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Contraintes dans les pieces prismatiques soumises ä des forces
appliquees sur leurs bases, au voisinage de ces bases

Spannungen in den Enden prismatischer Körper, die an ihren Grundflächen
belastet werden

Stresses at the ends of prismatic bodies which are loaded on their side surfaces

Y. Gtjyon, Paris

t

Nous etudions ci-apres l'etat elastique d'un prisme au voisinage d'une
base soumise ä des forces reparties d'une facon quelconque.

Cette etude resume — et d'autre part complete sur certains points — un
memoire non publie depose a la Bibliotheque de l'Ecole Nationale des Ponts
et Chaussees.

Nous l'avons divisee en deux parties:
Dans une premiere partie, nous avons etudie le prisme

indefini dans une direction, teile que Oy par exemple, et
soumis ä des charges, sur ses bases, dont la repartition
est independante de la coordonnee y. C'est un probleme
d'elasticite plane.

Dans une deuxieme partie, nous etudions le prisme ä

base rectangulaire de dimensions finies.
L'etude du prisme indefini se trouve, tout au moins,

en puissance dans des memoires de divers auteurs, notam-
ment dans la Theorie de l'Elasticite de Timoshenko, et
l'etat elastique du prisme y est recherche a l'aide de

developpements en series de Fourier. Mais si on s'arrete
au premier stade, on n'obtient pas la Solution du probleme, parce qu'il
s'introduit des reactions parasites sur certaines faces. On ne peut aboutir que
par un procede de reiteration.

Nous avons employe d'abord une methode approchee, consistant ä annuler
les reactions parasites par des forces egales et de sens contraire, dont nous
avons recherche les effets par les methodes usuelles de la Resistance des

Materiaux. II est interessant de constater que certaines des formules que nous
avons trouvees a l'aide de cette methode approchee sont identiquement les

memes que Celles qu'avait obtenues M. Hondeemarcq (Etude des contraintes
et des deformations elastiques planes basee sur les proprietes des lignes isostatiques

Fig. 1
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— Annales des Travaux Publics de Belgique, Juin, Aoüt et Octobre 1943) par
une voie differente.

Nous avons ensuite employe une methode plus exacte, ä l'aide de reite-
rations successives. Les resultats que nous obtenons concordent exactement
avec l'etude experimentale de M. Tesar pour un cas de charge particuliere
(Association Internationale des Ponts et Charpentes. Memoires, 1932).

Pour le prisme ä dimensions finies, nous nous sommes limites ici ä un seul

cas de charge, celui de forces normales paires, c'est-ä-dire symetriques par
rapport aux deux axes de symetrie de la base chargee. Et nous n'avons pu
qu'aborder le calcul numerique, ä cause du travail materiel considerable qui
serait necessaire pour l'etablissement de tableaux complets.

Ire Partie. Cas du prisme ä section rectangulaire indefini dans une direction

Nous entendons par la que l'un des cötes 2 6 (parallele ä Oy) de la section
droite est infini et que d'autre part la loi de charge appliquee sur les bases

2a est independante de y, c'est-ä-dire que cette loi de charge est la meme

pour toute section transversale perpendiculaire k Oy.
Rien ne distinguant une teile section transversale

d'une autre, les contraintes sont fonctions uniquement de

x et de z et on a affaire ä un probleme d'elasticite plane.
On verra ulterieurement (IIe Partie) que, meme si

la dimension 2 6 est finie, mais si les charges s'exercant
sur les bases sont independantes de y, c'est-ä-dire si

2h #, la loi de charge est la meme pour toute section trans¬
versale perpendiculaire k Oy (ou, en d'autres termes.
si les charges* sont reparties uniformement sur des

paralleles ä Oy), la Solution obtenue pour le prisme
indefini reste approximativement valable.

La Solution de ce probleme est donc, si on peut la
trouver, applicable ä un nombre important de questions:
parmi lesquelles celle des bielles d'articulation de ponts.
celle des efforts aux abouts dans les dalles precontrain-

tes par des forces s'exercant sur ces abouts, lorsqu'on peut assimiler ces forces
ä des forces uniformement reparties sur des bandes paralleles au plan moyen
de la dalle; celle egalement des poteaux soumis ä des forces sur leurs bases, etc.

Considerons une section transversale quelconque (fig. 2) et rapportons-la
aux deux axes Ox Oz passant par le centre de la base superieure1) les sens

positifs des axes etant ceux indiques sur la figure.
L'etat elastique du prisme est defini quand on connait les contraintes

nxnzt sur deux facettes normales ä Ox et Oz; la figure 2 indique les sens positifs

t7 X

+—2 a —*¦

JJ'—*
V
nz

rz

Fig.

l) Pour simplifier le langage nous considerons que Taxe du prisme est vertical.
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choisis: nx et nz sont positifs quand ces contraintes sont des tractions; t est

positif lorsque sur une facette horizontale appartenant ä la partie superieure
du prisme (qui contient l'origine 0) cette contrainte est dirigee dans le sens

positif de Ox.
Les forces appliquees sur les bases peuvent etre normales ou obliques ä

ces bases. Autrement dit, dans le cas le plus general, elles admettent des

composantes normales et tangentielles. Les Conventions de signes pour ces charges
sont les memes que pour les contraintes: pour les charges normales, les charges
positives sont des tractions; pour les charges tangentielles, elles sont positives
quand elles sont dirigees dans le sens des x negatifs sur la base superieure, ce

qui est bien la meme Convention que pour t, puisque la base superieure laisse
le prisme au-dessous d'elle; (sur la base inferieure, les charges tangentielles
seront positives lorsqu'elles seront dirigees dans le sens des x positifs).

Contraintes et charges appliquees sont definies par leur densite super -

ficielle. Mais si nous considerons une tranche de prisme d'epaisseur unite —
c'est-ä-dire comprise entre deux plans verticaux paralleles ä xOz et distants
de l'unite — les contraintes et charges appliquees deviennent des forces par
unite de longueur.

Les charges appliquees, normales ou tangentielles, suivent des lois de

repartition quelconques sur les bases. Nous appellerons ö> (x) la loi de repartition

des forces normales et 0 (x) la loi de repartition des forces tangentielles.
Nous supposerons en principe, bien que ce ne soit pas indispensable, que

les lois de charge sont les memes sur les deux bases, c'est-ä-dire que
äj(0) cö(2h) et que d (0) d (2h), 2h etant la hauteur du prisme. Cette
hypothese simplifie les calculs mais ne restreint pratiquement pas la gene-
ralite de la Solution, pourvu que le prisme soit suffisamment long (c'est-ä-dire
2 h superieur ä 2 fois x/2 ä 3 fois 2a) parce que l'etat elastique du prisme aux
abouts est une perturbation locale par rapport ä l'etat elastique de Saint-
Venant, et que cette perturbation disparait ä une profondeur de 1'ordre de 2a;
on peut donc considerer que, pour des prismes suffisamment longs, l'etat
elastique au voisinage d'une base est independant des charges appliquees sur
l'autre base.

L'equilibre du prisme est assure pour les charges normales, puisque les
forces agissant sur les bases sont, dans l'hypothese faite de l'identite des

charges sur les deux bases, en equilibre. II peut ne pas etre assure pour les

charges tangentielles; dans ce cas on devra supposer qu'il existe sur les faces
laterales du prisme des reactions assurant l'equilibre, et que ces reactions sont
suffisamment eloignees des bases pour que l'etat elastique du prisme au
voisinage de ces bases ne soit pas modifie.

La largeur du prisme suivant Ox sera designee par 2a.
Les forces tu et d peuvent etre decomposees en fonctions paires et en

fonctions impaires de x.

12 Abhandlungen XI
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Les fonctions paires peuvent etre developpees en series de Fourier ne
comportant que des cosinus:

x
äj (ou 6) A0 + SAm cos m tt —

les fonctions impaires en series de Fourier ne comportant que des sinus

x
öj (ou 0) SA' sin mtt —m a

On peut trouver, sous forme egalement de series de Fourier, un Systeme de
contraintes nx nz t satisfaisant aux equations de l'elasticite et prenant terme
ä terme sur les bases z 0 et z 2h les valeurs d> ou d, mais ne satisfaisant

pas aux autres conditions aux limites (nx et t nuls simultanement sur les faces
verticales x ±a). Cette facon de traiter le probleme n'est pas nouvelle et
on en trouvera des exemples dans la Theorie de 1'Elasticite de Timoshenko.
Mais le Systeme de contraintes trouvees n'est pas la Solution du probleme, du
fait que les conditions aux limites ne sont pas satisfaites: c'est la Solution d'un
probleme different, dans lequel les faces verticales seraient soumises ä des

reactions, egales precisement aux valeurs que prennent nx et t sur ces faces.
Ceci deviendra plus clair par la suite, mais on concoit que le Systeme de

contraintes ainsi trouve ne presenterait que peu d'interet en ce qui concerne les
contraintes les plus dangereuses, qui sont les contraintes nx, car, du fait que
les reactions parasites qui s'introduisent n'existent pas, la repartition reelle
des contraintes est profondement differente de celle de ce premier Systeme.

Mais on peut, par un procede de reiteration, superposer ä ce premier
Systeme d'autres systemes de contraintes jusqu'a ce qu'on aboutisse ä un
Systeme qui satisfasse, lui, tout au moins approximativement, ä toutes les

conditions aux limites. Or nous montrerons que l'on arrive ä ce dernier Systeme
au bout d'un nombre limite de reiterations gräce ä des lois de recurrence. La
Solution complete du probleme s'obtiendra alors pour chaque contrainte
nx nz ou t par la sommation des resultats partiels trouves dans les differents
systemes de contrainte successifs.

Nous allons indiquer d'abord une Solution approchee qui ne demande

qu'une reiteration, nous indiquerons ensuite comment, avec plusieurs
reiterations, on peut arriver, dans le cas de charges normales paires, ä une Solution
pratiquement exacte. La Solution approchee fournit d'ailleurs dejä des

indications tres utiles; la comparaison avec la Solution exacte montre que les lois
de Variation des contraintes ont tout ä fait la meme forme que dans cette
Solution exacte, et que les valeurs obtenues sont approchees par exces.

/. Solution approchee

Nous allons d'abord faire le calcul des contraintes sous forme de series;

nous montrerons ensuite que ces series peuvent etre exprimees en termes
finis. L'analyse par les series n'est donc qu'un intermediaire dont on n'aura
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pas ä se servir pour les calculs numeriques: on n'aura ä se servir que des

fonctions finies et il est possible, comme nous le montrerons, de faire une fois

pour toutes les calculs, ce qui ramene l'etude des contraintes ä l'emploi de
tableaux tout ä fait analogues aux tableaux d'influence couramment utilises.

1. Calcul des contraintes par des series

A. Cas de forces normales paires

La fonction de charge peut etre representee par la serie de Fourier

A TT, A mTTX
to _4ft + _L_4mcosu m a

Posons — ol, ce qui revient ä prendre — comme unite de longueur
a tt

Avec cette notation:

äj A0 + SAmcoH?na

avec

TT

1 fA0 — \ cd (oc)dOL
77 J

0

TT

cos m ot dot

(_40 n'est autre que la contrainte moyenne p engendree par la resultante des

efforts ö>, et par consequent la contrainte uniforme qui regne sur toute section
horizontale ä une distance süffisante de la base).

On peut trouver, sous forme de serie de Fourier, im Systeme de contraintes
(systeme I) nxnzt, satisfaisant terme ä terme aux equations de l'elasticite et
aux conditions aux limites sur les bases z 0 et z 2h. En effet, nx nz et t sont
les derivees partielles du deuxieme ordre

/ d2cp 32<p d2cp \
[nx dz* nz Ix^ JxlTz)

d'une fonction d'Airy 99 qui doit verifier l'equation aux derivees partielles:

dx* dx*dz*^dz* { }

Prenons une fonction partielle d'ordre m, <pm, de la forme:

cpm Z- cos m ol

Z etant une fonction de z seulement. On a alors pour le terme d'ordre m
du Systeme I que nous etudions
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&9 ry»n —+r Z cos m OL

dz2

82<p

n*~ dx2'
m2TT2

Z cos m ol

d2cp m-TT
t — 0—~— • Z sm m ol

cxöy a

Pour que <pm satisfasse ä l'equation (1) il faut que:

d*Z 2m2TT2
Z" + z 0

dz* a2 a*

dont la Solution est, A B CD etant quatre constantes ä determiner,

ry l a rtmTTz\ - mttz /„ ^ m tt z\ _ mTTzZ \A + B ch + [C + D sh
\ a ] a \ a / a

19 __, rriTT [ A m-rrz „ / _ tyittz tyittz mTrz\d'oü Z' — _4sh + B ch i — sh
a L a \ a a a ]

+ Cch
TYITTZ

+ __>|sh(¦
m-TTZ m-rrz m

+ ch
a /

En ecrivant que pour z 0 et z 2h, nz to et £ 0,

on trouve, en posant
2h

m-TT—- p

A=-ATI B
a2 ch/>— 1

a2 chp-1

rn2 tt2 sh o+p
a2 shp

mm27T2 shp + 1

En pratique, pour les prismes suffisamment longs que nous etudions ici, 2h
est superieur ä 4a, donc p superieur ä 4 77-. On peut confondre shp et chp et
negliger 1 ou p devant chp et shp. On a donc pratiquement:

et par consequent2)

A B -C -D -A„

„ a2 (miTZ ,\ _______Z _=__4 ___ +l)e am m2 772 \ a /
On en deduit les valeurs suivantes des contraintes du Systeme I, en posant

£ —, ce qui revient ä prendre, aussi bien pour z que pour x, — comme unite,
Cl TT

2) La fonction Z est celle qui correspond au voisinage de la base 2 0. Celle qui
correspond au voisinage de la base z 2 h est de la meme forme, ä condition de prendre
Torigine sur cette face.
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nx — SAm(m l — l) e~m£ cos m ol

nz A0 + SAm(ml> + l)e-m^GOsmoc
t SAmm^e-m^inmoL

Ce Systeme de contraintes satisfait aux conditions aux limites pour 3 0.

Sur les faces verticales libres (x= ±a) il verifie la condition £ 0; mais il ne

verifie pas sur ces faces la condition nx 0.

Ce n'est donc pas la Solution du probleme, mais celle d'un probleme oü
les faces verticales seraient soumises ä des reactions

B1 S(-ir^Am(mi:-l)e- -ml,

(egales aux valeurs prises par nx sur ces faces). Considerons alors, en chaque

point z sur les faces verticales, des forces — R1 egales et de sens contraire aux
reactions parasites precedentes. Nous supposerons, et c'est en cela que consiste

Tapproximation3) dans cette Solution, que les contraintes sous ces forces — R±

peuvent etre determinees par les regles habituelles de la Resistance des

Materiaux. Les forces — Rx se faisant equilibre deux ä deux sur une meme
horizontale z, le prisme est soumis ä des tractions (ou compressions) nx— — Rx

et les contraintes nz et t sont nulles. En ajoutant ce

Systeme de contraintes

nx -S(-iy^Am(ml-l)e-™t
II \nz 0

\ t =0
au Systeme I, on obtient les contraintes totales de la Fl&* 3

Solution approchee soit:

'*, %

(A)
nx -Z,_4m(m£-l)e-m^[cosma + (-l)m+1]
n„ A0 + SAm(mt> + l)e~m^cosma

t SAmm £, e~m^ sinm ol

3) II peut sembler illogique d'admettre pour le probleme II les hypotheses simpli-
ficatrices de la Resistance des Materiaux, car quand on cherche, comme nous le ferons
plus loin (2°) une Solution par reiterations, ce probleme II se presente analytiquement
sous la meme forme que le probleme I. En realite ce n'est qu'en apparence que les
problemes I et II sont de meme nature. Dans le probleme I les charges sont discontinues
sur les bases et la Resistance des Materiaux ne pouvait evidemment nous etre d'aucun
secours puisque c'est l'objet meme du probleme d'etudier ce que ne nous fournit pas cette
Resistance des Materiaux. Dans le probleme II, il s'agit d'un prisme long par rapport
a sa dimension transversale, et soumis sur ses faces ä des forces continues. La fig. 4
donne ä titre d'exemple la loi des forces — Rx dans le cas oü l'on etudie le cas oü la base
2 0 est soumise ä une charge concentree appliquee en son milieu.

L'adoption des regles simplificatrices entraine evidemment des erreurs, mais ces
erreurs ne sont pas plus importantes que Celles que l'on fait dans les cas courants
d'application de la Resistance des Materiaux. La comparaison avec la theorie exacte
permettra d'ailleurs de les evaluer.



172 Y. Guvon

La fonction de charge etant connue, on connait les coefficients Am, et les
contraintes sont donnees en chaque point (xz) ou (a£) par des series en general
rapidement convergentes des que £ atteint des valeurs notables, par suite de
la presence du multiplicateur e~m^ sous le signe S.

B. Cas de forces normales impaires

Elles peuvent etre developpees en serie de sinus

w SA' sin-mol

avec

TT

2 r
A'm — I co (a) sin• m old ol

Elles sont equivalentes ä un couple.
Le moment de ce couple est egal ä

M
A'

2 f üxdx 22" Li; f Bin.m_.-a-—_o| 2 — S( - 1)'"+1 ^"

__

P

•t-ftj j

g

0.71p
1.1 p
1.17p

1.07p

102p

n P
2a

Fig. 4

c
J—

1

_>
/

z

X

Fig. 5

On trouve par la meme methode que precedemment, pour le Systeme I:

| nx — SAm (m£— l)e~m^sinma
I \ nz SAm(m^+l)e-m^sinmoL

\ t — SA'mm£)e~m£cosm ol

Les conditions aux limites sont satisfaites sur la face z 0, mais non sur les

faces verticales x ± a car pour a ± tt on a:
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t S(- l)m+1 A'mm£e-™£

Les contraintes residuelles sont de meme signe sur les deux faces mais on
voit (fig. 5) qu'avec la Convention de signes adoptee pour t, il faut introduire
sur les faces des reactions tangentielles t' egales et de sens contraire sur la
face x — + a et la face x— —a. Les valeurs de t' sur la face x a sont egales et
de sens contraire aux contraintes residuelles t soit

t' -S(-l)m+1A'mml>e-ml

Le moment produit par ces forces ä un niveau quelconque est egal ä:

J
Mz -2aS (-l)^+1A/mm^e~m^-dC

o

2^S(-l)™+1^\l-(mt> + l)e-™Z]
tt m L J

SMm[l-(m£+l)e-mZ]

en appelant Mm le terme d'ordre m du developpement de M, couple auquel
sont equivalentes les forces impaires considerees (voir en effet ci-dessus
l'expression de ce developpement de M).

Pour £ infini (et pratiquement pour £ suffisamment grand) Mz tend vers M.
On peut donc considerer que le Systeme I est le Systeme de contraintes que
l'on aurait sous l'effet des forces impaires appliquees sur la base z 0, l'equilibre

etant obtenu par des reactions tangentielles ± t appliquees sur les faces

x= ±a, ces reactions t ayant pour resultante le couple —M; puis que Ton
applique, pour faire disparaitre les reactions t qui n 'existent pas, des forces
t' —t, ayant par consequent pour resultante le couple + M. On a donc substitue

aux forces initiales un Systeme de forces (tr) qui donne le meme moment.
En determinant les contraintes creees par les forces t' et en les ajoutant aux
contraintes du Systeme I, on obtiendra l'etat de contrainte total.

Dans le Systeme II ainsi envisage sous les forces t', nous admettrons que
les contraintes peuvent s'obtenir par les regles habituelles de la Resistance
des Materiaux.

On a donc pour ce Systeme II et pour le terme d'ordre m

neiI Mm[\-{mi+\)e~™{]_! * =la(_i)»H-i^[i_(m£+i)e-»»C]
_ d TT Tft

t s'obtiendra ensuite par la relation:

dnz dt _ dnz dt-—^ + -- 0 ou —^ + — 0
dz dx de, doL

dr) <\ A'
or ^=*(_i)m+i:_^m2£c-™j

cc, tt2 m
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d'oü
L TT

La fonction /(£) peut se determiner facilement car il faut que tj + tu soit
identiquement nul pour a + tt, ce qui donne

-^7T2(-ir+^Afmmle-^ + (-ir^A/mmle-^ + fa) 0

d'oü /(£) \(-lT^A'mmle-^
d'oü tn

>-3<
(-l)m+1A'mmr3e-mZ

nx s'obtiendra ensuite par la relation:

w~t + -7^- 0 (t etant tu ecrit plus haut).
#4 V OL

Or

d'oü

^ TT

dl
2-3a2

(-l)m+1A'mm(l-mC)e-m^

n,Xu -*K ^{-ir+^A^mil-mQe-^ + git)

La fonction g (£) est identiquement nulle car il faut que nx 0 pour a ± tt.
Finalement le Systeme II s'ecrit

II

n„ —
5 77"

-S(-l)m+1A'mm(l-7n0e-mC

n, ^2'(-l)^1^[l-(m£+l)e-^q
tt2 mZ ~ -72

i2-3a2
t

TT"

\TT"
S(-l)m+1A'mm£e-mZ

Par addition du Systeme I et du Systeme II on obtient les contraintes de la
Solution approchee

(B)

tt.

nt

-SA'm(m£-l) [sinma-°^^m(-l)^+1l
^M^+SAfm(mUl)e-^\sinma-d^(~ir"'1]
2 a6 L tt2 m ]

t -SA'mmte-mZ cos m ol + (_l)m+l
3 a2-

nz est compose de deux termes; le premier est la contrainte calculee par la
Resistance des Materiaux; le deuxieme (serie ä termes exponentiels) a des
valeurs importantes pour les petites valeurs de £. Pour £ 0, on verifie imme-
diatement, d'apres la maniere meme dont l'expression de nz dans le Systeme II
a ete calculee, que nz — SA'msinmoL. Lorsque £ augmente, le deuxieme terme
diminue tres rapidement.
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C. Cas de forces tangentielles paires

Elles sont developpables en serie de cosinus

Q B0 + SBmcosmoc
TT Tt

On peut ecrire d'ailleurs _J, _
1 „ f— fl_„ ___

2a

0 cos m<x da

en designant par T la resul-

U
\-ß2(t-2S)e'2*

z

Fig. 6

tante des efforts tangentiels sur la base.

Le prisme n'est pas en equilibre sous
l'action des forces Ö appliquees aux bases

z 0 et z 2h. Pour assurer l'equilibre, il
faut faire intervenir des reactions sur les

faces laterales, reactions qu'on supposera
s'exercer suffisamment loin des bases pour
ne pas troubler l'etat elastique au voisinage
de celles-ci.

On trouve, par la meme methode qu'en
(A), pour le Systeme I:

[ nx —SBm (m £ — 2) e_m£ sinm ol

I | nz S__?mm£e~m£sinma
t B0 + SBm(l-mt))e-m^cosmoc

Les conditions aux limites sont satisfaites pour £ 0 (nz 0, t 0) mais non
sur les faces verticales, car pour x= ±a il reste les contraintes parasites

f _0-_(-irßffl(l-mOe-^
Pour faire disparaitre ces contraintes parasites, il faut faire agir sur les faces
des forces tangentielles

t' - B0 + S (- 1)™+! Bm (1 -m £) e-™£

Le sens de ces reactions complementaires, sur la face x= +a, est indique sur
la figure 6 dans l'hypothese oü les coefficients B0BxB2 sont positifs; sur
la face x— — a, les forces sont de sens oppose comme on l'a explique au
paragraphe (B).

Au niveau d'une horizontale £ le moment produit par ces reactions

complementaires est egal ä —2a\t'dz, soit, puisque dz —rf£

O 2 i

Mz B0-2az- — SBm(l-mt>)e-™Z(-l)™+1dl>
o

2 a2
Tz- S(-l)m^Bm^e-m^



176 Y. Guyon

Quand £ augmente, le moment Mz tend vers Tz, moment produit par la resultante

T des efforts tangentiels appliques ä la base etudiee.
Systeme II. On admet les hypotheses de la Resistance des Materiaux.

On a d'abord \tz-'-2a2

77

dt

27(_l)m+l£m£e-m_

dn,

3 x
¥ o3

On en tire t par la relation — —^~ puis, t etant calcule, on a nx par la
t _. dnx dt öx di>

relation -—^ — —-.
C OL ÖL,

Les calculs sont tout ä fait de meme nature que ceux qui ont ete faits en (B)
et nous ne les developperons pas. On trouve finalement pour le Systeme II les

expressions suivantes des contraintes:

II

n^
a(772-a2)

n= Tz
2 a2

S(-l)m+1Bmm(m£-2)e-m£

S(-l)m+1Bm^e~m^

On obtient les contraintes de la Solution approchee par addition des systemes
I et II, ce qui donne

(C)
3 Txz

n,

t

Bm (m £ - 2) e~mZ [sinma - —^ "^ - 1)™+*
|_ 2 TT

[Sol — l)m+1
sinma T -

772 m

m

2 a3

3 T a2-x2
2 2a a2

+ SBm(l-mli)e-m^ cosma —( — l)m+1 772-3a2]
2772

Les premiers termes de nz et t sont ceux que l'on calculerait par la Resistance
des Materiaux. II s'y ajoute des termes exponentiels qui sont importants pour
les faibles valeurs de z et tendent vers zero quand z augmente. Pour z 0 ces

termes exponentiels donnent, par addition avec les termes correspondant aux
hypotheses de la Resistance des Materiaux, les contraintes dues aux efforts
appliques sur la base meme. On le verifierait facilement, et cela resulte d'ailleurs
de la facon meme dont le Systeme II a ete calcule.

D. Cas de forces tangentielles impaires

Elles peuvent etre developpees en une serie de sinus

6 S B' sin m ol
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Ces forces se fönt equilibre sur chaque base. II n'y a donc besoin d'aucune
reaction complementaire sur les faces laterales du prisme pour assurer la
stabilite d'ensemble.

On trouve, par la meme methode qu'en (A), pour le Systeme I
i nx SB,m(ml> — 2)e~m^cosmoc

I | nz — SB'mmXse~m^cosmol
\ t _T_5^(l-m£)e-m£sinma

Les conditions aux limites sont satisfaites pour z 0 (nz 0 t 0); elles ne le
sont pas sur les faces verticales, car pour a= ±77 on a bien £ 0, mais nx n'est
pas nul; il reste les contraintes residuelles

nx -SB'm(mi-2)e-mt(-\yn+i
II faut, pour faire disparaitre ces contraintes parasites, introduire des reactions
qui leur soient egales et opposees, soit:

B± + E (- 1 )"»+i B'm(mt-2) e~m £

Comme dans le paragraphe A, le Systeme II s'ecrit alors:

nx S(-ir^Bm(mZ-2)e~™ £

II nz 0

t 0

On obtient les contraintes totales de la Solution approchee par addition
des systemes I et II ce qui donne:

P)
nx E B'm(m£) — 2)e-m£[cosmoL + (-_l)m+l]

nz —_r_5^m£e_m£cosma

t SB'm(l-mt)e-mtsinmoL

2. Expressions des contraintes en termes finis

II est possible de transformer les expressions precedentes en termes finis
pour certaines lois de charges. Nous examinerons le cas oü les forces appliquees
se reduisent ä une force unique, normale ou tangentielle, appliquee ä l'abcisse

x u. Nous poserons 99 77 — •

Le calcul des contraintes sous l'action d'une force unique resoud d'ailleurs
le probleme le plus general.

1. Effet d'une force unique normale ä Vabcisse x u (ou a cp). Nous la
supposerons dirigee vers l'interieur du prisme, donc negative d'apres la
Convention de signes adoptee et la designerons par — P.
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Son effet peut s'obtenir par la superposition de 1 effet de deux forces
P P

symetriques — -^ et de deux forces antisymetriques ± -^ aux abcisses ± u

(%• 7).

Les forces symetriques peuvent etre representees par la serie

_40 + SAm cos m ol

et les forces antisymetriques par la serie

SA'm sinma

P
avec ^°-~2^ -^1**. — cos m 99 _4' sin m cpm a T

Nous appellerons p la valeur absolue moyenne, ^—, de la compression. Les
systemes (A) et (B) ecrits plus haut deviennent:

nx 2pS(mt> — l) e~mZcosmcp [cosmol + (— l)m+x]

nz —p — 2pS(mt> + l) e~m £ cos m ol cos mcp
t —2pSmt> e~m £ sin m ol cos m cp

nx 2 p S (m £-1) e~mZ sinm cp sinma— *
2 m(- l)m+1

B n<
3 x T 3a (— l)m+1_l

—-M—^ —2pS(ml+l)e~m£ siniuol w - sinmcp
2 a3 1 tt2 m J

t 2pSmt3e-m^ cos moL +
3 a2-

2 772 (_l)m+l smm<p

Par addition on obtient 1'effet de la force unique.

p
2

P
2

\U U\
\ \

\ i
P PT 2

^rJLJjL

-if

Fig. 7 Fig. 8

En posant cc-cp=ß (abcisse comptee ä partir de la force) et en tenant
compte de ce que:

M — Pu — p - 2au

et que (-l)m+1 cos mcp -cos m (tt - cp) et (-l)m+1 sinmcp sinm(TT-cp) on
obtient les contraintes suivantes sous la force P:



(P)
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nx 2pE(mt)-l)e-m^ cosmß-cosm(77-99)
L "

w. -^ (1+ -^~\-2pS(ml+ l)e~m^ cosmß-
r 3 a2 _ n2 -1

£ —2pEmt)e-mZ> sinmß —^—sinm(77 — 99)

179

m sin m 77-99)

3 ol sin m (77 —99)]

m

2. Effet d'une force tangentiale unique s'exercant ä Vabcisse x u. Nous
la supposerons dirigee dans le sens des x positifs, donc negative d'apres la
Convention de signe, et nous la designerons par — Q. L'effet peut s'en obtenir

par la superposition de l'effet de deux forces —-p- appliquees aux abcisses ±u
et de deux forces symetriques ± -^ appliquees aux memes abcisses (fig. 8).

Les developpements sont:

pour les deux forces — — de meme sens: B0 + SBmcosma

pour les deux forces ±
Q S B' sin m a

avec B0 -~ Bm -~cosmcp Bm= - -smmcp

Nous appellerons q la valeur absolue, ~-9 de la contrainte moyenne de
cisaillement.

En remplacant dans les systemes (C) et (D), ecrits plus haut, B0 Bm et B'm

par leurs valeurs ci-dessus et en ajoutant les deux systemes, on obtient, tous
calculs faits, les contraintes suivantes sous l'effet de la force tangentiale Q

applique ä l'abcisse u\ (on pose toujours

u
OL-Cp)

(Q)

cp 77— et ß

r / 2 2\

nx 2qS(mt)-2)e~m^ sinmß-sinm (77-99) H 0_2—-mcosm(772 TT2

^ ~^~ rt ^ J. n 3 ol cosm (77 — 09)1

^ ~2(1w~t -2g_Tm£c-m£ smmj8+-^- —°^2 L 772 m J

-9)]

*=-?-

Sxz
*2a<

3 a2-x2
a* -2qE(l-mt))e-mt cos mß +

m
TT2 SOC2

cosm (77 — 99)

Les series qui entrent dans les expressions des contraintes des systemes
(P) et (Q) peuvent etre sommees.

Posons en effet, y etant un parametre variable

R Em2 e~m^ cos my; S Sme~m^cosmy; T Ee~m^cosmy,

u se
-m£ cos my

m
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R' Em2e~ml* sin my; 8' Eme~~m^ sin my; T' Ee~m^sinmy;

U' ze~
-mt, sin my

Formons les series: m

R" R + iR'; S" S + iS'; T" T + iT'; V" IJ + iU'
et posons e-<£-*y> r
on a alors:

R" =Em2rm; S" Zmrm; T"=Erm; V" S —
m

On voit que l'on a T" r—^—; S" r —^—; i." f—r—, ce qui permet de
ö£/* $y $y

calculer les quatre series lorsqu'on en a calcule une.

Or T" r + r2 + r3 + r (1 + r + r2 +
1 — r

D'oü les valeurs des series

1+f r r
(l—r)d (l—r)2 l—r

En separant ensuite les parties reelles et les parties imaginaires on trouve,
tous calculs faits, les valeurs suivantes des series

R ==sh^cosrcn^-(1+sin2r)

R' sin y

2 (ch£ — cosy)3

sh2£-3(cosych£-l)
2 (ch £ — cos y)3

_ cos y ch £ — 1

8'

T

2(ch£-cosy)2
sin y sh £

27ch£-cosy)2

sh£ 1

2(ch£-cosy) 2

T, smy
2 (ch £ — COS y)

C7 - -L/l-2e-£cosy + e-2£

c/ are tg -7 -—
_> — cos y

En introduisant ces fonctions, on obtient les expressions suivantes4) des

contraintes en termes finis:

4) R, R' etc. ...sont des fonctions de y et £. Nous les designerons par R(y), R' (y) etc..;
il est bien entendu que ce sont les fonctions de £ correspondant ä la valeur y de l'argument
trigonometrique.
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1. Sous une force normale P ä Vabcisse u [cp — tt ~ j et en posant

*=:__ '

(P) {

nx 2p[iS(ß)-T(ß)-US(ir-<p)-T(n-<p)]

_^(^!)KÄ,(___)_Ä,(w_9)]j

\ TT J TT

r 3 2 _ 2 -]

t ~2pl yS'(ß)--Y^-S'(TT-Cp)\

2. Sous une force tangentiale Q ä Vabcisse u,

et en posant q — ^— la force Q etant dirigee dans le sens des x positifs,

nx 2q\lS'(ß)-2T'(ß)-[CS'(n-9)-2T'^-<p)]

(Q)
nz -2ql•t-^L

t
3 772-a2

772

-9) + 5'(]8)

+ 2q\zS(ß)-T(ß)-^-^[CS(*-<p)-T(ir-<p)]}

Ces formules ont une apparence compliquee, mais si on a calcule des tables
des valeurs des fonctions RS TU R' Sf T'V', leur emploi n'est pas plus
difficile que celui de fonctions habituelles, trigonometriques ou hyperboliques.
D'ailleurs les fonctions RST etc. n'entrent que par certaines combinaisons
(telles que ^S — T etc.) dont on peut calculer egalement des tables. D'autre
part il suffit de calculer les fonctions pour des arguments y compris entre
0 et 77, ä cause de la periodicite et des parites des fonctions. Pour les fonctions
RSTU, qui sont paires, R(—y) R(y) etc. pour les fonctions R' S' T' U',
R' (~ y) ~ R' (y) e^ pour toutes les fonctions la periode est 2 77 [R (y + 2 tt)

R(y) etc.].
Nous avons dresse des tables sommaires des fonctions pour les valeurs de

7777377 - TT TT TT 2TT 3TT
y 0— — —— 77 et pour les valeurs de £ 0 — — — —— 77 -—- 2 77.^424 r 6 3 2 3 2

On en deduit les valeurs des contraintes sous une force P ou une force Q

pour p 1 et q 1, en tous les points d'intersection des verticales et horizontales
formant le quadrillage de la figure 9, pour des positions de forces appliquees

sur la base en un point quelconque de la division de — en — •
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Pour ne pas allonger cet expose, nous n'avons pas reproduit le tableau
des valeurs des fonctions RS TU R' S' T' U'. Nous nous sommes contentes
de donner les tableaux des valeurs des contraintes, qui sont Celles inscrites
dans les tableaux II ä VII que l'on trouvera plus loin, et dont le mode d'emploi
sera precise.

Nous allons toutefois montrer que dans certains cas importants les
formules se simplifient et sont facilement utilisables.

o ___*____.__€_ })a 4 Z 4 u + 2-+a__h3a_ +

a
6 a
s '
* 2a

3

3

3a
2

2a

a/6
a/3
a/2

2a/3
Lot reelle

0.37

3a/2

2a 0.0*

enfre parenf-heses loiree//e

±0.338 (OM8)
+\0.S08 (05)

0.62p (0M2)
0.58 (0A23)

W.m)

loiapprochee
OA3 (0.161)

(0.058)

Fig. 9
Fig. 10. Contrainte n pour une

charge concentree sur l'axe

Exemples

a) Contraintes sur Vaxe x 0, engendrees par une force normale P appliquee
au centre de la base (cp 0). On a alors a ß 0, 77 — 99 77.

Les formules P donnent

| nx 2p{ttS (0)- S (tt)]-[T (0)-T (tt)]}
nz -p{l+2[lS(0) + T(0)]}

[ t 0

et d'apres les expressions de S et T

1

8(0) 2(ch£-l)TyS(«) 2(ch£+l
sh£

; S(0)-S(tt) ____
sh2£

T^ 2whrv ^ 2wtt)--_; y(°)-^H sh£
d'oü

nx 2p

nz -p

gchg-sh£
sh2£

ch£-l
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La Variation, deduite de cette theorie approchee, de la contrainte nx
(contrainte d'eclatement) en fonction de z est representee par la figure 10. On
a trace sur cette meme figure, en pointille, la loi reelle de nx teile qu'elle
resulte de la theorie exacte dont on parlera ci-apres. La contrainte maximum
dans la theorie approchee est 0,62 p; le calcul exact donne 0,5 p. Le resultat
de la theorie approchee est donc errone de 24% par exces, et la zone des
tensions est un peu trop basse. On voit cependant que la theorie approchee
donne dejä des indications utiles.

b) Contraintes nx sur Vaxe, engendree par une force etalee sur une largeur
2u', symetriquement par rapport au milieu. On pose cp' tt-

u
a

Pour une charge codx ä l'abcisse 99, on a pour valeur de la compression

moyenne dp produite par cette charge, dp —-— et comme

<i 7 _ dcp
x cp —, dp co —-L

77 Z77

La contrainte nx sur l'axe (a 0) pour cette charge est, d'apres les expressions
(P), oü ß=a — 99= —99

dnx ^pZ[tS(-<p)-T(-<p)-tS(n-<p) + T(n-9)]
_. 77

£___? { ^S (<p) - S (TT - <p)] - [T (<p) ~ T (TT - rp)] }
TT

En remarquant que, d'apres les expressions des fonctions 8 T U etc. en series,

r

on trouve, en integrant d nx de — 99' a + cp':

nx=^{£[T'(<p') + T'(n-<p')]-[U'{9')+U'(n-<p'm
TT

En utilisant les valeurs des fonctions T' et V on trouve apres des calculs
faciles

U*~ tt [S"h2£ + sin27~arCtg^nTJ

et comme la compression p est egale a „-

JS
dT'
dy

T_dU'
dy
2 ä

2p[,. sn_Vch£ ^ sincr/!

Quand 99' devient petit, arctg-7-y peut etre assimile ä —ry; on a alors

13 Abhandlungen XI
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ch£
cp' L sh2£ + sin299' shh]

Quand 99' tend vers zero, —^- tend vers 1, sin 99' tend vers zero et l'on retrouve
bien la formule donnee dans le cas de la charge concentree

_ £ch£-sh£
nx 'Zp

sh2£

Nous etudierons plus completement ci-apres cette question de l'etalement
des charges.

h?

Fig. 11

x'

Fig. 12

c) Cas de charges normales egales regulierement espacees, symetriques par
rapport aux centres de chaque division, et de meme etalement (charges periodiques).

II y a ici avantage ä raisonner par les series. Le developpement en serie
des charges est periodique, la periode etant, si n est le nombre des intervalles,

n
- Les contraintes du Systeme I sont egalement periodiques, avec la meme

periode; sur les verticales XX' etc. qui limitent les divisions, les contraintes
prennent donc les memes valeurs. Les reactions complementaires qui annu-
lent les contraintes parasites sur les verticales x ± a annulent donc en meme
temps les contraintes nx sur les verticales XXr; les contraintes t sont nulles
sur ces memes verticales, par suite de la periodicite du Systeme I, puisqu'elles
sont nulles sur les verticales —77 et +77. Par consequent nx et t etant nuls sur
ces verticales limites des intervalles, l'equilibre est le meme que si le prisme
etait decompose en n prismes soumis chacun ä une charge symetrique.

Nous verrons plus loin que cette conclusion n'est qu'approximative et
qu'en realite les contraintes nx et t ne sont pas nulles sur les verticales X et
X', en particulier au voisinage de la face z 0. Mais ces contraintes de surface
etant mises ä part — et calculees par la methode exacte — l'approximation
consistant ä admettre que le Systeme est equivalent ä n prismes independants
fournit des ordres de grandeur tres acceptables pour ce que nous appellerons
plus loin les contraintes d'iclatement, c'est-ä-dire les contraintes nx qui se

produisent en profondeur.
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II. Expose d'une Solution plus exacte.
Cas de charges normales paires

Revenons sur le cas d'une charge normale paire, que l'on peut developper

en serie de Fourier, en posant comme precedemment a —
ä> — EAmcosmoL, m pouvant prendre toutes les valeurs y compris 0.

Considerons le terme d'ordre m de cette serie

üm Amcosmcc

Nous nous proposons de calculer en tout point du prisme les contraintes
partielles nmx, nmz, tm correspondant ä ce terme. Ces contraintes seront evidemment

proportionnelles ä Am et on pourra ecrire

""mx
A

Jrt-m vmx

nmz Am vmz

tm Am Tm

Tout revient donc ä calculer les contraintes vmx, vmz, rm correspondant ä

Am=l, c'est-ä-dire les contraintes sous la charge äjm cosma.
Nous avons fait ce calcul pour la contrainte nx, la plus dangereuse.
Si on connait pour cette contrainte nx les differents coefficients vm (nous

supprimons desormais l'indice x), la contrainte totale nx en un point (xz)
sera donnee par la serie

nx ^ Amvm (xz)

vm est une fonction de x et de z. Mais pratiquement il n'est pas necessaire
d'en connaitre l'expression en x et z. II suffit d'en connaitre les valeurs en
un certain nombre de points du prisme. Si ces points sont assez rapproches,
cela suffira pour permettre les interpolations et pour definir ainsi d'une facon
süffisante l'etat elastique du prisme. Les calculs ont ete faits pour les points
d'intersection des verticales et des horizontales formant le quadrillage de la
figure 9.

Les coefficients vm(xz) ayant ete determines en tous les sommets du
quadrillage ainsi defini, en un de ces points, de coordonnees x0z0, les coefficients
vm seront des nombres vm (x0 z0) determines une fois pour toutes et la contrainte
nx au point x0 z0 sera donnee par la serie

nx SAmvm(x0z0)

A la serie de Fourier, donnant ä>, dont les coefficients A0A± Am sont
facilement calculables, on a donc fait correspondre, pour nx, la serie numerique

nx ^oMVoR^lMVo) • • • +AmVm(X0Zo)+ ¦ • •

1. Considerons donc la charge partielle <Z>m cosma. On a trouve ci-
dessus (I, A) une contrainte (Systeme I)
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v^ — — (m£ — l)e~m^ eosmoL

qui n'est pas la Solution du probleme, puisqu'elle n'est pas nulle sur les faces

x— ±a, oü eile prend la valeur r1 — l)m+1 (m £ — 1) e~m^.

2. II faut sur ces faces x= ±a introduire des reactions egales et opposees.
de facon ä annuler les contraintes parasites, soit:

-rx -(-l)m+1(ml-l)e-mZ

Cette fonction de reaction — rx) est valable pour la moitie superieure du
prisme; pour la moitie inferieure on a une fonction (— ?V) symetrique de (— rx)
c'est-ä-dire teile que rx et r/ prennent des valeurs egales en des points
symetriques par rapport au plan horizontal median z h [c'est-ä-dire rx(z)
r1'(2h-z)].

Appliquons ä cette fonction de reaction la meme methode que precedem-
ment (I, A), c'est-ä-dire developpons-la en serie de Fourier et cherchons un
Systeme de contraintes qui lui corresponde terme ä terme (Systeme II).

Par suite de la symetrie par rapport au plan z h, on pourra obtenir pour
(— Tj) un developpement ne comportant que des sinus, de la forme

- rx - - 1 )m+1 E Bn sin ^^ (n impair).

Moyennant certaines transformations, destinees ä obtenir des series

rapidement convergentes, et sur lesquelles il n'y a pas lieu d'insister ici (elles
sont explicitees dans notre memoire precite), il y a avantage ä mettre —r1

sous la forme

_,.i _(_.1)nm(_1+r6>n^
C'est-ä-dire sous la forme d'une traction ou compression (suivant la direction
nx) uniforme, — l)m+l et d'une serie

-(-l)»+i_:&B8in^
ou encore en posant

^r k et £-77 — -r1 -(-l)m+1(-l+SbnsinnkQ

Par des calculs analogues ä ceux faits en I, on trouve un etat elastique
satisfaisant aux equations de l'elasticite, mais non ä toutes les conditions aux
limites: il reste sur les faces horizontales z 0etz 2h des reactions parasites
tangentielles. Les contraintes vx et les reactions parasites ont des expressions
de la forme5)

5) II est bien entendu que v^ est une simple notation et que l'indice superieur 2

n'est pas un exposant mais la designation du rang du Systeme de contraintes dans la
reiteration.
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contrainte vx vm — — 1 )W+I [—l+Ebn fn (ol) sin nk £]

reactions parasites t]n — — l)m+1 Ebn gri (ol) (pour z 0).

Les expressions de bn, fn et gn sont donnees dans notre memoire. Pour b„ on a:

4 m2 m2 + 3 &2 n2
n tt n (m2 + k2n2)2

et cette expression montre que les contraintes du S3rsteme II dependent de
2 h 2hl'elancement — (ou de la valeur de k) du prisme. Mais on reconnait que si -^~

est suffisamment grand, l'etat de contrainte au voisinage de la base varie tres

peu avec l'elancement, et que c'est un etat attache ä l'extremite du prisme,
ne dependant que des forces appliquees. Nous avons choisi un elancement

3, d ou k ^.2 a 6

On a alors:
4 36m2(36m2 + 3n2)

n ~ ~tt' n(36m2 + n2)2

et le developpement de — rx) est tres rapidement convergent.

^hOn a d'autre part pour cette meme valeur de ~— 3:

/mr t nrr )itt\ na y\a n tt n x

x
AsCh 6 +sh-<r)ch 6"- 6«h 6-sh 6

fn (ol) 2 —

3 +Shü

7itt mr na na n-n 1 ny,
— ch — sh —— sh - ch -^~

x ,-. 6 6 6 6 6 6
qn (ol) 2

3-+shT
Pour faire disparaitre les contraintes parasites t^ il faut exercer sur les

faces z 0 et z 2h des reactions tangentielles — _^.
A ce stade du calcul, la contrainte vm eherchee peut donc etre mise sous

la forme

vm vm + vli + effet de (-tm)
n t- (m £ - 1) e~m C cos m ol + - 1 )m+1 - (- l)»1*12bn fn (ol) sin —^
6

+ effet de (-&) (1)

II est clair que si l'on poursuivait les calculs suivant la methode suivie jusqu'ici,
— c'est-ä-dire si l'on developpait (—tm) en serie de Fourier, puis si l'on cher-
chait le Systeme de contraintes correspondant, qui ferait apparaitre des
contraintes parasites sur les faces x— ±a, puis si l'on annulait ces contraintes
parasites par de nouvelles reactions etc. — la suite des systemes successifs
serait illimitee et rien ne demontrerait, independamment de toute question de

possibilite d'execution de tels calculs, la convergence de cette suite.
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Mais on constate numeriquement, et cela permet de terminer le calcul»

que les reactions tangentielles (— tm) qu'on doit introduire pour faire dis-
paraitre les contraintes parasites du Systeme II suivent, quelle que soit la
valeur de m, une loi tres sensiblement lineaire, qu'on peut assimiler ä la loi
(-O *«.«-

Si donc on suppose connu le Systeme de contraintes correspondant ä une
teile loi lineaire et satisfaisant, cette fois, ä toutes les conditions aux limites, ce

serait notre Systeme III; en appelant vm la contrainte vx correspondante on
aurait:

v vl +v2 +vS

En realite, comme la loi (—t^) n'est pas rigoureusement lineaire, il est
necessaire d'apporter des corrections; nous verrons ci-dessous comment elles

peuvent etre faites. Moyennant ces corrections, on peut considerer les resultats
obtenus comme pratiquement exacts.

3. On est ainsi amene ä chercher, par un calcul separe, l'effet d'une charge
lineaire tangentielle. On peut prendre pour cela une loi teile que son developpement

en serie soit le plus simple possible, et nous avons choisi la loi 0 ^;
les resultats obtenus sont alors utilisables pour toute autre loi lineaire, par
proportion.

Le developpement en serie de Fourier de la loi choisie est

0 =__=£(_!).»+-_____!
2 n

Ce calcul, limite aux contraintes nx peut etre decompose suivant le Schema

suivant:

Systeme
Charge

appliquee Developpement
Contrainte Contraintes

parasites

a

b

c

0, tangentiel
sur z 0

— va (tt), normal
sur x ± a

— t tangentiel

E( l)n+l*innQC
n

Edp sm pj^

va(°0 va(Tr), normal
sur faces x~±a

r, tangentiel
sur face z 0

Or on constate que les reactions tangentielles — r qu'on doit introduire
dans le Systeme c suivent de nouveau, avec une tres grande approximation,
une loi lineaire, comme la charge 0 dont on etait parti. Cela nous permet une
recurrence qui va fermer le cycle.

En effet appelons vx la contrainte reelle engendree par 0 (qui n'est pas va,
laquelle est une fausse Solution). On a:

vx va+vb + vc + vd+ • (2)
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mais vc + vd+ est la contrainte reelle vx engendree par — r. Elle est donc
proportionnelle ä vx engendree par 0 puisque 0 et r sont tous deux lineaires.

Designons la loi — r par: — r— — Col, C etant une constante, on a:

vx (sous — r) vx(sous0) • —^- v (sous 0) —2Cvx (sous 0)
0 __L

2

La formule (2) s'ecrit:

vx (sous 0) va + vb + vx (sous - r)
ou:

vx (sous 0) va + vb — 2 C vx (sous 0)

d'oü -_ ^1 (3)

et la contrainte vx remplit cette fois toutes les conditions.
Si on explicite le calcul, on trouve successivement:

sinn ol
n

va (ol) E(n£- 2) e~n * ^—^

va(TT)=E(nt)-2)e^
n

Le developpement de [ — va(?r)] (reaction introduite dans le Systeme b) est:

— va l77) ^dp sin -Tyr (p impair)

avec dn x
" "--«e- \ 2

^2_|_^2j

TTZ
Puis vft(a) Zdpfp(a) sinp 2h

rb(0)= 2dpgp(*)

fp e^ $p ^an^ les fonctions dejä rencontrees en 2 (il suffit de remplacer dans
leurs expressions n par p).

II n'y a pas lieu d'insister sur la facon dont on peut calculer C ni sur la
facon dont on peut rendre le developpement dp plus convergent par une trans-
formation analogue ä celle qu'on a faite en 2 pour le developpement Bn.

Disons seulement qu'on peut avoir vx avec une tres grande exactitude en
tenant compte de ce que la loi rb (0) n'est pas exactement lineaire et en effec-
tuant la correction suivante; nous l'indiquerons pour fixer les idees pour la
contrainte vx sur le plan # —. Cette correction revient ä prendre pour loi
lineaire representant rb (0) non pas 7ö(0) Ca qui serait une certaine loi
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moyenne, mais rb (0) C (ol), C etant une constante, legerement differente
de C et teile que la resultante des charges tangentielles ä droite de -^ soit la
meme pour la loi lineaire (C) et pour la loi reelle rb (0) (fig. 13).

•i^n *

u^j *• a

Fig. 13

C'est ce coefficient C" qu'on introduira pour vx\-~\ dans la formule (3).

(On aura de meme un autre coefficient C" pour vx f-|j, Cm pour vx (^), C",r

pour vx(0) les coefficients C G" C" C"" etant d'ailleurs tres voisins.)

4. L'effet d'une charge tangentielle lineaire ^ etant ainsi calcule, on
_5

pourra terminer le calcul commence en 3 puisque nous connaissons maintenant
l'effet de la reaction tangentielle (— tm) que nous avons assimilee ä une loi
lineaire Km ol.

En appelant v*m la contrainte vx engendree par (— tm) et remplissant cette
fois toutes les conditions aux limites on aura

*4 Vjc
(SOUS T) ' ~f 2 Km Vx (SOUS ~J

vx(sous|| etant la contrainte calculee en 3. On fera d'ailleurs la meme

correction que celle qui a ete indiquee ä la fin de 3, c'est-ä-dire que l'on adop-
tera des valeurs K'm K"m K'!^ K™ (qui seront tres voisines les unes des autres),

pour les contraintes sur les plans y ^i ^ ^es coefficients K'm K"m.. etant
choisis pour qu'on ait egalite des resultantes pour la loi lineaire adoptee et
pour la loi reelle (—t^) ä droite de la verticale consideree.

Ce calcul etant fait on aura la contrainte definitive vx sous la charge
normale ö>m cos m ol par

v v1 + v2 + v3

v)n v2m et vfn etant des fonctions de x et z.

Pour une charge quelconque <Jj EAmcosma, la valeur de la contrainte
nx sera donnee par la serie

nx(xz) A1v1 + A2v2. +Amvm+

Les coefficients v1v2 sont donnes par les tableaux I suivants:
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m
x a/2 Valeurs de z

0 a/6 aß aß 2a/3 a 3a/2 2a 5a/2 3a

1 -0,2966 + 0,0397 + 0,0505 + 0,0178 -0,0151 -0,0258 -0,0115 - 0,0002 + 0,0043 + 0,0049
2 - 0,3465 -0.0772 4- 0.0638 4-0.0766 4-0,0541 + 0.0154 - 0,0002 - 0,0032 -0,0041 -0,0041
3 + 0,9741 - 0,0702 -0,1285 -0,0678 -0,0281 - 0,0032 + 0,0014 + 0,0023 + 0,0025 + 0,0025
4 -1,2221 + 0,1429 + 0,1002 + 0,0368 + 0,0122 + 0,0005 -0,0013 -0,0018 -0,0017 -0,0017
5 + 0,9013 -0,0969 -0,0561 - 0,0206 - 0,0067 + 0,0004 + 0,0011 + 0,0011 + 0,0011 + 0,0016
6 -0,1811 + 0,0179 + 0,0359 + 0,0158 + 0,0056 + 0,0027 + 0,0011 - 0,0024 -0,0030 -0,0028
7 -0,5387 + 0,0309 - 0,0290 -0,0155 -0,0057 - 0,0026 - 0,0002 + 0,0011 + 0,0023 + 0,0017
8 + 0,8411 -0,0328 + 0,0279 + 0,0146 + 0,0051 -0,0031 - 0,0040 -0,0030 -0,0022 -0,0017
9 -0,5549 + 0,0075 - 0,0284 -0,0141 - 0,0049 + 0,0031 + 0,0040 + 0,0010 + 0,0005 -0,0019

10 -0,1500 + 0,0135 + 0,0248 + 0,0124 + 0,0055 + 0,0007 - 0,0002 -0,0015 -0,0014 -0,0008

On trouvera plus loin (tableaux II ä VII) des tableaux plus facilement
utilisables. Mais nous avons cru utile de donner le tableau ci-dessus, ä cause
de sa tres grande exactitude, et d'autre part parce que, dans certains cas de

charges paires, il ne serait pas beaucoup plus long de se servir de ces tableaux
que des tableaux II ä VII, lorsque les developpements des charges peuvent
etre reduits pratiquement ä un petit nombre de termes6).

Pour les charges tres concentrees (c'est-ä-dire etalees sur une faible
largeur), il n'en serait plus de meme. C'est pourquoi nous avons transforme
les tableaux en tableaux d'influence (c'est-ä-dire donnant l'effet d'une charge
unique) qui sont precisement les tableaux II ä VII. Ces tableaux II ä VII
seront les tableaux pratiques.

/fTTTVsj
HW\

Cas de charges normales impaires

Nous avons employe une methode analogue ä celle que
nous venons d'exposer. Toutefois nous devons dire que les

resultats obtenus sont moins exacts que dans le cas des

charges paires.
On obtient des expressions analogues dans les deux

premiers systemes (systemes I et II) avec reactions parasites:
sur les faces verticales (reactions normales) dans le Systeme I,

sur les faces horizontales (reactions tangentielles) dans le Systeme IL Mais il
n'existe pas, entre les systemes III et les suivants, de relation de recurrence
simple comme dans le cas des charges paires. II a donc fallu faire des appro-

Fig. 14

6) Toutefois, pour z 0, les series donnant nx sont en general lentement convergentes,
et les tableaux I sont en consequence difficilement utilisables pour cette face z 0. Nous
avons donne dans notre memoire la facon d'obtenir pour cette face des series nx rapide-
ment convergentes. II est inutile ici d'exposer la methode employee, puisque les tableaux
pratiques (tableaux II) donneront en cas de besoin la contrainte nx aussi bien pour
z 0 que pour les autres points du prisme.
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ximations moins legitimes. Neanmoins on peut considerer que les resultats
obtenus pour nx sont approches ä 10 ou 15% pres.

Des tableaux analogues aux tableaux I ont ete donnes, nous croyons
inutile de les reproduire.

III. Etablissement des Tableaux Pratiques

Les tableaux qui sont reproduits ci-dessous (Tableaux II) donnent les
valeurs des contraintes nx nz t engendrees par une force unique normale ou

tangentielle appliquee en des points de la base espaces de j en -, aux points
d'intersection des horizontales et des verticales de la figure 9. Ils ont ete
etablis de la facon suivante:

Pour les contraintes nx sous charges normales, qui sont dans les cas usuels
les plus dangereuses, nous nous sommes servi des tableaux I (charges paires)
et des tableaux analogues (non reproduits) correspondant aux charges

impaires; nous avons pris pour forces appliquees deux forces concentrees -^- aux
Pabcisses + u (charges paires) et deux forces concentrees antisymetriques + -^

aux abcisses ±u (charges impaires). Par addition, on a obtenu l'effet d'une
charge P ä l'abcisse u.

Pour toutes les autres contraintes: nz et t sous charges normales, nx nz et t
sous charges tangentielles, nous nous sommes servi des resultats de la theorie
approchee (I, 2.), c'est-ä-dire des formules (P) et (Q) des pages 179/181.

P QLes contraintes etant proportionnelles ä ^— p et ä ^— q nous avons
Z a _J a

choisi P et Q de facon que p et q soient egaux ä l'unite. On obtiendra donc,
dans tout cas concret, les resultats en multipliant les contraintes des tableaux
par les contraintes de compression ou de cisaillement moyennes, p et q, engendrees

par les forces reellement appliquees.

IV. Tableaux pour le Calcul des Contraintes dans le Cas du
Prisme indefini, sous 1'Effet d'une Force unique

Utilisation des tableaux II ä VII
Le prisme a pour largeur 2 a. II est rapporte ä deux axes 0# et 0 z (fig. 15).
La charge est appliquee sur la base ä l'abcisse u. Sa composante normale

est P, sa composante tangentielle est Q. Les tableaux sont etablis dans l'hypothese

de P dirige vers l'interieur du prisme, et Q dans le sens des x positifs
(fig. 15).

POn designe par p la valeur absolue de la compression moyenne ~—, par q
O

la valeur absolue de la contrainte de cisaillement -£-.2a
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Si donc on appelle d'une facon generale vp et vq les coefficients des tableaux
correspondant respectivement ä la charge normale (tableaux II, III, IV) et
ä la charge tangentielle (tableaux V, VI, VII) la contrainte totale v sous la
force P, Q (v designant nP nz ou t) est egale ä

v pvp + qvq ouv- ^ «

Dans le cas oü l'on a plusieurs forces (le cas de forces reparties pouvant
etre ramene ä ce cas en remplacant les forces reparties par un Systeme de

forces concentrees) on aura

v=vPvp+Qv<i
2a

Les Conventions de signe sont les suivantes:

nx et nz sont positifs quand ces contraintes sont des tractions — t est

positif lorsque sur le plan horizontal laissant au-dessus de lui l'origine 0,

cette contrainte est dirigee dans le sens des x positifs (sur la figure 15, t est

positif).

0 l a X

3

K
P

a

'

Ji'-
\

\
Fig. 15 Fig. 16

Les tableaux donnent les contraintes nx nz et t en differents points du
prisme:

sur 5 verticales x 0 x
_: Z _:

5 pour cunerentes positions ae la cnarge espacees ae
u

a a 3a ^aaa2a3a0-rx ^x=—r-x a aux niveaux z 0 — — -=-a -^- 2 a

et pour differentes positions de la charge espacees de -j en — entre u -a et
+ a.

Bemarques

1. Pour une charge normale P, si l'on fait une coupe dans le prisme par
un plan horizontal H (fig. 16) ä grande profondeur, les contraintes qui s'exercent
sur ce plan H sont reparties suivant la loi habituelle de la Resistance des

Materiaux, et on n'a aucune contrainte de cisaillement sur ce plan H. Si on

coupe le prisme par un plan vertical X, ä gauche de P, il est neeessaire pour
l'equilibre que:
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a) Enx 0.

b) Moment des nx moment des contraintes sur le plan H ä gauche de X
(moment de la partie hachuree du diagramme de contrainte).

c) St resultante des contraintes sur le plan H ä gauche de X.

Ces remarques permettent de preciser les lois de Variation des contraintes
nx et t (nous en donnerons ci-apres un exemple).

2. Sur la base z 0, pour les contraintes sous forces normales, on trouve
dans les tableaux, ä l'aplomb de la force, une double valeur (dont l'une est
— oo) pour nx. Par exemple pour une force appliquee en x ~ 0 on trouve en
x 0, z 0, nx= — oo et +0,523. La signification de cette double valeur est
la suivante:

a) A l'aplomb rigoureux de la force, c'est-ä-dire pour x 0, la contrainte
nx est une compression infinie (due ä ce que la force est concentree) en z 0;
mais cette compression infinie ne s'etend que sur une epaisseur dz infiniment
petite. La resultante — oo • dz est une force concentree. Si l'on trace (fig. 17)

P

0 •

3/6 ""^^^
3/3 0.M8 \
3/2

23/3

0A9SO
0.462 /
0.423 /

3
0.314 /

33/2 0.161/

23 J0.058

sj/;/j/ss;jsJsss •

Compressions 3/3
3/2

23/3

33/2

Fig. 17

l_^ l
0.448
0.499

23

Fig. 18

+0.523P

le diagramme de Variation des contraintes nx le long de Oz, il faut d'apres la
remarque precedente que la force concentree — oo • dz soit egale ä la resultante
du diagramme des tractions; nx passe instantanement de — oo ä 0 quand on
passe de z 0 ä z e. Le moment de la resultante du diagramme des tractions

par rapport ä 0 doit etre egal au moment, par rapport ä 0, de la resultante ^
P a Pas'exercant ä gauche de Oz sur un plan H ä grande profondeur, soit -.- —-.
_I _: 4

b) Sur la verticale x— —ek gauche de la force on a, pour z 0, la deuxieme
valeur, nx— +0,523. II est alors obligatoire que sur cette verticale, les
contraintes nx suivent une loi teile que celle de la figure 18, avec une zone, tres
etroite mais ä fortes contraintes, en compression. D'autre part les contraintes t

devront avoir, sur ce plan x — e, une resultante egale ä — -=- • Les contraintes t
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Les contraintes
doivent etre
multipliees par -

Tableau IV. Conti amte t sous une charge noymale
Position de la force (u)

Position du
point etadle — a -3a 4 -a 2 -a 4 0 + a 4 4-/7 2 4-3"/4

1

' x 0 0 0 0 0 0 0 0 0 1 0

a/4 0 0 0 0 0 0 0 0 0

z 0 a/2 0 0 0 0 0
1

0
'

0 0
1

0

3a 4 0 0 0 0 0 0 0
1

° 0

a 0 0 0 0 0
1

° 0
1

0 0

x 0 o + 0,496 -0,110 - 1,082
1 0 I +1,082 | +0,110 -0,496

1
°

a/4 + 0,059 + 0,450 + 0,030 -0,196 -1,111 -0,024
1

+1,022 -0,230 + 0,059
a

z - s

6 a/2 + 0,220 + 0,197 + 0,027 -0,052 -0,220 -1,18 -0,027 + 0,973 + 0,220
3 a/4 + 1,111 -0,162 -0,017 -0,020 -0,059 -0,20

1

-1,035 + 0,382 + 1,111

a 0 0 0 0 0 0 0 0 0

x 0 0 + 0,403 -0,245 -1,067 0 + 1,067 + 0,245 -0,403 0

a/4 + 0,173 + 0,468 + 0,026 -0,420 -1,153 -0,070 + 0,954 + 0,022 + 0,173
a

2
3

a/2 + 0,490 + 0,317 + 0,061 -0,152 -0,490 -1,174 -0,061 + 1,009 + 0,490
3 a/4 + 1,153 + 0,094 + 0,005 -0,059 -0,173 -0,430 -0,985 + 0,396 + 1,153

a 0 0 o 0 0 0 0 0 0

v 0 0 + 0,146 -0,287 -0,663 0 + 0,663 + 0,287 -0,146 0

a/4 + 0,247 + 0,318 -0,013 -0,474 -0,786 -0,100 + 0,552 + 0,256 + 0,247
a

a/2 + 0,574 + 0,345 + 0,072 -0,216 -0,574 -0,817 -0,072 + 0,688 + 0,574
3 a/4 + 0,786 + 0,304 + 0,050 -0,085 -0,247 -0,489 -0,589 + 0,270 + 0,786

a 0 0 0 0 0 0 0 0 0

'

x 0 0 -0,001 -0,297 -0,379 0 + 0,379 + 0,297 + 0,001 0

2a
z ^^ — '

a/4 + 0,254 + 0,205 -0,014 -0,490 -0,506 -0,103 + 0,266 + 0,388 + 0,254
a/2 + 0,593 + 0,317 + 0,074 -0,222 -0,593 -0,538 -0,074 + 0,443 + 0,593

a
3 a/4 + 0,506 + 0,419 + 0,051 -0,087 -0,254 -0,506 -0,303 + 0,174 + 0,506

l a o o 0 0 0 0 0 0 0

x 0 0 -0,062 -0,135 -0,132 0 + 0,132 + 0,135 + 0,062 0

a/4 + 0,170 + 0,088 - 0,060 -0,201 -0,217 - 0,069 + 0,107 + 0,182 + 0,170
z — a a/2 + 0,270 + 0,197 + 0,034 -0,149 -0,270 -0,228 -0,034 + 0,190 + 0,270

3 a/4 + 0,217 + 0,196 + 0,077 -0,058 -0,170 -0,212 -0,124 + 0,074 + 0,217
l a 0 0 0 0 0 0 0 0 0

x 0 0 - 0,028 - 0,043 -0,032 0 + 0,032 + 0,043 + 0,028 0

^n a/4 + 0,058 + 0,025 -0,024 -0,061 -0,061 -0,024 + 0,027 + 0,060 + 0,058
O lA/

2 T' a/2 + 0,085 + 0,066 + 0,011 -0,051 -0,085 - 0,068 -0,011 + 0,053 + 0,085
3a/± + 0,061 + 0,064 + 0,029 - 0,020 - 0,058 -0,065 - 0,032 + 0,021 + 0,061

a 0 0 0 0 0 0 0 0 0

r x 0 0 - 0,008 -0,012 - 0,008 0 + 0,008 + 0,012 + 0,008 0

a/4 + 0,016 + 0,006 -0,006 -0,018 -0,016 - 0,006 + 0,006 + 0,016 + 0,016
z — 2a ¦ a/2 + 0,024 + 0,018 + 0,003 -0,014 -0,024 -0,018 -0,003 + 0,014 + 0,024

3 a/4 + 0,016 + 0,019 + 0,008 - 0,005 -0,016 -0,019 - 0,008 + 0,005 + 0,016
a 0 0 0 0 0 0 0 0 0
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doivent donc passer brusquement d'une valeur positive ä une valeur negative
en franchissant la verticale 0. Cela permettrait de preciser la forme des lignes
d'influence de t7).

En pratique on n'aura jamais de forces concentrees, mais des forces
etalees, avec une densite aj, sur une certaine largeur. La contrainte nx sur le

plan z 0 se calculera alors par la deuxieme valeur (soit + 0,523 p dans le cas

present) mais on doit aj outer dans la zone chargee, un terme complementaire
egal a — cö (ce qui donne lieu dans le cas de la force concentree ä la discontinuite

+ 0,523p —oo + 0,523p que nous avons signalee ci-dessus).

Applications

Les applications sont tres nombreuses puisque les tableaux permettent de
determiner les contraintes dans le prisme sous un Systeme de forces quel-
conques; on peut ä partir de ces resultats tracer les isostatiques et par con-
sequent rechercher, dans le cas du beton, les formes les plus favorables d'armatures

et leur importance. Nous nous contenterons de donner quelques exemples.

Exemple I
Contraintes sous une force normale concentree P ä l'abcisse -~ (Fig. 19).

H

Les tableaux donnent directement les contraintes nx nz t.

Nous nous bornerons ä representer (figures 20 et 21) les

diagrammes des contraintes nx sur les differents plans verticaux et
les diagrammes des contraintes nz sur les differents plans hori-
zontaux que les tableaux permettent d'explorer. On voit que
la contrainte nz tend rapidement vers la loi lineaire.

Fig. 19 j)es valeurs de nx nz et t, on deduit les inclinaisons des

isostatiques en tout point, ce qui permet de tracer avec une
precision süffisante le reseau forme par ces lignes. Nous l'avons represente
sur la figure 22a. On peut egalement tracer les lignes d'egale valeur des

tensions principales, que nous nommerons les isobares principales (fig. 22b).
Etant donne que nous cherchons principalement ä determiner l'importance
des frettages transversaux en admettant que l'on resiste d'autre part aux
contraintes de traction longitudinales par des armatures disposees dans ce

sens longitudinal, les tensions principales qui nous Interessent le plus sont les

* •** *¦
3 3

7) D'apres la theorie approchee faite en (I 1° et 2°) on trouverait que la contrainte
de cisaillement t sur le plan x € aurait pour expression

£sh£e / 1 1

sh4 2ch4

Elle deviendrait infinie pour f 0 et tres petite partout ailleurs. On aurait donc encore
pune force de cisaillement concentree au voisinage de la base, egale ä —
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Z=0 +0.356+0.668 +0A28+0.753 +1.040 +1092

3/6
3/3'
3/2_

23/3

203

+1.258

rJä. pV2y22ZZ7ZZZ<27Z> —
-0.822 0.580i_L-„.*; compressions +0.758

A=-S-
aus-0.238

+0.177

33(x=i--e) x

+3X

33/2

23

Fig. 20. Contraintes nx sur les plans verticaux (a multiplier par p)

_b ^Km ^k-
r. ^ ^ fo* ^»r* ^iii)

(Z*3/6j
(z-a/3)
(z=d/2)

(Z 3)
(Z =23)

2.82

(Z=3/6J

-8.008

Fig. 21. Contraintes nz sur les plans horizontaux (ä multiplier par p)

tensions principales de traction qui se rapprochent le plus de 1'horizontale.
Nous avons trace ces isobares sur la figure 22 b.

En comparant les figures 22a et 22 b on voit que, lorsque les tensions
principales transversales atteignent leurs valeurs les plus grandes, leurs
directions sont tres voisines de 1'horizontale. Ceci est presque general et cette
constatation permet de simplifier beaucoup l'etude des contraintes transversales,

puisqu'il suffira pratiquement d'etudier les contraintes nx sans avoir ä

tracer les isostatiques.
Ayant d'ailleurs trouve les maximum de nx, on pourra, si on le desire,

determiner aux points oü ils se produisent, mais en ces seuls points, la direction
exacte des isostatiques et la valeur exacte des tensions principales. On trouvera
en general que les directions principales ont en ces points une inclinaison



204 y. Guyon

faible sur l'horizontale, et que la valeur de la tension principale est tres peu
differente de la valeur de nx qu'on avait calculee.

a)
Isostatiques

bj
Isobares

princ/pa/es

+1.09p +1.25p

0.5p 0.5p

+0.25p +azt

4

ta

0.25

Fig. 22. Isostatiques et isobares pour une force ä l'abscisse

Exemple II
Contraintes transversales sous Vaction d'un effort normal axial

etale sur une largeur 2 a'

En vertu de la remarque precedente, nous nous sommes contentes de
calculer par les tableaux les valeurs de nx et avons trace les lignes d'egales valeurs
de nx que nous appellerons les isobares nx (Fig. 23).

3/3=0
0.60p

^Ife^

V f
^M)

3/3=0.25 3/3*0.50
0.79p0.68p

OM
0.22,

compress/ons

Fig. 23. Isobares nx pour differents cas d'etalement des forces
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Cette figure met en evidence l'existence de tractions en surface, vers les

angles; les contraintes correspondantes sont elevees, mais les resultantes sont
faibles, car la zone en traction est de faible epaisseur.

a tractions
0.5p

3/3'Oy

_£__fc_i3/3
0.4p

0/3=0.2,

0.3p

3/3=0.50
0.2p

3/3=0.75
*fi.1p

a/3=gjL
_> 0

*JJ# 23

Fig. 24. Valeurs des contraintes d'eclatement sur Taxe dans le cas de forces normales

centrees, pour differents etalements —
a

On a d'autre part, en profondeur, une autre zone en traction que nous
appellerons la zone d'eclatement. Cette zone d'eclatement est separee des

zones de surface par une zone en compression dans le sens transversal. On
devra donc disposer des frettages en surface (frettages ä fleur) de faible importance,

et des frettages dans la zone d'eclatement au voisinage du maximum
de la contrainte d'eclatement.

Etant donnee la grande importance pratique de cette etude, nous avons
represente sur la figure 24 la Variation de la contrainte d'eclatement sur l'axe

pour differentes valeurs de l'etalement —. Ces valeurs ont ete calculees tres

exactement a l'aide des tableaux I.

Exemple III
Valeurs des contraintes de traction, sur Vaxe, dans le cas de forces tangentielles

symetriques (ecartelement)

Ce probleme est celui qui est schematise sur la figure 25. Si les forces sont
appliquees chacune sur une largeur tres petite (forces ponctuelles), les tableaux
donnent directement les valeurs des contraintes de traction sur l'axe (tableau V).

La figure 26 resume les resultats, nx etant exprime en fonction de q ~-,
Q etant la valeur de chacune des forces tangentielles.

Le tableau V ayant ete calcule comme on l'a dit, par la methode approchee,
il ne faut considerer les valeurs de la figure 26 que comme une indication.

On pourrait sans grande erreur remplacer la loi de traction de la figure 26

par une loi triangulaire.
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a'\a'
8g. 11312g contraintes

T—
Fig. 25

Fig. 26. Contraintes d'ecartelement sur
l'axe du prisme en fonction de z pour dif- a

ferentes valeurs de l'ecartement 2 a' des

points d'application Z"

333/6 a= =r et

3/3 _ 3

32

23/3 A

8 10 t2g(9=jrf)

La valeur de nx, deduite de la theorie approchee est pour 2 0 et x 0

(c'est-a-dire sur l'axe et en surface) egale a

* Q
nx (0,0)

a 2 asuitt—a

La hauteur z de la zone en traction, en admettant la loi triangulaire, est
donc egale a

a af
z — sm tt —

2 a

ce qui donne immediatement la repartition approximative dans le cas de
forces ponctuelles. Dans le cas oü les forces sont reparties sur une certaine
largeur, on pourra decomposer la force en plusieurs forces ponctuelles et
appliquer la regle precedente.

II n'y a pas lieu d'insister davantage sur les applications, chaque cas

particulier pouvant etre etudie par les tableaux quelles que soient la
distribution et l'inclinaison des forces s'exercant sur la base.

Herne Partie. Cas du prisme ä section rectangulaire de dimensions finies

Les axes sont disposes comme sur la figure 27, l'origine etant au centre de
la base; les cötes du rectangle de base sont 2a et 2b.

L'etat elastique en chaque point est defini par les 3 contraintes normales
et les 3 contraintes tangentielles s'exercant sur trois facettes paralleles aux
plans de coordonnees

facette
perpendiculaire ä

Ox

Oy
0z

contraintes-

1 ^2 U

2 ^3
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Les contraintes normales sont positives si elles sont des tractions; les
contraintes tangentielles sont positives lorsque, sur une section horizontale
limitant la partie superieure du prisme, ou sur une section transversale
limitant la partie gauche du prisme, elles sont dirigees suivant le sens positif
des axes (toutes les contraintes representees sur la figure 27 sont positives).

2a

\z

\n

>t /*
t. <

Fig. 27

Nous chercherons les contraintes par une theorie approchee tout a fait
comparable a celle que nous avons appliquee dans le probleme d'elasticite
plane (Iöre Partie). La comparaison faite dans cette Iöre Partie pour les
contraintes nx nous permettra une Evaluation raisonnable de l'erreur commise

pour les contraintes nx et n2 qui nous Interessent le plus.
Nous etudierons ci-dessous le cas de forces appliquees normales, et paires

en x et y, c'est-ä-dire symetriques par rapport aux axes Ox et Oy. La methode
approchee peut etre egalement appliquee au cas de forces paires en x et impaires
en y (c'est-ä-dire symetriques par rapport ä Tun des axes et antisymetriques
par rapport ä l'autre); eile peut etre egalement appliquee ä des forces tangentielles

paires ou impaires; et par consequent, par superposition, on peut
obtenir l'etat elastique approche pour tout cas de forces.

Nous nous contenterons de developper les calculs dans le premier cas

(forces normales symetriques) qui est le plus important. L'etude des autres
cas a ete abordee dans le memoire depose ä la Bibliotheque de l'Ecole des

Ponts et Chaussees.

Cas de charges normales symetriques par rapport aux deux axes

principaux de la base

La fonction de charge peut etre developpee dans le plan de la base en une
serie double trigonometrique, ne comportant que des cosinus.

^ v^ „„ mirx mry
co UZAlCOS COS—r^-
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m et n pouvant prendre des valeurs quelconques y compris zero. On peut
obtenir terme ä terme, comme dans le cas du prisme indefini dans une direction,
un Systeme de contraintes I, satisfaisant aux equations de l'elasticite, mais

non ä toutes les conditions aux limites.
Ces conditions aux limites sont:

Pour Contraintes
x ±a 0 0 0

y ±b 0 0 0

z =0 0 0 n3 — tö

1. Considerons le terme partiel de la serie de charge

mrrx n-nywl AI cos cos —t^~

et le Systeme suivant, (I), de contraintes, oü N1 N2 ^3 T1 T2 T3 sont des

fonctions de z seid.

mirx n-nyn, _V, cos cos —r^
a b

nrrymirx
n9 Jy9 cos cos2 2 a b

mrymirx
n~ _Vo cos cos3 3 a b

_- mirx mryU I\ cos sm ——-
a b

__ mnx n-ny
t9 19 sm cos —j^-2 2 a b

m mirx mry
ts T3 sm sm —j~-

Ce Systeme ne peut evidemment satisfaire aux conditions aux limites nx 0

pour x= ±a et n2 0 pour y= ±b. On peut determiner les fonctions N et T
pourqu'il satisfasse ä toutes les autres conditions aux limites et aux equations
de l'elasticite.

Les 6 fonctions n et t doivent satisfaire aux 6 conditions de compatibilite,
02 02 02

soit, si A represente l'operateur ^~~2 + ^—2+^-2, rj le coefficient de Poisson,

et si Ton pose d'autre part 6 —n1 + n2 + n3:

(1 + rj) A nx + 7—g 0 et deux equations analogues

d26
(l + r))At,+ 7T-TT- 0 et deux equations analogues.

dydz
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Si on designe par © la somme N1 + N2 + _V3 on a

n ~ mux mry0 © cos cos —j^-

et Anx K-("^+"4?H mrcx n-ny
cos cos —_—

(JV/' etant suivant la notation usuelle la derivee seconde de _VX), et des formules
de meme forme pour An2 An3 Atx At2 At3 chaque fonction An ou At ayant
<en facteur le produit des deux fonctions trigonometriques qui figure dans la
fonction n ou t dont eile derive.

Nous poserons 72 (m2
n2\

^2+b2)

Les equations de compatibilite s'ecrivent, en supprimant l'indice de lmn pour
simplifier:

(i + v) V
(i + v) V
(i + v) V
(i + v) |_Y

(i + v) [t,"

(i + v) (T3"

NA m27T2

l2
N,
PH

9

©

_^_.-e-

PJ b

_**)_,!__>
lz) a

Pf ab

(1)

(2)

(3)

(4)

(5)

(6)

En ajoutant membre ä membre les trois premieres equations, on obtient:

(1+„ (•-.•) ..(._|)
© doit donc etre une Solution de l'equation differentielle:

©
©"-^ 0

B' et C etant deux constantes, cette Solution s'ecrit:

(7)

© B'e~T +C'e\

C est evidemment nul, car © ne peut devenir infini avec z.

On a donc, en changeant de constante et en posant __?' _3(1+ 77) ce qui
simplifie la suite des calculs:

© B(l + rj)e~ZT
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Les equations (1) ä (6) deviennent alors:

NY-Xf^Be-T (2-)

^-^-§e~T (3')

T
11 l2'
1 2

T
l2

mr B _*

TTe '

mir B __-e z

a l
TT " — ___ —^3 p - mmr2

ab
Be~T

(4')

(5'}

(6')

Toutes ces equations sont de la forme, U designant une fonction quelconque
et K un coefficient constant:

U z

dont la Solution — en tenant compte de ce que les exponentielles ä exposants
positifs qui s'introduisent dans la Solution complete doivent avoir des coefficients

nuls, car autrement U deviendrait infini avec z — a pour expression,
D etant une constante:

ü .(_-«.) e i

En appliquant cela aux equations 1' ä 6' on trouve, E1 E2 _?3 Fx F2 F3 etant
six constantes:

N,

2 62

B z'

e 2

-(*.+!?) e i T, / _? «lÄTT2 \
3'2(

Les conditions aux limites sur la base donnent

#3 _l™ _\ 0 ^2 0

z
En formant la somme _yx + N2 + N3 © on trouve © (Et + E2 + E3)e~T, le

_z_
terme en ze i etant indentiquement nul.

z_

Comme © B(l + 7])e'J on a donc, en tenant compte de E3 Anm,

E1 + E2 + A^ B(l + r]) (8)

Les fonctions N et T ont donc les expressions suivantes:
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*--*+It)

e i

lz\e i

B z\ __.

-y- BWff _._

J72 Y — « e l

e i

dans lesquelles entrent les quatre constantes Ex E2 B F3k determiner.
Entre ces quatre constantes on a la relation (8). II nous faut trois relations

supplementaires. Elles nous sont fournies par les equations d'equilibre, qui
sont:

dnx dt3 dt2
dx dy dz
dt3 dn2 dt±
dx dy dz
dt2 d t± dn3
dx dy dz

0

0

0

lesquelles s'ecrivent, en derivant les equations I:

¦^N1+^T3 + T2' 0

^r,-^_71+_Y o

^y2+^T1 + _/3' 0

(9)

(10)

(11)

L'equation (9) donne, en supprimant le facteur commun e i et en remarquant
_z_

que le terme enze T est nul:

mir

on a de meme:

a

m-n

w ^niT v m
Bm7T

nE1+-FF3 + --a- 0

mr B ni
a b ~2 '

2 b%2+-K

~Al+B 0

Ces equations, jointes ä l'equation (8) donnent:

0

(9')

(10')

(11')

*-*«¦£_£+•*=£)

("+*^E2 AlP

F3 -AIP(1-2V) ab
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et les fonctions N et T du Systeme I ont pour expressions:

Nx ~AnJ2

N2 -AnJ2

a
n2ir2

b2 (f--l)e-'r-2,

*
^ n2n2 ___

6 l ~2V ~^2~e l

m2 tt2 JL
y*

e i

N, ^(t + 1) e i

__ A mr Jl
T^Al-yze i

„ _ mir __.
_T2 Anm ze i2 a

T - A»nmniT* (t-) e z +2rje i

Le Systeme I de contraintes s'obtiendra en multipliant les fonctions N et T
771 77 OC Yh TT 97

par les fonctions trigonometriques cos cos —j~ ete qui figurent
dans les expressions du Systeme I.

2. Le Systeme I n'est pas la Solution du probleme puisque les conditions
aux limites sur les faces x=±aety=±bne sont pas satisfaites; il existe en
effet sur ces faces les contraintes parasites suivantes:

i r is.t nrry _. 1 __ mrysur les faces x + a, n1 JS1 cos m tt cos —j~- — — 1 )m+1 Jy1 cos —j~-

^ r i tvt rrnrx _>_,-, ,T m TT x
sur les faces y ±b, n2 _V2cos cosn77 — — l)m+1_Y2cos

Exercons sur ces faces des reactions egales et de sens contraire aux contraintes
parasites, soit:

R1 (_ i)m+i j\rx cos

B2 (-l)m+1N2cos

nrry
b

mTTX

a

et admettons, comme nous l'avons fait dans la theorie approchee dans le cas
du probleme plan, que les contraintes correspondantes sont les tractions (ou
compressions) pures:

f nx Rx t± 0

II | n2 R2
\ n3 0

t2 0

t3 0

Les contraintes definitives de la Solution approchee que nous cherchons ici
s'obtiendront par addition des systemes (I) et (II) et on obtient finalement le
Systeme de contraintes suivant:
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(A)

ni -ZZAIP\^(? - l)e~T

^ n2TT2 __.] T mnx
— 2i}-~T~e i cos

n2 -EEA

..ittx _x n] n-n
T~ * c cos + - 1)m+1 cos —j-b2 J L a ] b

_2_2 _T T
72, tt Ty-

CO S -

•y

_.
m2 tt2

— 2 77 ——e z

r_8 272Mi (| + l) e~T

T~^ + - l)m+1 COS
6 J aaz l b ' \ a

mTrx mr\
COS nos '-

z n-nycos —r

____,, 7i7T ___ m^x n-nyU LL Al -r- z e 1 cos sm —-—
b ab

-_-_, mir -z m-nx n-ny
t9 LLAl ze is\n cos —.—2 m a ab_ mnTT2

Vi U

ly — lie 1 +2r]e 1

1 / m2 n2\
T2==7T [a2 + ft«j

sin nux n-nysm -z-^
a 6

avec -^

Ces expressions sont susceptibles d'une Interpretation assez simple que nous
preciserons en nous bornant ä examiner la contrainte nx (les conclusions sont
valables pour n2 en permutant a et b, et x et y).

_ __ m-nx nrryLa serie de charge LL Anm cos cos —=-—

peut etre decomposee en 4 termes:

— un terme constant correspondant aux valeurs m 0 et n 0, _40°: il est

egal ä la compression uniforme p creee par la resultante des forces ä une
profondeur süffisante.

-^ / n S „n m7To: *
m mry _

Deux series simples iM}^ cos et 2_40neos-y^ correspondant aux
1 a \ b

valeurs 0 pour n et pour m.

Une serie double LLA^eos
1 1 a

mTrx mry n

cos —y- correspondant aux valeurs de

m et n simultanement differentes de zero.

Nous supposerons pour simplifier que le coefficient de Poisson, rj, est nul.
Considerons la projection du prisme sur le plan xOz et la projection des

forces s'exercant sur la base. En chaque point, cette resultante de projection

a une intensite P (x) par unite de longueur, et on a P (x) dx J co dy dx.
-b
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- y

\
X

0 i

TlTirwrim^

YZ

Fig. 28

Dans l'integration, les termes contenant cos—j~~ disparaissent, et il reste:

P(x) 2b f_40o + i_4o cos^^l

A0° et A7^ sont donc les coefficients du developpement en serie de Fourier
P (x)de la charge -<rr-, c'est-ä-dire de la charge qu'on aurait sur la base d'un

prisme indefini (dans la direction Oy) si en chaque abcisse x la charge etait
uniformement etalee et egale ä la valeur moyenne des charges reelles. Nous
appellerons ce prisme le prisme projete.

On peut d'autre part ecrire nt en decomposant la serie nx en ses 4 termes;
mais deux de ces termes sont nuls, ce sont ceux correspondant ä _40° et ä

_?_40wcos^^; et on a:

n, „ A0 (mTTZ \ _!?___?[ m^x _x ,-1
cos -t-(-l)m+1

mrrX
cos M •

a
I)m+1 COS mry

Le premier terme est la contrainte nx
qu'on aurait dans le prisme projete. Le
deuxieme terme tient compte de la
repartition transversale reelle des charges.
Sa valeur moyenne est nulle.

On voit donc que, en etudiant le prisme
en projection, soumis ä la projection des

forces supposees etalees uniformement
dans le sens transversal (ce que nous
savons faire par les theories donnees dans
le cas du prisme indefini suivant Oy) on
obtient la contrainte nx moyenne dans

l'hypothese d'une repartition transversale uniforme en toute abcisse x, et
que la serie double permet d'etudier la repartition transversale reelle des

contraintes.

Fig. 29
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Autrement dit encore, la contrainte nx qui s'exerce sur un plan transversal
(fig. 29) est une fonction des coordonnees y et z dans ce plan. Cette fonction
peut etre representee par une certaine surface. Le premier terme de nx est la
surface moyenne, qui correspond ä l'etalement uniforme; le deuxieme terme
donne les differences en plus et en moins par rapport ä cette surface moyenne.

Expression de la contrainte nx s'exercant sur un plan de symetrie
(yOz par exemple)

Dans ce cas ;r 0 et l'on a, m prenant uniquement des valeurs impaires et
n des valeurs quelconques

--«M™-1)--™^*(f') _* n-ny
e i cos —r-^ (12)

Conformement ä ce qui a ete dit ci-dessus, le premier terme, fonction uniquement

de z, est la contrainte qu'on aurait au niveau z si la charge, conservant
sa loi de repartition longitudinale (c'est-ä-dire en projection sur yOz), etait
d'autre part repartie uniformement sur la base sur toute parallele ä Oy, la
valeur moyenne de nx sur toute horizontale du plan yOz est d'ailleurs egale
ä ce premier terme, car le second terme a une valeur moyenne nulle. Ce second
terme, fonction de y et z, donne, sur chaque horizontale, l'ecart en plus ou en
moins de la contrainte avec sa valeur moyenne.

L'expression (12) de % resultant d'ailleurs de la theorie simplifiee qui a
ete exposee ci-dessus, la valeur de cette contrainte nx en chaque point (yz)
n'est qu'approchee. Mais si on introduit dans le premier terme les corrections
faites dans la I^re Partie, c'est-ä-dire si l'on remplace ce premier terme par la
valeur ,,exacte" que l'on peut calculer par les tableaux I ou les tableaux II
ä VII de la premiere partie, on peut considerer que la valeur moyenne ainsi
corrigee devient exacte. La serie double devient alors un terme additif —
positif ou negatif (et ä valeur moyenne nulle) — tenant compte de la loi
de repartition transversale des charges, terme dont la valeur ne sera qu'approximative,

mais qui permet d'obtenir une representation satisfaisante des
phenomenes.

II serait interessant de disposer de tables pour le calcul des contraintes nv
Malheureusement, l'etablissement de ces tables demande un travail materiel
tres important et nous n'avons pu que l'ebaucher.

Pratiquement en effet, la sommation de la serie double n'est possible que
si la suite des coefficients A£ est rapidement decroissante; la convergence de

la serie, par suite de la presence du terme exponentiel e--? est d'ailleurs
.acceleree et on peut se contenter d'un nombre de termes relativement petit.

C'est ainsi — et en introduisant la correction sur le premier terme comme
on l'a dit ci-dessus — que nous avons calcule, pour le prisme ä base carree

Abhandlungen XI
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charge sur un carre concentrique ä la base avec une densite de charge uniforme
les valeurs de nx sur un des plans de symetrie pour des rapports d'etalement

(rapport — des cötes du carre de charge et du carre de base) egaux ä \ et \.
Les lignes d'egale valeur des contraintes nx sont representees pour ces deux
cas de charge par les figures 33 et 34.

Mais lorsque le rapport d'etalement transversal diminue et tend vers zero,
les sommations deviennent impraticables ä cause du tres grand nombre de
termes ä conserver.

Nous nous contenterons d'indiquer qu'il semble possible alors d'effectuer
une sommation approchee de la serie double gräce ä certaines approximations.

Pour montrer dans quel sens on peut proceder, nous examinerons le cas du
prisme ä base carree chargee au centre sur un carre concentrique ä la base

avec une densite uniforme, et nous limiterons au calcul des contraintes nx sur
Faxe du prisme (droite x 0 y 0), que nous appellerons encore les contraintes
maximum d'eclatement.

On a dans ce cas a — b et les rapports d'etalement longitudinal et
transversal sont egaux.

Avec les notations suivantes: ol' tt—; — a; —~ — ß: — t
a a b r a

P P
—7 -—g p (P etant la resultante des charges appliquees)

_j a ' Zi 0 4:05»

on a : — — (m2 + n2) -=- — im2 + n2 £ im2 + n2
l2 a2 l a

en tenant compte de ce que les coefficients A7^ et A7^ du developpement (12)
ont pour valeurs

a n aq _»
sinma' n sinwa'

A0° -p; A°m -2p ; A^ =-2p-

_4i -4p

moi v not

sinma' sinnol
moL noL

le developpement (12) prend la forme:

„sinma' vx 0 ™™sinmoL sinnai m2 ,yv ,—n1 4p27 —/ m£ + SpSL } -, 2~—i-f (£ im2 + n2)cosnßmoi i i moL noL m2+n23 ' r
(13)

Pour les contraintes sur l'axe (x 0 y 0) on a ß 0 et par consequent l'expression

de n± sur cet axe devient

rsinma' „. rt £ £ sin m a' sin ?_ a' mj—ffm^ + SpZL -, -f —
moL ii ma not m2+ n

(m impair, n quelconque)

nx 4:pZ m_, {(mQ + SpES—^, ^-j- _2 „a/(gyro»+»2 (14)
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C'est cette contrainte qu'il devient difficile, materiellement, de calculer
quand ol devient petit ä cause de l'extreme lenteur de la convergence. On peut
alors appliquer les deux approximations suivantes, dont la legitimite est
precisement d'autant plus grande que la serie est plus lentement convergente.

1. Etant donnee une serie ä termes impairs:

ul + US + u5 • • • + um + • • •

si on considere um comme une fonction de la variable m, m pouvant varier de
CO

0 ä oo, 1'integrale \umdm a pour valeur approchee (fig. 30):
o

(u1 + u3 + u5- • -)-2

Inversement la somme de la serie u1 + u3 + u5+ a pour valeur approchee
00

\\umdm
o

i/ u

7 m

Fig. 30

7 n3 4

Fig. 31

2. Etant donnee une serie dont le terme general est vn, n pouvant prendre
toutes les valeurs, paires et impaires, zero exclus, la somme de la serie est

v1 + v2 + v3... +vn+

Si on considere v comme une fonction continue de n, n variant de 0 ä oo,
oo

l'integrale \vndn a pour valeur approchee (fig. 31):
o

Inversement la somme de la serie a pour valeur approchee:

¦?4-v1 + v2....+vn+... ,dn

Ceci pose, appelons um le terme general de la serie double qui figure dans
l'expression (14).
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Groupons tous les termes correspondant ä une meme valeur de n et designons
en la somme par Sn. On a donc

Sn S unm (m impair et n fixe)
m \

D'apres l'approximation 1. on aura sensiblement

00

sn W^läm
0

La serie double prend alors la forme

Sn 8p(S1 + S2 + Sz+...)

qui, d'apres l'approximation 2. a sensiblement pour valeur, si l'on considere
Sn comme une fonction continue de la variable n:

Sp

CC 00

-V+ sndn -4:pS0+Sp Sndn
o o

m cc

Or S0 est egal ä Z u°m (m impair) et le terme u°m a pour valeur (en faisant
m l

n 0 dans le terme general de la serie double):

0 sinma'

L'expression (14) prend donc la forme
00 00

„sinma' y. „sinma' y. f f 1
M 7 7w, 4'»_L 7— f(mc) — 4t pL 7— /(m 4) + 8 p —uldmdnx ma ' ma J J 2

0 0

00 00

soit % 4 p j* j* unm dn
o o

LaValeur approchee de n± est donc:

CC 00

f f sinma' sin?ia' m2 ,/y ,—r——. 7 ._,.n* 4 p \ 7— ——7— —^——5/(4 \ml + nl)dmdn (15)
J J ma wa m2+?i2
0 0

D'autre part si on appelle /^ la contrainte sur le deuxieme plan de symetrie,
xOz, et sur Taxe, il est evident par raison de symetrie que n2 nx\ et n2 aurait
la meme expression (15) en permutant m et n. On a donc

00 oo

r r ojk» >*y) q, sm n ol n2
n1 4p\ -f -, - -0f(tim2+n2)dmdn (16)

J J moi na m2+n2
o o

En ajoutant les expressions (15) et (16) on obtient donc pour valeur approchee
de % sur Taxe:
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co oo

f r sinma' sinwa' ,Y * -^ ^, 7 .__,,n, 2p \ r -r-f(lim2+ n2)dmdn (17)
J J ma na
o o

Appelons w le terme sous le signe JJ; w est
fonction de m et n. Considerons la surface
qui, dans le Systeme de coordonnees
rectangulaires OmnZ (fig. 32) a pour equation
Z w(mn).

L'integrale double (17) est egale au
volume compris entre cette surface et le triedre
Omn Z.

On peut, pour calculer ce volume,
transformer l'equation de la surface en coordonnees

semi-polaires (fig. 32) en posant:

m p cos co n p sin co n
~2 oo

Le volume a pour valeur, dans ce Systeme de coordonnees f J wpdcodp
b o

uu

Fig. 32

avec w
sin(a'/>coso>)sin(a'/>sino>)

; / (4p)
ol z pl sm to cos to

Quand on change to en ^- — co, w ne change pas. Donc le volume a pour
4 oo

valeur 2J \ wpdcudp
o ö

4 oo

Par consequent: nx 2-2^ nsin(a'/occ
0 0

cos to) sin (a' p sin co)

sm to cos oü
f(pl)dtodp

ou, en posant:
a' (cos oa — sin oü) <p

ol (cos oü + sin oo) ip

4 oo

**=^I[JcosVos^/(^H
<z<

sin _> cos cu
(18)

0 0

L'integrale en p sous le crochet s'ecrit en explicitant la fonction /
CO 00

jc_^__^
^fcOByp-OOB0P6.c

J P

La premiere integrale du second membre de (19) est calculable; eile a pour
valeur
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CO

r\ _r /£ cos 99 p —99 sin 99 p l, cos ifjp — i/j simfjp\l _ i/jZ-Cp*
9>2)(£2+<A2)

La deuxieme integrale n'est pas calculable, mais on peut en avoir une valeur
approchee en utilisant l'approximation 2.

En effet si on appelle v (p) le terme sous le signe J on a approximativement:
CO y
$v(P)dp -° +vx + v2. +vn+
0 *

Or v (0) est nul, car c'est la limite de

cos 99 p — cos ifjp sin (a' p cos oü) sin (a' p sin oo)
_j -

P P

quand p tend vers zero, et cette limite est nulle. On a donc:

T x 7 y cos 2 09 or cos n 09 v
J v(p)dp Ga coscpe~^>-\ 7r~^e ^

• • • • H -e-n^ +
*o 2 Ti

/ cos 20 0v cos ndj mYcosibe~^+ —^-e~2^ + -e~n^+r 2 n

et les deux series ci-dessus ne sont autres que les fonctions U (£99) et U (£ifj)

que nous avons rencontrees dans l'etude plane. Nous en avons donne les

expressions en termes finis, qui sont:

[7 (£9?) -L]/l-2e^coscp + e~2^ - ^L——^y T1

de meme pour U (£?/>)

f 1 ch £ - cos 0
On a donc t; (p) d p & — 1/ -1—= —-

J0 vr/ r 2 ch£-coso9

L'integrale (19) a donc pour valeur approchee:

i/j2 — cp2 1 ch £ — cos 0
(F+^W+ff"^ ch^-cos?

et par consequent

_L _L
4 4

^ 2P^ f ^2~y2 ^^ P f ^chg-cosy dco
1 <*'2 J (£2 + <p2)(£2 + i/f2) sinoo cosoü a'2J ch £ — cos ^ sin oü cos oü '

o o

cp et i/j etant des fonctions de co, on est ramene ä de simples quadratures.
La premiere integrale de (20) peut etre calculee. On trouve sans difficulte

en explicitant cp et xjs qu'elle est egale ä

2p ^
(£2 + a'2)]/£2 + 2a'2
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La deuxieme ne semble pas calculable: on peut en calculer les valeurs numeriques

en remplacant l'integrale definie par une somme, en donnant ä oo des

accroissements suffisamment petits.
On peut donc effectuer le calcul numerique de nx pour toute valeur de £,

nx prenant la forme

nx 2 p
Tri

(£2 + «'2)^2 + _

_

2a'2 oc2 J
L

ch £ — cos 99 d c

ch £ — cos ifj sin co cos 00

avec 99 a'(cos 00 —sin co)

i/j ol' (cos 00 + sin aj)

(21)

Si a' est tres petit, cp et ifj sont eux-memes tres petits et l'on peut simplifier
l'expression (21), pour des valeurs de £ süffisantes toutefois.

On a en effet
ch £ — cos i/j

soit sensiblement ~^—^ % 1 +ch £ — cos ifj

ch £ — cos 99 cos i/j — cos 99

ch £ — cos i)j

>2-ifj2
2 (ch £ — cos ijj)

1- 4 a'2 sin00 cos 00

2 ch £ — cos ijj

Si £ n'est pas trop petit, 2a'2yy est petit et l'on a approximativement

ch £ — cos 99 ,2
sin oo cos 00

ch £ — cos ifj ch £ — cos ifj

L'expression approchee de nx devient alors:

nx 2 p
¦c

(£2+a'2)j/£2 +

4

d<

ch ^ — cos ifi

[i/t et (cos _ + sin w)]

(22)

Cette approximation cesse d'etre legitime lorsque £ devient lui-meme tres

petit, car alors 2 a'2 yyy -. n'est plus petit. I] faut alors revenir, pour ces

petites valeurs de £, ä la formule (21).
Pour £ 0, le premier terme de cette formule (21) est nul si ol + 0, le deuxieme

terme est negatif et prend une valeur infinie; on aurait donc en surface pour nt
une contrainte de compression infinie. Cette conclusion est erronee, parce que
la methode de calcul approchee n'est plus valable. On peut avoir directement
la valeur de nx en surface par la formule (14) ou l'on fait £ 0; les fonctions
/(m£) et /(£ ]/m2 + r.2) deviennent egales ä — 1 et l'on a
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--Sinma rt nnsmma smno: m*
^ — 4pS SpLL— 7— K-t—-9 (m impair)1 ma ma noL m*+nz

En traitant cette expression comme on l'a fait ci-dessus ä l'aide des

approximations 1° et 2° on voit facilement que nr - -^ - co etant la compression

locale sur le carre de charge (c'est-ä-dire- —2\; nx est donc une compression

tres grande, mais non infinie comme il resultait de la formule (21).

Lorsqu'on a affaire ä une charge concentree, a' 0, et on a directement

par la formule (17)

n± 2 p J J / (£ im2 + n2) dm dn
0 0

Transfermee en coordonnees semi-polaires comme precedemment, cette expression

de\ ient :

7L
2 00

"1 2p/ n(tp)pdPd°>
0 0

CO TT Ti °°

0 4 0

soit n, Trp (23)

nx est donc une traction, qui devient infinie pour £ 0. Mais pour cette meme
valeur 0 de £, le calcul que l'on a fait ci-dessus reste valable et l'on trouve

nx — soit nx — 00.

On a donc, dans le cas d'une force concentree, 2 valeurs, —00 et +co,
pour la contrainte nx sur l'axe pour 2 0. Ceci est tout ä fait analogue ä ce

li?/* _*/_.! I 3/2 \ 3/2 J

w*resstonsVCOi

0.75p
fcfc

^5/7

^^5/7
-?<?

compressions

T0.W
+0.36
±0.25

+0.2p Za

tm.

Fig. 33. Isobares de la contrainte d'eclate- Fig. 34. Isobares de la contrainte d'eclatement

sur un plan de symetrie pour un ment sur un plan de symetrie pour un
prisme ä base carree charge sur un carre prisme ä base carree charge sur un carre

concentrique ä la base concentrique ä la base
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qu'on a rencontre dans l'etude plane; la compression infinie correspond ä

l'action d'une force finie rasante _V\ s'exercant le long de l'arete Ox, et repartie
elle-meme le long de cette arete avec une densite variable, devenant infinie
pour x 0 y 0. La contrainte nx de compression correspondante est donc un
infiniment grand du second ordre, puis on passe immediatement ä une traction

rf\ infinie, mais du premier ordre.

La figure 35, sur laquelle nous avons represente les variations de nx en

fonction de z pour differentes valeurs du rapport d'etalement - met bien en

evidence les phenomenes. On voit que, au für et ä mesure que — diminue, la

atteinte pour £ 0 et egale ä ™ \ et la

contrainte maximum de traction augmentent; le niveau oü se produit le

maximum de traction se rapproche d'autre part de la surface. Pour — 0,

les deux maximum deviennent infinis et le maximum positif vient sur la face
z — 0 meme.

La figure 35 represente les lois de Variation de la contrainte d'eclatement
nx dans le cas du prisme ä base carree charge sur un carre concentrique ä

cette base. La courbe— =0 a ete calculee ä l'aide de la formule asymptotique

0 05 7 1.5 2 2.5 3 3.5p-2

50
2.74 3.66

^-0.25sf^X^Ä*
"s-'O

z=a/3.
2.3s ]0M

'OA h.87 =0.1OAa/2
1.32

0.23 5',0.7/2a/3
' 0.86

0.7

OM0.27

OM Q.Z53a/2

0.022a \0J6
ZI

Fig. 35. Valeurs des contraintes nt sur Taxe d'un prisme ä base carree de cöte 2a charge

sur un carre concentrique de cöte 2 a', pour differentes valeurs du rapport d'etalement —
Cd

(les coefficients doivent etre multiplies par p, compression moyenne)
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(23); la courbe — j^ ä l'aide des formules approchees (21) et (22), la courbe

— —ä l'aide de la formule approchee (21) et la courbe — — a ete calculee

directement par les series doubles. Les resultats resumes sur la figure 35 sont
d'ailleurs les resultats bruts, c'est-ä-dire sans la correction ä l'aide des tableaux
II ä VII pour la valeur moyenne, car nous avons eu surtout en vue d'indiquer
l'allure generale des phenomenes. Aussi ne retrouvera-t-on pas exactement,

pour les courbes — -_- et — -^ les meines valeurs des contraintes n-, sur l'axer a 4 a 2 x

que dans les figures 33 et 34.

On comparera les valeurs de nx de la figure 35 ä Celles de la figure 24 de

l'etude plane (c'est-ä-dire dans le cas d'une repartition uniforme le long de

toute droite perpendiculaire au plan de symetrie), ou mieux, puisque la fig. 35

ne donne que les resultats bruts sans correction, aux valeurs resultant de la
theorie approchee de la I^re Partie dans le cas de forces etalees symetriquement
par rapport ä l'axe avec repartition transversale uniforme; cette contrainte
dans le cas de la repartition transversale uniforme avait pour valeur

£ch£ 1
^ sina

% 2P—— sh2£ + sin2a' sh£

(voir I6re Partie, page 184). De cette comparaison on deduit l'effet de la locali-
sation transversale. On voit que cette localisation transversale entraine une
aggravation importante des contraintes d 'eclatement nx.

Si on appelle facteur de concentration le rapport de la contrainte maximum
d'eclatement (maximum positif de la figure 35) ä la contrainte maximum
d'eclatement qu'on aurait si la charge, tout en conservant sa loi de repartition
longitudinale, etait uniformement repartie dans le sens transversal (contrainte
d'eclatement de la Pre Partie), ce rapport (calcule d'apres les theories approchees

aussi bien pour le prisme indefini que pour le prisme fini) est de:

1,5
a'

pour —
a

1

~~2

2,65
a'

pour —
a

1

~~4

4,7
a'

pour —
a

1

""10

00
a'

pour — 0

Pour des valeurs intermediaires de on pourra interpoler le facteur de

concentration.
On constate d'autre part que le maximum est plus pres de la base que

dans le cas de l'etalement transversal uniforme; pour — ==tä5 le maximum
remonte de z= -^k z= —. Cette constatation est importante car eile amene
ä rapprocher les frettages de la face d'appui.



Contraintes dans les pieces prismatiques 225

On constatera encore que la perturbation locale par rapport ä l'etat de
Saint-Venant se produit sur une longueur plus grande, dans le cas oü les forces
appliquees sont localisees dans les deux sens (transversal et longitudinal) que dans

le cas oü elles ne sont localisees que dans un sens. Pour z 2a et pour — ^
on a nx 0,lßp dans le cas de double localisation, au lieu de n± 0,03 p dans
le cas de simple localisation.

Toutes ces remarques ne sont quantitativement valables que pour le cas
etudie, c'est-ä-dire pour le prisme ä base carree charge sur un carre
concentrique.

La methode que nous avons employee peut etre etendue ä des cas differents,
quoique moins simplement.

Nous indiquerons pour terminer que le calcul expose fait apparaitre, dans
certains cas, qui sont courants, des concentrations de contrainte beaucoup
plus fortes que Celles qu'on evalue d'habitude, et qui necessiteraient par consequent

des frettages plus importants que ceux que l'usage a consacres. Or les

constructions realisees resistent. II est certain que cette resistance est due ä

l'apparition de deformations plastiques gräce auxquelles les contraintes
s'uniformisent dans une certaine mesure. II ne faut pas perdre de vue cette
faculte d'adaptation de la matiere; mais c'est lä une autre etude, qu'il serait
souhaitable de voir entreprise.

Resume

On etudie l'etat elastique d'un prisme charge uniquement sur ses bases,

au voisinage de ces bases.

Dans une premiere partie, on etudie le cas du prisme indefini, les forces
appliquees ayant une repartition identique dans toute section transversale, et
des directions quelconques normales ou obliques.

On obtient d'abord une Solution approchee gräce ä un developpement en
serie de Fourier, les reactions parasites qui s 'introduisent sur certaines faces
etant eliminees par des forces de sens contraire, dont on calcule l'effet approxi-
matif par les methodes usuelles de la Resistance des materiaux. Cette Solution
approchee est ensuite exprimee en termes finis.

Une methode plus exacte est developpee pour le cas de charges normales
paires, par un procede de reiteration.

On deduit finalement de ces methodes des tables pour le calcul des
contraintes sous l'effet d'une force unique de position et d'obliquite quelconque.

Dans une deuxieme partie, on etudie le cas du prisme ä base rectangulaire
de dimensions finies. Le cas des charges normales symetriques est seul
developpe. On obtient une Solution approchee ä l'aide de series doubles; des pro-
cedes de calcul numerique de ces series sont indiques pour un cas particulier
de charge.
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Zusammenfassung

Der elastische Zustand in den Enden eines nur an den Grundflächen
belasteten Prismas wird untersucht.

In einem ersten Teil wird der Fall des unendlich langen Prismas behandelt,
bei dem die angreifenden Kräfte in jedem Schnitt gleich verteilt sind, jedoch
eine beliebige normale oder schiefe Richtung haben können.

Eine Näherungslösung wird zunächst mit Hilfe einer Reihenentwicklung
nach Fourier erhalten. Dabei werden die störenden Reaktionen, welche auf
gewisse Flächen wirken, durch Kräfte entgegengesetzter Richtung eliminiert,
deren ungefährer Einfluß mit den üblichen Methoden der Festigkeitslehre
berechnet werden kann. Diese Näherungslösung wird in einem geschlossenen
Ausdruck angegeben.

Eine genauere Methode wird für den Fall eines angreifenden Kräftepaars
als Iterationsverfahren entwickelt.

Schließlich werden aus diesen Methoden Tabellen abgeleitet für die Berechnung

der Spannungen unter dem Einfluß einer Einzellast von beliebiger Lage
und Richtung.

In einem zweiten Teil wird der Fall des rechteckigen Prismas mit endlichen
x\bmessungen untersucht, unter Beschränkung auf den Fall normaler,
symmetrischer Lasten. Eine Näherungslösung wird mit Hilfe der Anwendung von
Doppelreihen erhalten. Numerische Berechnungsverfahren für diese Reihen
werden für einen bestimmten Lastfall angegeben.

Summary

The paper describes the investigation of the elastic state of a prism, near
its end surfaces, when loaded solely on those end surfaces.

The first part of the paper deals with a semi-infinite prism submitted to the
action of forces in any direction, normal or oblique, of the same distribution
at any cross-section.

An approximate Solution is first obtained by means of the development
of a Fourier's series, the parasite reactions produced on certain surfaces being
eliminated by means of forces of the opposite sense, whose approximate effect
is calculated by usual methods of strength of materials. This approximate
Solution is then expressed in finite terms. A more exact method is developed
for normal symmetrical loads by a process of reiteration of calculations.

Using these methods, tables are finally constituted for the calculation of
stresses under the action of a single force of any position and inclinations.

In the second part of the paper, the case of a prism of reetangular base
and finite dimensions is dealt with. The case of normal symmetrical loads
alone is developed. An approximate Solution is obtained by the use of double
series. Methods of numerical calculation of these series are indicated for a

particular case of loading.
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