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Contraintes dans les piéces prismatiques soumises a des forces
appliquées sur leurs bases, au voisinage de ces bases

Spannungen in den Enden prismatischer Korper, die an ihren Grundflichen
belastet werden

Stresses at the ends of prismatic bodies which are loaded on their side surfaces

Y. Guyon, Paris

Nous étudions ci-aprés 1’état élastique d’un prisme au voisinage d’une
base soumise & des forces réparties d’une fagon quelconque.

Cette étude résume — et d’autre part compléte sur certains points — un
mémoire non publié déposé a la Bibliotheque de 1’Ecole Nationale des Ponts
et Chaussées.

Nous ’avons divisée en deux parties: !

Dans une premiere partie, nous avons étudié le prisme |
indéfini dans une direction, telle que 0y par exemple, et E
soumis a des charges, sur ses bases, dont la répartition yo
est indépendante de la coordonnée y. C’est un probléme !

|
|
.
,
.
!
L

d’élasticité plane.

Dans une deuxiéme partie, nous étudions le prisme a
base rectangulaire de dimensions finies. ‘

IL’étude du prisme indéfini se trouve, tout au moins, PO
en puissance dans des mémoires de divers auteurs, notam- i
ment dans la Théorie de 1’Elasticité de TimMosHENKO, et 4
I’état élastique du prisme y est recherché a l’aide de Fig. 1
développements en séries de Fourier. Mais si on s’arréte
au premier stade, on n’obtient pas la solution du probléme, parce qu’il
s’introduit des réactions parasites sur certaines fa,ces On ne peut aboutlr que
par un procédé de réitération. '

Nous avons employé d’abord une méthode approchée, consistant & annuler
les réactions parasites par des forces égales et de sens contraire, dont nous
avons recherché les effets par les méthodes usuelles de la Résistance des
Matériaux. Il est intéressant de constater que certaines des formules que nous
avons trouvées a l’aide de cette méthode approchée sont identiquement les
mémes que celles qu’avait obtenues M. HoNDERMARCQ (Htude des contraintes
et des déformations élastiques planes basée sur les propriétés des lignes isostatiques
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166 Y. Guyon

— Annales des Travaux Publics de Belgique, Juin, Aodt et Octobre 1943) par
une voie différente.

Nous avons ensuite employé une méthode plus exacte, a 1’aide de réité-
rations successives. Les résultats que nous obtenons concordent exactement
avec I’étude expérimentale de M. TEsAR pour un cas de charge particuliére
(Association Internationale des Ponts et Charpentes. Mémoires, 1932).

Pour le prisme a dimensions finies, nous nous sommes limités ici & un seul
cas de charge, celui de forces normales paires, c’est-a-dire symétriques par
rapport aux deux axes de symétrie de la base chargée. Et nous n’avons pu
qu’aborder le calcul numérique, a cause du travail matériel considérable qui
serait nécessaire pour 1’établissement de tableaux complets.

Ir¢ Partie. Cas du prisme a section rectangulaire indéfini dans une direction

Nous entendons par la que 1'un des c6tés 26 (paralléle a 0y) de la section
droite est infini et que d’autre part la loi de charge appliquée sur les bases
2a est indépendante de y, c’est-a-dire que cette loi de charge est la méme
pour toute section transversale perpendiculaire & 0.

Rien ne distinguant une telle section transversale

5 g X d’une autre, les contraintes sont fonctions uniquement de
x et de z et on a affaire & un probléme d’élasticité plane.
2|8 — On verra ultérieurement (II°® Partie) que, méme si
| —a, la dimension 2b est finie, mais si les charges s’exergant
F sur les bases sont indépendantes de y, c’est-a-dire si
2k n, la loi de charge est la méme pour toute section trans-
versale perpendiculaire & Oy (ou, en d’autres termes,
si les charges sont réparties uniformément sur des
paralléles & Oy), la solution obtenue pour le prisme
. ' indéfini reste approximativement valable.
La solution de ce probleme est donc, si on peut la
z trouver, applicable & un nombre important de questions;
Fig. 2 parmi lesquelles celle des bielles d’articulation de ponts,

celle des efforts aux abouts dans les dalles précontrain-
tes par des forces s’exercant sur ces abouts, lorsqu’on peut assimiler ces forces
a des forces uniformément réparties sur des bandes paralléles au plan moyen
de la dalle; celle également des poteaux soumis & des forces sur leurs bases, etc.
Considérons une section transversale quelconque (fig. 2) et rapportons-la
aux deux axes Ox 0z passant par le centre de la base supérieure!) les sens
positifs des axes étant ceux indiqués sur la figure.
L’état élastique du prisme est défini quand on connait les contraintes
n,n,t sur deux facettes normales & 0« et 0z; la figure 2 indique les sens positifs

1) Pour simplifier le langage nous considérons que l’axe du prisme est vertical.
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choisis: n, et m, sont positifs quand ces contraintes sont des tractions; ¢ est
positif lorsque sur une facette horizontale appartenant & la partie supérieure
du prisme (qui contient 1’origine 0) cette contrainte est dirigée dans le sens
positif de 0.

Les forces apphquees sur les bases peuvent étre normales ou obliques &
ces bases. Autrement dit, dans le cas le plus général, elles admettent des com-
posantes normales et tangentielles. Les conventions de signes pour ces charges
sont les mémes que pour les contraintes: pour les charges normales, les charges
positives sont des tractions; pour les charges tangentielles, elles sont positives
quand elles sont dirigées dans le sens des x négatifs sur la base supérieure, ce
qui est bien la méme convention que pour ¢, puisque la base supérieure laisse
" le prisme au-dessous d’elle; (sur la base inférieure, les charges tangentielles
seront positives lorsqu’elles seront dirigées dans le sens des x positifs).

Contraintes et charges appliquées sont définies par leur densité super-
ficielle. Mais si nous considérons une tranche de prisme d’épaisseur unité —
¢’est-a-dire comprise entre deux plans verticaux paralléles & x 0z et distants
de 'unité — les contraintes et charges a,pphquees deviennent des forces par
unité de longueur.

Les charges appliquées, normales ou tangentielles, suivent des lois de
répartition quelconques sur les bases. Nous appellerons & () la loi de répar-
tition des forces normales et 6 (z) la loi de répartition des forces tangentielles.

Nous supposerons en principe, bien que ce ne soit pas indispensable, que
les lois de charge sont les mémes sur les deux bases, c’est-a-dire que
@(0)= @ (2h) et que 0(0)=0(2h), 2h étant la hauteur du prisme. Cette
hypothése simplifie les calculs mais ne restreint pratiquement pas la géné-
ralité de la solution, pourvu que le prisme soit suffisamment long (c’est-a-dire
2 h supérieur a 2 fois 1/, & 3 fois 2a) parce que 1’état élastique du prisme aux
abouts est une perturbation locale par rapport a 1’état élastique de Saint-
Venant, et que cette perturbation disparait & une profondeur de 1’ordre de 2a;
on peut donc considérer que, pour des prismes suffisamment longs, 1’état
élastique au voisinage d’une base est indépendant des charges a.pphquees sur
I’autre base.

L’équilibre du prisme est assuré pour les charges normales, puisque les
forces agissant sur les bases sont, dans I’hypothese faite de 1’identité des
charges sur les deux bases, en équilibre. Il peut ne pas étre assuré pour les
charges tangentielles; dans ce cas on devra supposer qu’il existe sur les faces
latérales du prisme des réactions assurant 1’équilibre, et que ces réactions sont
suffisamment éloignées des bases pour que l’état élastique du prisme au
voisinage de ces bases ne soit pas modifié.

La largeur du prisme suivant Oz sera désignée par 2a.
Les forces & et 6 peuvent étre décomposées en fonctions paires et en
fonctions impaires de z.

12 Abhandlungen XI
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Les fonctions paires peuvent étre développées en séries de Fourier ne
comportant que des cosinus:

_ x
@(ouf) = A0+2Amcosm7r;
les fonctions impaires en séries de Fourier ne comportant que des sinus
- , . x
souf)=2A,,sinmm-—
a

On peut trouver, sous forme également de séries de Fourier, un systéme de
contraintes n, n, ¢t satisfaisant aux équations de 1’élasticité et prenant terme
a terme sur les bases 2=0 et 2=2% les valeurs @ ou @, mais ne satisfaisant
pas aux autres conditions aux limites (n, et ¢ nuls simultanément sur les faces
verticales * = +a). Cette fagon de traiter le probleme n’est pas nouvelle et
on en trouvera des exemples dans la Théorie de 1’Elasticité de TiMosHENKO.
Mais le systéme de contraintes trouvées n’est pas la solution du probléme, du
fait que les conditions aux limites ne sont pas satisfaites: c’est la solution d’un
probleme différent, dans lequel les faces verticales seraient soumises a des
réactions, égales précisément aux valeurs que prennent %, et ¢ sur ces faces.

Ceci deviendra plus clair par la suite, mais on congoit que le systéme de con-
traintes ainsi trouvé ne présenterait que peu d’intérét en ce qui concerne les
contraintes les plus dangereuses, qui sont les contraintes n,, car, du fait que
les réactions parasites qui s’introduisent n’existent pas, la répartition réelle
des contraintes est profondément différente de celle de ce premier systéme.

Mais on peut, par un procédé de réitération, superposer a ce premier
systeme d’autres systémes de contraintes jusqu’a ce qu’on aboutisse & un
systeme qui satisfasse, lui, tout au moins approximativement, & toutes les
conditions aux limites. Or nous montrerons que I’on arrive & ce dernier systéme
aw bout d’un mombre limité de réitérations grace a des lois de récurrence. La
solution compléte du probléeme s’obtiendra alors pour chaque contrainte
n, n, ou t par la sommation des résultats partiels trouvés dans les différents
systémes de contrainte successifs. ‘

Nous allons indiquer d’abord une solution approchée qui ne demande
qu’une réitération, nous indiquerons ensuite comment, avec plusieurs réité-
rations, on peut arriver, dans le cas de charges normales paires, a une solution
pratiquement exacte. La solution approchée fournit d’ailleurs déja des indi-
cations tres utiles; la comparaison avec la solution exacte montre que les lois
de variation des contraintes ont tout & fait la méme forme que dans cette
solution exacte, et que les valeurs obtenues sont approchées par exces.

1. Solution approchée

Nous allons d’abord faire le calcul des contraintes sous forme de séries;
nous montrerons ensuite que ces séries peuvent étre exprimées en termes
finis. L’analyse par les séries n’est donc qu’un intermédiaire dont on n’aura
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pas & se servir pour les calculs numériques: on n’aura a se servir que des
fonctions finies et il est possible, comme nous le montrerons, de faire une fois
pour toutes les calculs, ce qui raméne 1’étude des contraintes a 1’emploi de
tableaux tout & fait analogues aux tableaux d’influence couramment utilisés.

1. Calcul des contraintes par des séries

A. Cas de forces normales paires
La fonction de charge peut étre représentée par la série de Fourier
- mmx
o =A4,+2 A4, cos-——
a
wX . . N a "y
Posons — = «, ce qui revient & prendre — comme unité de longueur
a m
Avec cette notation:

w=Ay+2 A4, cosma

avec Aozlf@(a)da
o
0
2 T _
4, = —J @ () cosmada
v
0

(A, n’est autre que la contrainte moyenne p engendrée par la résultante des
efforts @, et par conséquent la contrainte uniforme qui régne sur toute section
horizontale & une distance suffisante de la base).

On peut trouver, sous forme de série de Fourier, un systeme de contraintes
(systéme I) n,m, ¢, satisfaisant terme & terme aux équations de 1’élasticité et
aux conditions aux limites sur les bases z=0 et z=2h. En effet, n, n, et  sont
les dérivées partielles du deuxiéme ordre

02 02 0>
(o 0w o o)

T 022 7 da?  dxoz
d’une fonction d’Airy ¢ qui doit vérifier I’équation aux dérivées partielles:

Po O
oxt 0x2022 02z

=0 (1)

Prenons une fonction partielle d’ordre m, ¢,,, de la forme:
@ = Z-COSM o

Z étant une fonction de z seulement. On a alors pour le terme d’ordre m
du systeme I que nous étudions
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2
n, = é_z% = 7" cosma
32(}9 m2’772
I nz:__w_—_-——aT-Zcosmcx
= _ji%<=?£f - Z'sinma
dx oy a

Pour que ¢, satisfasse & I’équation (1) il faut que:

d*Z 2m?n ZZ” mtd

d22 a2 at 4 =0

dont la solution est, 4 BCD étant quatre constantes a déterminer,

mamz mmz mmz mamz
(A +B )h " (C+D%~)sh o

maz
T + BTER TR

a a

o 2 ="7 [A sh B(ch

mwz mmz mwz)

mmwzZ Mmmz

+D (sh + chm”)]
a a a

mmz

+Cch

En écrivant que pour z2=0et z2=2h, n,=o et t=0,

2h
on trouve, en posant mm—_==p
a? a®? chp—1
A=-4,,— B=-4

" m? 7 "m?m? shp+
pTp

C=4 a® chp—1 D=4 a®>  shp

"m?n? shp+p "m2m? shp+1

En pratique, pour les prismes suffisamment longs que nous étudions ici, 2h
est supérieur a 4a, donc p supérieur a 4. On peut confondre shp et chp et
négliger 1 ou p devant chp et shp. On a donc pratiquement:

aZ
A=B=-C=-D=-4, 2
; ™ m?
et par conséquent 2)
a? [(mmz m"_?
R ek

On en déduit les valeurs suivantes des contraintes du systéme I, en posant

me . . N . . a o 7
C = —, Ce qu1 revient & prendre, auss1 blen pO'LlI‘ z que pour x¥, — comme umte,
a T

2) La fonction Z est celle qui correspond au voisinage de la base z=0. Celle qui
correspond au voisinage de la base z=2 h est de la méme forme, & condition de prendre
P’origine sur cette face.
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n,=—2A,m{—1)e ™ cosma
1! n,= Ay+ZA,m{+1)emicosma
t = XA,ml{e™misinma

Ce systéme de contraintes satisfait aux conditions aux limites pour z=0.
Sur les faces verticales libres (x= +a) il vérifie la condition ¢=0; mais il ne
vérifie pas sur ces faces la condition n,=0. '

Ce n’est donc pas la solution du probléme, mais celle d’un probléme ou
les faces verticales seraient soumises a des réactions

R, =X(—1)m1 A4, (m{—1)emE

(égales aux valeurs prises par n, sur ces faces). Considérons alors, en chaque
point z sur les faces verticales, des forces — R, égales et de sens contraire aux
réactions parasites précédentes. Nous supposerons, et c¢’est en cela que consiste
I’approximation3) dans cette solution, que les contraintes sous ces forces — R,
peuvent étre déterminées par les regles habituelles de la Résistance des
Matériaux. Les forces — R, se faisant équilibre deux a deux sur une méme
horizontale z, le prisme est soumis & des tractions (ou compressions) n,= — R,
et les contraintes n, et ¢ sont nulles. En ajoutant ce

systeme de contraintes
nz=—2(—1)"‘+1Am(’m§—l)e*m4 _/Z;’__ """"" T’:‘
II { n, =0
Lt =0
au systéme I, on obtient les contraintes totales de la Fig. 3

solution approchée soit:

ng=—2A4,, (m{—1)em[cosma+(—1)"+]
(A) n, = A+ 2 A, (m{+1)emlcosma
t=2A,m{emisinma

3) 1l peut sembler illogique d’admettre pour le probleme II les hypothéses simpli-
ficatrices de la Résistance des Matériaux, car quand on cherche, comme nous le ferons
plus loin (2° une solution par réitérations, ce probléme IT se présente analytiquement
sous la méme forme que le probleme I. En réalité ce n’est qu’en apparence que les pro-
blémes I et II sont de méme nature. Dans le probléme I les charges sont discontinues
sur les bases et la Résistance des Matériaux ne pouvait évidemment nous étre d’aucun
secours puisque c’est I’objet méme du probléme d’étudier ce que ne nous fournit pas cette
Résistance des Matériaux. Dans le probléme 11, il s’agit d’un prisme long par rapport
4 sa dimension transversale, et soumis sur ses faces & des forces continues. La fig. 4
donne & titre d’exemple la loi des forces — R, dans le cas o ’on étudie le cas ol la base
2=0 est soumise a une charge concentrée appliquée en son milieu.

L’adoption des régles simplificatrices entraine évidemment des erreurs, mais ces
erreurs ne sont pas plus importantes que celles que 1’on fait dans les cas courants
d’application de la Résistance des Matériaux. La comparaison avec la théorie exacte
permettra d’ailleurs de les évaluer.
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La fonection de charge étant connue, on connait les coefficients 4,,, et les con-
traintes sont données en chaque point (22) ou («§) par des séries en général
rapidement convergentes dés que { atteint des valeurs notables, par suite de
la présence du multiplicateur e~™¢ sous le signe Z.

B. Cas de forces normales imparres

Elles peuvent étre développées en série de sinus

@ =24, sin-mao

avec : A, =

3w

f@(a)sin-Madcx
0

Elles sont équivalentes a un couple.
Le moment de ce couple est égal a

a w 2 ’
-M=2fajxd:v:2Z[A;nfsin-ma-goc-gdcx] 2@ y_ymadn,
T T T m
0 )

lP
¥
=R 7
ol 1170
LAY
107p
A 102p
2 2 x
—> ,0-23
/’l i f__“ 1/’
Fo| s
T z
P
Fig. 4 Fig. 5

On trouve par la méme méthode que précédemment, pour le systéme I:

n, =—2ZAm (mL—1)emisinma
Iln= 24, (m{+1)emisinma
lt =—XYA, m{e™micosm o

Les conditions aux limites sont satisfaites sur la face z=0, mais non sur les
faces verticales *= +a car pour «= + 7 on a:
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t=2(=1)m1Armlemt

Les contraintes résiduelles sont de méme signe sur les deux faces mais on
voit (fig. 5) qu’avec la convention de signes adoptée pour ¢, il faut introduire
sur les faces des réactions tangentielles ¢ égales et de sens contraire sur la
face x = +a et la face x = —a. Les valeurs de ¢’ sur la face x =a sont égales et
de sens contraire aux contraintes résiduelles ¢ soit

t' = =2 (—~1)ym1 As m e mE

Le moment produit par ces forces & un niveau quelconque est égal a:

M, = _'zazf(—nmﬂA;nmge—mﬁﬁdz;
o

2~a~2(—1)m+1Am [1—(mi+1)e™]

v

= M, [1—(m{+1)em]

en appelant M, le terme d’ordre m du développement de M, couple auquel
sont équivalentes les forces impaires considérées (voir en effet ci-dessus 1’ex-
pression de ce développement de M ).

Pour { infini (et pratiquement pour { suffisamment grand) M, tend vers M.
On peut donc considérer que le systeme I est le systeme de contraintes que
I’on aurait sous ’effet des forces impaires appliquées sur la base z=0, 1’équi-
libre étant obtenu par des réactions tangentielles +¢ appliquées sur les faces
x= +a, ces réactions ¢ ayant pour résultante le couple — M ; puis que 1’on
applique, pour faire disparaitre les réactions ¢ qui n’existent pas, des forces
t'= —t, ayant par conséquent pour résultante le couple + M. On a donc subs-
titué aux forces initiales un systéme de forces (¢') qui donne le méme moment.
En déterminant les contraintes créées par les forces ¢’ et en les ajoutant aux
contraintes du systeme I, on obtiendra 1’état de contrainte total.

Dans le systéme II ainsi envisagé sous les forces ¢', nous admettrons que
les contraintes peuvent s’obtenir par les régles habituelles de la Résistance
des Matériaux.

On a donc pour ce systeme II et pour le terme d’ordre m

= M=l et 35 g g1y em

w
¢ s’obtiendra ensuite par la relation:
on, 0t on, 0t
3z+-8;—0 ou 8€+%——0

on, 3 A,
= g — 1)mFL M 2 —m{
7T2<x( ) mmCe

4

or
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3

_2'}720c

b1 = 2(—1)ymt1 A, memE+f(2)

La fonction f({) peut se déterminer facilement car il faut que t,+1¢;; soit
identiquement nul pour «= + m, ce qui donne

3
2 72
d’ou

d’ou

22 (= 1y AL m e 4 (= 1) A mLemE 4 f (L) =0

fQ)=%(=1)ym1 A4, mLemt
72— 3 a2

5.7 (—1)ym+1 A m e ™m¢
s

tII =

n, s’obtiendra ensuite par la relation:

A

0L

ot
Or 52:
d’ou n

77

%n—x =0 (¢ étant ¢;; écrit plus haut).
o
2 __ 2
T Ly Al (1= m D e
o (m?— o

) (1 A (1 —m e g (O

La fonction g ({) est identiquement nulle car il faut que n, =0 pour «= + .
Finalement le systéme II s’écrit

N, =

II

n,

="

2__ 2
B OF(W2772“)2'( — 1)1 4! m (1 —m{)e™¢
3o Al
—_ 1ym+1"m — —m{
sl m g e nd]
2_ 9.2
T30 p (1w Al m e
2w ‘

Par addition du systéeme I et du systéme IT on obtient les contraintes de la

solution approchée

n,

n, =—24,,

3 x
=9 M5

2_ 2
(m{—-1) [Sinmzx~ a(ﬂgw‘zi)m(—l)m“]
— 1)ym+1
+2A;mw+1nwﬂmea_§§LjLﬁl
7T m
32 —72
t=—2A,mlems [cosmoc+(-.1)m+1__2_:|
27

n, est composé de deux termes; le premier est la contrainte calculée par la
Résistance des Matériaux; le deuxiéme (série a termes exponentiels) a des
valeurs importantes pour les petites valeurs de {. Pour {=0, on vérifie immé-
diatement, d’apres la maniére méme dont 1’expression de n, dans le systéme 11
a été calculée, que n,=2 A, sinma. Lorsque { augmente, le deuxiéme terme
diminue trés rapidement.
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C. Cas de forces tangentielles paires

Elles sont développables en série de cosinus
6 = By+2 B,,cosma

ka 2 ko
[Bﬁ=lf0da ——f Cosmocdoc]
T w
0 0
( T
1 . .
On peut écrire d’ailleurs B, = A—;i Odx = 5q° o0 désignant par 7' la résul-
o
tante des efforts tangentiels sur la base. ~ 0 ~— X
Le prisme n’est pas en équilibre sous } 1-5, s
I’action des forces f appliquées aux bases T V8, (1-6)e i
2=0 et z=2h. Pour assurer 1’équilibre, il ! 18, (1-25)e™2

faut faire intervenir des réactions sur les
faces latérales, réactions qu’on supposera
s’exercer suffisamment loin des bases pour
ne pas troubler 1’état élastique au voisinage

de celles-ci. z
On trouve, par la méme méthode qu’en Fig. 6
(A), pour le systéme I: '
] n, =—2B,(m{—2)e™sinmo
, = 2B,m{e™isinmao
' t = By+2ZB,(1-m{)e™icosmua

Les conditions aux limites sont satisfaites pour {=0 (n,=0, {=0) mais non
sur les faces verticales, car pour x= +a il reste les contraintes parasites

t=By—2(—1)"1B, (1-m{)emt
Pour faire disparaitre ces contraintes paras1tes il faut faire agir sur les faces
des forces tangentlelles

= —By+Z(—-1y"1B,,(1-m{)e™¢

Le sens de ces réactions complémentaires, sur la face = +a, est indiqué sur
la figure 6 dans I’hypotheése ot les coefficients By B, B, ... sont positifs; sur
la face x= —a, les forces sont de sens opposé comme on 1’a expliqué au
paragraphe (B).

Au niveau d’une horizontale { le moment produit par ces réactions com-

plémentaires est égal & —2a |t dz, soit, puisque dz = —:—dc

4
272
Mz = B0-2az_ ;a_fZBm(l_mg)e—7n§(_1)m+1d€
™

2
. 2_“2(_1)m+13 Lol
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Quand { augmente, le moment M, tend vers 7,, moment produit par la résul-
tante 7' des efforts tangentiels appliqués & la base étudiée.

Systéme I1. On admet les hypothéses de la Résistance des Matériaux.

202
On a d’abord n, = [Tz-— %Z’(——l)mH Bmge""g] % &xﬁ

n 3 7 7
® puis, ¢ étant calculé, on a n, par la

¢

On en tire ¢ par la relation pp
X

on, 0t

da aﬂC

Les calculs sont tout a fait de méme nature que ceux qui ont été faits en (B)
et nous ne les développerons pas. On trouve finalement pour le systéme IT les
expressions suivantes des contraintes:

relation

i (772 — (xz) m+1 —m{
- = 277-2—w27(—1) B,m(m{—2)e
2a?
11 n,=Tz—""X(-1)m1 B [eml
w
72 -3 [T
=TT = _ 1ym+1 . —-m{
t 53 [2(1 (=11 B, (1-m{)e ]

On obtient les contraintes de la solution approchée par addition des systémes
I et 1I, ce qui donne

2 _ o2
nwz—ZBm(mE—Q)emg[sinma—g%—;—)(—l)m“m]
- m+1
(C) nz=§T€Z+2BmmZ6“m§|:sinma——3—<:L1) ]
2 a 7 m
- — — “‘mc e — m+1 T
¢ 5 9a o +2 B, (1-m{)e [cosma (—1) P ]

Les premiers termes de n, et ¢ sont ceux que 1’on calculerait par la Résistance
des Matériaux. Il s’y ajoute des termes exponentiels qui sont importants pour
les faibles valeurs de z et tendent vers zéro quand z augmente. Pour z=0 ces
termes exponentiels donnent, par addition avec les termes correspondant aux
hypothéses de la Résistance des Matériaux, les contraintes dues aux efforts
appliqués sur la base méme. On le vérifierait facilement, et cela résulte d’ailleurs
de la facon méme dont le systéme II a été calculé.

D. Cas de forces tangentielles impaires
Elles peuvent étre développées en une série de sinus

6 =X B, sinma
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Ces forces se font équilibre sur chaque base. Il n’y a donc besoin d’aucune
réaction complémentaire sur les faces latérales du prisme pour assurer la
stabilité d’ensemble.

On trouve, par la méme méthode qu’en (A), pour le systeme 1

I n, = 2B, (m{—2)e ™ cosma
I!{n = -ZB,m{e™ cosmao
1 t = ZB,(1-m{)e™isinma
Les conditions aux limites sont satisfaites pour z=0 (n,=0 t=0); elles ne le

sont pas sur les faces verticales, car pour «a = + 7-on a bien {=0, mais n, n’est
pas nul; il reste les contraintes résiduelles

n, = _Z'B;n (m§—2)e*mi(_ 1)7n+1

Il faut, pour faire disparaitre ces contraintes parasites, introduire des réactions
qui leur soient égales et opposées, soit:

R, = +2 (1)1 B (m{—2)em¢
Comme dans le paragraphe A, le systéme II s’écrit alors:

n, =2(—1)"+1 B _(m{—2)em¢
II { n, =0
t =0

On obtient les contraintes totales de la solution approchée par addition
des systémes I et IT ce qui donne:

n, = 2 B, (m{—2)em{[cosma+ (—1)m+1]
(D) n, = —2 B, m{e ™t cosma
t=2B, (1-m{)emisinmao

2. Expressions des contraintes en termes finis

I1 est possible de transformer les expressions précédentes en termes finis
pour certaines lois de charges. Nous examinerons le cas ou les forces appliquées
se réduisent & une force unique, normale ou tangentielle, appliquée a ’abcisse

u
x=u. Nous poserons ¢ =7 o

Le calcul des contraintes sous ’action d’une force unique résoud d’ailleurs
le probleme le plus général.

1. Effet d’une force unique normale & Uabcisse x=u (ou a=¢). Nous la
supposerons dirigée vers l’intérieur du prisme, donc négative d’apres la con-
vention de signes adoptée et la désignerons par — P.
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Son effet peut s’obtenir par la superposition de l'effet de deux forces
symétriques — P ot de deux forces antisymétriques + %) aux abcisses +u

2
(fig. 7).
Les forces symétriques peuvent étre représentées par la série

Ay+2 A, cosma
et les forces antisymétriques par la série
XA, sinmo
avec Ay=—— Am=—§cosm<p A,;n=-§sinm{p

Nous appellerons p la valeur absolue moyenne, ?P&’ de la compression. Les
systemes (A) et (B) écrits plus haut deviennent:

Ny =2pZ(m{—1)e ™l cosme[cosm o+ (—1)m+1]
A n,=—p=—2pZ(m{+1)e™Ecosmacosme
t=—2pXm{e™isinmocosme

2 __ 42
n,=2pZ(m{-1)emisinme [Sinmcx— Ec—(—77——i)m(—l)’"+1}

x 9 2
B _3ur . —nl |sinma— 2% EU]
n, 2Ma3 2p2(mi+1)e sinme— g . sinm @
p 4mz 3@2“772 m+1 .
t=2p2Zmie cosma+~—*§;2—m(——1) sinm

Par addition on obtient 1’effet de la force unique.

En posant « —¢p=p (abcisse comptée & partir de la force) et en tenant

compte de ce que:
M=—-—Pu=—-p-2au

et que (—1)"tlcosmep = —cosm (m—g@) et (—1)m*+lsinme = sinm (7 —g¢) on
obtient les contraintes suivantes sous la force P:
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2_ 42
n, = 2p2(mi-1)e—m¢ [cosmﬁ—cosm(77~99)-9‘—(22—;~)msinm(77—¢)]
w
(P) n,=—p (1+3u2x)——2p2(m2;+1)e“m5 [cosm,B—-?L:-C w_)]
m m
2_ 2
t=—2pXmlemt [sinmﬁ— ?%Tzlsinm(w——cp)]

2. Hffet d’une force tangentielle unique s’exercant & l’abcisse x=wu. Nous
la supposerons dirigée dans le sens des x positifs, donc négative d’apres la
convention de signe, et nous la désignerons par — ). L’effet peut s’en obtenir

Q
2
appliquées aux mémes abcisses (fig. 8).

par la superposition de I’effet de deux forces —-- appliquées aux abcisses +u

Q

et de deux forces symétriques iv2—

Les développements sont:

pour les deux forces — 52?— de méme sens: B,+ 2 B,, cosm «
pour les deux forces + % 2 B, sinm oc:
@ Q : :
avec B0=—§E Bm———~—c—b—cos.mq) B, =~ , sinme
Nous appellerons ¢ la valeur absolue, 5%, de la contrainte moyenne de

cisaillement. . v

En remplacant dans les systémes (C) et (D), écrits plus haut, B, B,, et B,,
par leurs valeurs ci-dessus et en ajoutant les deux systémes, on obtient, tous
calculs faits, les contraintes suivantes sous l’effet de la force tangentielle ¢
appliqué a 1’abcisse u; (on pose toujours

(p=’n’% et /3=oc—<p)

. . o (7% —o?)
n, = 2q X (m{-2)e ™ [sinmpB-sinm (7—¢) + 9.2 m cosm (m—q)
3xz B . 3o cosm (m— )
(Q) nz=~2q§&-2——2q2m§c ’m‘:[SlIlm,B‘{'*ﬂ_—z —“—*—-/rn—‘—“]
3 a?—z? 2 — 3 o
t=—q~ 3 —2¢q2 (1 -ml)e™¢ [cosmﬁ—l— —m—cosm(w—gv)]

Les séries qui entrent dans les expressions des contraintes des systémes
(P) et (Q) peuvent étre sommées.
Posons en effet, y étant un paramétre variable

R =ZXm2emlcosmy; S =Zmemicosmy; T =Xemicosmy;
U:Ze*mlcosmy
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R =Zm2emisinmy; 8 =Zmemisinmy; T =Zemiginmy;

e~mLiginm
. . Ul — 2____—___‘)_/
Formons les séries: m

R'"=R+iR; 8" =8+::8; T"=T+:T"; U' =U+:U’

et posons e~&— =

on a alors:
R =Xm2yrm; 8" =Zmrm; T"=2rm;, U = 2%
On voit que l'on a 7" = r(—zg«; 8" = r%—; R" = r%%, ce qui permet de

calculer les quatre séries lorsqu’on en a calculé une.

Or T =r+ri4r34... =r(1+7’+r2+...)=—1—r7
D’ou les valeurs des séries
1+7r 7 7
R//= LA Ilz___: T//:____-; U”=—L 1 —
T(]—r)3’ 8 (1—r)¥ 1—7r (1=7)

En séparant ensuite les parties réelles et les parties imaginaires on trouve,
tous calculs faits, les valeurs suivantes des séries

cosych {—(1+sin?y)
2 (ch{—cosy)3?

sh?{—3(cosych{—1)

R =sh{

R =siny 2 (ch { —cos y)?
g - cosych{—1
~ 2(ch {—cosy)?
g sinysh{
~ 2(ch {—cosy)?
T sh 1

2(ch{—cosy) 2
siny
2(ch{—cosy)

U =—Lyl—-2e{cosy+e2¢

En introduisant ces fonctions, on obtient les expressions suivantes?) des
contraintes en termes finis:

1} R, R’ ete. ...sont des fonctions de y et {. Nous les désignerons par E(y), B’ (y) etc...;
il est bien entendu que ce sont les fonctions de { correspondant & la valeur y de I’'argument
trigonomsétrique.



Contraintes dans les piéces prismatiques 181

. u
1. Sous une force normale P a l’abcisse u = —) et en posant
q) qa

P
p:?d B=oa—g

ne=2p{ L8(B) =T (B) LS (m—)~ T (r—g)]

o (72— o?)

[ER (m— @)= 8" (m— )]

n=—p (14258 ) 2p LS B+ T @146p ST (r-g)+ U )]

w2

t=—2pt |8 (B - P55

S (=g

2. Sous une force tangentielle @ & l’abcisse u,
et en posant ¢= % , la force @ étant dirigée dans le sens des x positifs,
n,=2q | L8'(B) 21" (B)~[LS' (m—g) 2T (—g)]
2

s —J[CR(W =28 ()|

PETLS (rg) T ()]

Ces formules ont une apparence compliquée, mais si on a calculé des tables
des valeurs des fonctions RSTU R S"T'U’, leur emploi n’est pas plus
difficile que celui de fonctions habituelles, trigonométriques ou hyperboliques.
D’ailleurs les fonctions RS 7 etc. n’entrent que par certaines combinaisons
(telles que { S — T etc.) dont on peut calculer également des tables. D’autre
part il suffit de calculer les fonctions pour des arguments y compris entre
0 et 7, a cause de la périodicité et des parités des fonctions. Pour les fonctions
RST U, qui sont paires, R(—y) = R(y) etc. pour les fonctions R’ S’ T’ U’,
R’ (—vy) = — R’ (y) et pour toutes les fonctions la période est 27 [R(y+27) =
= R (y) ete.]. '

Nous avons dressé des tables sommaires des fonctions pour les valeurs de
T w3 w2 37
y = 025 i et pour les valeurs de { = OE??},—”T%T
On en déduit les valeurs des contraintes sous une force P ou une force
pour p=1et g=1, en tous les points d’intersection des verticales et horizontales

formant le quadrillage de la figure 9, pour des positions de forces appliquées

sur la base en un point quelconque de la division de—}en Z—-
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Pour ne pas allonger cet exposé, nous n’avons pas reproduit le tableau
des valeurs des fonctions RST U R'S’7T’"U’. Nous nous sommes contentés
de donner les tableaux des valeurs des contraintes, qui sont celles inscrites
dans les tableaux I & VII que ’on trouvera plus loin, et dont le mode d’emploi
sera précisé.

Nous allons toutefois montrer que dans certains cas importants les for-
mules se simplifient et sont facilement utilisables.

. /
Ja _a _a 4. ,8,98 _ enfre parentheses o/ reefle
8 -Gty 9ty oty e e
a6 — N 0338 (0.448)
£ &3 0608  (0.5)
. 52 L Jaszp  (0462)
% 25/3 058  (0423)
J
8 (0.574)
a
Lor ggprochée
Ja/2 ©.767)
Jg
2
23 (0.058)
23
Fig. 10. Contrainte n, pour une
Fig. 9 charge concentrée sur ’axe
Fxemples

a) Contraintes sur ’'axe x =0, engendrées par une force normale P appliquée
aw centre de la base (p=0). On a alors «a=8=0, m—p=.
Les formules P donnent

! n, = 2p{L{[S(0)=8(m)]—[T(0)—T (m)]}
l n, =—p{1+2[{8(0)+T(0)];
t=0

et d’apres les expressions de S et 7'

_ 1 ' _ 1 ' _¢h{
S(0) = QTJFC—ZT)’ S(m) =~ 2—___(ch€+1)’ S(0)— 8 (m) = WC
sh{ 1 sh 1 1
O =sehz-n" 2 T =g@nern 2 TO-TE) =57
d’ol ,
_ {ch{—sh(

z =~ sh2{
. {+sh{
"= T Peng-1
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La variation, déduite de cette théorie approchée, de la contrainte =,
{contrainte d’éclatement) en fonction de z est représentée par la figure 10. On
a tracé sur cette méme figure, en pointillé, la loi réelle de n, telle qu’elle
résulte de la théorie exacte dont on parlera ci-apres. La contrainte maximum
dans la théorie approchée est 0,62 p; le calcul exact donne 0,5 p. Le résultat
de la théorie approchée est donc erroné de 249, par exces, et la zone des ten-
sions est un peu trop basse. On voit cependant que la théorie approchée
donne déja des indications utiles.

b) Contraintes m, sur l’axe, engendrée par une force étalée sur une largeur
7

2u', symétriquement par rapport auw miliew. On pose ¢’ = 77%.

Pour une charge &wdx & I’abcisse ¢, on a pour valeur de la compression

moyenne d p produite par cette charge, dp = @dw

9q et comme
a _d
w=g  dp=a5 ]

La contrainte n, sur ’axe («=0) pour cette charge est, d’apreés les expressions
(P), ot f=o—gp=—g¢

an, = 22U (8 (=) =T (~p) = LS (=) + T (m—)]

= P99 L 18(g)— 8 (r— @)~ [T (g) = T (m— )]}

ko
En remarquant que, d’apres les expressions des fonctions S 7' U etc. en séries,

_ar

d U’
ASV—W, =

T = g, on trouve, en intégrant dn, de —¢’a+¢":
Y

n, = 2T @)+ 1 (=g N~ [V () + U (m— )]}

En utilisant les valeurs des fonctions 7" et U’ on trouve aprés des calculs

faciles
2@ sing’ch { sin ¢’
e =0 [Csh2é+sin2$ —arete gy ]
(p/

ki

et comme la compression p est égale & & -

2p sing’ ch { sin ¢’
Ny = Iy T t
T [ sh?{ +sin ¢’ arcte sh{
Quand ¢’ devient petit, arctg %? peut étre assimilé & S%%%; on a alors

13 Abhandlungen XI
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_ sin?i' ch{ - 1
Ty = &30 @’ [gsh2§+sin2<p’ shg]

. ; ging’ ; . ‘
Quand ¢’ tend vers zéro, 7 tend vers 1, sin ¢’ tend vers zéro et I’on retrouve

bien la formule donnée dans le cas de la charge concentrée

Nous étudierons plus complétement ci-aprés cette question de 1’étalement
des charges.

Fig. 11 Fig. 12

¢) Cas de charges normales égales régulierement espacées, symétriques par
rapport aux centres de chaque division, et de méme étalement (charges périodiques).
Il y a ici avantage a raisonner par les séries. Le développement en série

des charges est périodique, la période étant, si n est le nombre des intervalles,

277 . by ’ r_.® . A
“—+ Les contraintes du systéme I sont également périodiques, avec la méme

période; sur les verticales X X' etc. qui limitent les divisions, les contraintes
prennent donc les mémes valeurs. Les réactions complémentaires qui annu-
lent les contraintes parasites sur les verticales x = +a annulent donc en méme
temps les contraintes n, sur les verticales X X’; les contraintes ¢ sont nulles
sur ces mémes verticales, par suite de la périodicité du systéme I, puisqu’elles
sont nulles sur les verticales —7 et + 7. Par conséquent n, et ¢ étant nuls sur
ces verticales limites des intervalles, 1’équilibre est le méme que si le prisme
était décomposé en n prismes soumis chacun & une charge symétrique.

Nous verrons plus loin que cette conclusion n’est qu’approximative et
qu’en réalité les contraintes n, et ¢ ne sont pas nulles sur les verticales X et
X', en particulier au voisinage de la face z=0. Mais ces contraintes de surface
étant mises & part — et calculées par la méthode exacte — 1’approximation
consistant & admettre que le systéme est équivalent & n prismes indépendants
fournit des ordres de grandeur trés acceptables pour ce que nous appellerons
plus loin les contraintes d’éclatement, c’est-a-dire les contraintes n, qui se
produisent en profondeur.
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II. Exposé d’une solution plus exacte.
Cas de charges normales paires

Revenons sur le cas d’une charge normale paire, que 1’on peut développer
g )

’ h b ’ I d ﬂx
en série de Fourier, en posant comme précédemment o = -

& =2XA,cosma, m pouvant prendre toutes les valeurs y compris O.
Considérons le terme d’ordre m de cette série
&, = A, cosma

Nous nous proposons de calculer en tout point du prisme les contraintes par-
tielles n,,,, n,,,, t, correspondant & ce terme. Ces contraintes seront évidem-
ment proportionnelles & 4,, et on pourra écrire

Ny = Am Vina
Nz = Am Vs
ty = Ame

Tout revient donc & calculer les contraintes v,,, v,,, 7, correspondant a
A,, =1, c’est-a-dire les contraintes sous la charge &,, = cosmc.

Nous avons fait ce calcul pour la contrainte n,, la plus dangereuse.

Si on connait pour cette contrainte n, les différents coefficients v,, (nous
supprimons désormais l’indice x), la contrainte totale n, en un point (xz)
sera donnée par la série

n, =2A4,,v, (xz)

v,, est une fonction de x et de z. Mais pratiquement il n’est pas nécessaire
d’en connaitre 1’expression en x et z. 1l suffit d’en connaitre les valeurs en
un certain nombre de points du prisme. Si ces points sont assez rapprochés,
cela suffira pour permettre les interpolations et pour définir ainsi d’une fagon
suffisante 1’état élastique du prisme. Les calculs ont été faits pour les points
d’intersection des verticales et des horizontales formant le quadrillage de la
figure 9. :

Les coefficients v,, (xz) ayant été déterminés en tous les sommets du qua-
drillage ainsi défini, en un de ces points, de coordonnées x,z,, les coefficients
v,, seront des nombres v,, (x,2,) déterminés une fois pour toutes et la contrainte
n, au point x,z, sera donnée par la série

nx = ZAme (xo ZO)

A la série de Fourier, donnant &, dont les coefficients 44,4, .... 4,, sont
facilement calculables, on a donc fait correspondre, pour n,, la série numérique

n, = Agvy (Xg2e) + A1vy (Xg2g) - - - + Ay v (To20) + - - .

1. Considérons donc la charge partielle @, = cosma. On a trouvé ci-
dessus (I, A) une contrainte (systeme I)
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vl = —(m{—1)emEcosm

qui n’est pas la solution du probléme, puisqu’elle n’est pas nulle sur les faces
x= +a, ot elle prend la valeur r, =(— 1)+ (m {—1)e "¢,

2. Il faut sur ces faces x = +a introduire des réactions égales et opposées,
de facon a annuler les contraintes parasites, soit:

—7ry = _(_ 1)m+1 (m@—— l)e—mg

Cette fonction de réaction (—r,) est valable pour la moitié supérieure du
prisme; pour la moitié inférieure on a une fonction ( —r;") symétrique de (—r,)
c’est-a-dire telle que r, et »,” prennent des valeurs égales en des points symé-
triques par rapport au plan horizontal médian z=72 [c’est-a-dire r (z) =
ry (2h—2)].

Appliquons a cette fonction de réaction la méme méthode que précédem-
ment (I, A), c’est-a-dire développons-la en série de Fourier et cherchons un
systéme de contraintes qui lui corresponde terme a terme (systéme II).

Par suite de la symétrie par rapport au plan z=~h, on pourra obtenir pour
(—7,) un développement ne comportant que des sinus, de la forme

—-r,=—(=-1)m12B, sin 77 (n impair).

2 k

Moyennant certaines transformations, destinées & obtenir des séries
rapidement convergentes, et sur lesquelles il n’y a pas lieu d’insister ici (elles
sont explicitées dans notre mémoire précité), il y a avantage & mettre —r,
sous la forme

Tz

—rlz_(_1)m+1(—1+2b Oh)

C’est-a-dire sous la forme d’une traction ou compression (suivant la direction
n,) uniforme, (—1)"*! et d’une série

nmwz

—( — 1\ym+1
(—1)m+12'h,, sin - 57

ou encore en posant

L ket {=m, —rp=— (=1 (=1+Zb,sinnk{)
2 k a

Par des calculs analogues a ceux faits en I, on trouve un état élastique
satisfaisant aux équations de 1’élasticité, mais non a toutes les conditions aux
limites: il reste sur les faces horizontales 2 =0 et 2= 2h des réactions parasites
tangentielles. Les contraintes v, et les réactions parasites ont des expressions
de la forme?3)

5) 11 est bien entendu que v2 est une simple notation et que l’indice supérieur 2
n’est pas un exposant mais la désignation du rang du systéme de contraintes dans la
réitération.
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contrainte v, v, o= — (= 1)" [ —14+2b,f, (x)sinn k(]
réactions parasites f = —(—1)""12h, g, («) (pour z = 0).
Les expressions de b, f, et ¢, sont données dans notre mémoire. Pour b, on a:

4 m2 m2+ 3k2n2

by = T 7 on (mP+kEnd)

n

et cette expression montre que les contraintes du systéme 11 dépendent de

I’élancement %% (ou de la valeur de k) du prisme. Mais on reconnait que si —22](-;
est suffisamment grand, 1’état de contrainte au voisinage de la base varie trés
peu avec 1’élancement, et que c’est un état attaché a l’extrémité du prisme,
ne dépendant que des forces appliquées. Nous avons choisi un élancement
Zf =3, dou k = ~6—

On a alors:

b

_ 4 36m*(36m*+3n?)
" n (36 m?+ n?)?

et le développement de (—r;) est trés rapidement convergent.

2
On a d’autre part pour cette méme valeur de ;g =3
‘nmw nw nmw na na nT ; noa
PTG T Tl
n - n,f +s h n

o nm na na naw no
"7 eh"7sh N~ " sh N ch B
,.)»()

I

g, () T —

"7 4sh’

Pour faire disparaitre les contraintes parasites 2, il faut exercer sur les
faces z=0 et z=2h des réactions tangentielles —2,.

A ce stade du calcul, la contrainte v,, cherchée peut donc étre mise sous
la forme

v,, = vh +vi + effet de (—12)
= —~(m{~1)emlcosmast (=1 (1)1 3p_f ( )sinzb—c
+ effet de (—12) (1)

Il est clair que sil’on poursuivait les calculs suivant la méthode suivie jusqu’ici,
— c’est-a-dire si ’'on développait (—t2) en série de Fourier, puis si 1’on cher-
chait le systeme de contraintes correspondant, qui ferait apparaitre des con-
traintes parasites sur les faces x= +a, puis si 'on annulait ces contraintes
parasites par de nouvelles réactions etc. — la suite des systémes successifs
serait illimitée et rien ne démontrerait, indépendamment de toute question de
possibilité d’exécution de tels calculs, la convergence de cette suite.
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Mais on constate numériquement, et cela permet de terminer le calculs
que les réactions tangentielles (—2,) qu’on doit introduire pour faire dis-
paraitre les contraintes parasites du systéme II suivent, quelle que soit la
valeur de m, une loi trés sensiblement linéaire, qu’on peut assimiler & la loi
(_f?n) = Km e

Si donc on suppose connu le systéme de contraintes correspondant & une
telle loi linéaire et satisfaisant, cette fois, a toutes les conditions aux limites, ce
serait notre systéme III; en appelant v>, la contrainte v, correspondante on
aurait:

_ 1 2 3
Vi = Vm+Vm+Vm

En réalité, comme la loi (—¢2) n’est pas rigoureusement linéaire, il est
nécessaire d’apporter des corrections; nous verrons ci-dessous comment elles
peuvent étre faites. Moyennant ces corrections, on peut considérer les résultats
obtenus comme pratiquement exacts.

3. On est ainsi amené & chercher, par un calcul séparé, ’effet d’une charge
linéaire tangentielle. On peut prendre pour cela une loi telle que son développe-

&
'é s
les résultats obtenus sont alors utilisables pour toute autre loi linéaire, par
proportion.

Le développement en série de Fourier de la loi choisie est

ment en série soit le plus simple possible, et nous avons choisi la loi 6 =

o =2(—1)m+18inna

2 n

6 =

Ce calcul, limité aux contraintes n, peut étre décomposé suivant le schéma
suivant:

Svste Charge Dével : Contrainte Contraintes
ysteme appliquée eveloppemen n, parasites
a 6, tangentiel 2(—1)ntt smnn x v, () v, (), normal
sur z=0 sur faces x=+a
b ~v,(7), normal | 2'd,sinp ;l% v (o) 7, tangentiel
sur = +a sur face z=0
c — 7 tangentiel

Or on constate que les réactions tangentielles —r qu’on doit introduire
dans le systéme c suivent de nouveau, avec une trés grande approximation,
une loi linéaire, comme la charge 60 dont on était parti. Cela nous permet une
récurrence qui va fermer le cycle.

En effet appelons v, la contrainte réelle engendrée par 6 (qui n’est pas v,,
laquelle est une fausse solution). On a:

vy =V tvptv,tyg . (2)
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mais v,+v;+ ... est la contrainte réelle v, engendrée par —r. Elle est donc
proportionnelle & v, engendrée par 6 puisque 0 et 7 sont tous deux linéaires.
Désignons la loi —r par: —7= —Ca, C étant une constante, on a:
—T ~Ca
v, (sous —7) = v, (sousf)- 5 = vy(sous 0)- — = —2Cv,(sous 0)
2

La formule (2) s’écrit:

v, (sous 6) = v, +v,+v,(sous —7)

ou: _
v, (sousf) =v,+v,—2Cv, (sous0)
LI _ Vu,+vll
d’ou Ve = 1130 (3)

et la contrainte v, remplit cette fois toutes les conditions.
Si on explicite le calcul, on trouve successivement:

( — 1)n+1

v (o) = 2(n§—2)e—77'5-rsinna

eAnC

V(L(TT) = 2(%@——2)

n

Le développement de [ —v,(7)] (réaction introduite dans le systéme b) est:

—v,(m) = 2'd,sin %7—7; (p impair)

g n=w p3
avec d = —
. . Tz
Puis vy (o) = 2'd, f, (a)smpﬁ

b (O) = de gp (OC)

{, et g, étant les fonctions déja rencontrées en 2 (il suffit de remplacer dans
leurs expressions n par p).

Il n’y a pas lieu d’insister sur la fagon dont on peut calculer C' ni sur la
fagon dont on peut rendre le développement d,, plus convergent par une trans-
formation analogue & celle qu’on a faite en 2 pour le développement B, .

Disons seulement qu’on peut avoir v, avec une tres grande exactitude en
tenant compte de ce que la loi 7, (0) n’est pas exactement linéaire et en effec-

tuant la correction suivante; nous l'indiquerons pour fixer les idées pour la
3a
% ‘
linéaire représentant 7,(0) non pas 7,(0) = Ca qui serait une certaine loi

contrainte v, sur le plan x = —-. Cette correction revient a prendre pour loi
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moyenne, mais 7, (0) = ¢’ («), €’ étant une constante, légérement différente

de C et telle que la résultante des charges tangentielles & droite de 39 soit 1a
méme pour la loi linéaire (C’) et pour la loi réelle 7, (0) (fig. 13).

.
{ | X
5 Ja/4 g
|
Fig. 13

3a
4

(On aura de méme un autre coefficient C” pour v, (%), C” pour v, (%), c”

C’est ce coefficient ¢’ qu’on introduira pour vx( ) dans la formule (3).

pour v, (0) les coefficients ¢’ C” ¢ " étant d’ailleurs tres voisins.)

4. L’effet d’une charge tangentielle linéaire g étant ainsi calculé, on

pourra terminer le calcul commencé en 3 puisque nous connaissons maintenant
P’effet de la réaction tangentielle (—¢,) que nous avons assimilée & une loi
linéaire K,, «. ‘

En appelant »3 la contrainte v, engendrée par (—t2,) et remplissant cette
fois toutes les conditions aux limites on aura

x) K o
3 . m ___ ¢
v =, (sous A_)) -"=2K, v, (sous ——2)

1
= 2

Ve (sous g) étant la contrainte calculée en 3. On fera d’ailleurs la méme

correction que celle qui a été indiquée a la fin de 3, ¢’est-a-dire que ’on adop-
tera des valeurs K, K, K, K,  (qui seront trés voisines les unes des autres),

3a aa . ’ " 4

T 310 les coefficients K,, K,,.... étant
choisis pour qu’on ait égalité des résultantes pour la loi linéaire adoptée et
pour la loi réelle (—i2,) & droite de la verticale considérée.

pour les contraintes sur les plans

Ce calcul étant fait on aura la contrainte définitive v, sous la charge nor-
male ®,, = cosma par

_ .1 2 3
Vm = Vm+Vm+Vm

vi v2 et vl étant des fonctions de x et z.

m

Pour une charge quelconque & =24, cosma, la valeur de la contrainte
n, sera donnée par la série

n,(xz) = Ayvi+4ovy. .. + A4, v+ - -

Les coefficients v, v, ... sont donnés par les tableaux I suivants:
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Tableaux I. Contraintes n, sous charges normales paires

Valeurs des coefficients par lesquels il faut multiplier le coefficient de rang m du développe-
ment de la fonction de charge pour obtenir le terme de rang m de la serie qui donne 7,

Exemple d’utilisation: Les forces qui agissent sur la base étant développées

i
|
1
{ en série: wo=Ay+ A;cosaxa+ Ayco820+ A3c083 . .. +Amcoleoc(oc=7rgc) la
)l . . a s . s
! contrainte n, au point z = z =3 8 obtiendra grace aux coefficients du
E”" | tableau x = % dans la colonne z = % t sera égale a la somme de la série numé-
| rique: m, (5‘25 %) = 0,0933 4, +0,1373 4, — 0,0133 A, —0,0321 4, —0,0123 A,
73,21 40,0221 Ag—0,0115 A, +0,0083 Ag—0,0103 Ay +0,0150 A4,
x=0 Valeurs de z
m _ - S
0 ' a/6 al3 j a2 ’ 2a/3 a ’ 3a/2 i 2a ‘ 5a/2 | 3a
1 +1,2569 | 40,4630 | + 0,0872 - 0,0870 | —0,1639 = 0,1653 | 0,0873 | —0,0282 | —0,0010 | +0,0051
2 |+40,9261|—0,0666  —0,1576 | —0,0889 | —0,0283 | +0,0155 | + 0,0089 | — 0,0005 | — 0,0052 | —0,0047
3 |[+1,0180 | —-0,1027 | —0,0836 | — 0,0356 | — 0,0201 | —0,0111 | —0,0026 | 4+ 0,0016 | + 0,0045 | 40,0037
4 | +1,0067 —0,1386 | —0,0530 | —0,0148 | 40,0025 | +0,0049 | +0,0006 | —0,0018 | —0,0043 | —0,0031
5 | +0,9805|—-0,1221 | —0,0198 | —0,0016 | —0,0013 | — 0,0024 0,0000 | +0,0016 | +0,0041 | +0,0032
6 |+1,0254 | —0,0853|—0,0119 | —0,0023| 0,0000 | + 0,0008 | —0,0005 | —0,0019 | —0,0041 | — 0,0026
7 140,9708 | —0,0772 | —0,0023 | +0,0024 | +0,0010 | — 0,0002 | + 0,0006 | +0,0019 | + 0,0041 | 40,0024
8 |+1,0322|—-0,0379 | —0,0032 | —0,0027 | — 0,0016 | — 0,0004 | — 0,0008 | —0,0019 | —0,0041 | — 0,0024
9 | 40,9658 | —0,0448 | +0,0007 | 40,0029 | + 0,0020 | 40,0007 | +0,0010 | 40,0020 | + 0,0041 | + 0,0024
10 | +1,0335| —0,0120 | —0,0060 | —0,0032 | —0,0016 | + 0,0004 | —0,0004  — 0,0019 { — 0,0046 [ - 0,0037
m r=al4
1 +0,9729 | 40,3872 | +0,0912 | —0,0603 | —0,1285  —0,1423 | —0,0755 | — 0,0237 | — 0,0008 | 4+ 0,0053
2 |-0,0775| -0,0572 | —0,0188 | +0,0112 | +0,0260 | +0,0256 | +0,0109 | —0,0003 | —0,0040 | —0,0043
3 | —0,6908 j 40,1053 | 40,0704 | + 0,0155 | — 0,0061 ) -0,0098 | —0,0018 | 40,0016 | 4+ 0,0032 | + 0,0031
4 |—0,9895) 40,1282 | +0,0469 | + 0,0148 | +0,0088 | 40,0050 |  0,0000 | —0,0018 | — 0,0030 | — 0,0028
5 |-0,7307 | +0,0850 | 40,0170 | — 0,0007 | —0,0031 | — 0,0025 | + 0,0004 | 40,0015 | 4+ 0,0030 | + 0,0028
6 |+40,0308 | —0,0020 40,0001 | +0,0019 | +0,0024 | +0,0010 | — 0,0007 | —0,0020 | — 0,0030 | — 0,0019
7 |+40,6716 | —0,0521 | —0,0031 | — 0,0022 | — 0,0015 | — 0,0004 | + 0,0008 | 40,0019 | 4+ 0,0029 | +0,0018
8 |+1,0390|—0,0430 | —0,0014 | +0,0007 | +0,0008 | — 0,0001 | - 0,0009 | —0,0019 | —0,0029 | —0,0016
9 |+0,6657| —0,0300 —0,0009 | —0,0004| 0,0000! +0,0004 | +0,0012 | 40,0021 | + 0,0030 | + 0,0018
10 | +0,0409 | 40,0056 | —0,0004 | 0,0000 | + 0,0009 | + 0,0006 | — 0,0007 | — 0,0020 ' —0,0033 | —0,0033
m r=3a/4
1 +0,3335 | +0,2240 | +0,0933 | —0,0070 | — 0,0642 | — 0,0865 | —0,0454 | —0,0118 | +0,0025 | + 0,0062
2 | —1,1403 | —0,0569 | +0,1373 | +0,1299 | +0,0907 | 40,0335 | + 0,0050 | — 0,0022 | — 0,0042 | — 0,0045
3 |+0,0685|+0,0316  —0,0133 | —0,0263 | —0,0219 | —0,0081 | — 0,0001 | + 0,0023 | + 0,0030 | + 0,0031
4 |+0,9632| —0,1519 | —0,0321 | +0,0087 | +0,0116 | 40,0037 | — 0,0010 | — 0,0022 | — 0,0026 | — 0,0025
5 |+0,0162|+0,0110 | —0,0123 | —0,0146 | — 0,0095 | —0,0017 | 40,0012 | 40,0018 | 40,0024 | + 0,0026
6 | —1,0071| 40,0870 | 40,0221 l +0,0137 | +0,0078 | +0,0001 | —0,0008 | —0,0023 | —0,0030 | —0,0007
7 [ -0,0005]| +0,0036 | —0,0115 | —0,0120 | —0,0070 | —0,0008 | +0,0012 | +0,0022 | +0,0028 | 40,0009
8 | +1,0022 | —0,0527 | 40,0083 | 40,0108 | +0,0061 | —0,0008 | —0,0011 | —0,0021 | — 0,0028 | — 0,0008
9 |-0,0082|+0,0019 | —-0,0103 | —0,0105 | — 0,0059 | — 0,0012 | 40,0012 | 40,0021 | 4+ 0,0028 | + 0,0009
10 | —-0,9915| +0,0196 | +0,0150 | +0,0098 | +0,0064 | +0,0010 | —0,0013 | —0,0022 | —0,0028 | —0,0028
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r=a/2 Valeurs de z

m

0 | a6 a3 | a2 | 2e3 | a | 3¢2 | 20 | 5a2 | 3a
1 |—0,2966 | +0,0397 | +0,0505 | +0,0178 | —0,0151 | —0,0258 | —0,0115 | — 0,0002 |+ 0,0043 | + 0,0049
2 | —0,3465 | —0,0772 | +0,0638 | +0,0766 | +0,0541 | +0,0154 | —0,0002 | —0,0032 | —0,0041 | —0,0041
3 |+0,9741 | —0,0702 | —0,1285 | —0,0678 | —0,0281 | —0,0032 | +0,0014 | +0,0023 | +0,0025 | + 0,0025
4 [—1,2221|+0,1429 | +0,1002 | +0,0368 | +0,0122 | +0,0005 | —0,0013 | —0,0018 | —0,0017 | —0,0017
5 |+0,9013 | —0,0969 | —0,0561 | —0,0206 | —0,0067 | 40,0004 | +0,0011 | +0,0011 | +0,0011 | +0,0016
6 |—0,1811 | +0,0179 | +0,0359 | +0,0158 | +0,0056 | 40,0027 | +0,0011 | —0,0024 | —0,0030 | —0,0028
7 | —0,5387 | +0,0309 | —0,0290 | —0,0155 | —0,0057 | —0,0026 | —0,0002 | +0,0011 | +0,0023 | +0,0017
8 |+0,8411|—0,0328 | +0,0279 | +0,0146 | +0,0051 | —0,0031 | —0,0040 | —0,0030 | —0,0022 | —0,0017
9 |—0,5549 | +0,0075 | —0,0284 | —0,0141 | —0,0049 | +0,0031 | 40,0040 | +0,0010 | + 0,0005 | —0,0019
10 | —0,1500 | +0,0135 | +0,0248 | +0,0124 | 40,0055 | + 0,0007 | —0,0002 | —0,0015 | —0,0014 | — 0,0008

On trouvera plus loin (tableaux II & VII) des tableaux plus facilement
utilisables. Mais nous avons cru utile de donner le tableau ci-dessus, & cause
de sa trés grande exactitude, et d’autre part parce que, dans certains cas de
charges paires, il ne serait pas beaucoup plus long de se servir de ces tableaux
que des tableaux II a VII, lorsque les développements des charges peuvent
étre réduits pratiquement & un petit nombre de termes®).

Pour les charges trés concentrées (c’est-a-dire étalées sur une faible
largeur), il n’en serait plus de méme. C’est pourquoi nous avons transformé
les tableaux en tableaux d’influence (c’est-a-dire donnant 1’effet d’une charge
unique) qui sont précisément les tableaux II a VII. Ces tableaux II a VII
seront les tableaux pratiques.

Cas de charges normales impaires

Nous avons employé une méthode analogue a celle que

0 . .

| nous venons d’exposer. Toutefois nous devons dire que les

| résultats obtenus sont moins exacts que dans le cas des

! : .
| charges paires. :
| . . ’

Fio. 14 On obtient des expressions analogues dans les deux pre-

ig.

miers systemes (systémes I et II) avec réactions parasites:
sur les faces verticales (réactions normales) dans le systeme I,
sur les faces horizontales (réactions tangentielles) dans le systéme II. Mais il
n’existe pas, entre les systemes 1II et les suivants, de relation de récurrence
simple comme dans le cas des charges paires. Il a donc fallu faire des appro-

¢) Toutefois, pour z=0, les séries donnant n, sont en général lentement convergentes,
et les tableaux I sont en conséquence difficilement utilisables pour cette face z=0. Nous
avons donné dans notre mémoire la fagon d’obtenir pour cette face des séries n, rapide-
ment convergentes. Il est inutile ici d’exposer la méthode employée, puisque les tableaux
pratiques (tableaux II) donneront en cas de besoin la contrainte n, aussi bien pour
z=0 que pour les autres points du prisme.
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ximations moins légitimes. Néanmoins on peut considérer que les résultats
obtenus pour n, sont approchés a 10 ou 159, pres.

Des tableaux analogues aux tableaux I ont été donnés, nous croyons
inutile de les reproduire.

ITI. Etablissement des Tableaux Pratiques

Les tableaux qui sont reproduits ci-dessous (Tableaux II) donnent les
valeurs des contraintes n, n, { engendrées par une force unique normale ou

tangentielle appliquée en des points de la base espacés de Z en 2, aux points

d’intersection des horizontales et des verticales de la figure 9. Ils ont été
établis de la fagon suivante: ,

Pour les contraintes n, sous charges normales, qui sont dans les cas usuels
les plus dangereuses, nous nous sommes servi des tableaux I (charges paires)
et des tableaux analogues (non reproduits) correspondant aux charges im-

. . . . P
paires; nous avons pris pour forces appliquées deux forces concentrées o aux

. . . . oy P
abcisses +u (charges paires) et deux forces concentrées antisymétriques + 5

aux abcisses +wu (charges impaires). Par addition, on a obtenu l’effet d’une
charge P a 1’abcisse u.

Pour toutes les autres contraintes: n, et ¢ sous charges normales, n, n, et ¢
sous charges tangentielles, nous nous sommes servi des résultats de la théorie
approchée (I, 2.), c’est-a-dire des formules (P) et () des pages 179/181.

Les contraintes étant proportionnelles a é% =p et a % = ¢ nous avons

choisi P et ¢ de fagon que p et ¢ soient égaux a l’unité. On obtiendra donec,
dans tout cas concret, les résultats en multipliant les contraintes des tableaux
par les contraintes de compression ou de cisaillement moyennes, p et ¢, engen-
drées par les forces réellement appliquées.

IV. Tableaux pour le Calcul des Contraintes dans le Cas du
Prisme indéfini, sous 1’Effet d’une Force unique

Utilisation des tableaux I1 a VII

Le prisme a pour largeur 2a. Il est rapporté a deux axes Oz et 0z (fig. 15).

La charge est appliquée sur la base & 1’abcisse . Sa composante normale
est P, sa composante tangentielle est ¢). Les tableaux sont établis dans 1’hypo-
thése de P dirigé vers l'intérieur du prisme, et ¢ dans le sens des x positifs
(fig. 15).

On désigne par p la valeur absolue de la compression moyenne ~2%,_ par ¢
la valeur absolue de la contrainte de cisaillement %
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Si donc on appelle d’une fagon générale v, et v, les coefficients des tableaux
correspondant respectivement a la charge normale (tableaux I, ITI, IV) et
a la charge tangentielle (tableaux V, VI, VII) la contrainte totale » sous la
force P, @ (v désignant n, n, ou t) est égale a

P
vV=pv,+qv, ouyv= _Iip_zj_&ﬁﬁ

Dans le cas ol ’'on a plusieurs forces (le cas de forces réparties pouvant
étre ramené a ce cas en remplacant les forces réparties par un systéeme de
forces concentrées) on aura
Py + Qv,

=2
v 2a

Les conventions de signe sont les suivantes:

n, et n, sont positifs quand ces contraintes sont des tractions — ¢ est
positif lorsque sur le plan horizontal laissant au-dessus de lui 1’origine O,
cette contrainte est dirigée dans le sens des x positifs (sur la figure 15, ¢ est
positif).

—

p
ol g |
L\
a 3 X
s
= | #
|
{z 71z
Fig. 15 Fig. 16

Les tableaux donnent les contraintes n, n, et ¢ en différents points du
prisme: } :
sur 5 verticales v =0 2= 2 =% x =% y =g aux niveaux z =0 % £ 2 2% 3¢

4 2 4 323 2
et pour différentes positions de la charge espacées de % en Z entre u=—-a et
u = —+a.

ga 3a 24

>
ol Q

Remarques

1. Pour une charge normale P, si l’on fait une coupe dans le prisme par
un plan horizontal H (fig. 16) a grande profondeur, les contraintes qui s’exercent
sur ce plan H sont réparties suivant la loi habituelle de la Résistance des
Matériaux, et on n’a aucune contrainte de cisaillement sur ce plan H. Si on
coupe le prisme par un plan vertical X, & gauche de P, il est nécessaire pour
I’équilibre que:
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a) 2n,=0.

b) Moment des n, = moment des contraintes sur le plan H & gauche de X
(moment de la partie hachurée du diagramme de contrainte).

c) 2't =résultante des contraintes sur le plan H a gauche de X.

Ces remarques permettent de préciser les lois de variation des contraintes
n, et ¢t (nous en donnerons ci-aprés un exemple).

2. Sur la base z=0, pour les contraintes sous forces normales, on trouve
dans les tableaux, & I’aplomb de la force, une double valeur (dont 1’une est
—o0) pour n,. Par exemple pour une force appliquée en x=0 on trouve en
x=0, 2=0, n,= —o0 et +0,523. La signification de cette double valeur est
la suivante:

a) A 'aplomb rigoureux de la force, c’est-a-dire pour x =0, la contrainte
n, est une compression infinie (due a ce que la force est concentrée) en z=0:
mais cette compression infinie ne s’étend que sur une épaisseur dz infiniment
petite. La résultante — oo - dz est une force concentrée. Si 1’on trace (fig. 17)

AN
a lﬁ +Q523p

/6
3
/2
23/3

Lompressions

a

38/2

28 G
Fig. 18

le diagramme de variation des contraintes n, le long de 0z, il faut d’aprés la
remarque précédente que la force concentrée — oo - dz soit égale & la résultante
du diagramme des tractions; n, passe instantanément de —oo a 0 quand on
passe de z=0 a z2=e¢. Le moment de la résultante du diagramme des tractions

par rapport & 0 doit étre égal au moment, par rapport a 0, de la résultante {:

P

s’exercant & gauche de 0z sur un plan H & grande profondeur, soit g %: g;g .
b) Sur la verticale = — e & gauche de la force on a, pour z=0, la deuxiéme

valeur, n,= +0,523. Il est alors obligatoire que sur cette verticale, les con-
traintes n, suivent une loi telle que celle de la figure 18, avec une zdne, trés
étroite mais a fortes contraintes, en compression. D’autre part les contraintes ¢

- 2’ ’ by P .
devront avoir, sur ce plan x = —e¢, une résultante égale & — R Les contraintes ¢
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L traint :
; deﬁg COntraimntos Tableaw I1I. Contrainte n, sous une charge normale
i olvent étre .
AR S multipliées par - Positions de la force (u)
|
Position du | o 0 4 \
point tudié —a —3a/4 —a/2 —a/4 +a/ | +a/2 +3a/4 +a
| I
— 0 - -
= 5 0,758 ¢ } 7 }
z=0 +2,187 | +1,222 | +0,7 + 0,566 | +0,523 +0,5666 | +0,758 | +1,222 | + 2,187
a/d | +0,650 | +0,539 | +0,428 | +0,356 | +0,5 {; 30726 +1,040 | +1,943 | +3,862
2=0 a/2 | +0,162 | +0,368 | +0,356 | +0,386 | +0,5 40,670 ;;0092 +2,176 | +5,026
3a/4 | —0,825 | +0,335 | +0,668 | +0,693 | +0,65 | +0,865 ] +1,258 {; 50079 16,523
| | ’
a 0 o | 0 0 0 0 } 0 0 —80
r |
=0 +0,913 | +0,601 ; +0,025 | —1,004 | +0,448 | — 1,004 | +0,025 | +0,601 | +0,913
al4 + 0,665 I +0,502 | +0,268 | —0,109 | —1,054 | +0,469 | — 0,822 | 40,508 | +1,191
z—_—% a/2 +0,338 | +0,337 | +0,258 | +0,104 | — 0,234 | —1,026 | +0,758 | —0,205 | + 1,370
3a/4 —1,492 | +0,017 | —-0,044 | — 0,389 | +0,049 | 4+0,387 | —0,580 | 41,389 | +0,918
a |0 0 0 0 o | o 0 0 0
=0 +0,428 | —-0,125 | —0,238 | — 0,074 | +0,499 | —0,074 | — 0,238 | —0,125 | +0,428
@ a/4 + 0,496 | +0,252 | —-0,036 | — 0,344 | — 0,402 | +0,538 | —0,222 | —0,060 | + 0,096
Z=§ a/2 +0,154 | +0,138 | +0,048 | — 0,128 | — 0,393 | — 0,308 | +0,744 | — 0,026 | — 0,572
3a/4 ’ —0,786 | +0,055 | —-0,241 | —0,698 | —0,122 5 + 0,486 | +0,227 | 40,737 | —0,990
a | 0 0 0 0 o | 0 0 0 0
x=0 : +0,014 | —0,192 | —0,154 | +0,144 | 40,462 | +0,144 | —0,154 | —0,192 | +0,014
a a/4 l +0,121 | +0,063 | —0,118 | — 0,254 | +0,041 | +0,434 | +0,108 | —0,143 | — 0,427
z2= 5 al2 —0,067 | —0,036 | —0,052 | —0,122 | —-0,205 | +0,146 | +0,588 \ —0,004 | —0,907
3a/4 —0,229 | +0,044 | —0,211 | —0,492 | —0,112 | +0,364 | +0,425 | +0,262 | —0,797
a 0 0 0 0 0 0 o | o 0
z=0 | —-0,307 | —0,250 | — 0,062 | +0,266 | +0,423 | +0,266 | — 0,062 | — 0,250 | —0,307
20 al4 -0,114 | —-0,129 | —0,099 | —-0,057 | +0,201 | +0,431 | +0,177 | —0,181 | —0,598
z=—3— al2 -0,270 | — 0,145 | — 0,094 | — 0,078 | — 0,028 | +0,282 | +0,442 | —0,015 | — 0,654
3a/4 -0,022 | +0,070 | —0,150 | — 0,319 | — 0,044 | +0,321 | +0,342 | —0,016 | — 0,550
a 0 0 0 0 0 ‘ 0 0 0 0
x=0 -0,399 | —0,242 | +0,024 | +0,262 | +0,314 | +0,262 | 40,024 | —0,242 | — 0,399
a4 —-0,297 | —0,176 | —0,047 | +0,096 | +0,245 , 40,292 | +0,135 | —0,172 | —0,449
z=a al2 -0,215 | —0,128 | —0,058 | 40,018 | +0,122 | +0,222 | +0,184 | —0,076 | —0,329
3a/4 +0,155 | +0,122 | +0,026 | —0,035 | +0,022 | 4+0,113 | +0,060 | —0,172 | —0,333
a 0 0 0 0 0 0 o 0 0
=0 | —0,192 | —0,122 | +0,016 | +0,128 | +0,161 | +0,128 | +0,016 | —0,122 | —0.192
3a ald —0,146 | —0,100 | +0,004 | +0,086 | +0,133 | +0,122 | +0,038 | —0,100 | —0.184 .
=5 al2 —0,069 | —0,058 | —0,017 | +0,041 | +0,082 | +0,083 | +0,038 | —0,066 | —0.101
3a/4 | 40,160 | +0,129 | +0,090 | +0,056 | +0,020 | —0,016 | —0,066 | —0,147 | —0.171
a 0 0 0 0 0 0 0 0 0
z=0 | —0,026 | —0,030 | —0,001 | +0,030 | +0,058 | +0,030 | —0,001 | —0,030 | —0.026
a/d | —0,013 | —0,019 | © +0,024 | +0,049 | +0,024 | —0,002 | —0,027 | —0.021
z=2a a/2 +0,026 | —0,006 | —0,001 | +0,016 | +0,029 | +0,016 | —0,009 | —0,028 | +0.002
3a/4 | 40,154 | 40,103 | +0,071 | +0,055 | +0,026 | —0,045 | —0,081 | —0,103 | —0.086
a 0 0 0 0 0 0 0 0 ‘ 0
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Tableaw I11. Contrainte n, sans une charge normale

Position de la force (u)

2a
Position du . o [ |
point étudié —a —3a/4 ( —a/2 1 —a/4 | 0 +al/4 ‘( +a/2 J +3a/4 +a
=0 | 0 I 0 1 0 0 — o o | o 0 0
a/4 0 0 | 0 ;0 0 — 0 0 0
2=0 a2 o | o | 0o | o0 0 0 —w | 0 0
3a/4 0 0 0 .0 0 0 0 | — o0 0
a | 0o 0 0 0 0 0 o 0 —
=0 —0,006 | —0,014 | —0,068 | —0,684 | —7,990 | —0,684 | —0,068 | —0,014 | —0,006
. a/d | +0,736 | +0,050 | —0,005 | —0,063 | —0,684 | —7,993 | —0,693 | —0,121 | —0,764
=g a2 | +1,434 | +0,096 | +0,012 | —0,008 | —0,066 —0,690 —8,008 | —0,794 | —1,566
3a/4 | +1,566 | +0,098 | +0,013 | +0,002 | —0,014 | —0,074 | —0,711 | —8,154 | —2,934
@ | —4,990 | —0,464 | —0,031 | —0,040  —0,006 | —0,024 | —0,101 | —0,904 | ~10,990
=0 | —0,078 | —0,124 | —0,340 | —1,570 | —3,892 | —1,570 | —0,340 | —0,124 | —0,078
. a4 | 40,626 | —0,065 | —0,066  —0,353 | —1,140 | —3,909 | —1,628 | —0,382 | —0,874
z=3 a/2 | +1,130 | +0,302 | +0,039 | —0,089 | —0,370 | —1,605 | —4,009 | —1,996 | —1,870
Bafd | +0,680 | +0,165  +0,040 | —0,027 | —0,124 | —0421 | —1,743 | 4,427 | 3,820
a | —0892 | —0,720 | —0,137 | +0,055 | —0,078 | —0,193 | 0,603 | —2,420 | —6,892
=0 | —0,208 | —0,294 | —0,668 | —1,650 | —2,564 | —1,650 | —0,668 | —0,294 | —0,208
. a/d | +0,456 | +0,126 | —0,166 | —0,624 | —1,650 | —2,608 | —1,778 | —1,001 | —1,044
2=3 @2 | +0,882 | +0,374 | +0,048 | —0,205 —0,668 | —1,739 | —2,820 | —2,318 | —2,168
3a/d | +0,600 | +0,333 | +0,089 | —0,074 | —0,204 | —0,802 | —2,033 —3,562 | —3,900
@ | +0,436 | —0,313  —0,155 | —0,116  —0,208 | —0,472 | —1,181 | —2,987 | —5,564
=0 | —0,372 | —0,478 | —0,848 | —1,514 : —1,950 | —1,514 | —0,848 | —0,478 | —0,372
0o | @4 | +0.272 | 40,042 | 0,282 | —0,772 | —L5l4 | —2,026 | —1,710 | —1,261 | —1,228
p="3') @/2 | +0,652 40,349 +0020 0325 —0848 | —1,667 | —2342 | —2,341 | —2,348
3a/4 | +0,736 | +0,393 | +0,110 | —0,148 [ —0,478 | —1,078 | —2,102 | —3,191 | —3,764
a | 41,050 | +0,141 | —0,063 | —0,172 ‘ ~0,372 | —0,784 | —1,623 | —3,169 | —4,950
2=0 | ~0,668 | —0,750 | —0,970 | —1,250 | —1,386 | —1,250 | —0,970 | —0,750 | —0,668
a/d | 0 ~ 0,168 ' —0,465 | —0,840 | —1,250 | —1,516 | —1,535 —1,469 —1,500
z=a a2 | +0,530 | +0,248 | —0,099 | —0,489 | —0,970 | — 1,511 | —1,955 | —2,248 | —2,470
3a/4 | +1,000 | +0,527 | +0,103 | —0,276 | —0,750 | —1,362 | —2,103 | —2,883 | —3,500
a | +1,614 | +0,746 | +0,168 | —0,229 | —0,668 = —1,271 | —2,108 | —3,246 | —4,386
z=0 | —0,900 | —0,928 | —0,998 | —1,072 | —1,104 | —1,072 ‘ —0,998 | —0,928 | —0,900
- a/4 ‘ -0,178 | —-0,353 } —0,616 | —0,828 | _1,072 | —1,274 | —1,384 | —1,544 | — 1,678
=571 @2 40502 | 40,164 | —0276 —0587 | 0998 | —1,373 | ~1,728 | —2,020 —2,498
3a/4 | +1,178 | +0,640 | +.0,008 | —0,389 | 0,028 —1,509 —2,008 —2,742 | —3,322
@ | +1,896  + 1111 | 40,250 | —0.247 | —0,900 | —1,619 | —2,246 f ~3,255 | —4,104
2=0 | —0,972 | —0,982 | —1,000 | —1,018 | —1,028 | —1,018 | —1 ] ~0,982 | —0,972
a4 | —0,232 | —0,413 | —0,614 | —0,817 | —1,018 | —L211 | —1,386 | —1,558 | —1,732
2=2a { a2 | +0,500 | +0,135 | —0,235 | —0,616 | 0 1,384 | — 1765 | -2, 135 | —2,500
3aj4 | +1,232 | +0,675 | +0,123 | —0,422 | —0,982 | —1,550 | —2,123 | —2,703 | —3,268
a | +1,972 | +1,215 | +0,473 | —0,249 | —0,972 | — 1,715 [ ~2,473 | —3,251 | —4,028
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Tableaw IV. Contrainte t sous une charge normale

Position de la force (u)

Position du / { , " "
point étudié B Sa/d 1 —af2 —aj4 0 +al4 " +a/2 +3a/4 +a

=0 0 0 0 0 0 0 0 0 0

a4 0 0 0 0 0 0 ' 0 1 0 0

2=0 a2 0 o 0 0 0 L0 L0 0 0

3a/4 0 0 0 0 ) 0 L0 0 0

a |0 0 o 0 S0 0 | 0 -0 S0

z=0 0 | +0,496  —0,110 | — 1,082 | 0 41,082 | +0,110 | —0,496 0
aj/d | +0,059 | +0,450 | +0,030  —0,196 —1,111 | 0,024 | +1,022 | —0,230 - 40,059
z:% a/2 | +0,220  +0,197 | +0,027 | —0,062 —0,220 | —1,18 | —0,027 | +0,973 | +0,220
3a/4 | +1,111 | —0,162 | —0,017 | —0,020 | —0,059 | —0,20 | —1,035  +0,382 | +1,111

a | 0 o o0 0 0 0 |0 o 0

(=0 0 | +0,403 | —0,245 | —1,067 | 0O | 41,067 | +0,245 | —0,403 | 0
. aj/d | +0,173 | +0,468 | 40,026 | —0,420 | —1,153 | —0,070 | 40,054 | +0,022 | 40,173
=3 a/2 | +0,490  +0,317  +0,061 | —0,152 —0,490 —1,174 | —0,061 | +1,009 = +0,490
3a/4 | +1,153 | +0,094 +0,005 | —0,059 —0,173 | —0,430 —0,985 | +0,396 | +1,153

a | 0 o [0 0 L 0 | 0 0 o [ 0

x=0 0 £0,146 | —0,287  —0,663 0 | 40,663 | +0,287 | —0,146 | 0
a/d | +0,247 | 40,318 —0,013  —0,474 | —0,786 —0,100 | +0,552 = +0,256 | +0,247
z:% a/2 | +0,574  +0,345 | +0,072  —0216 —0574 —0,817 | —0,072 | +0,688 | +0,574
3aj/4  +0,786 | +0,304 | +0,050 = —0,085 | —0,247 | —0,489 | —0,589 | +0,270 | +0,786

a 0 o ;0 0 ’ o 0 o | 0 0

=0 | O | —0,001 | —0,297 ‘ —-0,379 | 0 40,379 | +0,297 | 40,001 0
9y | @/t +0.254 | 40,205 | —0,014 | —0,490 | —0,506 | —0,103 | +0,266 | +0,388 | +0,254
z="—) a/2 | +0,593 | +0,317 | +0,074 | —0,222 | —0,593 } —0,538 | —0,074 +0,443 | +0,593
3a/4 | +0,506 | +0,419 | +0,051 | —0,087 | —0,254 | —0,506 = —0,303 +0,174 | +0,506

a | 0 0 1 0 0 0 1 0 J 0 0 0

£=0 0 . —0,062  —0,135 | —0,132 0 | +0,132 | +0,135 | +0,062 0
a/d | +0,170 | +0,088 '« —0,060 | —0,201 | —0,217 | —0,069 | +0,107 | +0,182 | +0,170
r=a a/2 | +0,270 | +0,197 | +0,034 | —0,149 | —0,270 | —0,228 | —0,034 | +0,190 | +0,270
3aj4 | +0,217 | +0,196 | +0,077 | —0,058 | —0,170 | —0,212 | —0,124 | +0,074 | +0,217

a 0 0 0 () 0 0 0 0 0

z=0 0 —0,028 | —0,043 | —0,032 0 +0,032 | +0,043 | 40,028 0
5, | @/t | +0058 | +0,025 | —0,024 | —0,061 | —0,061 | —0,024 | +0,027 | +0,060 | +0,058
z="-1 a/2 | +0,085 | +0,066  +0,011 | ~0,051 | —0,085 —0,068 | —0,011 | +0,053 +0,085
“ | 3a/4 | +0,061 | +0,064 | +0,029 | —0,020 | —0,058 | —0,065 | —0,032 | +0,021 1 10,061

a | 0 0 0 0 0 0 0 0 0

x=0 0 —~0,008 | —0,012 | —0,008 0 +0,008 | 40,012 | +0,008 | 0
a/4 | +0,016 | +0,006 | —0,006 —0,018 | —0,016 | —0,006 | +0,006 A +0,016 | +0,016
z=2a , a/2 | +0,024 | +0,018 | +0,003 | —0,014 | —0,024 | —0,018 | —0,003 | +0,014 ‘ 40,024
3a/4 | +0,016 | +0,019 | +0,008 | —0,005 | —0,016 | —0,019  —0,008 | +0,005 | +0,016

- 0 0 |0 0 0 0 0 0 } 0
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: , Q Les contraintes Ta/blea/u/ V
: } dm;‘?n;“_ tre Q Contrainte n, sous une charge tangentielle
:,<—”—>E HEHIPRCeS PAY 4= 24 Position de la force (u)
Position du
point étudié —a —3a/4 —a/2 —al4 0 +a/4 +a/2 +3a/4 +a
x=0 — — 5,656 | —4 — 5,656 | —oc0o+o0| +5,656 | +4 + 5,656 | + o
al4 — 0 —2,318 | —2,093 | —2,397 | — 4,461 | —c0+ o0 +7,563 | +9,338 | + 0
z=0 al2 — o0 +0,020 | —0,820 | —0,966 | —1,410 | —3,310 | — o0 + 0|+ 13,676 | + o0
3a/4 — +0,682 | —-0,143 | —0,225 | —0,314 | — 0,569 | —1,799 | — 004 0| + @
a 0 0 0 0 0 0 0 0 0
x=0 0 —2,964 | —3,096 | — 2,964 0 +2,964 | +3,096 | +2,964 0
a ald +0,867 | —2,339 | —1,846 | —1,924 | —1,912 | +1,084 | +4,214 | +3,677 | +0,867
z=(—3 al/2 +1,767 | —1,673 | —0,856 | — 0,894 | — 1,030 | —0,938 | 42,240 | +4,299 | + 1,767
3a/4 +2,425 | —0,833 | — 0,216 | —0,234 | —0,279 | —0,322 | — 0,084 | +2,087 | + 2,425
a 0 0 0 0 0 0 0 0 0
x=0 0 —-0,872 | —1,520 | —0,872 0 +0,872 | +1,520 | +0,872 0
@ al/4 +0,566 | —0,801 | —1,147 | —1,009 | —0,221 | +0,631 | +1,245 | +0,823 | +0,566
z=—é al/2 +0,962 | —0,588 | —0,675 | —0,5674 | —0,421 | +0,314 | +0,845 | +0,272 | + 0,962
3a/4 +0,608 | —0,188 | —0,246 | —0,172 | —0,144 | — 0,052 | +0,402 | — 0,084 | + 0,608
a 0 0 0 0 0 0 0 0 0
x=0 0 —-0,192 | — 0,444 | —0,192 0 +0,192 | +0,444 | +0,192 0
@ al/4 40,290 | —-0,111 | —0,467 | —0,350 | +0,102 | +0,260 | +0,169 | +0,107 | +0,290
2= al2 +0,377 | +0,015 | —0,304 | —0,282 | —0,060 | +0,302 | +0,140 | +0,185 | 40,377
- 3a/4 +0,133 | +0,067 | —0,100 | —0,102 | —0,053 | +0,064 | +0,152 | +0,159 | +0,133
a 0 0 0 0 0 0 0 0 0
x=0 0 40,054 | 40,216 | +0,054 0 —0,054 | —0,216 | —0,054 0
24 a4 +0,117 | +0,087 | +0,026 | +0,079 | +0,119 | +0,047 | —0,244 | — 0,205 | +0,117
z:? al2 +0,020 | +0,122 | +0,037 | —0,062 | +0,152 | +0,144 | —0,179 | — 0,192 | + 0,020
3a/4 +0,019 | —0,023 | +0,085 | —0,026 0o - 40,158 | —-0,077 | —0,099 | 40,019
a 0 0 0 0 0 0 0 0 0
[ x=0 0 +0,140 | 40,196 | 40,144 0 -0,144 | —0,196 | —0,140 0
al4 —0,006 | +0,108 | +0,139 | +0,132 | +0,064 | —0,082 | —0,177 | —0,162 | —0,006
z=a a/2 —0,020 | 40,067 { +0,077 | 40,077 | +0,059 | —-0,011 | —0,119 | —0,137 | —0,020
3a/4 —-0,018 | 40,019 | +0,026 | 40,024 | 40,020 | +0,006 | —0,030 | —0,055 | —0,018
a 0 0 0 0 0 0 0 0 0
x=0 0 + 0,066 | + 0,096 | + 0,066 0 —0,066 | —-0,096 | —0,066 0
34 al/4 —0,014 | +0,045 | 40,083 | +0,069 | +0,016 | —0,043 | —0,079 | —0,071 | — 0,014
z= 9 a/2 —0,020 | +0,020 | 40,053 | +0,046 | +0,020 | —0,016 | — 0,043 | — 0,050 | — 0,020
3a/4 —0,009 | 40,001 | 40,020 | +0,017 | +0,007 | +0,001 | —0,010 | —-0,019 | —0,009
a 0 0 0 0 0 0 0 0 0
x=0 0 +0,026 | +0,032 | 40,020 0 - 0,020 | —0,032 | —0,026 0
a/4 —-0,029 | +0,019 | +0,026 | +0,024 | —0,002 | —0,012 | — 0,026 | — 0,037 | —0,029
z=2a a/2 —0,047 | 40,011 | 40,016 | 40,017 | —0,002 | —-0,003 | —0,016 | —0,027 | —0,047
3a/4 -0,037 | — 0,004 | +0,006 | +0,007 | —0,006 | +0,003 | —0,006 | —0,012 | —0,037
\ a 0 0 0 0 0 0 0 0 0

14 Abhandlungen XI
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Tableaw VI. Contrainte m, sous une charge tangentielle
Position de la force (u)

2a
Position du ' i I /
point étudié ~a | —3a/4 | /2 - al4 0 | +a/4 | +a2 | +3¢/4 | e

(2=0 | 0 o | o | o 0 o | o 0 0

a/d 0 o | o o 0 0 0 0 0

2=0 a2 | 0 0 | 0 0 0 0 0 0 0

3a/4 | 0 o | 0 0 0 0 0 0 0

a 0 o | 0 0 0 o | 0 0 0

e=0 | 0 —0,058 | —0,220 | —1,112 | 0 +1,112 | +0,220 | +0,058 | 0
. ajt | —0,456 | —0,158 | —0,116 | —0,252 | —1,148 | —0,036 | +1,052 | 40,062  —0,456
2=y a2 | —0,810 | —0,260 | —0,118  —0,132 | —0,282  —1,186 —0,118 | +0,792 | —0,810
3a/4 | —0,454 | —0,256 | —0,118 | —0,110 | —0,152 = —0,270 | —1,286 | —0,476 | — 0,454
@ | —2,060 | +0,474 | —0,018 | —0,088 | —0,126 | —0,204 | —0,458 | —1,746 | — 2,060

x=0 | 0 ~0,172 | —0,490 | —1,160 | 0 +1,160 | +0,490 | 40,172 | 0
. a/4 | —0348 | —0,348 | —0,366  —0,644 —1,280 | —0,134 | +0,958 | +0,142 | —0,348
e=5 | /2 | —0,550 | —0,526 | —0,390 | —0444 | —0,752 | —1,424 | —0,390 +0,454 | —0,550
3a/4 | —0,408 | —0,556 | —0,412 | —0,404 | —0,530 | —0,914 —1,736 | —1,046 | —0,408
a | —2,082 | —0244 | —0,310 | —0,368  —0,482  —0,716 | —1,270 | —2,548 | —2,082

z=0 | 0 —~0,246 | —0,574 | —0,788 | 0 40,788  +0,574 | 40,246 | 0
" ajd | —0,328 | —0,476 | —0,588 | —0,842 | —1,032 | —0,266 +0,444 | +0,098 | —0,328
z=3 @2 | —0,574 | —0,708 | —0,686 | —0,784 | —1,070 —1,324 | —0,686 | —0,168 | —0,574
“ | a4 | —0,936 | —0,856 | —0,782 | —0,804 | —0,986 | —1,380 | —1,814 —1,430 | —0,936
a | —2,208 | —1,124 | —0,798 | —0,824 = —0,986 | —1,320 | —1,946 | —2,696 | — 2,298

(2=0 ! 0 — 0,254 | —0,592 } ~0,506 | 0 | 40,506 | +0,592 | +0,254 | 0
5y | @4 | —0.386 | —0,588 | —0,736  —0,008 | —0,900 | —0,414 | +0,024 ‘ +0,004 | —0,386
2="5 ) @2 | —0,688 | —0,924 | —0966 | —1084 —1272 —1332 —0066 —0,672 | —0,688
3a/4 | —1,414 | —1,174 | —1,194 | —1,242 | —1,430 | —1,732 | —1,954 | —1,766 | —1,414
a | —2,560 | —1,850 | —1,342 | —1,412  —1,568 | —1,904 | —2,526 | —2,862 | —2,560

(2=0 | © —0,170 | —0,270 | —0,212 0 40,212 | 40,270 | 40,170 | 0
a4 | —0,650 | —0,800 | —0,916 | —0,972 | —0,906 = —0,704 | —0,530 | —0,530 | —0,650
z=a a2 | —1,370 | —1,428 | —1,494 | —1,574 | —1,652 | —1,620 | —1,494 | —1,382 | —1,370
3a/4 | —2,244 | —2,128 | —2,070 | —2,110 | —2,250 | —2,380 | —2,456 @ —2,398 | —2,244
a | —3,280 | —2,980 | —2,720 | —2,640 | —2,770 | —2,982 | —3,260 | —3,412 | —3,280

z=0 | 0 —0,058 | —0,084 | —0,050 | 0 +0,050 | +0,084 | 40,058 | 0
5, | @4 | —1.088 | —L118 | —1,182 | —1104 | —1,160  —1,110 | —1,064 —1034 | —1,088
e="5" ) /2 | —2,210 | —2,180 | —2,250 | —2,280 | —2,300 | —2,280 | —2,250 | —2,178 | —2,210
3aj4 | —3,380 | —3,272 | —3,316 | —3,340 | —3,380 | —3,420  —3,434 | —3,356 | —3,380
a | —4,590 | —4,416 | —4,416 | —4,400 | —4,440 | —4,500 | —4,584 | —4,536 | —4,590

z=0 | 0 —0,016 | —0,024 | —0,012 | 0 +0,012 | +0,024 | +0,016 | 0
a4 | —1,488 | —1,504 | —1,516 | —1,500 | —1,500 | —1,480 | —1,484 | —1,480  —1,488
z2=2a{ a2 | —2,986 | —2,994 —3,000 —2,980  —3,000 —2,980 —3,000 | —2,994 | —2,986
3a/4 | —4,498 | —4,490 | —4,484 | —4,260 | —4,500 —4,480 | —4,516 | —4,514 | —4,498
@ | —6,020 | —6,004 | —5976 | —5,920 | —6,000 —5020 | —6,024 | —6,036 | —6,020
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Tableaw VII. Contrainte t sous une charge tangentielle
Position de la force (u)

2a
Position du | ; ‘
point étudié —a —3a/4 —a/2 ‘ —a/4 \ 0 ‘ +al/4 | +a/2 ! +3a/4 a
i |

x=0 0 0 0 0 - 0 0 |0 0

a/d | 0 0 o | 0 ! 0 ! — 0 ‘ 0 0

2=0 a/2 0 0 L0 0 0 0 —~ | 0 0

3a/4 0 0 ) 0 0 ) 0 - 0

a | 0 0 o o | 0o | 0 o 0 —
w=0 | —0,633 | —1,500 | —1,320 | —2,145  —0,520 | —2,145 | —1,329 | —1,500 | —0,633
“ a/4 | —0,680 | —1,254  —0,930 | —1,117 | —2,064 | —0,501 —2,220 | —1,630 } — 0,680
2=y a/2 | —0,919 | —0,798 | —0,608 | —0,640 | —0,948 —1,930 | —0,380 | —2,092 | —0,919
Saje | —1,766 | —0,650 | —0,265 | —0,302 | —0,378 | —0,690 | —1,555 | + 0,369 [ —1,766

a | 0 | o0 o | 0 0 0 0 o | o0
x=0 | —1,013 —1,573 | —1,785 | —1,706 | —0,714 | —1,706 | —1,785 | —1,5673 | —1,013
" a/4 | —1,071 [ —1,380 | —1,443 | —1,580 | — 1,584 | —0,662 —1,709 | —1,688 | —1,071
2=z @2 | —1,223 | —1,114 | —1,030 | —1,079 | —1,294 | —1,345 —0,420 | —1,380 —1,223
3a/4 | —1,131 \ —0,769 | —0,551 | —0,552 | —0,656 | —0,860 | —0,817 | +0,149 | —1,131

a 0 0 0 0 o 0 0 0 |0
x=0 | —1,346 | —1,689 | —~1,752 | —1,471 | —1,036 | —1,471 | —1,752 | —1,589 | —1,346
a a/4 | —1,334 ‘ — 1,470 | —1,612 ’ ~1,630 | —1,350 | —0,946 | —1,376 —1,534 | —1,334
2=3 a/2 | —1,228 | —1,250 —1,249 —1279 | —1,306 | —1,043 —0,629 | —1,014 | —1,228
3a/4 | —0,734 | —0,858 | —0,740 | —0,713 | —0,758 | —0,777 | —0,504 —0,174 | —0,734

a 0 |0 [ 0 L0 L0 0 0 0 0
x=0 | —1,493 | —1,591 t —1,638 ’ —1,415 | —1,204 | —1,415 | —1,638 | —1,591 | — 1,493
5y, | @4 —1426 | —1523 | —1621 1570 | —1,308 | ~1,088  —1,269 | —1,427  —1426
=% ) @2 | —L167 | 1280 | 1,323  —1324 | —1,240 —0,972 | —0,745 | —0,928 = —1,167
3a/4 | —0,616 | —0,807 | —0,802 —0,783 | —0,770 | —0,687 | —0,450 | —0,325 | —0,616

@ 0 0 0 0 0 0 0 0 0
=0 | —1,565 | —1,565 | —1,533 | —1,435 | —1,378 | — 1,435 | —1,533 | —1,565 | — 1,565
a/d | —1,453 | —1,521 | —1,545 | —1,481 | —1,344 | —1,253 | —1,285  —1,375 | —1,453
z=a a/2 | —1,120 | —1,238 | —1,295 | —1,270 | —1,166 | —1,010 | —0,921 | —0,978 | —1,120
3a/4 | —0,596  —0,722 | —0,778 | —0,779 | —0,728 | —0,633 | —0,518 | —0,494 | —0,596

a | 0 0 0 0 0 0 0 0 0
=0 | —1,530 | —1,524 | —1,503 —1484 | —1,464  —1,484 | —1,503 | —1,524 | —1,530
g, | @4 | 1426 —1,451 | —1,455 | —1,427 | —1,384 | —1,357 | —1,359 | —1,389 | —1,426
e="% 4 @2  —LIS8 | —1166 -—118  —1178 | —1,134  —1,082  —1,056| —1,070 | —1,118
3a/4 | —0,631 | —0,674 | —0,703 | —0,704 | —0,682 | —0,670 | —0,608 | —0,604 | —0,631

@ 0 0 0 0 0 0 0 0 0
x=0 | —1,511 | —1,507 | —1,500 | —1,493 —1,488 | —1,493  —1,500 | —1,507 | —1,511
a/4 | —1,411 | —1,422 | —1,420 | —1,412 | —1,400 | —1,390 | —1,382 —1,400 | —1,411
z=2a ) /2 | —1121| ~1,136 —1146  —1,140 | —1,126 | —1,112 | —1,102 —1,108 | —1,121
3a/4 | —0,649 | —0,671 | —0,670 | —0,673 | —0,662 | —0,651 | —0,642 | —0,639 | —0,649

a 0 0 0 0 0 0 0 0 0
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doivent donc passer brusquement d’une valeur positive & une valeur négative
en franchissant la verticale 0. Cela permettrait de préciser la forme des lignes
d’influence de ¢ 7).

En pratique on n’aura jamais de forces coneentrées, mais des forces
étalées, avec une densité @, sur une certaine largeur. La contrainte n, sur le
plan z=0 se calculera alors par la deuxiéme valeur (soit + 0,523 p dans le cas
présent) mais on doit ajouter dans la z6ne chargée, un terme complémentaire
égal & — & (ce qui donne lieu dans le cas de la force concentrée & la discon-
tinuité +0,523p —oo + 0,523 p que nous avons signalée ci-dessus).

Applications

Les applications sont trés nombreuses puisque les tableaux permettent de
déterminer les contraintes dans le prisme sous un systéme de forces quel-
conques; on peut a partir de ces résultats tracer les isostatiques et par con-
séquent rechercher, dans le cas du béton, les formes les plus favorables d’arma-
tures et leur importance. Nous nous contenterons de donner quelques exemples.

Exemple 1

. ’ ) . a .
Contraintes sous une force normale concentrée P & l’abcisse 3 (Fig. 19).

e Les tableaux donnent directement les contraintes =, n, t.
1, l Nous nous bornerons a représenter (figures 20 et 21) les dia-
b

|

! grammes des contraintes n,, sur les différents plans verticaux et
%ﬂ les diagrammes des contraintes n, sur les différents plans hori-
| .
| zontaux que les tableaux permettent d’explorer. On voit que
a i a

la contrainte n, tend rapidement vers la loi linéaire.

Fig. 19 Des valeurs de n, n, et ¢, on déduit les inclinaisons des

: isostatiques en tout point, ce qui permet de tracer avec une
précision suffisante le réseau formé par ces lignes. Nous 1’avons représenté
sur la figure 22a. On peut également tracer les lignes d’égale valeur des
tensions principales, que nous nommerons les isobares principales (fig. 22b).
Etant donné que nous cherchons principalement & déterminer 1’importance
des frettages transversaux en admettant que l’on résiste d’autre part aux
contraintes de traction longitudinales par des armatures disposées dans ce
sens longitudinal, les tensions principales qui nous intéressent le plus sont les

7} D’apreés la théorie approchée faite en (I 1° et 2°) on trouverait que la contrainte
de cisaillement ¢ sur le plan x=e¢ aurait pour expression

p {shile 1 1
8 <sh4% T2 ché)

Elle deviendrait infinie pour é =0 et trés petite partout ailleurs. On aurait donc encore

. . . . p
une force de cisaillement concentrée au voisinage de la base, égale Q,E .



Contraintes dans les piéces prismatiques

203

z=0 +0356+0668 *Q428 +0 758 *+1040 +1092 1258
a/6 x= 298 =0 o P77, el
/37027 vod d x=:3_ @ compressions |+9.758 ) 4560
&2 2 _g238 N / N\r2425
Bad \ra177 / J)
-9 _ -1 .92
P \ \ ) (x=% E) /( =5 / Z
4
-t
x- % / /
3g/2
| 1
2/

Fig. 20. Contraintes n_, sur les plans verticaux (& multiplier par p)

Sl LIV TS

? ) i | S wls Q’IN o?l\* 5
+
s I
> == | T
P (z=3/3)
7 k(z=g/2)
-
—(z=a)
T~ (z-23)
(z=8/6)
-8.008

Fig. 21. Contraintes nz sur les plans horizontaux (& multiplier par p)

tensions principales de traction qui se rapprochent le plus de 1’horizontale.
Nous avons tracé ces isobares sur la figure 22b.

En comparant les figures 22a et 22b on voit que, lorsque les tensions
principales transversales atteignent leurs valeurs les plus grandes, leurs
directions sont trés voisines de 1’horizontale. Ceci est presque général et cette
constatation permet de simplifier beaucoup 1’étude des contraintes transver-
sales, puisqu’il suffira pratiquement d’étudier les contraintes n, sans avoir &
tracer les isostatiques.

Ayant d’ailleurs trouvé les maximum de n,, on pourra, si on le désire,
déterminer aux points ou ils se produisent, mais en ces seuls points, la direction
exacte des isostatiques et la valeur exacte des tensions principales. On trouvera
en général que les directions principales ont en ces points une inclinaison
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faible sur ’horizontale, et que la valeur de la tension principale est trés peu
différente de la valeur de n, qu’on avait calculée.

| P

J

3)
Isostotigues

p
*109p l *125p

R 7K AN

777 741N
7 \y/'] )
W

Fig. 22. Isostatiques et isobares pour une force & ’abscisse

q
AN

o

Sy

Ezxemple 11
Contraintes transversales sous Uaction d’un effort normal axial
étalé sur une largeur 2a’

En vertu de la remarque précédente, nous nous sommes contentés de cal-
culer par les tableaux les valeurs de n, et avons tracé les lignes d’égales valeurs
de n, que nous appellerons les isobares n, (Fig. 23).

3/8=0 §6=025 35 =050
¥ 060p 7 068p % 279p

V7770 compressions

Fig. 23. Isobares n, pour différents cas d’étalement des forces
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Cette figure met en évidence l’existence de tractions en surface, vers les
angles; les contraintes correspondantes sont élevées, mais les résultantes sont
faibles, car la zone en traction est de faible épaisseur.

fractions
250 :
a-4 Y
Q4p /| % E/\\
4 5/5-02: \
0.3p

020 / / | 92-0% | 4:05 \

3
2/ / 1//2/?=a75 \\,
§ 0 1 /// R e
©»
O o \V ?
R 1,”%\ A ﬂ"’\rb 2 » W
§ 'r A" 23 v -

Fig. 24. Valeurs des contraintes d’éclatement sur ’axe dans le cas de forces normales
’

. o . a
centrées, pour différents étalements —
a

On a d’autre part, en profondeur, une autre zoéne en traction que nous
appellerons la z6éne d’éclatement. Cette zone d’éclatement est séparée des
zones de surface par une z6ne en compression dans le sens transversal. On
devra donc disposer des frettages en surface (frettages a fleur) de faible impor-
tance, et des frettages dans la z6ne d’éclatement au voisinage du maximum
de la contrainte d’éclatement.

Etant donnée la grande importance pratique de cette étude, nous avons
représenté sur la figure 24 la variation de la contrainte d’éclatement sur 1’axe

)t 7’ 7 a’ rd ? ’ |
pour différentes valeurs de l’eta.lement-(;. Ces valeurs ont été calculées trés

exactement a 1’aide des tableaux I.

Exemple 111

Valeurs des contraintes de traction, sur Uaxe, dans le cas de forces tangentielles
symétriques (écartelement)

Ce probleme est celui qui est schématisé sur la figure 25. Si les forces sont
appliquées chacune sur une largeur tres petite (forces ponctuelles), les tableaux
donnent directement les valeurs des contraintes de traction sur’axe (tableau V).

Q

La figure 26 résume les résultats, n, étant exprimé en fonction de g = Sa’
() étant la valeur de chacune des forces tangentielles.

Le tableau V ayant été calculé comme on I’a dit, par la méthode approchée,
il ne faut considérer les valeurs de la figure 26 que comme une indication.

On pourrait sans grande erreur remplacer la loi de traction de la figure 26
par une loi triangulaire.
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8g 11312 contrainfes

A
T 0 <1,
2 ] 2 o6 /{, a- 2ot B
_a
i 3 a'-<
Zf /2 V/
Fig. 25 g
Fig. 26. Contraintes d’écartélement sur
l’axe du prisme en fonction de z pour dif- 4 - 4
Y 4 6 0 2¢(%° 55
férentes valeurs de I’écartement 2a” des z d v 2¢( 29
points d’application Z

La valeur de n,, déduite de la théorie approchée est pour z=0 et x=0
(c’est-a-dire sur l’axe et en surface) égale a
8 @
Ny (O>O) = a’ _2‘6

sin ——
a

La hauteur z de la z6ne en traction, en admettant la loi triangulaire, est

donc égale a ,
a . a
2= gsinm—
ce qui donne immédiatement la répartition approximative dans le cas de
forces ponctuelles. Dans le cas ou les forces sont réparties sur une certaine
largeur, on pourra décomposer la force en plusieurs forces ponctuelles et
appliquer la régle précédente.
Il n’y a pas lieu d’insister davantage sur les applications, chaque cas
particulier pouvant étre étudié par les tableaux quelles que soient la distri-
bution et l'inclinaison des forces s’exercant sur la base.

IIéme Partie. Cas du prisme a section rectangulaire de dimensions finies

Les axes sont disposés comme sur la figure 27, ’origine étant au centre;de
la base; les c6tés du rectangle de base sont 2a et 26b.

L’état élastique en chaque point est défini par les 3 contraintes normales
et les 3 contraintes tangentielles s’exercant sur trois facettes paralléles aux
plans de coordonnées

facette .
perpendiculaire & contraintes.
Ox ny byt
Oy t, my t

0z by la Mg
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Les contraintes normales sont positives si elles sont des tractions; les con-
traintes tangentielles sont positives lorsque, sur une section horizontale
limitant la partie supérieure du prisme, ou sur une section transversale
limitant la partie gauche du prisme, elles sont dirigées suivant le sens positif
des axes (toutes les contraintes représentées sur la figure 27 sont positives).

/J’
7 )

!
|
|
!
I
T

23

f
!
|
i
I
|
|
]
|
|
]
| g
\ P4

Fig. 27

Nous chercherons les contraintes par une théorie approchée tout & fait
comparable a celle que nous avons appliquée dans le probléme d’élasticité
plane (I® Partie). La comparaison faite dans cette I°®*® Partie pour les con-
traintes n, nous permettra une évaluation raisonnable de l’erreur commise
pour les contraintes n, et n, qui nous intéressent le plus.

Nous étudierons ci-dessous le cas de forces appliquées normales, et paires
en z et y, c¢’est-a-dire symétriques par rapport aux axes 0x et 0y. La méthode
approchée peut étre également appliquée au cas de forces paires en x et impaires
en y (c’est-a-dire symétriques par rapport & 1’un des axes et antisymétriques
par rapport a 1’autre); elle peut étre également appliquée & des forces tangen-
tielles paires ou impaires; et par conséquent, par superposition, on peut
obtenir 1’état élastique approché pour tout cas de forces.

Nous nous contenterons de développer les calculs dans le premier cas
(forces normales symétriques) qui est le plus important. L’étude des autres
cas a été abordée dans le mémoire déposé a la Bibliothéque de 1’Ecole des
Ponts et Chaussées.

Cas de charges normales symétriques par rapport aux deux axes
principaux de la base

La fonction de charge peut étre développée dans le plan de la base en une
série double trigonométrique, ne comportant que des cosinus.

- mmw¥  nw
o = X2 A cos o, cos by
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m et n pouvant prendre des valeurs quelconques y compris zéro. On peut
obtenir terme & terme, comme dans le cas du prisme indéfini dans une direction,
un systéme de contraintes I, satisfaisant aux équations de l'élasticité, mais
non & toutes les conditions aux limites.

Ces conditions anx limites sont:

Pour - C ontramtes
X = 1 0
Y = 0 0
z = ‘ 0 Ng = &

1. Considérons le terme partiel de la série de charge

- mnx _nm
@y, = Al cos ———— cos ~?)—'?—/
a

et le systéme suivant, (I), de contraintes, ou Ny Ny, Ny T, T, T, sont des
fonctions de z seul.

mmwx nmw
ny = N, cos —— Teos MTY
a b
mmx nm
Ny = N, COS ——— COS — Y
a b
max n
ng = N, cos cos »—5%
I mmx
v . hm
t;, =T, cos sin ™Y
b
. mmx nm
.. mTx . nm
ty = T4 8in ———sin nry
a b

Ce systéme ne peut évidemment satisfaire aux conditions aux limites n, =0
pour z= +a et n,=0 pour y= +b. On peut déterminer les fonctions N et T
pourqu’il satisfasse & toutes les autres conditions aux limites et aux équations
de 1’élasticité.

Les 6 fonctions n et ¢ doivent sa;tisfaizre aux 6 conditions de compatibilité,
0 0 o?
a2 + 5y + PR
et si I’on pose d’autre part § = n; +n,+ny:

soit, si 4 représente ’opérateur n le coefficient de Poisson,

2

(I+7)dn,+ %52 =0 et deux équations analogues

%0 )
- = 0 et deux équations analogues.

14 n) At + 20
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Si on désigne par @ la somme N, + N,+ N; on a

6 =Bcos 2T Y cos MY
a b
” m2n?  n?q? mmx nwy
et Adn, = [N ( az——l—-bT) Nl] €08 —_— €08 ——=

(N,” étant suivant la notation usuelle la derivée seconde de N,), et des formules
de méme forme pour An, Adny 4, 4t, At chaque fonction 4n ou 4t ayant
en facteur le produit des deux fonctions trigonométriques qui figure dans la
fonction n ou ¢ dont elle dérive.

N 1 5 m2 n?
ous poserons l =7 F_’_b_z

Les équations de compatibihte s’écrivent, en supprimant 1’indice de /,,, pour
simplifier:
o Ny\ _ mPa?
(1) (3= ) =" M)
2.2
(1+7) (N ’ 1;’—) T 2)
N
1 + 7} (N3” _l_3) —_ @r/ (3)
T
(1+7) (T l—l) =2e (4)
T
(1+7) (TZ” -lz) =’%’f@' (5)
» T3y mnz®

En ajoutant membre & membre les trois premiéres équations, on obtient:

i (0-8) = —(o-9)

@ doit donc étre une solution de 1’équation différentielle:
9 -~ =0 (7)
B’ et O’ étant deux constantes, cette solution s’éecrit:
_z z
O =PBe1+Cel
C' est évidemment nul, car ® ne peut devenir infini avec z.

On a donc, en changeant de constante et en posant B'= B (1+1) ce qui
simplifie la suite des calculs:

O=B(l+q)et
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Les équations (1) a (6) deviennent alors:

, N, m?zg? 2 " 7 T nm B _2 ,
M- =T Bt ) W-g=—%7¢" @
.y Ny nizm%_ 2 . T mma B _* ,
Ny = =T BT (2) e ik CEICY

, N B _z , , T mnn? _ _% ,
N-p=-get ) e e

Toutes ces équations sont de la forme, U désignant une fonction quelconque
et K un coefficient constant:
U 2

U”_ﬁ =Ke 1

dont la solution — en tenant compte de ce que les exponentielles & exposants
positifs qui s’introduisent dans la solution compleéte doivent avoir des coeffi-
cients nuls, car autrement U deviendrait infini avec z — a pour expression,
D étant une constante:

U = (D—- K—Q—lz)e_f_

En appliquant cela aux équations 1’ a 6" on trouve, £, E, £, F, F, F, étant
8ix constantes:

B m2x? 2 na 2
N (‘El *é’ a2 ZZ) T1=(F1+§—b~2’)el
B n?2x 2 B m=« _z
N, = (E = lz)el T2=(F2+ i z)e
B z\ _= mmn m? =
(E -z—l)el T3=(F3+§ ” z)el

Les conditions aux limites sur la base donnent

: Z
En formant la somme N;+N,+N; =6 on trouve @ = (E,+ E,+ E;)e 7, le

z
terme en ze 7 étant indentiquement nul.

z
Comme ® = B(1+7%)e 7 on a donc, en tenant compte de B, = 47,
E,+E,+ A% = B(1+n) (8)

Les fonctions N et 7' ont donc les expressions suivantes:



Contraintes dans les piéces prismatiques 211

2.2 z
N, = (El———g e lz) o7 T1=§ﬁb3ze-f
2 .2 z
N, = (Ez—g nb: lz)e 7 Tz=§m~7ﬂ'ze_lE
. Bz\ 2 B mnna? _#&

dans lesquelles entrent les quatre constantes £, K, B F3 a déterminer.

Entre ces quatre constantes on a la relation (8). Il nous faut trois relations
supplémentaires. Elles nous sont fournies par les équations d’équilibre, qui
sont:

on, oty Oty
ow oyt o, ="
Oty omy 0ty _
ox dy 0z
oty oh  omy _
dx 0y 9z
lesquelles s’écrivent, en dérivant les équations I:
—%iTNlJrnT”TngTZ’:O (9)
mm naw ,
—T3—TN2+T1 =0 (10)
—m—”T2+nT7TT1+N3’=O (11)

z
L’équation (9) donne, en supprimant le facteur commun e 7 et en remarquant

z
que le terme en ze 7 est nul:

mmr nw B mx ,
T ity ety =0 ®)
. mar na Bnmx ,
on a de méme: 7F3_TE2+§T=O (10)
~An+B=0 (11’)
Ces équations, jointes a 1’équation (8) donnent:
m?? n? 2
n2 w2 m? 2
Ez_—_A;‘,,lz( X +27 e )
mmn >
Fy=—-A4r2(1-2
s = — ALl (1—2y) "0
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et les fonctions V et 7' du systéeme I ont pour expressions:

2,2 2 2.2 2
N1=—A;l2[m71(i—1)6 1 -2y n—b;e_f]

2 l
n2m? (2 LA m2m2 _2
sz—Amlz[ b2 (T—l>e I —279 pra l]
z 2
z
leA;:,%”ze—z

mm  _Z
T2 =Ai,‘l7ze l

2 z z
T, = A2 ﬁa%l [(; - 1) el +2 7}6_1]

Le systéme I de contraintes s’obtiendra en multipliant les fonctions N et 7"
par les fonctions trigonométriques cos ”—%;)w cos 7Y ete. . ... qui figurent

b
dans les expressions du systéme I.

2. Le systéme I n’est pas la solution du probléme puisque les conditions
aux limites sur les faces = +a et y= +b ne sont pas satisfaites; il existe en
effet sur ces faces les contraintes parasites suivantes:

n nw
sur les faces z = +a, n; = N,cosmm cos —b—y = — (—1)"* N, cos b Y
mmx mamx
sur les faces y = +b, ny = Nycos ———cosnm = — (—1)m*t N,cos ——
a a

Exergons sur ces faces des réactions égales et de sens contraire aux contraintes
parasites, soit:

b

mmx

J R, = (—-1)"t1 N, cos nmy

l Ry = (—1)™*1 N, cos

et admettons, comme nous 1’avons fait dans la théorie approchée dans le cas
du probléme plan, que les contraintes correspondantes sont les tractions (ou
compressions) pures: "
ny, = Iy t, =0
II { ny, = R, ty =10
ng =0 I3 =0

Les contraintes définitives de la solution approchée que nous cherchons ici
s’obtiendront par addition des systémes (I) et (II) et on obtient finalement le
systeme de contraintes suivant:
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2 2 z
nlz—ZZA"ZZ[m ( —1)et
—217 b2 ;] [COS
2 2
Ny = — S5 A2 [” ( 1) e

2 2
-2 men e_lJ [cos nTy +(—1)m+1] cos ﬁ%@

+(—-1) ’"“] cos - y

a? b
N _z mmx nwy
(A) n3=22Am(l +1) lcos—a—cos—g :
= Z’Z,'A” Tee” loos AL Gin 0 TY
b a b
fy = ZZA"MTZ;Z ¢~ 1 sin ML o 2TY
a a b
— g (2 N T ione ] sin P sin V7Y
ty = 22 AN ub ] +2ne 1| sin— —sin—g
1 o (m? | nP
avec 5 =m\_5+ 45

Ces expressions sont susceptibles d’une interprétation assez simple que nous
préciserons en nous bornant & examiner la contrainte n, (les conclusions sont
valables pour n, en permutant a et b, et x et y).

nwy

(. mmx
La série de charge 22 AL cos —— cos o
a

peut étre décomposée en 4 termes:

— un terme constant correspondant aux valeurs m=0 et n=0, A4,°: il est
égal & la compression uniforme p créée par la résultante des forces a une
profondeur suffisante.

. . S A0 mmx fad nmwy
Deux séries simples XAY cos—— et 24, CO8 1= correspondant aux
1 a 1

valeurs 0 pour n et pour m.

- oS mmx nmy
Une série double 22 A" cos cO8 —; = correspondant aux valeurs de
a

11
m et n simultanédment différentes de zéro.

Nous supposerons pour simplifier que le coefficient de Poisson, 7, est nul.
Considérons la projection du prisme sur le plan 20z et la projection des
forces s’exercant sur la base. En chaque point, cette résultante de projection

a une intensité P (x) par unité de longueur, et on a P (x)dx = f wdy dax.
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Px)
X
0
/
_——— 4 X

'-

Fig. 28

nwy

b

Dans ’'intégration, les termes contenant cos disparaissent, et il reste:
b

0
P(x) = 2b [A00+2A§’,, cos m;’x]
1

Ay et A7 sont donc les coefficients du développement en série de Fourier

de la charge Ijé%x)—, c’est-a-dire de la charge qu’on aurait sur la base d’un

prisme indéfini (dans la direction Oy) si en chaque abcisse x la charge était
uniformément étalée et égale a la valeur moyenne des charges réelles. Nous
appellerons ce prisme le prisme projeté.

On peut d’autre part écrire n, en décomposant la série n, en ses 4 termes;
mais deux de ces termes sont nuls, ce sont ceux correspondant & 4,° et &

Z’Aoncosn—zﬂ; et on a:
maq2
'n1=—2Af,,(m;Tz—1) e a [cosmwx-i—(—l)mﬂ]
© oo 2.2 z
—Z’ZA;lzm: (i—l)e_T[COSMﬂx+(——l)m+1] cos Y
11 a l a b

Le premier terme est la contrainte n,
qu’on aurait dans le prisme projeté. Le
deuxiéme terme tient compte de la ré-
partition transversale réelle des charges.
Sa valeur moyenne est nulle.

On voit donc que, en étudiant le prisme
en projection, soumis a la projection des
forces supposées étalées uniformément
dans le sens transversal (ce que nous
savons faire par les théories données dans

Fig. 29 le cas du prisme indéfini suivant Oy) on

obtient la contrainte n; moyenne dans

I’hypothése d’une répartition transversale uniforme en toute abcisse x, et

que la série double permet d’étudier la répartition transversale réelle des
_contraintes.

RN ¥
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Autrement dit encore, la contrainte n, qui s’exerce sur un plan transversal
(fig. 29) est une fonction des coordonnées y et z dans ce plan. Cette fonction
peut étre représentée par une certaine surface. Le premier terme de n, est la
surface moyenne, qui correspond a l’étalement uniforme; le deuxiéme terme
donne les différences en plus et en moins par rapport & cette surface moyenne.

Expression de la contrainte n, s’exer¢ant sur un plan de symétrie
(y 0z par exemple)

Dans ce cas x=0 et ’on a, m prenant uniquement des valeurs impaires et
n des valeurs quelconques

: maqz © 2 .2 z
ny=—23A4 (M7 1) e 25342 2™ T (2 21) eTeos BTV | (12)
a 11 a? l b

Conformément & ce qui a été dit ci-dessus, le premier terme, fonction unique-
ment de z, est la contrainte qu’on aurait au niveau z si la charge, conservant
sa loi de répartition longitudinale (c’est-a-dire en projection sur y0z), était
d’autre part répartie uniformément sur la base sur toute paralléle a Oy; la
valeur moyenne de n; sur toute horizontale du plan y 0z est d’ailleurs égale
a ce premier terme, car le second terme a une valeur moyenne nulle. Ce second
terme, fonction de y et z, donne, sur chaque horizontale, 1’écart en plus ou en
moins de la contrainte avec sa valeur moyenne.

L’expression (12) de n, résultant d’ailleurs de la théorie simplifiée qui a
été exposée ci-dessus, la valeur de cette contrainte n, en chaque point (yz)
n’est qu’approchée. Mais si on introduit dans le premier terme les corrections
faites dans la 1% Partie, c’est-a-dire si 1’on remplace ce premier terme par la
valeur ,,exacte’ que 1’on peut calculer par les tableaux I ou les tableaux II
a VII de la premiére partie, on peut considérer que la valeur moyenne ainsi
corrigée devient exacte. La série double devient alors un terme additif —
positif ou négatif (et & valeur moyenne nulle) — tenant compte de la loi
de répartition transversale des charges, terme dont la valeur ne sera qu’appro-
ximative, mais qui permet d’obtenir une représentation satisfaisante des
phénomenes.

Il serait intéressant de disposer de tables pour le calcul des contraintes n,.
Malheureusement, 1’établissement de ces tables demande un travail matériel
trés important et nous n’avons pu que 1’ébaucher.

Pratiquement en effet, la sommation de la série double n’est possible que
si la suite des coefficients A4, est rapidement décroissante; la convergence de

g . » . z .
la série, par suite de la présence du terme exponentiel e-— 7 est d’ailleurs

accélérée et on peut se contenter d’un nombre de termes relativement petit.
C’est ainsi — et en introduisant la correction sur le premier terme comme
on l’a dit ci-dessus — que nous avons calculé, pour le prisme & base carrée

15 Abhandlungen XI
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chargé sur un carré concentrique a la base avec une densité de charge uniforme,
les valeurs de 7, sur un des plans de symétrie pour des rapports d’étalement

(ra.pport “ des cotés du carré de charge et du carré de base) égaux a 1 et 1

Les hgnes d’égale valeur des contraintes n, sont représentées pour ces deux
cas de charge par les figures 33 et 34.

Mais lorsque le rapport d’étalement transversal diminue et tend vers zéro,
les sommations deviennent impraticables & cause du tres grand nombre de
termes & conserver.

Nous nous contenterons d’indiquer qu’il semble possible alors d’effectuer
une sommation approchée de la série double grace & certaines approximations.

Pour montrer dans quel sens on peut procéder, nous examinerons le cas du
prisme & base carrée chargée au centre sur un carré concentrique a la base
avec une densité uniforme, et nous limiterons au calcul des contraintes n; sur
I’axe du prisme (droite x =0 y =0), que nous appellerons encore les contraintes
maximum d’éclatement.

On a dans ce cas a=b et les rapports d’étalement longitudinal et trans-
versal sont égaux.

!
: . . a mx s
Avec les notations suivantes: o =7m—; — = a; 7Y - B, —=1¢
a’ a b a
P P

2a-2b=m=p
f(0) =(—1)e*t

2

1 z z s
on a: ﬁ=g-2—(m2+n2) T=% m2+n? = { Ym?+ n?

(P étant la résultante des charges appliquées)

en tenant compte de ce que les coefficients A7, et A7 du développement (12)
ont pour valeurs

sinme’ sinn o’
A0 = —p; A2 = —-2p——— n—=_2
0 Z’, m p ma/ ’ 0 p ’nOC,

sinmeo’ sinna’
ma’ 7o

A4, =—4p

le développement (12) prend la forme:

sinm o’ ©® ®aimma’ Sinna’  m2?

f(m{)+8p 2%’ T mf(gl/mz—l—nz)cosnﬁ

(13)

n,=4pr

Pour les contraintes sur ’axe (x=0 y=0) on a 8 =0 et par conséquent 1’expres-
sion de n, sur cet axe devient

smma ® 2ginma’ sinn e’

fmO+8p2 2 — 0 = — 2f(51/m2+nz (14)

n=4pl——r0

(m impair, n quelconque).
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C’est cette contrainte qu’il devient difficile, matériellement, de calculer
quand o’ devient petit & cause de 1’extréme lenteur de la convergence. On peut
alors appliquer les deux approximations suivantes, dont la 1égitimité est
précisément d’autant plus grande que la série est plus lentement convergente.

1. Etant donnée une série & termes impairs:
U+ Us+Us. oo T U+ .0
si on consideére u,, comme une fonction de la variable m, m pouvant varier de
0 a oo, 'intégrale }oumdm a pour valeur approchée (fig. 30):
0
(U +ug+uz---)-2
Inversement la somme de la série u; +u;+u;+.... a pour valeur approchée
%;foum dm

U“

u, Uz Ug U,
AR RN
Y 7 3 5 7 m 0 7 2 3 4 5 6 7 n
Fig. 30 Fig. 31

2. Etant donnée une série dont le terme général est v,,, » pouvant prendre
toutes les valeurs, paires et impaires, zéro exclus, la somme de la série est

V3+Ve+03... +0,+...

Si on considére v comme une fonction continue de %, n variant de 0 & oo,

I’intégrale [ v, dn a pour valeur approchée (fig. 31):
0

+ v V.. U, + ..

Vo+¥;  V1+Uy Uyt _ Y
(2+2+2+... 1=

Inversement la somme de la série a pour valeur approchée:

o0 -

Uyt Oy Ut = 3’—°+f d
1 Qoo n .-.—_2 ’Un’n

0

Ceci posé, appelons u,, le terme général de la série double qui figure dans
I’expression (14).
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Groupons tous les termes correspondant a4 une méme valeur de n et désignons
en la somme par S,. On a done

m=x
S, = 2 u, (m impair et n fixé)
m=1
D’apres I’approximation 1. on aura sensiblement
@
S'IL = %J' u:z d7n
0

La série double prend alors la forme
S?l - Sp(81+82+83+ . e .)

qui, d’apres ’approximation 2. a sensiblement pour valeur, si I’on considere
S, comme une fonction continue de la variable n:

sp[—%?+ ‘Sndn] =—4pSO+8pfSndn
0 0

m=aoC

Or S, est égal a 2 u, (m impair) et le terme u), a pour valeur (en faisant
m=1

n=0 dans le terme général de la série double):

sinm o’

’u’gz = 7 f(m g)

m o

L’expression (14) prend donc la forme

1
n1—4p28m72a (m7)— smma +8pffdu dm dn
0 0

soit | ny=4p f f ul dn
00

La valeur approchée de n, est donc:
o o

721=429J fsmmcx Sin 7 e 2f(§ }/m2+n2 dmdn (15)

J ma no' m2
00
D’autre part si on appelle n, la contrainte sur le deuxiéme plan de symétrie,
x 02z, et sur ’axe, il est évident par raison de symétrie que n, =n,; et n, aurait

-

la méme expression (15) en permutant m et n. On a donc

ny=4p il S ¢ Yym2+ n?)dmdn (16)

ot ——8

oc
f sinma’ sinna’  n?
0

En ajoutant les expressions (15) et (16) on obtient donc pour valeur approchée
de n, sur 1’axe:
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(vl e]
= 2p [ [ S ) dm a7)
0 0

Appelons w le terme sous le signe [[; w est
fonction de m et n. Considérons la surface
qui, dans le systeme de coordonnées rectan-
gulaires Omn Z (fig. 32) a pour équation
Z=w(mn).

L’intégrale double (17) est égale au vo- w
lume compris entre cette surface et le triedre
Omn Z.

On peut, pour calculer ce volume, trans-
former ’équation de la surface en coordon- Fig. 32
nées semi-polaires (fig. 32) en posant:

m=pcosw 7N =psinw

Le volume a pour valeur, dans ce systeme de coordonnées |

c""ll\’)él}

F)w,odwdp
0

sin (o’ p cos w) sin (o’ p sin w) y

avec w = 5 3
o2 p?sin w cos w

(Cp)

kg
Quand on change w en

5 —w, W ne change pas. Donc le volume a pour
m

valeur 2 Jc[]'owpdcudp.
00

Par conséquent: 2-2p

(pO)dwdp

pa’?sin w cos w

Okﬁp[:‘

fsm o pOOS w)sin (a’ p sin w)f
0

ou, en posant:
o' (cosw—sinw) =@

o’ (cos w+sinw) =

[e0]

—Z?Zf[f CoSpp— oossbpf {p)d p]——iL (18)

o S11 w COS w

L’intégrale en p sous le crochet s’écrit en explicitant la fonction f

J coswpgcos‘/’p(cp—l)e‘“dp = Cf(cosw—OOSlﬁp)E"C"dP

0 _J’ COS(pp_OOS‘/‘Pe—’:Pdp (19) -
P

La premiére intégrale du second membre de (19) est calculable; elle a pour
- valeur '
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(oo

s (Ccospp—psinpp Lcosfp—isingp\] ., -9
C[‘e g"( et g )J‘C<z2+<p2><z2+¢2>

La deuxiéme intégrale n’est pas calculable, mais on peut en avoir une valeur
approchée en utilisant ’approximation 2.
En effet si on appelle v (p) le terme sous le signe | on a approximativement:

o0

v
fo()dp = —29 P L
0

Or v (0) est nul, car c¢’est la limite de

cospp—cosp _sin(a’pcosw)sin (a psinw)
p p

quand p tend vers zéro, et cette limite est nulle. On a done:

& cos 2

f?/’(P)decos(pe—l+ _6_25””_'_008%(;;
0

el .

2
- [cos¢e“§+ 9%—116*25. ceo %&sﬁe—"ﬁ— e ]

et les deux séries ci-dessus ne sont autres que les fonctions U ({¢) et U ({¢)
que nous avons rencontrées dans 1’étude plane. Nous en avons donné les
expressions en termes finis, qui sont:

1 _2(ch{—cosp)

U(C(p)=——L}/1—2e—§eos<p+e—2§=—§L Y
de méme pour U (L)
‘ © 1 _ch{—cosi
On a donce {)v(p)dpwéfLm_cos(p
L’intégrale (19) a donc pour valeur approchée:
e Y2 —¢? _iLChC—OOSlll
(ZB+e?)(L+4%) 2 ch{—cosg
et par conséquent
f . T
S ngzj )2 — dw ﬂfLChC——COSq) dow (20)
T2 [ (2+e)(32+y?) sinwcosw | o2 ch { — cos s sinw cos w’
0 0

@ et ¢ étant des fonctions de w, on est ramené a de simples quadratures.
- La premiére intégrale de (20) peut étre calculée. On trouve sans difficulté
en explicitant ¢ et ¢ qu’elle est égale a

i
(+a?) JEt2a"

2p
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La deuxiéme ne semble pas calculable: on peut en calculer les valeurs numé-
riques en remplacant 1’intégrale définie par une somme, en donnant & w des
accroissements suffisamment petits.

On peut donc effectuer le calcul numérique de n, pour toute valeur de ¢,
n, prenant la forme

T

i
7 P ch{—cose dw

Ny, =2 e -
& p(€2+oc'2) Y2 L2242 o2 : ch{—cosy sin w cosw

(21)

= o (cOs w —sin w)

P
Y = o' (cos w+sinw)

Si o' est trés petit, ¢ et ¢ sont eux-mémes tres petits et 1’on peut simplifier
I’expression (21), pour des valeurs de { suffisantes toutefois.

On a en effet ch{—cosp . cosy—cose
ch{—cosy ch {—cosy
3 h - 2 __,[2 4 19 .
soit sensiblement - {—cosp _ 14+ il a0 « “ SIn w CoS w

ch{—cosy Q?ch@—cos%zl— 2 ch{—cosy

Si { n’est pas trop petit, 2«2 % est petit et 1’on a approximativement

ch{—cosg ;o SIN W COS W
- — 9242
ch {—cos i ch {—cosis

L’expression approchée de n, devient alors:

ki

4

R [’<z.:2+ o f ovi—eo] )

[ = &' (cos w +sin w)]

Cette approximation cesse d’étre légitime lorsque { devient lui-méme trés
9 SN w COS w

ch{—cosy
petites valeurs de {, a la formule (21).

Pour { =0, le premier terme de cette formule (21) est nul si o’ 4 0, le deuxiéme
terme est négatif et prend une valeur infinie; on aurait donc en surface pour n,
une contrainte de compression infinie. Cette conclusion est erronée, parce que
la. méthode de calcul approchée n’est plus valable. On peut avoir directement
la valeur de n, en surface par la formule (14) ou l'on fait {=0; les fonctions
f(mQ) et f({ym*+n2) deviennent égales & —1 et ’on a

petit, car alors 2« n’est plus petit. Il faut alors revenir, pour ces
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. , . , , 0
sinm o sinma’ sinna’  m ) )
ny=—4pl—— —8pXr——r 7 —5 5 (m impair)
m o mo na m=+n

En traitant cette expression comme on l'a fait ci-dessus a 1’aide des
- . . . a) — ’
approximations 1° et 2° on voit facilement que 7, = — - @ étant la compres-
; ‘

. . 7 P
sion locale sur le carré de charge (c’est—a—dlre Z—a—,é); n, est donc une compres-
sion trés grande, mais non infinie comme il résultait de la formule (21).
Lorsqu’on a affaire & une charge concentrée, o’ =0, et on a directement

par la formule (17)
ny=2p

o3

f]‘(é Ym2+n2)dmdn

Transformée en coordonnées semi-polaires comme précédemment, cette expres-

sion devient:

z
2

ny = ‘—’1)3' 3 f(Cp)pdpdw

!

= Trpg' ((p—1)e~tPpdp =~ %B _(1+CP+C"“P2)6‘C”§

soit ny = ZC%? (23)

n, est donc une traction, qui devient infinie pour {=0. Mais pour cette méme
valeur 0 de (, le calcul que l’on a fait ci-dessus reste valable et 1’on trouve

— @ it _
ny = — -5 SOit my = —co.

On a donc, dans le cas d’une force concentrée, 2 valeurs, —oo et -+ 0,
pour la contrainte n; sur ’axe pour z=0. Ceci est tout & fait analogue & ce

a/4«la/e ‘ a2 | a2
T I

W A4
compressions /.

+0.2p

2o

},_ﬂpl

Fig. 33. Isobares de la contrainte d’éclate- Fig. 34. Isobares de la contrainte d’éclate-

ment sur un plan de symétrie pour un ment sur un plan de symétrie pour un

prisme & base carrée chargé sur un carré prisme & base carrée chargé sur un carré
. . o’ 1 . . a’ 1

concentrique a la base 4 =1 concentrique a la base 2 =3
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qu'on a rencontré dans 1’étude plane; la compression infinie correspond &
I’action d’une force finie rasante N; s’exercant le long de 1’aréte 0z, et répartie
elle-méme le long de cette aréte avec une densité variable, devenant infinie
pour xr=0 y=0. La contrainte n, de compression correspondante est donc un
infiniment grand du second ordre, puis on passe immédiatement & une traction
(25—’) infinie, mais du premier ordre.

La figure 35, sur laquelle nous avons représenté les variations de n; en
fonction de z pour différentes valeurs du rapport d’étalement f; f, met bien en

z

évidence les phénomeénes. On voit que, au fur et & mesure que —% diminue, la
contrainte maximum de compression (a,tteinte pour (=0 et égale a fg) et la
contrainte maximum de traction augmentent; le niveau ou se produit le
maximum de traction se rapproche d’autre part de la surface. Pour %, =0,
les deux maximum deviennent infinis ‘et le maximum positif vient sur la face

z=0 méme.
La figure 35 représente les lois de variation de la contrainte d’éclatement

n, dans le cas du prisme & base carrée chargé sur un carré concentrique a
a’ (ot - . .
cette base. La courbe - =0aéte calculée & 1’aide de la formule asymptotique

-2 0 05 1 15 2 25 3 350
T [ ¢
G — ;5” 2.7 Jb6 _ - =¥
N2 e =025 L= ‘
&\\\q % S /,—"'_ j g—:o
z=3/3 i . 97" = Wz
/2 04| N\ /o4 logr A7 507
,’s - | 132
28/3 2231 1 \as ey
T ’
| 0.66
/
, U
I
g a7|!
o274 1f0%
!
¥
l 1
|
]
Ja/2 204 || 25
]
!
]
|
l
|
23 202\| 1076
z

Fig. 35. Valeurs des contraintes n, sur I’axe d’un prisme a base carrée de c6té 2a chargé

4

2 : A2 . ’ » a
sur un carré concentrique de c6té 2a’, pour différentes valeurs du rapport d’étalement —.
a

(les coefficients doivent étre multipliés par p, compression moyenne)
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(23); la courbe = o lio a l’aide des formules approchées (21) et (22), la courbe
% = % a l’aide de la formule approchée (21) et la courbe % :% a été calculée

directement par les séries doubles. Les résultats résumés sur la figure 35 sont
d’ailleurs les résultats bruts, c’est-a-dire sans la correction & 1’aide des tableaux
1T & VII pour la valeur moyenne, car nous avons eu surtout en vue d’indiquer
P’allure générale des phenomenes Aussi ne retrouvera-t-on pas exactement,

/

pour les courbes 2 = - t les mémes valeurs des contraintes n, sur ’axe

que dans les ﬁgures 33 et 34.

On comparera les valeurs de n; de la figure 35 a celles de la figure 24 de
I’étude plane (c’est-a-dire dans le cas d’une répartition uniforme le long de
toute droite perpendiculaire au plan de symétrie), ou mieux, puisque la fig. 35
ne donne que les résultats bruts sans correction, aux valeurs résultant de la
théorie approchée de la I°™ Partie dans le cas de forces étalées symétriquement
par rapport a l’axe avec répartition transversale uniforme; cette contrainte
dans le cas de la répartition transversale uniforme avait pour valeur

nl:stin/oc’[ Cch‘g _ 1 ]
o sh2l+sin?2«’ sh{
(voir I®*® Partie, page 184). De cette comparaison on déduit 1’effet de la locali-
sation transversale. On voit que cette localisation transversale entraine une
aggravation importante des contraintes d’éclatement =, .

Si on appelle facteur de concentration le rapport de la contrainte maximum
d’éclatement (maximum positif de la figure 35) & la contrainte maximum
d’éclatement qu’on aurait si la charge, tout en conservant sa loi de répartition
longitudinale, était uniformément répartie dans le sens transversal (contrainte
d’éclatement de la I°™ Partie), ce rapport (calculé d’aprés les théories appro-
chées aussi bien pour le prisme indéfini que pour le prisme fini) est de:

L a
1,5 pour —=

a

’

a
2,65 pour — =
) p .

’

a
4.7 r— =
, pou p

’

=90
©  pour—

Pour des valeurs intermédiaires de ¢ on pourra interpoler le facteur de
concentration. *

On constate d’autre part que le maximum est plus prés de la base que
dans le cas de l’étalement transversal uniforme; pour %l =116’ le maximum

remonte de z= %é\ g= g. Cette constatation est importante car elle amene

a rapprocher les frettages de la face d’appui.
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On constatera encore que la perturbation locale par rapport a 1’état de
Saint-Venant se produit sur une longueur plus grande, dans le cas ot les forces ap-
pliquées sont localisées dans les deux sens (transversal et longitudinal) que dans

le cas ol elles ne sont localisées que dans un sens. Pour z=2a et pour — = = 10

on a n,=0,16p dans le cas de double locahsatlon au lieu de n, =0,03 p dans
le cas de simple localisation.

Toutes ces remarques ne sont quantitativement valables que pour le cas
étudié, c’est-a-dire pour le prisme & base carrée chargé sur un carré con-
centrique.

La méthode que nous avons employée peut étre étendue a des cas différents,
quoique moins simplement.

Nous indiquerons pour terminer que le calcul exposé fait apparaitre, dans
certains cas, qui sont courants, des concentrations de contrainte beaucoup
plus fortes que celles qu’on évalue d’habitude, et qui nécessiteraient par consé-
quent des frettages plus importants que ceux que l’usage a consacrés. Or les
constructions réalisées résistent. Il est certain que cette résistance est due a
l’apparition de déformations plastiques griace auxquelles les contraintes
s uniformisent dans une certaine mesure. Il ne faut pas perdre de vue cette
faculté d’adaptation de la matiére; mais c’est l1a une autre étude, qu’il serait
souhaitable de voir entreprise.

Résumé

On étudie 1’état élastique d’un prisme chargé uniquement sur ses bases,
au voisinage de ces bases.

Dans une premiére partie, on étudie le cas du prisme indéfini, les forces
appliquées ayant une répartition identique dans toute section transversale, et
des directions quelconques normales ou obliques.

On obtient d’abord une solution approchée griace a un développement en
série de Fourier, les réactions parasites qui s’introduisent sur certaines faces
étant éliminées par des forces de sens contraire, dont on calcule I’effet approxi-
matif par les méthodes usuelles de la Résistance des matériaux. Cette solution
approchée est ensuite exprimée en termes finis.

Une méthode plus exacte est développée pour le cas de charges normales
paires, par un procédé de réitération.

On déduit finalement de ces méthodes des tables pour le calcul des con-
traintes sous l’effet d’une force unique de position et d’obliquité quelconque.

Dans une deuxiéme partie, on étudie le cas du prisme a base rectangulaire
de dimensions finies. Le cas des charges normales symétriques est seul déve-
loppé. On obtient une solution approchée a 1’aide de séries doubles; des pro-
cédés de calcul numérique de ces séries sont indiqués pour un cas particulier
de charge.
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Zusammenfassung

Der elastische Zustand in den Enden eines nur an den Grundflichen
belasteten Prismas wird untersucht.

In einem ersten Teil wird der Fall des unendlich langen Prismas behandelt,
bei dem die angreifenden Krifte in jedem Schnitt gleich verteilt sind, jedoch
eine beliebige normale oder schiefe Richtung haben kénnen.

Eine Naherungslosung wird zunédchst mit Hilfe einer Reihenentwicklung
nach Fourier erhalten. Dabei werden die storenden Reaktionen, welche auf
gewisse Flichen wirken, durch Krifte entgegengesetzter Richtung eliminiert,
deren ungefihrer Einflul mit den tiblichen Methoden der Festigkeitslehre
berechnet werden kann. Diese Niherungslosung wird in einem geschlossenen
Ausdruck angegeben.

Eine genauere Methode wird fiir den Fall eines angreifenden Kriftepaars
als Tterationsverfahren entwickelt.

SchlieBlich werden aus diesen Methoden Tabellen abgeleitet fiir die Berech-
nung der Spannungen unter dem Einfluf} einer Einzellast von beliebiger Lage
und Richtung.

In einem zweiten Teil wird der Fall des rechteckigen Prismas mit endlichen
Abmessungen untersucht, unter Beschriankung auf den Fall normaler, sym-
metrischer Lasten. Eine Néherungslosung wird mit Hilfe der Anwendung von
Doppelreihen erhalten. Numerische Berechnungsverfahren fiir diese Reihen
werden fiir einen bestimmten Lastfall angegeben.

Summary

The paper describes the investigation of the elastic state of a prism, near
its end surfaces, when loaded solely on those end surfaces.

The first part of the paper deals with a semi-infinite prism submitted to the
action of forces in any direction, normal or oblique, of the same distribution
at any cross-section.

An approximate solution is first obtained by means of the development
of a Fourier’s series, the parasite reactions produced on certain surfaces being
eliminated by means of forces of the opposite sense, whose approximate effect
is calculated by usual methods of strength of materials. This approximate
solution is then expressed in finite terms. A more exact method is developed
for normal symmetrical loads by a process of reiteration of calculations.

Using these methods, tables are finally constituted for the calculation of
stresses under the action of a single force of any position and inclinations.

In the second part of the paper, the case of a prism of rectangular base
and finite dimensions is dealt with. The case of normal symmetrical loads
alone is developed. An approximate solution is obtained by the use of double
series. Methods of numerical calculation of these series are indicated for a
particular case of loading.
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