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Flambage des anneaux circulaires dans un milieu elastique

Knickung kreisförmiger Ringe in elastischer Umgebung

Buckling of circular rings in elastic surroundings

L. Hahn, Ingenieur Civil, Paris

L'expose qui suit comprend 5 chapitres. Le premier indique les equations
differentielles donnant la fleche de l'anneau circulaire dans le cas general. La
Solution de ces equations, comporte des fonctions hyperboliques ou trigono-
metriques suivant la valeur du rapport:

^2
4[l + ~(p + Jcr)]

oü r est le rayon de l'anneau, I son moment d'inertie, E le module de Young,
p la pression que subit l'anneau et k la constante du milieu elastique.

Le deuxieme chapitre examine le premier cas correspondant ä p2 plus
grand que un et oü la fleche de l'anneau est donnee par des fonctions
hyperboliques.

Le troisieme chapitre examine le deuxieme cas correspondant ä p2 plus
petit qu'un et oü la fleche de l'anneau est donnee par des fonctions trigono-
metriques.

Le quatrieme chapitre expose la Solution approximative.
Le cinquieme chapitre donne des applications numeriques.

I. Equations generales

Considerons un anneau circulaire (C), fig. 1, soumis ä une pression
constante p et supposons qu'il s'ovalise sous l'action de cette charge. Supposons
en outre que le milieu oü est plonge l'anneau peut opposer des reactions
centripetes seulement, autrement dit s'opposant ä un allongement du rayon.
L'anneau deforme (/"*) subira donc dans la region BC des pressions p et dans
la region CD des pressions p plus les reactions du milieu elastique.

Nous designons par w le raccourcissement du rayon, suppose positif de

A ä C et negatif de C ä D.
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Les reactions de l'anneau deforme (J1) en A sont les suivantes:

1. Une reaction verticale S egale ä SQ — Sl9 oü S0 est egal ä pr et Sx equilibre
les reactions du milieu elastique kw, k etant la constante du milieu.

2. Un moment Mn.
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Fig. 1 Fig. 3

Dans une section E, situee entre A et C, nous avons:

ME M0 + MP + MS0 + MS1.

L'ensemble des pressions p et la reaction S0 transportee en B donne une
courbe de pression confondue avec le cercle (C), voir fig. 2, donc:

Mp + Mso S0w-S0Wq S0(w-wQ) pr(w-w0),
MS1 — S1[(r — w0) — (r — w) cos 9] — Äx[r (1 —cos9)+wcosd — w0],

Par raison de symetrie il n'y a pas d'effort tranchant en D, donc:

D
+ S1 J kwsindds, ds (r-w)dd,

c
D

+ S± k J* w(r — w)sin0dd.
c

En negligeant w2 par rapport ä w, nous pouvons ecrire:

90°

(i)

(2)

(3)

S1 kr $ wsinddO kr J,

avec la notation:
90°

J j wsinddd,

(4)

(5)
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MS1 devient, en negligeant ä nouveau w et w0, car S1 le contient:

MS1 -kr2J(l-cos9). (6)
Nous avons finalement:

ME M0 + pr (w -wQ) -kr2 J (l - cos 9). (7)

Pour la zone CD nous devons ajouter les moments dus aux charges kw, soit
(voir fig. 3):

F
Mw J kw(r — wF)sin(9 — ß)ds, ds (r-w)dß,

c
et en negligeant les w2 et w3:

Mw kr2$wsin(9-ß)dß. (8)
a

On a donc dans la zone CD:
MF MB + MW, (9)

w est relie ä M par la relation classique:

Mr2 ^w +w+ ~=y 0,

ou:
w" + w + n2M 0, (10)

avec la notation: n2 — -=-=.. (11)
M/1

Dans la zone BC, la relation (10), compte tenu de (7), peut s'ecrire:

w" + (l+n2pr)w + n2[M0-prwQ-kr2J(l-cos9)] =0, (12)

ou encore avec les notations:

M1 M0-prw0, (13) .*. n2(M1-kr2J)=A, (14)

l+n2pr2 u12, (15)

w" + u2w + A+n2kr2 J cos 6=0. (16)

D'oü: w B1cosu19+B2sinu19+w1, (17)

oü B1 et JE»2 sont des constantes arbitraires, et:

kr A
w, —A, —J, cos9, Ji —J, A, —-0. (18)

p
L u-f

Les conditions aux limites conduisent aux relations suivantes: Pour 0 0,

w w0, (17) donne:

w0 B1-A1-J1. (19)

Pour 6 0, w' 0, donc B2 0.

Pour 6 ol, w s'annulle:
B1 cos u1ol — A1 — J1 cos ol 0. (20)
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Avant de poser les autres conditions aux limites, nous examinons la
zone CD.

Les derivees de Mw, relation (8), par rapport ä 6, sont:

M'j. kr2$wcos(6-ß)dß, (21)

Jf* h*[w- $ ww\(d-ß)dß\ kr*w-M„, (22)
a

D'oü compte tenu des relations (7), (9), (10):

M" prw"-kr2Jcos9 + kwr2-Mw, (23)

M" + M Mq + jww" + pr (w-iu0)-kr2 J+kwr2 -^(wIV + 2w" + w), (24)

ou encore avec les notations:
pr3

2 + n2pr 2 m2 1 +u^, -=r=. u12 — l, (25)Eil
l+n2 pr + n2 kr2 u±2 + n2 kr2 s2, (26)

ivw + 2m2w" + s2w + A 0, (27)

oü A est donne par les relations (13) et (14).

II, Premier cas p2 > 1. Fonctions exponentielles

Nous allons faire une hypothese sur les constantes s et rn:

P2 -^1 > 1
• (28)

Le cas correspondant ä p2>l sera examine ulterieurement. Disons de suite
que la relation (28) donne une Solution comportant des exponentielles, tandis
que l'autre cas donne une Solution comportant des fonctions trigonometriques.

La Solution de (27) est:

w C1chu9cosv9+C2chu9sinv9+C3shu9eosv6+C4shu9sinv9---2-=: 0, (29)
s

oü u et v sont lies aux autres constantes par les relations:

v2 — u2=m2, v2 + u2 m2p, 2uv m2ip2—l=m2c. (30)

Ann de pouvoir utiliser plus facilement les conditions aux limites, nous
allons deplacer l'origine de l'angle 0 de A en D. Les poussees p, S0 et M0
donnent en Dx, fig. 4, un effort normal pr et un moment Mt egal ä M0 — priv0.
Les reactions kw donnent une traction NwD et un moment Mwl):

NwD kr\w sin 91d91,
b

MwD -8xr + kr2 f wsin91d91 -kr2 J + kr2 f wBin01d9l9
ö ö
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Le moment des charges kw situees entre D et F par rapport au point F est
donne par: ß

Mw +kr2$wsin(01-ß1)dß1.
o

En partant de D, le moment du ä toutes les charges par rapport au point F
est donne par:

MF M1 + prw + MwD-NwDr(l-cos01) + Mw,
en negligeant les w2 par rapport ä w. En developpant, compte tenu des valeurs
de MwD, NwD et Mw, et en simplifiant:

MF M1 + 2orw-kr2J(l-sin91)-kr2] wsin(91-ß1)dß1.
0i

Cette expression est identique ä la relation (9), sauf le signe de l'integrale,
du au changement de variable ß + ß1 90°. En appelant cette integrale Mwl,
nous avons:

MWl kr2w — Mw1.

<&-- *^\Mt
A: \kw i y pr

n.\ \ d, wo\ o^
\ \St

(C) r
6 N

Fig. 4 Fig. 5

En repetant les Operations (23) et (24), on obtient d'une maniere identique
la relation (27), et par consequent la relation (29), sous reserve de remplacer 61

par d. Nous pouvons aborder maintenant plus facilement les conditions aux
limites.

EnD, pour ^ 0, w' 0:

C2v + C3u 0. (31)

Compte tenu de la relation facile ä etablir:

M' Qr + prw',
et l'effort tranchant Q etant nul en D et w' egalement, Mf sera nul aussi. En
derivant une fois la relation (10), on trouve immediatement que w"r est nul
egalement en D, donc:

C2(cu-v)-C3(cv + u) 0. (32)

En eliminant 03 entre (31) et (32):

— (u2 + v2)C2 2pvC2 0,

16 Abhandlungen XI
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donc 02 0, C3 0, (33)

car, v ml/ et u m l/^—^— ne sont pas nuls, car p < 1. (29) devient

donc une fonction paire comme il fallait s'y attendre par raison de symetrie:

w 6\ ch u 9X cos w öx + C4 sh w öx sin v9t ^. (34)
s

Une autre condition aux limites, w 0 pour ö1 a1:

C1chuoL1cosvoc1 + C^shuoL1sinvoL1 —^. (35)

Les autres conditions aux limites sont donnees par le raccord des deux
branches de l'anneau ovalise en C (fig. 5).

Pour la courbe BC: tg V -^j sens positif C T.
pe

„ „ „ DC: tgF^-^-, „ „ CT,.
Pie

V+Vx tt, tgF -tgF1, pc plc, p r + w,

donc: p — px', soit w'' + w, 0, (36)

wx se rapporte ä la courbe D C.

Compte tenu de la relation (10) et comme w est nul pour les deux courbes
ä leur point de jonction, on aura:

w" w±\ (37)

Les efforts tranchants des deux branches sont egaux et de sens contraire en C'
donc :

branche BC: Qr M' —prw'
branche CD: Qxr M^-prw^ \

Q Ql

en additionnant et compte tenu de (36):

jf'+jfy o.

En derivant la relation (10) pour chacune des deux branches et en ajoutant
on obtient finalement:

v/ff + w"' 0. (38)

En somme les derivees de rang pair sont egales et du meme signe et Celles de

rang impair sont egales mais de signe contraire. En developpant ces 3

conditions aux limites au raccord des 2 branches, nous obtenons en definitive:
la relation (36) donne:

— B1 ux sin ux ol + J± sin a + (Cx u + C±v)shu olx cos v ol±

+ (<74 u — Cx v) ch u olx sin v ol 0, (39)
la relation (37) donne:
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— U,2 B, COS U, ol + J, COS a
m2 [ (c C4 — C,)chuol,cosvol1-(cC1 + C4)shuol,sinvol,] (40)

enfin la relation (38), donne:

u,3 B, sin u, ol — J, sin a + m2 [(w c - v) C4 - (^ + v c) C^] sh w a, cos _> ax

+ m2[(?; —ifc)Cf1-(^ + vc)C4]ch^a1sinva1 0. (41)

Nous pouvons etablir une nouvelle relation, en ecrivant que:

J ]wcos9,d9, J \C1ch.u91cosv91 + C4shu91sinv 9, 2\ cos 91d91.
0 o L s J

Un calcul un peu long mais elementaire donne:

J C1/1 + C4/2-4sin*i, (42)
ou:

2 (L74 - 4 v2) I1 (C72 - 2 v) [% sh % ol, cos (v + 1) ol, + (v + 1) ch u ol, sin (v + 1) aj
+ (U2 + 2 v) [u shuoc,cos (v- l) ol, + (v- l) ch u0L,sin (v — l) ol,],

2(C74-4v2)/2 (C/2-2i;)[^ch^a1sin (i> + 1) ol,- (v + 1) sh^aicos (v+ l) ol,]

+ (?72 + 2^) [^ch^aiSin (v — l)a1-(v— 1) sh^a1cos(v— l)ax],

oü U2 u2 + v2 + l.
Nous avons 3 constantes arbitraires ä eliminer savoir B,, C, et C4, 2 efforts

ä determiner _7kf1, J, et enfin l'angle a et le raccourcissement w0 du rayon OA.
Nous disposons de 7 relations, savoir 19, 20, 35, 39, 40, 41 et 42. Nous eliminons
les 3 constantes arbitraires et les deux efforts M, et J et nous obtenons 2

relations. En ecrivant que w0 soit different de zero, nous trouvons la valeur
de u, et de l'angle a. La valeur de u, nous donne, voir relation (15), la pression
critique qui peut faire flamber Vanneau.

B, est elimine immediatement entre les relations (19) et (20):

A,(l — cosu,ol) + J,(cosol —cosu,ol) w0cosu,ol (43)

Nous eliminons C4 successivement entre la relation (35) d'une part et les

relations (39), (40), (41) et (42) d'autre part. En remplacant en meme temps
B, dans les relations (39), (40), (41), par la valeur tiree de la relation (19),
nous obtenons 3 relations de la forme:

C, fi (u, v,
A 1

(w0 + A, + J,) cpt (u„ ol) + J, ^ (a) + -£ 9i (u, v, ai)

i 1, 2, 3.

et une quatrieme:
r A

Gi /_ (u> v> ai) J + -y #4 (u> v> ai)
s

Les fonctions cpi (u,, ol) et ijs, (ol) sont tres simples, par contre les fonctions
f% (u, v, cx,) et 9i (u, v, ol,) sont un peu plus compliquees. En eliminant C, entre
ces quatre relations, nous en obtenons 3 nouvelles lelations:
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auxquelles nous joignons la relation (43) qui peut etre mise sous la meme
forme, donc i 1, 2, 3, 4.

Les coefficients Li ,Ni,Pi sont des fonctions assez simples de u,, a, u, v, ol,
Nous pouvons encore ecrire ces quatre relations sous la forme:

kr(aLi + bNi + cPi)J w^Li + (dLi + ePi)M„ 1,2,3,4.

ou encore: w^L^d(Lt + ePi)M,
__

aLi + bNi + cPi
~~ '

t etant la valeur commune des quatre rapports. Considerons les 2 determinants:

Lx Nx Px Lx Nx Px

4.= L2 N2 P2 A L2 N2 P2

L3 N3 P3 LA N4 P4

et appelons 83, S4 les determinants mineurs, par exemple:

hsNi LlPi-P1La, hiLt P1Ni-N1Pi.
En egalant les rapports deux a deux, nous obtenons les trois relations suivantes:

[b(hzPz)~c{hzNz)]w, [e{b-^Lz~a.hzNz) + d(c-^Nz-b-h3Pz)]Mx
[6(8,P8)...
[6(84Pa)...

La deuxieme relation se deduit de la premiere en permutant les indices de

L, W, P, soit remplacer l'indice 3 par 2. La troisieme relation se deduit de la
deuxieme en remplacant l'indice 3 des determinants mineurs 83P2 etc. par
l'indice 4, autrement dit mettre §4P2 e^c- Enfin en eliminant w0 et M,, nous
obtenons les 2 relations fondamentales:

[_7J: &(S3P2.S3_,3-S3P3-S3£2)-a(S3P2.S3_^-S3P3-S3^2)
+ c(S3iV3-S3_,2-S3_vVS3_,3) 0,

[E2]: b(8iP2-SsLs-SsPr8iL2)-a(SiP2.SsN3-8;iPz-SiN2)
+ c(S3iV3-S4_,2-§4_/2-S3L3) 0.

Nous indiquons ci-dessous les expressions des coefficients a, b, cet des fonctions

Lt,Nt,Pt.
n2r 1 1 n2r

a
Ui P p

2 u, sin u, ol U, COS U, OL

v sh 2 u ol, + u sin 2 v ol, u v (ch 2 u ol, + cos 2 v ol,)

2 sin ol cos ol
+

v sh 2 u ol, + u sin 2 v ol, uv (ch 2uol, + cos 2 v ol,)
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2 (vcotgvol,+ ueothuol,) 2 (ccothuol,cotgvcx,— l)uv
¦L\ _=

n„ c • n,2

n„ et n,2 sont les denominateurs des deux termes de L,.
2 u,3 sin u, ol

L2 — i_i2 +

^2 ~N12

2 12 '

m2[(v —uc)sh2ua, + (u + vc)sin2vol,]
2 sin ol

n22

2[(uc —v) cotgvol, —(u + vc) cothuol,] 2
p>2 — p>12 -\ _ m

^22

oü L,2, N,2 et P,2 sont les deuxiemes termes de L,, N, et P, et n22 le denomi-
nateur du deuxieme terme de L2.

L3 —L„,
jy jy *E

3 n kr (I, sh u ol, sin v ol, — I2 ch u ol, cos v ol,) '

p _ p 7 (sina! — I2jshuoL, sin .aj^3 x 11 ~ ^r * " ~ '
™32

oü L„, A7^. Pn sont les premiers termes de L,, N,, P, et n32 le denominateur
du deuxieme terme de N3.

«s2

i_4 cos%a, _V4 —cosa, P4 — ^—g.

Le mode de resolution des relations E, et E2 sera expose en detail dans le
cas p2< 1.

Deuxieme cas p2 < 1. Fonctions trigonometriques

Dans ce cas la Solution de l'equation (27) est:
A

w C, cos u 9, + C2 sin u9, + C3 cos v 9, + (74 sin v 9, ^,
oü: v2 + u2 2m2, uv m2p, v2 — u2 2m2il—p2. (44)

Comme dans le premier cas, les conditions aux limites donnent:

»' 0, u C2 + v C± 0,° ' «i/*=0, ^3C2 + *;3C4 0,

d'oü: C2u(v2 — u2) 0, or v2 — ^2 =j= 0, et u2 m2\l — il — p2] =# 0, car p<l,
donc (72 et C4 sont nuls. On retrouve ä nouveau une Solution comprenant
uniquement des fonctions paires:

A
w C, cos u9, + C3 cos v 9, 2 (45)

s
w — 0 pour 9, ol,:

C, cos u ol, + C2 cos v ol, —g-, (46)
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w' + w,' 0, pour 6, ol, (voir relation (39)):
— u, B, sin u, ol + J, sin ol — uC, sin u ol, — v C3 sin vol, 0, (47)

w" — w,", pour 6, ol, (voir relation (40)):
— u,2 B, cos u, ol + J, cos a —u2C, cos i* ax — v2 C3 cos ?; ol, (48)

?_,"/ + i_>'"1 0, pour 6, ol, (voir relation (41)):
u,3 B, sin u, ol — J, sin ol + u3C, sin u ol, + v3 C3 sin v ol, 0, (49)

La relation (42) prend dans le deuxieme cas la forme:

J C,I, + C3I2 2
sin ol, (50)

s
oü:

u sm u ol, cos ol, — sm ol, cos u ol,
1,

/,

u2 -1
v sin v ol, cos ax — sin ol, cos v ax

Les eüminations successives se fönt exactement comme dans le premier
cas. On remplace la valeur de C3 en fonction de C,, suivant la relation (46) et
B, en fonction de A„ relation (19), dans les relations (47), (48), (49) et (50).
Nous obtenons quatre relations analogues aux relations du premier cas oü C,
figure seul dans le premier membre. En eliminant C, entre ces quatre relations,
nous obtenons 3 nouvelles relations de la forme:

M"o+^i+^i)+Vi+^4 °> (5i)

oü les coefficients Lt, _Vt-, Pi ont les valeurs suivantes:

u+ sin ..-, ol u-fcosUiOL ._._.L, - j L t + -TY1—T\— ' °2
V COS U ol, tg V OL, — u sm U ol, (v* — Uz) COS U ol,

,T —sina cosa //-oxAr1=— (53)
n„ n,2

P1 ^i__H___., (54)
n„ ^12

oü n„, n,2 sont les denominateurs des 2 termes de L,.

L2 - Zu + — __!»_____ (55)
*r sm ^ ax — v6 cos w ax tg v ol,

N2 -N12-^, (56)
«22

^2 --Pl2 + \ (57)
^9! 9

oü £12, iV"12, P12, sont les deuxiemes termes de L„ N,, P, et n22 le denomi-
nateur du deuxieme terme de L2.
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^3 ^11 >

p COS V OL,

km.32

3 n I, COS V OL, — I2 COS U OL,
'

(58)

(59)

(60)

oü L„, N„, P„ sont les premiers termes de L„ N,, P, et n32 le denominateur
du deuxieme terme de P3. La relation (43) peut etre mise egalement sous la
forme (51), avec les notations suivantes:

L± cosu,ol (61), _V4 -cosa (62), P4
u.

(63)

Compte tenu des relations (14), (15), (18), les quatre relations (51) peuvent se

mettre sous la forme:
Liw0 + biM,=aiJ„ (64)

ou: *f
n L<

i 1, 2, 3, 4.

(V-i) p.. (65)

II reste ä eliminer w0 et M, entre les quatre relations (64), et on obtient
finalement les deux relations fondamentales:

E, l,3 L, +123 L2 +133 L3 0,

E2 Z14 L, + lu L2 + lu L± 0,

oü LS et 1,4 sont les determinants mineurs des 2 determinants:

L, L2 L3 L, L2 i4
i ^2 a*> > 4 i ^2 a*

bx b2 b3 b, b2 64

Les deux equations E, et E2 peuvent etre simplifies notablement. En develop-
pant les deux equations, et en y rempla9ant les coefficients ai, bi par les
valeurs des relations (65), on trouve:

(66)

La resolution de ces deux equations peut se faire de la maniere suivante.
On se donne ä priori une valeur de u,, dont la signification est donnee par la
relation (15), et qui definit la pression critique. On construit la famille des
courbes *

%i /i («i, s) 0, E2 /2 (a1? s) 0, (67)

oü s definit les caracteristiques du milieu elastique, voir relation (26). On
obtient ainsi un double reseau de courbes ä deux parametres s et ol, (fig. 6).

Pi P* P* P, P2 P4
_71 Nx N2 N3

Lx L2 L3

0, E2 Nx N2 Nt
L, L2 L/,

0
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E2 h

Les valeurs des parametres .eta1? lues par interpolation, au droit de l'origine,
annulent les deux relations (67). Nous obtenons ainsi une serie de couples de
valeurs s et u,. C 'est ä dire si on connait k on peut determiner u,, le probleme

est donc resolu. Pour construire les courbes

E,. E2, u, etant connu, on choisit une
valeur ol, et on fait varier s. Une valeur
de s etant arretee, les relations (30)
donnent u et v immediatement. On peut donc
calculer toutes les fonctions Li, Ni, Pi,
suivant les relations (52) ä (60), et par
consequent E, et E2. Tous ces calculs
sont extremement longs. Nous indiquons
dans le chapitre suivant comment on peut
les abreger un peu.Fig. 6

IV. Solution approximative

Nous admettons ä priori pour w l'expression suivante:

w —w,sinß(9—0L), ß -—, (1)

w s'annuile en C et prend la valeur — w, en D, (fig. 1). Nous pouvons calculer
immediatement J, relation (5):

w, ß sin olJ~ j8*-l •

Nous allons resoudre l'equation differentielle (10) dans chaque zone.

(2)

ou encore:

Zone CD

Nous rappelons l'expression du moment; en partant de A (fig. 1):
e

MF M, + prw — kr2J(l — cos d) +kr2 $w sin (6—cp)d<p,
oc

MF (M1-kr2J)+prw + kr2F(d), (3)

F(d) Jcos0+Ttw, SRtt Jwsin{d-cp)d<p. (4)

En connaissant la fonction w, le calcul de ^Slw est immediat. Nous obtenons

mw --^I[ßain(d~cc)-Hmß(6-oc)]. (5)

L'equation differentielle (10) prend donc la forme:

w" + u,2w + A+n2kr2F(Q) 0. (6)
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Solution:
jo C,cosu^ 9+C2sinu,9 + w — A,,

w= — J, cos 9 + yw,

kr
V

sin (9 — ol) + c sinß(9—cx)

y °~ ß2-u,2> Al~

(7)

j82-l'
Conditions aux limites:

pour 6 ol, w 0, C,cosu,ol + C2sinu,ol J,cosol + A, (8)

Nous admettons une nouvelle hypothese, on suppose que le moment de
flexion est nul en C. w etant nul en ce point, w" le sera egalement, suivant la
relation (10), on aura donc:

— u,2 (C,cosu,ol + C2cosu2ol) + J, cos ol — 0,

ou encore si on remplace les termes sous paranthese par la valeur equivalente
fournie par la relation (8):

J, cos OL u,2 (J, cos OL + A,)
ou J, (l—u,2) cos ol u,2A,

pour 0 90°, w' 0, donc:

77 li-i

2 „1-8-__ 2± <> a. i:.t.o_, 7T lt| „ TT M-i _^ -^ 71 «•-.

¦„1C1sin--J+„1C2cos-s-i 0, C2 C1tg-^,

(9)

(10)

pour 0 90°, w= — w,, soit compte tenu de la relation (9):

TT ^C^cos — ^ 77.-! / ß \ (1—?(-,-) T+ G\> sm ——± +VW-. \c-\ cos a ^— J, cos a — i_\ (11)
2 ' \ #> / «v

Zone B C

Les relations (17), (18), (19) et (20) sont evidemment
valables.

Des relations (20) et (9) ci-dessus, on obtient:

J, COS OL

B, cos u, ol (12) Fig. 7

En egalant les w' des deux branches ä leur point de rencontre et en remarquant
qu'ils ont les memes signes, car les w des deux branches sont rapportes ä la
meme origine 0, nous obtenons:

~ ~ w-.ß/l\ J, cos OL tg U-i OL ^ ,,_,,^COS^a-CjSm^a + y—^- C+ —1 + -± -fe 1 0. (13)

II est facile de verifier que pour la branche AC, w" est egalement nul en G,

donc les deux branches se raccordent aussi bien que dans le calcul exact. La
relation (17) donne dans ce point:
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w" — u,2 B, cos u, ol + J, cos ol.

qui est nul comme le montre la relation (12).
Les deux branches passent donc par le meme point C et ont la premiere

et la deuxieme derivees egales au droit de ce point. Nous eliminons C2 et les

relations (8), (13) et (11) deviennent:

(8):

(13):

(11):

„ W, COS 0,5 77 ll* ß
,_

C, % L ~ysm2au,1 cos u, ol, 2p'

r _w,ßy cos0,bttuA (s\n2oLtgu,oL l\
1

u, sinu,ol, \ 2pu, p / '

(14)

(15)

C, — ?_*1cos —
77 Hl [ i „ß+ yC + yL~ COS a

29 Ki^H!(16)
Enfin en eliminant C, entre ces trois relations on obtient les deux relations
fondamentales de (8) et (13):

sin2asin0,577 u, ß2—l
2 u, cos u, OL cos u, OL, ß2

de (14) et (16):

sin 2 ol 1 1 -o--(1 sma)cosa= (ß2_UiZ+ a2 u,2 \cos u, ol,

ou:
7^2 £f2 _ ^r4

^7 S* — Ui

[A]

[B]

(17)

La resolution des equations [A] et [B] est facile. On determine les racines a
de [A] pour chaque valeur de u,. On remplace les couples de valeurs u„ ol,

ainsi trouves, dans la relation [B] et on trouve les valeurs correspondantes de

a. Le probleme est donc resolu, car pour un k donne, on connait u„ donc
1 +n2pr, c'est ä dire la pression critique p.

II est tres aise de resoudre l'equation [A], il suffit pour cela de tracer la
courbe et on voit de suite les racines. Ces courbes ont l'allure indiquee par la
fig. 8, correspondant ä u, 5. On constate en tracant ces courbes que le nombre
de racines de chaque courbe [A] croit avec u, et que pour u, pair et > 2 il n 'y
a pas de racines. Remarquons qu'une racine apparait immediatement:

ß u,=
90c 90°

u.

Nous donnons ci-dessous un tableau indiquant pour quelques valeurs de

u,, les valeurs correspondantes de a, ce qui constitue d'ailleurs le but de cette
etude. A la fin du tableau nous indiquons les valeurs de p2, c'est-ä-dire:
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2__4(a + u,2)

241

r (l + V)2*
L'examen de ce tableau montre que u, croit avec a, donc avec k, autrement
dit la pression critique croit si la resistance elastique croit. D'autre part le
domaine p2> 1, premier cas, dont la Solution exacte comportait des fonctions

Fig. 8

exponentielles, tres difficiles ä manier, est tres limite. Cela correspond ä des
resistances tres faibles du milieu elastique. Une autre remarque est ä faire
concernant le mode de flexion de l'anneau. Le tableau montre que ol, croit
quand u, diminue, autrement dit la flexion diminue avec u,, donc avec p, et
tend vers une limite, soit 45°, comme on verra plus loin. Cette limite correspond
ä une resistance nulle du milieu elastique. Autrement dit si la resistance du
milieu elastique augmente, la charge critique augmente egalement et l'anneau

u± 3 5 7 9 11 13 15 17 19 21 31

1 50° 30' 33°- 24° 30' 19° 207 16°- 13°37' 11°49/ 10°29' 9° 24' 8°31' 5° 47'
2 27°- 22°- 18°40' 16°22/ 14° 32' 13° 6' 8° 47'

<*1 3 29°3/ 25°30' 22°40' 20°12' 18°15' 16°37/ 11°26'
4

1

14° 55'

—
5 16°50'

1 26 387 518 1350 2920 5580 9850 16100 24800 36900 174000
2 1290 2580 4720 7 750 13900 18250 87 500

a 3

4
5

1158 2085 3450 5 640 7 900 12 700 56500
33 700
27 500

V* >1 >1 <1 <1 <1 <1 <1 <1 <1 <1 <1
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fiechit davantage. Examinons le cas limite, quand la resistance elastique tend
vers zero, c'est ä dire quand a tend vers 0. L'equation [B] peut s'ecrire encore
sous la forme:

(ß2 — u,2) ßa[\(l— cos u, ol,) sin 2 a — u,2 (1 — sin a) cos a cos u, ol,]

(u,2 -l)u,2[a + (ß2-l) (ß2 - u,2)] cos u, ol,

qui tend pour a -> 0 vers:

u,2 (u,2 -l)(ß2-l)(ß2- u,2) cos u, ol, 0. [B0]

L'equation [A] peut s'ecrire sous la forme:

(ß2 — u,2) sin 2 ol sin 0,5 77u, 2 u,2 (ß2 — l) cos u, ol cos u, ol, [A0]

En Consultant le tableau ci-dessus, on voit que u, < 3. En excluant la valeur
u, l, qui donnerait p nul, il nous reste u, 2. Le premier membre de [A0]
s'annulle, car 0,5 77% vaut 77. En excluant de meine la valeur j8=l, valeur
inadmissible, car alors ol, serait egal ä 90°, il n'y aurait donc pas de flambage.
II faut donc:

cos%a cos 2 a 0, donc a ol, 45°.

Dans ce cas [B0] s'annulle egalement. Or la valeur u, 2, correspond bien au
cas de flambage classique d'un anneau circulaire, en effet, voir relation (15):

ur Ttr
l+w2^r=1+|_=Mi2 4) ^ 3.

Une derniere remarque. En general ux atteint rapidement des valeurs conside-
rables. Pour ux 3, nous avons:

pr3
El~8'

presque trois fois la pression critique d'un anneau libre. Donc le flambage d'un
anneau dans un milieu elastique a lieu difficilement.

II nous reste ä donner quelques applications numeriques et ä estimer
l'ecart entre le calcul exact et le calcul approximatif, ce qui fera l'objet du
chapitre suivant.

V. Applications numeriques

1er exemple. Anneau en beton de 60 m de diametre, de 30 cm d'epaisseui,
completement enterre dans le sol et constituant blindage. On se demande si
cet anneau ne risque pas de s'ovaliser et de flamber meme sous l'action des

poussees dues aux terres et ä l'eau.
Nous allons estimer la valeur du coefficient fondamental ,,a(i. Admettons un

coefficient k, egal ä 3 kg/cm3, c'est-ä-dire que le sol s'enfoncerait de 1 cm pour
une pression k de 3 kg/cm2. C'est en somme un sol assez mou. Considerons un
anneau de 1 cm de hauteur.
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3Ö3
7=1. — 2,25-103cm4, E 105 kg/cm2 (beton)l _j

3.34.1Q12
r 3000 cm, a .^ 1Qä 1Q5

108-10«.

En Consultant le tableau precedent on voit que % depasse 31 ce qui est une
valeur considerable. Posons le probleme inversement. Supposons que l'anneau
est enterre ä une hauteur de 10 m et supporte une pression de 13 000 kg/m2,
due ä un sol immerge.

Nous avons donc:

oi / 9 Pr* l,3-33-109
p=l,3 kg/cm2, ^-105.2>25.10» 156==V-1>

% 13 environ.

Suivant le tableau ci-dessus le a correspondant est egal a 2085, soit:

3-2085 0,58,
^T08TnR Töökg/cm-

En realite ä 10 m de profondeur k doit etre beaucoup plus grand, l'anneau
ne peut donc pas flamber.

gerne exempiet Anneau en beton de 1,65 x 1,65 m de section et de 140 m de
diametre. Cet anneau est contrevente comme une roue de bicyclette par des

rayons en acier, 4 0 16 m/m tous les 3,50 m. La longueur d'un rayon r, est
d'environ 60 m.

Si le rayon de l'anneau s'allonge de 1 cm, alors un groupe de fils oppose
une resistance de:

F=~Eaaj 7^KK -21000-800 2800kg
r, 6000

pour 3,50 m de longueur, soit:

z
2800 Ql / 2

~35Ö~ 8k8/cm •

Moment d'inertie de l'anneau:

1654/ ~~ 62 -106 cm4, Eb 105 kg/cm2,
l_v

kr* 8-7000* Q1Antt E~I 10*-62-10« 3I°°-

D'apres le tableau, u, est environ 13, donc:

pfS _,¦-! _<

EbI
soit 56 fois la charge critique d'un anneau libre. Effort de compression critique
de l'anneau: }f\RF T

N pr ~—.
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Contrainte critique du beton:

n„
168 EbP2 168 JS7Ö

r2 A2 '

oü A est l'elancement compte par rapport au rayon et p le rayon de giration
de la section de Tanneau.

_*_!

12'

12r2 12-7Ö2

P2 h 165 cm, r 10 m,

21500,
h2 1,652

_
168-106

'" 215ÖÖ"
780 kg/cm2

3. Comparaison des formules exactes avec les formules approximatives.
Considerons le couple de valeurs:

u, 9, a 1350, ol, 19° 20'

extraites du tableau ci-dessus. Ce sont des valeurs numeriques etablies avec
les formules approximatives.

p2 etant inferieur ä 1, w est donne par des fonctions trigonometriques,
deuxieme cas.

Dans le sens de la figure 6 et ä l'aide des relations (66), nous pouvons
tracer le reseau (E,, E2, s, ol,). Voici quelques valeurs que nous avons trouvees,
en remplagant s par a et en nous rappelant que ces 2 coefficients sont lies par
la relation (17):

a s2 — u,2 s2 — 81.

Tableau des valeurs voisines de Vorigine

OL a 103i_\ 102_?2

19° 1397,4
1397,5

-1,9
+ 3,1

-1,7
+ 1,33

18° 1569,61
1569,69

-3,6
+ 2,9

-1,99
+ 1,66

ivm' 1579,37
1579,43

-5,3
+ 1,5

-2,6
+ 0,8

17°56' 1582,65
1582,71

-5,0
+ 2,7

-2,2
+ 1,5

La figure 9 indique les courbes correspondantes, qui ont ete remplacees

par des droites, car les valeurs de a sont tres rapprochees. Afin de faire ressortir
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|5# W

&V
,569

,519

Fig. 9

05-

Fig. 10

plus clairement la region voisine de l'origine, nous avons augmente l'echelle
et la figure 10 nous permet de trouver les racines par interpolation entre les

points let 2: ^ 1= ^^^ a igo
point 2: a~ 1569,65, a 18°
Racines: a ~ 1562, a - 18° 3'
L'erreur est de 1'ordre de 16%.

Nous indiquons ä toutes fins utiles l'allure des courbes (E,, E2, ol, a). Ces

courbes ont trois points ä 1'infini, ä savoir:

u v 6,4, a 1600, uol 90°, a 0,



246 L. Hahn

d'oü une branche situee dans la zone +E„ +E2, ayant deux asymptotes,
dont une parallele ä l'axe E, et correspondant ä a nul et l'autre ä uol egal
ä 90°. Cette branche etant situee nettement en dehors de l'origine ne presente
aucun interet. L'autre branche a egalement deux asymptotes, dont une
correspondant ä a egal ä 1600 et l'autre k ua egal ä 90°. Ces branches encer-
clent en general l'origine, mais elles se detachent rapidement ä partir de a

egal ä 17° environ.

Resume

Le but de cette etude est le calcul de la charge critique de compression
d'un anneau circulaire soumis ä une pression constante et plonge dans un
milieu elastique. Nous avons resolu le probleme du point de vue theorique.
Mais les calculs numeriques etant tres difficiles, nous avons indique egalement
une Solution approximative qui permet de calculer tres facilement la charge
critique. Un tableau de ces charges applicables ä presque tous les cas pratiques
evite tout calcul et 1'application en est immediate. 2 exemples numeriques
montrent la facon dont on doit utiliser ce tableau. Un troisieme exemple
numerique montre que 1'erreur commise en employant la Solution approximative

au lieu du calcul exact est faible.

Zusammenfassung

Die vorliegende Untersuchung bezweckt die Berechnung der kritischen
Drucklast eines kreisförmigen Ringes unter konstantem Druck und in elastischer
Umgebung. Der Verfasser hat die Aufgabe theoretisch gelöst. Da die numerische
Berechnung sehr schwierig ist, hat er auch eine Näherungslösung angegeben,
die eine einfache Bestimmung der kritischen Last erlaubt.

Eine Zusammenstellung der kritischen Lasten, die sich auf fast alle praktisch

vorkommenden Fälle direkt anwenden läßt, macht jede Berechnung
überflüssig. Zwei numerische Beispiele zeigen die Anwendung dieser
Zusammenstellung, während an Hand eines dritten Beispiels bewiesen wird, daß der
Fehler der Näherungslösung gegenüber dem genauen Resultat klein ist.

Summary

The aim of this study is to calculate the critical load of compression of a
circular ring, subjected to a constant pressure and placed in elastic surroundings.
The author has solved the problem theoretically, but the numerical calculations
being very difficult, an approximate Solution has also been indicated. This Solution

allows the critical load to be calculated easily. A table of these loads, applicable

to almost all practical cases, enables calculations to be avoided, and the
application is direct. Two numerical examples show how these tables are to be

used; a third example shows that the error arising through using the approximate

Solution instead of exact computation is small.


	Flambage des anneaux circulaires dans un milieu élastique

