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Shear-Weak Beams on Elastic Foundation

Träger mit geringer Schubsteifigheit auf elastischer Bettung

Poutres ä faible resistance au cisaillement, reposant sur une assise elastique

Äke Holmbeeg, D.S.C.S.E., Consulting Engineer, Lund, Sweden

The present paper deals with beams subjected to deformations which are
caused by shearing forces only. These beams are assumed to be supported on
an elastic foundation acting like a fluid. In what follows, expressions will be

deduced for their deformations as well as for the moments and the shearing
forces. Furthermore, mention will be made of some fields of use for these beams.

I. Fundamental Formulae

Consider the beam shown in Fig. 1! It is submitted at the point a? Otoa
load P which gives rise to the distributed reaction q. If the shearing force is
denoted by Q, we obtain from statics

Fig. 1. Beam of constant cross section supported on an elastic foundation acting like
a fluid and submitted at one end to a transverse concentrated load

In accordance with the above assumption regarding the foundation, q is

directly proportional to the displacement v in the ^/-direction

q=-Kv (2)
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From Eqs. (1) and (2) it follows

It was assumed that the deformation was caused by shearing forces only.
Herice

where S is a constant characteristic of each individual beam. From Eqs. (4)
and (3) we obtain

d2v dQ
-j-K S-=— SKv
dxl dx

whence
d2v

This differential equation has the Solution

v A sinh )llSKx + B cosh ^~SK x (6)

Moreover, we have the trivial Solution

v, £
where p is the intensity of a uniformly distributed load. From Eq. (6) we get

p- A V^Tcosh ^iKx + B YSK sinh )/~SK x (8)
a x

whence, by virtue of Eq. (4),

Q=A t/J- cosh ]/~SKx + B l/^sinh i~SKx (9)

From Eq. (9) we determine the constants A and B

x l
Q 0

B= -A cothY^K l, whence

Q A l/^- (cosh )/SKx - coth )/~SKl sinh }/SKx)

Hence

S

4 ^f=? _p1/
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Therfore, we have

v P 1/-|r (coth fSK l cosh i~SK x- sinh ^SKx)

q -P iSK (coth)^SKlcosh]/~8Kx-sinh)/~8Kx)

Q P (coth y3Üf Z sinh V"äZx - cosh fSKx)

M, — — jq(x — xx)dx

(coth }J8K l cosh fSK x -

y/SK

Observe the following relations!

x 0

sinh VSin
— sinh }/SKx\

(10)

(11)

(12)

(13)

,=P|/ coth )/SK l
dv
dx

M

- PS 4= 0

_
P coshV^Jn-1

~ V^ sinh ySif Z

For y<S-/T l oo, we obtain

+ 0

w =P

o

M =0

V
/_£ 1

^ sinh y#in

a; 0

.-*yk
dv
dx

M

-PS
P

]/SK

X t

V 0

dv
dx -0

M 0

Consequently, apart from the uniformly distributed load, the only elementary
type of loading that can be realised is the simultaneous action at the point

x 0 of P and M Two practicable methods for realising;
iSK sinh iSKl r fe

this type of loading will be demonstrated below.
The first method consists in using two beams connected together at the

point x 0 and having the same S and K, their respective lengths being l and ll9

see Fig. 2. At the common point, we have v vx and M M1, whence

a P l/~ coth )/~SKl (1 - a) P V-^- coth i~SKl1

aP coshV#iTZ-l _ (l-a)P coshVÄFZx-1
)/SK sinhVSKI iSK sinh ^SKlt
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These equations yield lx — l and a J. Hence it follows that, when S and K
are the same, only lx — l can occur under the given assumptions. When S and K
are not the same — a case which is usually of little interest —, we obtain a

pair of values of -=- and a which is characteristic of each individual combination.

This need not be demonstrated.

(1-oOP

Fig. 2. Two beams differing in length but having the same S and K, connected at the
point x f 0, and submitted at that point to a concentrated load P

(1-ct) P !¦

Fig. 3. Two beams, one with S and K, the other perfectly rigid, continuously joined
at the point x f 0 and submitted at that point to a concentrated load P

The second method is to join a beam complying with our assumptions to a

completely rigid beam, see Fig. 3.

When the Joint at x 0 is assumed to be continuous according to Fig. 3,
the deflection of the part ?x is

V{ ccPy^coth]fSKl + aPSi

The moment acting at the point x 0 is

m0= tKLp^cothimi+oiPsAtd^^JL00^8*!-10 J \ ] K y V ySK sinhy>S^Z

The equilibrium of the forces yields the equation

l-a)P= [kLpV ^-coth.^SKl + ocPsÄd^
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Using the notations ^SKI X and \'SKlx Al5 we obtain, for A > 0,925,

K- 3 cosh A — 1

2 sinh A

1 ,t<^ 1/9 (coshA-1)2 3 coshA— 1 ,,„.- - coth3A + 1/T ginh2A - T -^SjT-cothBA

¦/ 3 coshA-1 1
+ ,/-2-sinlDr-¥COthA+1 (coshA-1)2 3 coshA-1

sinh2A 8 sinh A

—— cothA
£

coth3A -
(14)

A^othA + ^ + l
(15)

The values of A < 0,925 are scarcely to be taken into consideration. In such

cases, the equations are solved as usual. In the whole interval considered
above, 0,925 < A < oo we have X1 & 1.

II. Formulae for Beam of Infinite Length

It has been shown in the foregoing chapter that our extreme assumptions
have led to more than extreme consequences. If rigorously applied, the above
calculations are almost meaningless. However, the equations show that, even
at moderate values of iSK h this quantity can to a close approximation be

put equal to infmity. Hence it follows that, if the beam is not too short, its
central parts can be regarded as a middle cross section of an infinitely long
beam, and that all requisite quantities for these parts can be calculated by
means of formulae for a beam of infinite length. The end parts shall either be

designed as rigid beams, or eise shall be treated by the aid of methods which
also take into account the deformations due to moments. At the present
time, it may be supposed that such calculations for shear-weak beams are
mostly made graphically by means of successive approximations, and this
procedure is laborious.

If a concentrated load is applied in the middle of an infinitely long beam,
and if the origin of the coordinate System is located at the centre of the beam,
we have

v

dv
dx

2K )/SKe-iSK* (16)

_Se-isKx (17)

q -^]/~SKe-iSKx
£

M
2fSK

-isKx

(18)

(19)

(20)
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It is to be observed that Eqs. (19) and (20), which express the lines of
influence for the shearing force and the moment, are equations of affine curves.
This circumstance renders the calculations particularly easy.

The second derivative of the deflection is

U_*flysr.-*s._JL
where pQ is the radius of curvature.

If Eq. (20) were quite correct, the moment would produce the curvature

M P ./— 1

e~ *SK x
EJ 2EJ^SK Pm

A necessary condition for the adequacy of this method is — > — Hence
Pq Pm

S2KEJ^>\ (21)

In the above equation, EJ is the flexural rigidity of the beam.

III. Application to Vierendeel Trusses

A type of structure that is closely in agreement with our assumptions is a
Vierendeel truss supported on an elastic foundation. We apply one of the
usual assumptions stating that the points of inflection on the chords are

Qi^^Ä Il
1

Qi I
——=- u, '

h

Q2
-::^==-=^-^

'
h 1

i ~~^=^=~- '^s

Q2 ^--^ .*»

öS' 2
L.

Fig. 4. An element of a Vierendeel truss. Shearing forces and elementary deformations

situated in,the middle between the vertical members, whereas these members
are not supposed to be perfectly rigid. With reference to Fig. 4, we deduce the
constant S and the distribution of the shearing force over the top and bottom
chords.
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81 &' 2 ZEJ» Q»
a2b

2 6ÄJ, 6EJ.

^2~^^ETX
a2b

6EJ. M>)
h Q:

%2±EJ2

8X + 82 83 + S4

Qi+Q* Q

0 2(8l+8g) sq

(«>-*) ]

o 1 e 1 e 1
e 1 e—? e 1 e

1
o 1 1 g 1 o

b

o
1

e ' e ' e ' e ' e ' e ' o * ' © ' ©

n n + 1

9 Vi n*i<L nn

Fig. 5. A Vierendeel truss submitted to a concentrated load and to a discontinuous reaction

s ab
- + -

3 b J1 + 3 b J2 + a J3

Oi QJi

Q2 QJ 2

12EJ3 12E \2bJ1J2 + aJ1J3 + aJ2J3

6bJ2 + aJ3
12bJ1J2 + aJ1J3 + aJ2J3

6 6 J1 + aJ3
12bJ1J2 + aJ1J3 + aJ2J3

(22)

(23)

(24)

For J3=oo, Eqs. (23) and (24) are converted into the corresponding equations
used in the common theory of Vierendeel trusses.

It is obvious, first, that the deformation of the bottom chord of the
Vierendeel truss is not exactly in accordance with the theory, so that the
distribution of reactions does not comply with the assumptions, and second,
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that it would be inconvenient to have to use a distribution of reactions

expressed by Eq. (18) in detailed calculations. Therefore, with reference to
Fig. 5, we shall deduce an expression for that discontinuous reaction intensity

with the interval ~ which is equivalent to the reaction intensity given by

Eq. (18). x
a(n+~)

q'n+q'n^-— qdx

a(n—2)

P_Js*2-e
a

-iSKj
JSKc

a(n+-j)

Y Un\n-^j+qnU + -^j =- J xqdx

P^

2 \)/SK j
JSK-J _e-iSK^

iSKan
a e

~2~~ „iSKan

M2

r*r—

llllllllllllllll

i

Mc

Ri U,

Fig. 6. Secondary System in a Vierendeel truss for determining correction moments when
the load is applied in the middle between two vertical members

<ln ~Te
2P -naisK Uh^-(-^-l)sinh^qL 2 \aV8K 2/ 2 J

._2Pe.„mn 2 n
* a [\aiSK V

a^SK aX'SKl
+ — sinh—1— cosh—'——

y&K 2/2 2 J

% =^---K( 1 — cosh—!— h sinn-'——I

(25)

(26)

(27)
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Eqs. (25) to (27), together with Eqs. (19) and (20), yield all those quantities
which are required for the design of a Vierendeel truss under the conditions
of loading shown in Fig. 5. On the other hand, if the load is applied to the top
chord between two vertical members, then assumption concerning the
Situation of the point of inflection is so manifestly absurd that it is necessary to
make a correction. The simplest way to introduce this correction is demonstrated

below, see Fig. 6. To begin with, we determine the moments in the
System shown in the diagram and the corresponding reactions. After that,
these reactions are introduced as loads applied to the vertical members in the
principal system. The moments caused in the principal System by these loads
are superposed on the moments shown in Fig. 6.

Pa I' _ a Jo 15 b J, ^ JA ^ /rtr,v^Tr^^i^+^r (28)

„, Pa /15 b J, J,\ _.^¦tIt^«^ <29>

Pa l „ Ä a J.

Mi=^<P (31)

Pa
M5=—<P (32)

M^3^* (33)

P /295 b Jx Jx ina J3 37\.
4 a J3 J2 b J2 2}

(35)

0
35 b Jx Jx 0 a J3 K

(36)

2 a J3 J2 b J2

Finally, in this connection, we shall study the moments in the vertical
members of a Vierendeel truss represented in Fig. 5 for which J2 0, so that
Q1 — Q. The dement under consideration is shown in Fig. 7.

Mu-8Un SW-8 a* (^osn 2 a]i^xsmh 2

M,o j(Qn + Qn+1) ^~[e-{n^^SK+e-(n+^^SK}

Abhandlungen X



78

Q„

|Qn+1

ke Holmberg

b" Mu 2 .haf8K
b' + b" M0 a]/SK

g 2
(37)

b"It is seen that ,„ is constant and

independent of n. This cireumstanee will
be utilised in the next chapter of this
paper.

Fig. 7

Moments in a vertical member of a Vierendeel truss
in which the rigidity of the bottom chord is zero

IV. Application to Beam Supported on, and Rigidly Connected to,
Columns on Elastic Foundations

Beams which are fixed in columns resting on elastic foundations are always
difficult to design, irrespective of the method used for the treatment of this
problem. In what follows, it will be shown that the method outlined in the
above can in some cases be useful when dealing with such beams. The first
example refers to a beam supported on relatively weak columns. In that case,
the method in question is not sufficiently accurate since the assumption
regarding the positions of the points of inflections is too rough. The second

example deals with a beam supported on rigid columns. Under these
conditions, the method gives good results.

Example No. 1

The joints are assumed to be located at the bottom edges of the foundations.

i£ 700t/m2; # 2100000 t/m2

The moments of inertia and the cross-sectional areas are

J1 0,017 m4 A± 0,320 m2

e/2 0 A2 oo

J3 0,017 m4 A3 0,320 m2

To begin with, we determine by the method of trial and error a fictitious
value, b', of the height so that b' + b" in accordance with Eq. (37) becomes

equal to b in order that the Joint should be located as required. In the cal-
culation of S and J we Substitute b' for b used in the formulae.
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Assume b'= 3,00 m; b" 3,00 m!

Hence we obtain by means of Eq. (22): S 2,52-10~4

a\SK ==l26Q ^L o,325; 6'=4,05mi b" 1,95 m2 b +b

Assume b' 4,00 m; b" 2,00 m!

Hence £ 3,08.10-4; a^K =1,390; b'= 3,81m; &"=2,,19m

£

OSm

a 6r

Q*4i

Fig. 8. Beam used in Example No. 1. Dimensions

P-1t

0 1, Q ,|ri ° il ii O TD—®~«
h q F e d cfb a <ie fg

Fig. 9. Beam shown in Fig. 8. Load and notations for joints

E

Assume b' 3,80 m; 6" 2,20 m!

Hence Ä 2,97.10~4; a^K 1,365; V 3,85 m; b" 2,15 m

From this we obtain S 3,00• 10"4; ySK 0,458 m"1.

J 0,017 + 0,320 • 3,852 4,75 m4

S2KE J 628 >1 cf. the inequality (21)!

Eq. (19) yields
P „~tQ -Ye

SKx -0,5Pe -0,458 a

From Eq. (20) we get

N M
b' 2 b' fSK

P e~]/sKx 056Q q
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Qeä

-0,1264 t
- 0,0081t

- 0,0005 t
- 0,00001

^a0

Nef

Ngh

- 0,0718 t
- 0,0046 t
- 0,0003 t
- 0,0000 t

Ma Mb -Qab.% 0,3791 tm
M.=M* 0,0243 tm
Me=Mf 0,0015 tm

0,0001 tmM„ Mh

Acc. h) Ritter Approximafe

—Accurate

Fig. 10. Moments and shearing forces acting on the beam shown in Figs. 8 and 9

For comparison, the tables and diagrams given below show three groups
of values of the moments and the shearing forces, viz., first, the values
calculated by means of the above-mentioned method, second, the accurate
values computed with hard work and toil from the theory of elasticity, and
third, the corresponding values for completely weak columns calculated by
the aid of Ritter's coefficients (see Anwendungen der graphischen Statik,
3. Teil, Zürich 1900).

Ma Mh Mc Md Me Mf
Approximate + 0,379 + 0,379 + 0,024 + 0,024 + 0,002 + 0,002
Accurate + 0,556 + 0,385 -0,115 + 0,044 -0,025 -0,008
Acc. to Ritter + 0,528 + 0,172 -0,172 + 0,024 -0,024 -0,012
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Rab B.cd B.et

Approximate -0,126 -0,008 -0,001
Accurate -0,157 + 0,012 + 0,006
Acc. to Ritter -0,132 + 0,038 + 0,004

J Hdh

Q,8m,

g 6m

Fig. 11. Beam used in Example No. 2. Dimensions

Example No. 2

All other dimensions as in Fig. 8.

The foundations are assumed to be clamped.

K 700 t/m2; E 2100000 t/m2

Jx 0,017 m4 Ax 0,320 m2

J2 0 A2 oo

J3 0,017 m4 A3 0,320 m2

IP-U
° m—e Tfl 8 ,i O riTi e n e—r-r-—e—-jt-—e rr-—©—n o

h gf ed cb aa oc de f g h

Fig. 12. Beam shown in Fig. 11. Load and notations for joints

We determine b' so that 6'= 6" becomes equal to 2m f b, which corresponds
to foundations clamped.

Assume b' 1,00 m; b" 1,00 m!

a]/^KHence S 1,40-10"4; 0,940; 6'= 1,564 m; b" 0,436 m.

Assume b' 1,50 m; b" 0,5 m

Hence S 1,68-10~4; a^K i?028; b'= 1,508 m; b" 0,492 m

And from this Ä 1,68.10~4; ^SK 0,344 m"1;

J 0,017 + 0,320 • 1,502 0,737 m4

S2KEJ 30,6>1
Q -0,5Pe~0'344^; N 1,940Q
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Qah - 0,1745 t
Qcd - 0,0225 t
Qef - 0,0029 t
Qgh - 0,0004 t

Jfa Jfft 0,5324 tm
Mc= Md 0,0676 tm

Me=Mt 0,0086 tm
Mg Mh 0,0011 tm

#«6

Ncd

Nef

- 0,3440 t
- 0,0436 t
- 0,0055 t
- 0,0007 t

Approximate

Acc. te Ritter A

Accurate

Fig. 13. Moments and shearing forces acting on the beam shown in Figs. 11 and 12

Ma Mh Mc Md Me Mf
Approximate + 0,532 + 0,532 + 0,068 + 0,068 + 0,009 + 0,009
Accurate + 0,578 + 0,467 -0,021 + 0,075 -0,013 + 0,002
Acc. to Ritter + 0,528

Rab

+ 0,172

RCd

-0,172

Ref

+ 0,024 -0,024 -0,012

Approximate -0,177 -0,023 -0,003
Accurate -0,174 -0,009 + 0,002
Acc. to Ritter -0,132 + 0,038 + 0,004
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The examples speak for themselves. In the second example, the agreement
between the values of the two greatest moments was completely satisfactory,
considering the accuracy with which the assumptions can be formulated. In
the first example, the agreement was less close. The difference between these
two examples is brought out best in Fig. 14 which represents the rigidities.

0,344-0.547(^1

0.,344M/T*v
f~

^ZSQiO

0,3981*1

Fig. 14. Left: Rigidity of the structure used in Example No. 1. Right: Rigidity of the
structure used in Example No. 2

V. Final Remarks

In what follows, some comments are made on the conditions which must
be fulfilled in order that the use of the method advanced in this paper may be

advantageous. To begin with, reference is made to the inequality (21) which
stipulates S2KE J>1. The quantitative interpretation of this condition is
uncertain. Nevertheless, the second example in the preceding chapter shows

that S2KE J 30 provides an ample margin of safety. Another uncertain
point is the magnitude of K. A foundation that is strictly in conformity with
our assumption is never met with under practical conditions. In many cases,

an elastic, isotropic, and homogeneous semi-infinite body would be a better
approximation. However, it has not been possible to find any transformation,
such as Biot's, for beams deformed by moments. When the foundation consists
of slabs separated from one another, as in the examples adduced in the fore-
going chapter, the problem is simplified since these slabs can mostly be assumed

to be pressed down individually, without affecting the adjacent slabs.

In the application of the method to Vierendeel trusses, just as always in
the approximate treatment of such structures, it is necessary to pay attention
to the basic assumption that the points of inflection of the chords are situated
in the middle between the vertical members. This assumption usually presup-
poses that the vertical members are perfectly rigid. If the practical conditions
differ too much from this presupposition, the calculation will be deprived of
its necessary basis. This is illustrated by the first example in the preceding
chapter.
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Summary

This paper deals with beams deformed by shearing forces only, in accordance
with Eq. (4), and supported on an elastic foundation acting like a fluid in
conformity with Eq. (2). Expressions for the moments, shearing forces, and
deformations are deduced in the elementary cases of loading which result in
equilibrium. The Author establishes a relation that must exist between the
flexural rigidity, the rigidity in shear, and the modulus of foundation in ordej
that the formulae should be applicable.

It is shown that the method advanced in this paper can conveniently be

applied to elastically supported Vierendeel trusses. All necessary formulae are
deduced for these trusses. A special study is made of the case where the rigidity
of the bottom chord supported by the foundation is zero. Moreover, it is
demonstrated that the method can sometimes be used as a suitable approxi-
mation in the design of continuous beams supported by, and rigidity connected

to, columns on elastic foundations. The applicability and the limitations of
the method are illustrated by two examples.

Zusammenfassung

In der vorliegenden Arbeit werden Träger untersucht, die nach Gleichung 4

nur durch Querkräfte deformiert werden und die gemäß Gleichung 2 auf einer
flüssigkeitsähnlichen, elastischen Bettung aufliegen. Ausdrücke für Momente,
Querkräfte und Verformungen wurden für die elementaren Lastfälle, die die

Gleichgewichtsbedingungen erfüllen, abgeleitet. Der Autor stellt eine Beziehung
her, die zwischen der Biegungssteifigkeit, der Schubsteifigkeit und dem Bettungsmodul

bestehen muß, damit die Formeln anwendbar sind.
Es wird gezeigt, daß die in der vorliegenden Arbeit erläuterte Methode

ohne weiteres für elastisch gelagerte Vierendeel-Träger angewendet werden
kann. Alle für diesen Fall notwendigen Formeln werden abgeleitet. Im besondern

wurde der Fall untersucht, bei dem die Steifigkeit des auf der Fundation
ruhenden Untergurtes Null ist. Es wird außerdem gezeigt, daß die Methode
manchmal auch als gute Näherung für die Berechnung von durchlaufenden
Balken mit biegesteif angeschlossenen, elastisch senkbaren Stützen verwendet
werden kann. Die Anwendungsmöglichkeit und der Gültigkeitsbereich der
Methode werden an zwei Beispielen erläutert.

Resume

L'auteur etudie les poutres qui ne sont deformees que par des efforts
tranchants, suivant l'equation (4) et qui portent sur une assise elastique se

comportant a la maniere d'un fluide, suivant l'equation (2). Dans les cas
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elementaires de mise en charge correspondant aux conditions d'equilibre, il
etablit des expressions concernant les moments, les efforts tranchants et les
deformations. II indique une relation qui doit exister entre la resistance ä la
flexion, la resistance au cisaillement et le module de compressibilite elastique,
pour que les formules ci-dessus soient applicables.

L'auteur montre que la methode proposee peut etre opportunement et
directement appliquee aux poutres Vierendeel supportees elastiquement;
toutes les formules necessaires ä ce cas sont etablies. II etudie specialement le
cas oü la rigidite de la membrure inferieure, reposant sur la fondation, est
nulle, et montre en outre que cette methode peut souvent etre utilisee en
bonne approximation pour le calcul des poutres continues supportees par des

appuis rigides portant eux-memes sur des assises elastiques. Deux exemples
mettent en evidence les possibilites et les limites d'application de la methode
exposee.
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