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Flambage des anneaux circulaires dans un milieu élastique
Knickung kreisformiger Ringe in elastischer Umgebung

Buckling of circular rings in elastic surroundings

L. Hanxw, Ingénieur Civil, Paris

I’exposé qui suit comprend 5 chapitres. Le premier indique les équations
différentielles donnant la fleche de I’anneau circulaire dans le cas général. La
solution de ces équations comporte des fonctions hyperboliques ou trigono-
métriques suivant la valeur du rapport:

3
4 [1 + 357 (- er)]
3\ 2

(2+ 1)
ou r est le rayon de ’anneau, / son moment d’inertie, # le module de Young,
p la pression que subit ’anneau et £ la constante du milieu élastique.

Le- deuxieme chapitre examine le premier cas correspondant a p? plus
grand que un et ou la fleche de I’anneau est donnée par des fonctions hyper-
boliques.

Le troisiéme chapitre examine le deuxieme cas correspondant a p? plus
petit qu'un et ou la fleche de 1’anneau est donnée par des fonctions trigono-
métriques.

Le quatriéme chapitre expose la solution approximative.
Le cinquiéme chapitre donne des applications numériques.

p? =

I. Equations générales

Considérons un anneau circulaire (C'), fig. 1, soumis & une pression cons-
tante p et supposons qu’il s’ovalise sous I’action de cette charge. Supposons
en outre que le milieu ol est plongé l’anneau peut opposer des réactions
centripétes seulement, autrement dit s’opposant & un allongement du rayon.
L’anneau déformé (I') subira donc dans la région B des pressions p et dans
la région C' D des pressions p plus les réactions du milieu élastique.

Nous designons par w le raccourcissement du rayon, supposé positif de
A a C et négatif de C'a D.
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Les réactions de 1’anneau déformé (I') en 4 sont les suivantes:

1. Une réaction verticale S égale & S,— S;, out S, est égal & pr et S; équilibre
les réactions du milieu élastique kw, k étant la constante du milieu.
2. Un moment M,.

Fig. 1

Dans une section E, située entre 4 et C, nous avons:
My=My+M,+Mgo+Mg,. (1)

L’ensemble des pressions p et la réaction S, transportée en B donne une
courbe de pression confondue avec le cercle (C), voir fig. 2, donc:

Mp+ Mgy = Sqw—Sywy = S (w—wy) = pr(w—w,), (2)
Mg, = —8;[(r—wy)—(r—w)cos 0] = — 8, [r (1 —cos ) +wcos 0 —w,], (3)

Par raison de symétrie il n’y a pas d’effort tranchant en D, donc:

D
+8; = [ kwsinfds, ds = (r—w)d 0,
¢

+8; = Icfw(r-—w)sin@d@.
5,

En négligeant w? par rapport a w, nous pouvons écrire:

90°

Sy =kr[wsin0dl=rkrdJ, (4)

90°
avec la notation: J = [wsin8d 6, (5)
[¢
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My, devient, en négligeant & nouveau w et w,, car §; le contient:

Mg, = —kr2J (1 —cos0). (6)
Nous avons finalement:

My = My+pr(w—w,) —kr?J (1 —cosf). (7)

Pour la zone C' D nous devons ajouter les moments dus aux charges kw, soit
(voir fig. 3):

-
M, = [kw(r—wg)sin(0—B)ds, ds = (r—w)dp,
2 )
et en négligeant les w? et w3:
0
M, = kr? [ wsin(0—B)dB. (8)

On a donc dans la zone C D:
M}" = ME+Mw, (9)

w est relié a M par la relation classique:

w"+w+ Vb =0,
ou:
w'+w+n2 M =0, (10)
la notati 2o T 11
avec la notation: =g (11)

Dans la zone BC, la relation (10), compte tenu de (7), peut s’écrire:

w” +(L+n2pryw+n2[My—prwy—kr2J (1 —cos )] =0, (12)

ou encore avec les notations:
M, =M,—prw,, (13) conE(My—kr2d)=A, (14)
14+n2pr? = u,?, (15)
w”+uw+A+n2kr2Jcos§=0. (16)
D’oui: w = B;cosu; 0+ Bysinu, 0+w,, (17)

ou B, et B, sont des constantes arbitraires, et:

Pt (18)

Les conditions aux limites conduisent aux relations suivantes: Pour 6 = 0,
w = w,, (17) donne:
wy =B, —4,—J;. (19)

Pour =0, w' =0, donc B,=0.

Pour 6 =, w s’annulle:
Bycosu;a—A;—J;cosa = 0. (20)
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Avant de poser les autres conditions aux limites, nous examinons la
zone CD.
Les dérivées de M,,, relation (8), par rapport & 0, sont:

0
M, =kr2 [ weos(B—-B)dB, (21)
x
9
M= kr?[w— [ wsin (0—B)dB] = kr*w—-M,,, (22)
x
D’ott compte tenu des relations (7), (9), (10):
M" =prw” —kr*JcosO0+kwr:—M,,, (23)
' 1
M"+M=My+prw"+pr(w—wy)—krJ +kwr?=— g (w4 2w" +w), (24)
ou encore avec les notations:
,‘ pr? =
24n2pr =2m? = 14u,? E—,j=u12—-1, (25)
1+n2pr+n?kr? = u2+n2kr? = s2, (26)
wlV +2m2uw” +s?w+4 =0, (27)

ou A est donné par les relations (13) et (14).

II. Premier cas p2 > 1. Fonctions exponentielles

Nous allons faire une hypothese sur les constantes s et m:
p2=—>1. (28)

Le cas correspondant a p%>1 sera examiné ultérieurement. Disons de suite

que la relation (28) donne une solution comportant des exponentielles, tandis

que l’autre cas donne une solution comportant des fonctions trigonométriques.
La solution de (27) est:

. . A
w = C;chufBcos v §+C,chubsinv §+Cysh u O cos v 0+C,shu Osinv 6’-8—2 =0, (29)
ou u et v sont liés aux autres constantes par les relations:
v2—u?=m2, v 4u=m2p, 2uv=m?Ypt—1 =mc. (30)

Afin de pouvoir utiliser plus facilement les conditions aux limites, nous
allons déplacer 1’origine de 'angle 6 de 4 en D. Les poussées p, Sy et M,
donnent en D,, fig. 4, un effort normal pr et un moment M, égal & M, —prw,.
Les réactions kw donnent une traction N, et un moment M, ;,:

,Z\/YwD = kT?I:LU Sil’l eld 91 5
0

o oo
M, =— Sﬂ"%—kﬁg wsin6,d 0, = —kr2J + kr? i‘) wsin6,d 6,
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Le moment des charges kw situées entre D et F par rapport au point F est

donné par: 0,

M, = +kr | wsin(0,—p)dp;.
0

En partant de D, le moment di & toutes les charges par rapport au point ¥
est donné par:

My =M, +prw+M,,—N,pr(l—cosbt)+Mw,

en négligeant les w? par rapport a w. En développant, compte tenu des valeurs
deM,,, N,pet M,, et en simplifiant:

My =M, +prw—kr2J (1—sinf,)— kr? lesin(ﬁl—ﬁl)dﬁl.
0.

Cette expression est identique a la relation (9);, sauf le signe de l'intégrale,
dit au changement de variable 8+, =90°. En appelant cette intégrale M,

nous avons:
ML, = krtw— Mw,.

Fig. 5

En répétant les opérations (23) et (24), on obtient d’une maniere identique
la relation (27), et par conséquent la relation (29), sous réserve de remplacer 6,
par 0. Nous pouvons aborder maintenant plus facilement les conditions aux
limites.

En D, pour 6,=0, w’' =0:
Cov+Ciu = 0. (31)

Compte tenu de la relation facile & établir:
M =Qr+pruw,

et ’effort tranchant @ étant nul en D et w’ également, M’ sera nul aussi. En
dérivant une fois la relation (10), on trouve immédiatement que w” est nul
également en D, done:

Cy(cu—v)—Cs(cv+u) = 0. (32)

En éliminant U5 entre (31) et (32):

%(uer?Jz)C’2 =2pv(C, =0,

16 Abhandiungen XI
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donc Cy,=0, C3=0, (33)

p+1
car, v =m]/p; et u = ml/? ne sont pas nuls, car p <1. (29) devient

done une fonction paire comme il fallait s’v attendre par raison de symétrie:
P 3 Y

. A
w=Clchu9100s091+04shu918m'v01——gz—. (34)
Une autre condition aux limites, w=0 pour 0, =«,:
. A
Cichuoycosva; +Cshuosinve, = R (35)

Les autres conditions aux limites sont données par le raccord des deux
branches de 1’anneau ovalisé en C (fig. 5).

Pour la courbe B(C: tgV = p—P, , sens positif C 7.
9
13} 9”9 ” DO: tg V1 = p_,ly %) s CTl.
P16

V+V1:7T’ thz_th1> Pc = Pics P=T+W,
donc: p'=—p, soit w 4w, =0, (36)
w, se rapporte a la courbe D C.

Compte tenu de la relation (10) et comme w est nul pour les deux courbes
a leur point de jonction, on aura:

\

w" =w,". (37)

Les efforts tranchants des deux branches sont égaux et de sens contraire en C?

done:
branche BC: Qr =M —prw’

branche CD: Q,r = M, —prw,’ ©=-o

en additionnant et compte tenu de (36):
M+ M, =0.

En derivant la relation (10) pour chacune des deux branches et en ajoutant
on obtient finalement:

W +w” =0, (38)
En somme les derivées de rang pair sont égales et du méme signe et celles de
rang impair sont égales mais de signe contraire. En développant ces 3 con-
ditions aux limites au raccord des 2 branches, nous obtenons en definitive:
la relation (36) donne:

— Byuysinuy o+ Jysina+ (Ciu+Cyv)shu o, cosvey
+(Cyu—Civ)chuosinve =0, (39)
la relation (37) donne:
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—u,2 By cos uy o+ J, cos o
=m?|(cCy—C;)chua,cosva; —(cC;+C,)shua,sinva,] (40)
enfin la relation (38), donne:

w3 Bysinu, a—Jysina+m?[(uc—v)Cy—(u+ve)Ci]shue, cosvay
+m2[(v—uc)C;—(u+ve)CyJchua,sinve, = 0. (41)

Nous pouvons établir une nouvelle relation, en écrivant que:
(s3] Ol . _A
J = [wcosh,db; = [Clchu(?leosv91+04shu 6, sinv 6, — :;5] cos6,d0,.
0 0

Un calcul un peu long mais élémentaire donne:

J=C’111+O412————A§sinal, (42)
ou: $
(U —402) I, = (U2—-2v)[ushua;cos (v+1)o;+(v+1)chua;sin (v+1)oy]
+ (U2+2’U) [ushuea,cos(v—1)oy+ (v—1)chua;sin (v—1) o],
(Ut —402) I, = (U2—2v)[uchua,sin (v+1)oa; —(v+ 1) shua, cos (v+1) o]
+ (U242v)[uchuo, sin (v—1)a; —(v—1)shwuo, cos (v—1)a,],
ol U2 =u?+0v2+1.

Nous avons 3 constantes arbitraires & éliminer savoir B;, C; et C,, 2 efforts
a déterminer M,, J, et enfin ’angle « et le raccourcissement w, du rayon 04.
Nous disposons de 7 relations, savoir 19, 20, 35, 39, 40, 41 et 42. Nous éliminons
les 3 constantes arbitraires et les deux efforts M, et J et nous obtenons 2
relations. En écrivant que w, soit différent de zéro, nous trouvons la valeur
de u, et de 'angle «. La valeur de w, nous donne, voir relation (15), la pression
critique qui peut faire flamber I’anneau.

B, est éliminé immédiatement entre les relations (19) et (20):

A (1 —cosu;a)+J,(COSa—CcoSu, o) = WwyCos Uy o . (43)

Nous éliminons C, successivement entre la relation (35) d’une part et les
relations (39), (40), (41) et (42) d’autre part. En remplagant en méme temps
B, dans les relations (39), (40), (41), par la valeur tirée de la relation (19),
nous obtenons 3 relations de la forme:

A
Cy = f; (w0, 2y) [(wo + Ay +J1) o (ug, ) + I 3 () + I’ 0; (u, v, “1)]
i=1, 2 3.
et une quatrieme:

A
Oy = f4(w,v, ) [J+ 5% 04 (u, v, “1)] .

Les fonctions ¢, (u,,a) et i, (x) sont tres simples, par contre les fonctions
fi (u,v,04) et 6; (u,v,a;) sont un peu plus compliquées. En éliminant C; entre
ces quatre relations, nous en obtenons 3 nouvelles relations:
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n?r 1 N, nPr . o L; B
br | (= ) e G T R] T = e (e ) s

auxquelles nous joignons la relation (43) qui peut étre mise sous la méme
forme, donc 7z = 1, 2, 3, 4.
Les coefficients L,, N,, P, sont des fonctions assez simples de u,, «, u, v, «,.
Nous pouvons encore écrire ces quatre relations sous la forme:

ou encore: wo Ly +d (L;+eP) M,

WL, tbN;tcB "
t étant la valeur commune des quatre rapports. Considérons les 2 déterminants:
L, N, P, f i L, N, P,
A3= LzNsz‘: A4: L2NzP2/>
L3N3P3}‘ L4N4P4E

et appelons 83, 8, les déterminants mineurs, par exemple:
En égalant les rapports deux a deux, nous obtenons les trois relations suivantes:

[b (83 P3) —c (83 Ny) wy = [e(b-83 Ly—a-33N3)+d(c-33 Ny —b-8; Py)] M,
(685 Py). ..
b8y Py). ..

La deuxiéme relation se déduit de la premiere en permutant les indices de
L, W, P, soit remplacer 1’indice 3 par 2. La troisiéme relation se deduit de la
deuxiéme en remplagant l'indice 3 des déterminants mineurs 6, P, etc. par
U'indice 4, autrement dit mettre 5, P, etc. Enfin en éliminant w, et M, nous
obtenons les 2 relations fondamentales:

[E]: (33 Py-83 Lig—083 P3-03 Ly) —a (33 Py-03 Ny —33 Py-03N,)
+¢ (33 Ny 85 Ly— 03 Ny-83 L) = 0,

[Ez]: b(84P2-83L3—83P3-84L2)——a(84P2~83N3—83P3-84N2)
+¢(83N4:8, Ly—8,Ny-6;5 Ly) = 0.

Nous indiquons ci-dessous les expressions des coefficients a, b, ¢ et des fonctions
L,l: ) Ni ) P'l: .

n2r 1 1 n2r
a:————z—-—-—’ b:.__4,, c=‘24’
Uy P P $§
— 2. Si 2
Uy Sinu, u,% coS U, o

U wsh2uoy +usin2va;  uv(ch2ue, +cos2va,)

28in o COS &

,
vsh2wuoy, +usin2va, +uv(ch2ucx1+cos 2vay)

1=
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2 (veotgw oy +ucothuwoy) 2 (ccothu oy cotgvay —1)uv
Nqq € Nyo

P, =

Ny 66 1y, sont les dénominateurs des deux termes de L;.

¢ 31
2 ;%810 Uy o0

fa=—lut m2[(v—uc)sh2uwo, +(u+vc)sin2ve,]
- 2sina
Ny =—Nyp— -
22
P2=_P12+gL(uc—v)cotgvocl—(u-}—vc)cothuocl].m2

N

ou Ly, Nip et Py, sont les deuxieémes termes de L, N, et P, et ny, le dénomi-

nateur du deuxieme terme de L,.
Ly =—1Ly,

P
Ny =Ny~ _ -
3 o kr(I;shua;sinve, — Iychua, cosvay)’

PP (sinay —Jy/shuo,sinva,)
3 = L33 KT 3
N32

ou Ly, N,;. P,, sont les premiers termes de L,, N,, P, et ny, le dénominateur
11 11 11 1 1 1 32

du deuxieme terme de N,.
2
s

L,=cosu;a, N,=—cosa, P,=——.
4 1%, 4 5 4 2q2

Le mode de résolution des relations E; et E, sera exposé en détail dans le
cas p2< 1.

Deuxiéme cas o2 < 1. Fonctions trigonométrigues
p

Dans ce cas la solution de 1’équation (27) est:
w = C;cosul;+Cysinuf, +Cscosvl,+C,sinvl, — S
ou: V24Ut =2m2, uv=mdp, vi—u®=2m2yl—p?. (44)
Comme dans le premier cas, les conditions aux limites donnent:

w =0, u Cy+v U, =0,

0, =0
1 w///=0, u302+v304=0’

d'ott: Cyu(¥2—u?) =0, or v2—u? £0, et u2=m2[1—yY1—p2] % 0, car p<l1,
donc C, et C, sont nuls. On retrouve a nouveau une solution comprenant

uniquement des fonctions paires:
A
szlcosu91+C3cosvﬂl—?, (45)

w =0 pour 0; = oy:

A
Cicosuoy+Cycosva, = o (46)
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w' +w," =0, pour §;, = «, (voir relation (39)):
—uy; Bysinu,oa+J sine—uCysinua; —vCgsinvoay = 0, (47)
w” = w,”, pour 0, = «; (voir relation (40)):
—u,2Bicosu, a+ Jycosa = —u2C cosuoy —v2Cyc08vay, (48)
w” +w”; = 0, pour 0, = «, (voir relation (41)):
uy® Bysinu, o — Jysina+u3C;sinuoy +v3C5sinve; = 0, - (49)

La relation (42) prend dans le deuxiéme cas la forme:

A .
ou: ; )
7, usinux cosa —sine cosuay
! u?—1 ’
7 VSN ¥ oy COS o — SinN o COS ¥ oty
2 = .

v?—1

Les éliminations successives se font exactement comme dans le premier
cas. On remplace la valeur de C; en fonction de €, suivant la relation (46) et
B, en fonction de A,, relation (19), dans les relations (47), (48), (49) et (50).
Nous obtenons quatre relations analogues aux relations du premier cas ou C,
figure seul dans le premier membre. En éliminant C'; entre ces quatre relations,
nous obtenons 3 nouvelles relations de la forme:

A
Li(wo+A1+J1)+NiJ1+Pi? =0, (51)
ou les coefficients L;, .V;, P, ont les valeurs suivantes:
I U, Sin u, o U2 CcoS U, o (52)
s . Dz
17 peosuoytguoy —usinua;  (v2—u2)coswuoy’
—sina  COS &
N; = — ; (53)
LGN Nyp
vtgva, 02
p, - ViBra_ 1 (54)
1 N2
ol 7., 7, sont les dénominateurs des 2 termes de L.
u,381n U, «
L2=_L12+ 3 o: ! 3 ! ) (55)
U SIN U oy — V2 COS U oy b v oy
sina
7
Ny=—-Nyp——, (66)
Moo
|3
v g v oy
Py, =—Pj,+ e (57)

22

ou Ly, Ny, Pys, sont les deuxiémes termes de L;, N,, P, et ny, le dénomi-
nateur du deuxiéme terme de L,.
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Ly = Ly, | (58)

P eosva,
N, = N, — Peosv™ (59)
. u kr ng,

3

I,—sina, cosva,
b
I,cosvay—1,cosuay

ol Ly, Nyy, P, sont les premiers termes de L;, N,, P, et ng, le dénominateur
du deuxiéme terme de P,. La relation (43) peut étre mise également sous la
forme (51), avec les notations suivantes:
2
L, =cosu;a (61), N,= —cosa (62), P,=— ?78—2, (63)
1
Compte tenu des relations (14), (15), (18), les quatre relations (51) peuvent se
mettre sous la forme:

. n? n2 L. u2—1 _
i=1, 2,3, 4.

11 reste a éliminer w, et M, entre les quatre relations (64), et on obtient
finalement les deux relations fondamentales:

By =l Ly+logg Ly+1g3 Ly = 0,
By = lyg Ly +1pg Ly 41y Ly = 0,

ou [;3 et [, 4 sont les déterminants mineurs des 2 déterminants:

L, L, L L, L, L,
A3=‘ a; 4y az |, d,=1 a; ay a,
by by by | by by by |

Les deux équations K, et K, peuvent étre simplifiés notablement. En dévelop-
pant les deux équations, et en y remplacant les coefficients a;, b, par les
valeurs des relations (65), on trouve:

P, P, P, : i P, P, P,
B, = N, N, N; | =0, B, = i N, N, N, =0 (66)
Ly Ly, Ly | . L, L, L,

La résolution de ces deux équations peut se faire de la maniére suivante.
On se donne & priori une valeur de u,, dont la signification est donnée par la
relation (15), et qui définit la pression critique. On construit la famille des
courbes: »
E1=f1(oc1,8)=0, E2=f2(°‘1:8) = 0, (67)
ou s définit les caractéristiques du milieu élastique, voir relation (26). On
obtient ainsi un double réseau de courbes & deux paramétres s et «, (fig. 6).
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Les valeurs des paramétres s et «,, lues par interpolation, au droit de ’origine,
annulent les deux relations (67). Nous obtenons ainsi une série de couples de
valeurs s et u;. C’est & dire si on connait £ on peut déterminer «,, le probléme
est done résolu. Pour construire les cour-
bes E,, E,, u, étant connu, on choisit une

f24 valeur «; et on fait varier s. Une valeur
\ de s étant arrétée, les relations (30) don-
\ ) nent u et v immédiatement. On peut done
\ A 0 AN £, calculer toutes les fonctions L;, N,;, P;,
a_% '7 N suivant les relations (52) a (60), et par
\ = conséquent L, et E,. Tous ces calculs
_V< s sont extrémement longs. Nous indiquons
_ dans le chapitre suivant comment on peut

Fig. 6 les abréger un peu.

IV. Selution approximative

Nous admettons & priori pour w ’expression suivante:

w = —w,sin B (0—«), ;9:*21;—1, (1)

w s’annulle en C et prend la valeur —w,; en D, (fig. 1). Nous pouvons calculer
immédiatement J, relation (5):

J:

_ w1 fsina
g1

Nous allons résoudre I’équation différentielle (10) dans chaque zone.

(2)

Zone CD

Nous rappelons I’expression du moment; en partant de A4 (fig.1):

9
Mey=M,+prw—Fkr2J(1—coslO)+kr?fwsin(0—¢)de,
o
ou encore:
My=M,—kr*J)+prw+kr*F(9), (3)

[/}
F@)=Jcos0+M,, M, = [ wsin(@—¢)dgp. (4)

En connaissant la fonction w, le calcul de M, est immédiat. Nous obtenons

(fig. 7):

F-1

L’équation différentielle (10) prend donc la forme:

M, = [Bsin(e—-a)—sinﬁ(e—oc)]. (5)

w' tulw+A+n2kr2 F (0) = 0. (6)
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Solution:
w = Cycosu, 0+ Cysinu, 0+w—A,,
W= —J;cos0+yw, [—i—sin(@—a)+csin,8(0—oc)], (7)
kr n2r A
YTET ST poay DT

Conditions aux limites:
pour 0 =o, w=0, C;cosu,a+Cysinu,a = J;cosa+ A4,. (8)

Nous admettons une nouvelle hypothése, on suppose que le moment de
flexion est nul en C'. w étant nul en ce point, w” le sera également, suivant la
relation (10), on aura donec:

— 2 (O cosu;a+Cycosuya)+J,cosa = 0,

ou encore si on remplace les termes sous paranthése par la valeur équivalente
fournie par la relation (8):

Jycosa = u,2(Jycosa+4,)

ou Ji(1—u?)coso = u 2 4, ©)
pour 0=90° w' =0, donec:

—ulOlsinTLQu—l +u10200s77;1=0, OzzOltg7%ul, (10)
pour 0 =90° w= —w,, soit compte tenu de la relation (9):
C’leos7—72ﬂl + C,ysin % +ywy (c+ gcos oc) — (i;l?;lz) Jicoso = —uwy. (11)

Zone B C

Les relations (17), (18), (19) et (20) sont évidemment
valables.
Des relations (20) et (9) ci-dessus, on obtient:

J,cos «
5
Uy

Bicosu;o = (12) Fig. 7

En égalant les w’ des deux branches a leur point de rencontre et en remarquant
qu’ils ont les mémes signes, car les w des deux branches sont rapportés a la
méme origine 0, nous obtenons:

. ) 1
Ozcosuloc—C’lsmuloH—yulﬁ (c+ r) +J1008a123g1L1a = 0. (13)
Uy P Uy

11 est facile de vérifier que pour la branche 4 C, w” est également nul en C,
donc les deux branches se raccordent aussi bien que dans le calcul exact. La
relation (17) donne dans ce point:
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”

w” = —u,? Bycosu, o+ J, cos o,

qui est nul comme le montre la relation (12).

Les deux branches passent donc par le méme point C et ont la premiére
et la deuxiéme dérivées égales au droit de ce point. Nous éliminons C, et les
relations (8), (13) et (11) deviennent:

wy cos05mu, B

8): C,=—-3% — o —ysin2 14
(8) ! w2 CoS Uy o 2p VP (14)

(13): C, = w,By 008 0,5 7y (sinZatgulg —-c-—l), (15)
u,  sinwuyay 2puy p
m™U (l—u 2) s
(11): C, = — 1wy cos -+ = { 1+yc+y§ COS o [1+ *722171' Slna]} (16)

Enfin en éliminant C, entre ces trois relations on obtient les deux relations
fondamentales de (8) et (13):

sin 2 asin 0,5 7 u, B2—1
¢ = 2 27
2uy COS Uy X COS Uy 0 PB2—uy

[A]

de (14) et (16):

sin2cx< 1 -—1) —(l—sinoc)COSoc=(ulz—l)(/82 ! +}92__1), [B]

2u,% \cosu, o B — U, a

ou:
krt

— 2 ]2
a =n2kr =77

= 8% —wu,2. (17)

La résolution des équations [A] et [B] est facile. On détermine les racines «
de [A] pour chaque valeur de u,. On remplace les couples de valeurs u,, «,
ainsi trouvés, dans la relation [B] et on trouve les valeurs correspondantes de
a. Le probléme est donc résolu, car pour un k donné, on connait u,, donc
1+n2pr, c’est & dire la pression critique p.

Il est tres aisé de résoudre 1’équation [A], il suffit pour cela de tracer la
courbe et on voit de suite les racines. Ces courbes ont 1’allure indiquée par la
fig. 8, correspondant & u, =5. On constate en tragant ces courbes que le nombre
de racines de chaque courbe [A] croit avec u, et que pour u, pair et >2iln’y
a pas de racines. Remarquons qu’une racine apparait immédiatement:

90° _90°

B = U4 — o "
1 ’ 1

Nous donnons ci-dessous un tableau indiquant pour quelques valeurs de
u,, les valeurs correspondantes de a, ce qui constitue d’ailleurs le but de cette
étude. A la fin du tableau nous indiquons les valeurs de p2, c’est-a-dire:
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4 (@ + u4?)
(L+u,?)?
L’examen de ce tableau montre que %, croit avec a, donc avec k, autrement

dit la pression critique croit si la résistance élastique croit. D’autre part le
domaine p?> 1, premier cas, dont la solution exacte comportait des fonctions

2

AA HT

Fig. 8

exponentielles, tres difficiles & manier, est tres limité. Cela correspond & des
résistances tres faibles du milieu élastique. Une autre remarque est & faire
concernant le mode de flexion de 1’anneau. Le tableau montre que «, croit
quand %, diminue, autrement dit la flexion diminue avec u,, donc avec p, et
tend vers une limite, soit 45°, comme on verra plus loin. Cette limite correspond
a une résistance nulle du milieu élastique. Autrement dit si la résistance du
milieu élastique augmente, la charge critique augmente également et 1’anneau

w | 3 [ 5 7 g 9 | 1 i 13 | 15 i 17 | 19 \ 21 ! 31
|
1j5o°30' 33° — |24°3071 19°207 16°— | 13°37/|11°49 |10°29’| 9°247| 8°31/| 5°47/
2 | 27°— | 22°— |18°407[16°22’ | 14°32’ 13°6 | 8°47’
% | 3 | 20°37 | 25°30722°407 |20° 12| 18°15’| 16°37'| 11°26
4 | | ; 14°55
5 | \ | 16° 50
1 f 26 | 387 | 518 | 1350 | 2920 | 5580 | 9850 |16100 |24800 | 36900 |174000
2 1290{ 2580 | 4720 | 7750 | 13900 |18250| 87500
o 3( | 1158 | 2085 | 3450 | 5640 | 7900 12700 | 56500
4 | | | 33700
51 \ | | \ | 27500
s e LI : S ; ‘
P | >1L >1‘ <l! <1 J‘ <1 | <1 | <1 o<1 ’ <1l | <1 <1
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fléchit davantage. Examinons le cas limite, quand la résistance élastique tend
vers zéro, c¢’est a dire quand a tend vers 0. L.’équation [B] peut s’écrire encore
sous la forme:

(B2 —u,2)Ba[} (1 —cosuyo,)sin2o—u,? (1 —sina) cos a cos u, o ]
= (u,®— 1) u?[a+ (B —1) (B> —u,®)] cos u; oy,

qui tend pour a¢ — 0 vers:
uy® (uy®— 1) (B2 = 1) (B* — u,?) cos uy oy = 0. [Bo]
L’équation [A] peut s’écrire sous la forme:
(B2 —uy?)sin2as8in 0,5 ru; = 2u,%(B2—1) cosu; acosu; «; . [Ao]

En consultant le tableau ci-dessus, on voit que u#, <3. En excluant la valeur
u; =1, qui donnerait p nul, il nous reste u; =2. Le premier membre de [A,]
s’annulle, car 0,574, vaut 7. En excluant de méme la valeur 8=1, valeur
inadmissible, car alors «; serait égal a 90°, il n’y aurait donc pas de flambage.

I1 faut done:
cosu;« = cos2a = 0, donc « = oy = 45°.

Dans ce cas [B,] s’annulle également. Or la valeur u, =2, correspond bien au
cas de flambage classique d’un anneau circulaire, en effet, voir relation (15):

3
pr -3

3
P =u? =4, 7=

1 2or =14 5= =
+n? pr + 57
Une derniére remarque. En général u, atteint rapidement des valeurs considé-
rables. Pour «, =3, nous avons:
pre
23,
EI
presque trois fois la pression critique d’un anneau libre. Donc le flambage d’un
anneaw dans un miliew élastique a liew difficilement.
Il nous reste a donner quelques applications numériques et a estimer
I’écart entre le calcul exact et le calcul approximatif, ce qui fera 1’objet du
chapitre suivant.

V. Applications numériques

I exemple. Anneau en béton de 60 m de diameétre, de 30 cm d’épaisseur,
completement enterré dans le sol et constituant blindage. On se demande si
cet anneau ne risque pas de s’ovaliser et de flamber méme sous 1’action des
poussées dues aux terres et a l’eau.

Nous allons estimer la valeur du coefficient fondamental ,,a‘‘. Admettons un
coefficient k; égal & 3 kg/em3, c’est-a-dire que le sol s’enfoncerait de 1 cm pour
une pression k£ de 3 kg/cm? C’est en somme un sol assez mou. Considérons un
anneau de 1 cm de hauteur.

]
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303
I=1. 15 = 2,25-103cm?, E = 105 kg/cm? (béton)
3.34.1012
== ‘OO = — = . 4.
r = 3000 cm, a 5.95.10%- 105 108-10

En consultant le tableau précédent on voit que u, dépasse 31 ce qui est une
valeur considérable. Posons le probleme inversement. Supposons que ’anneau
est enterré a une hauteur de 10 m et supporte une pression de 13000 kg/m?2,
due a un sol immergé.

Nous avons donc:
pr®  1,3-3%-10°

> BT~ 105-2,25-108 = WP =wi— L

p = 1,3 kg/cm?
%, = 13 environ.
Suivant le tableau ci-dessus le @ correspondant est égal a 2085, soit:

3-2085 0,58

k= 108104~ 100

kg/em?2.

En réalité a 10 m de profondeur k£ doit étre beaucoup plus grand, ’anneau
ne peut donc pas flamber.

gtme exemple. Anneau en béton de 1,65x 1,65 m de section et de 140 m de
diameétre. Cet anneau est contreventé comme une roue de bicyclette par des
rayons en acier, 4 & 16 m/m tous les 3,50 m. La longueur d’un rayon r, est

d’environ 60 m.
Si le rayon de 1’anneau s’allonge de 1 cm, alors un groupe de fils oppose

une résistance de:

1
F=—FK,0=——"-21000-800 = 2800 kg

ry T 6000
pour 3,50 m de longueur, soit:
2800
k= = 2,
350 8 kg/em
Moment d’inertie de ’anneau:
1654
I =05 =62:10°cm?, E, = 10°kg/em?,
4 8 .- 70004
a=~k¢ 7000 _ 3100.

57 10562105
D’apres le tableau, u, est environ 13, donec:

3
gl:ulhl — 168,
b

soit 56 fois la charge critique d’un anneau libre. Effort de compression critique

de Vanneau: 168 B, [
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Contrainte critique du béton:

_ 168 H,p* 168 B,

n.,. =
cr 72 A2 2

ou A est I’élancement compté par rapport au rayon et p le ravon de giration
de la section de 1’anneau.

2 _ P°
PP =15 h=165cm, r=T70m,
1272 12-702
2= o =-s==— = 21500
A h? 1,652 ’
168-10°%
= = 2,
er = 517500 780 kg/cm

3. Comparaison des formules exactes avec les formules approximatives.
Considérons le couple de valeurs:

u, =9, a=1350, « = 19°20’

extraites du tableau ci-dessus. Ce sont des valeurs numériques établies avec
les formules approximatives.

p? étant inférieur & 1, w est donné par des fonctions trigonometriques,
deuxiéme cas. ,

Dans le sens de la figure 6 et a 1’aide des relations (66), nous pouvons
tracer le réseau (¥,, E,, s, «;). Voici quelques valeurs que nous avons trouvées,
en remplacant s par a et en nous rappelant que ces 2 coefficients sont liés par
la relation (17):

a = s2—u,® =s?—81.

Tableau des valeurs voirsines de [’origine

2 | a 18 E, | 10*E,
| |
g 1397,4 ~L9 | =17
| 13975 431 { +1,33
| 1569.61 ~3,6 ~1,99
| 1569,69 +2,9 11,66
- | _
orer | 1579,37 -53 | -2
17°57 | ’ . ,
| 157943 +1,5 f +0.,8
o l O .
l7oser | 1582,65 —50 | —22
| 1582,71 +2,7 | +15

La figure 9 indique les courbes correspondantes, qui ont été remplacées
par des droites, car les valeurs de a sont trés rapprochées. Afin de faire ressortir



Flambage des anneaux circulaires dans un milieu élastique 245

10°%,

+ 3 L

0,
4
70252 ’180
o7
03
0 5‘
0’175 N /J
il F—t—t 4+ {Lﬁ 0‘5 A< %7/0[’
. ar a2 a4 / 10
Y -ar
d~/’17 \\ V//
024 19
1B \ &

A\ /
04+ W

e

Fig. 10

plus clairement la région voisine de 1’origine, nous avons augmenté 1’échelle
et la figure 10 nous permet de trouver les racines par interpolation entre les

i let 2:
puits 1 point 1: a~1397,45, o= 19°

point 2: a ~1569,65, o = 18°
Racines: a ~ 1562, o= 18°3'
L’erreur est de 1’ordre de 169,.

Nous indiquons & toutes fins utiles 1’allure des courbes (E,, F,, «, a). Ces
courbes ont trois points & I’infini, a savoir:

u=1v=64, a = 1600, Uo = 90°, a =0,
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d’out une branche située dans la zone + K, + K,, ayant deux asymptotes,
dont une paralléle & 1’axe E, et correspondant & a nul et ’autre & wa« égal
& 90°. Cette branche étant située nettement en dehors de 1’origine ne présente
aucun intérét. L’autre branche a également deux asymptotes, dont une
correspondant & a égal 4 1600 et ’autre & u « égal & 90°. Ces branches encer-
clent en général ’origine, mais elles se détachent rapidement & partir de «
égal & 17° environ.

Résumé

Le but de cette étude est le calcul de la charge critique de compression
d’un anneau circulaire soumis & une pression constante et plongé dans un
milieu élastique. Nous avons résolu le probléme du point de vue théorique.
Mais les calculs numériques étant trés difficiles, nous avons indiqué également
une solution approximative qui permet de calculer tres facilement la charge
critique. Un tableau de ces charges applicables a presque tous les cas pratiques
évite tout calcul et 'application en est immédiate. 2 exemples numériques
montrent la fagon dont on doit utiliser ce tableau. Un troisiéme exemple
numérique montre que l’erreur commise en employant la solution approxi-
mative au lieu du calcul exact est faible.

Zusammenfassung

Die vorliegende Untersuchung bezweckt die Berechnung der kritischen
Drucklast eines kreisformigen Ringes unter konstantem Druck undin elastischer
Umgebung. Der Verfasser hat die Aufgabe theoretisch gelost. Da die numerische
Berechnung sehr schwierig ist, hat er auch eine Naherungslésung angegeben,
die eine einfache Bestimmung der kritischen Last erlaubt.

Eine Zusammenstellung der kritischen Lasten, die sich auf fast alle prak-
tisch vorkommenden Fille direkt anwenden laBt, macht jede Berechnung
iberfliisssig. Zwei numerische Beispiele zeigen die Anwendung dieser Zusam-
menstellung, wihrend an Hand eines dritten Beispiels bewiesen wird, daf3 der
Fehler der Niaherungslosung gegeniiber dem genauen Resultat klein ist.

Summary

The aim of this study is to calculate the critical load of compression of a
circular ring, subjected to a constant pressure and placed in elastic surroundings.
The author has solved the problem theoretically, but the numerical calculations
being very difficult, an approximate solution has also been indicated. This solu-
tion allows the critical load to be calculated easily. A table of these loads, appli-
cable to almost all practical cases, enables calculations to be avoided, and the
application is direct. Two numerical examples show how these tables are to be
used; a third example shows that the error arising through using the approxi-
mate solution instead of exact computation is small.
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