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Die genaue Membranentheorie der prismatischen Faltwerke

La theorie exacte des membranes dans le cas des poutres-cloisons prismatiques

The exact membrane theory of prismatical structures composed of thin plates

Dr. Ing. habil. Ernst Gruber, Eidingen

A. Allgemeines

Faitwerke sind schalenartige Gebilde, die sich nur aus ebenflächigen Teilen
zusammensetzen. Bilden mehrere von diesen die Mantelfläche eines geraden
Prismas, so spricht man von prismatischen Faltwerken. In Figur 1, die ein
derartiges, als Sheddach geformtes Gebilde darstellt, ist ein rechteckiges Falt-
werksglied der Mantelfläche durch Einzeichnung eines Elementarelementes
hervorgehoben (Fig. ld). Schneidet man aus diesem ein Volumselement djdxjdy
heraus (Fig. 2 a) und nimmt, wie es in der allgemeinen Plattentheorie üblich ist,
die Verteilung der Spannungen über die Plattendicke d als geradlinig an, so werden

die in der Figur 2 b dargestellten inneren Kräfte frei. Da bei Faltwerken die

Verhältnisse -r und ^- immer sehr klein sind, ist auch die Drillingssteifigkeit
der einzelnen Faltwerkscheiben sehr gering, weshalb die Momente My^ und
MJT) mit genügender Genauigkeit ganz unterdrückt werden können. Ist
außerdem -=- kleiner als ungefähr 1/2 bis 1j3, so wird die Biegesteifigkeit der

Platte über die Stützweite L so gering, daß die dazugehörigen inneren
Kraftwirkungen Mxy und Qyz fast vollkommen verschwinden. Durch die Stützung
der Platten an den Endscheiben können jedoch in den, den Letzteren unmittelbar

anliegenden Faitwerksteilen, diese Mxy und Qyz auch größere Werte
erreichen. Da aber KraftWirkungen, die in der Nähe der Auflager ihren Sitz
haben, auf die Mitte eines Tragwerkes sehr wenig Einfluß ausüben, ist diese

Störung auf das Gesamtergebnis fast vollkommen belanglos. Trotzdem ist es

oft ratsam, diese örtlich begrenzte Anomalie bei den Anschlüssen der dünnen
Faitwerksscheiben an die starken Endscheiben konstruktiv zu berücksichtigen,
besonders dann, wenn diese Verbindungen kantensteif ausgeführt werden.
Greifen die äußeren Lasten nur längs der Schnittlinien der Scheibenmittel-
ebenen an und sind die einzelnen Scheiben längs dieser Knotenlinien n nur
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Die genaue Membranentheorie der prismatischen Faltwerke 131

durch scharnierartige Gelenke miteinander verbunden, so entfallen außerdem
die Myx und Qxz, so daß nur mehr die in der Mittelebene wirkenden
Membranenspannungen Qxy Qyx Q T'd, sx ax-d und sy cry-d übrig bleiben.

tndschetbe

tndsche.

(T)
Qxv=T-d

5_=<^y v
Sx 6x.d

Fig. 2 a Fig. 2 b

Aus konstruktiven Gründen bildet man jedoch die Kanten nicht gelenkig,
sondern steif aus, d.h. die Myx und Qxz verschwinden nicht mehr ganz.
Dadurch tritt eine Trübung der sonst klar vorhandenen Membranwirkung auf,
die um so erheblicher wird, je mehr die Myx und Qxz von Null abweichen. Da
diese einerseits mit der Scheibendicke d abnehmen und andererseits um so
kleiner werden, je kleiner die elastischen Gestaltsänderungen der zu den
Endscheiben parallelliegenden Querschnitte des Faltwerkes sind, tritt bei steifen
Knoten die MembranWirkung um so vollkommener ein, je dünner die einzelnen
Scheiben und je starrer die Faltwerksquerschnitte sind. Letzteres ist der Fall,
wenn unter anderem

1. die Tragwerke durch Querscheiben genügend versteift oder
2. die Querschnitte als in sich geschlossene Formen ausgebildet werden,

wie z. B.
a) als einfache Ringe oder
b) als ein- oder mehrteilige Zellenwerke.

Bei den Letzteren tritt diese Wirkung besonders dann stark zu Tage, wenn
die Achsfigur des Zellwerksquerschnittes die Form eines unverschieblichen
Fachwerkes hat.

Da die Myx und die Qxz mit den Scheibendicken sehr rasch abnehmen,
diese aber meistens sehr gering sind, kann man auf Grund der vorhergegangenen
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Betrachtung wohl sagen, daß die oben erläuterte Membranwirkung fast immer
nahezu vollkommen erreicht werden kann. Die Bedingung, daß die Lasten nur
längs der Kanten n angreifen dürfen, muß aber dabei stets erfüllt sein.

Im Gegensatz zu den stetig gekrümmten Schalen sind bei den ebenflächigen
Faltwerken die Membranspannungen Q, sx und sy aus den Gleichgewichts-
bedingungen allein nicht mehr zu ermitteln. Um die deshalb notwendig werdenden

elastizitätstheoretischen Untersuchungen zu umgehen, nahm man bis
jetzt immer die Verteilung der zu den Scheibenachsen parallel gerichteten
Membranspannungen sx von Knotenlinie zu Knotenlinie geradlinig an. Ist die

Höhe 2 h der betreffenden Scheibe kleiner als -^ bis —, so stimmt diese
o 7

Annahme sehr gut mit der Wirklichkeit überein, und zwar um so besser, je
schlanker das Verhältnis -=r- ist. Wird aber -=- > - bis -, so führt die An-

Li __/ D 7

nähme der geradlinigen SpannungsVerteilung zu unrichtigen Ergebnissen und
man muß zur exakten Erfassung der Membrankräfte auf elastizitätstheoretischer

Grundlage schreiten.
Wir werden in den nächsten Abschnitten dieser Abhandlung diese

Entwicklungen für das prismatische Faitwerk durchführen. Die Behandlung
derselben Aufgabe für die pyramidenartigen Faltwerke wird zu einem späteren
Zeitpunkt erfolgen1).

B. Genaue Ermittlung der inneren Membranspannungen und der

Verformungen einer einzelnen Faltwerksscheibe

Da die Qxz und die Myx entsprechend den vorangegangenen Betrachtungen
verschwinden sollen, werden von einer Scheibe zur anderen nur die in den
Schnittlinien der Scheibenmittelebenen wirkenden Schubkräfte t übertragen.
Weiters zerlegt sich eine in einer beliebigen Knotenlinie angreifende, stetig
verteilte Transversallast P in die ebenfalls stetig verteilten Belastungen pV)fji,
deren Wirkungsebenen ebenfalls mit den Mittelebenen der von dieser Kante
ausgehenden Scheiben zusammenfallen. Laufen in letzteren mehr als 2 Falt-
werkselemente zusammen, so ist diese Aufteilung statisch unbestimmt2). Löst
man durch längs der Knoten s und r geführte Schnitte die Scheibe s r aus dem
Faltwerksverband, so werden für deren Ränder r und s die inneren Kraft-

x) Die Behandlung der pyramidenartigen Faltwerke bei Annahme einer von Knotenlinie

zu Knotenlinie geradlinigen Spannungsverteilung wurde vom Verfasser bereits in
der Abhandlung „Berechnung pyramidenartiger Scheibenwerke und ihre Anwendung
auf Kaminkühler" behandelt. Sie erschien in Band 2 der „Abhandlungen" der
Internationalen Vereinigung für Brücken- und Hochbau, Jahrgang 1934.

2) Siehe die Arbeiten des Verfassers ,,Die Berechnung äußerlich statisch unbestimmter
Scheibenwerke", Band 3 der „Abhandlungen" der Internationalen Vereinigung für
Brücken- und Hochbau, Jahrgang 1935, und „Hohlträger als Faltwerke", Band 7 der
„Abhandlungen" der Internationalen Vereinigung für Brücken- und Hochbau, 1944.
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Wirkungen ts, ps, tr und* ^ frei und erscheinen als äußere, in der Mittelebene
wirkende Belastungen (Fig. 3). Diese erzeugen den ebenen Spannungszustand
gx, oy, r, für welchen wir die dazugehörige Airy'sche Spannungsfunktion zu
ermitteln haben. Diese muß zunächst die bekannte partielle Differentialgleichung

4ter Ordnung

(i)

3) Massenkräfte sollen keine vorhanden sein.
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befriedigen. Mit den nun folgenden Spannungen

_
d2F

_
82F d2F

Gy~~d^2' Gx~~ dy2' T~ dxdy
ergeben sich die Randbedingungen für die Scheibe r s in der Form

füvy +h (3a)

d2F

d2F
T-d — -z—— -d t8dx dy

d2F

d2Fr-d - -—— »d trdx dy

für y -h (3b)

d*F
dy2

0 für x 0 und x L (3c)

dr(rdy AQ (3d)
-h

d J rdy AL, (3e)

wobei _40 und AL die Auflagerdrücke an den beiden Endscheiben bedeuten.
Hierbei ist zu beachten, daß die ax, ay und die r auf die Flächeneinheit und
die ps,pr, ts und tr auf die Längeneinheit der Abszisse x bezogen sind. Entwickelt
man die Randlasten ps, pr, ts und tr sowie die Linienlast P wie folgt in
Fourier'sche Reihen

Vs dlj ssksin nr x (4a)

00 h
pr d 2]k Srksin-y- x (4b)

o -Lf

ts d 2/ ^sin -y- x (4c)

00 7

tr d 2/ 2J.&sni "T-x (4c0

00 7

P d 2^ -ffc sin ~r~ # (4e)

und belastet die Scheibe nur mit den yfcten Gliedern dieser Entwicklungen, so

führt, wie die weitere Rechnung zeigen wird, der für die dazugehörige
Spannungsfunktion gewählte Ansatz

Fk Ykam-£x (5)
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zu einer Lösung, die man allen Randbedingungen anpassen kann (Fig. 3).
Hierbei bedeutet Yk eine noch zu bestimmende reine Funktion von y. Setzt

k TT

man Gl. (5) in Gl. (1) ein, so folgt nach Kürzung durch sin- x für Yk die

gewöhnliche lineare homogene Differentialgleichung 4ter Ordnung.

Ykir-2*k*Yk' + «k* 0; «* ^. (6)

Da die zum üblichen Ansatz Yk ePkx gehörige charakteristische Gleichung
(pk2 — ock2)2 0 die beiden Doppelwurzeln plk= +ock; p2fc=—afc na^ erhalten
wir das allgemeine Integral von Gl. (6) in der Form

Yk (ülk+ | U2k) <5m*ky+ (üsk + | Uik) (Eof «*y. (7)

Bringt man nun mit Hilfe der Gl. (5) die in Gl. (2) dargestellten Spannungen
in die Form

axk Yk" sin ock x (8 a)

<*yk -ock2Tksüiockx (8*>)

rk =—ockYk cosakx, (8c)

so folgen daraus mit Hilfe der Gl. (4) die den Gl. (3a) und (3b) entsprechenden
4 Randbedingungen

Yk( + h) -~Ssk; Yk(-h) -—2Srk (9a, b)
ak ak

r*( + A) -—2U; Yk'{-h) -±-Trk, ¦ (9c, d)
<xk <xk

aus denen sich die 4 Integrationskonstanten Ulk, U2k, U3k und U4k der
allgemeinen Lösung (7) zu

Uik 7 ^—ö—^r (Ssk-Srk) (@inaÄ.Ä+ —-^r—\
92/1 ®m2akh\ [v rk'\ cckh l

U™ 7
Witt

9 „ h\ U8<* + S^ SiTt "* h ~^ ~ Trk) &<>\ «k A] (10b)

-(Sslc+Srk)^o^kh+^^jU3k

V 2<ZfcÄ 7 +(Tsk-Trk) ©in afrAJ
(10c)

f/4fc 7 L„9- m [-(^-^Jgofa^ +^ + y^Sin«^] (lOd)

10 Abhandlungen XI
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ergeben. Dabei wurde die erste Ableitung von Yk in der Form

_V p)p +ock^U3k+ | C/lfc)] <S\n«ky

+ [^ + «fc (t/lfc+ | *72fcj] _of «ty (11)

benutzt, aus welcher sich durch nochmalige Differentiation und nach einigen
Umformungen die zweite Ableitung von Yk zu

Yk" ^Yk+2^-(Uik®inocky+U2k^o\aky). (12)

ergibt. k

Da $moLkx für x 0 und x L Null wird, werden nach Gl. (8a) die ax an
diesen Stellen ebenfalls Null, so daß auch die Randbedingungen Gl. (3 c)
erfüllt sind. Aus

+h +h Sj,-Sj,
J rdy —ock cos ock x j Yk dy —— — cos ock x
-h -h a>k

ergeben sich für x 0 und x L die Auflagerdrücke

A0= S^"Srkd; AL Ssk~Srkd(-l)k. (13)
afc *k

Errechnet man andererseits diese aus den durch die kten Glieder gebildeten
Belastungen nach dem Hebelgesetz auf gewöhnliche Weise, so gelangt man
wieder zu den Werten der Gl. (13). In diesen erscheinen die zu den
Schubbelastungen ts, tr gehörigen Reihenkoefhzienten Tsk und Trk (Gl. (4c) und (4d))
überhaupt nicht, da sich entsprechend der Form der dazugehörigen Cos-
Wellen die Schubspannungen längs eines Scheibenrandes gegenseitig aufheben
und daher an den Endscheiben keine Auflagerdrücke erzeugen können (Fig. 3).
Somit sind auch die beiden letzten Randbedingungen (3d) und (3e) erfüllt.

Hiebei wurde aber für die Auswertung dieser Gl. (3d) und (3 c) die durch
die Gl. (8c) festgelegte Verteilung der Schubspannungen zu Grunde gelegt.
Dies ist im allgemeinen zunächst nicht zulässig, da die letztere an den
Auflagern von der Lagerungsart der einzelnen Scheiben an den Endquerschnitten
wesentlich abhängt. Da aber nach dem St. Venant'sehen Prinzip solche örtlich
bedingten Abweichungen in der Spannungsverteilung auf in der Nähe der
Endquerschnitte liegende Bereiche beschränkt bleiben, wirkt sich diese, für
die Auflagerrandbedingungen getroffene Näherung, in der Praxis kaum aus.
In diesem Sinne können dann alle Randbedingungen als erfüllt betrachtet
werden.

Die Gl. (7) stellt also dann im Zusammenhang mit den Gl. (10a, b,c, d)
eine Lösung für die mit dem &ten Glied belasteten Scheibe sr dar, die nur in
der Nähe der Auflager etwas von der Wahrheit abweicht.
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Um die inneren Kraftwirkungen p und t, die die einzelnen Scheiben erst
zu einem Faltwerk verbinden, bestimmen zu können, müssen wir die
Verformungen einer Scheibe angeben können. Zunächst ergibt sich die bezogene
Dehnung in Richtung der x-Achse zu

€xk dx!=i(°--5r)- <">

woraus mit Hilfe der Gl. (8a, b), Gl. (7) und Gl. (12)

€xk==Ti=~wr* ~nr Yk+**)sm*kX (15)

wird. Bestimmt man nun den Wert dieser Funktion an der Stelle y, so ergibt
sich, daß die waagrechten Dehnungen einer jeden im Abstand y zur #-Achse
parallel verlaufenden Geraden den Verlauf einer Sinuslinie folgen. Für den
oberen bzw. unteren Scheibenrand folgt also mit y=±h

+ j(+U2k&o]otkh±U4k(SinGckh)\ $m<xkx. (16)

Ersetzt man nun die Uk durch die Gl. (10a, b, c, d), so erhält man nach
mehreren Umformungen die Amplituden der vorhin definierten, zu den
Rändern r und s gehörigen Sinuslinien zu

EshJsk NkE

rk N^E
wenn

h

"kSsk-hSrk-%—(dkT3k + ckTrk)\ (17a)
fv TT K J

-bkSsk + akSrk+ ^(ckTsk + dkTrk)\^, (17b)

AT _
/(&in2Jc7TK\2 _m+l m—l /(Bin2k7TK\2^" Y2k^r) ~i; ak~~^nrJr~~nT\ 2JC7TK

]

r i.(3in2k7TK rrr^T ©ttt 2 h TT K ©ttl 4 k 77 K
bk= 2 ——= ; ck ©of 2krrK- -—^ -; dk ——1 1

bedeutet. Der Verlauf der Dehnungen selbst ergibt sich dann zu

€9k Esrsinockx. (18)
rk rk

Entsprechend der Gl. (14) und unter nochmaliger Benutzung der Gl. (8a, b),
Gl. (7) und Gl. (12) erhält man die bezogene Dehnung in Richtung der y-Achse

^Vk 1 / <*rk\ 1 /^— 1 Tr /, ^\ • ,__w

Drücken wir die Schubspannung rk ebenfalls durch die Verzerrungskomponenten
£ und rj aus, so ergibt sich mit Gl. (8c)
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¦xr, mE /drik dgk\ /cx^rk -ockYkQO$(XkX — TX\-^ + -^ä)' 20)k k k k 2(m+l)\dx dy J v '

Differentiert man Gl. (15) einmal partiell nach y und zieht diesen Wert von
der einmal partiell nach x differentierten Gl. (20) ab, so folgt

d2rjk sin cckx d l 2m+l \
Jx^-~~^~'dy[ak ^mTYk~Yk )' (21)

Die zweimahge partielle Integration dieser Gleichung nach x ergibt nach
vorheriger Zuziehung der Gl. (12)

Vk(x,y) -~-Tjrj7I Uk*——Yk-0k) +f1(y) + xf2(y), (22)

wenn /x(y) und /2(?/) willkürliche Funktionen von y sind. Für y 0 erhalten
wir die Biegelinie der Scheibenachse in der Form

Vk(x,O) -^~^(ock^n^Yk'-0k^ +fA0) + xft(0), (22')

woraus mit den Randbedingungen r)k (x, 0) 0 für x 0; x L /x (0) f2 (0) 0

folgt. Aus Gl. (19) ergibt sich nun durch partielle Integration nach y
1 f Im +1 \

Vk (*>») - -g sin afc x J (—^ F/ ~ ®k) dy + f{x). (23)

Setzt man in den Gl. (22) und (23) y 0 und vergleicht diese beiden Ergebnisse
miteinander, wobei / (x) eine willkürliche reine Funktion von x ist, so erhalten
wir unter Berücksichtigung von f1 (0) =/2 (0) 0 / (x) in der Form

><*>si [-^7*'+ ^*'+1(^ r*'-**)dy]sina**s °- (24)

Die lotrechten Verschiebungen jeder in Abstand y parallel zur x-Achse
verlaufenden Geraden liegen also auf einer Sinuslinie, die man nun wegen
f(x)==0 einfach aus

Vk («, y) -~E IrrT Yk " J 0k dy\ Sin afc X (25)

erhält. Setzt man hierin y 0, so folgt zunächst mit Gl. (11)

Vk(x>°) jE\^ sinockx, (26)

woraus sich mit Gl. (10a) und (lOd) die Biegelinie der Scheibenachse zu

/ ~x Lsinakx f. _, „ /m+1 _, 7 ^_ r7 \
,fc(_,0) /@{n2^ r ¦ [(««ft-«,.*) ^-^-©m*„K + 2(5;oy„„KJ

-(^ + ^)(-wrM^K + -wr-^-^-jj (27)
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ergibt. Setzt man dagegen in Gl. (25) y=+h bzw. y=—h, so folgen zunächst
die Beziehungen

±^„fc(C/3fc±?74&)@m«fcÄ+^a,(C7lfc±?72fc)_oj«^]- (28)

Daraus erhält man mit den Gl. (10a, b, c, d) die Amplituden der sinusförmig
verlaufenden lotrechten Bewegungen des oberen bzw. unteren Scheibenrandes

zu

Nsk mrk [krTK{6k Ssk ~fk Srk)"ak Tsk"bk Trk\ (29 a)

krrl r 1 i^ ^^ [w ('* s*k ~Ck Srk) ~bk Tsk ~ ak Trk\' (29 b)

wobei für die dabei neu hinzugekommenen Koeffizienten

@ttl 4 ß 77 ac rr ©tri 2 ä; tt /c
ek= ~1Ti +1; //_ ©Of 2ÄT7T/C+ —-=4:k7TK lh ' 2klTK

gilt. Der Verlauf der Verschiebungen selbst ergibt sich dann zu

Vsk Nsksin*kx. (30)

Da für x 0 und # Z> sin ak x 0 wird, folgt, daß die lotrechten Verschiebungen

in den beiden Auflagervertikalen gänzlich verschwinden, so daß dort
nur waagrechte Bewegungen stattfinden. Diese Tatsache entspricht den Auf-
lagerbedingungen der einzelnen Scheiben an den Endscheiben, wenn man
letztere in idealem Sinne in ihren Ebenen als vollkommen starr und aus ihren
Ebenen als vollkommen biegsam annimmt, was bei der konstruktiven
Ausbildung nahezu vollkommen verwirklicht werden kann. Ist also das Faltwerk
an den beiden Enden durch solche ideale Querscheiben zusammengefaßt, so
erfolgt die Verteilung der Schubspannungen an den Auflagern genau nach
der Gl. (8c). Die Gl. (7) ist dann in Verbindung mit den Gl. (10a, b, c,d) die
exakte Lösung für die mit dem &ten Glied belastete Scheibe rs und weicht an
keiner Stelle mehr von der Wahrheit ab.

Für die Betrachtung des nächsten Abschnittes ist es zweckmäßig, N8tk,
Nrk, Tsk und Trk als lineare Funktionen der E8tk, Er>k, 8S}k und Srk
auszudrücken. Man erhält zunächst durch Auflösung der Gl. (17a) und (17b)

[Nk E (dk Esk + ek Erk) - Ak Ssk + Bk Srk] (31a)

[Nk E (ck Esk + dk Erk) + Bk Ssk -Ak Srk] (31b)

nach _TÄ k und Trk

*sk ~ ~
klT K

Trk +
kn k

ük
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"* *> - (ts^F)'- ('+ «sk?) «*»•« - *"-*¦=
^fc «fc 4 - 6*; cA-: -S* fc*; 4 - ak ck.

Setzt man diese Werte in Gl. (29a) und (29b) ein, so wird weiter

Nsk A [^ Esk-Bk Erk] + ^~ [Gk Ssk-DkSrk] (32a)

Nrk A_
[_?,. ^ -Ak Erk\ +^ [Dk Ssk - Ck 8rk], (32b)

wobei
* k

Ck A [2 ak bk ck - dk (ak* + bk*)] +^' k

r,» l„ 2 i U 2\ O ^ k ,7 1 /fe^ ^r ^ («*a + V) - 2 afc 6, _fc] + ^^ ^
bedeutet.

Man könnte nun in den Gl. (7), (11) und (12) für die Integrationskonstanten
U die Werte der Gl. (10a, b, c, d) einsetzen und so mit Hilfe der Gl. (8a,b,c)
Formeln erhalten, aus welchen man die Spannungen direkt berechnen könnte.
Dieser Weg ist jedoch unzweckmäßig, da die so entstehenden Ausdrücke sehr
unübersichtlich werden. Man kommt rascher zum Ziel, wenn man nach der
im nächsten Abschnitt gezeigten Berechnung der 8 und T die Integrationskonstanten

U zahlenmäßig ermittelt und mit diesen Werten in die Gl. (7),
(11) und (12) bzw. (8a, b und c) geht.

Setzt man in den GL (17a, b), (29a, b), (31a, b) und (32a, b) m oo, so

gehen diese für kleine k bei Vernachlässigung der Glieder mit den zweiten und
höheren Potenzen von k mit großer Annäherung über in

3 1

Esk YWtt2^2^ (Ssk ~ Srk) ~ krvKE (2 Tsk + Trk) (17 a)

3 1
Erk "Ttv^'^"^"1" ¥nVE^Tsk+2Trk) (17b)

1 1 - 1 3 3

J N*k J N°k
Yrs

Xk JW^WE {Ssk ~ Srk) ~ ¥W^^E {Tsk + Trk) (29'}

Tsk - ^p (2^. + Erk) + j^ (Ssk - 8rk) (31 a')

Trk + ^ (Esk + 2Erk) + ¥1— (Ssk - Srk) (31b')
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In diesen Formeln sind die Einflüsse der Querdehnungszahl m und der ay
insbesondere in Gl. (29') und (32') nicht mehr enthalten. Macht jedoch die
Eigenart der gerade vorliegenden Aufgabe die Kenntnis der Dehnungen quer
zu den Scheibenachsen auch bei schlanken Scheiben notwendig, so sind die

genauen Beziehungen Gl. (17), (29), (31) und (32) oder die in der Abhandlung
des Verfassers ,,Hohlträger als Faltwerke" angegebenen sehr gut genäherten
Gleichungen zu benutzen.

Werden hingegen die Werte von 2kn k größer als etwa 5, so wird mit
sehr großer Annäherung ©in2kirK ©of 2k-nK \e2k7TX. Nach einigen
Umformungen gehen dann bei Vernachlässigung sehr kleiner Summanden gegenüber

sehr großen die Gl. (17a, b), (29a, b), (31a,b) und (32a, b) über in

EEQh
m-

m
_<? _J_

sk Na

EErk
2 m

WZ*sk+~

8rk -2 [Tsk + y- (l - ^—) TTk\

- Srk + 2 [A- (l - 2-A-j Tsk + Trkj

ENsk k

ENrk k

L
TT

L_
TT

{2[Ä-*-_^(1 + 2fc^)Ä'*J ™~l rp
2

m sk N„ rk

Tsk -\E [Esk+ A- (l - ^A-j Erk]

(m
+1 1 m — 1 \

m 2knK m rk)
1 m — 1

Q+ "ö" "^ ^sk 2Na

Trk + i# [^ (l " 2^) Esk+Erk]

1 /m+1 1 m —1\ 1 m—1 \
+ YWn \~^T + ~2krr~K ~m~~) sk~~ ~2 ~~m~~ rk)

2kTTK m—1 1 /m+1 1 m—1\
~/T~ 'tfc== ~x~ sfc~^\~^+2w ~m~) rk

+ _£

/m — ly
\ m /

Ssk
EN«

2knK
_

1 /m+1 1 m—1\ m—1
"X" r/c " i^o \~»T + JItTk ~nT) sk~ ~nT~ rk

wobei N„
g2/C7TK

sein soll.

(17a")

(17 b")

(29a")

(29 b")

(31a")

(31b")

(^'('-abH^K <»*¦>

(32 b")
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Die Beiwerte a,b,c,d,e,f, A,B,C,D,N,N und N^ sind nur von k und k
abhängig und können daher in zweidimensionalen Tabellen ein für alle Mal
für alle rechteckigen Faltwerksscheiben berechnet werden.

C. Die Ermittlung der Lösung

Legt man um die Knotenlinien von Endscheibe zu Endscheibe reichende
röhrenförmige Schnitte mit unendlich kleiner Innenfläche A f, so muß für die
dadurch freiwerdenden Schnittkräfte t und p am Knotenfragment
Gleichgewicht bestehen (Fig. 1). Trennt man von diesem wieder durch 2 voneinander
um dx entfernte Ebenen ein Linienelement von der Länge dx ab, so greifen
an den dazugehörigen Ringschnittflächen einerseits die knotenparallelen
Kräfte a-Af und andererseits die dazu senkrecht stehenden Kräfte r-Af an.
Da diese beiden Wirkungen mit A f unendlich klein von 2 ter Ordnung werden,
lauten für die Men Glieder der Entwicklungen Gl. (4a, b, c, d) die
Gleichgewichtsbedingungen in Richtung parallel bzw. normal zur Knotenlinie

k>t m

2/ drp Trpk sin
"27 X _EP drp Trpk ° (33 a)

bzw.
m k

[Prkcos ß + 2/ drp Srpk cos arp] sin -=- x 0 (33 b)

m k
[Prk sin ß + ]>/ drp Srpk sin <xrp] sin -^ x 0, (33 c)

wenn m Scheiben in einem Knoten r zusammenlaufen (Fig. 4). Der erste
Index der Glieder der 2ten Summen gibt jeweils den Knoten an, an welchem
die T bzw. 8 anliegen, während der erste und zweite Index zusammen jeweils
diejenige Scheibe bestimmen, zu welcher die einzelnen Größen gehören. Da die
achsparallelen Verschiebungen der einzelnen Scheiben an jedem Knoten
punktweise übereinstimmen müssen, sind die Amplituden E der bezogenen
Dehnungen ex der Gl. (18) der am Knoten r anliegenden Scheibenränder alle
untereinander gleich, und zwar gleich Er. Setzt man daher in Gl. (33a) die
Gl. (31a) und (31b) ein, so ergibt sich für jeden Knoten die Beziehung

mm mmEEr Y?<JP + E ]>> h„ Ep 2> V 8rp + 2" jp Spr, (34)11 11welche wir in Anbetracht der obigen Darlegungen Kontinuitätsbedingungen
I. Art nennen wollen. Für eine schubspannungsfreie Randkante z.B. 1, 2 und
5 in Fig. 1 vereinfacht sich die Gl. (34). Man erhält sie dann, indem man in der
jeweils zugehörigen Gl. (31a) bzw. (31b) TSsk bzw. Trk Null setzt.

Führt man wieder längs jeder Knotenlinie unendlich enge röhrenförmige
Schnitte, so zerfällt das Faltwerk in seine einzelnen Scheiben, die sich dann,
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auf Grund der auf sie einwirkenden Randwirkungen prk, psk, rrk und tsk, in
ihren Ebenen entsprechend den Gl. (17a,b) und (29a,b) frei verformen können

(Fig. 1 u. 4). So werden sich z. B. die einzelnen Punkte der Ränder r, der

vom Knoten r ausgehenden Scheiben rp, rp,,rv usw. von r nach rp, r^, rv usw.

um N„. t, • sin ->- x; ^ N„, k sin y x; y Nr vk sin -y x verschieben, so daß der
E rPk "x" L "' E"JriLk "x" L ~} E^rvk ~"A L

Knoten auseinanderklafft (Fig. 4). Da infolge der Dünne der Scheiben der

,+r

%W

Fig

Der Einfachheit halber sind die
Indices K und die Multiplikatoren
sinA^X nicht mit angeschrieben

Widerstand, den eine im obigen Sinne freigelegte Scheibe gegen senkrecht zu
ihrer Ebene gerichtete Kräfte entgegensetzt, äußerst gering ist, können die
einzelnen Punkte der Ränder r r^ und rv senkrecht zu ihren zugehörigen
Scheibenebenen längs der Normalen rpr, r^r, rvr bewegt werden, ohne daß
dadurch neue Zwänge entstehen. Zufolge der Kontinuitätsbedingung I. Art
liegen nach dieser Verformung die Punkte der Ränder rp, r rv und daher
auch die Bewegungsnormalen rpr, r r, rvr jeweils in zur Knotenlinie senkrecht
stehenden Ebenen. Verhalten sich nun die Verschiebungsamplituden Nrpk;
Nrk' Nrvk zueinander so, daß diese Normalen alle durch ein und denselben
Punkt r gehen, so ist das Klaffen des Knotens wieder behoben und der Trag-
werkszusammenhang auch in den zu seiner Längsachse senkrechten Richtungen
punktweise wieder hergestellt, wobei die r diejenigen Stellen sind, an welchen
sich die Punkte der Knotenlinie r nach erfolgter Verformung befinden. Damit
haben wir die Kontinuitätsbedingung IL Art formuliert.

Legt man durch r ein Koordinatensystem u, v und projiziert die auf
letzteres bezogenen Koordinaten ur ksiny~x, vr ksin-^x des Punktes r senkrecht

auf 3 von r ausgehenden Scheiben, so erhalten wir nach Kürzung durch
k itsin T x die 3 Gleichungen
_v
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urk cos arp + vrk sin ocrp ^- Nrpk (35 a)

urk cos o^ + vrfc sin ar/x ^ _Vr/Jtjt (35 b)

urk cos a^ + vrk sin arv -^ Nrk. (35 c)

Bestimmt man aus zwei von diesen urk und vrk und setzt diese Werte in die
dritte der obigen Gleichungen ein, so ergibt sich

Nrpk sin o$& + Nrfxk sin o^ + N„k sin a^ 0, (36)

worin die Indices p, fi und v zyklisch gruppiert sind. Für jeden Knoten, in
welchem m Scheiben zusammenstoßen, bestehen m —2 solcher Gleichungen.
Dabei werden die Winkel a(r) von positiver ^/-Richtung zu positiver ^/-Richtung
gezählt. Das Vorzeichen ist durch die Reihenfolge der unteren Indices
festgelegt. Damit ist nun auch die Kontinuitätsbedingung IL Art in ihre
analytische Form gebracht.

Setzt man nun die Gl. (32a) und (32b) in Gl. (36) ein, so erhalten wir zu
den Gl. (34) weitere lineare Beziehungen zwischen den Esk, Erk, Ssk und Srk
von der Form

2/ lpk Epsk + 1/ m9k Eprk + 2/ npk Spsk + 2/ °pk Sprk + <lpkPk Q- (37)

Hat das Faltwerk r Knoten und s Scheiben, so liegen r Amplituden Ek und
2 s Amplituden Sk, im ganzen also r-\-2s Unbekannte vor. Diesen stehen r
Gl. (34), 2rGl. (33b,c) und 2s-2r Gl. (37), also im gesamten r + 2r+ 2s- 2r

r + 2s Beziehungen gegenüber, so daß man aus den Gl. (34), (33 b, c) und (37)
alle Unbekannten bestimmen kann. Eliminiert man nun zweckmäßig mit
Hilfe der Gl. (33b,c) aus den Gl. (34) und (37) 2r von den 8k, stellt durch
Auflösung der Gl. (34) die Ek als lineare Funktionen der 8k dar, setzt die Ek
in die Gl. (37) ein und drückt alle Sk durch die Unbekannten XVsk (v 1, 2,. .n)
und die Knotenlast Pk aus, so erhalten wir n Gleichungen von der Form

n

Z^ßvkXßk wvkPk; (v=l,2,....n), (38)

woraus man die Unbekannten Xvk bestimmen kann.
Wir führen der besseren Übersichtlichkeit zuliebe die Berechnung nur für

den Fall einer Knotenbelastung aus. Treten mehrere solcher Knotenbelastungen

zu gleicher Zeit auf, so erhält man die Resultate durch schlichte
Überlagerung der einzelnen Belastungsfälle.

Es ist manchmal auch zweckmäßig, die Gl. (34) nicht nach den Ek, sondern
nach den 8k aufzulösen und diese Werte in die Gl. (37) einzusetzen. Man erhält
dann wieder Elastizitätsgleichungen (38') von ähnlicher Form wie die Gl. (38),



Die genaue Membranentheorie der prismatischen Faltwerke 1 45

in welchen jedoch die Xvk jetzt unbekannte Dehnungsamplituden Ek
darstellen. Ob man nun Gl. (38) oder Gl. (38') als endgültige Bestimmungsgleichungen

wählt, hängt davon ab, welche von den beiden Gleichungssystemen

die geringere Zahl von Unbekannten Xvk enthält.
Für jedes Glied der Entwicklung (4a, b, c, d) gibt es ein solches System (38)

oder (38'). Summiert man die dazugehörigen Lösungen, so erhält man die
Unbekannten Xv als Fourier'sche Reihen von der Form

&= 00 7 &=00 7

Xv= 2 Xvksin~x J]zvkPksin-^-x. (39)
k=l -Lt k=l Li

v 1,2, n

D. Allgemeiner Konvergenzbeweis

Der im vorigen Abschnitt angegebene Lösungsweg hat zunächst nur dann
einen Sinn, wenn die Sinus-Reihen (39) konvergieren. Wir werden in der Folge
beweisen, daß dies immer der Fall sein muß.

Wandert der Zeiger k gegen oo, so gehen, wie man durch einen langwierigen,
jedoch nicht schwierigen Grenzübergang zeigen kann, in den Gl. (31a, b) die
Beiwerte der Es, Er, Ss und Sr über in

Mm-=-ENkdk + ^E + kEi (k) (40 a)

HmAp ENkck KEi(k) (40b)
k-> oo ^ Je Ä->oo

kn« i m__ i
lim-^-AL^- ——+K(k) (40 c)

lim^1 Bk KSJk). (40d)
fc—>oo ^' Je fc->oo

Sinngemäß ergibt sich für die durch 2ktt k dividierten Gl. (32a, b)

Ak m — 1 /7. ,_, *

£__><„ ix k m k^ao

lim^ KE4(k) (41b)
fc—>oo -^-V k fc—>oo

t Ck h [" Im —1\2] /7. __hm-^=i? 4-HH +^3(&) (4ic)

fc—> oo Jy k k—>oö
lim-^ kÄ4 (*)*)• (41 d)
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In diesen Beziehungen bedeuten die k Funktionen des Zeigers k, welche für
k&

k -> co in Null von der Ordnung —^ übergehen, wobei # eine endliche Zahl ist.

Man kann hierfür auch die symbolische Schreibweise 0°° benutzen.
Mit diesen Grenzwerten gehen nun für k^co die Gl. (31a,b) oder aber

auch kürzer die Gl. (31a", b") in

1 1 7Yb 1

^oo ± -^ EEsao + — ——— Sscc (31a'",b'")
r £ k L m r

über und wir erhalten für einen Knoten 9 die Gl. (34) in der Form

EE<poo 2 d^ —- 2_ dq>pscppoo 0, (34')
p=i ''i p=i

wenn in 9 m Scheiben mit den Dicken d zusammenlaufen. Stellt man nun
mit Hilfe der Gl. (32a,b) oder kürzer (32a",b") eine der zum Knoten 99 gehörigen

Gl. (36) auf, dividiert diese durch 2k-nK, was erlaubt ist, da 2kirK
niemals Null werden kann, und führt nachher unter Zugrundelegung der
Gl. (41a, b, c, d) den Grenzübergang für k-^cc durch, so ergibt sich

~^- E^ (hvp sinW »^ + Äw a__» avp + hvv sin^ ocp J
l r (m— 1\21

+ -jjr 14 - I ~rn-1 (Kp S<pp*sinW°V + hvv Sw~sinWa*P

+ /jw^xSm%)=0, (36')
woraus mit Gl. (34')

/m — W2 ~i w w°°
-—— p~h- (Kp »m^V + V sin<")a*P + Kv sin(vV)

\ TYl J p — m

___
d(pp

+

p=1
2"

4- /m— 1\

\ m / (^P^pooSm(^a^+/^^ 0 (37')

folgt. Wie man sieht, enthalten diese Beziehungen immer nur die den Knoten cp

unmittelbar anliegenden S. „,. Stellt man also für den Letzteren die möglichen
ra —2 Gl. (37') auf und nimmt zu diesen die beiden zum Knoten cp gehörigen
Gl. (33b) und (33 c), so verfügen wir über m Gleichungen, welche für die
Bestimmung der an cp unmittelbar angrenzenden Beiwerte S^p^ gerade
hinreichen. Drückt man für alle Knoten die S(ppa, wieder durch die Unbekannten
Xvoo und durch die Knotenbelastung P^ aus, so erhalten wir die Gl. (37') in
der Form

4) Diese Grenzwerte ergeben sich auch aus den Gl. (32a", b") indem man Nco=co
setzt. Dieser Weg ist aber nicht ganz exakt.
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v^n
7 ¦&v<x>'a(pvpoo — -Loo'bqjpoo (42)

(P=l,2, n)
mit den Lösungen

^voo =p<p„oo-_?oo (42 a)

(v=l,2, n),

wobei für jeden Knoten <p (1, 2, r) ein solcher Gleichungssatz besteht, woran
der Zeiger cp erinnern soll. Nach den obigen Ausführungen bestehen diese

Beziehungen aus ebenso vielen voneinander unabhängigen Gruppen als
Knoten vorhanden sind, was durch Verschwinden bestimmter a(pvpao zustande
kommt. Sind die Nennerdeterminanten jeder dieser Gruppe von Null
verschieden, so gilt

ZV«, %^ * oo (v 1, 2, n). (42b)

Da sich aus den Gl. (42) die Grenzwerte der Beiwerte der Lösungsentwicklungen

(39) für k-+ oo ergeben, wollen wir sie ein für alle Mal ,,Grenzgleichungen
" nennen.
Stellen wir die Gl. (38) das eine Mal für den Index k und das andere Mal

für den um p größeren Index k + p auf, so werden sich die Xßk um A Xßk, die
Pk um APk und die Beiwerte qovk bzw. wvk um Aq^vk bzw. A wvk ändern.
Es ergibt sich also für k

ß=n
YiXßk'<l8vk Pk'wpk'> (v=l>2> n) (43a)

ß=i
und für k + p

ß=n
Z X8k + ^ Xßk) (Qßvk + * %vk) (Pk + 4 Pk) (wvk + A wvk) (43 b)

ß=i
1,2, n).

Führt man in Gl. (43 b) die dort angedeuteten Multiplikationen teilweise aus
und berücksichtigt die Gl. (43 a), so folgen die linearen Gleichungen

ß=n ß=n
Z aZuni%Vk+*?ßv*) ^Pk(«>,*+^J + (-_4^_%*+Pk^«>„*); (44)

(v=l,2, n),
Rvk

deren Lösungen in der Form
^ v, k+p

«.. *R - fc"
p a-d (Xßk + ÄXßk) + V ocvßfk+p RBk (45)
^fc "+- n *k ßtl

Pk+P ^=1,2, .w

darstellbar sind, wobei die <xvßk+p die zum System (43b) gehörigen Einfluß-
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zahlen bedeuten6). Ersetzt man die A Xvk bzw. A Pk durch Xvk+p — Xvk bzw.
Pjc+p — Pk> so ergibt eine einfache Umformung

_W_^/£ Äß*; 1.2, »). (46)
^k+p rk ß=^l rk

In diesen Gleichungen gehen die Einflußzahlen <xvßtk+p und die Restglieder Rok
auf die für endliche k geltenden Gl. (38) zurück. Führen wir nun für die Gl. (46)
ebenfalls den Grenzübergang k-^co durch, so erhalten wir

lim^±^=lim^ + Slim«,^--^*; (v=l,2, n). (47)
fc—>00 -^k+p fc->00 -Lfc ß=l fc-»00 -Lk

Da sowohl die Gl. (38) als auch die Grenzgleichungen (42) nur dann einen
Sinn haben, wenn die dazugehörigen Nennerdeterminanten von Null
verschieden sind, gilt für alle k, selbst wenn diese noch so groß werden

avj3,fc+p * °°
und es wird weiter mit Gl. (44)

X X P=n l P=n X
lim_^__±__ lim-** + 2 a„/u+i>lim " X -pk A Qßvk + Aw,

fc->oo *k+p fc-^°o rk ß=l &-?«> \ j3=l ±k

(v=l,2, n).

(48)

Bei diesem Übergang gehen die Gl. (38) in die Grenzgleichungen (42) über,
dast heißt- sie spalten sich in ebenso viele Gruppen auf als Knoten vorhanden
sind. Außerdem gehen die Einflußzahlen <x.vßtk+p in die zu den Gl. (42) gehörigen

Einflußzahlen oc(pvao (v 1, 2, n) und die Aqßvk bzw. Awvk in die
ebenfalls den Grenzgleichungen zugeordneten Jag)vpoo bzw. Ab^p^ über.
Berücksichtigt man die Lösungen (42a), so verwandeln sich nun die Gl. (48) in

lim.- v>k^ p + 2ag>flooHm(- 2 P<pß«>d a ßao + A b (49)
fc-wo ^(p,k+p ß=i \ ß=i

H

(*=1,2, n).

Solcher Gleichungen gibt es wieder eine für jeden Knoten. Da sich die Gl. (37')
und daher auch die Gl. (42) durch lineare Elimination der i? _. aus den Gl.
(34') und (36') ergeben haben, lassen sich die Beiwerte a(pvp(X) und 6^«, der
Gl. (42) analog den Gl. (40) und (41) für über alle Maßen große k ebenfalls

k&schematisch durch L + l 7 ausdrücken, wobei L, l und # endliche, konstante

Größen bedeuten, von denen die beiden ersten mit den ersten Gliedern der
rechten Seiten der Gl. (40a, c) und (41a, c) algebraisch zusammenhängen. Da
die Aa(pvo0 bzw. Ab^^ die Änderungen darstellen, welche die Beiwerte a(pvoo

bzw. 6^ erfahren, wenn der sehr große Zeiger k auf den noch größeren Zeiger
k + p steigt, ergibt sich wegen

6) Es ist nur ein Knoten belastet. Siehe Seite 17, vorletzter Absatz.
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r__±____._!i__Lr(Jfc+„)» \ _i*i___/_L_i\
1

der Grenzwert

lim ^*±£ ^yo0 + W+p; (* _** 2' *), (51)

wobei €fpVsk+p wieder von der Größenordnung O00 ist. Da für p-^cc die
Beiwerte der ^-Potenzen —1 bzw. Null werden, gelten die Gl. (51) auch dann,
wenn p über alle Maßen wächst.

Mit diesem Ergebnis sind wir nun in der Lage, die Reihenreste der
Lösungsentwicklungen (39) abzuschätzen. Diese betragen

Zj A v, k+p Sin " f 7TX — __L * k+p (Pcpvoo + €mV, k+p sm j— ^ X
p 0 Li p 0 Li

- Pq>v*> Zj rq>, k+p S1T1 7" K X + ^ € k+ f k+ Sin — TT X
p Q Li 3J=_o Li

(v=l,2 72); (9=1,2 r). (52)

Man erhält zunächst weiter

/ Y? Xv, k+p sin —~ TTX\<, p I Jj> P k+p sin —^ tt a; /
0 Li 0 L

+ Z29 le<pv,k+pP<p,k+pS*n—T-'*xl
0 ^

(v=l,2, n); (cp l,2, r). (53)

Nach dem allgemeinen Entwicklungssatz über Fourier'sche Reihen kann man
jede in einem Intervall 0 ^ x tk L periodische und in diesem Intervall abteilungs-
weise stetige Funktion / (x) in eine unendliche Sinus-Reihe

00 7

/ 0*0 2_fc Aksin -j-x (54)
0 Li

entwickeln, wobei für eine beliebige Stelle x a des Intervalls der Reihenwert,
also die rechte Seite der Gl. (54), immer gleich %[f(a + 0) + f(a-0)] wird,
wobei f (a + 0) bzw. f(a — 0) den rechts- bzw. linksseitigen Grenzwert von / (x)
für x a bedeutet. Die Entwicklungen (54) konvergieren also an jeder Stelle
des Intervalls.

Entwickelt man das Belastungsglied P ebenfalls in eine Fourier'sche
Reihe, so wird daher für jedes x das erste Glied der rechten Seite der Gl. (53)
für jedes ganzzahlige, auch noch so große p von einem genügend großen
Index k ab
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^ h.4-<n /_*=! 2ZP^^T^'^^5 L-l 9 J' (55)
0 Li fc->oo; £>->oo \<p — 1, *, '/

wobei €q>v eine vorgegebene auch noch so kleine Zahl bedeutet. Da die z k+p
klein von der Ordnung O00 sind, kann man auf der rechten Seite der Gl. (53)
das zweite Glied gegenüber dem ersten vernachlässigen, so daß

TfT' k + p (v=l,2, n\
' Zj -^ <p v AH-p sm r~ 7TX7 P(pvoo€(pv> I

__ i v> „,
I

p=l Lj fc-^oo; p--»Go \<p — x> -* '/
O^a^L (56)

wird. Dies ist aber die hinreichende und notwendige Bedingung dafür, daß die
Lösungen (39) im selben Bereich wie die Lastentwicklungen Gl. (4e) konvergieren.

Divergieren die Belastungsentwicklungen (4e) an einer endlichen Anzahl
von Stellen x xy des Bereiches 0 S x ^ L, so werden in Gl. (55) die e(pv und mit
diesen auch die rechten Seiten der Gl. (56) nicht mehr kleiner als jede noch
so kleine angebbare Zahl, sondern endlich oder unendlich, da ja nach Gl. (42b)
die p(pvao endlich und im allgemeinen von Null verschieden sind, das heißt die
Entwicklungen (39) divergieren dann auch für die x xy. An den übrigen
Stellen des Bereiches O^x^L konvergieren die Lösungsentwicklungen (39),
insofern dies die Lastentwicklungen an diesen übrigen Stellen tun. Ergibt sich
hingegen für eine der Unbekannten Xv das zugehörige pv «, 0, so wird, da sich
diese Lösung aus einem der linearen Gleichungssysteme (42) als endliche Folge
von Differenzen je zweier gleich großen Zahlen ergibt, die rechte Seite von
Gl. (56) dann wieder kleiner als jede noch so kleine angebbare Zahl und die
Entwicklungen (39) konvergieren dann auch an den Stellen x xy, an welchen
die LastentWicklungen (4e) divergieren5).

Betrachten wir nun die Entwicklung für eine Streckenlast 2p& P
(s. Fig. 5) und führen hierfür unter Beibehaltung dieser letzteren Beziehung
den Grenzübergang &-^0 durch, so erhalten wir die Reihenentwicklung für
eine im Abstand a von x 0 wirkenden Einzellast P in der Form

r - ~2_fcsm^a,sm-J^J (57)

wobei die Schreibweise der linken Seite nur als Symbol aufgefaßt werden darf.
Diese Entwicklung wird für x a unendlich, sie ist also dort im Sinne der
vorigen Ausführungen divergent.

Sind also bei den Belastungen an den Stellen x x Einzellasten vorhanden,
so erscheinen solche wieder nur bei denjenigen Randquerbelastungen prs,
für welche die dazugehörigen p^ von Null verschieden sind. Für die anderen

5) In der La&tentwicklung (4e) kann P^ nie unendlich werden. Selbst beim
Vorhandensein von Einzellasten bleibt P^ endlich, siehe Gl. (57).
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Randquerbelastungen, für welche die dazugehörigen p^ Null werden, konvergieren

die Reihenentwicklungen auch an den Stellen x x das heißt die
Einzellasten der äußeren Belastung werden von den Faltwerksscheiben auf
dem Wege vom Lastangriffsort nach den mit pOD 0 versehenen Randquer-
belastungen so verteilt, daß sie bei den letzteren gar nicht mehr in Erscheinung
treten. Da nach den vorhergehenden Darlegungen die Grenzgleichungen (42),
deren Lösungen ja die p^ sind, sich in so viele Gruppen aufspalten als das

Faitwerk Knoten hat, da weiters in jeder solchen Gruppe nur diejenigen
Randquerbelastungen 8^ vorkommen, welche dem jeweiligen Knoten anliegen
und da endlich die rechten Seiten jeder Grenzgleichungsgruppe nur durch die
in dem dazugehörigen Knoten angreifende Belastung gebildet werden, sind
die poo nur für die einen mit Einzellasten behafteten Knoten anliegenden Sv
von Null verschieden, während sie für die anderen verschwinden. Es ergibt
sich also für jedes Faltwerk ganz allgemein, und zwar gleichgültig, wie dieses

gelagert und an den Enden abgeschlossen ist, daß Einzellasten nur bei
denjenigen Randquerbelastungen 8 auftreten, welche einem Knoten anliegen, an
dem selbst Einzellasten angreifen.

-+&-

4

V,

-I f—f L-

Fig. 5

Aus den Gl. (37) ergeben sich nun die Erk und Esk und aus den Gl. (31)
und (32) die T%k, Trk, Ns>k und Nr k als lineare Funktionen der 8sk und
Srk. Da letztere wieder durch die Gl. (33 b, c) bzw. (39) mit den Pk linear
zusammenhängen, konvergieren die Sinus-Reihen aller dieser letztgenannten
Größen, wenn dies die Lösungsentwicklungen (39) tun. Dies gilt auch für die
Reihen der Spannungen ax, ay und r, da letztere von den Scheibenrandlasten

p und t in endlicher Weise abhängen. Nur an den Orten der Einzellasten wachsen,

da an diesen Stellen die örtlichen Pressungen, die die Last auf die Unterlagen

ausübt, entsprechend Figur 5, unendlich groß werden, die Spannungen
über alle Maßen. Nach dem St. Venant'sehen Prinzip klingen aber diese

Unregelmäßigkeiten schon in kurzer Entfernung von den Angriffstellen der
Einzellasten sehr rasch ab. Es gilt also folgender Lehrsatz:

11 Abhandlungen XI
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,,Werden Faltwerke nach der in den Abschnitten A bis C dargestellten
exakten Membranentheorie mit Hilfe unendlicher Sinus-Reihen berechnet und
sind die Nennerdeterminanten der zu jedem Knoten gehörigen Grenzgleichungen

von Null verschieden, so konvergieren die Sinus-Reihen aller Wirkungs-
größen dann, wenn dies die Lastentwicklungen selbst tun. Sind in den äußeren
Belastungen Einzellasten enthalten, so treten solche nur wieder bei den Rand-
querbelastungen ps bzw. pr auf, welche dem Lastknoten dieser Einzellasten
unmittelbar anliegen. In der Umgebung der letzteren werden die Spannungen
unendlich groß. Diese Bezirke sind jedoch sehr klein."

Da, wie wir im Abschnitt B gezeigt haben, für jede einzelne Scheibe in
dem dort dargelegten Sinne die nötigen Randbedingungen erfüllt sind,
entsprechen die Gl. (39) und die sich daraus ergebenden anderen Wirkungsgrößen
auch den Randbedingungen des gesamten Faltwerks. Die Entwicklungen (39)
sind also die vollständigen Lösungen unseres Problems für den Fall, daß das

Tragwerk mit den rechten Seiten der Belastungsfunktionen Gl. (4e) belastet ist.
Da aber nach dem allgemeinen Entwicklungssatz über Fourier'sche Reihen
die Summenwerte der rechten Seiten der Gl. (4e) nur an den stetigen Stellen
der Funktion P (x) mit dem Funktionswert derselben übereinstimmen, können
die Gl. (39) im streng mathematischen Sinne nicht als die exakten Lösungen
unseres Problems angesprochen werden, da ja die in Rechnung gesetzte
Belastung des Tragwerks mit der tatsächlich vorhandenen nicht in allen
Punkten übereinstimmt. Da aber an den Unstetigkeitssteilen von P (x) die
Summenwerte der Reihen jeweils die Beträge |[f (a + 0)+f(a — 0)] annehmen,
da weiters bei Berücksichtigung einer genügenden Anzahl von Gliedern auch
an diesen Unstetigkeitsstellen die rechte Seite der Gl. (4e) an P (x) eng genug
angepaßt werden kann, diese Abweichung aber endlich ist und nach dem
St. Venant'sehen Prinzip in den Spannungen sehr rasch abklingt, spielt der
obige Umstand für die Praxis gar keine Rolle. Außerdem ist zu bedenken, daß
es tatsächlich gar keine Unstetigkeitsstellen gibt. Durch die Fourier'sehen
Reihen wird also das was die Natur von selber macht, rechnerisch erfaßt.
Unser Lösungsweg entspricht also der Wirklichkeit besser, als das
mathematisch exakte Integral. Wir erwähnen noch, daß sich unsere Lösungen an
die Unstetigkeitsstellen der im obigen Sinne mathematisch exakten Lösungen
genau so gut anpassen, wie dies die rechten Seiten der Gl. (4e) an die P (x) tun.

Hat hingegen die Belastung und ihre über die Intervallgrenzen periodische
Fortsetzung keinerlei Unstetigkeitsstellen, so stellt unsere Lösung (39) auch
in rein mathematischem Sinne das exakte vollständige Integral unseres
Problems dar.

E. Praktische Anwendung

Wir wollen das in der Figur 1 mit seinen Maßen dargestellte Sheddach als
mehrteiliges prismatisches Faltwerk mit 4 Gliedern für eine am unteren Rand
der Scheibe 13 angreifende halbseitige Vollast p berechnen. Da bei der Scheibe
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2h
34 das Verhältnis -y nur 1/25 beträgt und in der Scheibe 13 auch größere

achsnormale Spannungen auftreten können, ist die Anwendung der genauen
Membranentheorie angezeigt. Zunächst liefert die Auswertung der Gl. (33 b, c)
für den Knoten 4 die Beziehung

S*z,k Sti,k 0. (58 a)

Wählt man S31 k — Xk als Unbekannte, so folgt weiter

S32ik j^^Xk; _Vfc j^?_V). (58b)

Da die Ränder 1, 2 und 5 kraftfrei sind, wird weiter

^23, fc ^13, fc ^54, fc 0 (59 a)
und

$23,fc $54,fc °'> $13,fc Pk' (59b)

Wir wählen die positiven ?/-Richtungen der einzelnen Scheiben nach Figur 1

und entwickeln die halbseitige Belastung p nach Gl. (4e) in eine Sinusreihe.
Die Beiwerte hierfür lauten

o p ¦ ~_P er p w V er p " V.
on — r1— ¦+ 012 —_~2 — °13~^3— o '

77 7T O TT

__?• Q _ P _ __°
5„' Äl6_-l«-3<S14 P4 0; Ä15 P5=-^; Ä16 P6=^, (60)

wobei £> und die P auf die Längeneinheit der Scheibendicke d13 bezogen sind
und somit die Dimension t/m2 haben.

Für das erste Glied k 1 wird in der Folge die vollständige Rechnung im
einzelnen durchgeführt, während wir uns für die anderen Belastungsglieder
mit der Wiedergabe der Resultate begnügen wollen. Die Querdehnungszahl
wird mit m — 6 angenommen.

Scheibe 13

Wir erhalten mit k ^ die Beiwerte der Gl. (17a,b), (29a,b), (31a,b)
und (32a,b) zu

a 2,01226; b 2,01465; c 0,0146860;
d 0,0295006; e 2,02950; / 2,02934;
N 0,0147071; N 0,000654607;
A 0,0297755; B 0,0298815;
G 1,57354; D 1,55923, (61)

womit sich nach den Gl. (31a, b) mit Gl. (59b)

7) Neigungswinkel der Falten gegen die Horizontale 60° bzw. 30°.
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T13 0 - 0,0694074 E E1 - 0,0345524 E E3 + 4,76329 P - 4,78025 X (62a)

T31= + 0,0345524E E± + 0,0694074 E E3 + 4,78025 P-4,76329X (62b)

und nach den Gl. (32a, b) mit Gl. (59b)

N13 45,486157 Ex - 45,64799 E3 + 106,99202 P - 106,0191 X (63a)

N31 + 45,64799 Ex - 45,486157 E3 + 106,0191 P - 106,99202 X (63b)

ergibt.

Scheibe 34

Die dazugehörigen Beiwerte werden jetzt mit k — nach Gl. (17a,b),
(29a,b), (31a,b) und (32a,b)

a 2,54219; b 2,56954: c 0,614329:
d 1,43990: e 3,43990: / 3.18387:
N 0,650631: _V 1,69592:
A 2,08197; B 2,13841:
C 2,35293; D 1,70499. (64)

Daraus folgt wieder nach Gl. (31a,b) mit Gl. (58a, b)

T34 + 0,347091 EE3 + 0,148085 E E±- 0,38567 l^y^^ (65a)

y43 -0,148085 EE3-0,347091 EE±-0,396079^^X (65b)
u, lö

und nach den Gl. (32a, b) mit Gl. (58a, b)

_V34 - 7,36580 E3 + 7,56454 _5J4 - 10,8491 ^^ X (66a)
u, lö

A743 -7,56454_03 +7,36580 E±- 15,7231 !ry?-X\ (66b)

Scheibe 23

Für diese genügen, da /_23 0,02125 klein genug ist, die einfachen, für
kleine k geltenden Formeln. Es wird nach den Gl. (31a',b') mit Gl. (58b)
und Gl. (59b)

/3 0^40 v
4770,02125^ (X2ÖT23 0 -0,0222007 (2 E2 + E3) - ,_,/AO_^ ^X (67a)

und nach Gl. (32')

+ 0,0222007 (_7t+217,)-i-^- %^X (67b)

-VM ^23 71,5208 i- (_7, - _7,). (68)
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Scheibe 45

Auch hierfür reichen wegen dem genug kleinen k45 0,02625 wieder die
vereinfachten, einmal gestrichenen Gleichungen und wir erhalten mit Gl. (58a)
und Gl. (59b) nach Gl. (31a')

r45 - 0,041233 EE± (69)
und nach Gl. (32')

^45 #54 57>8977\ (^2 - E3) (70)

Aus Gl. (31b') folgt weiter
E5 -*j2E,. (71)

Wir sind nun in der Lage, die Kontinuitätsbedingungen I.Art aufzustellen.
Es wird für den Knoten 3

0,15_T34 + 0,20_T32 + 0,40_r31 0 (72 a)

und für den Knoten 4

0,15T43 + 0,30_7T45 0. (72b)

Eliminiert man aus den Gl. (62a, b) E1 und aus den Gl. (67a, b) E2 und setzt
in die Gl. (72a, b) die Gl. (62b), (65a, b), (67b) und (69) ein, so ergibt sich das
lineare System

0,07962206 E E3 + 0,02221275 E E± 6,903225 X -
- 2,860607 P (73a)

0,02221275 E E3 + 0,06443367 EE± -0,1584314_£ (73b)

mit den Lösungen
EE3= 96,684_V-39,750 P (74a)

EE± -35,789Z+ 13,703 P. (74b)

Damit erhält man weiter nach Gl. (62a)

EEX +88,416X-117,039P (74c)
und nach Gl. (67a)

EE2 - 339,821 X+ 19,849 P. (74d)

Aus Gl. (71) folgt schließlich

EEh + 17,895 X- 6,852 P. (74e)

Die Kontinuitätsbedingung IL Art nimmt nach Gl. (36) für den Knoten 3

die Form .—
l/3N32 + 2N31 + NM 0 (75)

an. Ersetzt man darin die N durch die Gl. (68), (63b) und (66a), so erhalten
wir eine lineare Beziehung der Größen __71? E2, E3, E±, P und X, aus welcher
man nach Elimination der E mit Hilfe der Gl. (74a, b, c,d) die Beziehung
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19682,85 P 74776,47 X (76)

mit Xx 0,263223 Px

als Lösung erhält. Der Einfachheit halber wurde bei sämtlichen Gleichungen
bis auf die letzte der Index k=l nicht angeschrieben.

Es ergeben sich nun nach den Gl. (74a, b, c, d, e) die Dehnungen E der
Kanten, nach den Gl. (62b), (65a,b), (67b) und (59a) die Schubspannungs-
beiwerte T und nach den Gl. (63a, b), (66a, b), (68) und (70) die Verformungsbeiwerte

N der Scheibenränder.
Auf dieselbe Weise wurde die Berechnung von weiteren 4 Gliedern

durchgeführt. Dabei konnten für die Scheibe 34 einschließlich vom Glied k 5 ab
die vereinfachten Formeln (17a",b"), (29a", b"), (31a",b") und (32a",b")
benutzt werden. Die Ergebnisse sind in Tabelle I übersichtlich zusammengestellt.

Um das Verhalten der darin vorkommenden Beiwerke zu verstehen, stellen
wir folgende Betrachtung an. Belastet man nämlich das Faitwerk mit den

Tabelle I
k=l
XP1 sin ~ x

k=2
p • 27T

#-* 2 sm _. x

&=3
XP3 sm — x

k 4:

k=5
XP5 sm — x

k 6

XP6 sm — x
gewöhnl. Falt-

werk k= 1,2. cc

X + 0,263223
1

+ 0,278631 + 0,294481 0 + 0,313305 + 0,315767 + 0,257384 P

EE1 j + 57,6185
EE2 | - 69,5739
EE3 - 14,3006
EEX + 4,2822
EEh

' - 2,1411

+ 14,2769

- 18,4311

- 3,7451
+ 0,5600

- 0,2800

+ 6,2894

- 8,6992

- 1,6747
+ 0,0803

- 0,0402

0
0
0

0

0

+ 2,2861
-3,3860
-0,5336
-0,001206
+ 0,000603

+ 1,6458
-2,3877
-0,3378
- 0,0009/6
+ 0,000403

+ 0,633655 P-z2

- 0,746010 P-22
-0,153385 P-z2
+ 0,062953 P>z2
-0,031477 P-z2

EX31
EX32
EX3,
EXi3
EXi5
EX13

+ 3358,5047
-3953,1906
+ 130,1131
+ 134,2011
+ 371,8943
+ 3352,7235

+ 224,3959
-262,5886
+ 6,0245
+ 5,8003
+ 12,1701

+ 224,0866

+ 48,2452
-55,8219
+ 0,2046
+ 0,5083
+ 0,7752
+ 48,9378

0
0
0
0

0
0

+ 7,5152
-8,1602
-0,8941
- 0,0345

- 0,0042
+ 8,7032

+ 3,9682
-4,0725
-0,8835
-0,0121
-0,0032
+ 3,9249

+ 0,393520 P-z4
-0,464804 P-z4
+ 0,018028 P-z4
+ 0,018028 P-z4
+ 0,056370 P-z4
+ 0,393529 P-z4

TZ1

T3,
^34
^43
^45

+ 4,5247
5,5993

- 4,6002
+ 0,3534

- 0,1766

+ 2,1845

- 2,9609

- 1,8728
+ 0,0920

- 0,0462

+ 1,4109

- 2,0778

- 0,9920
+ 0,0199

- 0,0099

0
0
0
0
0

+ 0,8195

- 1,3084

- 0,4409
-0,0004969
+ 0,0002486

+ 0,6750
-1,0917
- 0,3443
-0,0004878
+ 0,0002439

+ 0,480270 P. z

-0,573364 P- z

-0,516232 P.z
+ 0,052098 P-z
-0,026361 P -z

AT9» JV-.

iV_s _V_

L
* °^13 + -L

32
* ^23 + -* 3«

2. Kontrolle Ti5-dM + TM
für k^ß; 3. Kontrolle X32- j/3 +X3

^45 0

.•2 + _V„

für alle Werte von k
L

z= j—



Die genaue Membranentheorie der prismatischen Faltwerke 157

Am
Gliedern k ^ 2, so werden in den durch die Nullpunkte von sin -j- % parallel

zu den Endscheiben gelegten Ebenen alle Wirkungsgrößen bis auf die
Querkräfte Q gleich Null. Durch diese sogenannten Nullebenen kann man sich das

Gesamttragwerk in k Teiltragwerke zerlegt denken, welche in den Punkten
j sy T

k 0, & --,&=- x L vorübergehend gelagert sind. Die dort
auftretenden Auflagerdrücke dieser Teiltragwerke entsprechen den in den obigen
Punkten auftretenden Querkräften Q des mit der &ten Welle belasteten
Gesamttragwerkes mit der Stützweite L. Da je zwei benachbarte Teiltragwerke

entsprechend der Form der kten Welle gegenspiegelgleich belastet sind,
heben sich in jeder der Nullebenen die links- und rechtsseitigen Auflagerdrücke
auf. Nur in den beiden Endquerschnitten x 0 und x L sind die dort
auftretenden Q der beiden anliegenden Teiltragwerke mit den Auflagerdrücken
des Gesamttragwerkes identisch (Fig. 6).

~Q
L/k —\~-L/k

Fig. 6

Man kann also die obigen gedachten Unterstützungen bis auf die der
Endscheiben wieder entfernen. Jedes Teiltragwerk ist dann mit einer
einwelligen Sinusbelastung belegt, deren Amplitude gleich dem Fourier'sehen
Koeffizienten Pk des &ten Gliedes der Gl. (4e) ist. Man erkennt also zunächst,
daß für die Berechnung von noch höheren Gliedern als die der Tabelle I auch
bei den sonst schlanken Scheiben 23 und 45 die Werte von k tt k schon so groß
werden können, daß man auch hierbei mit den genauen ungestrichenen
Formeln rechnen muß. Steigt der Gliederindex noch weiter, so genügen von
einem gewissen &-Wert an für alle Scheiben die zweimal gestrichenen
Gleichungen, und zwar um so genauer, je größer k wird. Da bei den von Haus aus
gedrungenen Scheiben 34 und 13 mit wachsendem Index die Biegesteifigkeit
rascher zunimmt, als bei den von Haus aus schlanken Scheiben 23 und 45,
wird sich anfangs mit steigendem k das Aufteilungsverhältnis der unten
angehängten Last p im Knoten 3 zu Gunsten der steifsten Scheibe 34 verschieben,
was sich in einem anfänglichen Ansteigen der Beiwerte der X-Entwicklung
zeigt (Tabelle I). Ungefähr von dem Index k an, von welchem für alle Scheiben
die zweimal gestrichenen Näherungsformeln Gl. (17a",b"), (29a", b"), (31a", b")
und (32a", b") verwendet werden können, nehmen die Steifigkeiten der Schei-
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ben zueinander schon so gleichmäßig zu, daß sich in der Tabelle I die Zahlenreihe

derX immer mehr und mehr dem endlichen Grenzwert pla3 nähert, der
sich als Lösung der zum Knoten 3 gehörigen Grenzgleichung ergibt. Da längs
dieser Knotenlinie keine äußere Linienlast angreift, wird nach Abschnitt D
plcc 0. Die Beiwerte der zum Knoten 4 gehörigen Wirkungsgrößen nehmen,
da dieser Knoten vom Lastknoten 3 durch die sehr gedrungene Scheibe 34 gut
getrennt ist, sehr rasch ab und klingen sehr bald auf Null aus.

Um die Konvergenz unserer Lösung vollständig zu klären, muß untersucht
werden, ob die Nennerdeterminanten der zu den Knoten 3 und 4 gehörigen
Grenzgleichungsgruppen von Null verschieden sind. Man erkennt sehr leicht,
daß diese für den Knoten 4 keine Bedeutung haben, da die dort zusammenstoßenden

Querrandbelastungen identisch Null werden. Für den Knoten 3

reduzieren sie sich also auf eine Gleichung, die sich nach Gl. (37') zu

(m—
1\

m /

2 S31 • 0,40 + S32 • 0,20 + SM • 0,15
0,75 - 1,00 • 1,0 - 0,6375 \ ]/3 - 6 • \)

+ (m—
1\2~

m ] ;- 1,00 £31 -0,63751 ^3^2-6.1^34) 0

ergibt, woraus mit Gl. (58b)

-X^-a -18,3751,. 0 (77)

wird. Da der Koeffizient a nicht verschwindet, ist das in dem allgemeinen
Lehrsatz angeführte Konvergenzkriterium erfüllt, womit die Konvergenz
unserer Lösung bewiesen ist.

Es ist noch notwendig, auf den folgenden Umstand aufmerksam zu machen,
der bei der Lösung von Balkenfaltwerken mit Hilfe von Fourier'sehen Reihen
immer wieder beachtet werden muß. Die Resultate stellen nämlich die Lösung
für einen unendlich langen Stab dar, der

1. denselben Querschnitt hat wie der zu untersuchende Balkenträger, und
2. durch eine feldweise wechselnde, in je zwei benachbarten Feldern gegen¬

spiegelgleiche Belastung belastet ist. Die Länge dieser Felder stimmt mit
der Stützweite L des BalkenfaltWerkes überein.

Für einen an der Grenze zwischen zwei Feldern des unendlichen Stabes
gedachten Querschnitt sind alle Wirkungsgrößen bis auf die Querkraft Q Null.
Letztere ist aber wieder mit den Auflagerdrücken des Balkenträgers identisch.
Dieser Umstand ergibt sich aus der Tatsache, daß jede Funktion, welche in
eine Fourier'sche Reihe entwickelbar ist, periodisch sein muß (Fig. 7).

Wir wollen noch für die gedrungendste Scheibe, nämlich für 34, den Verlauf

der Spannungsverteilungen ermitteln. Zu diesem Zwecke errechnen wir
zunächst nach den Gl. (10a, b,c,d) die Integrationskonstanten U. Die Ergebnisse

sind in Tabelle II zusammengestellt. Nun ergibt sich mit Hilfe der Gl.
(7), (11) und (12) die Funktion Y mit ihren beiden ersten Ableitungen, woraus
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Tabelle II
k üt u2 Ua u*

1

2

3

4
5

6

-673,2973

- 17,5794

- 1,3972

-114,3207

- 10,3769

- 1,6106

+ 50,3732
+ 6,5919
+ 0,9475

+ 388,2460
+ 17,1747

+ 1,9247

+ 0,0541

+ 0,0414
- 0,0112
+ 0,0170

- 0,0546

- 0,0416
+ 0,0117

- 0,0168

man weiter aus Gl. (8a, b, c) die Spannungen ax, ay und r erhält. In Fig. 8a,
8b und 8c ist der Verlauf von Y", —oc2Y und — a Y' gliedweise dargestellt,

k 77

woraus man durch Multiplikation mit sin -y x den zu einem beliebigen
Querschnitt x gehörigen Spannungsverlauf erhält. Errechnet man die Randspannungen

in den beiden Knoten 3 und 4 das einemal auf dem soeben gezeigten
Weg, das andere Mal mit Hilfe der in der Tabelle I angeführten Größen
E, N, T und der GL (14) und (19), so müssen sich jedesmal dieselben Weret

V3 1605-
-1/5 0M3n-

<5X - Linie für die halbseitige /
Last p nach Abb. 8 //

//
—i ¥\

« t/m2 7/St/m

TTPI <o <ö

-6 /r=j

V 1

+ Die Linien für K~5 u 6
können wegen ihrer tftein-
heii im positiven Teil nicht
mehr dargestellt werden.

600 6,00

Scheibe 3b

Fig. 8 a
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ergeben, eine Tatsache, die man als scharfe Rechenkontrolle benutzen kann.
Aus den Fig. 8a, b, c ersieht man, daß für k= 1 der Verlauf der <jx fast geradlinig

und der der r nahezu parabolisch ist. Für die höheren Glieder ist diese

Übereinstimmung mit der Navier'sehen Spannungsverteilung zwar nicht mehr
so gut. Da aber die Spannungen mit steigendem Index k selbst wieder abnehmen,

wirkt sich dies bei der Summation der Fourier'sehen Reihen nicht stark
aus und man sieht, daß selbst bei einer so gedrungenen Scheibe, wie 34, die
gewöhnliche Biegetheorie noch sehr gut erfüllt ist. Bei den anderen schlankeren

t/m

73 0,393

1/5 0,417

+6

+6,00 6,00

Scheibe 34

vy- Linie der halbseitigen Gleichlast p
nach Abb. 8

Fig. 8 b

r- Linie für die halbseitige
Gleichlast p nach Abb. 8
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+

6,00

1/30,992
VSOMO

tf

6.00

Die Lipien für tf=Sn.O
können wegen ihrer
Kleinheit im positiven
Teil nicht mehr dargestellt

'werden

Fig. 8 c
Scheibe 34
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Faltwerksgliedern 13, 23 und 45 liegen die Abweichungen hiervon unter der
zeichnerischen Strichstärke, so daß sie gar nicht mehr dargestellt werden
könnten. 6

In Figur 8 ist die 6-gliedrige Summe^ft^feSin ya: für eine halbseitige

Gleichlast p dargestellt. Die Anschmiegung der Summenlinie an die letztere
kann schon als eine sehr gute bezeichnet werden. Um für diese Belastung die

2 _>

mit — multiplizierten Spannungen und Verformungen in einen Faltwerks-
TT

querschnitt x zu erhalten, sind, entsprechend der in Figur 8 angegebenen
Koeffizienten, die Werte der Tabelle I und diejenigen der Fig. 8a, b, c für
7 i r» r> ~ /» • • 7T 2 TT 1-37T 1 5 TT 1 6 7T

k—l, 2, 3, o, o mit sm y x, sm-y a:, -sm-=^:r, - sm T x, 3 sin -y a; zu

multiplizieren und hernach zu addieren. Auf diese Weise wurden für den
Querschnitt x Lj2 die Spannungsverteilungen der Scheibe 34 errechnet und
in die Fig. 8 a, b,c punktiert eingetragen. Sie weichen von der Navier'sehen
Verteilung fast überhaupt nicht ab.

Behandelt man nun das Tragwerk nach der gewöhnlichen Faltwerks-
theorie, d.h. unterdrückt man die Wirkung der Spannungen ay und rechnet
mit von Knoten zu Knoten geradlinigen Verteilung der ax, so muß man bei
allen Scheiben und allen k die einmal gestrichenen Gleichungen (17 a', b'), (29'),
(31a',b') und (32') der weiteren Ermittlung zugrunde legen. Es ergibt sich
dabei, daß die Beiwerte der Unbekannten X für alle k denselben Wert annehmen.

Die Zahlenrechnung ergibt im besonderen

Xk 0,257384 Pk, jfc== 1, 2, 00, (78)

d.h. die Randquerbelastungen psr und psr sind der Belastung p selbst affin,
eine Tatsache, welche aus der gewöhnlichen Faitwerkstheorie schon bekannt
ist. Der in Gl. (78) angeführte Beiwert ist etwas kleiner als der zu k= 1 gehörige
Beiwert in Tabelle I für die Unbekannte X. Dieses Ergebnis ist einleuchtend,
da die nach der Navier'sehen Spannungsverteilung gerechneten Verformungen
der Scheibe 34 größer sind, als die nach der exakten Elastizitätstheorie ermittelten

Scheibenrandverformungen, eine Tatsache, die sich daraus erklärt, daß
durch die gewöhnliche Biegetheorie nicht alle vorhandenen Reserven einer
solchen Scheibe erfaßt werden. Infolge der größeren Nachgiebigkeit der
Scheibe 34 übernimmt diese dann auch nur einen entsprechend geringeren
Anteil der am unteren Rand der Scheibe 13 angehängten Gleichlast p.

F. Schlußbetrachtung

Vergleicht man den Beiwert der Gl. (78) mit den X-Beiwerten der Tabelle I,
so findet man, daß trotz Verschiedenheit der einzelnen k die Aufteilung der
halbseitigen Last p auf die in dem Knoten 3 zusammenlaufenden Scheiben 13,

23 und 34 nahezu unverändert bleibt, gleichgültig ob man das Faltwerk nach
der exakten Membranentheorie oder mit von Knoten geradlinig verlaufender
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Verteilung der achsparallelen Normalspannungen berechnet. Erinnern wir
uns noch, daß die mit Hilfe der Airy'sehen Funktion ermittelten Spannungen
von der Navier'sehen Biegetheorie ebenfalls wenig abweichen, so erkennen
wir allgemein den geringen Unterschied zwischen der exakten und der gewöhnlichen

Faitwerkstheorie. Dieser ist aber um so größer, je größer und je

verschiedener die die Schlankheit charakterisierenden Koeffizienten k der
einzelnen Scheiben sind.

Diese Erkenntnis gilt zunächst für die Maßverhältnisse des im vorigen
Abschnitt durchgerechneten Tragwerkes. Darüber hinaus gilt sie im
allgemeinen auch für die übrigen Faltwerke. Werden aber die k noch größer und
voneinander noch verschiedener, was z.B. bei hochwandigen Bunkern
vorkommen kann, so wachsen die Unterschiede oft bis zu 20 bis 25% an. Man muß
dann von der „exakten Membranen theorie der Faltwerke" Gebrauch machen.

Mit dieser und den übrigen Abhandlungen des Verfassers ist die Theorie
erster Ordnung der prismatischen gelenkigen Faltwerke, mit längs der
Abszissenachse x konstant bleibenden Scheibendicken d, abgeschlossen.

Zusammenfassung

Für Faltwerke, bei welchen die Höhen der einzelnen Falten gegenüber der

Länge groß sind, müssen Untersuchungen angestellt werden, ob die übliche
Berechnung unter Zugrundelegung einer von Knoten zu Knoten geradlinigen
Verteilung der achsparallelen Spannungen ax noch zutreffend ist. Die Behandlung

dieser Frage nach der genauen Elastizitätstheorie mittels Airy'scher
Spannungsfunktionen führte zu der exakten Membranentheorie prismatischer
Faltwerke. Die Lösungen werden in Form von Fourier'sehen Reihen
wiedergegeben. Es wird hier erstmalig allgemein nachgewiesen, daß diese immer
dann konvergieren, wenn dies die analogen Entwicklungen der äußeren

Belastungen tun, und wenn die Nennerdeterminanten der Grenzgleichungen
nicht Null werden. Alle Ergebnisse sind exakt, wenn die beiden Auflagerscheiben

in ihrer Achsebene vollkommen starr und normal hierzu vollkommen
biegsam sind. Die Divergenzstellen, welche bei Einzellasten in deren Entwicklungen

auftreten, erscheinen nur in denjenigen Faltenrändern wieder, welche
in der von der Einzellast ergriffenen Kante liegen, während in allen übrigen
Rändern ein stetiger Verlauf sämtlicher KraftWirkungen herrscht. Dieses
Verhalten der Faitwerke wurde durch die übliche Rechnungsweise bisher
nicht erfaßt.

Bezüglich der Spannungen und der Verbindungskräfte zeigt die genaue
Theorie nicht sehr starke Abweichungen von der bisherigen.

Resume

Dans le cas des systemes constitues par un ensemble de parois portantes
dont les hauteurs sont grandes par rapport ä la longueur, il est necessaire de
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proceder a des investigations pour determiner si le mode de calcul habitueJ,
tablant sur une repartition lineaire de noeud en noeud des contraintes ux
paralleles ä l'axe, peut encore etre valablement applique. L'etude de ce
probleme suivant la theorie exacte de l'elasticite, ä l'aide des fonctions de
contrainte d'Airy, conduit ä la theorie exacte des membranes pour les poutres-
cloisons prismatiques. Les Solutions sont donnees sous la forme de series de
Fourier. II est ici demontre pour la premiere fois, d'une maniere generale,

que ces series sont toujours convergentes lorsque les developpements analogues
des charges exterieures le sont eux-memes, et lorsque les determinants des
denominateurs des equations aux limites ne s'annulent pas. Tous les resultats
sont exacts lorsque les deux plaques d'appui sont parfaitement rigides dans
leur plan axial et parfaitement flexibles normalement ä ce plan. Les points de

divergence qui se manifestent dans ces developpements en cas de charges
isolees n'apparaissent que dans les zones marginales qui se trouvent sur
l'arete interessee par une charge isolee, tandis que dans les autres zones marginales,

les actions exercees par les forces accusent toutes une aliure continue.
Ce comportement des ensembles de parois portantes n'avait jusqu'a maintenant

pas ete etudie par le mode de calcul habituel.
La theorie exacte traitee ici ne presente pas d'ecarts tres marques par

rapport aux theories anterieurement appliquees, du point de vue des

contraintes et des efforts de liaison.

Summary

For prismatical structures composed of thin plates, where the heights of
the separate plates are big in comparison with the lengths, investigations must
be made to ascertain whether it is still justifiable to make the usual
calculation under the assumption that the stresses ax parallel to the axis are
rectilinearly distributed from Joint to Joint. The treatment of the question
according to the exact theory of elasticity by means of Airy stress funetions
would lead to the exact membrane theory of prismatical structures composed
of thin plates. The Solutions are given in the form of Fourier series. It has here
for the first time been shown in general that these series always converge
when the analogous developments of the external loads converge, and when
the denominator-determinants of the boundary equations do not become zero.
All results are accurate if the two stiffening diaphragms are absolutely rigid
in their axial plane and can freely bend normally to that plane. The divergence

places, which occur in their developments in the case of single loads,

reappear only in those edges which lie in the border acted on by the single
load, whilst in all other edges all forces act uniformly. This behaviour of
prismatical structures composed of thin plates has not hitherto been taken
into consideration in the usual methods of calculation.

With regard to the stresses and the connecting forces, the exact theory
does not show any very great deviations from the theory hitherto in use.
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