L

2
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The solution of (3) which, as it should, for « — 0, & — 0 satisfies the relation
(5, 8a), i.e. H=.J, reads
aH:%(l—l-oc—l-;zBﬁ)(——l%—]/l—-l-Te) (5)
with
) a(J - % 89) .
" eer S (6)

The second factor of the righthand term of (5) being the difference of two
almost equal numbers, it is advisable to develop the radical quantity in a
series. This yields with (6)

A (1—e+2€2—5€3...)- (7)
1—}—cx+F,319 !

according Yo ch. 8 (exact method)
—~-—-—according o ck 9 (quass linesr method)

L-20

=2

\‘\\\& " 0,15-,9’0 7

. /)
\ S 6 A_P ; é‘;&r
60 0’15"
s B
8 %
s
Lo
101
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Fig. 5. The girder deflection with an extensible cable
and a constant live load placed on the whole length

We illustrate the just developed method of calculations by applying it to
a number of cases of loading. To this we add the case of a change of the cable
temperature, no live load being placed on the girder.

a) Only a change of temperature. In this case we have p(x) =0, so that (4),
(6), (7) and (2) yield respectively
3
o 75 ,8 19‘
J=0,€=~m'——-—3—f2, (8a)
(14+a+ B 9)
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3
B9

H=— 5
1+O€+7§Bl9‘

H

(1-e+2€2-5¢3), (9a) 27 = (—-+ﬁﬁ)(1

1+H

—x?). (10a)

With the data of table I, to which we add E,=1,8-10% kg/cm?, F,=7140 cm?,
y=H,/E, F,=3,346-1073,7=1,23-10"% ecm/kg, # =15°C, B=12,5-10% per °C,
B9 =0,1875-10-3, we have l,=13,667, l;=13,524, v=0,015-375, o =0,090- 939,
e =—29350-10"3, H = —0,003-221. We assembled in table VI the values of
n and 7 calculated with the aid of (10a) and plotted them in figure 5 against x.

Table VI. The girder deflection for some values of x with an extensible cable and
a constant live load placed on the whole length

according to ch. 8§ (exact method)

according to ch. 9 (quasi linear method)

[
=]
w
3
—_—

x 7 cm 10% 4 7 cm
p=0 {(p=0,16p=0,16 p=0 |p=0,16 p=0,16| p=20 p=0,16|p=0,16| p=0 »=0,16 | p=0,16
$=15°C $=0 |§=15°C|9=15°C| $=0 |$=15°C|$=15°C] $=0 |$=15°C/9=15°C| $=0 |§=15°C
-1 0 0 0 0 0 0 0 0 0 0 0 0
-0,8 | 0,614 | 2,371 | 2,980 5,28 | 20,39 | 25,63 | 0,614 | 2,401 | 3,015 | 5,28 | 20,65 | 25,93
~0,6 | 1,092 | 4,215 | 5,298 | 9,39 | 36,25 | 45,56 | 1,091 | 4,268 | 5,359 | 9,38 | 36,70 | 46,09
0,4 | 1,433 | 5,532 | 6,954 | 12,32 | 47,58 | 59,80 | 1,432 | 5,602 | 7,034 | 12,32 | 48,18 | 60,49
—0,2 | 1,638 | 6,323 | 7,947 | 14,09 | 54,38 | 68,34 | 1,637 | 6,402 | 8,039 | 14,08 | 55,06 | 69,14
0 | 1,706 | 6,586 | 8,278 | 14,67 | 56,64 | 71,19 | 1,705 | 6,669 | 8,374 | 14,66 | 57,35 | 72,02
0,2 | 1,638 | 6,323 | 7,947 | 14,09 | 54,38 | 68,34 | 1,637 | 6,402 | 8,039 | 14,08 | 55,06 | 69,14
0,4 | 1,433 | 5,532 | 6,954 | 12,32 | 47,58 | 59,80 | 1,432 | 5,602 | 7,034 | 12,32 | 48,18 | 60,49
0,6 | 1,092 | 4,215 | 5,298 | 9,39 | 36,25 | 45,56 | 1,001 | 4,268 | 5,359 | 9,38 | 36,70 | 46,09
0,8 | 0,614 | 2,371 | 2,980 | 5,28 | 20,39 | 25,63 | 0,614 | 2,401 | 3,015 | 5,28 | 20,65 | 25,93
1 0 : 0 0 0 0 0 0 0 0 0 o | 0

|

b) Constant live load placed on the whole length. In this case the load can
be represented again by (9, 9a), with which the equations (4), (6), (7) and (2)

yield respectively

3

?9*7/319

= —5—— (I1—e+2e—5¢%)
l+a+ﬁﬁﬁ

In particular for $=0

€ =

, (9b)

.
(14 a)?’

b—H
277:(1‘1?? ThY

(8D)

)(1_;,:2). (10b)

H=-L (1—ct2e-5¢...), 20+H)ng = (p—H)(1—2?).

hi-}-oc
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For this case we have, with the principal dimensions as under a and p=128
kg/em, p=0,16: €=12,33-10-3, H=0,14492, while the values of n and 7
belonging to it are shown in table VI and plotted in fig. 5 against .

For the same values of p and $=15°C we get: e=11,88-10-3, H =0,14132;
the deflections n and 7 also are listed in table VI and plotted in fig. 5 against x.

z° LY
7T NN -5
/ \
\\ | w0 according fo chd(exact methad)

/ ) \ -5 —-——-=gccording fo ch. 9 (quas finear method)
/ \ e

)
/
=

S

- \‘\\\\ / 4/

? N
/‘0’9 7

cm

Fig. 6. The girder deflection with an extensible cable

and a constant live load placed on one of the two halves
of the girder

¢) Constant live load on one of the two halves of the girder. For the load (5, 9b)
and & =0 the formulee (4), (6), (7) and (2) yield respectively

_1 __*p
J =3P, € 2(1-{—0()2’ (80)
7 _ P 4 2.2 __ 5.3
‘H 2(1+a)(1 e+2e2—-5¢€%...), (9¢)
1+H {1 H }
2———p=(142){+——(1-x for —1<x2<0,
= () | 5 (=)

(10¢)

=(1-2) {%—Fx—%](l—{—x)} for 0sx<1.

With the principal dimensions as under a and p=128 kg/cm, p=0,16 these
formulee yield e=6,113-10"3, H/p=0,4556, H=0,07289; the values of 7
and 7 belonging to it are shown in table VII and plotted in fig. 6 against «.
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Table VII. The girder deflection for some values of x with an extensible cable
and a constant live load placed on one of the two halves of the girder

according to ch. § according to ch. 9
2 (exact method) (quasi linear method)
103 5 7 cm 102 ¢ ’ 7 cm
-1 0 0 0 0
—-0,8 — 4,77 —41,0 —5,12 —44.0
- —0,6 — 6,83 — 58,7 ~ 7,47 — 64,2
—0,4 —-6,17 —-53,1 — 6,80 — 58,5
—0,2 — 2,79 —24,0 —-3,20 - 27,5
0 3,31 28,5 4,14 35,6
0,2 9,14 78,6 9,60 82,6
0.4 11,73 100,9 12,40 106,6
0,6 11,07 95,2 11,74 101,0
0,8 7,16 61,6 7,60 65,4
1 0 » 0 0 | 0
according fo ¢h.8 (exact method))
e according fo c/. 9 (quasi finear melhoad))
=y
P \ ’ =2
\ ] :
-/ -08 g \ -4 02 0 7]
2
\ r-20
‘ \\ i 40
- \‘\ 6
‘\. +60
N~ ¢ ¢
N\ 7
~. 80~
N7

cm
Fig. 7. The girder deflection with an extensible cable and
a constant symmetrical live load extending over half the
girder

d) Constant symmetm’cdl lwve load extending over half the girder. For the
load case (4, 9¢) and =0 the formule (4), (6), (7) and (2) yield respectively

11 _ 1lap
H 1lp (1—e+2e2—56€3...), ' (9d)

T 16(1+«)
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=%—x2—-g(l—x2) for —f=sx<i, (10d)

With the principal dimensions as under a and p=128 kg/ecm, p=0,16 these
formule yield e=8,405-10-3, H/p=0,6250, H =0,1000; the values of » and 7
belonging to it are shown in table VIII and plotted in fig. 7 against .

Table VIII. The girder deflection for some values of x with an extensible cable
and a constant symmetrical live load extending over half the girder

according to ch. § according to ch. 9
” (exact method) (quasi linear method)
10 5 l 7 em 100y | 7 em
0 9,17 78,8 9,58 82,4
0,1 8,89 76,5 9,29 79,9
0,2 8,07 69,4 8,40 72,2
0,3 6,69 - 57,5 6,92 59,5
0,4 4,77 41,0 4,85 41,7
0,5 2,29 19,7 2,19 18,8
0,6 0,00 0,0 —0,26 - 2,3
0,7 —1,38 —11,9 - 1,71 — 14,7
0,8 —-1,83 - —15,8 —-2,15 ~ 18,5
0,9 —1,38 —-11,9 —1,58 ~ 13,6
1 0 0 0 0

9. Approximate calculation with the aid of the quasi linear method. We can
execute an approximate calculation, in which the deflection depends linearly
on the live load, as well with an extensible cable as with an inextensible cable.
Also with an extensible cable the method is only utilisable when the live load is
small compared with the dead weight of the bridge.

For that purpose we simplify (8, 2) to

T +1
279 ) [ (1+2)pz)dz+(1+2) [ (1 2)dz—H (1-22)+ B¢ (1-22). (1)
-1 x
Now the formula (8, 4) remains valid, but (8, 3) and (8, 5)—(8, 7) must be
replaced by

H . S (2)
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We applied the just derived formul® to the load cases which are treated
in nr. § under a—d. No more than in chapter 6 we wrote down the formulee for
the cable force and the deflection; we found for the cable force respectively

for case a: H = —0,0032;

for case b with ¢#=0: H = 0,1466; with ¢ = 15°C: H = 0,1434;
for case ¢c: H/p = 0,4583, H = 0,0733;

for case d: H/p = 0,6302, H = 0,1008,

while the results for the deflection are collected in tables VI—VIII and plbtted
in figures 5—7.

10. The work accumulated in the bridge. We shall now calculate the amounts
of work accumulated in different parts of the bridge, a live load being placed
on the girder. In this calculation we leave the temperature change out of
consideration. In the general statical case we have three kinds of work:

a) the potential energy of gravity w acting on the girder
_ +41
U= —é{wﬁdi; (1)

b) the deformation energy accumulated in the girder

+31 _ .
_ M2 _ .
Aﬂ{ = md:x, (2)

—31

c) the deformation energy accumulated in the cable and the pylons; when
a live load is placed on the girder, this energy increases by an amount

+431 .
i Sz_Swz 1 _ y 5
r=—31

In the particular case of a bridge with a perfectly slack girder and an

inextensible cable, the amounts of energy A,, and A,, are zero. Apparently
the same holds for the energy U, owing to the condition (2, 18), which for
this case can be simplified to

+41
ﬁ%flwﬁda"czo. (4)

This seems to be paradoxical, as in general the live load performs a certain
amount of work when it is applied to the girder. However we must consider
that the condition (4) was derived from the equation (2, 12) by dropping the
term with (d 7 /d Z)2. In calculating the work it is not allowed to do so, but
here we must start from the complete equation (2, 12).
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In the more general case y &0 (but J=0) this equation reads

dé¢ dy dy ds\2 (d7)\? ds\®
iz~ " dz a;*—(dx) (El'—:i) ”H(% : ()
Integrating both members to z we find, with (2, 14), (2, 15) and (2, 17)
L " as\® (d
- - $ —
—31 —31

Further on the expression for 4, (3) can be worked out, with (2, 6), (2, 9),
(2, 10), (2, 15), ds/dx = 1/cosy,, and putting approximately Scosi, =H,, to

Aﬂ:=H (1\+1H)GH,+yl,) H. (7)

Thus the sum of the amounts 4, and U is given by

— = 1 ds 2da\%.,_ 1 . .
-3
For the case of constant mass per unit of length and constant stiffness of the
girder we can simplify this expression, with (3, 2), (3, 3), (3, 6b), (8, 4) and

4U _4Ay
U= 4= (9)
+1
to U+AH=—;~f l+f2x2)( ) dx + ; o H?. (10)
-1

With the exception of chapter 7 we always replace ds/dZ in such expressions
by 1

+1

1 [ [(dn\? 1

U+AH=§f(E£) da+ = o H?. (11)
-1

Restricting ourselves to the case ¢cy=o00 we can use the expression (8, 2),
with & =0. This yields, with (&, 3) and (&, 4), after some calculations

| 4(1+H>2(U+AH)——ﬁl—x)p(m)dw?(1+z>p<z)dz

-1

1 +1
(1+x (x)dx [ (1—-2)p dz——H2’1+oc 1-H?)). (12)

x

)-n%w—{—

For an inextensible cable we have 45 =0, «a =0, so that (12) can be simpli-
fied to
+

4(1+H)2U =Jf1(1;x)p(x)dx3fc(l+z 2+ (1+2) (x)dxﬂl—z)p(z)dz—%ﬂz.
1 -1 -1 x
(13)
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In this case U must equal the work Zp performed by the live load, which can
be calculated by assuming that the live load grows regularly from zero to the
ultimate value P (@) =w p (z). Putting the momentary load to

P* () =Ap (@) = wAp (@) = wp* (), (14)
we have for the cable force belonging to it at the same moment, according
to (9, Ta), »

Af(1—2?)p )dx_H)\ (15)
-1

rMoo

Now the work performed by the partial force p* () dx, when the deflection
increases with an amount d 7, equals

dA, =p* @) dzdsi =P (x)dxj’;dx;
thus the total work performed by all the partial loads together, when they

grow from 0 to their end values, equals

+4l 1 d,n _

» ~x~—§l/\i d)\d zdA. (16)
ith (3, 6b d _
With (3, 6b) an . 4d, ;
p wfl2 ( )
this can be reduced to

A, = f » () dxf)\dnd)\. (18)

r=-=1 d)\

In this equation we can insert the formula (9, 6) for the deflection », which
now must be altered into

2 1+A)‘Hn'=(1— fm(1+z )p (2)dz+ (1 +x) j' z)dz — H (1 —a?); (19)
-1 x
this yields, with (9, 8a) and
H
1 =
) = [ A Y %
=2 | Xy iE ’ (20)

0

+1
14, = f1<H>{f (l-a

) p(x)d f 1+2) p (2) dz+f(1+x)p(x)dxj ~2) z)dz———H2
ad -1

(21)

Comparing (21) and (13) we see that U differ only slightly from 4, for
small values of H. For by developing in series it may be found

f1(H) = 1-%H+%H2—§H3+...,

. .
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so that limf, (H) = lim {, (H), f(H)
H—0 H—0 £(H)

while the table IX and figure 8 show the difference
between f, (H) and f, (H) for other values of H. . \

That the two just derived expressions (13) and a1\
(21) approach each other only for small values ”\ ;
of H need not create surprise. For we assumed \\

in all our calculations 7 to be small compared \ —
with y. This involves (for large values of ¢,) that H s

is small compared with 1. \%

We shall now consider the deformation energy % ~

of the girder A,,. With (3, 3), (3, 6b) and . | <
M= Z?}ﬁ (23) “

af
we can replace (2) by |
) 02 a4 06 98 /
2 2 :
(@_2) de. (24) Fig. 8
dx Values of f, (H) and f, (H)

led

1

I +1 4+
1

AM= —Q—Coszzdx = %(:2\[

—1 -1

Table IX. Values of f,(H) and f,(H)

H f1 (H) f (H) H | f(H) f2 (H)
0 1 1 0,6 ]J 0,528 0,391
0,1 0,880 0,826 07 | 0,485 0,346
0,2 0,782 0,694 08 | 0,448 0,309
0,3 0,702 0,592 0,9 1 0,415 0,277
0,4 0,635 0,510 1 o386 | 025
0,5 0,577 g 0,444 |

[

We shall henceforth restrict ourselves to the case of large c,. Then A4, is
small in comparison with U and A, and without making a great mistake we
can substitute the formula (8, 2) for 4 (with #=0) in (24). This yields

2¢2(L+H)2 Ay =J_rfi{l’ (x)—H}2dx. (25)

In this case also the formula (12) (which was derived for ¢,=c0) can be used
without great error.

Under the just mentioned conditions we compute these amounts of work
for the cases of loading treated in nr. § sub b, ¢ and d. For a live load working
over the whole length of the bridge (case b) the load can be representated by
(9, 9a) and (12) and (24) yield
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S(I+HE(U+Ay) =p*~H¥{1+a(l-H?)},2¢? (1 + H)? 43, = (p—H)?.  (26)
When the live load occupies only one of the two halves of the girder (case c)
we have with (4, 9b)

3O+ HP (Ut Apy) = 2 pp— (1 4o (1 - )},

2¢2(1+H)?2 4, = (p—H)*+ H?, (27)
and for the case of a symmetrical load over the half of the girder (12) and
(24) give with (5, 9¢c)

B(I+HP(U+Ay) =4p*—H*{1+a(l-H?)j
202 (1+H)* Ay = (p—H)*+ HE. (28)
For the bridge mentioned in Table I as “example’’ we have computed the

different amounts of work numerically for the value » =128 kg/em, p=0,16.
The results are shown in Table X.

Table X. The amounts of work accumulated in the different parts of the bridge

load-| extensible cable, inextensible cable, extensible cable, | inextensible cable,
case flexible girder | flexible girder slack girder. slack girder
104(U+4g) | 108 AMi 106U | 10° AH] 108 A/ | 105U+ | 108 AMi 108 U ) 10° A7 | 108 Ay,
| | : | | |
b 694,5 0,5245, 0 | 0 0 6945 | 0 | 0 0
c 638,6 33,885 | 457,2 0 33,172 638,6 | 0 | 457,2 0 0
d 768,8 33,982 | 189,4 0 35,826 768,8 l 0 l 189,4 0 0
|
|
1075(T+ A )| 10-8 4,1 10-5 U | 10-64 5| 105 Ay, 10750 + 4| 1084, 10-8 U |10-94 5/ 10-04,,
kgem kgem | kgem | kgem | kgem kgem kgem | kgem | kgem | kgem
i { i \
b 102,7 | 0,078 | 0 0 0 102,7 | O o | 0 0
c 94,5 501 | 67,6 0 4,91 94,5 0 67,6 | 0 0
d 113,7 5,03 $ 28,0 0 5,30 113,7 0 28,0 i 0 0

§ 4. Dynamical calculations

11. Survey of the calculations to be performed for the dynamical case. As we
already mentioned in chapter 7, until now only a few treatises have been
published dealing with the dynamical behaviour of suspension bridges. The
most important publication is that of KLoppPEL and Lir1%) 1), dealing both

10) K. KLopper and K. H. Lig, Lotrechte Schwingungen von Héngebricken, Inge-
nieur-Archiv 13 (1942) p. 211.

11) Having completed this article, we found that an important study of the dynamical
behaviour of suspension bridges was also made by G. S. VINCENT and others; a summary
of this study has been published in Engineering News-Record 146 (1951) 2 p. 32. It
seems not to deal with the problem of the forced vibrations caused by a moving live load.
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with free and with forced vibrations. We shall discuss some of their results in
the next chapters.

In our study of the dynamical behaviour we restrict ourselves to the case
of a perfectly slack girder and a constant cable temperature, and we neglect
the horizontal cable displacement; so we start from the differential equation
(3, 7b), reduced to '

2y Py
—(1+H)3—x—2+ét—2—p(x,t)—ﬂ(t), (1)
the cable condition (3, 8), reduced to
+1
[ndx=(yly+v)H, (2)

-1

and the boundary conditions (3, 9), reduced to
n=0 for x =+1. (3)

In the chapters 712—15 we are to derive the solutions of (1)—(3) for the
case p(x)=0, corresponding with the so called free vibrations of the bridge.
We shall treat the case of an inextensible cable in the chapters 12 and 13, in
chapter 14 the same case, replacing the term (1+H) 02 5/022 in (1) by 82 7/0 22,
according to the quasi linear method, while the case of an extensible cable
will be dealt with in chapter 15, only following the quasi linear method. At
last we shall treat the rather difficult problem of the forced vibrations caused
by a moving live load without mass, at which we restrict ourself exclusively
to the quasi linear case and to a bridge with an inextensible cable; but here
we shall derive at first general formulee for the case of a live load moving
with a constant speed and conserving its form; afterwards we shall illustrate
these calculations by applying them to two examples.

12. Free wibrations of a bridge with an inextensible cable. The characteristic
values and the characteristic functions. As indicated above we shall at first try
to answer the question whether the girder can execute free vibrations, i.e.
whether it can undergo deflections, a live load p (z,?) being absent; in other
words whether the differential equation

2y 0%n _
(lfﬂ)a—x—z—‘a—tg—ﬂ(t), (1)
the cable condition i
f ndx =0 (2)

and the boundary conditions
| 7 =0 for x=+1 (3)

admit solutions for n and H different from 0. For that purpose we try, as it is
generally usual with problems like this, to find a solution of the form

n= Xka, (4)

6 Abhandlungen XI
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X, being a function (the so called characteristic function) which only depends
on z, and 7', the so called normal coordinate, being only dependent on ¢. As
we shall find in the following that there can exist more functions like that, we
apply to them, in order to be able to distinguish them, already the index £,
and we do the same thing with the functions H belonging to them. We
substitue (4) in (1) and (2); in evaluating we shall, as henceforth anywhere in
this paper, indicate differentiations with respect to x by accents and differen-
tiations with respect to ¢ by dots. Then we get

(1+Hy) X" Ty, X, Ty, = Hy, (5)
+1
Z1
From (5) and (6) we derive a new relation by integrating both terms of (5)
with respect to x between the limits x = —1 and z = + 1, and by using (6):
F(I+H) T.{ X, (1) =X,/ (= 1)} = H. (7)

Now the lefthand terms of (5) and (7) must be equdl to each other and from
this we can derive after some calculations the relation
X, X, ()-X,/(-1)} Ty

_ —_ 2
X, SAxH)T, = @k (8)

Here the quantity —w;?, to which the both terms of this equation can be
equalized, must be considered as constant, as it neither depends on x nor on ¢.
Further on it will be obvious that there can always be found solutions X,
which satisfy the boundary conditions, if this quantity is negative; for this
reason it has already been written in the form of a quadratic preceded by a
minus sign. The opposite quantity, w,?, we call the k* characteristic value of
the problem. We shall not go into the question whether there can also exist
solutions for X, at negative characteristic values; it can be shown without
difficulty that this is not the case.

From. (8) we can derive the two following equations for X, and 7', respec-
tively

X"+ Xy = 3{X, (1) =X,/ (=1)}, (9a) Ty+ o2 (1+H) Ty, = 0. (9b)
The boundary conditions for X, are, according to (3) and (4),
X,=0 for z = +1. (10)

In calculating the characteristic functions X, we start from the assumption
that these functions always are either even or odd, which can be demonstrated.
We indicate the odd characteristic functions by an asterisk. Then we have for
the even functions instead of (9a) more simple
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The even solutions of this equation are, as can easily be verified,

(12a)

sin wy,
Xk=Bk(coswkx— i )

Wy

From the boundary condition X, =0 for x=1 it is found that the quantities
wy, are roots of the so called conditional equation

w = tgw. (13a)

By drawing both terms of this equation as a function of w it becomes obvious
that these roots are approximately equal to

we=(k+3)7 (k=1,2,...0). (14a)

The first 5 accurately computed roots!?) are given in the table XI. It must be
observed that the root w,=0 of (13a) gives rise to the function X;=0 and
therefore must be left out of consideration.

O

Table X1I. The characteristic values wy, and w,* for k=1,2,...
with an tnextensible cable

Eo1 2 s e s

wp | 44934 | 7,7253 | 10,9041 ' 14,0662 | 17,2208

wp | 31416 | 6,283 94248 12,5864 ) 15,7080

The characteristic functions can be written with the help of (13a) in the
somewhat simplified form

XkZBk(OOkax—COka)(kz1,2..’.00). 7 ' (15)

For the odd characteristic functions we have the differential equation

dz X, * :
T.‘z‘ka +wp*2 X, * = 0. (11Db)
Its odd solution is

to which the conditional equation
sin w* =0 (13b)
belongs. The roots of this equation which mean anything for our problem, are

wp*=kn(k=1,2...0). (14Db)

12) Compare F. EmDE, Tables of elementary functions, Leipzig and Berlin (1940)
p- 130.



74 A. D. de Pater

The first 5 characteristic values of the odd vibrations have also been com-
puted and reproduced in table XI.

The equations (14a) and (14b) show that indeed only for very distinct
values of w; characteristic functions different from zero exist, which satisfy
the differential equation and the boundary conditions.

At the further calculations we shall use the so called orthogonal property,
which exists between two different characteristic functions,

+1
T Xp Xyda =0 for o, +o,. (16)

In this expression each of the characteristic functions X, and X, can be
even or odd at choice. This property can be demonstrated directly by substi-
tuting the expressions for X, (15), or as the case may be X, * (12b), in (16);
however the following way is more attractive. We write down equation (9a)
both for the index m as for the index n, multiply these equations by X,, and
X, respectively and substract the results: '

Xp X=X, X+ (0 ~w,2) X, X,
=} [{Xn (1) =X (-1} X, —{X," (1) - X, (= 1)} X,,.].

Integrating both terms of this equation between the boundaries x = —1 and
x =1 yields, using (6), the result

+1
(w2—w,?) X, X,dx =0,
21
which owing to w,, +w,, gives rise to the property (16).
By multiplying the equation (9a), written down for the index m, by X,

and integrating both terms of the thus found equation in the same way, we
find with the aid of (6) and (16) that also

+1
;le;;LXndx =0 for w,, fw,. (17)

Further on we standardize the constants of integration B, and B, * remai-
ning in (12a) and (12b) by the so called normalizing condition

+1
[ X2dx = 1. (18)
1
From (6) and (9a) we find that in that case X, also satisfies
+1
[ X, Xpdoe = —wi2 (19)
~1

Applying (18) to (15) and (12b) yields

1
=

= * — 20
sin w),’ Br L (20)
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so that the normalized characteristic functions are

COS w;, & — COS w .
X, = :inwk k. X ¥ =sinw,*x(k=1,2... 00). (21)

We have computed some values of X, and X,* (see table XII), which are
plotted in figure 9 against .

=15

SRR / =7 \

15
X/ 'X/*

Fig. 9a. The characteristic functions X, and X,*

VAN
NN @Y

N 7 7 N 4

Xy|(extens/bl cabl)

/K

P

15
Xo, X3

Fig. 9b. The characteristic functions X, and X,*
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Table XI1a. The characteristic functions X, and X, * for some values

of x and k=1
| |
x -1 “ -0,8 ’ -0,6 i -0,4 -0,2 0 0,2 f 0,4 l 0,6 i 0,8 ‘
! ’ i ,‘
X | ‘ |
inextensible| [ .
cable 0 0,6987| 0,7019| 0,0076 |-0,8605 |—-1,2472|-0,8605| 0,0076| 0,7019| 0,6987
extensible l’ .
cable 0 | 0,481 0,348 _\—0,309 -1,045 -1,362 |-1,045 |-0,309 | 0,348 0,481
;I i
inextensible| *
and exten-
sible cable 0 }-0,5878 -0,9511|-0,9511 |-0,5878 0 0,5878| 0,9511] 0,9511 | 0,5878

Table X11b. The characteristic functions X, and X, * for some values

of x and k=2
x o | o1 0,2 0,3 0,4 0,5 0,6 0,7 J 0,8 0,9
X, g \ !
inextensible ‘
cable 0,8790} 0,5927 }—0,1035 -0,8144 |-1,1363 |-0,8868 |-0,2072| 0,5165| 0,8737| 0,6612
extensible ‘
cable -0,037 1 0,060 | 0,318 | 0,650 | 0,941 | 1,094 | 1,056 | 0,840 | 0,520 | 0,204
! i |
. ‘ ]
X,.* | | |
inextensible | 1
and exten- : |
sible cable 0 ‘ 0,5878 ‘ 0,9511| 0,9511 | 0,5878 0 -0,58781-0,9511 |-0,9511 |-0,5878
{ |

13. Determination of the normal coordinates. The characteristic functions
and values having been found, we now can pass on to the determination of the
normal coordinates. These satisfy the equation (12, 9b)

(1)

T+ H) 02T, =0(k=1,2...0).

In this equation are found both the /* normal coordinate and the cable force
change H, (t) belonging to it. But there exists another relation between these
two quantities, i.e. the relation (12, 7). From these two relations there can be
derived formulse with the aid of which 7', can be expressed in H,, or inversely
H,; in T,. With the even vibrations we have, according to (12, 21),

X' (1) = X/ (=1) = —ay, (2a)

and these formulx are
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Hk Wi, Tk
- Tk - YEk 4
To==orirmy @ By == 17w, (4a)
By substituting (4a) in (1) the non linear differential equation

” w2 Ty 5

can be derived, in which H; is no more found.
The solution of this differential equation requires some deliberation. It
can be integrated once by introducing the new variable

_ar,
=T ®)
and by writing &T, dz_ dz di_z dz
de dt dT, dt  “dT,~

2 —_ = 5

D,, being a constant of integration. The ultimate result is

d (wy Ty) -
d (wyt)

+ V2{Dp+In(1+w; T}) — wi Ty} (8)

From this it can be derived that 7', is a periodic function of ¢ for all values
D,,, but we shall not enter further into this question. For small values of D,
there can be written approximately

TkgAkCOS (wkt—}—(pk) with wk‘Ak = V?Dk(k=l, 2... CD). (93;)
With the odd vibrations we have, according to (12, 21) and (12, 14b),
Xp* (1) =0, X;*(-1) =0, (2Db)
so that

and (1) reduces to _
T* 4w, 2T*=0 (k=1,2... ). (5Db)
The solution of the last equation is (without restrictions)
T* = A, *cos (wp*t+@p*) (k= 1,2. . .00). - (9b)

The constants of integration occurring in (8), (9a) and (9b) can be com-
puted, when the starting conditions are known, with the aid of the properties
(12, 16)—(12, 19). We shall not enter further into this question.

A motion governed by a non linear differential equation like (5a), in which
the time itself does not appear, is often called a pseudo harmonic motion.
Thus the even vibrations of a suspension bridge are pseudo harmonic, the
odd vibratious however are harmonic.
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When only one constant 4, c.q. 4,* differs from zero, the characteristic
value wj c.q. wy* belonging to it determines the frequency with which the
bridge oscillates. Restricting ourselves with respect to the even vibrations to
small values of 7', for which the formula (9a) holds sufficiently well, we can
also call the characteristic values the angular frequencies of the bridge. In
quantities with dimensions the angular frequencies are, according to (3, 6b),

- wkt 7 - % * 7
Wy, = — =w -, W = w e 10
k=3 ol g O ey (10)
From table XI it may be concluded that the lowest characteristic value is
w,* =7, so that the lowest frequency #, * and the largest vibration time #;*

of the bridge can be deduced from

For the bridge indicated in table I as “‘example’’ the last formula yields
7, * =5,91 sec.

14. Application of the quasi linear method. In chapters 6 and 9 we applied
already the so called quasi linear method, by which the non linear connection
between the girder deflection and the live load is simplified to a linear relation.
A reduction like that we can also execute with dynamical calculations; apply-
ing it on the equation (12, 1) yields

2y 2y

g2 o ~ 2O (1)
Again we can try to substitue the solution (12, 4), which gives rise to the
simpler relation

‘Xk”Tk—‘Xka=Hk’ (2)

instead of (12, 5), while the relation (12, 6) remains valid. The relations (12, 7)
and (72, 8) must here be replaced by

10X, (1) =X, (=1)} = Hy, (3)
and Xk"‘%{Xk'f;’)c—Xk'(_l)}:% = —w?2. (4)

Now it can be easily shown that the differential equations (12, 9a), (12, 11a)
and (12, 11b), the boundary conditions (12, 10), the formule (12, 12a),
(12, 12b), (12, 21) and the properties (12, 16)—(12, 19) for the characteristic

13) This result has already been found by H. GrRaAxHOLM, Berikning av hingbroar 2,
Goteborg (1945) p. 68.
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functions as well as the equations (12, 13a), (12, 13b) and the formulz (12, 14a),
(12, 14b) for the characteristic values remain valid, while all the normal
coordinates 7', and 7',* now satisfy the equation

thus the latter are equal to

Tk = Ak COS (wkt+q)k), Tk* = Ak*COS (wk*t—}-q)k*) (k= 1, 2 e e OO).‘ (6)
The cable force is at this case, owing to (3), determined by

15. Free vibrations of a bridge with an extensible cable. We shall now cal-
culate the free vibrations of a suspension bridge, which occur when the exten-
sibility of the cable is taken into account. Here we start from the differential
equation (11, 1), reduced to

?ny Py
a2 g = 2O, (1)
and the conditions (11, 2) and (11, 3).
Again we try to write down as solution from (1)

n =Xy Ty, (2)

X, being only dependent from z, 7', only from £. Substituting (2) in (1) yields
the equation

X, T, X, T, = H, (3)

at which the corresponding cable force H () now again is indicated with the

index k. Integrating both terms of the last equation to  between the boun-
daries —1 and +1 we find

HX (1) =Xy (~1)} Ty = {1+-%—<yl3+v>%} H,. @)

By eliminating H,, from (3) and (4) there comes

1X3°(1) - X3 (= 1)
2 1 Tk
1+30‘T_7; ]‘;c

X A ©)

14
X"~

in which « is determined by the formula (8, 4). From (5) we can solve Tk/ T,
as a function of X" y and X, ; so, X; being only dependent from x and 7', only

from ¢, the ratio Tk/ T, must again be constant. Hence, putting Tk/ T, = — w2,
we can write down the relations
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X"+ Xy =
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1 X (1) — X" (—

1)

ro|

1 —1aw,?

, (68) Ty+w,2T, =0.

(6b)

For the even functions (6a) can be further reduced to

X"+ Xy =

the even solution of this equation is

lgw ete.

X, = Bk{coswkx—-

X' (1)

1——%awkw

sSin wy,
wy (1 —§ aay?)

e

25}

L P S e

g

~

g w

e
sl

2m

n

||

Determination of the roots of the frequency equation

X, = By(coswyz—coswy) (k=1,2,... ),

Fig. 10

(7)

(8)

which, together with the
boundary conditions (11, 3)
gives rise to the conditional
equation

(9)

of which w;, must be the
roots. This equation may
best be solved in a graphical
way, as has been drawn in
figure 10 for the bridge trea-
ted in this paper as ,,exam-
ple’’, for which, according

tgw =w(l—-1cw?),

to nr. 8 « = 0,090.939.
Here we find w; = 4,24;
ws = 5,92.

The root w, =0 gives
rise to a characteristic func-
tion X, =0, and so it makes
no sense. The other charac-
teristic functions (8) can,
the quantities w, being roots
of (9), be written down in
the more simple form

(10)

which expression can be normalized with the aid of the condition (72, 18) to

.sz

Ooswkx—{mka

— (k=1,2,... 00).

" &
SN wy, Vl + (-Txw,2)E

1-1aw;?)

2

(11)
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For the bridge treated as example we have computed some values of X,;
these are given in table XII and plotted in fig. 9 against .

With the odd vibrations (6a) also in this case reduces to (12, 11b). Thus
the characteristic values belonging to it are fixed by (72, 12b), while the
normalized odd characteristic functions are determined by the second formula
(12, 21).

At last the equation (6b) corresponds with (14, 5). So the normal coordi-
nates are, like as in the corresponding case of an inextensible cable, determined
by (14, 6), while the cable forces belonging to it are equal to

H, = _ e H,* = 0. (12)

1-1law,?
. . 3 . .
A particular case is « =—;, in which we have w,=m, so that the charac-

w2’
teristic value belonging to the even vibrations is equal to the characteristic

C—OS;T/—%-'_—I. For this value
of « and for greater values of this quantity the first even vibration has only
two modes, situated at the ends of the bridge. For « > 3/#? w,* is no more the
lowest characteristic value, but now the set of characteristic values, ranged
in growing order, is: wy, w*, w,y, w,* ete.

For the bridge treated as example we have computed the first two even
characteristic functions X, ; these are given in table XII and plotted in fig. 9
against x. We learn that for this bridge the set of characteristic values, ranged
in growing order, is: w;*, w;, w,, wy* ete.

KroppEL and Lie!4) have treated the problem of free oscillations of a
bridge with an extensible cable and a girder of any stiffness, but they restric-
ted themself to the linearised case. They solved it by developping the deflection
in a Fourier serie. As however the even characteristic functions of the problem
are no cosinus functions at all, this way of solution must have an approxi-
mative character. Moreover it can not be applied at the case of an inextensible
cable, as the cosinus functions do not satisfy the condition that for this case
the integral of the function taken over the length of the girder is equal to zero.

value belonging to the odd vibrations; here X, =

16. Forced vibrations caused by a moving live load. We now shall enter into
the question how the girder deflection and the cable force can be calculated
when the bridge undergoes a forced vibration, i.e. when the live load p (z, )
differs from zero. We restrict ourselves exclusively to the case of the quasi
linear method, which is naturally admissible when the load p(z,¢) is small
compared to 1.

Although we could use for this case the method of the characteristic
functions as well as in the nrs. 712—15, it gives much advantage to make use

11) K. KuopreEL and K. H. Lig, loc. cit. p. 220.
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of the so called operational or symbolic calculus, based on the one sided Laplace
integral. For the principles of this calculus we refer to the handbooks!5).
The starting point now is the differential equation (11, 1), reduced to

3 32
with the cable condition ’
+1
fmdx =0 (2)

and the boundary conditions
n=0 for x = +1, (3)

to which we now add the starting conditions

n =0, %—;’—.—_0 for ¢=0. (4)

Following the rules of the symbolic calculus we introduce the new variable s

and we join to the functions % (z,¢), p(x,t) and H (¢) the so called image
functions ;

n* (x, fe‘S‘ (z,t)dt, p* fe—St (x,t)dt,
(5)
H*(s) = fe“s‘H(t)dt.
0

By multiplying both terms of the partial differential equation (1) with e~%¢
integrating with respect to ¢ between 0 and co and making use of (5) and the
starting conditions (4) we find the ordinary differential equation

d2*

ol S = ¥ (w,5) = H* (s), (6)

to which belongs the cable condition
+1 :
[n*de =0 (7)
~1

and the boundary conditions
n*=0 for x = £1, (8)

as can be shown from (2), (3) and (5).
With the help of the method of variation of constants we ﬁnd as the
general solution of (6) and (8)

%) For instance: G. DoETscH, Theorie und Anwendung der Laplaeetransformatlon,
Berlin (1937); H. S. Carstaw and J. C. JAEGER, Operational methods in applied_; "mathe-
matics, Oxford (1941); R.V.CHUrCHILL, Modern operational mathematics in engi-
neering, New York and London (1944).
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2sn*chs = flp*(§,s)shs(l+§—x)df++jl_p*(§,s)shs(1 +x—§&)d ¢

+1
shsx chs—chsx
— * —_9__—- = %k
s fp (€ 5)shsgdé—2—————""H*(s), (9)

~-1
from which the cable force H* (s) (5) can be calculated with the help of the
cable condition (7):

+1 +1
2(1_ ‘_oh_s) H*(s) = fp*(x,s)dx— al—?s—fp*(x,s)chsxdx. (10)
—1 —1

So far the live load could be any function of x and ¢. But now we shall
use the stipulation, mentioned already in chapter 71, that this load moves,
conserving its form, with a constant speed ¥, so that we have at any time

or with (3, 6b) and
_b _ /9l .
v=—, ov;=1/2": 12
o n= (12)
p(,1) = p; (x—vi). (13)
Moreover we shall assume
p(x) =0 for x> —1. (14)

Now we have
p*(z,8) = }oe—‘-“pl (x —vt)dt;
0
introducing the new variable
z=x—0t (15)
yields, with (14), ‘

L 4

p*(x,8) = — fe_?(” ? o, (2) dz. . (16)
At first we substitute (16) in the formula (10) for the cable force; then we get
2v (1—@‘—9)1‘1* fdxje v 2y ()dz—eifchswdxj‘e 5= P1(2)dz.

After changing the order of integration in both double integrals, we can
reduce them to single ones:

2(1—@2)(8—sh8)H*(s)=?J(v+ths)—fle"%(1"2)p1(z)dz—v( ths)f S(1+2) P, (2)dz.

— 0

(17)
Now we apply the reversing formula of the operational calculus:
€+1 o0
Hit)=-— | etH*(s)ds; (18)
2w
€—iw

this yields, after changing the orders of integration another time,
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-1 €+ 10
’U+th8 t—i(l—z)
— 2 —
47 (l—v2) H(t) vfpl z)dz f s—ths ¢ ° ds

— €—1©

-1 €+1i00 L
; v—ths 5 s
— 2) 7 6St+ — (1+2) 7 . PIIPRN

@fpl( ydz f s ths v ds. (19)
— 00 €—1 0

Now it will be shown in nr. 77 that

€+t
J 1 J e ds =0 for u<0
27 27 ) s—ths ’
T €—1 (20&)
—E+§—u2—2]‘ (u) for u>0
5 2 A ’
1 €+i® h
th s e¥s
Jy = P f s——thsds—o for u <0, (20b)
€—1 0
=3u+2f, (u) for u>0,
o} 0
) sinu w COS U w
with ADEN ’“, falw) = 2, =05, (21)

wy, being, according to nr. 12, the k** root of the equation (12, 13a). We shall
also demonstrate in nr. 17 that

1 3

fl(u)=§e“——§u for O<u<?2,
" 1 3
= —(u—1)ev 2+ Ee“—gu for 2 <u <4,
1 : ) 22
_—_(u2—5u+5)e“—4—(u—l)e“‘z—{—56“—%11, for 4<u<86, (22a)

2 1
= (—3— u3-8 u?+29 u~29) e¥=6+(u?-5 utb) e¥t—(u-1) e* 24 5 ev— —z—u

for 6 <u <8,

folu) = — s e¥+ —u+ — for 0<u<2,
1 .
=(u—2)eu—2—§e“+~u2+—— for 2=su<4,

1 ’
=—(u—S)(u—4)e“—4+(u—2)e“—z——2—e“+%u2+—§- for 4<u<6, ;(22b)

(§u2—6u+13) (u—6)e6—(u—3)(u—4)e 44 (u—2)ev—2

1 3 3
—— pu — 2 - < <
ze—l—»u-{— for 6 <u<8.
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With the aid of (20a) and (20b) the formula (19) can, replacing z by z—v{,

be reduced to
vi—1

(1—0?)H (t) = f pl(z~vt){—i—(l—22)—~-’§—vz+vf1 (3;;—{) +v2f, (z_—g_l) }dz

-1
zgl) +v2f2(z;1)}dz. (23)

+1
By using (22a) and (22b) we can split H (f) into parts:

+f Py (2 —0t) {%(1—22)— %v2—vf1(

vi—1

H(t) = > H;(t) (24)
i=1
with
vist z+1d
H, @) = 2(1+v) f pr(z—vt)e v dz,
vi— 1
1 1 z+1
H, @) = ~15 f pl(z—vt)(z—21)+ m)e v dz,
2v—-1
vi—1
Hy(t) = v) f Py (2 — vt)e v dz (25)
vi— 1 1\2 1 2 41T
v B 2+ xRt 5. 22—95| &1 4 sz,
H4()—-—1+v Py (2 vt){( " ) 5 ” +12+ l—v}e
4v-—-1
vi—1 ;
o—
H5(t)=—ié7)fpl(z—vt)(z—Qv—I—jiz)eT'zdz,
2v+1
etc.

For the speed v=1 the functions H, (t), H;(t) etc. become indefinite. But

then we can take together H,+ H,, H,+ H; etc. and apply the rule of de
I’Hopital; thus we find

=%f (z—t)e*1dz,

P
H, (t)+H,(¢) ——;}f (z—18)(22+3)er1dz—p, (—1+ 1), (26)
+

i—1

Hy()+Hy () = 1 py(2=0) (= 3) e~ 4 p, (~t+3),

ete.

Next we shall compute the deflection. For this purpose we substitute the
expression (16) for p* (x, s) in (9); after changing the order of integration and
evaluating the integrals as far as possible in the now ‘well known way, we get
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-1 ~1
z—2z 1+2z
(1—0?)s2n* = —vfpl(z) T dz+sh2 fpl(z)shs(l—x)essz
+ShL28fp1(z) shs (1+a)e ™ v dz— (1 —22) (1—"0118:) *(s).  (27)

We now apply the reversing formula and also the composition product rule
of the operational calculus, which reads, ¢ (f) being any new function of ¢ and
@* (s) its image,

€+’):(X) t
1
e f p* (s)H*(s)estds = f(p(lf——T)H(T)dT
e et+iw
fH de *(s)est=ndr, (28)
2

With their help and by renewed changing of the order of integration the
formula (27) can be reduced to

-1 e+1

271 (1—v?)n = —vfpl(z)dz f S%es(t_xz;-z ds
~— 00 e—-’l:OO
-1 1+z -1 € l® 1--
d shs 1—x)e (t+ v )d 2)dz shs(l+xz)e’ (f T—Z)d
+v | Pr(2)dz s2sh2s Stv | Pz s?sh2s y
etioo h
—(1—122) JH f ?(l—cchssx) est-7ds, (29)
€—1©

The four complex integrals can be evaluated in a way similar to that shown
in nr. 17 for the complex integrals (20a) and (20b). We omit the calculations
and write down only the result:

9 & v(l+z)+1
1 1
N=1"8 [Z(l—-oc)fgo1 (z—vt)(1+2z)dz+ Z(l +x)fp1(z—vt)(1—z)dz
v(l—z)—1 p
vi—1 vi—1
1 1
—”fm (z—vt) f,* (1—x+ —:—z) dz+vfp1 (z—vt)f,* (l—x— :z) dz
‘—v(l—:c)—l v(1—zx)—1
vi—-1 vt—1
1—2 1-—-2
—v pl(z—vt)f2* ]‘+x__v_ dz+'v pl(Z—-’vt)fz* 1+x+ T dz
—v(d+2)+1 v(1+a)+1
v(1l—-z)—1

40 [ mie-vngg 1o+ SE) - 5] as

—v(l—z)—1
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v(1+z)+1 ; , 0 )
—2
vfpl(z—vt){—l—fi(l +x— T) —-E}dz]
—v(1+4+2)+1

_E).H(T){élh* (+t—7+1)—fu*2x+2t—27)—L(x—t+7)}dT

—li_jotitl(f){4f2*(x—t+7-+ 1)—f* (e —2t+27)— 3 (x—t+7)}dr (30)

Here a and f,* (u) are defined by

a=t for t<x, a=x for t=x, (31)
f*(u)=i(_1)k93§_%_kﬂ (32)
2 k=1 k2m?  °
In nr. 717 we shall demonstrate that
1 1
]‘2*(u)—-16 2—i§ for —2=su=<2,
) (33)

1
u—4)2—— for 25u <6,

=76 12

ete.

With the help of (33) we can further reduce the deflection 7 (30). Splitting
this funection into parts we have

7=2 ; T (34)

m=1 1
. vi—-1
with (1= = [ py (—0v0) (@—2) e,
vi—1
(1—2?) 7712 = fpl (z—vt){l1+z—v(l+a)}dz,
+x)—1
'vt 1 ‘
(1_”2)’713=—f791(z—’0t){1_Z'H’(l-x)}dZ,
v(l—x)+1
vi—1
(1 —v%) ny4 T(__f 211 z—vi){l+z—v(3—2)}dz,
vi—1
(L —22) 5 = jpl (z—vt){l—2+v(3+2)}dz, (35a)
v(3+x)+1
vi—1
(1 —v%) g = fpl z—vt){l—{-z— v(5+)}dz,
v(5+x)—1
vi— 1
(1 —v?) 9y, —“.fp1 (z—vi){l—z+v(5-2)}dz,
v(5—x)+1
vi—-1
(1=t g =~ py (z=00) {1+2 =0 (1)} ds,
v(71—2)—1
vi—1
(1—0?) m9 = fpl (z—vt){l1—24+v(7+2)}dz,
v(T+x)+1

etc.,

7 Abhandlungen XI



88 A. D. de Pater

¢
21=fH(T)(T—t)dT for 0<t=<1-x,
IH(T)(‘T t)dr for t=z1—u,
+z—1
’722-‘0 for 0<t=<1—=z,
t+x—1
=—(1-— x+f H(r)d for 1-x<t<3-x,
t+a: -
=—(1—x2+£_f31(7-)d1- for t=3—x, L (35 b)
t+z
f H(q-) (r—t+2)d+ [for 3-x<t<5-z,
t+x
= | H(T)(T—t+2)d for t=5—ux,
t+x—5
Ngg = 0 for 0<t<5—x,
t+x—5
—(3—2) [ H(r)d~ for 5—x<t=7-x,
0
ete.,
Ny =0 for 05t=1+zx,
t—x~
f H(r)(r—t+1+x)dr for 1+x<t<3+ux,
0
t—z—-1 :
=— [ H(r)(r—t+1+x)dr for t=z3+x,
t—x~3
N3z =0 for 05t<3+x,
t-z—-3
=2 | H(r)dr for 3+x=<t<5+x, (35¢)
0
t—x—3
=2 | H(r)d~ for tz5+x,
i—x—5
Ngg = 0 for 0Zt<5+ux,
t—-z—5
=— [ H(r)(r—t+3+x)dr for 5+x=t=T+z,
0
ete.

For the speed v=1 the functions »,, become indefinite; with the aid of
de I’Hopitals rule we can write

-1
N1+ M2 =3 (1+) g{ Py (z—1)dz

-1
M+ =— | p1(z—1)dz,
o (36)
Ms+ Me = .f Py (2—1t)dz,
4+

-1
Mzt Nis = “GL P (2 —1)dz,
ete.
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In practical calculations we shall split the functions =,,, (m = 2, 3) fur-

ther on:
n

nmn=z'rlmn:’(m=2,3; n=1,2,...00); (37)
j=1

here 7,,,, are calculated with the help of (35b) and (35¢), in which formule
H (v) must be replaced by H;(r) (j=1,2,...0) respectively.

We now have found formule which give us the cable force (24)—(26) and
the girder deflection (34)—(37) for any live load. In nrs. 18 and 19 we
shall illustrate these formule by applying them to the two special cases of a
moving concentrated force and a moving homogeneous load extending over
half the length of the bridge.

17. Some integrals and formule which act a part in the preceding chapter.
At first we shall demonstrate the relations (16, 20a) and (16, 20b). For abbre-
viation we write

thse® shsest ¢
11 (s, ) = s—ths schs—shs’ Fy(s,u) =

We now have to consider the behaviour of
F, and F, for all complex values of s. It
can be shown easily that these functions
only have poles s, on the imaginary axis
(see fig. 11), s, being the % root of the
equation

s = ths, (2)

so that, -according to (12, 13a),

SO=O, 8k=iwk(k=l, 2, PP OO),I'

(3)

8k= —-’I;w_k(k= —"1, —2, c e —(X)).

The poles s; (k +0) are simple, but the pole Fig. 11. The contours for the inte-

8, is a triple pole both for F, and F,. gration of the functions F, and F,
Both' functions must be integrated along

the path dotted in fig. 11. We can replace this path by the curve drawn in

heavy lines in this figure. Further on we draw a circle 4 C BD A with its

mid point at the origin 0 and with such a radius R that the circle is suffi-

ciently far removed from any pole of F (s). By taking R larger and larger,

2nJ, and 27 J, approach to [ F,ds and [ F,ds respectively.
. BOA4 BOA4

For u<0 we complete the path of integration to the contour 0.4 C BO.
It then can be proved that

lim [ F,ds=0, lim [ F,ds=0,
R—w ACB R—w ACB
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and as there are no poles lying within the contour, we also have

0A4CBO 0ACBO
so that in this case

Jy =0, J,=0.

For >0 we complete the path of integration to the contour 0 4 D BO.
Here we can prove
lim | F,ds=0, lim | F,ds=0.
R—o ADB R—>w ADB
Now we have to apply the remainder theorem of the function theory; with
its aid and considering the fact that s, (k +0) is a simple pole but s, a triple
pole both of the functions F, and F,, we easily find the formule (16, 20a)
and (16, 20b).
Next we come to the functions f, (u) and f,(u). At first we shall prove

&1 1
Zw— 10° (4)

For this purpose we consider the integral

J = —2—2—“}[ E(s)ds, F(s) = Sl;f(f;) , f(s) =tgs—s, (5)
C being a circle in the complex s plane with 0 as centre and with such a radius
R, that C is sufficiently far removed from any pole of F(s). The function
F (s) has a triple pole at 0, simple poles at the points s=s,=(n+3)7(n =
=-—00,...—1,0,+1,... +00) and simple poles at the points s=w; (k*0).
Now the remainder theorem yields for R — oo

4 1 F 1 L
J=7_”§ZW+Z—2:

J T p=-—00 k=~ wk
+0

but it also can be proved that for R—>oco0 [ F(s)ds— 0, so that
¢

1 < 1 4 - 2
0) = — Z = il
fz( ) 772712—-:0 (n+%) 77' nZO 5
41 > 1 2 1
‘7?2{;1%5_ ; 2n)2] 5 10
as we have
o1 2
= . 6
n; Rl (6)

which property can be proved in an analogous manner by evaluating

1 cosg sds
27 sz
ol
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Now we consider the function X, (12, 21). With the aid of the orthogonal
property (12, 16), the normalizing condition (12, 18) and the property that w;
is a root of (12, 13a), we can prove

+(322-1) = Z—)-(l“ for —1<x<+1. (7)
n=1 Wg
Introducing the new variable
w=x+1 (8)
yields, with the formulee (16, 21),
frw)+fo(uw) =f(0)+1(Bu*—6u+2) for 0 <u<?2. (9a)

Further, it can be proved with the aid of the same formulae

fi(w)+fo(u) = —f; (u—2)+f, (w—2) for all values of u. (9b)
As we also have
__dfy(u)
the function f, (#) can be solved from the differential equation
df, 3, 3 3 R
—E'”z—Zu—Eu"'_E for 0<u<2, (11a)

after which it can be solved in other intervals of u, using also (10), from the
equation

— 0 +fy=—f1(w—2)+f(u—2) for all values of u. (11b)
Thus the formule (16, 22a) and (16, 22b) can easily be found.

At last we consider the formule (16, 32). These can be proved by an
integration of the Fourier expansion

% inik 1
DS | it Sk P for —2<u<2,
=1 km 4

1

= ——(u—4) for 2<u<®6,

-

. ete.,
making use of (6).

18. Continuation; the moving concentrated load. As a first example of a
moving live load we shall treat the concentrated load. This can at the moment ¢
be represented by the limit for 4zx — 0 of

p(Z,1) =0 for z>vt—1 or T<vt—1-47, l
l (1)

2| |

for 91—-1—-Ax<T<vti~—1,
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2P
wl’

(3, 6b) and (16, 12), by the limit for 4 x— 0 of

or with P = Ax:%—da’c,

p(x,t) =0 for z>vi—1 or x<vi—1—-Au,

(2)

=— forvi—1-dax<x<vt—1.
Adx

Then, according to (16, 11), p, (z) is the limit for 4x— 0 of

pi(®)=0 for z> —1 or x< —1—-4Aux,

3

=—P— for —1-dx<z<l, ®)

Adx

so that the condition (16, 14) is satisfied.

At first we calculate the cable force. For v=0 this quantity is determined
by the formula (6, 2) which yields with (2),

H 3 H

—P—=Z(1—x12) fOI‘ —léxlgl, F

=0 for x,21. (4)

Here we replaced the quantities v and ¢, which become respectively zero and
infinite for this case, by
r; = vi—1. (5)

For v 0 we calculate with the help of (16, 25) the partial cable forces H; (¢)
G=1,2,...) with (18, 3):

H, v

= :2(1+v)@t for ¢> 0,
%:0 for 0<t<2,
— _ﬁ-g(t—hr 1:}) et-2 for t>2,
%:0 for 0<t<~i—,
:2(1?)__»27)@“% for t> %, (6)
%:0 for 0<t<4,
=T%(t2_5t+12+ 2;”5__”7) el—4 for t> 4,
%5=0 for 0<t<2+1—2,,
- _liv{v(t—Q)—1—~T_,1:—?j}et_3“2 for > 2+%,
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- For v=1 we can write, according to (16, 26):
H_1

_ Tt
5 =7° for ¢>0,
H
_ﬁi=0 for 0<t<?2,
P
=—1(2t+1)e2 for ¢> 2,
H4,i£{_5=0 for 0<it<4,
P
= 40 for t=4,
=3 (?—2t—=2)el* for t<4,

ete.

With the help of these formule and the relation (16, 24) we calculated H (t)
for 0<v¢<3 and for v=0; 0,5; 1 and 2. These values are represented in
table XIIT and figure 12; they will be discussed afterwards at the end of this
chapter.

Table XIII. The cable force H|P for some values of vt with a moving
concentrated load

\ v
|0 0,5 1 2
0 0 0
0 0 0,1667 0,25 0,3333
0,2 0,27 0,2486 0,3054 0,3684
0,4 0,48 0,3709 0,3730 0,4071
0,6 0,63 0,5534 0,4555 0,4500
0,8 0,72 0,8255 0,5564 0,4973
1,2315
1 0,75 { 0/5645 } 0,6796 0,5496
1,2 0,72 0,6438 0,8300 0,6074
1,4 0,63 0,6637 1,0138 0,6713
1,6 0,48 0,5472 ' 1,2382 0,7418
1,8 0,27 0,1561 1,5124 0,8199
\ o {_0,7522 } b4 { 0,9061 }
0,4145 0.5973 ~0,0939
2,2 0 0,2220 0,6073 ~0,1038
2,4 0 ~0,0311 0,5927 ~0,1147
2,6 0 ~0,2029 0,5416 —0,1268
2,8 0 ~0,0326 0,4391 ~0,1405
1,1449
’ 2 ~0,1
3 0 { 04782 } 0,2644 0,1548

Next we calculate the girder deflection. For the statical case the formula
(6, 1) yields
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vlx

Fig. 12
&
S The cable force as a func-
7 e —~— £ tion of vt with a moving
~ concentrated load

[ 1

?g-z(1+x)(1—x1){1—%(1+x1)(1—x)} for —12x<x,, } (8)
=(1-2)(1+2){1-3(1—2)(14+2)} for x;<zx=<+1.

For the dynamical case we must calculate the functions v,,, ; (17, 34) — (17, 36).
Restricting ourselves to the cases 0,6<v=<2 and 0<vt=<2 (i.e. to the time in
which the force is on the girder), we can find that it is only necessary to

determine M = N1t M2+ N> }

Ne = Ma11 + Mao1 + Naz1 + M311 + M3215 (9)

M3 = Moz + N222+ M3125
being N ="M+ N+ 7. (10)
We here omit the elementary intermediate calculations; having executed
them, we get the formule

14

2 7, =1+ for —1<x<vt—1,
<tZL2
=—lvv(1+x_t) forvt—-12z=<t-1, Ost=2,
=0 fort—1<wz< +1,
=14z for —1Zx=<vt—1,
v
= ———(1+x—1) forvt—1=sx=<3—14, 4 and 1
2 PEIS T, 1 oses),
— 1— _t<zx<
1-@;( x) for3—t=<z< +1, (11a)
=14z for —152<3—14,
1 2v
=m(1+x—vt)+m(l~x) for 3—-t<x=wvt-1, i§t§g
) 14 v
= vv(l——x) for vi-1<x<+1,
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1
jﬁ%%=e“*¢—d+l+x for —1<z=5t-1,
v 0<t<1,
=—e+t+1 fort—1<x=<1-4¢,
=gtT-l _gtt ] —g for 1 —¢t<ax< +1,
=eT1l el 1 4u for —152x=1-¢,
=e@-1lpotta-1 ot y4 1 forl—t<x=<t—1, 1512,
=ete-1_gl ] g fort—1gx< +1,
=elo-1 petta—l gl 4] fm*—1§x§+1,2§t§§
1
2= 1P M _ for 0<¢<2 and }=w=1,
v P
v 2v
=2t—-3+ —)e2— |2t -2 —T+ —— | =23
11— 1—w
1
tt-1—2T"(142) for —last—3,
11—
and
2
=2<t—-3+ Y )e“z—— Y t—1)+2 2SS S,
~v 1—v 1<v<i
for t—3<5x<3—1¢,
v\ -2 29\ tiz3 or
==2&—3+i5)e —(2H2x~7+1$)e 2§t§%,
2<9p<L1
1+w L
+t—1—-1 (1—z) for 3—tsx=<+1
v 2v
=2(t-8+—)et2— (2¢-22-T4 | et-o-3
1-v 1-v
1
+t—1—1i:(L+@ for —1=x<3—t¢,
v 2v
=2 (t—3+ ——) el—2— (2 —2x-7+ —) el-z-3
1w 1 and
2v 2 3<t<?
— _ t+x—3 — == w2
(2b+2x 7+—1_ )e + —m(t 3) %gvgé,

for 3—t<x<t-3,

2
=2(t-3+-2 ) et2- (21420-74 =2 ) etro-s
l-v 1-v

1
+t—1—1§%(1_m for t—3<a< +1

95

and 1
s=v=sl,

(11b)

(11c)

(114)

(1le)
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Fig. 13a. The girder deflection as a function of x and vt with a
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vi=16
v/
\)/ x

v-05 -2

=1

vt2
~0.24 v=/
v-0 o5 v.2
N 7
424
a4
96
124 1
74
7
-]

7
y=]
Fig. 13b.
moving concentrated load
2:’71
P =14z for —1Zx<t—1,
=0 for t—1<x= +1,
4'.0____._2;;7)3 =et—x—1—~e’+1+x for —1§x§t_19
= —elgit+1 for t—-1=x=1~1t,
=eltel ety 1—-g for 1—tsx=<+1,
=el—2-1_¢gt 142 for —1Z5x<1—4,
=elta—lypl-2-1_ ot ] ¢ for 1 —t<ax<t—1,
=ettz-1_ett ] —x for t—1=Zx= +1,
1+v f <z<
—m=l4w or —1=2xt-1,
=1_U(1+x—vt) for t-15x=vi-1,
— for vi—-1<sx=< +1,
1+v D233 _ pt-a=1_ot114g for —l=zzxsi-1,
v P
=—el+t+1 for t—1<x<1—14,
=ettrl el ] x for 1—tzax=s+1
=el=2-1_olp 142 for —1sx=<1-4,
= elta—1 pot-2-1_gt4 1 ¢t for 1 —t<ax=<t—1,
—pttal_ gt ] for t—1sx= +1,

o

lIA

IIA
< |
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The girder deflection as a function of » and v¢ with a

and v=1,

(12)

and
15v<2.

(13)
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With their help we calculated 7 for v=0; 0,5; 1 and 2. The values are repre-

A. D. de Pater

sented in tables XTIV and figure 13.

The figures 12 and 13 show us the following phenomena, somewhat ana-

logous to those occurring with a strained string:

Table XIV a. The deflection 0| P for some values of vt and x with a moving
concentrated load, for v=0

X
» ~1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1
0 0 0 0 0 0 0 0 0 0 0 0
0,2, 0| 0,1314| 0,0736| 0,0266|-0,0096 —-0,035 |—0,0496 |-0,0534 |-0,0464 |—0,0286| 0
0,4 0 | 0,0736| 0,1664| 0,0784| 0,0096 |-0,04 |-0,0704-0,0816(-0,0736|-0,0464| O
0,6 0 | 0,0266| 0,0784| 0,1554| 0,0576 —0,0150|-0,0624 |-0,0846 |-0,0816 |-0,0534| 0
0,8 0 [-0,0096| 0,0096| 0,0576| 0,1344| 0,0400]-0,0256 -0,0624 |-0,0704 |~0,0496| 0
1 0 -0,035 |-0,04 |-0,015 | 0,04 0,125 | 0,04 -0,015 |-0,04 |-0,035 | O
1,2 0 |-0,0496 —0,0704 |-0,0624 —0,0256| 0,0400| 0,1344| 0,0576| 0,0096 —0,0096| O
1,4 \ 0 {-0,0534 —-0,0816 |—0,0846-0,0624 |-0,0150| 0,0576| 0,1554| 0,0784) 0,0266 O
1,6 } 0 |-0,0464|-0,0736 |-0,0816 —0,0704 |—0,04 0,0096| 0,0784| 0,1664!| 0,0736] O
1,8, 0 |-0,0286|-0,0464 |-0,0534 |-0,0496 |-0,035 |—0,0096{ 0,0266| 0,0736| 0,1314 O
2 0 0 0 0 0 0 0 0 0 0 0

Table XIVb. The deflection n| P for some values of vt and x with a moving
concentrated load, for v=0,5

X -1 -0,8 —0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 I 1
v \

0 0 0 0 0 0 0 0 0 0 0 0
0,2 00,1216 —0,0153|-0,0153 |-0,0153 |-0,0153 |-0,0153 |-0,0153 |-0,0153 |-0,0117 | O
0,4 0 | 0,0994| 0,2111] 0,0659 -0,0709 |-0,0709 |—0,0709 |-0,0674 |-0,0556 |-0,0339 | O
0,6 0 | 0,0663| 0,1509| 0,2503| 0,0953|-0,0463-0,1714|-0,1497 |-0,1158 |-0,0670| O
0,8/ 0 | 0,0170| 0,0612| 0,1311| 0,2273| 0,0818|-0,0393 -0,1356 |—0,2055 |-0,1163| O
1 0 (~0,0531/-0,0574 |-0,0187| 0,0593| 0,1745| 0,0593|-0,0187 |—0,0574-0,0531! O
1,2| 0 |-0,0822|-0,1359-0,1438 |-0,0929| 0,0133| 0,1738| 0,1229| 0,1307| 0,0512| O
1,4 0 |-0,0851-0,1377|-0,1524 |-0,1238 |-0,0300| 0,1429| 0,2476| 0,1289| 0,0483| 0
1,6 | 0 |-0,0632|-0,0922|-0,0767 |-0,0063 |-0,0255 |-0,0063 | 0,0566| 0,1744| 0,0702| O
1,8 0 | 0,0092| 0,0474/-0,0172|-0,0587 |-0,0731 |-0,0587 |-0,0172| 0,0474| 0,1426| O
2 0 | 0,0244, 0,0153 —0,0054{—0,0232 i—0,0SOl -0,0232-0,0054| 0,0153 0,0244| 0
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Table X1V c. The deflection n|P for some values of vt and x with a moving
concentrated load, for v=1

\xﬁﬂ 0,8 -0,6 0,4 ~0,2 0 10,2 0,4 0,6 08 |1

w\| | |
‘ -

0 10] 0 0 0 0 0 0 0 0 0 0

0,2/ 0/(~0,0054)| —0,0054 | —0,0054 | —0,0054 | —0,0054 | —0,0054 | ~0,0054 | —0,0054 | —0,0054 | 0

{ 00946} | |
0,4 0| 0,0824 |(—0,0230]| —0,0230 | —0,0230 | ~0,0230 | —0,0230 | ~0,0230 | —0,0230 | —0,0176 | O
{ 0,1770}
0,6/ 0| 0,0674 | 0,1498 |(-0,0555)| —0,0555 | —0,0555 | —0,0555 | —0,0555 | —0,0502 | —0,0326 | O
{ 0,2445}
0,8/ 0| 0,0492 | 0,1166 | 0,1990 |(—0,1064)| —0,1064 | —0,1064 | —0,1010 | —0,0834 | —0,0508 | 0
{ 0,2936} '
2 |0l 0,0268| 0,0760 | 0,1434 | 0,2258 |(~0,1796)| —0,1742 | —0,1566 | —0,1240 | —0,0732 | O
{ 0,3204}
1,2/ 0| —0,0004 | 0,0264 | 0,0755 | 0,1429 | 0,2307 |(—0,2571)| ~0,2245 | —0,1736 | —0,1004 | O
{ 0,3429}

1,4/ 0| —0,0338 | —0,0342 | ~0,0074 | 0,0471 | 0,1321 | 0,2471 |[~0,3074)| —0,2342 | —0,1338 | 0
i z { 0,3926}

1,6/ 0| ~0,0744 | ~0,1082 | -0,1033 | —0,0589 | 0,0228 | 0,1411 | 0,2967 {—0,3082} ~0,1744 | 0
RN 0,4918

1,8/ 0] —0,1242 | —0,1932 | —0,2004 | —0,1773 | —0,0996 | 0,0227 | 0,1906 | 0,4068 :—0,2242} 0
| | . 0,6758

2 | 0] -0,1795 | ~0,2861 | —0,3280 | —0,3109 | —0,2381 | ~0,1109 | 0,0720 | 0,3139 | 0,6205 {0
| 1

Table XIVd. The deflection n|P for some values of vt and x with a moving
concentrated load, for v=2

. 7 |

t\m( “1{ -0,8 | -0,6 | ~0,4 | -02 " 0 02 | 04 | 06 | 08 |1
(2N

0 f 0| o 0 0 0 0 0 0 0 o |0
0,2| 0 [=0,0017 |=0,0017 |-0,0017 |-0,0017 |-0,0017 |-0,0017 |-0,0017 |-0,0017 |-0,0017 | O
0,4 0 | 0,0596/-0,0071|-0,0071 -0,0071 |-0,0071 |-0,0071 |~0,0071 |-0,0071 |-0,0071 | O
0,6 0 | 0,0528 0,0501|-0,0166 ~0,0166|-0,0166 |-0,0166 |-0,0166 ~0,0166 |-0,0149 | 0
0,8! 0 | 0,0432| 0,1027| 0,0361|-0,0306|-0,0306 |-0,0306 |-0,0306 |-0,0306 |-0,0235 | 0
1 | 0| 0,0338] 0,0855| 0,0837| 0,0271|-0,0496 —0,0496 |—0,0496 |—0,0478 |-0,0329 | 0
1,2! 0| 0,0233| 0,0664| 0,1260! 0,0593 -0,0073|-0,0740 |-0,0740|-0,0669 |-0,0434 | 0
1,4| 0 | 0,0117| 0,0453| 0,0971| 0,0954 0,0287 |~0,0379 |—0,1029 |-0,0880 |-0,0550 | 0
1,6 0 |-0,0011] 0,0221| 0,0653| 0,1249| 0,0582 -0,0085 |~0,0680 |—0,1112 |-0,0676| 0
1,8] 0 |-0,0152!-0,0037| 0,0301] 0,0831| 0,0802| 0,0152|-0,0366 |—0,0703 |-0,0819| 0
2 | 0 |-0,0309-0,0321-0,0088| 0,0344 0,0039|-0,0344-0,0088|-0,0321|-0,0309| 0
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1. There is a nick in the girder at the place of the load, moving with the
speed v. For v <1 the moving force is in a trough and for v> 1 it is on a peak.

2. For v +1 there exists another nick in the girder which moves with the
speed 1. When this nick reaches one of the ends of the girder, the cable force
shows a jump.

3. For v=1 the two nicks mentioned under 1 and 2 and the intermediate
part of the girder change into a jump in the girder. When this jump reaches
the right end of the girder (for ¢t=2), the cable force becomes —co and gets
the character of an impact, so that the velocities of the girder elements undergo
a sudden change. Physically this is impossible, as the total cable force H,
cannot become negative in reality, let alone that the cable force cannot be
infinite at all. ‘

However, we must keep in mind that the reduction of the non linear
differential equation (11, 1) to the linear equation (16, 1) only has significance
for p(x,t) and H () being small with respect to 1. When in the solution of
(16, 1) H (t) = oo this solution is not valid any more, so that we now must try
to solve the equation (Z1, 1) with the conditions (16, 2) and (16, 3), p(«,t)
being a concentrated load P moving with the speed 1. Owing to the non linear
character of the problem 7/P is no more independent of P, so that P becomes
a parameter. It would be very interesting to solve this problem.

Further on the figures 12 and 13 show that it is necessary to execute the
calculations for many more values of » if one desires to know H and 7 plotted
against v.

19. Continuation; the moving load, uniformly distributed. We shall now
consider the case in which the moving load is constant and extends over half
the length of the girder. Here the load p (x,t) can be represented by

px,t)y=0 for x>vt—1 or x<vt —2, } (1)

=p for vi—2<x<vi-—1,

so that we have, according to (16, 11),

(2)

pi(x) =0 for x> —1 or x< —2, }
=p for —-2<zx< -1,
and the condition (16, 14) is satisfied.

For v=0 we define the place of the front of the moving load by the coordi-
nate x,, satisfying (I8, 5). Then the formula (6, 2) yields for the cable force

H
3+ (1+z,)%(2~-2,) for -152,£0, H= 1(2+3x,-32,2) for 0<z,=<1,

) (3)
H . “
_Z_)__.: 1(2-2,)2(1+x,) for 12,52,

»
H_ 0 for x,=2.
P
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For v+0 we use the formule (16, 25) and (I6, 26). Restricting ourselves
to the interval in which the moving load is on the girder, i.e. the interval
0<vt<3, and to the values 0,5<v<2, it is apparent that we only have to
compute

H, v? . 1
- —1 for 0<t< —,
p 240V orrst=y
v2 1 1
= t oty > —
2(1+v)(e e v) for ¢t = 5
g_%_o for 05t<2,
y4
v? v3 1
= - — =2 —2_ 2522+ —
1+v(t 2)e —2;2(6 1) for 2=<¢t<2+ .
2 1
=" {(t—-2)e“2— (t—z—i) et“z‘a}
14+ v (4)
3 t——2—l 1
- t—2 _ >94 =
l—vz(e e v) for t=2+ 5
Eﬁ:o for 05t —2—,
P v
__ ‘"— _2_< <_3_
31 —0) ( 1) for . <t=< >
EE:Q for 05t<4,
4
v2 1
I‘;—( 9t+21)6t"4+ 2{(2t 9 et“4+v} for 4:<t<4+———

?=i(6t“1) for 05t<1,
= 1(ef—et1) for t=1,
52—%é=0 for 0<t<2, ®)
o _1{(2-1)e241) for 2<t<3,
C=—3{(2t—1)et2—(2¢—3)et3} for ¢> 3.

With the help of these formule we calculated H (¢) for 0<v¢<2 and for
v=0; 0,5; 1 and 2. The values are represented in table XV and figure 14.

Next we compute the girder deflection, but owing to the great amount of
computing labour we shall restrict ourselves to the cases v=0 and v=1. For
v=0 the formula (6, 1) yields with (1) and (18,5)
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Fig. 14. The cable force as a function of v¢ with a moving
load, uniformly distributed

uniformly distributed

Table:X V. The cable force H|p for some values of vt with a moving load,

v , 0 0,5 1 2
vl
|

0 0 0 0 0

0,2 0,028 0,0410 0,0554 0,0701
0,4 0,104 0,1021 0,1230 0,1476
0,6 0,216 0,1933 0,2055 0,2332
0,8 0,352 0,3294 0,3064 0,3279
1 0,5 0,5324 0,4296 0,4325
1,2 0,62 0,6128 0,5247 0,4780
1,4 0,68 [ 0,6839 0,6408 0,5282
1,6 0,68 ] 0,7170 0,7827 0,5838
1,8 0,62 0,6574 0,9560 0,6452
2 0,5 0,4062 1,1677 0,7130

| oo |
2,2 0,352 0,3497 0,1380 0,6777
2,4 0,216 0,2379 0,0748 0,4281
2,6 0,104 -0,0783 —0,0355 0,2628
2,8 0,028 -0,1883 -0,2106 0,0801
3 0 —0,0540 -0,4737 -0,1218
{ 0,5263 }
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2 (2(1-2) - (=) (14a)— 2 (1-a2)
fOI' _léxéxly

=(1+2)2%(1—x)— 2—5{(1—902) for x;=x=<1

=(3-2z,)(1 +x)—%(l—x2) for -1sz=<2,-1,

~2(1 =)~ (1—o) — (L= (1) = 2 (1 —a?) |

for ;—1<zx=x,

2H

=(142x)(1-2x)— 7(1—902) for ;=x<1

= (2—z;)2(14+2) — —Q?H(l—xz) for ~1<z=<x,-1,

= {2(1+x)—x12}(1—x)~g§(1—x2) for ;,—-1=s2=<1

=0 for z, = 2.

and

and
O=x,=1,

and
1 §x1§2=

103

(6)

For v=1 we write down the formulse for all partial deflections 7,1, %15- - -,
1911 €b¢. being considered, as it presents no advantage at all to combine them.

We find with (16, 36) for »,,,

2

5(7)114‘7712): 1+ for x<t—2,
=(14+z)(t—1-2x) for t—2=<x=
=0 for x2t—1,

2

5(7713‘1‘7714):0 for x<3—1t,

=23 —x—1) for 3—t<x<

t—1,

4 —1.

Further on we find with (16, 35b), (16, 35¢) and (5) for Nmnj (M=2 and 3)

4
ey =—e'+ 3 +1+1

for x<1—t¢,
4

=—el+(2-x)et* 141 (1-2)® for z21-1¢

=—eltel1+t+3 for x<1—¢,
=—eltel 1+ (2—g)ettr 1121 1(1—2)2—1
for 1 —¢tsx<2—4,
= —el el 1+ (2 —x) (elte—1 —etta-2)
for xg2——t

4
"ﬁ("]zm“‘ ’7213) =0
= (2¢—5)et2+112—-3¢+5 for x =3¢,
= (2t—5)et2+{2(3—x)2—(2¢+3) (2—x)}et+”°—3
+3(1—x)2 for x=3—1

8 Abhandlungen XI

for 0=
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—];7’221:0 fOI‘ Oétgl—x,
= —(1—2z)(ettel —f—x) for 1 —x<t<2—u,
= — (1 —x) (et 1 —elt®—21) for 2—x<t<3-—u,
=—(1-z) (ett®1_ptte—2_ptte—3,p 23} for 3—x<t<4-—uz,
4
5(772224‘7)223):0 for 0=t=3-uz,
= (1-2){(2t+2x-5)et*3+t+x+4} for 3—x=<t<4-—ux,
%77231:0 for 0<t<3—u,
=—(2-x)er*3-1(1-2)%+3} (2-2¢+2) for 3—x<t<4-—ux,
4
—?;77311=0 for 0st<1+u,
=el@1_1(—x)2-1% for 1+zx<t<2+u,
=el~*1__gl—22 _¢4p4+1 for 2+x<t<3+ux,
1
= gl~w-1l_gi~z-2_3 e““"3+§ (t—x~1)2~—3— for 3+x=Zt4+ux,
4
‘?;(’7312"'”’)313):0 for 0<t<3+x,
=—(2t-2x-T)el* 3L (t-x—-4)2-} for 34+x<tl4+x,
4
3»,]321=0 for 0Zt<3+x,
=2e-23_2¢4+2x+4 for 34+x<t<4+u.
-z -92-
a vé-0 A vt=04
1 vOandy-1 _ iid
-7 lﬁ 7 X -/v Gz 7
o1 o4
024 221
2 2
P »
L-a/ vt-42 l-a7 vt=46

w

9
7

a1

w

4
7
I3

Fig. 15a. The girder deflection as a function of z and v¢ with a
moving uniformly distributed load

(8b)

(8¢)

(9D)
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With the help of these formula we calculated » for v=0 and v=1. The
values are represented in tables XVIa, XVIb and figures 15a—15c.

-02+ R -0
o7 vt 08 o] vt vt-12
v=0
. e— — .
i v # 7 ) =0 [/,vd 7
/
ar4 974
924
A
Iz
L-g7 vi=1

v=7

a7

T
S
W
T

w

v
RINES

.427
g1 vé=1,6
v=0
X X
-7 Vot \’7!* 7
a14
z
;)
F-02
l-a7 ve=22
v-0
\ —
-7 4 1 x
las
0,2 a2
{03 03
z z
L P

Fig. 15b. The girder deflection as a function of z and vt with a
moving load, uniformly distributed
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vl<24 vF=28
XV;/
o x o
o4 01
024 224
2 2
vt-26 r 7%
a1 a1
v-1
v=0 &\ v=0 y=1
 — T P |
iy 9 X -7 X / X
Lor Cos
a2 42
L2.3 Lg3
Wi 2
P P

Fig. 15c. The girder deflection as a function of x and vt with a
moving uniformly distributed load

Table XVIa. The deflection 10%n|p for some values of vt and x with a moving
uniformly distributed load, for v=20

z
?k -1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1
0 0 0 0 0 0 0 0 0 0 0 0
0,2 0| 12,96 7,04 2,24 | -1,44 | - 4 |- 5,44 |- 5,76 |— 4,96 |- 3,04 | O
0,4 0! 33,28 | 30,72 | 12,32  -1,92 | -12 |-17,92 |-19,68 |-17,28 [-10,72 | 0 |
0,6 0| 43,12 | 54,80 | 35,28 432 | -18 |-31,68 |-36,72 |-33,12 |-20,88 | O
0,8 0| 44,64 | 63,36 | 56,16 | 23,04 | -16 |-40,96 |-51,84 |-48,64 |-31,36 | O
1 0| 40 60 60 40 0 |-40 —-60 —60 -40 0
1,2| 0| 18,4 41,6 49,6 42,4 20 |-17,6 |-50,4 |-58,4 |—41,6 0
1,4/ 0 |-12,4 2,4 24,4 33,6 30 13,6 |-15,6 [-37,6 |-32,4 0
1,6, 0 |-32,4 |-37,6 |-15,6 13,6 30 33,6 24,4 2,4 |-12,4 0
1,8 0 |-41,6 |-68,4 |-50,4 -17,6 20 42,4 49,6 41,6 18,4 0
2 0|40 —60 —60 —40 0 40 60 60 40 0
2,21 0 |-31,36 |-48,64 |[—51,84 |-40,96 | -16 23,04 | 56,16 | 63,36 | 44,64 | O
2,41 0 |-20,88 |-33,12 |[-36,72 |-31,68 | 18 4,32 | 35,28 | 54,88 | 43,12 | 0
2,6 0 |-10,72 1 -17,28 |-19,68 |-17,92 -12 |- 1,92 | 12,32 | 30,72 | 33,28 | O
2,8 0 |- 3,04 |[— 4,96 |- 5,76 |— 5,44 | — 4 |— 1,44 2,24 7,04 | 12,96 | O
3 0 0 0 0 0 0 0 0 0 0 0
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Table XVIb. The deflection 103 n|p for some values of vi and x with a moving
uniformly distributed load, for v=1

i
x s
i\ —1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1
\
0 0 0 0 0 0 0 0 0 0 0 0
0,210 -0,351 -0,351 | - 0,351 | — 0,351 | — 0,351 | - 0,351 | — 0,351 | — 0,351 | — 0,351 0
0,40 17,394 -2,956 | — 2,956 — 2,956 | — 2,956 | — 2,956 | — 2,956 | — 2,956 | — 2,606 | 0
0,6 0 32,426 29,821 | -10,530 | —10,530 | —10,530 | -10,530 | —10,530 | —-10,179 | — 7,674 | O
0,8/ 0| 44,144 56,571 33,966 | —26,385 | —26,385 | —26,385 | —26,034 | -23,429 | -15,856 | O
1 0! 51,815 75,959 68,386 25,780 | —54,570 | —54,220 | 51,614 | -44,041 | —28,185 | 0
1,2/ 0| 54,892 86,707 90,851 63,278 1,023 | -96,722 | —89,149 | -73,293 | —45,108 | O
1,4/ 0 33,835 88,727 | 100,542 85,037 40,069 | —34,963 |-139,458 |-111,273 | —66,165 | O
1,6/ 0 8,116 41,950 97,193 91,613 63,331 11,613 | —62,807 |-158,050 | —91,884 | 0
1,8/ 0| -23,298 | —14,832 21,608 84,074 71,744 | 44,074 1,608 | —54,832 |-123,298 | 0
2 0| -61,316 | —82,009 | -66,320 | —16,630 66,448 | 63,370 53,680 37,991 18,684 | 0
2,21 0| —83,785 -137,878 |-145,321 |-109,020 | —30,078 90,980 | 114,679 | 142,122 | 176,215 | O
2,410 —-81,972 |-152,506 |-185,988 —164,178 | —89,898 35,822 | 214,012 | 287,494 | 158,028 | O
2,6 0| -71,556 132,916 174,198 |-169,700 |—-101,114 30,300 | 225,802 | 267,084 | 148,444 | O
2,8 0| -49,308 | -91,611 z—114,991 -109,497 | —47,866 90,503 85,008 | 108,389 | 150,692 | O
3 0| -11,338 | —-22,665 | —18,192 15,560 90,837 15,560 | 18,192 | 22,665 | —11,338 | O
| | j

20. Final remarks and conclusions. We shall now discuss the results of the
calculations performed in chapters 76—19. Although we determined the cable
force and the girder deflection only for a few values of v, the figures 12—15¢
and the form of the formule (16, 25), (16, 35a)—(16, 35¢), (18, 6) (18, 11a)—
(18, 13) and (19, 4) show that, when the speed takes the value v=1, the cable
force and the girder deflection can have values much higher than in the
corresponding statical case, while for v>1 the two quantities mentioned tend
to zero.

According to (16, 12) the speed v=1 corresponds to a “‘critical speed’’

For the bridges mentioned in table I for which ¢,> 10 we calculated », and
we found for the

(1)

Mount Hope bridge: v; = 240 km/h;
Example: vy = 261 km/h;
New York Washington bridge: »; = 411 km/h;
First Tacoma bridge: v; = 403 km/h.

At ordinary girder bridges carrying moving live loads, there also exist
critical speeds, i.e. speeds at which the deflections show important deviations
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from their statical value. However here the deviations are much smaller,
while moreover the order of magnitude of the lowest critical speed is 1000 km/h,
thus being much higher than the critical speed »;. The figures 12—15¢ show
that at a suspension bridge the deviations are already important at a speed
v =1}, corresponding to a speed ¥ =} v,, which is of the same order of magnitude
as the speeds usual in railway traffic.

These results are quite different from the results obtained by KLOPPEL
and Lie!6). These authors calculated the forced vibrations for the linearised
~ case of a bridge with an extensible cable and a girder of any stiffness. Just as
at the free vibrations they found a solution by developing the girder deflection
in a Fourier series, thus applying an approximate method. For this reason
their results cannot inevitably be considered as right.

Of course our treatment of the problem has not been complete at all. It
would be worth while to perform the following supplementary work:

a) Determination of the forced vibrations for other values of v.

b) Determination of the free vibrations after the live load has left the girder.
For another source of danger at a suspension bridge being used for railway
traffic can be that at the moment at which a train has reached the bridge,
it shows heavy oscillations caused by a previous train, as it is not unlikely
that a suspension bridge has a rather small amount damping.

¢) Study of the forced vibrations for the non linear case.

d) Study of the forced vibrations of a bridge with an extensible cable.

e) Study of the forced vibrations of a bridge with a girder of any stiffness.

f) Study of the forced vibrations when taking into account the damping of
the bridge.

g) Study of the forced vibrations when taking into account the mass of the
moving live load.

h) Study of the torsional vibrations.

Nevertheless it seems very unlikely that the result of these additional
calculations will show that a suspension bridge with a perfectly, or a nearly
perfectly, slack girder in general can undoubtedly be used for railway traffic,
also because reducing the non linear differential equation for the deflection
into a linear equation tends to increase the deflection; the diminution of the
cable elasticity however decreases the deflection.

16) K. KrorrEL and K. H. L1E, loc. cit. p. 230—266.
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Summary

This article shows that a single-span suspension bridge with perfectly or .
nearly flexible girder is not suitable for railway traffic.

The static investigations comprise calculation of the cable pull and the
deflection of the stiffening girder for any given live loads and for various
cases of girder stiffness and cable extension. By reducing the problem to a
linear one, approximate solutions are obtained. A simple method is given for
taking horizontal displacements of the cable into consideration. Finally, the
work accumulated in various parts of the loaded bridge is discussed.

The dynamical problems of the natural and forced vibrations are examined
for such a bridge under different assumptions. The author shows that the
natural vibrations can be calculated by the method of the characteristic
functions. As regards the forced vibrations, with the aid of the symbolic
calculus, formule are derived for calculating the cable pull and the girder
deflections in connection with live loads of any form, moving at a constant
speed and illustrated by applying them on two special cases.

The results demonstrate that, contrary to those obtained by KLoPPEL and
Lig, the cable pull and the deflections of the stiffening girder caused by moving
loads become much greater than those caused by dead loads. The critical
speed is given at which these values attain their maxima. This critical speed
is comparatively low. It is probable that similar results would be obtained
for other cases than those investigated.

Dimensionless quantities have been used as far as possible in all calcu-
lations, whereby the work involved could be reduced considerably.

Zusammenfassung

Im vorliegenden Aufsatz wird gezeigt, dall eine einfeldrige Héngebriicke
mit vollkommen oder weitgehend biegsamem Versteifungstriger fiir den
Eisenbahnverkehr nicht geeignet ist.

Die statischen Untersuchungen umfassen die Berechnung der Kabelzug-
kraft und der Durchbiegungen des Versteifungstrigers fiir beliebige Nutz-
lasten und verschiedene Fille von Tragersteifigkeit und Dehnbarkeit des
Kabels. Durch. Linearisierung des Problems ergeben sich Nidherungslosungen.
Ein einfacher Weg zur Beriicksichtigung der waagrechten Kabelverschiebun-
gen wird angegeben. SchlieBlich werden fiir die belastete Briicke Energie-
betrachtungen durchgefiihrt.

Die dynamischen Probleme der Eigenschwingungen und erzwungenen
Schwingungen einer solchen Briicke unter verschiedenen Voraussetzungen
werden studiert. Der Verfasser zeigt, dall die Eigenschwingungen mit der
Methode der Eigenfunktionen berechnet werden konnen. Hinsichtlich der
erzwungenen Schwingungen werden mit Hilfe einer symbolischen Rechnungs-
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weise Formeln fiir die Berechnung der Kabelzugkraft und der Trigerdurch-
~ biegungen fiir beliebig verteilte Nutzlasten abgeleitet, die sich mit konstanter
Geschwindigkeit bewegen; diese Formeln werden durch Anwendung auf zwei
besondere Fille veranschaulicht.

Die Resultate zeigen, daBl, im Gegensatz zu den Ergebnissen von KLOPPEL
und Lik, die Kabelzugkraft und die Durchbiegungen des Versteifungstrigers
infolge sich bewegender Lasten bedeutend gréBer werden als infolge ruhender
Belastungen. Es wird die kritische Geschwindigkeit angegeben, bei der diese
Werte ihr Maximum erreichen. Diese kritische Geschwindigkeit ist verhiltnis-
miBig klein. Fiir andere als die untersuchten Fille diirften sich dhnliche Resul-
tate ergeben.

Allen Berechnungen wurden dimensionslose Groflen zugrunde gelegt,
wodurch der Arbeitsaufwand betrachtlich beschrinkt werden konnte.

Résumé

L’auteur montre qu’un pont suspendu & une seule travée avec poutre
raidisseuse intégralement ou, tout au moins, largement flexible, ne convient
pas pour le trafic ferroviaire.

Les investigations d’ordre statique portent sur le calcul de leffort de
traction dans les cables et des fléchissements de la poutre raidisseuse pour des
charges utiles arbitraires et différents cas de rigidité de la poutre et d’exten-
sibilité du cable. Le traitement linéaire du probléme permet d’obtenir des
solutions approchées. L’auteur indique un moyen simple pour tenir compte
des déformations horizontales des cibles. Enfin, il fait intervenir des considé-
rations d’énergie dans le cas de la mise en charge du pont.

Il étudie les problémes dynamiques des oscillations propres et des oscil-
lations forcées d’'un tel pont dans différentes hypotheses. Il montre que les
oscillations propres peuvent étre calculées par la méthode des fonctions
propres. En ce qui concerne les oscillations forcées et a 1’aide d’'un mode de
calcul symbolique, il établit des formules pour le calcul de Peffort de traction
dans les cibles et des fléchissements des poutres, dans le cas de charges utiles
d’une forme quelconque, se déplacant avec une vitesse constante; il éclaircit
ces formules en les appliquant & deux cas spéciaux.

Les résultats montrent que, contrairement aux conclusions de KLOPPEL et
Lag, les efforts de traction dans les cibles et les fléchissements des poutres
raidisseuses provoqués par les charges mobiles sont beaucoup plus grands que
ceux qui résultent des charges fixes. L’auteur indique la vitesse critique pour
laquelle ces valeurs atteignent leur maximum. Cette vitesse critique est rela-
tivement faible. Des résultats semblables doivent étre obtenus dans des cas
différents de ceux qui sont ici étudiés.

Tous les calculs sont basés sur des grandeurs non dimensionnelles, de sorte
que le travail effectif & prévoir est considérablement limité.
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