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Spannungen in Decken mit Strahlungsheizung

Les contraintes dans les planchers avec chauffage par rayonnement

Stresses in ceilings with panel heating

Professor Dr. Ing. Ernst Melak, Techn. Hochschule, Wien

Bei Decken mit Strahlungsheizung sind in der Decke nahe der Unterseite
Schlangenrohre angeordnet, durch welche Wasser mit einer Temperatur von
50—60° zur Heizung des unter der Decke Hegenden Raumes geleitet wird. Zur
besseren Wärmeverteilung pflegt man zumeist noch senkrecht zu den Rohren
liegende Stahlstäbe anzuordnen. Bei Betondecken kann man unter Umständen
diese Rohre und Stäbe auch als Bewehrung des Beton verwenden. Rohre und
Verteilungseisen sind dann vollständig von Beton umhüllt.

In einer solchen Decke treten infolge der Erwärmung Wärmespannungen
auf, deren Ermittlung der Gegenstand der vorliegenden Untersuchung ist.

Man kann die gestellte Aufgabe in der Weise idealisieren, daß man eine
Platte von der Dicke H betrachtet, in der im Abstände hx von der unteren und
h2 von der oberen Begrenzungsebene der Platte eine sehr dünne, wärmespendende

Schicht liegt. Wir beziehen uns auf ein rechtwinkliges Koordinatensystem;

sein Ursprung liegt in der wärmespendenden Schichte, in welche die
X- und Y-Achse fallen. Die Z-Achse liegt senkrecht hiezu mit der positiven
Richtung nach unten. Die Platte sei durch x ±a und y— ±b begrenzt. Wir
nehmen an, daß ein stationärer Temperaturzustand vorliegt, der also von der
Zeit unabhängig ist. Die Temperaturen T1 an der Unterfläche der Platte, _T2

an deren Oberfläche und _T0 der wärmenden Schichte seien gegeben. Wir
setzen ferner voraus, daß diese Temperaturen von den Koordinaten x und y
unabhängig sind. Dann werden alle Punkte, die in einer Ebene parallel zu den
Oberflächen der Platte liegen, die gleiche Temperatur T (z) besitzen, die also

lediglich von dem Abstände z von der wärmespendenden Schichte abhängt.
Nach der Theorie der Wärme muß die Temperatur bei einem stationären

Zustand der partiellen Differentialgleichung
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_d*T_ d^T_ d2T
_Q

dx2 dy2 dz2

genügen, die sich in unserem Falle zu der gewöhnlichen Differentialgleichung

d2T
dz2

0

vereinfacht. Für das Gebiet z ;> 0 gelten die Randbedingungen T=T0 für z 0,

T=T1für z hly für z<0, T T0für z 0und T T2für z h2.

Bezeichnet hT1 TQ-T1 und § T2 T0-T2, so lautet die Lösung für z ^ 0

T T0-8T1 ~ und für z^OT T0 + 8T2 -f.
Ali Alo

Führt man das thermische Verschiebungspotential 0 ein, welches durch
die partielle Differentialgleichung

A0 a7^Tm—1

gegeben ist und für welches sich in unserem Falle

ergibt, so erhält man die Spannungen aus den Gleichungen

(d20 m+1 „X ^„P®-"•(£-£H- ---**^y

(i)

und ähnlichen Ausdrücken für die übrigen Spannungen, also hier

für z^O .!ra aw -2ö«^±|[r0-83'1£|,

für z^O axx avu -2Ga^^T0 + 8Ti^.
Alle übrigen Spannungen verschwinden.

Spannungs- und Temperaturverteilung über die Dicke der Platte sind also
ähnlich und linear. Die Plattenränder sind aber nicht spannungsfrei. Da die

Verschiebungen u in der X-Richtung durch

30
dx

und zwei weitere ähnliche Gleichungen für die Verschiebungen v und w gegeben
sind, ergibt sich in unserem Falle u v 0, d.h. die Ränder x ±a undy= ±b

haben sich wie alle übrigen Punkte nicht verschoben. Für w ^erhält man
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für

für

z>

z<

also w 0 für z 0, demnach bleibt die Platte eben und hat keine Krümmung
erfahren.

<s2

1

Fig. 1

Die Spannungsverteilung nach Gl. (1) längs der Z-Richtung ist in Fig. 1

dargestellt und an jeder Stelle der Platte dieselbe. Auch längs der Ränder
x= ±a und y= ±b herrscht gleiche Spannungsverteilung. Die Spannungen
besitzen sowohl eine Resultierende N, als auch ein Moment M. Für erstere
ergibt sich

_/ +_r(a0-|§ffl-|SCT2) (2)

für letzteres
H2

M -Y^[~Sa1c1(c1 + Sc2) + 8a2c2(c2 + Sc1)] (3)

Hiebei wurde zur Abkürzung 8cr1 a0 — a1 und 8a2 ct0 — u2 ferner h1 c1H
und h2 c2H gesetzt.

Ist die Platte an den Rändern geklemmt, also verschieblich in der Richtung
der Plattenebene, aber nicht verdrehbar gelagert, dann können wir N durch
Überlagerung einer Zugkraft gleicher Größe zum Verschwinden bringen. Unter
der Annahme, daß sich diese Zugkraft gleichmäßig über die ganze Plattendicke

verteilt, ergibt sich eine zusätzliche Zugspannung

N
ls=-[cj0-^8a1--8a2j

oder wenn man hierin die bereits gefundenen Werte für die Spannungen
a0, a1 und o2 gemäß Gl. (1) mit 2 0, bzw. z h1 c1H und z= —h2= —c2H
einsetzt
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Damit erhält man die Spannungen an der Unterseite der Platte (z h1)

in der wärmespendenden Schichte (z — 0)

und an der Oberseite (z —A2)

M stellt das Einspannmoment an den Plattenrändern vor; mit Einführung
der Werte für die Spannungen ergibt sich für M und mit 2 G

(4a)

(4b)

(4c)

m + 1

7Y) H
M E -«—[c1(c1 + 3c,)S_T1-e,(c, + 3e1)__T1l

m x A_5
(5)

Die Fig. 2 zeigt die Spannungsverteilung längs der Dicke der Platte; sie ist in
allen Punkten der Platte dieselbe.

Fig. 2

A<5

Ae>

A&

Fig. 3

Diese Lösung stellt allerdings nur eine Näherung vor, da sich nach der
Theorie der Platten ein an den Rändern angreifendes Moment linear über die

ganze Plattendicke H und nicht so, wie in Fig. 2 dargestellt, verteilt. Aber die
Spannungsdifferenzen zwischen diesen beiden Spannungsverteilungen, die in
Fig. 3 dargestellt sind, haben weder ein Moment noch eine Resultierende, und
es kann daher nach dem Prinzip von St. Venant ihr Einfluß bereits in einiger
Entfernung vom Rande vernachlässigt werden.

II,

Liegt eine Platte mit gelenkiger Lagerung vor, deren Ränder seitlich, aber
nicht senkrecht zur Plattenebene verschieblich sind, so muß ein Einspannmoment

M'=—M hinzugefügt werden, wodurch der Rand momentenfrei
gemacht wird. Vollkommen spannungsfrei werden die Ränder allerdings nicht
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sein, aber der übrigbleibende Spannungszustand, den Fig. 3 zeigt, hat, wie
schon oben bemerkt, weder eine Resultierende noch ein Moment, und sein
Einfluß verschwindet sonach in einiger Entfernung vom Rand. Die Aufgabe,
die Spannungen in einer Platte zu bestimmen, an deren Rändern Momente
von gegebener Größe angreifen, ist unschwer zu lösen. Bezeichnet w die
Verschiebungen der Platte in senkrechter Richtung, so handelt es sich darum,
eine Lösung der Differentialgleichung

AAw 0

mit den Randbedingungen
d2w

w 0 und if-77-ö —M' M für x ±adx2

d2w
~dy

t*vl finden.

und w 0 und K -^^ -M' M für y ±b

Hierin bedeutet K eine Konstante, welche aus der Plattentheorie mit
K 12(m*-l) M^'

Wir lösen diese Aufgabe in zwei Schritten. Zunächst suchen wir eine
Lösung, welche die Randbedingungen

d2w
w 0 und K -7--k 0 für x ± adx1

und w 0 und K —-^ M für y +b^_^^,,____, («)
dy2

erfüllt und dann eine Lösung mit den Randbedingungen

w 0 und K -^-x M für x + adx2 ~

und w 0 und K —^ =0 für y ±b-^.n *_,_._._.,_ (7)

Diese zweite Lösung erhält man übrigens sofort aus der ersten durch
Vertauschung von x mit y und von a mit b. Die Summe dieser beiden Lösungen
besitzt dann die vorgeschriebenen Randwerte.

Um zu einer Lösung zu gelangen, welche die Randwerte gemäß Gl. (6)

d2 w d2 w
w 0, K -^—^ 0 für x + a und w 0, K -^-^ M

dx2, " dy2

für y ±b besitzt, verwenden wir den Ansatz

K-w J]C (üjy<&ina)y&o\ü)b — &o] to y co b <&in to b) cos to x (8)

Wie man sich durch Einsetzen leicht überzeugen kann, erfüllt dieser Ausdruck
die partielle Differentialgleichung für w. Auch der Randbedingung w 0 für
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y ± b ist bereits Genüge geleistet, während die Randbedingungen w — 0 und
K -z—» 0 für x + a dann erfüllt sind, wenn wir to ^— setz**™ ™™*n ™

d#2 ~ 2 a
eine beliebige ungerade Zahl bedeutet. Wir erhalten nämlich für K-^ aus
Gl. (8)

X

d2w
K~^Ä -2^^n2[^n^@tn^^(£of^n6-^of^^^6@ina)nö]cos^a. (9)dx2

.d2W
Für if -^—^ ergibt sich

d2w
KJy2 =~2^^2[-^y©tna;n^gofa>n6-eofa>n?/(2gof^6 (10)

— ton b ©ttl ton b) cos con x
und dies gibt speziell für y= ±b

K-~ =+^Cnton2 • 2<lo\2 tonb-cos tonx=M
d2w

Nun kann eine im Intervall —a^x^a eine konstante Größe M durch die
Fourier'sche Reihe

_^ 4J_r__1 1 nn l nir .t _ ^ _ \
itf 2j ~ sin ~^r cos ^^ I wn ~s— m1^ w 1, 3, o. }

7T ?i 2 \ 2 a j
dargestellt werden. Die Koeffizientenvergleichung der beiden Reihen ergibt
also

nir
4M nn 1 ™Sm~2~ 1

qiT-i M
nn 2 2&o\2tonb nn &o?tonb

2

Wir wollen nunmehr die auftretenden Momente Mx' und My' berechnen,
für welche sich nach der Plattentheorie die Werte

tjt {&w l d2 w\ _ _ Tr (d2 w 1 d2w\
x \dxz m dy1] \^V m %x2]

ergeben. Für die Plattenmitte, d. h. für x 0 und y 0 erhalten wir zunächst
durch Einsetzen des Wertes für Cnton2 aus der Gl. (9) und (10)

mr

Bx2 L n* do\2conb
2

nir

/r^^y81!! -cünb<Binconb+2do\ionb

2

und daraus mit — yn, con= — und — ß, also conb <pnß
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MX' -MZ smcfn
<Pn

Jf_ (ii»

Die Lösung, für die das Moment längs der Ränder x— ±a den Wert M
annimmt, während w längs der Ränder verschwindet, wird durch Vertauschung
von x mit y und von a mit b erhalten. So findet man

(12)

Die endgültigen Momente in der Mitte der Platte betragen also bei gelenkiger

freier Auflagerung an den Rändern

Mx Mx' + MX" und My My' +_¥/

und die aus denselben sich ergebenden Spannungen sind den Spannungen
nach Gl. (4a-c)

Ö1 -E m
m—1 (t-1)8*1 + ?srt

w m
<T0 — __/ i

u m— 1

— Mi OL

m—1

|ST1+|3r2

ig^+^-l^T,]
die im ersten Abschnitt ermittelt wurden, zu überlagern.

Die Werte von c„ —^# und c„ —~ sind für verschiedene Werte von
t x M u M

ß — in der folgenden Tabelle zusammengestellt, so daß für eine am Rande

gelenkig gelagerte Platte sofort die Momente in der Plattenmitte angegeben
werden können. Dabei liegt die Richtung der X-Achse stets parallel zur
kürzeren Plattenseite. Für M ist nach Gl. (5)

m H2M E -oc jw[c1(c1 + 3c2)8T1-c2(c2 + 3c1)8T2] zu setzen.
m — i j- _j

ff a
p=b 1,0 1,5 2,0 2,5 3,0

Cx

cy

0,651

0,651

0,834

0,465

0,914

0,405

0,963

0,342

0,990

0,330

23 Abhandlungen XI
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Ein Beispiel. Eine Platte mit dem Seitenverhältnis. ß 2,0 habe eine
Dicke von 12 cm; die wärmespendende Schichte liege in einer Entfernung von
2 cm von der Unterseite und 10 cm von der Oberseite der Platte. Es ist sonach

c1 2/12 0,1667 und c2 10/12 0,8333. Die Temperatur _T0 in der wärmespendenden

Schichte betrage 50°, an der Unterseite sei _T1 35°, an der Oberseite
T2 20°. Es ist also 8 T1 15° und 8 T2 30°. Der Elastizitätsmodul des Beton
beträgt 2,1-105 kg/cm2, der Wärmeausdehnungskoeffizient a=l,25-10~5 je 1°
und der Koeffizient für die Querzusammenziehung m 3.

Damit ergibt sich zunächst

E-^~- oc 2,1-105, 1,25 10-5. — 3,9375
m — 1 2

Ist die Platte an den Rändern eingespannt, so ergeben sich nach den
Gleichungen (4a-c) die Spannungen an der Unterseite

*.=-jäsM(t-])sy'+f87'']
-3,9375 [(0,0833-1) -15 + 0,4167 -30] +4,9 kg/cm2

in der Wärme spendenden Schichte

*--*__i~(l»*.+f".)
- 3,9725 (0,0833 • 15 + 0,4167 • 30) - 54 kg/cm2

an der Oberseite

*~*_-i-[2M,'+(2-i),ä'"]
- 3,9375 [0,08333 • 15 + (0,4167 - 1). 30] + 64 kg/cm2

Das Einspannmoment an den Plattenrändern beträgt

7Y) ttM E TaTö[Cj(cl + 3ca)8_T1-c,(c8 + 3c1)8_TJ

3,9375• 12 • [0,1667 (0,1667 + 3 0,8333) 15 - 0,8333 (0,8333 + 3 • 0,1667) 30]

-1260 kgcm

Entsprechend den für ß 2 zu entnehmenden Werten von ^ 0,914 und

cy — 0,405 treten bei freiaufliegenden Plattenrändern in Plattenmitte die
Momente

^ 0,914.1260= +1152 kgcm und ^ 0,405-1260= +510 kgcm

auf. M, Mx und My beziehen sich auf einen Plattenstreifen von 1 cm Breite.
Die durch Mx und My hervorgerufenen Spannungen kommen zu jenen für die

eingespannte Platte, nämlich +64 kg/cm2 an der Oberseite und +4,9 kg/cm2
an der Unterseite noch hinzu.
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Zusammenfassung

Die in einer Betondecke mit Strahlungsheizung auftretenden Spannungen
werden auf Grund der Theorie der Wärmespannungen in elastischen Körpern
untersucht. Bei geklemmten Rändern ergeben sich verhältnismäßig einfache
Ausdrücke, für freie Ränder können die auftretenden größten Momente für
verschiedene Verhältnisse der Seitenlängen der Platte einer Tabelle sofort
entnommen werden.

Resume

L'auteur etudie les contraintes qui se manifestent dans un plancher en
beton avec chauffage par rayonnement, sur la base de la theorie relative aux
contraintes thermiques dans les corps elastiques. Lorsque les bords sont
encastres, les expressions obtenues sont relativement simples; dans le cas des

bords portant librement, un tableau donne immediatement les moments les

plus eleves qui se manifestent pour differentes conditions concernant les

longueurs des cötes.

Summary

The stresses occurring in a concrete ceiling with panel heating are examined
in accordance with the theory of heat stresses in elastic bodies. In the case
of clamped edges, comparatively simple expressions are obtained; for free
edges, the maximum moments occurring for different ratios of the side lengths
of the slabs can be obtained at once from a table.
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