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Résistance intrinséque des cordons de soudure d’angle
Innere Festigkeit der Kehlndhte

Internal strength of fillet welds

A. GoeLzZER, Directeur de la Société SECROM, Paris

Un assez grand nombre de problemes de résistance des matériaux ont pu
étre résolus par la théorie de 1’élasticité, bien que souvent cette théorie con-
duise & des formules compliquées.

D’autre part, le souci de respecter les coefficients de sécurité avec plus de
précision a conduit, depuis plusieurs années, a définir mathématiquement la
limite du domaine élastique de sorte que les formules finales sont des formules
résultant de la combinaison des formules de contrainte avec une équation
limite du domaine élastique.

La présente étude est une application de ces deux points de vue. Le calcul
des contraintes est conduit au moyen de la théorie de 1’élasticité et les formules
finales résultent de 1’application de ces formules & la limite du domaine élas-
tique défini suivant la théorie des courbes intrinséques?).

On pourrait d’ailleurs aussi bien utiliser des équations entre les contraintes
principales qui ont été proposées par divers auteurs (Hencky, V. Misés etc.)
pour définir cette limite du domaine élastique. Les résultats obtenus seraient
voisins.

Introduction

D’un point de vue trés général, le calcul d’un cordon de soudure faisant
partie intégrante d’une piéce dépend tout d’abord des propriétés intrinséques
du métal de la soudure comparées a celles du métal de base. Indépendamment
de toute question de forme des joints soudés ce sont ces propriétés de la
matiére qui différencient le cordon de soudure du métal de base des piéces a
assembler.

1) C’est la méthode suivie en France dans P'instruction sur la soudure du Ministére
des Travaux Publics et aussi dans les régles d’utilisation de P'acier du Ministére de la
Reconstruction et de I’Urbanisme.
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Il y a ensuite lieu de considérer la forme du joint et le systéme des forces
extérieures appliquées, créant un certain état de contrainte. Dans le cas des
soudures d’angle que nous envisageons plus particulierement dans cette étude,
il importe de bien distinguer les soudures frontales des soudures latérales.

Si nous isolons le prisme triangulaire qui constitue schématiquement le
cordon de soudure, ce prisme doit se trouver en équilibre sous le systeme des
contraintes appliquées a ses trois faces. La répartition exacte des contraintes
sur les faces du cordon de soudure ne peut étre obtenue par le calcul, car il
faudrait alors déterminer 1’état d’équilibre élastique de 1’ensemble du joint:
métal de base et soudure, opération en général inextricable.

On pourra remplacer les contraintes agissant sur les faces en contact
OA O'A’, AB A’ B, par leur résultante générale et leur moment résultant

(fig. 1).

Fig. 1 Fig. 2 Fig. 3

Sur la face libre OB, 0’ B’ il n’y a aucun effort appliqué. Ceci posé, on
obtient les sollicitations suivantes pour un cordon d’angle:

a) Cordon frontal: Les faces OA O’ 4’ sont sollicitées par des forces situées
‘dans des plans perpendiculaires & la direction OO’. On a donc affaire & un
solide plan dont les tranches juxtaposées telles que OAB 0’4’ B’ sont iden-
tiques au point de vue forme et efforts. '

La section droite OAB est done sollicitée par une force F normale & OA,
la face 4B par une force tangentielle égale et opposée a F et par un couple
de moment €= F 9§ (fig. 2). '

b) Cordon latéral: Dans ce cas, il n’est plus question de solide plan, on a
un probléme & trois dimensions. La sollicitation principale consiste dans
I’action de deux forces F' égales et opposées contenues dans les plans: 04 O’ A4’,
AB A’ B’ et paralléles a la direction OO’ des arétes du prisme. Le cordon se
trouve donc soumis en outre & un couple C égal et opposé au couple des 2
forces F' (fig. 3).
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Les forces F' donnent lieu & des contraintes de cisaillement longitudinales
prépondérantes. Le couple € produit des contraintes supplémentaires sur les
deux faces non libres, contraintes dont 1’action est d’autant plus négligeable
que la longueur OO’ est grande par rapport aux dimensions transversales
du cordon.

_ Chapitre I
Représentation des propriétés intrinséques du métal des cordons de soudure

1. Chotx d’une courbe intrinséque

Nous partirons de la théorie de Mr. CaQuor sur l’existence des premiers
glissements a la limite élastique conduisant & la notion de courbes intrinséques.

Les résultats établis par Messieurs CHALOS et BETEILLE?2) donnent pour
équation de la courbe intrinseque:

RR R+R TER-R)?
T2+(1+412)N2" 5 Yt yqw = M)
de la forme:
T+ AN24+BN+C=0 (1)

dans laquelle N et 7' représentent les composantes normales et tangentielles
sur 1’élément plan suivant lequel a lieu le premier glissement caractérisant
la limite élastique du métal.

Dans cette équation: N est la limite élastique du métal a la compression,
R’ la limite élastique du métal a la tension, et T2 la limite élastique du métal
au cisaillement.

Les résultats d’expérience montrent que la courbe intrinséque est d’allure
parabolique; nous supposerons donc que:

A=0 ou RR' =-432

_et nous adopterons finalement comme équation de la courbe intrinseque:

T2+ BN+C=0 (2)

ou:
R+R’ (R-—R")2 .
P N="gg =0 . @

On peut admettre par exemple pour un métal d’apport destiné a souder
de ’acier doux: '
R=34K° H®'=—30KO

%) Représentation du domaine de stabilité d’un solide élastique (Annales des Ponts
et Chaussées de mai 1938).
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L’équation de la courbe est alors:
T?—2N—-256=0 (voir fig. 4) (3)
qui correspond pour N =0 & environ 7'=F=16K0% et pour 7'=0 & une con-

trainte de décohésion:
N,= —128K?

= 16"

R--30 R=15 f %/?=/7 \ A= 34
N,=-128% No=-64 % i ¥

Fig. 4

Courbe limite admissible

Si on fixe un coefficient de sécurité a la traction et a la compression, s en
prenant des contraintes admissibles R, R’ telles que:

"W

A )

on aura une nouvelle courbe pour laquelle

_R+R R+ R

i 2 2
___(ER—?R’)_ _(R——R’)2 5
U= 6 16 °
; R+ R (R—R')?
’ 2 __ - . A T g2 —
d’ou ‘ T 5 s-m 16 8 0

On voit que vis-a-vis de R et R’ remplagant R et R’ on a une nouvelle

, N T .
courbe dont les coordonnées sont z = e et y= - soit:

_R+R__(R—R) _
2 16 o

2 0 (5)

Nous appellerons cette courbe homothétique de la courbe intrinseque dans
le rapport s, la courbe limite admissible des contraintes. C’est cette courbe a
Pintérieur de laquelle devront se trouver tous les cercles de Mohr relatifs a
tous les points du triangle de soudure pour une sollicitation déterminée: on
sera ainsi assuré qu’en aucun point de la soudure les contraintes admissibles
ne sont dépassées.
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En prenant s=2 on a la courbe indiquée sur la figure 4

T2—N—-64=0

Chapitre II. Calcul des cordons d’angle frontaux

1. Généralités

Nous avons indiqué autrefois dans le Bulletin 2—33) de la Société des
Ingénieurs Soudeurs deux solutions particuliéres de 1’équilibre élastique plan
d’un cordon frontal considéré comme faisant partie d’un assemblage & double
couvre-joint symétrique (voir fig. 5).

La premiére solution (I) correspond au point de passage de 1’effort normal
dans le couvre-joint au tiers de la base O A a partir de 4. La seconde solution
(IT) correspond au point de passage de l’effort normal au milieu de O 4.

B .
FE=z
97
MEET
L7
=gl
B =3/
: — S — e = A
0 FThA M a { 7
' ' Nl
\Va
Fig. 6
, J
{ i d
m_-/gy
P, y)
WY
0 ] X
Fig. 5 Fig. 7

3) Bulletin de la Société des Ingénieurs Soudeurs — 32, Bld de la Chapelle Paris (18°)
— n° 2—3 de Janvier-Février 1931.
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Ces deux solutions sont intéressantes car d’apres les résultats d’expériences,
il semble bien que dans un tel assemblage le point de passage de 1’effort
normal varie entre les deux positions correspondant & (I) et (II).

Nous allons étudier successivement les deux états de contrainte relatifs
a ces deux solutions.

2. Remarque sur les élats de contrainte plans

Nous définissons 1’état de contrainte par les trois contraintes principales
v, vy v5 classées par ordre de grandeur algébrique:

et nous envisageons plus particulierement, en vue de la considération de 1’état
limite, le cercle de Mohr défini par v, et v;.

On constate que dans un état de contrainte plan ou une des contraintes
principales est nulle, ce sont les deux autres contraintes principales S; et S,
racines de 1’équation du 2eme degré ci-aprés qui fournissent les deux nombres
algébriqzles vy et v; & condition que S, et S, soient de signes contraintes:

82— (N, +N,) S+N, N,—T2=0 (8)

Les racines de cette équation dont le descriminant est toujours =0 sont:
N,

S, = g\llg_& + l/(_l\_flél) + 71,2 et ona: S,<58;

N,+N N,—N,)\?
Szz_igt_z_‘/(“iz__Z) LT

de sorte que: Sy=vy S;=1;

a condition que: N, N,—-T2=0 (9)

Les cercles de Mohr sont déterminés par 1’abscisse de leur centre et par
leur rayon p

A=Vl_l"lj3___‘Sf]_'l"sfz =V1_V3=SI_SZ
2 2 P="2 2

3. Etude de Uétat de contrainte relatif & la solution (I)

En élasticité plane les expressions des efforts normaux N; N, et de ’effort
tangentiel 7'y (notations de Lamé) sont:

solution (I) N. = szx (6)
5 =
Ts =Ky



Résistance intrinséque des cordons de soudure d’angle “ 43

dans lesquelles zy sont les coordonnées d’un point P du domaine OA4B,
m=1tg ¢ et K est une constante qui a pour expression:

2 F
T mia?

(7)

dans laquelle F' est ’effort normal unitaire résultant appliqué & OA et a=0A4
(voir fig. 6). :
Dans ces conditions, la figure 7 montre 1’état d’équilibre du prisme de

soudure de section triangulaire OA B, sous I’action des contraintes s’exercant
sur les faces limites OB, OA et AB:

— Sur OB ne s’exerce aucun effort, cette face étant libre.

— Sur OA4 la contrainte normale est linéaire de O a 4, la résultante passant
au tiers de OA4 & partir de 4. La contrainte de cisaillement est nulle.

— Sur 4 B la contrainte normale est linéaire de A & B et est nulle au milieu

de AB; la résultante forme donc un couple égal a P4 on valeur

3
absolue. La contrainte de cisaillement est linéaire et a pour résul-
tante F.
Constante K. — La contrainte normale de comparaison sur OA étant ,gz n

on peut écrire:
2n

K= ™)
Les formules (6) donnent:
N, Ny=K?(—m222+2muay) T,=Ky
et NyN,—T2=— K?(y—max)? toujours <0

L’état de contrainte de la section O4B du cordon
de soudure est défini par la double infinité des cercles
de Mohr attachés aux coordonnées xy d’un point quel-
conque P du domaine triangulaire OAB (voir fig. 8).
On a ici pour expression de A et p:

A:%{[(mz—l)x-i-%y] (10)
2
p2=K2%:;[(mx——2y)2+m4x2] (11)

L’équation d’un cercle de Mohr relatif au point P (xy) quelconque est:
(N =22+ T2=p? (12)

Considérons une droite variable issue de 0 balayant le domaine OARB
depuis OA4 jusqu’a OB (voir fig. 8), soit:
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y=tx avec 0Ztsm

Substituons les variables ¢ et « aux variables y et « (10) et (11) deviennent:

A =~—2]£[(m2——1)+%] x (10)
,02=K2m2+1[(m—2t)2-i-m4]oc2 (11%)

4 m?

K et m étant donnés, pour une méme valeur de ¢, A et p sont proportionnels & z.
Si maintenant nous éliminons ¢ entre (10’) et (11’) nous pouvons exprimer
p% en fonction de A et de =.
On tire de (10'):

t_K)\xm_m(m;—l)
d’ou m—21 =m((m2—%)
et p? = K? 77121;;-21 [m?' (mz— %)2+ m‘{l x2
ou: p? = %:—2 (m2+1) [(m2 - Ii'—/y\c)z_l_ mz] x? (13)

Si nous considérons xz comme fixé 0=z =<a, c’est-a-dire que nous envi-
sageons des points P sur une droite paralléle & 4 B, I’équation du cercle (12)
dépend alors du seul parametre A.

4. Etude de la famille des cercles de Mohr pour la solution (I)

Les formules précédentes montrent que la famille des cercles de Mohr
déterminés par p et A dépend des variables z, ¥ ou encore de x et i.

Il importe tout d’abord d’étudier la configuration de cette famille de cercle.
La portion de cette famille relative aux points du domaine triangulaire O4 B
doit se trouver entiérement & I’intérieur de la courbe dite ,,courbe limite
admissible“ comme nous ’avons précisé page 40.

Pour se faire une idée de cette configuration un moyen simple consiste &
étudier la variation de p en fonction de A c’est-a-dire & déterminer le lieu
géométrique des points diamétraux des cercles situés sur le diameétre vertical
paralléle & ’axe ON d’abscisse A. Ceci donne une idée de 1’allure de la famille
des cercles. Nous utiliserons la formule (13).

La courbe représentative de (13) en fonction des deux variables A et p est
une hyperbole (voir fig. 9 et 10) dont le centre est le point:

K

)\=‘2Am2x p=0
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Les sommets ont pour ordonnées:

K
tp=t5mim+l-x

La pente des asymptotes a pour valeur:
+ Ym? +1
D’autre part, les formules (10’) et (11') permettent de suivre les variations
de A et p quand ¢ varie de 0 & m. On obtient facilement les résultats suivants:

Pour t=0 /\0=—2 (m?—1)x po=—~[2l (m2+1)x
— = 2 — 2
t=-, /\_,2@—27%90 Pm= "5 mym?+1lx

De ces résultats, on déduit que le centre de figure de la famille de cercle

d’abscisse A, = % m?x (sommets de I’hyperbole) correspond & ¢ = %
2

Indépendamment de la forme géométrique de I’hyperbole (13) en A et p,

on peut montrer directement que 1’on a toujours:
Al £ [An] ou  [A=A,[ =20

et de méme que: P <Pm
ou, ce qui revient au méme, puisque p et p,, sont positifs, que:

2 2 . a2 2
p2=p,. ou encore: p—p- <0

En effet: | Az%[(mz—l)—}-%ﬂ x Am=—21—{—(m2+1)x

et: A =)\m=§ %@290

or: 0t<m done [A-A,| <0

De méme: p? = K2712;21 [(m —28)% + m2]a? (11%)
et: pﬂ%:?(m2+ 1)2 22

d’oit pz_pﬁ=§ MLy (t—m)a?

différence toujours <0 car 0 <t <m.

Abhandlungen X 4
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Pour rester dans le domaine OAB, on doit de plus limiter la famille de
cercle aux points: (A, p,) pour ¢=0 et (A, p,,) pour ¢ =m en remarquant d’ailleurs
que:
A= Pm=Po

Résultats indiqués sur les figures 9 et 10.

(Aosy)
&
4 '3 s
\c \"I \ Q
7 )
Valeur
corr::p[()ﬂz.sﬂ/e n %@ % Zo 0 )

An 0 Ao A

valeur correspondante de t = m JT”’ iz”— 0

b's

Fig. 10. Solution I. Famille des cercles de Mohr pour K ou n<0 et m<1 (m=1/,)
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Des propriétés qui viennent d’étre établies et de la comparaison de cette
figure avec la ,,courbe limite admissible** on conclut que ce sont, d’'une maniére
générale, les cercles extrémes:

(Agpo) t=0 et avec x=a (Point 4)
ou (A, po)t=m et avec x=a (Point B)

qui sont les cercles que I’on peut appeler dangereux: si, en effet, ils sont
tangents intérieurement & la ,,courbe limite admissible®, aucun des autres
cercles ne peut couper cette courbe, comme il résulte clairement de I’examen
des figures 9 et 10 et de la propriété établie ci-dessus.

Mais nous remarquons que la position du faisceau des cercles de Mohr par
rapport & 1’origine dépend des signes de A, et A,, qui sont eux-mémes fixés par
les signes de K et de m — 1. Plusieurs cas sont ainsi & envisager:

1. K ou n sont <0: Dans ce cas F est un effort de traction correspondant &
un assemblage tendu.
a) Sim>12A; <0 et A, <0 mais A, <A, en valeur algébrique puisque K <0
de sorte que le cercle le plus dangereux est le cercle relatif au point B:
A, po avec A, =p, c’est un cercle de traction.

b) Sim <1 2A,>0et A, <0 on a toujours A, <A, en valeur algébrique et c’est
encore le cercle relatif au point B qui est le plus dangereux.

2. K ou n sont > 0: Dans ce cas, F est un effort de compression correspondant

a un assemblage comprimé.

a) Si m>1 Ay>0 A,>0 mais A;<],, en valeur algébrique puisque K >0
de sorte que le cercle le plus dangereux est le cercle relatif au point 4
(Agpo); c’est un cercle de Mohr qui n’est plus un cercle de traction, mais
relatif & un:éta,t:de contrainte plus complexe.

b) Sim<1 A;<0 et A,>0 on a encore A<, en valeur algébrique et c’est
encore le cercle relatif au point A qui est le plus dangereux.

En résumé, comme on le voit sur les figures 9 et 10 c’est le signe de K ou n
seul qui est prépondérant pour ’établissement des formules que nous cherchons.
La position de m par rapport & 1 intervient seulement pour modifier la
forme de la famille de cercles et surtout en ce qui concerne la position de cette

famille dont le centre est obtenu pour t=~722, par rapport & l’origine 0 (A=0)

qui correspond elle-méme &

mais l’allure générale de la famille reste la méme. On remarquera que dans
ce cas de K ou 7 positif les figures 9 et 10 doivent étre regardées & 1’envers,
c¢’est-a-dire qu’il faut changer X en — .
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5. Etats de contraintes limites pour la solution (I)

a) K <0 — Soudure transversale tendue.

L’état de contrainte limite dans ce cas est tout simplement un état de
traction simple puisqu’on obtient le cercle de Mohr de traction. Il n’y a done

r
Q¢
R’ Ayﬂ N

Fig. 11
plus lieu de se servir de I’équation de la courbe limite admissible (fig. 11). La
condition limite est: 2X,=2p, =R’

) s K , 2F 2n
d’ou 2?(m2+1)a§R avec K=W=m

F . . . r L7
en posant: n = - valeur de la contrainte unitaire de référence,

m241

d’ou: 2n s— =R’
m
m2 R |
- < ' 5
et: n=h—~—~2(m2+1) (14)

expression donnant la valeur limite admissible » de N.

Par exemple R =—-15K°%00
si m=1 n <— 7TK° 51=—-3K°75
m=2 n =-12K°% 04 =-6K°00
Comparaison avec le calcul classique. — (Suivant circulaire du Ministere des

Travaux Publics.)
a=B=y=0,66 R a=B=y=0,55

On doit avoir —Zi <065R et h=asing= a~—m—
2
d’ou ;ﬁ:m 0,66 ou n=<0,65 _m R
a m ) ]/1 +m2

pour m=1 R =—-13K° 00 n§—0,651/i§ 13 n £ —6K?O 00
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Conclusion: Pour m =1 le calcul suivant la circulaire est plus favorable pour
les soudures d’angle transversales & moins de prendre m = 2, par exemple, avec
notre méthode.

b) K> 0 — Soudure transversale comprimée.

Dans ce cas 1’état de contrainte limite correspond & ¢=0 c’est-a-dire:

K
A0=~§(m2—1)a, pO:?(m2+1)a
T

4B
\0 ME0) [N

Le cercle de Mohr n’est plus un cercle fondamental: il faut exprimer qu’il
est tangent a la courbe limite admissible (voir fig. 12)

Fig. 12

T2 4 (N M) =py?
{ T?°+ BN+C=0

d’ou: (NN —=2g)2—= BN —(ps2+C)=0
ou N2—(2A0+ B) N + (A2 —po2—C)=0
On doit avoir une racine double:

(220 +B)2—4 (A2 —p,2—C)=0
4 (BAg+pe2)+B2+4C=0

: R+ R
On a d’ailleurs: B =— ZR et B2+4C =RR
et lorsque: Ay=p, on retrouve naturellement & titre de vérification les 2 racines
_ R R
P~ f="2

Reprenons 1’équation précédente:

4p2—2(R+R)N\+RR =0
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et remplacons A, et p, par leurs valeurs:
K2(m2+1)2a2—K(m?2—1)a(R+R')+ RR =0
d’ott I’on peut tirer K:
A=(m?>—-1)2a>(R+ R')>—4(m?+1)2a> R R’
R'<0et 4>0, (%) < 0. Les deux racines sont de signe contraire, il faut

prendre la racine positive.

o (M=) (R+R)+ Y~ 1 (R+ Ry —4(m*+ 1P R R
- 2(m2+1)%a o
Mais: K=2"
mea
2
ot | m< 1‘(’?77?@ [(m2-1)(R+R)+ V(m?-12 (R+R)— 4 (m*+1)* R R | (15)

Par exemple pour: R=17K° R'=—-15K* R+ R'=2 RR'=—-17x15

m2 mz .
=1 = 2m*+1)y—RR =—— ——V—RER
m n TmELI) (m*+1)V - RR S mE T 1) RR
1l 1
nzzl/—RR’ n§~£=4K° environ
m =2 n=25[3><21/9><4+4:><25><17><15] n = 6KP° 72
Remarque. — Si on fait R= — R’ dans la formule (15), on retrouve la formule

(14). On constate que la prise en compte de R, différent de R’ en valeur
absolue, est avantageuse (formule 15).
6. Htude de U'état de contrainte relatif a la solution (1I)

Les expressions des contraintes normales N, N, et de la contrainte tangen-
tielle 7'; sont:

a 3
N1=K(§—2x+ﬁy)

solution (II) Ny=Km (% +y) (16)

T, =K(%—mx+2y)

dans lesquelles z,y —m, K, F et a ont la signification indiquée plus haut (page 7)
pour la solution (I): (voir fig. 6).
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La figure 13 montre 1’état d’équilibre du prisme de soudure de section

triangulaire OA4 B.

— Sur OB ne s’exerce aucun effort, cette face étant libre.

— Sur 04 la contrainte normale est con-

stante de O a A, la résultante - AF
passant au milieu de OA. La
contrainte de cisaillement est
linéaire et s’annule au milieu de
OA4 de sorte que la résultante des
contraintes de cisaillement sur O A4

est nulle.

— Sur 4 B la contrainte normale est lindaire
de 4 &4 B et s’annule au milieu
de A B; la résultante est donc un A

. . Fa
couple égal & =5-.

de cisaillement est linéaire de 4 a
B et s’annule au 1/4 de 4B a

La contrainte

partir de 4 et la résultante est VF

égale & F.

Constante X — Comme pour (I):

2n
T mla

(17)

Les remarques faites pour la solution (I) (page 6) restent valables & con-

~ dition toujours que:

N,N,—-T2<0

Pour simplifier le calcul, mettons les expressions (16) sous la forme:

e

O N

N2=Km(%‘_‘+y)

T, =K[(T’2i‘+y) +(y—mx)]
et posons: y—mzx=P %‘1_‘_?/___:. Q
ou si on introduit { on a: (t—m)x = P (fig. 8) %‘E +itx=Q
1
N1=K%(2P+Q)
d’ol l N, = KmQ
T, =K(P+Q)

(16%)
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On obtient immédiatement:
N N,—T2=—-K?P*= — K2 (y—mz)? toujours <0

comme avec la solution (I).
On a donc les mémes expressions de p et A (voir page 7). Calculons S, + S,

N,—N,\?
SI+S2=N1+N2 Sl—S2=2V('_12—2) +T32

Or N1+N2=K%[2P+(m2+1)Q]

Ny~Ny= K [2P —(m2~1)Q]

K21

Done: pPP= oz [2P—(m*-1) Q] + K*(P+Q)*
p? = K2 : 3 [4P2=4(m*-1) PQ+ (m*-1)* Q>+ 4m*(P*+ 2 PQ+ Q?)]
K2 1 |
Py s[4 (m2+1) P2+ 4 (m2+1) PQ+ (m?+1)2 Q2]
ou: p2-—-1i2 mm+1[4P2+4PQ+(m2+1 ) Q2] (18)
et A =~I2£—;—®[2P+(m2+1)Q] (17)

Cherchons & éliminer ¢ entre ces deux équations et, pour cela, éliminons
d’abord @: de la 2éme équation, on tire:

1 2
mz—H(f’“—”)

En remplacant dans la lére @ par cette expression, on a:

Q=

2 2
K2 m2+1 2 (Em}‘_MJ)
2 _ 2 - _—
PP= [4P +4P +1(K mA 2P)+ |
d,Oil: p2=K2P2+A2
et: [ p? = K2 (t—m)2a? + N2 | (18"
K 1 ma
) -2 - _ 2 =2 ’
avec: ] A= > m [Z(t m)x + (m +1)( 5 +tx))] (177)

Tirons ¢ de la 2éme équation et remplacons dans la 1lére, on a:

_om A 5 a
tx"WTﬁ [2f+2x—(m +1)§]
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d’ou tx —max =%[2£—(7n2+1)(m+%)]
. m? 2A a
. 2 _ 2 2 _ 2
et, par suite: p2 =K (1 3)° [ e (m2+1) (x + 2)] + A (19)

x étant considéré comme fixé 0 <x <a on peut étudier, comme pour la solution
(I) les cercles de Mohr en fonction de A.

7. Etude de la famille des cercles de Mohr pour la solution (11)

Comme pour la solution (I), nous examinerons la configuration de la
famille de cercle en étudiant la variation de p en fonction de A. On trouve
encore que la courbe représentative est une hyperbole, donc le centre est le
point:

A= 2K (o4l — 0 (voir fig. 14 et 15)
B m249\* p= &

2

o)

valeur correspondarte de b =

\

Fig. 14. Solution II. Famille des cercles de Mohr pour K ou n<0 et m>1 (m=2)

Les sommets ont pour ordonnées:

m2+1 a
+p=+Km —
+tp=1K 5 9(x+2)

Lorsque x + 0 pour x = 0 on a toujours p =A = —ég(m?-l- 1)%
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La pente des asymptotes a pour valeur:

2 2 : ’
T mii3 V(m2+1)(m?2+9) indépendante de x

8038

S
S

188

"
SRk

valeur correspondante de t=m

=t o0

!

t=m
X=d

Fig. 15. Solution II. Famille des cercles de Mohr pour K oun<0et m<l (m=1/,)

On peut en outre suivre la variation de A et p quand ¢ varie 0 & m.

K a Kl 2
Pour ¢=0 /\Ozg[(mz—{-l)?-%c} pO=L2—(Vm2+1V(m2+1)%—2ax+4x2

m K a x |K| a2 m:—1 ax a2
¢ m 2l:(m+ )z—l-(m )2] p% (m +1)‘/4+m2+1 5 +7

t=m Am=-§(m2+l)(%~+x) Pm = |An]

Il faut remarquer que pour la solution (II) nous n’avons plus A et p pro-
portionnels & « comme c’était le cas avec la solution (I). Il est donc nécessaire
d’étudier I'influence de la variation de x entre 0 et a sur les valeurs de A et p.
Mais les propriétés établies pour la solution (I) quant aux grandeurs relatives
de Aet A,, p et p,, restent vraies.

Nous allons montrer en effet qu’en valeur absolue, la plus grande valeur
de A est toujours celle qui correspond & t=m, ¢’est-d-dire que I’on a: |A| <|A,,|
ou [A—2,,| £0. Mettant en évidence ¢ et x on a:
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K 1 a
- 2 ¢ — ] 2 .
A= 3 m [(m +3)tex—2ma+m (m2+1) 2]
K a
—_ 2 e
et /\m—g(m +1)(2+x)
2
d’ou A=A, g m +3(t——m)x
or t—m £ 0 done: |[A—A,| est toujours < 0

On peut voir de méme que p < p,, ou, ce qui revient au méme, puisque p et p,,
sont positifs, que p%<p,? ou encore:

PP—pm=0
En effet: p%=K2(t—m)2 a2+ \?
Pm=m

et on doit avoir:
K2(t—m)2a2+X2—A2<0

Or, nous connaissons A — A, calculons: A+,

K [m?+3
2

A+, = t:c+(m‘-’-—1)x+(m2+1)a]

de sorte que:

A2 =

2 2 [ 2
£ +3 (-m«tﬁt+m2—1)x+(m2+l)a:| (t—m)x
4 m m

et on doit avoir:

AN

0

2 2,3 2 241
m +3(mn;{— t+m2—1)]x+(m +3) (m?+ )a]

Ig(t—m)x{[4(t—m)+ pow o I

or, t—m <0, il faut donc que:

2 2 2 2
[4(t_m)+m +3(m +3t+m2—1)]x+(m +3) (m +1)a§0
m - m
_ou:
2 2 2 2 _ 2 2
{[Lnii—z_?i)_+4]t+(m +3)(m 1)—4mlx+(m +3)(m +1)a§0
m m I m
ou:
44 10m?2 4__ 2_ 2 2
(m+ :n+9t+m 2m 3)x+(m +3)(m +1)a§0
m m
remarquant que: mi+10m2+9=(m?+1) (m2+9)
et: mt— 2m2—3=(m2+1)(m2—3)
2
on a: - tl{[(m2+9)t+m(m2—3)]x+m(m2+3)a} 0
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2+1
mt [(m2+9)tx+m?(a+x)+3m(@—x)]z0

ou
I’'inégalité est bien satisfaite pour 0 <z <a, tous les termes étant positifs.

En résumé, pour une valeur donnée de z, d’ailleurs quelconque, mais com-
prise entre 0 et @ toujours vis-a-vis des deux cercles (A, p,,) pour i=m et (A, p)
pour ¢ quelconque comprise entre 0 et m:

Mais comme on a p, =|A,| et que la plus grande valeur possible de |A,,|
correspond & x=a, le cercle le plus dangereux est le cercle:
] 3a

Pm = l)‘ml =*(m2+1) 9

3 (voir fig. 14 et 15)

Cette conclusion est valable pour K <0 comme dans la solution (I).
Lorsque K >0 on n’a plus ici p,,=p, et il faut voir quel est le cercle le plus
dangereux quand ¢ varie de 0 & m.

Ici, comme pour la solution (I) page 46, il faut limiter la famille de cercles
aux points (A, py) pour £=0 et (A, p,) pour i=m et on a: A, =p,,.

Ces résultats sont indiqués sur les figures 14 et 15.

Des propriétés qui viennent d’étre établies et de la comparaison de ces
figures avec la ,,courbe limite admissible®’, on conclut que ce sont toujours

les cercles extrémes:
(Agpo) t=0 avec x=a (Point 4)

ou: (A, p, t=m avec x=a (Point B)

qui sont les plus dangereux.

Mais dans ce cas encore, comme précédemment, (page 46), la position des
faisceaux de cercle de Mohr par rapport & l’origine dépend des signes de A, et
A,,, en relation eux-mémes avec les signes de K et de la quantité:

A = (m2+ 1)—3— —2x (voir page 54)

Plusieurs cas doivent étre aussi envisagés ici, mais en fonction de m et de «.

~a) K oun sont <0, cas de I’assemblage tendu:
a) U= (m2+1)%— 22>0 Ay<0 et A,<0O

mais A, <A, en valeur puisque K <0 de sorte que le cercle le plus dangereux
est le cercle relatif au point B (A, p,,) avec A, =p,,; c’est le cercle de traction,
sous réserve que 1’on ait bien 9> 0. )
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Une discussion simple donne les résultats suivants

Im<(m2+1)% A>0
m<y3
lac>(m2+1)i£ A<0
m>V3 A>0

On a toujours A, <A, en valeur algébrique et c’est encore le cercle relatif
au point B qui est le plus dangereux, sous réserve, cependant, que A <0,
inégalité qui n’est satisfaite que si:

a(m?+1) % <x <a avec m < J3 d’aprés le paragraphe a).

b) K ou n sont >0, cas de U’assemblage comprimé:
B) A= (m2+1)%~2x> 0 X>0 A,>0

mais Ay <A, en valeur algébrique puisque K >0 de sorte que le cercle le plus
dangereux est le cercle relatif au point 4 (A;p,) qui n’est pas un cercle de
traction.

Ceci n’a lieu que si A > 0 c’est-a-dire que ’on a:

x < (m?+1) avec m < V3

a
4
ou z quelconque entre 0 et a si m> 3

Y) 9I=(m2+1)%—2x<0 Ao<0 et A,>0

on a encore A\, <A, en valeur algébrique et c’est encore le cercle relatif au point
A qui est le plus dangereux. Il faut que A <0 c’est-a-dire que:

(m2+1)%<x<a avec m<YV3

En résumé:

Pour K ou n <0 (traction) c’est le cercle relatif au point B qui est le plus
éloigné de l’origine, en général, quelque soit m, excepté si m <3 pour
x> (m2+1) % alors c’est le cercle relatif & A.

Pour K ou n>0 (compression) c’est toujours le cercle relatif au point B
qui est le plus éloigné de l’origine en général quelque soit m excepté si m < V3
pour x> (m2+ l)g— alors c’est le cercle relatif & 4.

Mais ’examen des figures 14 et 15 montre que dans tous les cas possibles
les hyperboles situées entre le point x =0 et I’hyperbole x =a donnent toujours
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la méme allure générale & la famille des cercles de Mohr (voir page 54 et fig. 15).

On constate, d’aprés ces résultats, que l'allure du faisceau des cercles de
Mohr reste la méme dans le cas (1) et par suite, le cercle le plus dangereux est
toujours celui qui correspond & ¢=m pour x=a lorsque K ou n<0.

Mais lorsque K ou #n>0 il y a doute, notamment pour les petites valeurs
de m (voir fig. 15).

Une discussion plus serrée conduite avec les données:

R = 17 K°
R'=-15 K°

montre que pour m< & 2,32 environ, le cercle le plus dangereux est celui

correspondant & 7'=0 pour x=a.
Pour m supérieur & 2,32 environ, le cercle le plus dangereux est celui

correspondant & {=m pour x=a.

8. Etats de contrarnte limite pour la solution (1I)

a) K <0 — Soudure transversale tendue.

Nous venons d’arriver & la méme conclusion que pour la solution (I) et la
condition limite est encore (voir page 48):

27, =2p, =R pour z=a
K 3a 2u
d’ou: — (m? — < R =
ou 3 (m2+1) 5 <R avec K o
2m?
d’ou: L R
ou n < Smit 1) (20)

pour valeur de la limite admissible de n.

Par exemple pour: R'=-15K°00
si m=1 n=s-5K°00
si m=2 1w -8K°%°00

b) K > 0 — Soudure transversale comprimée

Nous sommes ainsi arrivés & la méme conclusion que pour la solution (I)
pour m < 3 et nous devons exprimer que le cercle de Mohr A, p, est tangent
a la courbe limite admissible (voir page 49). On obtient la méme condition:

4ps2—2(R+ R')Ay+ RR' =0 pour z=a

On a, en se reportant aux valeurs de A,p, (page 54):

_£m2—3

A = _K }/(m2+1)(m2+9)a

2 a2 ¢ Po =73 2
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(m241)(m2+9)a2-K2—2(m2—3)(R+R')a-K+4RR =0
on a: Ad=m2—-3)2(R+ R')2a%2—4(m?*+1)(m2+9) RR a?

or R’ <0 done 4> 0 et le produit des racines est <0. Nous prendrons la racine
> 0 pour K et on aura par suite:

m2
2 (m?+1) (m2+9)[

n

IA

(m2—3)(R+R')+ V(m2-3)2(R+R")2—4(m2+1) (m?+9) RR’|

‘ 21
Par exemple pour: (21)

R=17K° R'=-15K° R+R=2 RR =-17x15
1

- = —|-2x%2 4x4
m=1 m=g o—s[-2x +V4X4+4X2x10x17x15]
d’ou: n=3K09, 27
m = 2 n=—¥4—[1><21/1><4+4><5><13><17><15]
2xX6x13
d’ou: n=8XK9, 00
Remarque. — Si on fait BR= — R’ dans la formule (21) on a:
2
n = m (—R')
Y(m2+1)(m?+9)

mais ici on ne retrouve pas naturellement la formule (20) parce que.avec la
solution (II) po=*+p,,- "

On constate ici, contrairement & ce qui a été indiqué pour la solution (I)
page 50 que la prise en compte de R+ R’ en valeur absolue n’est pas forcément
avantageuse, cela dépend de la valeur de m.

Lorsque m > 2,32 il faut considérer le cercle (A,,p,,) et on retombe sur la
formule (20).

Chapitre III. Calcul des cordons d’angle latéraux %)

1. Equation d’équilibre élastique

Nous négligeons le couple des deux forces F et une solution approchée est
donnée pour les déformations:

4) Une partie des résultuts qui suivent a été exposée dans le Bulletin de la Société
des Ingénieurs Soudeurs (voir page 5). Ils sont approchés, ainsi que ceux établis dans
le paragraphe 3 page 25, parce que les conditions aux limites ne sont pas entiérement
satisfaites.
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qui satisfont aux équations géné-
rales de 1’élasticité pour le cordon
OA B (voir fig. 16). Les contraintes
sont les suivantes:

N,=N,=N;=0

Fig. 16 T,=B Ty,=4 T,=0
Les 3 contraintes principales v;v,v; (v3 <vy, <v;) sont les racines de 1’équation
S:
o 8 0 4
O 8 B|=0
A B _S
d’ou: S (82— A%— B?)=0; on a donc:

vy = — YA2+ B2 vy =0 v =+ yA2+ B

On a donc un probléeme de cisaillement pur et 42+ B2 est le rayon du cercle
de Mohr.
On démontre d’ailleurs que:

e e A

2 2 —

| AR+ B =
h=OH étant la hauteur du triangle 04 B. L’équation du cercle de Mohr est:
N2+ T2 =72 (22)

7 étant le cisaillement égal en valeur absolue & v, et v; de sorte que:

= VA2 + B2 (23)

2. St nous considérons toujours la courbe limite admissible:

R+R  ,_ _(R-RY)
2 o 16

T2y BN+C =0 (24) B-=—

quand la limite permise est atteinte il faut que le cercle de Mohr soit tangent
a cette courbe.
En éliminant 7' entre les deux équations on a 1’équation en N:

N2— BN — (24 C) =0
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qui doit avoir une racine double:

B24+4(:24+0)=0 ou 472+ RR' =0

on en tire: r= 3 /"RE (25)

condition évidente puisque la courbe limite admissible a précisément été
déterminée comme tangente au cercle de Mohr de cisaillement pur:

Si: R'=—‘3’29=—15R=+17K000

T§%V‘15><17 + 8K900

3. Cas d’un cordon d’angle travaillant longitudinalement au cisaillement
et a Uextension

Ce cas se produit quand le cordon d’angle assemble des semelles de mem-
brures de poutres. Le cordon faisant partie intégrante de la membrure participe
aussi forcément & la sollicitation générale de la membrure.

Ce fait est généralement perdu de vue, de sorte que 1’on déclare quelquefois
a tort que les cordons d’angle travaillent tres peu.

Si nous combinons le cas de la traction ou compression simple:

avec celui du cisaillement pur on a I’état de contrainte résultant:

Les 3 contraintes principales sont racines de 1’équation:

S 0 4
0 _S B =0
A Bv_S
O S[82—vs—(A%+ B?)]=0 ou S(82—vs—7%)=0

équation dont les racines sont:

v— 4442 v+ V212
Vs T T o vg =10 n=E—

On obtient alors un cercle de Mohr dont le rayon est:
S P R
; Vvi+ 472 ou —é 1/%—!—7'2

Abhandlungen X 5
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n

et 1’abscisse du centre: 3

. Son équation est:
T?+ N*—vN —12=0 (25)

La figure 17 montre la composition des cercles de Mohr, composants du
cisaillement simple et de Ia traction ou compression simple.

Il doit étre tangent & la courbe limite. En élément 7’2 entre les deux
équations on a 1’équation en N

Ny-(+ BN - (= +0) = 0

Fig. 17

qui doit avoir une racine duoble:

2
(V+B)2+4:(72—%+0) =0

ou: 24+2B+B24+4+2-244C =0
4724+ 24+2B+RR' =0

ou: 472402~ (R+R)v+RR =0 (26)

d’ott r=3V(R+R)v—v"— RE (26')

or: —RR est >0 et est le terme principal sous le radical; le terme »? est °
toujours soustractif. Quant au terme (R + R’)v son influence est assez faible;
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il est soustractif si v <0 (cas d’un effort normal de traction) et additif si »> 0
(cas d’un effort normal de compression).
En reprenant I’exemple numérique du paragraphe 2°— et en choisissant:

v = —13K9%00 (traction) on a:
r<31Y-2X13-169+255
ou: < 3K°%9

Par conséquent si on ne tient pas compte de » on a droit & une contrainte de
cisaillement: 7=8X?9, 00, alors que si on en tient compte la contrainte maxi-
mum permise est r=3KO9, 9.

T
] ] \\T
NI EE R
—41-3-2—7012345678910!7/2/3/415/677
Fig. 18
Si v =+13 K% 00 (compression) on a:

r=17Y2X13-169+ 255
ou: +<5K%3

résultat plus favorable.

Etude de la relation (26) liant T et v:

On voit que l'influence de v sur un cordon longitudinal est importante. Il
est donc intéressant de tracer la courbe représentative de la formule (26) par
rapport aux variables n et = (voir fig. 18).

Conclusion

Cette étude nous a montré sur un cas concret qu’il est possible d’associer,
sans difficultés insurmontables, la recherche des contraintes par la théorie de
I’élasticité a la notion de courbe intrinseque prise comme limite de sécurité.
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Ainsi que nous 'avons vu, il suffit d’envisager la famille des cercles de
Mohr, représentant 1’état de contrainte auquel est soumis la piéce que 1’on
calcule. On limitera cette famille de cercles au contour de la piéce et il restera
a exprimer que l’ensemble de cercles, ainsi limité, est intérieur & la courbe
limite admissible homothétique de la courbe intrinséque de limite élastique.

Examinons maintenant I’influence de la forme des cordons sur les résultats
précédents:

Cordons d’angle frontaux
Solution 1.

a) Soudure tendue — Contrainte maximum admissible:

m2

Il est intéressant de tracer la courbe représentative de n en fonction de m
(voir fig. 19), on constate qu’il n’y a pas intérét & dépasser la valeur m = 2.
En-dessous de m =1 les résultats sont trés défavorables. La valeur m=1
semble pouvoir étre généralement adoptée.

n

25 solutionZ

3

R | solutien I

2

)4 /

4

0 05 7 5 T2 m

Fig. 19

b) Soudure comprimée — Contrainte maximum admissible:

mZ
=g el

n ~1)(R+R)+Y(m2-1)2(R+ R')>—4(m2+1)2RR’] | (15)

Si (R+ R’) est petit, on peut utiliser la formule (14) et la courbe de la
figure 19 sans erreur sensible.
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Dans le cas contraire, il faut calculer avec la formule (15); les contraintes
énoncées au paragraphe a) restent vraies. D’ailleurs dans le cas de m=1 on
trouve, comme nous l’avons vu page 50 que:

m2

"= ey | TR =

V- RR’

Solutron 11

a) Soudure tendue — Contrainte maximum admissible

2 m?2
=" R 2
(v s (20)

Sur la figure 19 est tracée la courbe représentative dont les ordonnées
sont celles de la formule (14) multipliées par % . Les conclusions sont les mémes.

b) Soudure comprimée pour m < 3 — Contrainte maximum admissible:

m2
— 2__ 4 2__9)\2 2 _ 2 2 ’
n—2(m2+1)(m2+9)[(m 3)(R+R)+ V(m 3)2(R+R')2—4(m +1)(m +9)RR’|
(21)
Si (R+ R') est petit, on peut utiliser la formule suivante:
2
n = m V—RR’

V(m?+1) (m? +9)

Dans le cas de m=y3 les mémes termes disparaissent de la formule (21)

et on a:
n=030y—-RR’

Les formules auxquelles nous parvenons par la méthode exposée ici
semblent plus avantageuses que les formules classiques résultant de ’appli-
cation des reglements.

Il faut remarquer que cette contradiction n’est qu’apparente parce que,
étant donné la rigueur de nos calculs & partir des hypotheses faites, nous
faisons état des cercles de Mohr limites, de diamétre plus important que le
cercle de Mohr correspondant au sommet des hyperboles des fig. 9, 10, 14, 15.

Il n’est pas douteux que, pratiquement, les zénes du cordon, au voisinage
de t=n et de t=0 se plastifieraient assez vite, sans danger pour la tenue de
I’ensemble du cordon.

Cordons d’angle latéraux

Les formules auxquelles nous sommes parvenus permettent de prendre
en compte a la fois 7 et n. On partira d’une solution initiale calculée avec =
seul et on corrigera le résultat obtenu en agissant sur la section du cordon
pour satisfaire & la condition (26).
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Résumé

Le probléme du calcul des cordons de soudure d’angle est tout d’abord
posé dans sa généralité. Les différences de sollicitation d’un cordon frontal
et d’un cordon latéral sont ensuite mises en lumiére. Dans les deux cas on est
amené & calculer le cordon de soudure, isolé de I'ensemble, moyennant cer-
taines hypothéses simplificatrices. Pour ces raisons, les calculs présentés n’ont
pas un caractere complet de rigueur mathématique mais constituent une
approximation tenant compte le mieux possible du mode de sollicitation de
chaque sorte de cordon. Les solutions élastiques d’équilibre plan sont cepen-
dant rigoureuses & partir des hypotheses faites.

Les propriétés mécaniques intrinseques du métal des cordons de soudure
sont définies par une courbe intrinseque de forme parabolique, faisant état
de la limite élastique & la traction et de la limite élastique & la compression.
On en déduit par homothétie dans le rapport du coefficient de sécurité une
courbe dite ,,courbe limite admissible.

Le calcul des cordons de soudure d’angle frontaux est alors établi pour
deux solutions d’équilibre élastique plan différant par le point de passage de
la force extérieure normale & la base du cordon. Ces deux solutions semblent
encadrer la réalité. Les états de contrainte sont définis par la famille des
cercles de Mohr attachés & chaque point du domaine triangulaire limité par
les faces du cordon.

Les formules sont alors obtenues en écrivant que la portion de famille
ainsi limitée est toute entiére & ’'intérieur de la ,,courbe limite admissible*.

Le calcul des cordons d’angle latéraux est fait par la théorie de 1’élasticité
en supposant un cisaillement longitudinal uniforme sur les deux surfaces de
contact. Enfin, on a tenu compte du fait général suivant: le cordon de soudure
latéral faisant partie intégrante des piéces qu’il assemble est également sollicité
a la traction et & la compression simple, circonstance qui diminue la contrainte
admissible au cisaillement pur.

Il est essentiel de signaler que nous n’avons pas admis de coefficients de
sécurité différents pour la tension, la compression et le cisaillement.

En effet, la théorie des courbes intrinseques du moment ou on l'applique
tient compte de ce fait, et il serait, & notre avis, illogique de superposer de
nouveaux coefficients de sécurité & ceux résultant de cette théorie, étant
donné surtout que nos calculs sont basés sur la théorie de I’élasticité.

Zusammenfassung

Das Problem der Berechnung der Kehlndhte wird zunéchst ganz allgemein
behandelt. Dann werden die Unterschiede der Beanspruchung zwischen einer
Stirn- und einer Flankennaht dargelegt. In beiden Féllen ist man gendtigt,
die Schweilnaht getrennt vom Ganzen und unter gewissen vereinfachenden
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Voraussetzungen zu berechnen. Aus diesem Grunde haben die angegebenen
Berechnungen nicht eine umfassende Bedeutung im Sinne mathematischer
Genauigkeit, sondern sind eine Niaherungsmethode, die aber so gut wie moglich
den Beanspruchungsarten jeder Schweinahtform Rechnung triagt. Die
elastischen, ebenen Gleichgewichtszustéinde sind indessen unter den gemachten
Voraussetzungen genau.

Die inneren mechanischen Eigenschaften des Schweillgutes sind durch eine
,,Jnnenkurve‘‘ von parabolischer Form bestimmt, die die Elastizitdtsgrenzen
fiir Zug und fiir Druck beriicksichtigt. Man leitet daraus durch Gleichsetzen
in der Beziehung des Sicherheitskoeffizienten eine Kurve ab, die ,,zuldssige
Grenzkurve‘‘ genannt wird.

Die Berechung der Stirnkehlndhte wird dann fiir zwei elastische ebene
Gleichgewichtszustdnde durchgefiihrt, die sich im Durchgangspunkt der
aubleren, zur Unterseite der Naht senkrechten Kraft unterscheiden. Der tat-
sidchliche Zustand scheint nun zwischen diesen beiden Fillen zu liegen. Die
Spannungsverhéltnisse sind durch die Schar der Mohr’schen Kreise bestimmt,
die zu jedem Punkt der dreieckformigen, durch die Oberflichen der Naht
begrenzten Fldche gehoren.

Man erhilt dann die Formeln indem man angibt, dafl die so begrenzte
Teilschar vollstdndig innerhalb der ,,zuldssigen Grenzkurve‘* liegt.

Die Berechnung der Flankenkehlnihte geschieht nach der Elastizitéts-
theorie, indem man ein gleichmiBiges Lings-Abscheren der beiden Berithrungs-
flichen voraussetzt. SchlieB8lich wird noch der folgende allgemeine Umstand
beriicksichtigt: indem die Flankenkehlnaht einen wesentlichen Bestandteil
der Stiicke, die sie verbindet, darstellt, ist sie auch einfachem Zug und Druck
unterworfen, wodurch die zulédssige Spannung fiir reines Abscheren vermindert
wird.

Es mull betont werden, dal wir fir Zug, Druck und Abscheren keine
verschiedenen Sicherheitskoeffizienten angenommen haben.

Die Theorie der Innenkurven beriicksichtigt diese Tatsache bereits sobald
sie angewandt wird, und es wire nach unserer Ansicht nicht logisch, neue
Sicherheitskoeffizienten denjenigen, die sich aus dieser Theorie ergeben, zu
superponieren; dies vor allem, wéil unseren Berechnungen die Elastizitats-
theorie zu Grunde gelegt wurde.

Summary

The problem of calculating fillet welds is first handled quite generally.
Then the differences in stressing between a butt weld and a flank weld are
illustrated. In both cases it is necessary to calculate the welded seam separate
from the whole and at the same time make certain simplifying assumptions.
For this reason the calculations which are given have no comprehensive
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importance in the sense of mathematical accuracy, but represent an approxi-
mation method which, however, takes into account as far as possible the types
of stressing of each form of welded seam. The elastic, plane conditions of
equilibrium are nevertheless exact under the assumptions made.

The inner mechanical properties of the weld metal are determined by an
»internal curve® of parabolic form that takes into consideration the elastic
limits for tension and for compression. By equalising with respect to the
factor of safety, a curve is derived from this, which is named ,,permissible
boundary curve‘‘.

The calculating of the butt fillet welds is then carried out for two elastic,
plane conditions of equilibrium, which differ in the point of passage of the
external force at right angles to the lower side of the seam. The actual state
now appears to lie between these two cases. The stress relations are determined
by a set of Mohr’s circles which belong to each point of the triangular area
bounded by the surface of the seam.

The formulae are then obtained by assuming that the partial set of circles
thus limited lies completely within the ,,permissible limit curve®.

The calculating of the flank fillet welds is made according to the theory
of elasticity, in that uniform longitudinal shearing of the two contact surfaces
is assumed. Finally also the following general circumstance is taken into con-
sideration: In that the flank fillet weld represents an essential constituent
part of the pieces which it connects, it is subjected to simple tension and
compression, whereby the permissible stressing for pure shear is diminished.

It must be pointed out that we have not used different factors of safety
for tension, compression and shear.

The theory of the inner curves takes this fact into consideration as soon
as it is applied, and in our opinion it would not be logical to superpose new
factors of safety on those given by that theory; particularly since our cal-
culations are based on the theory of elasticity.
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