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Die genaue Membranentheorie der prismatischen Faltwerke
La théorie exacte des membranes dans le cas des poutres-cloisons prismatiques

The exact membrane theory of prismatical structures composed of thin plates

Dr. Ing. habil. ErNsT GRUBER, Eldingen

A. Allgemeines

Faltwerke sind schalenartige Gebilde, die sich nur aus ebenflichigen Teilen
zusammensetzen. Bilden mehrere von diesen die Mantelfliche eines geraden
Prismas, so spricht man von prismatischen Faltwerken. In Figur 1, die ein
derartiges, als Sheddach geformtes Gebilde darstellt, ist ein rechteckiges Falt-
werksglied der Mantelfliche durch Einzeichnung eines Elementarelementes her-
vorgehoben (Fig. 1d). Schneidet man aus diesem ein Volumselement d/dx/dy
heraus (Fig. 2a) und nimmt, wie es in der allgemeinen Plattentheorie iiblich ist,
die Verteilung der Spannungen iiber die Plattendicke d als geradlinig an, so wer-
den die in der Figur 2b dargestellten inneren Kréfte frei. Da bei Faltwerken die

Verhiltnisse Zd-i und Ed'ﬁ immer sehr klein sind, ist auch die Drillingssteifigkeit

der einzelnen Faltwerkscheiben sehr gering, weshalb die Momente M, und

M,™ mit geniigender Genauigkeit ganz unterdriickt werden konnen. Ist

2h

aullerdem I kleiner als ungefihr 1/, bis 1/;, so wird die Biegesteifigkeit der

Platte iiber die Stiitzweite L so gering, da die dazugehorigen inneren Kraft-
wirkungen M, und @, , fast vollkommen verschwinden. Durch die Stiitzung
der Platten an den Endscheiben kénnen jedoch in den, den Letzteren unmittel-
bar anliegenden Faltwerksteilen, diese M,, und @,, auch grofere Werte
erreichen. Da aber Kraftwirkungen, die in der Niahe der Auflager ihren Sitz
haben, auf die Mitte eines Tragwerkes sehr wenig EinfluB} ausiiben, ist diese
Storung auf das Gesamtergebnis fast vollkommen belanglos. Trotzdem ist es
oft ratsam, diese ortlich begrenzte Anomalie bei den Anschliissen der diinnen
Faltwerksscheiben an die starken Endscheiben konstruktiv zu berticksichtigen,
besonders dann, wenn diese Verbindungen kantensteif ausgefiihrt werden.
Greifen die dulleren Lasten nur lings der Schnittlinien der Scheibenmittel-
ebenen an und sind die einzelnen Scheiben lings dieser Knotenlinien n nur
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Die genaue Membranentheorie der prismatischen Faltwerke 131

durch scharnierartige Gelenke miteinander verbunden, so entfallen auf3erdem
die M,, und @, ,, so daB nur mehr die in der Mittelebene wirkenden Mem-
branenspannungen Q,,=Q,,=@Q=7-d, s,=o0,-d und s,=o0,-d iibrig bleiben.
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Fig. 2a Fig. 2b

Aus konstruktiven Griinden bildet man jedoch die Kanten nicht gelenkig,
sondern steif aus, d.h. die M,, und @,, verschwinden nicht mehr ganz.
Dadurch tritt eine Triibung der sonst klar vorhandenen Membranwirkung auf,
die um so erheblicher wird, je mehr die M, und @,, von Null abweichen. Da
diese einerseits mit der Scheibendicke d abnehmen und andererseits um so
kleiner werden, je kleiner die elastischen Gestaltsinderungen der zu den End-
scheiben parallelliegenden Querschnitte des Faltwerkes sind, tritt bei steifen
Knoten die Membranwirkung um so vollkommener ein, je diinner die einzelnen
Scheiben und je starrer die Faltwerksquerschnitte sind. Letzteres ist der Fall,
wenn unter anderem '

1. die Tragwerke durch Querscheiben geniigend versteift oder

2. die Querschnitte als in sich geschlossene Formen ausgebildet werden,
wie z. B.
a) als einfache Ringe oder
b) als ein- oder mehrteilige Zellenwerke.

Bei den Letzteren tritt diese Wirkung besonders dann stark zu Tage, wenn
die Achsfigur des Zellwerksquerschnittes die Form eines unverschieblichen
Fachwerkes hat.

Da die M, und die @,, mit den Scheibendicken sehr rasch abnehmen,

diese aber meistens sehr gering sind, kann man auf Grund der vorhergegangenen
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Betrachtung wohl sagen, daB3 die oben erliuterte Membranwirkung fast immer
nahezu vollkommen erreicht werden kann. Die Bedingung, daf} die Lasten nur
lings der Kanten n angreifen diirfen, mull aber dabei stets erfiillt sein.

Im Gegensatz zu den stetig gekriimmten Schalen sind bei den ebenflichigen
Faltwerken die Membranspannungen €, s, und s, aus den Gleichgewichts-
bedingungen allein nicht mehr zu ermitteln. Um die deshalb notwendig werden-
den elastizititstheoretischen Untersuchungen zu umgehen, nahm man bis
jetzt immer die Verteilung der zu den Scheibenachsen parallel gerichteten
Membranspannungen s, von Knotenlinie zu Knotenlinie geradlinig an. Ist die

Hohe 2/ der betreffenden Scheibe kleiner als % bis —],;f—,

Annahme sehr gut mit der Wirklichkeit iiberein, und zwar um so besser, je
schlanker das Verhiltnis ZL—h ist. Wird aber %& > % bis ;, so fiihrt die An-
nahme der geradlinigen Spannungsverteilung zu unrichtigen Ergebnissen und
man muf} zur exakten Erfassung der Membrankrifte auf elastizitdtstheoreti-
scher Grundlage schreiten.

Wir werden in den nichsten Abschnitten dieser Abhandlung diese Ent-
wicklungen fiir das prismatische Faltwerk durchfiihren. Die Behandlung der-
selben Aufgabe fiir die pyramidenartigen Faltwerke wird zu einem spiteren
Zeitpunkt erfolgen?).

so stimmt diese

B. Genaue Ermittlung der inneren Membranspannungen und der
Verformungen einer einzelnen Faltwerksscheibe

Da die @, , und die M, entsprechend den vorangegangenen Betrachtungen
verschwinden sollen, werden von einer Scheibe zur anderen nur die in den
Schnittlinien der Scheibenmittelebenen wirkenden Schubkrifte ¢ iibertragen.
Weiters zerlegt sich eine in einer beliebigen Knotenlinie angreifende, stetig
verteilte Transversallast P in die ebenfalls stetig verteilten Belastungen p, ,,
deren Wirkungsebenen ebenfalls mit den Mittelebenen der von dieser Kante
ausgehenden Scheiben zusammenfallen. Laufen in letzteren mehr als 2 Falt-
werkselemente zusammen, so ist diese Aufteilung statisch unbestimmt2). Lost
man durch lings der Knoten s und » gefiithrte Schnitte die Scheibe sr aus dem
Faltwerksverband, so werden fiir deren Ridnder » und s die inneren Kraft-

1) Die Behandlung der pyramidenartigen Faltwerke bei Annahme einer von Knoten-
linie zu Knotenlinie geradlinigen Spannungsverteilung wurde vom Verfasser bereits in
der Abhandlung ,,Berechnung pyramidenartiger Scheibenwerke und ihre Anwendung
auf Kaminkiihler“ behandelt. Sie erschien in Band 2 der ,,Abhandlungen‘ der Inter-
nationalen Vereinigung fiir Briicken- und Hochbau, Jahrgang 1934.

%) Siehe die Arbeiten des Verfassers ,,Die Berechnung duBerlich statisch unbestimmter
Scheibenwerke‘‘, Band 3 der ,,Abhandlungen‘* der Internationalen Vereinigung fur
Briicken- und Hochbau, Jahrgang 1935, und ,,Hohltriger als Faltwerke‘, Band 7 der
,»Abhandlungen‘‘ der Internationalen Vereinigung fiir Briicken- und Hochbau, 1944.
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wirkungen £, pg, ¢, und- p, frei und erscheinen als dullere, in der Mittelebene
wirkende Belastungen (Fig. 3). Diese erzeugen den ebenen Spannungszustand
0., 0y, T, fiir welchen wir die dazugehdrige Airy’sche Spannungsfunktion zu
ermitteln haben. Diese muf3 zunichst die bekannte partielle Differential-

gleichung 4ter Ordnung
PF ?F\2
T T

3) Massenkriafte sollen keine vorhanden sein.
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befriedigen. Mit den nun folgenden Spannungen

@F  _ @#F  ®F
vE G T ey TT T Gady

- (2)

(o)

ergeben sich die Randbedingungen fiir die Scheibe rs in der Form
> F
0 x?

> F

7-d=—-8x8y-d=t8

oy'd—

d:ps
‘ fir y = +h (3a)

2
0y~d 2;; d=p, .
fir y = —h (3b)

T'd=—n‘ — od =t,

52
ox=?€=0 fir x =0 und x =L (3¢)
oy

+h
d [ rdy =4, (3d)

—h

+h
df}'rdyzAL, (3e)
—n
wobei 4, und A; die Auflagerdriicke an den beiden Endscheiben bedeuten.
Hierbei ist zu beachten, dal die ¢,, ¢, und die r auf die Flicheneinheit und
die p,, p,, t, und t, auf die Lingeneinheit der Abszisse x bezogen sind. Entwickelt
man die Randlasten p,, p,, f, und ¢, sowie die Linienlast P wie folgt in
Fourier’sche Reihen

pe=d Zk S sink—qx (4a)
0 L
< .k
py = d 2k Srksmfx (4b)
t, = de ,Csm (4¢)
.k
=dzk T,.sin ~—x (4d)
0 L .
< .k
P =dePk sin — (4e)
0 L

und belastet die Scheibe nur mit den kten Gliedern dieser Entwicklungen, so
fithrt, wie die weitere Rechnung zeigen wird, der fiir die dazugehdorige Span-

nungsfunktion gewihlte Ansatz

.k
F, =Y sin— (5)
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zu einer Losung, die man allen Randbedingungen anpaésen kann (Fig. 3).
Hierbei bedeutet Y, eine noch zu bestimmende reine Funktion von y. Setzt

man Gl. (5) in Gl (1) ein, so folgt nach Kiirzung durch sin chx fir Y, die

gewohnliche lineare homogene Differentialgleichung 4ter Ordnung.

Da die zum iiblichen Ansatz Y, =eP:* gehorige charakteristische Gleichung
(pr2 — 4,2)2=0 die beiden Doppelwurzeln p,, = +a;; psr= —o; hat, erhalten
wir das allgemeine Integral von Gl. (6) in der Form

Vo= (Usit % Us) @inon + (Usst 3 Uie) Gof ey ™)

Bringt man nun mit Hilfe der Gl. (5) die in Gl. (2) dargestellten Spannungen
in die Form

G.Ik‘ = Yk”Sinakx (83;)
Tk = — Yk:’ COSdkx, (80)

so folgen daraus mit Hilfe der Gl. (4) die den Gl. (3a) und (3b) entsprechenden
4 Randbedingungen ‘

1 1

Yk(+h) = - ;ck—zSSk; Yk('—k) = - ;;ﬁsrk (ga')b)
1 , 1

Yk(‘i‘h)z—;k’qu; Y, (“h)=“‘a;Trk: ' (9¢c,d)

aus denen sich die 4 Integrationskonstanten U, , U,, Us, und Uy, der
allgemeinen Losung (7) zu

Uy = .y (_1"_ M) [(Ssk"‘ Six) (@makh+ W)
k s — (T + Tox,) Cof ockh] (10a)
1 .
Uzk = ’*v—“é—“@ﬁ{?&‘ik— [(S.sk+ Srk) @In Otkh——— (Ek_q;k)@oi o, h] (]_O'b)
2o (1 TN
k
N 1 Sint oy,
k 2a.h + (T, —T.,) Gin akh] (10¢)

1

(/741(7 = : v
2
2ot 2 (1 _ gﬁﬂi&)

[—(Se— Si) €oY o b+ (T + Tp) Simo h] (10d)
2akh

10 Abbandiungen XT
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ergeben. Dabei wurde die erste Ableitung von Y in der Form
U .
Irkl = I:h2k +Otk (U3k+ %‘ U4k)] @Utocky

U . o
+ [_}74 + o (U1k+ % bzk)] L0} o Y (11)

benutzt, aus welcher sich durch nochmalige Differentiation und nach einigen
Umformungen die zweite Ableitung von Y, zu
2 o

ergibt. Py,

Da sin oz fiir =0 und x=L Null wird, werden nach Gl. (8a) die o, an
diesen Stellen ebenfalls Null, so dafl auch die Randbedingungen Gl. (3c¢)
erfiillt sind. Aus

+h +h S._S
[ 7dy = —aycosopx [ Y, dy = =% " eosoyx
—~h —h &

ergeben sich fiir x =0 und z = L die Auflagerdriicke

Ay =SBy g S By (13)
Xk %k

Errechnet man andererseits diese aus den durch die kten Glieder gebildeten
Belastungen nach dem Hebelgesetz auf gewohnliche Weise, so gelangt man
wieder zu den Werten der Gl. (13). In diesen erscheinen die zu den Schub-
belastungen ¢, ¢, gehorigen Reihenkoeffizienten 7', , und T, ; (Gl. (4¢) und (4d))
iiberhaupt nicht, da sich entsprechend der Form der dazugehorigen Cos-
Wellen die Schubspannungen lings eines Scheibenrandes gegenseitig aufheben
und daher an den Endscheiben keine Auflagerdriicke erzeugen kénnen (Fig. 3).
Somit sind auch die beiden letzten Randbedingungen (3d) und (3e) erfiillt.

Hiebei wurde aber fiir die Auswertung dieser Gl. (3d) und (3¢) die durch
die Gl. (8¢c) festgelegte Verteilung der Schubspannungen zu Grunde gelegt.
Dies ist im allgemeinen zunéchst nicht zuldssig, da die letztere an den Auf-
lagern von der Lagerungsart der einzelnen Scheiben an den Endquerschnitten
wesentlich abhingt. Da aber nach dem St. Venant’schen Prinzip solche ortlich
bedingten Abweichungen in der Spannungsverteilung auf in der Néhe der
Endquerschnitte liegende Bereiche beschrinkt bleiben, wirkt sich diese, fiir
die Auflagerrandbedingungen getroffene Naherung, in der Praxis kaum aus.
In diesem Sinne konnen dann alle Randbedingungen als erfiillt betrachtet
werden.

Die GL. (7) stellt also dann im Zusammenhang mit den Gl. (10a,b,c,d)
eine Losung fiir die mit dem kten Glied belasteten Scheibe s dar, die nur in
der Nihe der Auflager etwas von der Wahrheit abweicht.
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Um die inneren Kraftwirkungen p und ¢, die die einzelnen Scheiben erst
zu einem Faltwerk verbinden, bestimmen zu konnen, miissen wir die Ver-
formungen einer Scheibe angeben konnen. Zunéchst ergibt sich die bezogene
Dehnung in Richtung der x-Achse zu

ot 1
ka=—a%=i(%k—ﬁ)a (14)

woraus mit Hilfe der Gl. (8a,b), Gl. (7) und Gl. (12)

e 08 _ L1 ym+l
" 9x E\UF m

Yk+@k) Sin oy, @ (15)

wird. Bestimmt man nun den Wert dieser Funktion an der Stelle y, so ergibt
sich, dal} die waagrechten Dehnungen einer jeden im Abstand y zur z-Achse
parallel verlaufenden Geraden den Verlauf einer Sinuslinie folgen. Fiir den
oberen bzw. unteren Scheibenrand folgt also mit y= +4

1 .
€ = EE"C{ O‘km+ (£ U+ Usp)Sinog b+ (Usy = Uyy) Cof oy 7]
rk
g .
2 (4 Un Gofagh U4k@inakh)} s o5 . (16)

Ersetzt man nun die U, durch die Gl. (10a,b,c,d), so erhalt man nach
mehreren Umformungen die Amplituden der vorhin definierten, zu den
Réandern » und s gehérigen Sinuslinien zu

1 1
By = N.E [a’k Sex—bx S — T (dy T+ e ];'k):' (17a)
1 1
By = N.E [_bk Ser+ g Sy + [ (e T + dy, j;k)] , (17Db)
wenn
b, N Gin2kw« 2_‘1_ _m—i—l_i_m—l Gin2kmi\?
“TL R T\ 2kme > =, m 2kmr )’
Gin2kmk Gin2kmk Sindkmx
= 2 FRE— : = S Z _—— = - —
Z Shmr 0 0= CONZkmi— —op—s dy = = -1
bedeutet. Der Verlauf der Dehnungen selbst ergibt sich dann zu
€ — .Esk'Sinakx. (18)

rk rk

Entsprechend der Gl. (14) und unter nochmaliger Benutzung der Gl. (8a,b),
Gl. (7) und Gl. (12) erhélt man die bezogene Dehnung in Richtung der y-Achse

za

m m

0 1 , 1 —1 .
€1/k' =g8—7?le=_E(UUI»_%)= —_E(m Yk,,—"@k) Slnockx. (19)

Driicken wir die Schubspannung 7, ebenfalls durch die Verzerrungskomponen-
ten £ und % aus, so ergibt sich mit Gl. (8c¢)
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_ ' _ m K Ong  0&
T = —oy Xy, Cosakx—2(m+ﬁ(8x+8y . (20)

Differentiert man Gl. (15) einmal partiell nach ¥ und zieht diesen Wert von
der einmal partiell nach z differentierten Gl. (20) ab, so folgt

?Zn, singx d 2m+1 "
axzk'z_ Ek 'd_y"(“kz""_ﬁmyk—yk)' (21)
Die zweimalige partielle Integration dieser Gleichung nach x ergibt nach
vorheriger Zuziehung der Gl. (12)

__singz d [ mtly
Nk (ib’, y) - asz d?/ (ak m :Yk @k)

wenn f, (y) und f,(y) willkiirliche Funktionen von y sind. Fir y=0 erhalten
wir die Biegelinie der Scheibenachse in der Form

o +h)+xfay), (22)

Y=

sin oy, m+1,, , o
me@,0) = = T (LR 0 ) O+l (0), (22)

woraus mit den Randbedingungen 7, (x,0)=0 fiir x=0; =L f;(0)=f,(0)=0
folgt. Aus Gl. (19) ergibt sich nun durch partielle Integration nach y

1 . m+1_.,
me@y) = = goiner | ("B -0 dy+ (o), (23)

Setzt man in den Gl. (22) und (23) y =0 und vergleicht diese beiden Ergebnisse
miteinander, wobei f (x) eine willkiirliche reine Funktion von x ist, so erhalten
wir unter Beriicksichtigung von f, (0)=f,(0)=0 f(x) in der Form

1 m+1.,, 1 , m+1_,, )

dk2

Die lotrechten Verschiebungen jeder in Abstand y parallel zur x-Achse ver-
laufenden Geraden liegen also auf einer Sinuslinie, die man nun wegen

f(x)=0 einfach aus

1 m+1_,, . -
M (@&Y) == 5 [%“ Y, —qukdy] SN oy & (25)
erhilt. Setzt man hierin y =0, so folgt zunédchst mit Gl. (11)
1 (m+1 m—1 .
nk(x,())—-_—ﬁ(—wi—kﬂ'KUlk‘_“%— U4k)81nockx, (26)
woraus sich mit Gl. (10a) und (10d) die Biegelinie der Scheibenachse zu
'qk(x,()) == stln(xkx ¥ (kg’sk—_S’l‘k) ——m+1@ink7TK+2(‘go‘k7TK)
Gin2kmk m
2kn E|—— —1
2k
1 —1 &t
~ Tyt T) (" o ke ™t SRETE ] o
m kx
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ergibt. Setzt man dagegen in Gl (25) y= +4 bzw. y= —h, so folgen zunichst
die Beziehungen

1 m—1 , m—1 h
nillg = - ’E‘ [i 7”}/7 ngglnockh— W U4k@[)iakh]

m+ 1 ) m+1
+ ap (Ugp = Uyy) Ginog b+

g (U + Uyy) Gof h] o (28)

Daraus erhdlt man mit den Gl. (10a,b,c,d) die Amplituden der sinusférmig
verlaufenden lotrechten Bewegungen des oberen bzw. unteren Scheiben-
randes zu

kaL| 1
Ny, = BN, [7[77;} (e Sex— I Srie) — g Ty — by, Trk] (29a)
kaL] 1
Ny = EN, [m (Fx Ssk“elcsrk)“kask—akTrk]a (29b)
wobei fiir die dabei neu hinzugekommenen Koeffizienten
 Sindk in2k
= S 15 fo= Cof2kmis SIS

gilt. Der Verlauf der Verschiebungen selbst ergibt sich dann zu

et = Vg SN 0, 2 . (30)
rk rk

Da fiir x=0 und x =L sin oy x =0 wird, folgt, dafl die lotrechten Verschie-
bungen in den beiden Auflagervertikalen ginzlich verschwinden, so da dort
nur waagrechte Bewegungen stattfinden. Diese Tatsache entspricht den Auf-
lagerbedingungen der einzelnen Scheiben an den Endscheiben, wenn man
letztere in idealem Sinne ¢n ihren Ebenen als vollkommen starr und aus ihren
Ebenen als vollkommen biegsam annimmt, was bei der konstruktiven Aus-
bildung nahezu vollkommen verwirklicht werden kann. Ist also das Faltwerk
an den beiden Enden durch solche ideale Querscheiben zusammengefait, so
erfolgt die Verteilung der Schubspannungen an den Auflagern genau nach
der Gl. (8c). Die Gl. (7) ist dann in Verbindung mit den Gl. (10a,b,c,d) die
exakte Losung fiir die mit dem kten Glied belastete Scheibe rs und weicht an
keiner Stelle mehr von der Wahrheit ab.

Fir die Betrachtung des nichsten Abschnittes ist es zweckmiBig, N,
Nk Typ und T, als lineare Funktionen der B, ., B, ;, S, , und S, aus-
zudriicken. Man erhilt zunéichst durch Auflésung der Gl. (17a) und (17b)
nach T ; und T, ;.

k
T = =~ N0 B 0y Byt B ) = Ay Sy By S (31a)
Ve
ki
T =+ A [Ny E (cy By +dy ) + By S — Ay Sy ] (31b)

k
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: = 4 k)2 1 ,
mit l\f’k= (@:tkﬂ";‘f) —(1%—1‘]{:—2’”—2'—{—2) @szkWK:dkz—-ckz;

Ak = akdk—bkcl‘.; Bk = bkdk—akck.

Setzt man diese Werte in Gl. (29a) und (29b) ein, so wird weiter

- h h .
Ng = v, (4 Eg— B E]+ N E [Cr S — Dy, S ] (32a)
r h h ;
Ark = :——;;[Bk Esk—AkErk]_*'j\i‘E‘v [DkSSk—'Ck Srk]} (32b)
wobei
Y 1 : €r.
Oy = v, [2ay by e —dy (@ + b,2)] + —k‘zﬂ_—]lg:{‘g
D, = - 21 b2 — 2 agbydy] + g b
k= :{;‘;[Ck(a’k +0,%) =2 a;.by, k]+m
bedeutet.

Man koénnte nun in den Gl. (7), (11) und (12) fir die Integrationskonstanten
U die Werte der Gl. (10a,b,c,d) einsetzen und so mit Hilfe der Gl. (8a,b,c)
Formeln erhalten, aus welchen man die Spannungen direkt berechnen kénnte.
Dieser Weg ist jedoch unzweckmiBig, da die so entstehenden Ausdriicke sehr
uniibersichtlich werden. Man kommt rascher zum Ziel, wenn man nach der
im nichsten Abschnitt gezeigten Berechnung der S und 7 die Integrations-
konstanten U zahlenma@ig ermittelt und mit diesen Werten in die Gl. (7),
(11) und (12) bzw. (8a, b und c) geht.

Setzt man in den Gl. (17a,b), (29a,b), (31a,b) und (32a,b) m=oc0, so
gehen diese fiir kleine « bei Vernachlissigung der Glieder mit den zweiten und
hoheren Potenzen von « mit grofler Anndherung tiber in

3 1 "
E, = ey Ryl (Sere—Spz) — m(Q Ty + Ty (17a)
B 3 S, —8 L Y 17D’
- _?ﬁ;éﬁ( sk— ) F m( st 2T%) (17b7)
1. 1. 1. 3 3 .
zmsk_‘z"wskzl—;;z\k=m(ssk_8rk)_m(ﬂk+ﬂk) (29)
kmx 3 1 ,
Ty = — T3 (2Eg.+ E,.)+ o e (Ser. — Spz) (31a’)
LYy Py L s.—=8 (31b’)
rk—+_§*( sk = rk)‘l‘m( st~ Ort) ‘
1, 1 (39"
N = o Ba B, (32)
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In diesen Formeln sind die Einfliissse der Querdehnungszahl m und der o,
insbesondere in Gl. (29’) und (32’) nicht mehr enthalten. Macht jedoch die
Eigenart der gerade vorliegenden Aufgabe die Kenntnis der Dehnungen quer
zu den Scheibenachsen auch bei schlanken Scheiben notwendig, so sind die
genauen Beziehungen GIl. (17), (29), (31) und (32) oder die in der Abhandlung
des Verfassers ,,Hohltriager als Faltwerke'* angegebenen sehr gut gendherten
Gleichungen zu benutzen.

Werden hingegen die Werte von 2kx « grofler als etwa 5, so wird mit
sehr grofler Annidherung Gin2kmx = Coj2k7«k = L e%*7=, Nach einigen Um-
formungen gehen dann bei Vernachlissigung sehr kleiner Summanden gegen-
iiber sehr groBlen die Gl. (17a,b), (29a,b), (31a,b) und (32a,b) iiber in

m—1 2 1 1 "

B =" S Sa Tt (V- ) B 07
g m—1 1 1 "

EErk = — “Z“f* Ssk + “}r‘bf” Srk+2 [—ZV— (1 - m) quk-l"ﬂkjl (17b )

1 1 2 m—1 .
ENrk=k7;{2[m(1+m)ssk—srk]—mﬂk—Tﬂk} (29b")

~1 1 [(m+1 1 ~1 )
o Se — ( + = Srlc) (31a”)

1 [(m+1 1 m-1 1 m—-1 "
+2N ( + )Ssk——TSrk) (31b")

m 2kmk m 2
2k i m—1 1 /m+1 1 m-1
h Noge = ﬁfESk_'Z*V;( m T 2kmr m )E’k
1 m — 1\2 1 m— 1\2 1 m+1 ”
tE [4‘ (") ] 5am . [(777) e e
2kmk 1 /m+1 1 m-—1 m—1
Ny (" e ) B B
1 [(m—1\2 1 m+1 1 m—1\2 ,
tEN, [( m ) (I_kax)+4 m ]Ssk"ﬁ‘[4"( m )]Sk (320)
. eZk'TrK
wobei N,=-—-——  sein soll.
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Die Beiwerte a,b,c,d,e,f, A,B,0,D,N,N und N, sind nur von k und «
abhiéngig und kénnen daher in zweidimensionalen Tabellen ein fiir alle Mal
fiir alle rechteckigen Faltwerksscheiben berechnet werden.

C. Die Ermittlung der Losung

Legt man um die Knotenlinien von Endscheibe zu Endscheibe reichende
rohrenformige Schnitte mit unendlich kleiner Innenfliche 4 f, so muf} fiir die
dadurch freiwerdenden Schnittkrafte ¢ und p am Knotenfragment Gleich-
gewicht bestehen (Fig. 1). Trennt man von diesem wieder durch 2 voneinander
um dx entfernte Ebenen ein Linienelement von der Linge dz ab, so greifen
an den dazugehorigen Ringschnittflichen einerseits die knotenparallelen
Krifte o-4 f und andererseits die dazu senkrecht stehenden Krifte 7-4f an.
Da diese beiden Wirkungen mit 4 f unendlich klein von 2ter Ordnung werden,
lauten fiir die kten Glieder der Entwicklungen Gl. (4a,b,c,d) die Gleich-
gewichtsbedingungen in Richtung parallel bzw. normal zur Knotenlinie

m b m
Zp Qpp Trore = SID T ZP Qpp Loy = 0 (33a)
T T
bzw. .
[Rk cos B+ ZP dyp Sppr; €OS 2, SIN ]%T x=0 (33b)
B . ke
[P, sin B+ Ep iy Sypp SN atyp] SiN = 0 = 0, (33¢)

wenn 7 Scheiben in einem Knoten r zusammenlaufen (Fig.4). Der erste
Index der Glieder der 2ten Summen gibt jeweils den Knoten an, an welchem
die 7' bzw. S anliegen, wihrend der erste und zweite Index zusammen jeweils
diejenige Scheibe bestimmen, zu welcher die einzelnen Groflen gehdéren. Da die
achsparallelen Verschiebungen der einzelnen Scheiben an jedem Knoten
punktweise iibereinstimmen miissen, sind die Amplituden £ der bezogenen
Dehnungen ¢, der Gl. (18) der am Knoten r anliegenden Scheibenrdnder alle
untereinander gleich, und zwar gleich E,. Setzt man daher in Gl. (33a) die
Gl. (31a) und (31b) ein, so ergibt sich fiir jeden Knoten die Beziehung

EE, ip g,ﬁEip hy B, = ip Uy Syt ip Jo S o> (34)
1 1 1 1

welche wir in Anbetracht der obigen Darlegungen Kontinuitdtsbedingungen
I. Art nennen wollen. Fiir eine schubspannungsfreie Randkante z.B. 1, 2 und
5 in Fig. 1 vereinfacht sich die Gl. (34). Man erhilt sie dann, indem man in der
jeweils zugehorigen Gl. (31a) bzw. (31b) T ; bzw. T, ; Null setzt.

Fiihrt man wieder lings jeder Knotenlinie unendlich enge rohrenfoérmige
Schnitte, so zerfillt das Faltwerk in seine einzelnen Scheiben, die sich dann,
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auf Grund der auf sie einwirkenden Randwirkungen p,,, Ps, 7, und t;;, in
ihren Ebenen entsprechend den Gl. (17a,b) und (29a,b) frei verformen kon-
nen (Fig. 1 u. 4). So werden sich z. B. die einzelnen Punkte der Rander r, der

vom Knoten r ausgehenden Scheiben rp, ru, v usw. von r nach r,, r,, r, usw.

1 .k 1 .k 1 .k
um Nrpk-sm—i—rx;ENmk 31n-1{~—rx;EN,,,k sz‘{_’
Knoten auseinanderklafft (Fig. 4). Da infolge der Diinne der Scheiben der

x verschieben, so dafl der

IS4

Der Einfachheit halber sind die
Indices K und die Multiplikatoren
sin % X nicht mit angeschrieben

Ur

Fig. 4

Widerstand, den eine im obigen Sinne freigelegte Scheibe gegen senkrecht zu
ihrer Ebene gerichtete Krifte entgegensetzt, dulerst gering ist, konnen die
einzelnen Punkte der Rinder r,, r, und r, senkrecht zu ihren zugehdrigen
Scheibenebenen lings der Normalen 7,7, r,r, r,7 bewegt werden, ohne daf
dadurch neue Zwinge entstehen. Zufolge der Kontinuitdatsbedingung I. Art
liegen nach dieser Verformung die Punkte der Rénder r,, r,, r, und daher
auch die Bewegungsnormalen »,r, r, 7, r,r jeweils in zur Knotenlinie senkrecht
stehenden Ebenen. Verhalten sich nun die Verschiebungsamplituden N, ,;;
Nykus Nyyy zueinander so, da diese Normalen alle durch ein und denselben
Punkt r gehen, so ist das Klaffen des Knotens wieder behoben und der Trag-
werkszusammenhang auch in den zu seiner Langsachse senkrechten Richtungen
punktweise wieder hergestellt, wobei die r diejenigen Stellen sind, an welchen
sich die Punkte der Knotenlinie r nach erfolgter Verformung befinden. Damit
haben wir die Kontinuitdtsbedingung I1I. Art formuliert.

Legt man durch r ein Koordinatensystem u, v und projiziert die auf letz-
ZCLE z, U, sin]%roc des Punktes r senk-
recht auf 3 von r ausgehenden Scheiben, so erhalten wir nach Kiirzung durch

sin kL"x die 3 Gleichungen

teres bezogenen Koordinaten wu, ;sin
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: 1 -

Uy COS &tpy + Vg SN 01, = FNrpk (35a)
] 1

Upty COS oy, + Uy S 0y, = o ¥ e (35Db)
. 1

Uygs COS 0y, + Uy, SIN 01, = ETN"’”" (35¢)

Bestimmt man aus zwei von diesen u,, und v,; und setzt diese Werte in die
dritte der obigen Gleichungen ein, so ergibt sich

N, pr8in ocif,fk-{-Nmk sin ocf,;)k—!—ka sin “;(o,zk'"— 0, (36)

worin die Indices p, p und v zyklisch gruppiert sind. Fiir jeden Knoten, in
welchem m Scheiben zusammenstoflen, bestehen m — 2 solcher Gleichungen.
Dabei werden die Winkel «® von positiver y-Richtung zu positiver y-Richtung
gezihlt. Das Vorzeichen ist durch die Reihenfolge der unteren Indices fest-
gelegt. Damit ist nun auch die Kontinuitdtsbedingung II. Art in ihre ana-
lytische Form gebracht.

Setzt man nun die Gl (32a) und (32b) in Gl. (36) ein, so erhalten wir zu
den Gl. (34) weitere lineare Beziehungen zwischen den £, E,,, S, und S,,
von der Form

D Lot B s + Dr Mg By + D Mot S st + N Opt Sprie + Qo P, = 0. (37)

Hat das Faltwerk » Knoten und s Scheiben, so liegen » Amplituden Z; und
2s Amplituden S, im ganzen also r+ 2s Unbekannte vor. Diesen stehen r
Gl. (34), 2r Gl. (33b,c) und 2s— 27 Gl. (37), also im gesamten r 4+ 2r+2s—27r=
=r+2s Beziehungen gegeniiber, so dall man aus den Gl. (34), (33 b, ¢) und (37)
alle Unbekannten bestimmen kann. Eliminiert man nun zweckmiflig mit
Hilfe der Gl. (33b,c¢) aus den Gl. (34) und (37) 2r von den S, stellt durch
Auflosung der Gl. (34) die K, als lineare Funktionen der S, dar, setzt die K,
in die Gl. (37) ein und driickt alle .S; durch die Unbekannten X, ; (v=1,2,...n)
und die Knotenlast P, aus, so erhalten wir n Gleichungen von der Form

;3 o Xgy = W By (v=1,2,....7), (38)

woraus man die Unbekannten X, bestimmen kann.

Wir fithren der besseren Ubersichtlichkeit zuliebe die Berechnung nur fiir
den Fall einer Knotenbelastung aus. Treten mehrere solcher Knotenbelastun-
gen zu gleicher Zeit auf, so erhilt man die Resultate durch schlichte Uber-
lagerung der einzelnen Belastungsfille.

Es ist manchmal auch zweckméiBig, die Gl. (34) nicht nach den £, sondern
nach den 8, aufzulésen und diese Werte in die Gl. (37) einzusetzen. Man erhélt
dann wieder Elastizitdtsgleichungen (38’) von dhnlicher Form wie die Gl. (38),
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in welchen jedoch die X, jetzt unbekannte Dehnungsamplituden #, dar-
stellen. Ob man nun Gl. (38) oder Gl. (38’) als endgiiltige Bestimmungs-
gleichungen wihlt, hingt davon ab, welche von den beiden Gleichungs-
systemen die geringere Zahl von Unbekannten X, enthilt.

Fiir jedes Glied der Entwicklung (4a, b, ¢, d) gibt es ein solches System (38)
oder (38'). Summiert man die dazugehorigen Losungen, so erhidlt man die
Unbekannten X, als Fourier’sche Reihen von der Form

I kS ko

X, = ZX,,ksm T r= szkPksm——L—x (39)

v=12....n

D. Allgemeiner Konvergenzbeweis

Der im vorigen Abschnitt angegebene Losungsweg hat zunidchst nur dann
einen Sinn, wenn die Sinus-Reihen (39) konvergieren. Wir werden in der Folge
beweisen, dafl dies immer der Fall sein muf.

Wandert der Zeiger k gegen oo, so gehen, wie man durch einen langwierigen,
jedoch nicht schwierigen Grenziibergang zeigen kann, in den Gl. (31a,b) die
Beiwerte der E_, E,, S, und 8, iiber in

k
k—>c0 k k>0
kwx
lim — N ENyc;, = kg, (k) (40b)
k— o0 k k—0
e N T2 T e (#0¢)
k7TK
im —= N By, = g, (k) . (40d)
k—o0 4V k—>o0

Sinngemdf3 ergibt sich fiir die durch 2k « dividierten Gl. (32a,b)

Ak m—l
klirg v, =h-— o +;€<_1;O30(lx) (41a)
li B k 41Db
fimy, = (41b)
Ok h m—1\2
Jmor =g [4‘ (77) ] * ks, (F) (41¢)
hm Dy _ kg, (k)%). (41d)
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In diesen Beziehungen bedeuten die « Funktionen des Zeigers k, welche fiir
s &
k — oo in Null von der Ordnung —if—k iibergehen, wobei ¢ eine endliche Zahl ist.

Man kann hierfiir auch die symbolische Schreibweise 0° benutzen.
Mit diesen Grenzwerten gehen nun fiir £ — oo die Gl. (31a,b) oder aber
auch kiirzer die Gl. (31a”, b”) in

1 1

1 m—
= 4+ — 4+ — " "
T;OO t 3 E’E’ 5 Sf°° (31a”,b")
iber und wir erhalten fiir einen Knoten ¢ die Gl. (34) in der Form
P m— 1P
E d,,——— dy, S, =0 ’
(Poop; op m 5 @p O ppw ; (34")

wenn in ¢ M Scheiben mit den Dicken d,, zusammenlaufen. Stellt man nun
mit Hilfe der Gl. (32a,b) oder kiirzer (32a”,b”) eine der zum Knoten ¢ geho-
rigen Gl. (36) auf, dividiert diese durch 2km«, was erlaubt ist, da 2k7w«
niemals Null werden kann, und fithrt nachher unter Zugrundelegung der
Gl. (41a,b, c,d) den Grenziubergang fiir k— co durch, so ergibt sich

1 :
m='g o (hppsin®P o, +hy, sin®P o, 4 by, sinPo )

m (p
1 m—1

+4 [4 - (—m) ] (Pgp Sppeo SIN Pty + i S o SN P
+hqw S sin@a, ) =0, (36")

Py

woraus mit Gl. (34")

p=’l
m—1 24;1dwps¢p°° ) )
(—7[—) Lp:'ﬁzp” ™ sm(‘Poc yt Ry SN ‘Poc,,p+hq,v sin@a, )
d
le Pp
m—1 ) in @) 37
+ 14— e (h(ppS(ppwsm %o S oo SIN Pt il ), S oo SIN @, ) =0 (377)

folgt. Wie man sieht, enthalten diese Beziehungen immer nur die den Knoten ¢
unmittelbar anliegenden S, ... Stellt man also fiir den Letzteren die moglichen
m—2 Gl. (37") auf und nimmt zu diesen die beiden zum Knoten ¢ gehorigen
Gl. (33b) und (33c), so verfiigen wir iiber 7z Gleichungen, welche fiir die
Bestimmung der an ¢ unmittelbar angrenzenden Beiwerte §,,, gerade hin-
reichen. Driickt man fiir alle Knoten die S, ., wieder durch die Unbekannten
X, und durch die Knotenbelastung P, aus, so erhalten wir die Gl. (37") in
der Form

1) Diese Grenzwerte ergeben sich auch aus den Gl. (32a’’, b”’) indem man N,=®
setzt. Dieser Weg ist aber nicht ganz exakt.
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y=n
2 Xy = Frbope (42)
(p=1,2,..... n)
mit den Losungen
X, = P(pvoo'Poo (42a)
(v=1,2,..... n),
wobei fiir jeden Knoten ¢ (1,2, ... r) ein solcher Gleichungssatz bestehty, woran

der Zeiger ¢ erinnern soll. Nach den obigen Ausfiilhrungen bestehen diese
Beziehungen aus ebenso vielen voneinander unabhingigen Gruppen als
Knoten vorhanden sind, was durch Verschwinden bestimmter a,,, ,. zustande
kommt. Sind die Nennerdeterminanten jeder dieser Gruppe von Null ver-
schieden, so gilt

Poyo = Xy 00 (v=1,2,..... n). (42b)

Da sich aus den Gl. (42) die Grenzwerte der Beiwerte der Losungsentwick-
lungen (39) fiir £ — oo ergeben, wollen wir sie ein fiir alle Mal ,,Grenzgleichun-
gen‘‘ nennen.

Stellen wir die Gl. (38) das eine Mal fiir den Index k£ und das andere Mal
fir den um p groBeren Index k+ p auf, so werden sich die Xg, um 4 Xg,, die
Py um 4 P, und die Beiwerte gg,; bzw. w,;, um Agg,; bzw. dw,; &ndern.
Es ergibt sich also fir k

p=n
_Zl Xor- Qg = Fr-wye; (v=1,2,..... n) (43a)
und fir £+ p
B '
' ﬂ; X+ 4 Xpp) (gor+ A qgor) = (B + 4 Fy) (wyp +dwy) (43b)
(,=1,2,..... n).

Fiihrt man in Gl. (43b) die dort angedeuteten Multiplikationen teilweise aus
und berticksichtigt die Gl. (43a), so folgen die linearen Gleichungen

pon By
led X (@ +4Aag,r) = 4 By (wy, +dw,) +( _,321 Xpp-dag+ B Adw,);  (44)

v=1,2,..... n), By
deren Losungen in der Form
Xv, k+p
4P, Bn
4X,, = m (Xgr +4 Xgg) + B; o, 8, k+p Bk (45)
Pk—;}—).—- V= l, 2, ..... n

darstellbar sind, wobei die «,g ., die zum System (43b) gehorigen EinfluB3-
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zahlen bedeuten®). Ersetzt man die 4 X,;, bzw. 4 P, durch X, . — X ; bzw.
Py, — P}, so ergibt eine einfache Umformung

X ket Xk Bgy
v, Tk ) EEL (y=1,2,..... n). 46
=Tt S P ) (46)

In diesen Gleichungen gehen die Einfluflzahlen a,g ;.. , und die Restglieder Ry,
auf die fiir endliche £ geltenden Gl. (38) zuriick. Fiithren wir nun fiir die GL. (46)
ebenfalls den Grenziibergang k£ — co durch, so erhalten wir

Iim - X

k—o0 k+p k—>0 Pk; ﬁ 1 k-

. Ry .
vB, k+p Bc

Yy k+p

Da sowohl die Gl. (38) als auch die Grenzgleichungen (42) nur dann einen
Sinn haben, wenn die dazugehérigen Nennerdeterminanten von Null ver-
schieden sind, gilt fiir alle £, selbst wenn diese noch so grofl werden

avB,k-f—p :*: oo
und es wird weiter mit Gl. (44)

pon S
hm Xh—-" k4P — lim Xy + Z %y B, k+p Hm ( ﬁZ %’“ 4 T +Aka) (48)

k—>o0 k+p k— Pk: k>

Bei diesem Ubergang gehen die Gl. (38) in die Grenzgleichungen (42) iiber,
das heilt, sie spalten sich in ebenso viele Gruppen auf als Knoten vorhanden
sind. AuBerdem gehen die EinfluBzahlen «,g ., in die zu den Gl. (42) geho-
rigen Einflufzahlen «,,.,(v=1,2,...n) und die dgg,, bzw. dw,, in die
ebenfalls den Grenzgleichungen zugeordneten Ada,,,., bzw. 4b,,, lber.
Beriicksichtigt man die Losungen (42a), so verwandeln sich nun die Gl. (48) in

) Xv , ,8—71, B:n
,}LIB P ktp Poyo + Z %y B lim ( _B:_Z pwﬂwd A pp o +4 b(poo) . (49)

@, k+p

Solcher Gleichungen gibt es wieder eine fiir jeden Knoten. Da sich die Gl. (37")
und daher auch die Gl. (42) durch lineare Elimination der E,, aus den Gl
(34") und (36’) ergeben haben, lassen sich die Beiwerte a,,,, und b,,, der

Gl. (42) analog den Gl. (40) und (41) fiir iiber alle MaBlen groBle k& ebenfalls
s
schematisch durch L+Z i dusdriicken, wobei L, [ und ¢ endliche, konstante

GroBen bedeuten, von denen die beiden ersten mit den ersten Gliedern der
rechten Seiten der Gl. (40a,c) und (41a,c) algebraisch zusammenhingen. Da
die da,,, bzw. 46, die Anderungen darstellen, welche die Beiwerte Ay oo
bzw. b, ., erfahren, wenn der sehr grofle Zeiger k auf den noch groBeren Zeiger
k + p steigt, ergibt sich wegen

8) Es ist nur ein Knoten belastet. Siehe Seite 17, vorletzter Absatz.
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(k+p)? K7 17, | k(1
[W‘@z = | k) =k =T

1 [p (O 9 P (9 e
+e_’“[3(1)k 1+Ez7 5 =24 ... (50)

der Grenzwert,

>

X =1,2,..... n
l vk’+p_ . y “y 51
lim e (02057, o)

wobei €, 5., wieder von der GréBenordnung 0® ist. Da fiir p — oo die Bei-
werte der k-Potenzen —1 bzw. Null werden, gelten die Gl. (51) auch dann,
wenn p iiber alle MaBlen wichst.

Mit diesem Ergebnis sind wir nun in der Lage, die Reihenreste der Losungs-
entwicklungen (39) abzuschitzen. Diese betragen

p=p-—1 k bt
. . P
Xv, Fep SHL ——— Z @, k+p P(pvoo +€py, Jp) SIN I ™
p=0 p=0

p=p—1 L+ p=p-1
. P : +p
= Poyw Z P(p, k+p S _VEA XA+ Z €ov,k+p P(p, k+p S L T

=0 n=0

(v=1,2..... n); (p=1,2..... r). (52)

Man erhalt zunéchst weiter

3 . k+ k—i—p
/;va,k—l-p S 77'33'/ p(va/ Z q)k+p —L—Wx/
L . k+
+ Zp /€¢u,k+qu7,k+pSln”-f227Tx/
0
v=1,2,..... n); (p=1,2,..... r). (53)

Nach dem allgemeinen Entwicklungssatz iiber Fourier’sche Reihen kann man
jede in einem Intervall 0 < x < L periodische und in diesem Intervall abteilungs-
weise stetige Funktion f(x) in eine unendliche Sinus-Reihe

= ;k Aksin%.j—rx (54)
entwickeln, wobei fiir eine beliebige Stelle x =a des Intervalls der Reihenwert,
also die rechte Seite der Gl. (54), immer gleich 1[f(a+0)+f(a—0)] wird,
wobei f (a4 0) bzw. f(a —0) den rechts- bzw. linksseitigen Grenzwert von f (x)
fir x=a bedeutet. Die Entwicklungen (54) konvergieren also an jeder Stelle
des Intervalls.

Entwickelt man das Belastungsglied P ebenfalls in eine Fourier’sche
Reihe, so wird daher fiir jedes x das erste Glied der rechten Seite der Gl. (53)
fiir jedes ganzzahlige, auch noch so grofle p von einem geniigend groflen
Index k ab
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=y k+p v=1,2 n

, . k+p - . 02,

/ Z()p pr,k‘-HJ S L ﬂkié),:;&og/ ((P — 1, 2, ) ’ (55)
wobei ¢, eine vorgegebene auch noch so kleine Zahl bedeutet. Da die ¢, .,
klein von der Ordnung 0* sind, kann man auf der rechten Seite der Gl. (53)
das zweite Glied gegeniiber dem ersten vernachlassigen, so daf

ppt k+ =1,2
. p o fv=142,0.... n
B Koo ] S g (Z0070)
0sw=<L (56)

wird. Dies ist aber die hinreichende und notwendige Bedingung dafiir, daB die
Losungen (39) im selben Bereich wie die Lastentwicklungen Gl. (4e) konver-
gieren.

Divergieren die Belastungsentwicklungen (4e) an einer endlichen Anzahl
von Stellen x =z, des Bereiches 0 =z < L, so werden in Gl. (55) die ¢, und mit
diesen auch die rechten Seiten der Gl. (56) nicht mehr kleiner als jede noch
so kleine angebbare Zahl, sondern endlich oder unendlich, da ja nach Gl. (42b)
die p,,,, endlich und im allgemeinen von Null verschieden sind, das heif3t die
Entwicklungen (39) divergieren dann auch fiir die x=z,. An den iibrigen
Stellen des Bereiches 0 <x < L konvergieren die Losungsentwicklungen (39),
insofern dies die Lastentwicklungen an diesen iibrigen Stellen tun. Ergibt sich
hingegen fiir eine der Unbekannten X, das zugehorige p, ,, =0, so wird, da sich
diese Losung aus einem der linearen Gleichungssysteme (42) als endliche Folge
von Differenzen je zweier gleich groBlen Zahlen ergibt, die rechte Seite von
Gl. (56) dann wieder kleiner als jede noch so kleine angebbare Zahl und die
Entwicklungen (39) konvergieren dann auch an den Stellen =z, , an welchen
die Lastentwicklungen (4e) divergieren?®).

Betrachten wir nun die Entwicklung fiir eine Streckenlast 2pd = P
(s. Fig. 5) und fithren hierfiir unter Beibehaltung dieser letzteren Beziehung
den Grenziibergang ¢ — 0 durch, so erhalten wir die Reihenentwicklung fiir
eine im Abstand a von x=0 wirkenden Kinzellast P in der Form

P=?W£;ksin%a-sin%x, (57)
wobei die Schreibweise der linken Seite nur als Symbol aufgefal3t werden darf.
Diese Entwicklung wird fiir x=a unendlich, sie ist also dort im Sinne der
vorigen Ausfithrungen divergent.

Sind also bei den Belastungen an den Stellen =z, Einzellasten vorhanden,
so erscheinen solche wieder nur bei denjenigen Randquerbelastungen p, ,,
fiir welche die dazugehorigen p,, von Null verschieden sind. Fiir die anderen

3) In der Lastentwicklung (4e) kann P_ nie unendlich werden. Selbst beim Vor-
handensein von Einzellasten bleibt P endlich, siehe Gl. (57).
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Randquerbelastungen, fiir welche die dazugehérigen p,, Null werden, konver-
gieren die Reihenentwicklungen auch an den Stellen x=u,, das heilit die
Einzellasten der dufleren Belastung werden von den Faltwerksscheiben auf
dem Wege vom Lastangriffsort nach den mit p, =0 versehenen Randquer-
belastungen so verteilt, daB} sie bei den letzteren gar nicht mehr in Erscheinung
treten. Da nach den vorhergehenden Darlegungen die Grenzgleichungen (42),
deren Losungen ja die p, sind, sich in so viele Gruppen aufspalten als das
Faltwerk Knoten hat, da weiters in jeder solchen Gruppe nur diejenigen
Randquerbelastungen S, vorkommen, welche dem jeweiligen Knoten anliegen
und da endlich die rechten Seiten jeder Grenzgleichungsgruppe nur durch die
in dem dazugehorigen Knoten angreifende Belastung gebildet werden, sind
die p,, nur fiir die einen mit Einzellasten behafteten Knoten anliegenden S,
von Null verschieden, wihrend sie fiir die anderen verschwinden. Es ergibt
sich also fiir jedes Faltwerk ganz allgemein, und zwar gleichgiiltig, wie dieses
gelagert und an den Enden abgeschlossen ist, dal Einzellasten nur bei den-
jenigen Randquerbelastungen S auftreten, welche einem Knoten anliegen, an
dem selbst Einzellasten angreifen.

= 2
—.@Fp

P> oo

[ oy ——]

7 flr e T

}._wa L-a

i L

Fig. 5

Aus den Gl. (37) ergeben sich nun die %, ;, und K ; und aus den Gl. (31)
und (32) die 7' 4, T, 1, Ngp und N, als lineare Funktionen der S, und
S, x- Da letztere wieder durch die Gl. (33b,c¢) bzw. (39) mit den P, linear
zusammenhéngen, konvergieren die Sinus-Reihen aller dieser letztgenannten
Groflen, wenn dies die Losungsentwicklungen (39) tun. Dies gilt auch fiir die
Reihen der Spannungen o,, ¢, und 7, da letztere von den Scheibenrandlasten
p und t in endlicher Weise abhéngen. Nur an den Orten der Einzellasten wach-
sen, da an diesen Stellen die ortlichen Pressungen, die die Last auf die Unter-
lagen ausiibt, entsprechend Figur 5, unendlich gro werden, die Spannungen
itber alle MaBlen. Nach dem St. Venant’schen Prinzip klingen aber diese
Unregelmifligkeiten schon in kurzer Entfernung von den Angriffstellen der
Einzellasten sehr rasch ab. Es gilt also folgender Lehrsatz:

11 Abhandlungen XI
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,,Werden Faltwerke nach der in den Abschnitten 4 bis C' dargestellten
exakten Membranentheorie mit Hilfe unendlicher Sinus-Reihen berechnet und
sind die Nennerdeterminanten der zu jedem Knoten gehorigen Grenzgleichun-
gen von Null verschieden, so konvergieren die Sinus-Reihen aller Wirkungs-
groBen dann, wenn dies die Lastentwicklungen selbst tun. Sind in den duBeren
Belastungen Einzellasten enthalten, so treten solche nur wieder bei den Rand-
querbelastungen p, bzw. p, auf, welche dem Lastknoten dieser Kinzellasten
unmittelbar anliegen. In der Umgebung der letzteren werden die Spannungen
unendlich grofl. Diese Bezirke sind jedoch sehr klein.*

Da, wie wir im Abschnitt B gezeigt haben, fiir jede einzelne Scheibe in
dem dort dargelegten Sinne die nétigen Randbedingungen erfiillt. sind, ent-
sprechen die Gl. (39) und die sich daraus ergebenden anderen WirkungsgroBen
auch den Randbedingungen des gesamten Faltwerks. Die Entwicklungen (39)
sind also die vollstindigen Losungen unseres Problems fiir den Fall, daB das
Tragwerk mit den rechten Seiten der Belastungsfunktionen Gl. (4e) belastet ist.
Da aber nach dem allgemeinen Entwicklungssatz iiber Fourier’sche Reihen
die Summenwerte der rechten Seiten der Gl. (4e) nur an den stetigen Stellen
der Funktion P (x) mit dem Funktionswert derselben ilibereinstimmen, kénnen
die Gl. (39) im streng mathematischen Sinne nicht als die exakten Losungen
unseres Problems angesprochen werden, da ja die in Rechnung gesetzte
Belastung des Tragwerks mit der tatséichlich vorhandenen nicht in allen
Punkten iibereinstimmt. Da aber an den Unstetigkeitsstellen von P (z) die
Summenwerte der Reihen jeweils die Betrige 1 [f(a+ 0)+f(a —0)] annehmen,
da weiters bei Beriicksichtigung einer geniigenden Anzahl von Gliedern auch
an diesen Unstetigkeitsstellen die rechte Seite der Gl. (4e) an P () eng genug
angepaflt werden kann, diese Abweichung aber endlich ist und nach dem
St. Venant’schen Prinzip in den Spannungen sehr rasch abklingt, spielt der
obige Umstand fiir die Praxis gar keine Rolle. Aulerdem ist zu bedenken, daf3
es tatsdchlich gar keine Unstetigkeitsstellen gibt. Durch die Fourier’schen
Reihen wird also das was die Natur von selber macht, rechnerisch erfaft.
Unser Losungsweg entspricht also der Wirklichkeit besser, als das mathe-
matisch exakte Integral. Wir erwéhnen noch, dafl sich unsere Losungen an
die Unstetigkeitsstellen der im obigen Sinne mathematisch exakten Losungen
genau so gut anpassen, wie dies die rechten Seiten der Gl. (4e) an die P (x) tun.

Hat hingegen die Belastung und ihre iiber die Intervallgrenzen periodische
Fortsetzung keinerlei Unstetigkeitsstellen, so stellt unsere Losung (39) auch
in rein mathematischem Sinne das exakte vollstindige Integral unseres Pro-
blems dar.

E. Praktische Anwenduhg

Wir wollen das in der Figur 1 mit seinen MafBlen dargestellte Sheddach als
mehrteiliges prismatisches Faltwerk mit 4 Gliedern fiir eine am unteren Rand
der Scheibe 13 angreifende halbseitige Vollast p berechnen. Da bei der Scheibe
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34 das Verhaltnis 2; nur !/, betrigt und in der Scheibe 13 auch griBere

achsnormale Spannungen auftreten konnen, ist die Anwendung der genauen
Membranentheorie angezeigt. Zunéchst liefert die Auswertung der Gl. (33D, ¢)
fir den Knoten 4 die Beziehung

Sk = Sasr = 0 v (58a)
Wihlt man Sy, , = X, als Unbekannte, so folgt weiter
dyy 1d

. .
Syo = V3 d Xy Sar=7 El—anj)- (58D)
= 23 = U3y
Da die Rander 1, 2 und 5 kraftfrei sind, wird weiter
| Tzs,k = T13,k = T54,k =0 (59a)
und
Sos i = Ssar = 0; Sls,k = Py. (59b)

Wir wihlen die positiven y-Richtungen der einzelnen Scheiben nach Figur 1
und entwickeln die halbseitige Belastung p nach Gl. (4e) in eine Sinusreihe.
Die Beiwerte hierfiir lauten

814=P4=0; 815=P5=—; SIG=P6=_7 (60)

wobei p und die P auf die Langeneinheit der Scheibendicke d,; bezogen sind
und somit die Dimension ¢/m? haben.

Fiir das erste Glied k=1 wird in der Folge die vollstandige Rechnung im
einzelnen durchgefiihrt, wihrend wir uns fiir die anderen Belastungsglieder
mit der Wiedergabe der Resultate begniigen wollen. Die Querdehnungszahl
wird mit m =6 angenommen.

Scheibe 13

Wir erhalten mit « = 31v0 die Beiwerte der Gl. (17a,b), (29a,b), (31a,b)
und (32a,b) zu '

a = 2,01226; b = 2,01465; ¢ = 0,0146860;

d = 0,0295006; e = 2,02950: f = 2,02934;

N = 0,0147071; N = 0,000654607;

A = 0,0297755; B = 0,0298815;

C = 1,57354; D = 1,55923, (61)

womit sich nach den Gl. (31a,b) mit GL. (59Db)

7) Neigungswinkel der Falten gegen die Horizontale 60° bzw. 30°.
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T3 =0=—0,0694074 £ £, —0,0345524 K £, +4,76329 P —4,78025 X (62a)
Ty, = +0,0345524 E B, +0,0694074 E H, +4,78025 P — 4,76329 X (62b)
und nach den Gl. (32a, b) mit Gl. (59b)
N, = 45,486157 K| —45,64799 £, +106,99202 P —106,0191 X (63a)
Ny = +45,64799 F, —45,486157 E,+106,0191 P —106,99202X (63b)

ergibt.
Scheibe 34
Die dazugehorigen Beiwerte werden jetzt mit « = ;7 nach Gl. (17a,b),
(29a,b), (31a,b) und (32a,b)
a = 2,54219; b = 2,56954; c = 0,614329;
d = 1,43990; e = 3,43990; f = 3,18387:
N =0,650631; N = 1,69592:
A = 2,08197: B = 2,13841:
C = 2,35293; D = 1,70499. (64)
Daraus folgt wieder nach Gl. (31a,b) mit Gl. (58a,b)
' 0,40 .
Ty = +0,347091 E E, +0,148085 £ E, —0,385671 ' 1; X  (65a)
y : 00,40 i
Tys = —0,148085 E By — 0,347091 £ B, —0,396079 - X (65b)
und nach den Gl. (32a,b) mit Gl. (58a,b)
0,40 .
Ny, = —7,36580 F; +7,56454 E, — 10,8491 £ X (664)
- 0,40 ..
Ny = —7,56454 B, +7,36580 E, — 15,7231 ;- X. (66b)

Scheibe 23

Fiir diese gentigen, da k,3=0,02125 klein genug ist, die einfachen, fiir
kleine « geltenden Formeln. Es wird nach den Gl. (31a’,b’) mit Gl. (58b)
und Gl. (59b)

00NN (- ¥3 0,40 .
T23=0=—0,0222001(2E2+E3)-4170’0212—5— 020" (67a)
V3 0,40
T, = +0,0222007 2F,)— 12 T, 67b
s = +0,0222007 (Hy + 2 By) — 45555795 6,90 (675)
und nach Gl. (32")
- T T 1 ‘
Ngp = Nyg = 71,5208 — (E,— ). (68)

E
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Scheibe 45

Auch hierfiir reichen wegen dem genug kleinen «,;=0,02625 wieder die
vereinfachten, einmal gestrichenen Gleichungen und wir erhalten mit Gl. (58a)
und Gl. (59b) nach GIl. (31a’)

T, =—0041233 B E, (69)
und nach Gl. (32")
Ny = Ny, = 57,8077 7} (B~ E,). (70)
Aus GL (31b’) folgt weiter
Ey=-1, k. (71)

Wir sind nun in der Lage, die Kontinuitdtsbedingungen I. Art aufzustellen.
Es wird fiir den Knoten 3

0,15 T3y + 0,20 Ty + 0,40 Ty = 0 (72a)

und fiir den Knoten 4
0,15 145+ 0,30 T, = 0. (72b)

Eliminiert man aus den Gl. (62a,b) E; und aus den Gl. (67a,b) E, und setzt
in die Gl. (72a, b) die Gl. (62b), (65a,b), (67b) und (69) ein, so ergibt sich das
lineare System

0,07962206 E E,+ 0,02221275 E E, = 6,903225 X —

| — 2,860607 P (73a)
0,02221275 E E,+0,06443367 E E, = —0,1584314 X (73b)

mit den Losungen
EE,= 96,684X—39750P (74a)
EE,=-35789X+13,703 P. (74Db)

Damit erhilt man weiter nach Gl. (62a)

EE, = +88416 X 117,039 P (74¢)
und nach Gl. (67a)
EE, = —339,821 X + 19,849 P. (74d)

Aus Gl. (71) folgt schlieBlich
EE,=+17,895X —6,852 P. (74e)

Die Kontinuititsbedingung II. Art nimmt nach Gl. (36) fiir den Knoten 3

die Form _ .

V3 Ngp+2 N3+ Ny, =0 (75)

an. Ersetzt man darin die NV durch die Gl. (68), (63b) und (66a), so erhalten

wir eine lineare Beziehung der Grofen E,, E,, B;, E,, P und X, aus welcher
man nach Elimination der £ mit Hilfe der Gl. (74a,b, ¢,d) die Beziehung
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19682,85 P = 74776,47 X (76)
mit X, =0,263223 P,

als Losung erhalt. Der Einfachheit halber wurde bei simtlichen Gleichungen
bis auf die letzte der Index k=1 nicht angeschrieben.

Es ergeben sich nun nach den Gl. (74a,b,c,d,e) die Dehnungen E der
Kanten, nach den Gl. (62b), (65a,b), (67b) und (59a) die Schubspannungs-
beiwerte 7' und nach den Gl. (63a,b), (66a,b), (68) und (70) die Verformungs-
beiwerte N der Scheibenrénder.

Auf dieselbe Weise wurde die Berechnung von weiteren 4 Gliedern durch-
gefiihrt. Dabei konnten fiir die Scheibe 34 einschlieflich vom Glied k=5 ab
die vereinfachten Formeln (17a”,b"), (29a”,b"), (31a”,b”) und (32a”,b")
benutzt werden. Die Ergebnisse sind in Tabelle I iibersichtlich zusammen-
gestellt.

Um das Verhalten der darin vorkommenden Beiwerke zu verstehen, stellen
wir folgende Betrachtung an. Belastet man nidmlich das Faltwerk mit den

Tabelle 1
k=1 k=2 9 k=3 3 - k=5 5 k=6 6 gewohnl. Falt-
o sin%x +Ps sin—sz 2P sinfﬂx& - 2P sin-zfaz 2P sin%x werk k=1,2...c
X ; + 0,263223 +0,278631 +0,294481 } 0 +0,313305 +0,315767 + 0,257384 P

1 |
EFE, J + 57,6185 | + 14,2769 + 6,2894 0 +2,2861 +1,6458 +0,633655 P .22
EE, — 69,5739 | — 18,4311 — 8,6992 0 — 3,3860 —2,3877 —0,746010 P -2
FE, | — 14,3006 | — 3,7451 — 1,6747 0 —0,5336 —0,3378 —0,153385 P .22
EE, + 4,2822 | 4+ 0,5600 + 0,0803 0 —0,0012,, —0,0009/, +0,062953 P-.2?
EE; ! — 2,1411 | — 0,2800 — 0,0402 | O + 0,00086,, -+ 0,0004,, —0,031477 P .22

r

EN, | +3358,5047 | + 224,3959 + 48,2452 0 + 17,5152 + 3,9682 +0,393520 P .24
FEN,, | —3953,1906 | —262,5886 — 55,8219 0 —8,1602 —4,0725 —0,464804 P .24
EN, 1 + 130,1131 | + 6,0245 + 0,2046 0 —0,8941 —0,8835 +0,018028 P .24
EN,g | + 134,2011 | +  5,8003 + 0,5083 0 —0,0345 —0,0121 +0,018028 P .24
EN, | + 371,8043 | + 12,1701 + 0,7752 0 —0,0042 —0,0032 +0,056370 P . 2%
EN,; | +3352,7235 | +224,0866 + 48,9378 0 +8,7032 + 3,9249 +0,393529 P-4
T, + 4,5247 | + 2,1845 + 1,4109 0 +0,8195 + 0,6750 +0,480270 Pz
Tss - 5,5993 | — 2,9609 — 2,0778 0 —1,3084 —1,0917 —0,573364 P-z
Ty ] —  4,6002 | — 11,8728 — 0,9920 0 —0,4409 —0,3443 —-0,516232 P.z
T, L+ 0,3534 | + 0,0920 4+ 0,0199 0 — 0,0004,,, —0,00044,, +0,052098 P -2
T, | — 01766 | — 0,0462 — 0,0099 0 + 10,0002, +0,0002,, | —0,026361 P-z

N,y3= Ny, fir k=6; 1. Kontrolle Ty -dyz+Tsa-dag+ Ty dyy=0 ] fiir alle Werte von k
2. Kontrolle T -dgy+ T54+dy5=0 I _
Nys=Nj, fiir k<6; 3. Kontrolle Ny« 3 + Ny -2+ Ny =0 J z:E
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k=
L
zu den Endscheiben gelegten Ebenen alle Wirkungsgrofen bis auf die Quer-
kréfte @ gleich Null. Durch diese sogenannten Nullebenen kann man sich das

Gesamttragwerk in k Teiltragwerke zerlegt denken, welche in den Punkten

L 2L
k=0, k:”l’{’k:‘k e

tretenden Auflagerdriicke dieser Teiltragwerke entsprechen den in den obigen
Punkten auftretenden Querkriften ¢ des mit der kten Welle belasteten
Gesamttragwerkes mit der Stiitzweite L. Da je zwei benachbarte Teiltrag-
werke entsprechend der Form der kten Welle gegenspiegelgleich belastet sind,
heben sich in jeder der Nullebenen die links- und rechtsseitigen Auflagerdriicke
auf. Nur in den beiden Endquerschnitten =0 und x= L sind die dort auf-
tretenden ¢ der beiden anliegenden Teiltragwerke mit den Auflagerdriicken
des Gesamttragwerkes identisch (Fig. 6).

Gliedern k= 2, so werden in den durch die Nullpunkte von sin —— x parallel

, x =L voriibergehend gelagert sind. Die dort auf-

Endscherbe

|

1] *
[ oD
Endscherbe

q

aaa

/4 L/ —te

L
Fig. 6

Man kann also die obigen gedachten Unterstiitzungen bis auf die der
Endscheiben wieder entfernen. Jedes Teiltragwerk ist dann mit einer ein-
welligen Sinusbelastung belegt, deren Amplitude gleich dem Fourier’schen
Koeffizienten P, des kten Gliedes der Gl. (4e) ist. Man erkennt also zunéchst,
daB fir die Berechnung von noch hoheren Gliedern als die der Tabelle I auch
bei den sonst schlanken Scheiben 23 und 45 die Werte von &k 7« schon so grof3
werden konnen, dall man auch hierbei mit den genauen ungestrichenen
Formeln rechnen mufl. Steigt der Gliederindex noch weiter, so geniigen von
einem gewissen k-Wert an fiur alle Scheiben die zweimal gestrichenen Glei-
chungen, und zwar um so genauer, je grofler £ wird. Da bei den von Haus aus
gedrungenen Scheiben 34 und 13 mit wachsendem Index die Biegesteifigkeit
rascher zunimmt, als bei den von Haus aus schlanken Scheiben 23 und 45,
wird sich anfangs mit steigendem k das Aufteilungsverhiltnis der unten ange-
hiingten Last p im Knoten 3 zu Gunsten der steifsten Scheibe 34 verschieben,
was sich in einem anfinglichen Ansteigen der Beiwerte der X-Entwicklung
zeigt (Tabelle I). Ungefahr von dem Index % an, von welchem fiir alle Scheiben
die zweimal gestrichenen Néherungsformeln Gl. (17a”,b”), (29a”,b"), (312", b")
und (32a”,b") verwendet werden koénnen, nehmen die Steifigkeiten der Schei-
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ben zueinander schon so gleichmiBig zu, dal} sich in der Tabelle I die Zahlen-
reihe der X immer mehr und mehr dem endlichen Grenzwert p,,, nihert, der
sich als Losung der zum Knoten 3 gehorigen Grenzgleichung ergibt. Da lings
dieser Knotenlinie keine dullere Linienlast angreift, wird nach Abschnitt D
p1=0. Die Beiwerte der zum Knoten 4 gehorigen Wirkungsgrofien nehmen,
da dieser Knoten vom Lastknoten 3 durch die sehr gedrungene Scheibe 34 gut
getrennt ist, sehr rasch ab und klingen sehr bald auf Null aus.

Um die Konvergenz unserer Losung vollstdndig zu kldren, mufl untersucht
werden, ob die Nennerdeterminanten der zu den Knoten 3 und 4 gehorigen
Grenzgleichungsgruppen von Null verschieden sind. Man erkennt sehr leicht,
daf diese fiir den Knoten 4 keine Bedeutung haben, da die dort zusammen-
stoBenden Querrandbelastungen identisch Null werden. Fiir den Knoten 3
reduzieren sie sich also auf eine Gleichung, die sich nach Gl. (37')

(m:}.)z Sa1- 0,40+ S3p- 0,20+ 8y, 0,15

m 0,75

N

u

(—1,00-1,0—-0,6375% Y3 —6-

)

(&1

_1\2 _
+ [4— (Z"-m—) ] (—1,00 Sy, —0,63751 V385, — 61 8,,) = 0

ergibt, woraus mit Gl. (58b)
~X,-a=-18375X, =0 (77)

wird. Da der Koeffizient a nicht verschwindet, ist das in dem allgemeinen
Lehrsatz angefiihrte Konvergenzkriterium erfiillt, womit die Konvergenz
unserer Losung bewiesen ist.

Es ist noch notwendig, auf den folgenden Umstand aufmerksam zu machen,
der bei der Losung von Balkenfaltwerken mit Hilfe von Fourier’schen Reihen
immer wieder beachtet werden muB. Die Resultate stellen namlich die Losung
fiir einen unendlich langen Stab dar, der

1. denselben Querschnitt hat wie der zu untersuchende Balkentriger, und

2. durch eine feldweise wechselnde, in je zwei benachbarten Feldern gegen-
spiegelgleiche Belastung belastet ist. Die Liange dieser Felder stimmt mit
der Stiitzweite L des Balkenfaltwerkes tiberein.

Fiir einen an der Grenze zwischen zwei Feldern des unendlichen Stabes
gedachten Querschnitt sind alle Wirkungsgrofien bis auf die Querkraft @ Null.
Letztere ist aber wieder mit den Auflagerdriicken des Balkentrigers identisch.
Dieser Umstand ergibt sich aus der Tatsache, daBl jede Funktion, welche in
eine Fourier’sche Reihe entwickelbar ist, periodisch sein muf3 (Fig. 7).

Wir wollen noch fiir die gedrungendste Scheibe, ndmlich fiir 34, den Ver-
lauf der Spannungsverteilungen ermitteln. Zu diesem Zwecke errechnen wir
zunidchst nach den Gl. (10a, b, c,d) die Integrationskonstanten U. Die Ergeb-
nisse sind in Tabelle IT zusammengestellt. Nun ergibt sich mit Hilfe der Gl.
(7), (11) und (12) die Funktion Y mit ihren beiden ersten Ableitungen, woraus
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Tabelle 11
k U, U, U, U,
1 —673,2973 | —114,3207 | + 50,3732 ‘ + 388,2460
2 — 17,5794 | — 10,3769 | + 6,5919 | + 17,1747
3 — 1,3972 | — 11,6106 | + 0,9475 |+ 1,9247
4 N —_ S
5 ! + 00541 | — 0,0112 | — 0,0546 | + 0,0117
6 ‘l + 0,0414 | + 0,0170 | — 0,0416 | — 0,0168

man weiter aus Gl. (8a,b,c) die Spannungen o,, o, und = erhilt. In Fig. 8a,
8b und 8c ist der Verlauf von ¥Y”, —a?Y und —o« Y’ gliedweise dargestellt,
k=
L
schnitt « gehorigen Spannungsverlauf erhilt. Errechnet man die Randspan-

nungen in den beiden Knoten 3 und 4 das einemal auf dem soeben gezeigten
Weg, das andere Mal mit Hilfe der in der Tabelle I angefiihrten Groen
E, N, T und der Gl. (14) und (19), so miissen sich jedesmal dieselben Weret

woraus man durch Multiplikation mit sin x den zu einem beliebigen Quer-
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ergeben, eine Tatsache, die man als scharfe Rechenkontrolle benutzen kann.
Aus den Fig. 8a, b, ¢ ersieht man, da@ fir k=1 der Verlauf der o, fast gerad-
linig und der der r nahezu parabolisch ist. Fiir die hoheren Glieder ist diese
Ubereinstimmung mit der Navier’schen Spannungsverteilung zwar nicht mehr
so gut. Da aber die Spannungen mit steigendem Index k selbst wieder abneh-
men, wirkt sich dies bei der Summation der Fourier’schen Reihen nicht stark
aus und man sieht, dal3 selbst bei einer so gedrungenen Scheibe, wie 34, die
gewohnliche Biegetheorie noch sehr gut erfiillt ist. Bei den anderen schlankeren
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Faltwerksgliedern 13, 23 und 45 liegen die Abweichungen hiervon unter der
zeichnerischen Strichstérke, so dafl sie gar nicht mehr dargestellt werden
konnten. 6

In Figur 8 ist die 6-gliedrige Summe Zlk P, sin

kw
L
Gleichlast p dargestellt. Die Anschmiegung der Summenlinie an die letztere
kann schon als eine sehr gute bezeichnet werden. Um fiir diese Belastung die

mit 2;? multiplizierten Spannungen und Verformungen in einen Faltwerks-

x fir eine halbseitige

querschnitt x zu erhalten, sind, entsprechend der in Figur 8 angegebenen
Koeffizienten, die Werte der Tabelle I und diejenigen der Fig. 8a,b,c fiir

k=1, 2, 3, 5, 6 mit sin% 7 % gsin—x, Ssin oo, gsin%rx zu
multiplizieren und hernach zu addieren. Auf diese Weise wurden fiir den
Querschnitt x = L/2 die Spannungsverteilungen der Scheibe 34 errechnet und
in die Fig. 8a,b,c punktiert eingetragen. Sie weichen von der Navier’schen
Verteilung fast iiberhaupt nicht ab.

Behandelt man nun das Tragwerk nach der gewohnlichen Faltwerks-
theorie, d.h. unterdriickt man die Wirkung der Spannungen ¢, und rechnet
mit von Knoten zu Knoten geradlinigen Verteilung der o,, so mufl man bei
allen Scheiben und allen k die einmal gestrichenen Gleichungen (17a’,b’), (29),
(31a’,b’) und (32") der weiteren Ermittlung zugrunde legen. Es ergibt sich
dabei, dal3 die Beiwerte der Unbekannten X fiir alle k denselben Wert anneh-
men. Die Zahlenrechnung ergibt im besonderen

. 277 - 317 . T
x, sin=" . ! :

Xk=0’257384pk; k=1,2, ...OO, (78)

d.h. die Randquerbelastungen p, und p,, sind der Belastung p selbst affin,
eine Tatsache, welche aus der gewohnlichen Faltwerkstheorie schon bekannt
ist. Der in Gl. (78) angefiihrte Beiwert ist etwas kleiner als der zu £ =1 gehorige
Beiwert in Tabelle I fiir die Unbekannte X. Dieses Ergebnis ist einleuchtend,
da die nach der Navier’schen Spannungsverteilung gerechneten Verformungen
der Scheibe 34 grofler sind, als die nach der exakten Elastizitdtstheorie ermit-
telten Scheibenrandverformungen, eine Tatsache, die sich daraus erklirt, da@
durch die gewohnliche Biegetheorie nicht alle vorhandenen Reserven einer
solchen Scheibe erfaflt werden. Infolge der grofleren Nachgiebigkeit der
Scheibe 34 iibernimmt diese dann auch nur einen entsprechend geringeren
Anteil der am unteren Rand der Scheibe 13 angehingten Gleichlast p.

F. SchluBbetrachtung

Vergleicht man den Beiwert der Gl. (78) mit den X-Beiwerten der Tabelle I,
so findet man, dal} trotz Verschiedenheit der einzelnen « die Aufteilung der
halbseitigen Last p auf die in dem Knoten 3 zusammenlaufenden Scheiben 13,
23 und 34 nahezu unveridndert bleibt, gleichgiiltig ob man das Faltwerk nach
der exakten Membranentheorie oder mit von Knoten geradlinig verlaufender
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Verteilung der achsparallelen Normalspannungen berechnet. Erinnern wir
uns noch, daB die mit Hilfe der Airy’schen Funktion ermittelten Spannungen
von der Navier’schen Biegetheorie ebenfalls wenig abweichen, so erkennen
wir allgemein den geringen Unterschied zwischen der exakten und der gewohn-
lichen Faltwerkstheorie. Dieser ist aber um so grofler, je grofler und je ver-

schiedener die die Schlankheit charakterisierenden Koeffizienten « = z der
einzelnen Scheiben sind.

Diese Erkenntnis gilt zunichst fiir die Malverhiltnisse des im vorigen
Abschnitt durchgerechneten Tragwerkes. Dariiber hinaus gilt sie im allge-
meinen auch fiir die iibrigen Faltwerke. Werden aber die « noch gréfler und
voneinander noch verschiedener, was z.B. bei hochwandigen Bunkern vor-
kommen kann, so wachsen die Unterschiede oft bis zu 20 bis 259, an. Man muf}
dann von der ,,exakten Membranentheorie der Faltwerke‘* Gebrauch machen.

Mit dieser und den iibrigen Abhandlungen des Verfassers ist die Theorie
erster Ordnung der prismatischen gelenkigen Faltwerke, mit ldngs der
Abszissenachse x konstant bleibenden Scheibendicken d, abgeschlossen.

Zusammenfassung

Fiir Faltwerke, bei welchen die Héhen der einzelnen Falten gegeniiber der
Lange grofl sind, miissen Untersuchungen angestellt werden, ob die iibliche
Berechnung unter Zugrundelegung einer von Knoten zu Knoten geradlinigen
Verteilung der achsparallelen Spannungen o, noch zutreffend ist. Die Behand-
lung dieser Frage nach der genauen Elastizititstheorie mittels Airy’scher
Spannungsfunktionen fithrte zu der exakten Membranentheorie prismatischer
Faltwerke. Die Losungen werden in Form von Fourier’schen Reihen wieder-
gegeben. Es wird hier erstmalig allgemein nachgewiesen, daBl diese immer
dann konvergieren, wenn dies die analogen Entwicklungen der &ulleren
Belastungen tun, und wenn die Nennerdeterminanten der Grenzgleichungen
nicht Null werden. Alle Ergebnisse sind exakt, wenn die beiden Auflager-
scheiben in ihrer Achsebene vollkommen starr und normal hierzu vollkommen
biegsam sind. Die Divergenzstellen, welche bei Einzellasten in deren Entwick-
lungen auftreten, erscheinen nur in denjenigen Faltenrindern wieder, welche
in der von der Einzellast ergriffenen Kante liegen, wéihrend in allen iibrigen
Réndern ein stetiger Verlauf siémtlicher Kraftwirkungen herrscht. Dieses
Verhalten der Faltwerke wurde durch die iibliche Rechnungsweise bisher
nicht erfaflt.

Beziiglich der Spannungen und der Verbindungskrifte zeigt die genaue
Theorie nicht sehr starke Abweichungen von der bisherigen.

Résumé

Dans le cas des systémes constitués par un ensemble de parois portantes
dont les hauteurs sont grandes par rapport a la longueur, il est nécessaire de
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procéder & des investigations pour déterminer si le mode de calcul habituel,
tablant sur une répartition linéaire de nceud en nceud des contraintes o,
paralléles & I’axe, peut encore étre valablement appliqué. L’étude de ce pro-
bléeme suivant la théorie exacte de 1’élasticité, a 1’aide des fonctions de con-
trainte d’Airy, conduit & la théorie exacte des membranes pour les poutres-
cloisons prismatiques. Les solutions sont données sous la forme de séries de
Fourier. Il est ici démontré pour la premiére fois, d’une maniére générale,
que ces séries sont toujours convergentes lorsque les développements analogues
des charges extérieures le sont eux-mémes, et lorsque les déterminants des
dénominateurs des équations aux limites ne s’annulent pas. Tous les résultats
sont exacts lorsque les deux plaques d’appui sont parfaitement rigides dans
leur plan axial et parfaitement flexibles normalement & ce plan. Les points de
divergence qui se manifestent dans ces développements en cas de charges
isolées n’apparaissent que dans les zones marginales qui se trouvent sur
I’aréte intéressée par une charge isolée, tandis que dans les autres zones margi-
nales, les actions exercées par les forces accusent toutes une allure continue.
Ce comportement des ensembles de parois portantes n’avait jusqu’a mainte-
nant pas été étudie par le mode de calcul habituel.

La théorie exacte traitée ici ne présente pas d’écarts trés marqués par
rapport aux théories antérieurement appliquées, du point de vue des con-
traintes et des efforts de liaison.

Summary

For prismatical structures composed of thin plates, where the heights of
the separate plates are big in comparison with the lengths, investigations must
be made to ascertain whether it is still justifiable to make the usual cal-
culation under the assumption that the stresses o, parallel to the axis are
rectilinearly distributed from joint to joint. The treatment of the question
according to the exact theory of elasticity by means of Airy stress functions
would lead to the exact membrane theory of prismatical structures composed
of thin plates. The solutions are given in the form of Fourier series. It has here
for the first time been shown in general that these series always converge
when the analogous developments of the external loads converge, and when
the denominator-determinants of the boundary equations do not become zero.
All results are accurate if the two stiffening diaphragms are absolutely rigid
in their axial plane and can freely bend normally to that plane. The diver-
gence places, which occur in their developments in the case of single loads,
reappear only in those edges which lie in the border acted on by the single
load, whilst in all other edges all forces act uniformly. This behaviour of
prismatical structures composed of thin plates has not hitherto been taken
into consideration in the usual methods of calculation.

With regard to the stresses and the connecting forces, the exact theory
‘does not show any very great deviations from the theory hitherto in use.
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