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Plaques rectangulaires anisotropes reposant librement sur deux cotés
opposés seulement et soumises a la flexion sous charges normales

Lol s

9.

10.

a leur plan

Biegung rechiteckiger, zweiseitig frer aufliegender anisotroper Platten
unter Belastung senkrecht zur Mittelebene

Bending of rectangular anisotropic slabs, supported free at two sides
and loaded normal to the middle plane

Ing.-dipl. H. S. GEpizr1, Ankara (Turquie)
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II. Introduction

Dans la pratique, on utilise fréquemment des plaques rectangulaires aniso-

tropes (Plaques en béton armé portant dans les deux sens, plaques nervurées,
toles ondulées, réseaux de poutres, plaques & poutres multiples, plaques
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contre-plaquées, grillages continus, etc.) et on détermine en général leur fatigue
au moyen de formules approximatives. On peut donc penser qu’il vaudrait
mieux rechercher des formules exactes, mais un peu compliquées, déduites de
la théorie des plaques anisotropes due & MM. J. BOUSSINESQ - SAINT VENANT -
M. T. HUBER.

Cette théorie donne, pour la surface élastique d’une plaque d’épaisseur
constante, 1’équation aux dérivées partielles du quatriéme ordre

Doxw....+2Hw--//+D0ywlIN — p(x,y) 1) (1)
ou

Dy,=E, Jy,|(1—u,u,); 2H=u,Dy,+u,Dy,+4C; Dy, =E, Jy,[(1—uyu,);

u,, w, étant les constantes généralisées de Po1ssoN pour les directions 0z et Oy;
2C = (1—Vu,u,) YDy, D,, la rigidité de torsion de la plaque; p(,y) étant
P’intensité de la charge au point (z, y) de la plaque; w étant la fleche de la
plaque au point (z, y);
E,, E, sont les modules d’élasticité suivant les axes 0x et Oy; Jy,, J,, sont
les moments d’inertie par unité de longueur des sections perpendiculaires aux
directions des axes Ox et 0.

Les grandeurs des sections sont liées a la flexion au point (z,y) de la
plaque par les relations suivantes (Fig. 1):

p
=N s
- S,
J 0 ax=1
Ty, d Iy hp
Dy
N 1
z \\: 3+ h/p
Lem
il
g — -
X

Fig. 1. Les grandeurs des sections dans un élément de la plaque

Moment de flexion par unité de longueur d’une section perpendiculaire
a la direction de 1’axe Oz:

My, = — Doy (W +u,w’); (2a)

1) Ici les indices (), (**), (***), (") indiquent les dérivées partielles par rapport a la
variable indépendante x, de méme que les indices (’), (), ("), ("’”’) indiquent les dé-
rivées partielles par rapport & la variable indépendante y; par exemple, I’indice (*”)
[indique le résultat qu’on obtiendra en dérivant successivement 2 fois par rapport a x,
2 fois par rapport a vy, ete.
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Moment de flexion par unité de longueur d’une section perpendiculaire
a la direction de ’axe Oy:

m, = —Dqy, (W' +u,w"); (2b)

Moment de torsion par unité de longueur d’une section perpendiculaire
a la direction de 1’axe Ox ou 0y:

Myy =My, = —2Cw"; : (2¢)

xY
Effort tranchant par unité de longueur d’une section perpendiculaire a la
direction de ’axe 0x:

gy = — Dy, (W + Ryw"’) ot Ry =u,+(20/Dy,); (2d)

Effort tranchant par unité de longueur d’une section perpendiculaire & la
direction de I’axe 0y:

qy, = =Dy, (W' 4+ Byw') ot By =u,+(2C|Dy,); (2e)
Réaction par unité de longueur du c6té perpendiculaire & Ox:

Gy = —Doy (W + Bgw'™) o Ry =wuy,+(4C0[Dy,); (21)
Réaction par unité de longueur du c6té perpendiculaire & Oy:

Gy = —Dy, (W +Rw ") ou By=mu,+(4C[D,,). (22)

On obtient, en faisant p (z,y) =0 dans 1’équation (1), I’équation homogeéne
de surface élastique de la plaque. Celle-ci admet trois solutions distinctes
exprimées par les séries trigonométriques, dont chacune se rapporte & 1’'un
des cas H2—D,,D,, = =0

Le cas H>—D,,D,, —0 avec u,=1u, a été résolu d’une maniére trés com-
pléte et élégante par les Drs. OLSEN - REINITZHUBER. Nous nous proposons
d’aborder maintenant briévement 1’étude des deux autres cas.

III. Etude de I’influence d’une charge concentrée et mobile ,,P*

Nous avons le développement suivant pour une charge concentrée répartie
uniformément sur une ligne de longueur ,,2d‘* au point ,,», 0°‘ de la plaque:

o0

P (y) = (4 e/ Z (1/n)sin(nmv/b)sin (nwd/b)sin (nmy/b), (3)

ou p,=P/2d, d étant égale a (10+2s), ol s est 1’épaisseur en cm de couver-
ture de la plaque.
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Fig. 2. Plaque soumise & la charge concentrée P mobile sur un axe quelconque
Fig. 2a. Plaque soumise & la charge concentrée I> mobile sur un de ses c6tés non appuyés

Fig. 2b. Plaque soumise & la charge concentrée P mobile sur ’axe situé au milieu de la
plaque, ainsi qu’a une bande de charge uniforme
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Fig. 2¢. Emploi des plaques nervurées préfabriquées dans un pont

La surface élastique compatible est exprimée par 1’équation homogéne

suivante:
D(,ww”"+2Hw"”+D0yw’”’ = 0; (4)

sa solution sera de la forme:
0
w=K Z wl,nSin (Bn y) ’ (5)
n=1
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ou B,=nmw/b, K étant une constante, et pour H2— D, D,,> 0 nous trouvons
dans la premiere partie de la plaque (Fig. 2):

Wy, =4y, Chd,2+4,, Chy,x+A4;, Shd, x+4,, Shy,z; (5a)
dans la deuxiéme partie de la plaque:

Wy, =By, Chd, x+B,, Chy,x+ B, , Shé,x+ B, , Shy,z; (5b)
pour H2—D,, D,, <0 nous trouvons dans la premiere partie de la plaque:

Wy, = B y,cosp,x Cho,x+ B, , cos,x Sh‘an_
+ B, ,singy,x Che, x4+ K, ,sing,x She,z; (5¢);

dans la deuxiéme partie de la plaque:

wy = Fy pcosh,x Cho,x+ F, ,cosp,x She,x
+ F; ,sindy,x Che, 2+ F, ,sing, x She,; (5d)

Oh 8n = B D H+ ]/H DOxDOy) Yn = Bnl/DO H VH DOwDOy)

i VB Ao s B 20

Nous aurons donc d’une fagon générale:

(¢

m, = +KDOanI(%anwl,n—Wi;n)sinﬁny; (6a)
m, —+KDMZ( 211, — Ug Wi, ) SI0 B Y5 (6b)

=—20K » (B, ;) c08B,Y; (6¢c)
% —+KDMZ( Ry B2 wy, p—wi ) sin B, y; (6d)
9, =+KDy, > (Bwy,— ReBywi,) cos B y; (6e)
s —+KDMZ( Ry B, w n—wyy) sin B, y; (61)
Gy = +K Do, Y By~ RyPywi,) c0sB,y. (6g)

n=1

1. Abréviations
Posons: z,, = Chd, =z, 2,, = Chy,z, 2z, =Shs, z,
Zyn =Shy,x, 25, =cos,x Che,x, 2, =cos,x She,z,
27 =sing, x Cho,x, 25, =sing,r Shoe,z.
Nous aurons alors:
2yn =90, Shd,z, z;°, =9,%2 Chd,x, 2, =38,° Shd, z, etc.
n=9pc08¢, x She,x—,sinf, x Cho,x,
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Z5n = (Pu®— %) cosih, @ Cho, 2 —24, ¢,siny, z She, 2,

25 = (@2 =3, cosh,x Sho, x+ 4,3 —3¢,¢,%)siny,x Che,x,
En intervertissant Sh et Ch dans les expressions ci-dessus, nous obtenons zg ,, .

23 = ppsing, x She,x+i, cosy,x Che,x,

2rn = (@a =) sing, & Cho, 2+ 24, ¢, co8i, 2 She,z,

2rn = (Pn® = 3Pnth,®) sing, @ Sho, £ —(,* ~ 3¢, ¢,%) cosih, x Cho, z,

Méme remarque pour 2g,. Nous poserons de plus:

pour x = —ay:

Zrn=Fins 2 =Fiaseeenn.. , Zain =g
pour x = +a,:

Zam =Pygs B =P e , 2 = Pgms
pour = = +a:

Zin=Hyp 2ig=Hi oo ooy 2y, =HEY.

Nous pouvons donc écrire d’une maniére plus condensée:

................................................

(8—-64)’!01’” = Fl,nz5:n+F2,nzé,n+F3,nz"7:n+F4,n28,;z'

2. Valeurs des constantes d’intégration pour le cas de la fig. 2

Les conditions compatibles sont:

pour x = 0:  (w); = (w)y, (W')y = W)y, (My)y = (My)s, (¢z)e— (92 = —P;
pour & = +ay: (my)y =0, (¢;)s = 0;

pour x = —a;: (my) =0, (@), = 0;

pour y =0 et y = +b: (w); = (w), =0 et (m,); = (m,), = 0.

Elles donnent:
K = (2Pb%)[(m*d Dy,) ?); N, = (Dy,[Dy,)(1/n*)B,>sin B, vsinp, d;
Ay p = Bya; Aon =By Agp— By =+ (N,[0,)[1/(y,2—8,))];
Ay =By = —Nofya) [y =3,
By w=Fy.; —Eyp+Fop =+[N,/(20,)]1[1(,2+,))];
_E3,n+ F3,n = —[N,/(2¢,)] [1/(‘/’n2+9’n2)]5 E4,n = F4,n3

%) C’est une constante arbitraire et nous I’avons choisi de telle sorte que les constantes
d’intégrations restent; en tenant compte des études du Dr. Timoshenko [,,Rectangular
Plates of Infinite Length with Simply Supported Edges* (voir: Chapitre V-34 de son
ouvrage classique, loc. cit., p. 1)], on voit que cette constante a la forme convenable.
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Nous croyons, qu’il est possible avec ces notations claires, de calculer
rigoureusement les efforts dans les plaques anisotropes considérées pour
n’importe quelle distribution de charges. Celles-ci pourraient faire 1’objet de
calculs numériques, effectués a 1’avance. Des tables et surfaces d’influences
pourraient alors étre utiles aux constructeurs. Nous ne pouvons qu’exprimer
le souhait de voir quelque bureau d’études entreprendre cette tache.

3. Valeurs des constantes d’intégration pour le cas de la fig. 2a:

Les constantes B, ,,, ..., By, et ¥, ., F,,,..., F,, disparaissent.
Les conditions compatibles sont:

pour x =0: m,=0; ¢, = —p:

pour x = +a: m, = 0; q, = 0;

poury =0 et y =b: w=0 et m, = 0.

Elles donnent:

Cim = Uy By®—8,%, Cs,n = Uy B — @p” + %
Co,n = Uy Bu® —Vn"s Co,n = BsBrlon—®n> +3 0,7
Cgn =8, — B3 B,28,,  Cq = RyB, 2y +1h,° =34, 0,%
Cam = Vn"— B3Ry Con=—2¢ny.

* 2 _qyxx * 2 _gE*
cl,n — uyﬁn Hl,n 1,nr* " ’ cs,n - uyﬁn Hs,n 8,n
kk 9 % kkok
O = Ry B EHY  —HY :

k% 9 % *ksk
Cg,n = RSBn HS,n_ 8,n °*

ClnCon0 O 0 ¢,0 0
O 0 03’n 04’n +Nn O c3,n c4,n
An': * ok k% ; 4y, =(1/4,) 0 x k% )
Cl,n c2,n C3,n c4,n c2,n C3,n c4,11,
k¥ kk  kk k% kk kk Kk
cl,n cZ,n c3,n C4,n 0 C2,n c3,n c4,n
!
€,, 0 0 0 Ci,n Co,n 0 O
A —uM)O+N““%”-A —/ayl? 0 +Nnoon |
2,n n * 0 * * ¥ 3,n ( / n) * * 0 * ’
51 N C3.n Ca,n cl,n Com Cayn
k% R T *k  kk k%
cl,n 0 C3,n c4,n cl,n c2,n 0 64,11
Cl,n cz,n O O 05’n 0 O CS,n
A . (I/A ) 0 0 C3,n+Nn . A* . 0 cG,n c7,n0
4,n n ’ n - ’

* * * * * * *
cl,n C2,n C3,n 0 cﬁ,n cﬁ,n C7,n cS,n

K%k %k  kk Kk kk kk Kk
C’l,n C2,n C3,n 0 c5,n Cﬁ,n C7,n cS,n
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00 0 e, Csn 0 0 Cgp
~N, €6 €700 0 -N,c¢;,,0
El,n = (]‘/A;:) O " *’n *,n * 5 Ez,n = (1/A;‘:,) %k O *’ %k 7
cﬁ,n c7,n CS,n 5.n C7,n CS,n
%k Kk kk | Kk *kk
0 66,*n c7,n CS,n : }cz,*n c7,n CS,n
Csn 0 0 cq, €5, 0 0 0
0 ¢.,—N_O 0 c¢..,c,, —N
E,, = (1/4}) o s By, =(1/45) NI F

* * * * * *
| C5,n C6,n 0 cS,n ; c5,n cﬁ,n c7,n 0
[ k% k% * % | kk kk kk
{ c5,n Cﬁ,n 0 C’S,n i cs,n cG,n C7,n 0

4. Valeurs des constantes d’intégration pour le cas de la fig. 2b:

a) Plaque soumise a la charge concentrée ,,P‘ mobile sur laxe ,,0y‘ situé
au milieu de la plaque: 11 suffit de prendre —a, = —a/2, +a, = +a/2 dans les
formules précédentes indiquées dans I111/2.3).

b) Plaque soumise a une bande de charge uniforme ,,2d-a-py‘‘ mobile survant
Uaxe ,,0y‘ et restant perpendiculaire a celui-ci: Ce cas étant indispensable pour
I’étude de 1’influence de la charge propre d’une entretoise dans les plaques a
poutres multiples, peut étre opportunément adapté et donner I’influence de la
charge propre d’une nervure dans les plaques nervurées et & poutres multiples.

Sa solution pour les plaques isotropes rectangulaires simplement appuyées
sur leur contour avait déja donnée en 1925 par M. B. G. GALERKIN 4); elle
donne tres rapidement des séries convergentes pour le calcul, mais pour ne pas
augmenter les dimensions de cet article, nous avons du supprimer sa générali-
sation pour les plaques anisotropes, et nous nous proposons de la présenter
ultérieurement.

IV. Etude de Pinfluence d’une charge uniformement répartie sur
toute la plaque (Fig. 3) %)

Nous supposons ici que p(x,y) se réduit 4 une constante ,,p,”. La réso-
lution du probléme par la méthode , LEVY-EsTaNAVE-NADAI%) donnera

3) La solution, donnée sous le titre ,,Die Platte mit Einzellast‘‘, v. Beton-Kalender
1943, 1. Teil, pp. 136 et 137, avec Fig. 27, du méme probléme, nous semble indéterminée ;
en effet elle doit remplir six conditions (dont quatre relatives aux c6tés y = + b et indépen-
dantes, les unes des autres, ,,a cause des fonctions impaires‘‘), avec ses quatre constantes
d’intégrations.

4) V. Pouvrage du Dr. TimosHENKO, loc. cit., p. 1, pp. 146 & 167.

?) Pour ’étude du cas H?— D, D, =0 voir également I'ouvrage du Dr. GIRKMANN,
loc. cit., p. 1, pp. 489 et 490.

8) Voir ’'ouvrage essentiel du Prof. Dr. Ing. Kurt BEYER, Dresden, loc. cit., p. 1.

9 Abhandiungen XI
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Fig. 3. Charge uniformément répartie sur toute la plaque
Fig. 3a. Coupe transversale d’'une poutrelle en tole ondulée

Détermination de ,,w;““. Faisons dans I’équation (3), v=>5/2 et d =b/2, nous
obtenons

p}(y) = (4po/m) D) (1/n)sinB,y, n=1,3,5,17,..... 7. (9)

D’autre part‘ nous avons, pour introduire l’influence de la charge,
Dy, wy" =p(y); remplagons-y p (y) par sa valeur ci-dessus, puis intégrons; nous
obtenons

wy =K1ZNn,1Sian?/ (10)
ol K, = (4pyb*) | Dy, 7% N, , = 1/nb.

Détermination de ,w,”. Cette fonction ne doit pas changer de signe
lorsqu’on remplace ,,+x* par ,,—x*“. Cela est possible avec les hypothéses:

Al,n = Bl,ns A2,n = B2,n’ A3,n = B3,n =0, A4,n = B4,n =0,
dans les équations (5a) et (5b);
El,n = Fl,n’ Ez,n = Fz,n =0, E3,n = F3,n =0, E4,n = F4,n’

dans les équations (5¢) et (5d); d’ou il résulte:

pour: H?>— Dy, D,y,>0
w, = Ky > (4, Chs,x+A4,, Chy,z)sinp, y; (11a)
) Remarquez que sinn—; =0, pourn =2,4,6,8,...
n—l1
sin"—2~" =(-1)2, pourn=1,3,57,...

Voir également l’intéressante contribution de I'ingénieur espagnol F. G. MONGE, loc.
ecit., p. 1.
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pour: H?—-D,,D,,<0

wy, = K, Y (B, cosp,x Cho,x+ E; , sing,x She,x)sing,y

Nous aurons pour ce cas
my =KIDOxZ[uanz(Nl,n_i_w&n)_w.Z:n] Sinﬁny; """ )
Qm = KIDOxZ (R3Bn2wé,n—'wé:.n) Sinﬁny; ete. . ..
ou, selon le cas a étudier,

u’2,n = Al,nzl,n+A2,n22,n: u”z,n = A1,7L21,71+A2,nz2,n? ete. ..

Wo, n = El,n_25,n+E2,nz8,na Wy p = El,nz5,n+E2,nzs,n, ete. ...

Valeurs des constantes d’intégration
Posons pour simplifier:

2y 0)% = +al2 = +K1 ws (21)% = ta/2 = + K*

( ) 1,n>
(25.,)% = ta/2 = + K", (27;,)¢ = ta/2 = + KT,
(29,0) = *af2 =+ K, ,, etc. ...,
(25,0) = *a/2=+K;,, ...,
(2g0)® = T af2 = +Kg s o
](l,n__— K** —u’ylgnzKln: fzn:: 2n_uz/6n 2,m>
f;e,'n’: K***+R3Bn 1n> f2 nz—IK***'}'R&Bn 2n’
f3,n= * n Uy /gnzK.S n f4,n= S,n_uy IanKS,rw
f;,n = ""K***_‘—R?»an[{:,n’ f:,nz - §;t+R3Bn2
Nous avons donc:
A fl,n f2,n A A Nl,n f2,n fln ln
n T | % |2 “ntin T * ) AnA2,n=
fl,n fzn 10 fz,n ,fl,n
!
A* . f3,n f4,n A*E Nl,'n f4,n A* .f3n 1Ln
n | % * s n1,n = 0 * 2 n =
f3,n f4,u f4,n §f3,n
ou n=1,3,5"7,.....
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(11b)

(12a)
(12f)

8)7'

8) On peut trouver le développement d’un déterminant, ainsi que les valeurs tri-
gonométriques nécessaires, dans les manuels de I'ingénieur, voir par exemple Hitte,

Bd. 1. et le livre de I’auteur, loc. cit., p. 1.
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V. Détermination des constantes Doy, Doy, C et H du Dr. M. T. Huber

Ces constantes dominent le probléme et exigent encore des recherches, &
P’exception de celles qu’ont été indiquées par le professeur lui-méme, qu’elles
soient déduites de la théorie de D’élasticité des corps non-isotropes ou des
essais.

a) Plaques en béton armé portant dans les deux sems. Nous renvoyons a
l’'ouvrage du Dr. GIRKRMAXNN, ainsi qu’a l'ouvrage des Drs. OLSEN - REINTTZ-
HUBER, V. pp. 479, 3 et 28.

b) Grillages continus ,,Réseaux de poutres”. Nous renvoyons & l’ouvrage
du Dr. TIMOSHENKO, v. p. 190 et p. 191.

c¢) Plagues contre-plaguées. Nous renvoyons a 1’ouvrage du Dr. GIRKMANN,
V. p. 482.

d) Téles ondulées. Nous renvoyons & I’ouvrage du Dr. GIRKMANN, v. p. 481.

e) Plaques nervurées en béton armé, v. Fig. 2, 2a, b, c.

De la conception initiale suivant laquelle le béton tendu, éliminé déja du
calcul des profils fléchis, constitue une charge en partie inutile et onéreuse, il
résulte qu’il convient de la supprimer en prévoyant I’évidement; d’ou résultent
les plaques nervurées et a poutres multiples, qui sont légéres et rigides, mal-
gré la grandeur des vides & couvrir.

Suppositions:

1. L’écartement ,,a,"" entre deux nervures consécutives paralleles & Oy est
petit par rapport a la dimension ,,a“ de la plaque;

2. L’écartement ,,b,"" entre deux entretoises consécutives paralléles & Ox est
grand par rapport a la dimension ,,b°° de la plaque;

3. L’épaisseur de la plaque sans nervures ,,h,"" n’est pas négligeable.

Dans une section en béton armé, il faut distinguer deux sortes d’éléments:
d’une part, les éléments de béton réel; d’autre part, les élément d’armatures.
On compte ces derniers pour dix fois leur valeur, de sorte qu’ils représentent
une aire de béton fictif.

Enfin, cet article suppose, comme l'indique son titre, que la section
supporte des efforts de traction dans une région plus ou moins étendue, et les
réglements prescrivent de compter comme nuls tous les efforts de traction
s’exercant sur des éléments de béton réel, ces éléments devant étre considérés
comme inefficaces, ou inexistants. On a alors & considérer des sections réduites
se déduisant de la section entiére par la suppression de toutes les tranches de
béton réel situées au-dessous d’un certain plan x 0Oy perpendiculaire a la
direction commune des charges éxterieures et d’ordonnée ,,n‘‘ par rapport
a l’axe 0,2, au niveau de ’armature de traction, v. Fig. 4. La section réduite
particuliére qui satisfait aux réglements doit étre telle que son axe neutre
coincide avec Ox et ait pour ordonnée ,,n.
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Nous avons déduit les caractéristiques d’une section perpeudiculaire & 0y
et réduite jusqu’a ,,n‘‘, des indications données par le regretté professeur
G. PIGEAUD, comme suit: ?)

,»n° est une racine positive de I’équation du second degré en ,,n de
Dy(n) =H—-7n8=0;
ou, pour 0<n<hy
S =y +a1hy +10(w; +wy) —asm, S =S,—a,,
2H = a7y +aq [(hy +13)? —hy?] + 202 0y — @ m?, 2H = 2Hy—a, 77,
B3J = ayh® +ay [(hy+he)® — 1Pl + 3022wy — o m?, 3J =3J5—a, 7,
pour hy<m<(hy+hy)
S = S+ (a1 —as) by —aqm, w,: aire totale de I’armature de compression,
2H = 2H + (g, —as) h>—a, m?% z;: son ordonnée moyenne,
3J = 3Jy+(a;—as)h®—a; 73 w,: aire totale de ’armature de traction,
nous aurons alors pour le moment d’inertie J,, cherché:

Joy = (Na) [J — (H?]S)],

et la rigidité de flexion de I'unité de longueur d’une section de la plaque
nervurée perpendiculaire a Oy sera immédiatement:

Doy = EbJoy/(I—umuy), ou u, = 0.
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fig. 4. Coupe transversale d’une plaque nervurée
F

La rigidité de flexion de 1'unité de longueur d une section perpendiculaire
a Ox sera, d’apreés le Dr. GIRKMANN, V. p. 481:

a1/Dy, = (24 _@2)/1)5)90 +92/D(Z)\;c+P’

D}, étant la rigidité de flexion de la plaque sans nervures et Dy ¥ étant la

rigidité flexionnelle de la plaque fictive ayant 1’épaisseur (h; +&,), v. Fig. 4.
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La rigidité de torsion de 1'unité de longueur d’une section perpendiculaire
a ’axe Oy sera d’aprés le Dr. GIRRMANN, v.p. 481, 2C,, = 20F + (CV/q,),
2CP étant la rigidité de torsion de la plaque sans nervures, CV étant la
rigidité de torsion de la nervure.

La rigidité de torsion de 1’unité de longueur d’une section perpendicu-
laire & 1’axe Ox sera 2(,, = 2C7%.

2 H sera égale & u, Dy, +4CF +(CN/a,), avec u, = 0.

On peut imaginer®) que le moment total de torsion ,,a,m,,“, v. Fig. 1,
c’est-a-dire le moment dans le plan de la section perpendiculaire a 1’axe 0y,
soit partagé en deux parties, savoir: un moment (m,,); appliqué & la plaque
sans nervures de largeur ,,a,° et un moment (m,,), appliqué & la nervure, ce
qu’exprime la condition

(myx)1+ (myx)2 = g'l myac’
alors nous aurons:

(myx)l/(g’l hy?) = (myz)Z/kl as® = ay myx/(%h ho?® +hyas®).

On en déduira:
(my x)l = (912 k23 myw)/(oal h23 + kl 9’23)?

(M 2)e = (@1 hy @3 my, ) /(@ Bo® + Ry a5P).

f) Plagues & poutres multiples, en béton armé. Si 1’écartement ,b,",
v. Fig. 2¢, devient également petit par rapport & la dimension ,,b* de la
plaque, on passe de la plaque nervurée & la plaque & poutres multiples.
Nous avons
U, = k-u,, ou u, = 1/6et 0=k=<1.

Nous pensons, pour calculer les constantes du Dr. Husgr, qu’il serait
convenable de partager cette plaque en deux plaques nervurées suivant les
directions des axes Ox et 0y.

Nous avons alors, v. Fig. 2c:

DOy = 'Eb‘]'Oy/(1 —uxuy)’ DOx = ZZ'b JOx/(l _uzuy);
20, =207+ (0Nay), 20y, = 2CF +(CE|b,), ,,E = entretoise’:
2H =u,Dy,+u,Dy,+4CF+(CNa,)+ (CE[b,).

Pour hy,=0, u,=0, u,=0, nous aurons 2H=cV/g, +CEb;, etc....... :
ceci est compatible avec les indications données par le Dr. TIMOSHENKO;
de méme, pour ;=0 et hy=0, v. Fig. 2¢, nous aurons ,,2 H* défini par le
Dr. HuBEgR, lui-méme.

On peut définir de méme ces constantes pour les plaques mixtes (avec
béton armé et acier), etc. . .. ‘

Signalons en passant que l’emploi des séries trigonométriques dans le

9) Voir les ouvrages de MM. Pi¢eAauDp et PAris, loc. cit., p. 1.
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calcul des ponts & poutres multiples semble devenir indispensable, de nos

jours1?); la théorie correspondante a été développée par le Dr. HUBER, en
191411),

VI. Calcul des constantes d’intégration

1. Exemple numérique pour le cas H2—D,, D,,> 0
Soient (v. Fig. 2¢ et 4):
b =20m,00; a =6™16; g, = 0™, 56; g, = 0™, 28;
hy = 1m,00; hy = 0™, 30;
Caleul de ,,D,,,*.
Admettons approximativement w,” = 0,00252 m?, 2z, = 1,24 m, w,” =
0,01134 m2.

Nous trouvons S,7 = 0,687 m? 2H T = 0,729 m3, 3J,7 = 1,067 m*;, 5T
sera la racine compatible de 1’équation

(n7)2—4,193 77 + 2,607 = 0, c’est-a-dire 77 = 0,76 m.

Nous aurons alors S7=0,365m?% H?=0,284m3, J7=0,315m¢*, J,, =0,168m?*,
E,=21-105t-m? D0y=>105- 3,628 t-m?2.
Calcul de ,,D, .

Nous avons, d’apres le professeur G. P1cEAUD, v. son ouvrage loc. cit., p. 1,
avec les hypothéses préliminaires:

hy—e€;=0,30—-0,03=0,27m, w,”=w,”=0,001608 m?2, z =0,24 m,
S,F=0,302 m?, HP=0,0403m3, J,&=0,00749 m*,

(7P)2 — 0,604 7P +0,0806 =0, d’out 7P =0,20 m,

SP=0,102 m2, HP=0,0203 m3, J¥=0,00482 m?,

J§,=0,00078 m*12), D[ =10%.0,0164 t-m?,

D’autre part nous avons:

Wi TP =0, a, =0,0045 m?, P = w,Tg,=0,0203 m?,

z=124m, SNFP=1,548 m2 HY+P=0,901 m?, JY*F=0,802m?,
(nN+P)2 — 3,096 nN+P 41,802 =0, d’olt nM+P=0,78 m,

19) Voir les ouvrages et les articles: 2, 3, 5, 7, 8, 9, loc. cit., p. 1.

11) La bibliographie des Théses du Dr. M. T. HUBER, sur ce sujet, est donné par
lui-méme dans sa contribution, loc. cit., p. 1, v. pp. 263 et 264.

Le probléme des plaques anisotropes se trouve ainsi résolu tant au point de vue de
la fléche de flexion qu’a I’égard des constantes du Dr. HUBER, du moins d’une maniére
approximative et rationnelle, suffisante pour la pratique.

12) Le béton armé entre dans la classe des matériaux non homogénes et non isotropes,
dans cet exemple nous avons obtenu la valeur suivante, au lieu de celle d’une section
isotrope équivalente: J=0,273/12=0,00164 m?*.
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SN+P = 0,768 m2, HVN+P =0,597 m3, JN+F =0,644 m4, JYF =0,18 m*13),
DYFP=105-3,78 t-m214), d’ou résulte D,,=10%-0,0327 t-m?,
Calcul de ,,2C
20P = (EbJ *)/(141/6)=105.0,01404 t-m?15)
WY =0, vy =wl=0,01134 m2, Sy =0,393 m2, HY =0,140 m3, J{ =0,09333 m?,
(nV)2—2,80T7¥N+1=0, d’ott 7V=0,42 m,
SN=0,275 m?, H¥=0,115m3, J¥=0,0864 m*, J{,=0,0383 m*,
CNa, =1,231-105 t-m?, 20,,=105-1,245 t-m?.
Calcul de ,,H**
H=0,5(10%-0,0327/6) +2-10% 0,01404+0,5-1,231-105= 105-0,6463 t-m?.
Calcul de ,,H?—D,,D,,
H?—D,,D,y,=10%-0,418 —101°.0,0327- 3,528 = +101°.0,303 t- m?.
Calcul des ,,5,,, ,,v,""s »Bx"-
On trouve aisément, v. p. 4:
S, =6,028,, v, =1,7058,, B, = 0,157-n mL
Calcul de ,,4,°.

La théorie des déterminants nous donne (v. la note 8):

e e

1,n “2,n * *

e . | = C€inly 1€y, etc. ...
el,n e2,n
e |

* _ % k% Ak %k % Kok k%
1 €a.n €3,n | — €1,n (62,71, €3,n " €2,n e3,n) - el,n (62,71, €3,n " €2,n e3,n) +
Kk %k kok |
1

*k * *
v €a.n €3.m| + el,n(e&n 63,n—62’n€3yn), ete. ...

€in €2,n €30 €4n

|
* * * * 62 n 83 n e4 n
A - €i,n €2,n €3,m C4m | ‘ .
n *% *% k% *% "el,n eZn e3n e4n —

| el,n 62 n 63 n 64 n
k% wkk  kokk  kkk
!el,n €2n e‘in e4n

dokk skkk kkk
e?n e3n e4n

|
I e2,n e3,n e4,n 1 ez,n e3,n e4,n 62 n 83 n 64 n
* *kk .
—Cin €2, €n Cn| T €LnC2n 30 Cin — el | €2n €% Con |
skk  kokk kx| kkk  dkokk  kkk
62 n €3 n 64 n | ! 62 n 63 n 64 n e2,n e3,n e4,n

13) Remarquez que la section isotrope équivalente admettra 1,33/12=0,183 m*.

14) Une comparaison entre Df)V;P et Dy, met en évidence la superiorité des plaques
nervurées sur les plaques non-nervurées.

15) Iei, nous avons supposé u=1/6. En réalité, dans une plaque nervurée en béton

armé on a, d’aprés le Dr. GIRKMANN u, =0, u, = 1/6; ces valeurs donneront 2 CP +2 C’
cependant la différence est neghgea,ble
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2

ol n = 1 2 3
€, =— 4,854; — 208,422; — 5085,745;
€1, =— 4,398, — 384,438; — 14075,076;
et = —14,17; —1808,17; —117261,124;
= 113,04;  +3335,65; -+ 324527,065;
€y, =— 4,769, — 208,393; — 5085,737;
s, =— 4477; — 384,490; — 14075,099;
esh, = +14,14; +1808,17; +117261,124;
ey = —13,07; —3335,66; — 324527,065;
n = 1 2 3 n = 1 2 3
ey, = —0,084; —0,553; —2,343; ey, = —0,050; —0,485; —2,263;
€. =—0,009; —0,177;, —1,247; ey, =—0,015; —0,202; —1,291;
ex¥ = —0,104; —0,970; —5,988;  ef* = 40,078; +0,932; +5,957;
eyi=+0,014; +0,341; +3,283; e =—0,019; —0,355; —3,301;
avec xr = —a; = —3,64m, et x =+a, =+2,52m.

Calcul des ,,4°16):

Développements semblables des déterminants, avec ,,d =0,30 m*, et

n = 1 2

|

7
\T K

=

|

=

2. Exemple numérique pour le cas H:— Dy, D, <0

Considérons une poutrelle en t6le ondulée de 100-100-2 (v. HoTTE, Bd. 1,

= +5,800 N,; +36,295 N,; +242,243 Ny;
= +6,057 N;; +61,806 N,; +671,260 Nj;
. = 0,0198sin (0,157 v); 0,0197sin (0,314 v); 0,0196 sin (0,471 v);

3 L.

1949, p. 1026), v. Fig. 3a, avec a =40 cm, et b=200 cm.
Nous aurons D,, =519 kg-cm? H=2(C=3428 kg-cm?, u,=u,=0.

Nous trouvons:

Dy, =11730000 kg-cm?; B,=0,0157-n; ¢,=0,139-n; ,=0,133-n;

et les constantes d’intégration s’en déduisent aisément.

16) De la condition de passage (g,)

suivantes, qu’admettent différentes rapidités de convergence:

Z (1/n ) X, sin B,y pour Peffort tranchant; ou ..

1
2, (1/n?) X, sin B,y pour le moment de flexion.

2’ (1/n?) Xz cosp,y pour le moment de torsion.

=}
> (1/n*) X, sin B,y pour les fléches.
1

. cos B, y.
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2— (g, 1= —p, pour ,,x=0%, il résulte les séries
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Résumé

L’équation aux dérivées partielles (1) du Dr. M. T. HuBER constitue la
premiére base de connaissance mathématique de la plaque anisotrope et non
homogene et sa résolution utile pour la pratique n’est possible qu’avec 1’hypo-
thése de répartition linéaire de la charge, car les autres hypotheses donnent
des séries qui sont quelquefois tres lentement convergentes pour le moment de
flexion et ne paraissent pas susceptibles d’applications au calcul numérique.
Cependant il y a quelque séries, parmi elles, qui se prétent aux calculs numé-
riques, mais seulement pour les cas spéciaux. .

Suivant la voie ouverte par MM. GALERKIN, OLSEN et REINITZHUBER,
l’auteur étudie dans cet article les plaques rectangulaires anisotropes d’épais-
seur constante, librement appuyées sur leurs cotés opposés, et il tient compte,
pour les deux autres de 1’absence d’appui.

Zusammenfassung

Die partielle Differentialgleichung des beriihmten Forschers Dr. M. T.
HusBEgr bildet die Grundlage der mathematischen Erfassung der anisotropen
inhomogenen Platte. Ihre praktische Auflosung ist nur méglich unter Annahme
linear verteilter Belastung, da andere Voraussetzungen zu Reihenentwick-
lungen fiihren, die oft fiir die Biegemomente sehr schlecht konvergieren und
fiir die numerische Auswertung nicht vorteilhaft erscheinen. Es gibt jedoch
darunter einige Reihenentwicklungen, die der numerischen Behandlung
zuginglich sind, jedoch nur in Spezialfillen.

Auf dem von GALERKIN, OLSEN und REINITZHUBER eingeschlagenen Wege
untersucht der Verfasser rechteckige anisotrope Platten konstanter Dicke, die
auf zwei gegeniiberliegenden Seiten frei aufliegen und deren andere Rander
ganz frei sind.

Summary 17)

The equation with partial derivatives (1) of the eminent scientist Dr.
M. T. HuBER constitutes the basis of the mathematical analysis of anisotropic
and nonhomogeneous plates, and its effective solution in practice is possible
only by accepting the linear load distribution, because other methods result
in series that are sometimes very slowly convergent for the bending moment
and do not seem to be suitable for numerical calculation. There are, however,
some series among them which lend themselves to numerical calculations, but
only for special cases.

According to the method proposed by B. G. GALERKIN, Dr. H. OLSEN and
Dr. F. K. REINITZHUBER, the writer considers in this article anisotropic
rectangular plates of constant thickness freely supported on two opposite
sides and unsupported on the other two sides.

17) Je dois cette traduction, avec mes vifs remerciments, & Messrs. Concrete Publi-
cations Ltd., Editeur, & Londres.
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