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Plaques rectangulaires anisotropes reposant librement sur deux cötes

opposes seulement et soumises ä la flexion sous charges normales
ä leur plan

Biegung rechteckiger, zweiseitig frei aufliegender anisotroper Platten
unter Belastung senkrecht zur Mittelebene

Bending of reetangular anisotropic slabs, supported free at two sides

and loaded normal to the middle plane

Ing.-dipl. H. S. Gedizli, Ankara (Turquie)
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II. Introduction

Dans la pratique, on utilise frequemment des plaques rectangulaires
anisotropes (Plaques en beton arme portant dans les deux sens, plaques nervurees,
töles ondulees, reseaux de poutres, plaques ä poutres multiples, plaques
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contre-plaquees, grillages Continus, etc.) et on determine en general leur fatigue
au moyen de formules approximatives. On peut donc penser qu'il vaudrait
mieux rechercher des formules exactes, mais un peu compliquees, deduites de
la theorie des plaques anisotropes due ä MM. J. Boussinesq - Saint Venant -
M. T. Huber.

Cette theorie donne, pour la surface elastique d'une plaque d'epaisseur
constante, l'equation aux derivees partielles du quatrieme ordre

D0xw~-+2Hw'-+D0yw"" p(x,y) i) (1)
ou
P><sx ExJQxl(l-uxuy): 2H uyD0x + uxD0y + 4C; D0y EyJ0yl(l-uxuy);

ux, uy etant les constantes generalisees de Poisson pour les directions Ox et Oy;
2C (l — iuxuy) l/D0xD0y la rigidite de torsion de la plaque; p(x,y) etant
l'intensite de la charge au point (x, y) de la plaque; w etant la fleche de la
plaque au point (x, y);
Ex, Ey sont les modules d'elasticite suivant les axes Ox et Oy; J0x, J0y sont
les moments d'inertie par unite de longueur des sections perpendiculaires aux
directions des axes Ox et Oy.

Les grandeurs des sections sont liees a la flexion au point (x, y) de la
plaque par les relations suivantes (Fig. 1):

_*f____J h/2

«\ i
h/2\ t

«L

Fig. 1. Les grandeurs des sections dans un element de la plaque

Moment de flexion par unite de longueur d'une section perpendiculaire
a la direction de l'axe Ox:

mx -D0x(W"+UyW")', (2a)

l) Ici les indices (•), (••), (•••), (••••) indiquent les derivees partielles par rapport a la
variable independante x, de meme que les indices ('), ("), (/7/), ("") indiquent les
derivees partielles par rapport ä la variable independante y; par exemple, l'indice (••")
indique le resultat qu'on obtiendra en derivant successivement 2 fois par rapport ä x,
2 fois par rapport a y, etc.
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Moment de flexion par unite de longueur d'une section perpendiculaire
a la direction de l'axe Oy:

my -D0y(w" + uxw"); (2b)

Moment de torsion par unite de longueur d'une section perpendiculaire
a la direction de l'axe Ox ou Oy:

mxy=myx -2Cw"'> ' (2c)

Effort tranchant par unite de longueur d'une section perpendiculaire ä la
direction de l'axe Ox:

qx -D0x(w- + RlW'ff) oü R1 uy + (2CID0x); (2d)

Effort tranchant par unite de longueur d'une section perpendiculaire a la
direction de l'axe Oy:

qy -DQy(w'" + R2w~') oü R2=ux + (2C/D0y); (2e)

Reaction par unite de longueur du cöte perpendiculaire k Ox:

^ -A)*(^'*' + ^3*0 oü Rs uy + (4CID0x); (2f)

Reaction par unite de longueur du cöte perpendiculaire ä Oy:

qy -D0y(w'" + R,W") oü R4t ux + (4CC/D0y). (2g)

On obtient, en faisant p(x,y)~0 dans l'equation (1), l'equation homogene
de surface elastique de la plaque. Celle-ci admet trois Solutions distinctes
exprimees par les series trigonometriques, dont chacune se rapporte ä l'un
des cas H2 — D0xD0y 0.

Le cas H2 — D0xDOy 0 avec ux uy a ete resolu d'une maniere tres
complete et elegante par les Drs. Olsen-Reinitzhuber. Nous nous proposons
d'aborder maintenant brievement l'etude des deux autres cas.

III. Etude de l'influence d'une charge concentree et mobile „P"

Nous avons le developpement suivant pour une charge concentree repartie
uniformement sur une ligne de longueur ,,2di( au point „v, 0" de la plaque:

00

p(y) (4p0/77) 2 (1/w) sin (mrv\b) sin (nirdjb) sin (nrryjb), (3)
n=l

oü p0 P/2d, d etant egale a (10 + 25), oü s est 1'epaisseur en cm de couverture

de la plaque.
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Fig. 2. Plaque soumise a la charge concentree P mobile sur un axe quelconque

Fig. 2 a. Plaque soumise a la charge concentree P mobile sur un de ses cötes non appuyes
Fig. 2 b. Plaque soumise a la charge concentree P mobile sur l'axe situe au milieu de la

plaque, ainsi qu'a une bände de charge uniforme

_^i Elevahon

C ac
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Fig. 2 c. Emploi des plaques nervurees prefabriquees dans un pont

La surface elastique compatible est exprimee par l'equation homogene
suivante:

DQxw'— + 2Hw""+D0yw"" 0; (4)

sa Solution sera de la forme:
00

w Kj]wlinsin(ßny), (5)
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oü ßn n7rjb, K etant une constante, et pour H2 — D0xD0y>0 nous trouvons
dans la premiere partie de la plaque (Fig. 2):

wi,n Ai,n ChS^ + _42)n Chynx + Ä3tn ShSnx + Ä^n Shynx; (5a)

dans la deuxieme partie de la plaque:

wi,n Bi,n Ch8wa? + _S2fn Chyna? + _58tn $bhnx + B^n Shynx; (5b)

pour H2 — D0xD0y<0 nous trouvons dans la premiere partie de la plaque:

wln Elncosifjnx Ch(pnx + E2}nco$ifjnx Shcpnx

+ E3$nainil>nx Ch<pnx + EAtnauii[inx Shcpnx ; (5c);

dans la deuxieme partie de la plaque:

wl,n Fl3nG°^^nx Ch cpn X + F2 n COS lfjn X ShcpnX

+ F3fn8ini/jnx Chcpnx + F^nsmi/jnx Shcpnx; (5d)

oü hn=ßn^l^~(H+iH2-D0xDOy); yn J8nl/^- (H - iH2-D0xD0y) ;

Nous aurons donc d'une facon generale:
00

mx +KD0x 2 (UyßJw^-w^Jsmßny; (6a)

my =+KD0y]^(ßn2whn-uxW{tn)$mßny, (6b)

mxv=-2CK %{ßnwln)Qoaßny, (6c)

qx =+KD0x^i(B1ßn2w[n-w[->n)smßny; (6d)

% =+KD0v'Z(ßn3'U}l,n-R2ßnWl,n)COSßny> (M
Ix =+KD0x'^i(R3ßniwln-W1->n)smßny; (6f)

00

qy =+XD0yYi(ßJw1}n-R4ßnw'{>n)cosßny. (6g)
?i=i

2. Abreviations

Posons: zhn ChSn#, z2>n Chrrl^, z3>n ShS^,
%n Shynx, 25>n cosifjnx Ch<pnx, z^n cosi/jnx Sh<pnz,

zi,n sini/rna: Ch<pnx, z8>n shn/ßnx Shcpnx.

Nous aurons alors:

z'i,n 8n ShSn#, z[]n Sn2 Ch8nx, z'{t'n 8n3 ShSn#, etc.

z5,n=(PnG0^llJnx $h.(pnX-i/jn$inifjnX ChcpnX,



116 H. S. Gedizli

Z5,n (9n2-^n2)Q°^nx GYi(Pn x ~ 2 tn <Pn sin tn x Sk<pnX,

Z5,n (<Pn2 ~3<Pn tJ) C°S tnx Sh<Pnx + (tn ~ 3 tn 9r?) Sin^» Ch9^ #

En intervertissant Sh et Ch dans les expressions ci-dessus, nous obtenons z%

Z7,n (Pn^ntnX Sil(pnX-^-lfjn GOS lfjnX Ch(pnX,

ZY,n (<Pn2-*l*n*)^ilßnX Chcpn X + 2 xjjn cpn COS lfjnX Sh<pnX,

Z7, n (Vn* -%9n tn*) sin tnX^h-(Pnx~ itn ~^tn <Pn*) c0® tn x Ch ^ S,

Meme remarque pour z8>n. Nous poserons de plus:

pour x — at:
T -I * T *** #

pour # -\-a2:

Zl,n

pour .r ~ +a:

2l,n ~ %,n> zl,n ~ "l,w> 5 z%,n ~ "",8,w >

— TT v' — 77* V — £7***
zl,n — -"1,71» zl,n — "l.n» > zS,n ~ ^S.n '

Nous pouvons donc ecrire d'une maniere plus condensee:

(7 —&\)U)Xn — Alfnzln + A2}nz2>n-\-

(8-64)^i;^ Fhnz'5\'n + F2fnz'6]n + Fs>nz'7]'n + F^nz%;n.

2. Valeurs des constantes d'Integration pour le cas de la fig. 2

Les conditions oompatibles sont:

pour x 0: (w)x (w)2, (w')x (w')2, (mx\ (mx)2, (qx)2-(qx\ -p;
pour x +a2: (raj2 0, (gj2 0;

pour a; -ax: (mx\ 0, (ga.)1 0;

pour 2/ 0et«/ +6: (w)x (w)2 0 et (my)1 (my)2 0.

Elles donnent:

K (2Pb*)l(Tr*dD0v) *); _/„ (DJDoJWn^ßnHmßnVemßtd;
Alyn _?1)M; _t2>TC _\n; ^3)»-^3>» +(tf„/8„)[l/(y»»-V)];
^4,«-^4.« -(^»/y»)[i/(y»*-»„«)];
#1,» Fhn; -E2,n + F2>n +[iVM/(2«pJ] [l/(^+ 9m2)];

-Ez,n + F*,n -[^„/(2^„)][l/(^8 + 9»„8)]; J^,» Fi>n;

2) C'est une constante arbitraire et nous l'avons choisi de teile sorte que les constantes
d'integrations restent; en tenant compte des etudes du Dr. Timoshenko [„Rec-angular
Plates of Infinite Length with Simply Supported Edges" (voir: Chapitre V-34 de son
ouvrage classique, loc. cit., p. 1)], on voit que cette constante a la forme convenable.
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avec: el,n ~ uyßn ^l,n "l,n> el,n ~~ ^3Hn %»~V«'
el,7i ~~ wy?n K'l.n ^l,7i' el,n ~~ -^Pti ^l,n Kl,n>' ' ' '

> e4,7i ~~ -"'sPw ^4,w ^4,7*. '

_yn +^(rne3,7i-87ie4,J/[rn8n(y7i2-87i2)];
^* +^n(ync3,n-8n6jfW)/[yn8n(yn2-8wa)];

^L

An'A2fn —

^71*^4,71 —

avec:

* * * *
cl,w e2,rc 63,7i e4,7i

** ** ** **
C3,7l 64,7l

*** ***
el,n e2,n

*** ***
e3,n 64,7l

«l,n ^n e3,7i e4,n

<» ^n * *
e3,w e4,n

f** 0el,n u ** **
e3,n e4,7i

*** o *** ***
e3,7i 64,7l

' Aln — (l/_lr

S ^8.» (l/0

ßl,n. e2,n e3,n ^n
el,n e2,n e3,n Nn
** ** ** ~

el,w. e2,7i e3,7i u

********* 0el,n e2,7i e3,n u

e5,7i — ^i/Pti "/5,n~^5,n^>
*** _ n o 2 l.* __ £***

N^n +Nn (cpn e7j w - 0W e6> J / [2 9n 0n (i/jn2 + <pn2)]

^rt + Nn (<Pn e7, n~tn4,n)l[2 Tn tn (tn2 + ¥>«*)] 1

Nn e2,n e3,n e4,n

K p* p* p*
^2,71 ^3,71 ^4,71

0 ** ** **
62,7l ^3,71 ^4,71

0 *** *** ***
e2,n e3,n e4:,n

el,n e2,n <Nn ei,n

ei,7l p* AT* p*e2,7i iy/n e4,7i
**

^1,71 4% 0 <»
*** *** f\ ***e9 nn. U 61 -n

^2)W=(1/^)

^4,»= U/0

65,7i 66,7i 67,7i e8,7i

* * * *
C5,7- e6,7i e7,7i e8,w
** ** ** **

e5,n c6,n e7,7i c8,n
*** *** *** ***

e5,ri e6,n e7,rt e8,w

H,n ~Nn 67,7i e8,n

*tnNl * *
e7,7& e8,n

C ° ** **
e7,7i e8,7i

<*;o *** ***
e7,7i e8,n

e5,7l ß6,7l e7,7i ^71

N*

65,7i e6,w e7,n
3|C5|C5fC _3jC5(J3JC

_
5|C 3jC ^C

e5,n e6,7i e7,n '

; ®l,n (i/O

^„ (i/0

^ e6,7i e7,n 68,7l

^: * *
e6,n e7,n e8,7i

0 ** **
^6^ c7,w

**
H,n

0 *** ***
e6,n e7,7i e$,n

e5,n e6,n Nn e8,n

e5,7i <» ^: e*

**
e5,n C o **

68,7l
***

e5,n <»*o ***
e8,n
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Nous croyons, qu'il est possible avec ces notations claires, de calculer
rigoureusement les efforts dans les plaques anisotropes considerees pour
n'importe quelle distribution de charges. Celles-ci pourraient faire l'objet de
calculs numeriques, effectues ä l'avance. Des tables et surfaces d'influences
pourraient alors etre utiles aux constructeurs. Nous ne pouvons qu'exprimer
le souhait de voir quelque bureau d'etudes entreprendre cette täche.

3. Valeurs des constantes d'integration pour le cas de la fig. 2a:

Les constantes Bln, _54 n et Fln, F2ttl.
Les conditions compatibles sont:

F^n disparaissent.

pour x 0: mx 0; qx —p:

pour x +a: mx 0; qx 0;

pour y — 0 et y — b: w 0 et my 0

Elles donnent:

Cl,n ~ UyHn ~°n > C5,n uyßn2-<Pn2 + tn2>

C6,n ft3ßn2<Pn-<Pn* + 3<Pntn2,

C7,n R*ßn2tn + tn* -%tn<Pn2>

c2,n ~ nyßn 7n >

^3,71 ~ °n sl3Hn °n">

C*,n Jn - ftsßm2 Yn> C8, n ~ 2 <Pn tn •

Cl,n ~ UyPn -"l.w ~~-"l,n> > C8,ti uy Hn -"8,n ~~ ^8,7i'
_** J? ß 2 Z7* TT*** „hl,n ~ ¦B'zPn -"l,« ^1,71, ' '

/>** _ 1? ß 2 TJ* _ ej***
°8,n ~~ ^sPn -°8,ti -°8,7i

C1,W C2,7l ^ ^

4>
0 0 C3,ti C4,n

* * * *
Cl,n C2,n C3,n C4,n
** ** ** **

Cl,n C2,n CS,n C4,n

c1>n 0 0 0

^2,71 (W
0 + ^nC3,nC^n
r* 0 r* r*
** 0 ** **

°l,7l U °3,7l °4,7l

Cl,7l C2,7l 0 0

^4,71 (l/^n)
0 0 c3?n+_Vn

r* r* r* 0Gl,7i L2,n L3,n u
** ** ** 0Cl,7l C2,7l C3,7l u

^l,n (l/^n)

^2,n 0 0

+^0 C3,nC4,n

0 * * *
C2,7l C3,7i C4,7l

A «** x.** ,.**U °2,7. G3,7l ^.Tl

9 A3 (1/^J

Cl,7l C2,7l " ^

0

0 0 +tfwc4fW

^1,71 U2,7l

„** r**yl,n c2,ti

C4,7l

**
4,71

A*

C5,n ® 0 C8n

0 C6,7l C7,7i 0
* * * *

C5,7l C6,7l C7,n C8,7l

** -** X,** X,**
°5,7l ^6,71 Ü7,7i ^8,71
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^l,n U/4J)

Ez,n (!/<)

0 0 0

~^ n CG,n C7,n ^
°8,n

C6,ti C7,n C8,n

C6,ti C7,7i C8,n

0 0 c8>„

-Nm0
c

6,n0 c

C5,7l C6,7i ^
,71

**

^.» (i/0

Et,n (I/O

°5,n 0 0

-JSf n c7n

_**
C5.n 0

<_.» 0

C5,,t °

c7,n c8,7i
** **

c7,n v8,n

0 0

C6,n C7,n ^n
C5,n C6, Cf.n 0

** ** ** ^°5,7l G6,7l C7,7l u

4?. Valeurs des constantes d'integration pour le cas de la fig. 2b:

a) Plaque soumise ä la charge concentree ,,PU mobile sur Vaxe ,,0y" situe

au milieu de la plaque: II suffit de prendre — ax —a\2, +a2 +a\2 dans les

formules precedentes indiquees dans III/2.3).

b) Plaque soumise ä une bände de charge uniforme ,,2d-a-p0li mobile suivant
l'axe ,flyCi et restant perpendiculaire ä celui-ci: Ce cas etant indispensable pour
l'etude de l'influence de la charge propre d'une entretoise dans les plaques ä

poutres multiples, peut etre opportunement adapte et donner l'influence de la
charge propre d'une nervure dans les plaques nervurees et ä poutres multiples.

Sa Solution pour les plaques isotropes rectangulaires simplement appuyees
sur leur contour avait dejä donnee en 1925 par M. B. G. Galerkin4); eile
donne tres rapidement des series convergentes pour le calcul, mais pour ne pas
augmenter les dimensions de cet article, nous avons du supprimer sa generalisation

pour les plaques anisotropes, et nous nous proposons de la presenter
ulterieurement.

IV. Etude de Pinfluence d'une charge uniformement repartie sur
toute la plaque (Fig. 3) 5)

Nous supposons ici que p(x,y) se reduit ä une constante ,,p0". La
resolution du probleme par la methode „Levy-Estanave-Nadai" 6) donnera
w w1 + w2.

3) La Solution, donnee sous le titre „Die Platte mit Einzellast", v. Beton-Kalender
1943, 1. Teil, pp. 136 et 137, avec Fig. 27, du meme probleme, nous semble indeterminee;
en effet eile doit remplir six conditions (dont quatre relatives aux cötes y ± b et indepen-
dantes, les unes des autres, ,,ä cause des fonctions impaires"), avec ses quatre constantes
d'integrations.

4) V. l'ouvrage du Dr. Timoshenko, loc. cit., p. 1, pp. 146 ä 167.
5) Pour l'etude du cas H2 — D0xD0=0 voir egalement l'ouvrage du Dr. Girkmann,

loc. cit., p. 1, pp. 489 et 490.
6) Voir l'ouvrage essentiel du Prof. Dr. Ing. Kurt Beyer, Dresden, loc. cit., p. 1.

y Abhandlungen XI
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Fig. 3. Charge uniformement repartie sur toute la plaque
Fig. 3a. Coupe transversale d'une poutrelle en töle ondulee

Determination de ,,wxil. Faisons dans l'equation (3), v bj2 et d bj2, nous
obtenons

p(y) (4p0/7r)2(l/»)sinj8ny, n 1, 3, 5, 7,. 7). (9)

D'autre part nous avons, pour introduire l'influence de la charge,
D0yw™ =p(y); remplacons-y p(y) par sa valeur ci-dessus, puis integrons; nous
obtenons

^i ^iZ^,isin^2/ (10)

5OU K1 (4p0b*)ID0y7rS; Nhn=l/r
Determination de ,,w2il. Cette fonction ne doit pas changer de signe

lorsqu'on remplace + #" par ,,— x". Cela est possible avec les hypotheses:

^l,n ^ ^l,ru ^2,7i ^2,715 ^3,7i ^*3,ti 0, AA n _54 n 0,

dans les equations (5a) et (5b);

El,n Fl,n> ^2,7i ^2,71 °> ^3tn ^3,n °> ®H,n ^4,71'

dans les equations (5 c) et (5d); d'oü il resulte:

pour: H2-D0xD0y>0
Wc KiX(Ai,n Ch8nx + A2n Chynx)sinßny; (IIa)

7) Remarquez que sin— =0,
_5

pour n 2, 4, 6, 8,.

sin — (— 1) 2 pour n 1, 3, 5, 7,.

Voir egalement Pinteressante contribution de l'ingenieur espagnol F. G. Monge, loc.
cit., p. 1.
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pour: H2-D0xD0y<0

w2 K1^(ElncoBifjnx Chcpnx + El>nsinifjnx Sh<pnx)sinßny. (IIb)

Nous aurons pour ce cas

mx K1D0xYi[nyßn2(N1)n + w2>n)-w'2]n]^nßny; ; (12a)

qx KlDoxX(R3ßn2w2,n-W'in)*inßny'> ^tc. (12f)

oü, selon le cas ä etudier,

W2, n — J^l,nZl,n~^ ^2, nZ2,n> W2,n ^l,n Zl,n + ^2,n Z2,n > ^tC. ;

W2,n El,nz5,7i + E2,nz8,n^ W2,n ^1, n, 25, n + ^2,7* *8,n >
e^C

Valeurs des constantes d'integration

Posons pour simplifier:

(Zl3Jx ±al2 + Kltn> (z'l,n)X ± W2 ±^l,n>

KJ» ±a/2 + #**„, (*_',»)* ±«/2 + *?,*»>

(Z2,J^ +a/2 +iT2jn, ete

(z8,J^ ±a/2 +J_~8jn,

fl,n -^l,n~uyPn •**-_, n> !2,n~ &2,n~~uyrn *^2,n>

/* TT*** \ t> Q 2 TZ* i* tt-*** \ T> Q 2 ZT*!l,n~ Al,n "+" ^Pn Äl,7i' !2,n~ I*29n ~*~ ^aPn A2,n'

/3,7i &5,n~Uy Pn *^5,m J4,n~ ^8,n~Uy Pn ^8,n>

/* jz*** \ T> O 2 TZ* i* Tf*** \ J? ß 2 TZ*
J3,n ~~ ~IV5,n "+" ^Pw ^5,71' /4,w - ~A8,» "til3Pft ^8,71*

Nous avons donc:

/ 1, Ti / 2, 71

^* ^*/l,7l /2,7l

/ 3, Ti /4, Ti

/* /*
!3,n J±,u

A„

A*

AnA1}U —

> AnEl,n

^l,n \2,n

0 ftn

OU

o /:.„

n 1, 3, 5, 7,

/ V
- 71'* 1'nl

/l,n. u

J*#* |^» N*.»\
8)

/3,7l U

8) On peut trouver le developpement d'un determinant, ainsi que les valeurs tri-
gonometriques necessaires, dans les manuels de l'ingenieur, voir par exemple Hütte,
Bd. 1. et le livre de l'auteur, loc. cit., p. 1.
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V. Determination des constantes Dox, D0y, C et H du Dr. M. T. Huber

Ces constantes dominent le probleme et exigent encore des recherches, ä

l'exception de Celles qu'ont ete indiquees par le professeur lui-meme, qu'elles
soient deduites de la theorie de l'elasticite des corps non-isotropes ou des
essais.

a) Plaques en beton arme portant dans les deux sens. Nous renvoyons ä

l'ouvrage du Dr. Girkmann, ainsi qu'ä l'ouvrage des Drs. Olsen - Reinitzhuber,

v. pp. 479, 3 et 28.

b) Grillages Continus ,,Reseaux de poutres'1. Nous renvoyons ä l'ouvrage
du Dr. Timoshenko, v. p. 190 et p. 191.

c) Plaques contre-plaquees. Nous renvoyons ä l'ouvrage du Dr. Girkmann,
v. p. 482.

d) Töles ondulees. Nous renvoyons ä l'ouvrage du Dr. Girkmann, v. p. 48K

e) Plaques nervurees en beton arme, v. Fig. 2, 2 a, b, c.

De la conception initiale suivant laquelle le beton tendu, elimine dejä du
calcul des profus fleehis, constitue une charge en partie inutile et onereuse, il
resulte qu'il convient de la supprimer en prevoyant l'evidement; d'oü resultent
les plaques nervurees et ä poutres multiples, qui sont legeres et rigides, mal-
gre la grandeur des vides ä couvrir.

Suppositions:
1. L'ecartement ,,q^ entre deux nervures consecutives paralleles ä Oy est

petit par rapport ä la dimension „a" de la plaque;
2. L'ecartement ,,b±' entre deux entretoises consecutives paralleles ä Ox est

grand par rapport ä la dimension ,,biC de la plaque;
3. L'epaisseur de la plaque sans nervures ,,h2" n'est pas negligeable.

Dans une section en beton arme, il faut distinguer deux sortes d'elements:
d'une part, les elements de beton reel; d'autre part, les element d'armatures.
On compte ces derniers pour dix fois leur valeur, de sorte qu'ils representent
une aire de beton fictif.

Enfin, cet article suppose, comme l'indique son titre, que la section
supporte des efforts de traction dans une region plus ou moins etendue, et les

reglements prescrivent de compter comme nuls tous les efforts de traction
s'exercant sur des elements de beton reel, ces elements devant etre consideres

comme inefncaces, ou inexistants. On a alors ä considerer des sections reduites
se deduisant de la section entiere par la suppression de toutes les tranches de

beton reel situees au-dessous d'un certain plan xOy perpendiculaire ä la
direction commune des charges exterieures et d'ordonnee ,,77" par rapport
ä l'axe 01x1 au niveau de l'armature de traction, v. Fig. 4. La section reduite
particuliere qui satisfait aux reglements doit etre teile que son axe neutre
coincide avec Ox et ait pour ordonnee ,,?/'.
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Nous avons deduit les caracteristiques d'une section perpendiculaire ä Oy
et reduite jusqu'a ,,77":, des indications donnees par le regrette professeur
G. Pigeaud, comme suit:9)

,,77" est une racine positive de l'equation du second degre en ,,77" de

®i(l) =H-VS 0;

oü, pour 0 < 77 < hx

8 q2h1-\-a1h2+lO(<jL>1 + (x>2)—q2r}, S ~ S0 — q2rj,

2H q2hx2+ q1[(h1 + h2)2-h12] +20z1cxj1-q2712, 2H 2H0-q2rl2,

3J — q2h13-\- qx [(hx + h2)s — hf] + 30 zx2 cjü1 — q2rjs, 3 J 3 J0 — q2 rf,

pour hx < 77 < (A1 + h2)

S Sö-\-(q1 — q2)h1 — q1r), cox: aire totale de Parmature de compression,

2 H 2 H0 + (q± — q2) hf — ax rj2, zx: son ordonnee moyenne,
3 J ^jQJt(q1 — q2)h-f — q1yf, co2: aire totale de Parmature de traction,

nous aurons alors pour le moment d'inertie J0y cherche:

•/„, (1/?!) _/-(#»/£)],
et la rigidite de flexion de Punite de longueur d'une section de la plaque
nervuree perpendiculaire k Oy sera immediatement:

D0y EbJ0yl(l-UxUy)> OU Ux °'

m-r

htl
k fei it_____

Fig. 4. Coupe transversale d'une plaque nervuree

La rigidite de flexion de Punite de longueur d'une section perpendiculaire
ä Ox sera, d'apres le Dr. Girkmann, v. p. 481:

9il&ox (q1-q2)ID^x + q2ID^p,

Dqx etant la rigidite de flexion de la plaque sans nervures et D^xp etant la
rigidite flexionnelle de la plaque Active ayant Pepaisseur (A1 + ä2), v. Fig. 4.
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La rigidite de torsion de Punite de longueur d'une section perpendiculaire
ä l'axe Oy sera d'apres le Dr. Girkmann, v. p. 481, 2C0y= 2CP + (CNjq1),
2GP etant la rigidite de torsion de la plaque sans nervures, CN etant la
rigidite de torsion de la nervure.

La rigidite de torsion de Punite de longueur d'une section perpendiculaire

ä l'axe Ox sera 2C0x 2CP.

2H sera egale ä ^_90^ + 4(7p + ((7A7a1), avec ux 0.

On peut imaginer9) que le moment total de torsion „^rriy^, v. Fig. 1,

c'est-ä-dire le moment dans le plan de la section perpendiculaire ä l'axe Oy,
soit partage en deux parties, savoir: un moment (myx)1 applique ä la plaque
sans nervures de largeur „af et un moment (myx)2 applique ä la nervure, ce

qu'exprime la condition
(™yx)l + (myx)2=$lmyx>

alors nous aurons:

(myx)il(aih3) (myx^lh^ almyxK$lV + ^i«23)-

On en deduira:
(™>yx)l ($l2hS'myx)l(aih2S + hia2i)>

(myx)2 (^lh1^23myx)l(^lh23 + h1^23)'

f) Plaques ä poutres multiples, en beton arme. Si l'ecartement ,,bf',
v. Fig. 2c, devient egalement petit par rapport ä la dimension ,,6" de la
plaque, on passe de la plaque nervuree ä la plaque ä poutres multiples.

Nous avons
ux k'Uy, oü uy 1/6 et Ogfc^ 1.

Nous pensons, pour calculer les constantes du Dr. Huber, qu'il serait
convenable de partager cette plaque en deux plaques nervurees suivant les

directions des axes Ox et Oy.
Nous avons alors, v. Fig. 2c:

D0y EbJoyKl-uxuy)> D0x Eb JOxl(l ~ Ux uy) \

2C0y 2Cp + (CNlq1), 2C0x 2Cp + (CElb1), „E entretoise":

2H uxD0y + uyDQx + ±Cp + (C»lq1) + (CEIb1).

Pour ^2 0, ux 0, uy 0, nous aurons 2H cNlq1 + CEjb1, ete
ceci est compatible avec les indications donnees par le Dr. Timoshenko ;

de meme, pour hx 0 et A3 0, v. Fig. 2c, nous aurons ,,2H" defini par le

Dr. Huber, lui-meme.
On peut definir de meme ces constantes pour les plaques mixtes (avec

beton arme et acier), etc.
Signaions en passant que l'emploi des series trigonometriques dans le

9) Voir les ouvrages de MM. Pigeaud et Paris, loc. cit., p. 1.
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calcul des ponts ä poutres multiples semble devenir indispensable, de nos
jours10); la theorie correspondante a ete developpee par le Dr. Huber, en
191411).

VI. Calcul des constantes d'integration

1. Exemple numerique pour le cas H2 — D0xD0y>0

Soient (v. Fig. 2 c et 4):

b 20w, 00; a %m, 16; qx 0m, 56; q2 0m, 28;

hx 1™, 00; h2 0m, 30; ;

Calcul de „D0v".
Admettons approximativement cof 0,00252 m2, zx 1,24 m, w2T

0,01134 m2.

Nous trouvons Sf 0,587 m2, 2H0T 0,729 m3, 3 J0T 1,067 m4; if
sera la racine compatible de l'equation

(rf)2 - 4,193 rjT + 2,607 0, c'est-ä-dire rf 0,76 m.

Nous aurons alors ST 0,365m2i HT 0,284m*, JT 0,315m4, J02/ 0,168m4,
_5rö 21.105t-m2, D0y= 105• 3,528 t-m2.

Calcul de „D0x".

Nous avons, d'apres le professeur G. Pigeaud, v. son ouvrage loc. cit., p. 1,

avec les hypotheses preliminaires:

h2-e2 0,30-0,03 0,27 m, ^ ^ 0,001608 m2, ^ 0,24 m,
S0P 0,302 m2, H0P 0,0403 m3, J0P 0,00749 m4,

(rjp)2- 0,604 t?p +0,0806 0, d'oü 77^ 0,20 m,
£p 0,102m2, ,Hrp 0,0203 m3, Jp 0,00482 m4,

7^ 0,00078 m412), Dpx= 105- 0,0164 tm2,
D'autre part nous avons:

cü1n+p ü>f\qx 0,0045 m2, cof+p ajflq2 0,0203 m2,

Zl= 1,24 m, #^+p= 1,548 m2, #f+p 0,901 m3, Jf+P 0,802 m4,

(7?iv+P)2_3?0967?-V-fP+lj802 o, d'oü 77^ 0,78 m,

10) Voir les ouvrages et les articles: 2, 3, 5, 7, 8, 9, loc. cit., p. 1.

11) La bibliographie des Theses du Dr. M. T. Huber, sur ce sujet, est donne par
lui-meme dans sa contribution, loc. cit., p. 1, v. pp. 263 et 264.

Le probleme des plaques anisotropes se trouve ainsi resolu tant au point de vue de
la fleche de flexion qu'ä l'egard des constantes du Dr. Huber, du moins d'une maniere
approximative et rationnelle, süffisante pour la pratique.

12) Le beton arme entre dans la classe des materiaux non homogenes et non isotropes,
dans cet exemple nous avons obtenu la valeur suivante, au lieu de celle d'une section
isotrope equivalente: J= 0,273/ 12 0,00164 m4.
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Sn+p 0,768 m2, HN+P 0,597 m3, JN+P 0,644 m4, Jf/P 0,18 m413),

I>fJ-p=105-3,78 t-m214), d'oüresulte D0x= 105-0,0327 t-m2.

Calcul de „2C0y"

2Cp (Eb J&.)/(1 + 1/6) 105-0,01404 t-m215)

^ 0, cof cof 0,01134 m2, £f 0,393 m2, #f 0,140 m3, Jf 0,09333 m4,

(r!N)2- 2,801 rjN + 1=0, d'oü 77^ 0,42 m,
5^=0,275 m2, #^ 0,115 m8, J^=0,0864m4, J*y 0,0383 m4,

(7^/«!= 1,231-105 t-m2, 2C0y= 105-1,245 t-m2.

Calcul de „#"
# 0,5 (105 • 0,0327/6) + 2 • 105 0,01404 + 0,5 • 1,231 • 105 105 • 0,6463 t • m2.

Calcul de „H2-D0xD0y"

H2-D0xD0y l01«-0,418-1010-0,0327-3,528= + 1010-0,303 t-m2.

Calcul des „8n", „yn", „ßn".

On trouve aisement, v. p. 4:

Sn 6,02j8w, yn l,705j8n, j8w 0,157-w m"1.

Calcul de „Jn".
La theorie des determinants nous donne (v. la note 8):

'1,71 ^2,71

2,71
* *

6l,7l e
el,n e2,n el,ne2,ri' e^c-

4«

1,71

*
1,71

**
1,71

^2, 71 ^3, 71

* *
62,7l ^3,71

** **
^2,71 ^3,71

-p (p* P** _*** P* \-p* (p p** -p** p \ 4.— cl,7i V^2,ti ^3,n t2,n^3,nt t/l,n\^2,n^3,n ^2,71 ^3,n/ ^
+ el,w (e2,7i e3,7i"~e2,7i e3,n)> e^C- • • •

1,71

*
1,71

**
1,71

***
1,7t

2,71

,*
^3,n ^4,ti

°4,7l
Je-*** **

^2,71 e3,n %n
^2,71 ^3,71 64,7l

'2,n
**
2,71

62,n

3,71

,**
3,71

*H
3,

4,71

**
4,71

***
4,71

+ e 1,71

e2,7i e3,7i e4,7i

p**e2,7i p**63,7l p**

***
e2,7i

***
C3,7i

***
64,7l

e2,n e3,7i ^4,71

e* e* ^4,71

***
e2,7i

***
63,71

***
64,7l

— e 1,71

2,71

*
2,71

**
2,71

3,71

*
3,*
**
3,71

4,7t

*
4,71

**
4,71

13) Remarquez que la section isotrope äquivalente admettra 1,33/12 0,183 m4.

14) Une comparaison entre Df+ p et DQ met en evidence la superiorite des plaques

nervurees sur les plaques non-nervurees.
15) Ici, nous avons suppose u=l/6. En realite, dans une plaque nervuree en beton

arme on a, d'apres le Dr. Girkmann ux Q, u =1/6; ces valeurs donneront 2 (7P=#2 (7P;
cependant la difference est negligeable.
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ou n 1

ei,n ~ 4,854;

e**n= -14,17;
ej**= +13,04;

e3fW - 4,769;

<n ~ 4>477;

C =+14,14;
K3,7l -13,07;

- 208,422;

- 384,438;

-1808,17;
+ 3335,65;

- 208,393;

- 384,490;

+ 1808,17;

-3335,66;

- 5085,745

- 14075,076

-117261,124
+ 324527,065

- 5085,737

- 14075,099

+ 117261,124

-324527,065

n 1

-0,084

<n =-0,009
-0,104
+0,014

&2, n

°2,n

&2,w

2 3

-0,553; -2,343
-0,177; -1,247
-0,970; -5,988
+ 0,341; +3,283

1

e =-0,050
<n -0,015

C =+0?078

^4,71 -0,019

2

-0,485
-0,202
+ 0,932

-0,355

3

-2,263
-1,291
+ 5,957

-3,301
avec x — ax — 3,64 m, et x + a2 + 2,52 m.

Calcul des „A"1«):
Developpements semblables des determinants, avec ,,d 0,30 m", et

n= 1 2 3

Nn + 5,890 _VX; + 36,295 _V2; + 242,243 _V3;

#* +6,057 _VX; + 61,806 iV2; + 671,260 _V3;

N„ 0,0198 sin (0,157 v); 0,0197 sin (0,314 v); 0,0196 sin (0,471 v);

2. Exemple numerique pour le cas H2 — D0xD0y < 0

Considerons une poutrelle en töle ondulee de 100-100-2 (v. Hütte, Bd. 1,

1949, p. 1026), v. Fig. 3a, avec a 40cm, et 6 200 cm.
Nous aurons Z>0a. 519 kg-cm2 H 2 C 3428 kg - cm2, ux uy 0.

Nous trouvons:

D0y= 11730000 kg.cm2; j3w 0,0157-ra; <pn 0,139-n; 0w O,133-w;

et les constantes d'integration s'en deduisent aisement.

16) De la condition de passage (qx)2 — (qx)i= — p9 pour „# 0", il resulte les series
suivantes, qu'admettent differentes rapidites de convergence:

2 (1/n Xt sin ß y pour l'effort tranchant; ou
l
2 (Ijn2) X2 sin ßny pour le moment de flexion.

2 {l/n2) X3 cosßny pour le moment de torsion.
00

2 (IM4) X4 sin j8w2/ pour les fleches.
l

cos 0w2/.



128 H. S. Gedizli

Resume

L'equation aux derivees partielles (1) du Dr. M. T. Hüber constitue la
premiere base de connaissance mathematique de la plaque anisotrope et non
homogene et sa resolution utile pour la pratique n'est possible qu'avec l'hypothese

de repartition lineaire de la charge, car les autres hypotheses donnent
des series qui sont quelquefois tres lentement convergentes pour le moment de
flexion et ne paraissent pas susceptibles d'applications au calcul numerique.
Cependant il y a quelque series, parmi elles, qui se pretent aux calculs
numeriques, mais seulement pour les cas speciaux.

Suivant la voie ouverte par MM. Galerkin, Olsen et Reinitzhuber,
l'auteur etudie dans cet article les plaques rectangulaires anisotropes d'epaisseur

constante, librement appuyees sur leurs cötes opposes, et il tient compte,
pour les deux autres de l'absence d'appui.

Zusammenfassung

Die partielle Differentialgleichung des berühmten Forschers Dr. M. T.
Huber bildet die Grundlage der mathematischen Erfassung der anisotropen
inhomogenen Platte. Ihre praktische Auflösung ist nur möglich unter Annahme
linear verteilter Belastung, da andere Voraussetzungen zu Reihenentwicklungen

führen, die oft für die Biegemomente sehr schlecht konvergieren und
für die numerische Auswertung nicht vorteilhaft erscheinen. Es gibt jedoch
darunter einige Reihenentwicklungen, die der numerischen Behandlung
zugänglich sind, jedoch nur in Spezialfällen.

Auf dem von Galerkin, Olsen und Reinitzhuber eingeschlagenen Wege
untersucht der Verfasser rechteckige anisotrope Platten konstanter Dicke, die
auf zwei gegenüberliegenden Seiten frei aufliegen und deren andere Ränder

ganz frei sind.
Summary17)

The equation with partial derivatives (1) of the eminent scientist Dr.
M. T. Huber constitutes the basis of the mathematical analysis of anisotropic
and nonhomogeneous plates, and its effective Solution in practice is possible
only by accepting the linear load distribution, because other methods result
in series that are sometimes very slowly convergent for the bending moment
and do not seem to be suitable for numerical calculation. There are, however,
some series among them which lend themselves to numerical calculations, but
only for special cases.

According to the method proposed by B. G. Galerkin, Dr. H. Olsen and
Dr. F. K. Reinitzhuber, the writer considers in this article anisotropic
reetangular plates of constant thickness freely supported on two opposite
sides and unsupported on the other two sides.

17) Je dois cette traduetion, avec mes vifs remereiments, ä Messrs. Concrete
Publications Ltd., Editeur, a Londres.
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