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Resistance intrinseque des cordons de soudure d'angle

Innere Festigkeit der Kehlnähte

Internal strength of fillet welds

A. Goelzer, Directeur de la Societe SECROM, Paris

Un assez grand nombre de problemes de resistance des materiaux ont pu
etre resolus par la theorie de l'elasticite, bien que souvent cette theorie con-
duise ä des formules compliquees.

D'autre part, le souci de respecter les coefficients de securite avec plus de

precision a conduit, depuis plusieurs annees, a definir mathematiquement la
limite du domaine elastique de sorte que les formules finales sont des formules
resultant de la combinaison des formules de contrainte avec une equation
limite du domaine elastique.

La presente etude est une application de ces deux points de vue. Le calcul
des contraintes est conduit au moyen de la theorie de l'elasticite et les formules
finales resultent de l'application de ces formules ä la limite du domaine
elastique defini suivant la theorie des courbes intrinseques1).

On pourrait d'ailleurs aussi bien utiliser des equations entre les contraintes
principales qui ont ete proposees par divers auteurs (Hencky, V. Mises etc.)
pour definir cette limite du domaine elastique. Les resultats obtenus seraient
voisins.

Introduction

D'un point de vue tres general, le calcul d'un cordon de soudure faisant
partie integrante d'une piece depend tout d'abord des proprietes intrinseques
du metal de la soudure comparees ä celles du metal de base. Independamment
de toute question de forme des joints soudes ce sont ces proprietes de la
matiere qui differencient le cordon de soudure du metal de base des pieces ä
assembler.

l) C'est la methode suivie en France dans l'instruction sur la soudure du Ministere
des Travaux Publics et aussi dans les regles d'utilisation de l'acier du Ministere de la
Reconstruction et de rUrbanisme.
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II y a ensuite heu de considerer la forme du Joint et le Systeme des forces
exterieures appliquees, creant un certain etat de contrainte. Dans le cas des

soudures d'angle que nous envisageons plus particulierement dans cette etude,
il importe de bien distinguer les soudures frontales des soudures laterales.

Si nous isoIons le prisme triangulaire qui constitue schematiquement le
cordon de soudure, ce prisme doit se trouver en equilibre sous le Systeme des

contraintes appliquees ä ses trois faces. La repartition exacte des contraintes
sur les faces du cordon de soudure ne peut etre obtenue par le calcul, car il
faudrait alors determiner l'etat d'equilibre elastique de l'ensemble du Joint:
metal de base et soudure, Operation en general inextricable.

On pourra remplacer les contraintes agissant sur les faces en contact
OA O'A', AB A' B', par leur resultante generale et leur moment resultant
(%• i).

Fig. 1

rz
)* V-

Fig. 2 Fig. 3

Sur la face libre OB, 0' B' il n'y a aucun effort applique. Ceci pose, on
obtient les sollicitations suivantes pour un cordon d'angle:

a) Cordon frontal: Les faces OA 0'A' sont sollicitees par des forces situees
dans des plans perpendiculaires a la direction OO''. On a donc affaire ä un
solide plan dont les tranches juxtaposees telles que OAB 0'A'B' sont iden-
tiques au point de vue forme et efforts.

La section droite OAB est donc sollieitee par une force F normale ä OA,
la face AB par une force tangentielle egale et opposee ä F et par un couple
de moment & F8 (fig. 2).

b) Cordon lateral: Dans ce cas, il n'est plus question de solide plan, on a

un probleme ä trois dimensions. La sollicitation principale consiste dans
l'action de deux forces F egales et opposees contenues dans les plans: OA O'A',
AB A' B' et paralleles ä la direction OO' des aretes du prisme. Le cordon se

trouve donc soumis en outre a un couple G egal et oppose au couple des 2

forces F (fig. 3).
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Les forces F donnent Heu ä des contraintes de cisaillement longitudinales
preponderantes. Le couple (£ produit des contraintes supplementaires sur les
deux faces non libres, contraintes dont l'action est d'autant plus negligeable
que la longueur OO' est grande par rapport aux dimensions transversales
du cordon.

Chapitre I
Representation des proprietes intrinseques du metal des cordons de soudure

1. Choix d'une courbe intrinseque

Nous partirons de la theorie de Mr. Caquot sur l'existence des premiers
glissements ä la limite elastique conduisant ä la notion de courbes intrinseques.

Les resultats etablis par Messieurs Chalos et Beteille2) donnent pour
equation de la courbe intrinseque:

^\ 4£2/ 2 + 4dtM' {)
de la forme:

T2 + AN2 + BN + C 0 (1)

dans laquelle N et T representent les composantes normales et tangentielles
sur l'element plan suivant lequel a lieu le premier glissement caracterisant
la limite elastique du metal.

Dans cette equation: 9t est la limite elastique du metal ä la compression,
W la limite elastique du metal ä la tension, et %2 la limite elastique du metal
au cisaillement.

Les resultats d'experience montrent que la courbe intrinseque est d'allure
parabolique; nous supposerons donc que:

A=0 ou 3tgt'=-4£2
et nous adopterons finalement comme equation de la courbe intrinseque:

T* + BN + C 0 (2)
ou:

3J + 3T (8t-M')»
2 16

(2)

On peut admettre par exemple pour un metal d'apport destine ä souder
de l'acier doux:

3l 34K° 3r=-30K°

2) Representation du domaine de stabilite d'un solide elastique (Annales des Ponts
et Chaussees de mai 1938).
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L'equation de la courbe est alors:

T2 - 2 N - 256 0 (voir fig. 4) (3)

qui correspond pour N 0 k environ T %=16K.° et pour T 0 k une
contrainte de decohesion:

i\r0=-128K0

R=3*

(=16

NfT-m

Fig. 4

Courbe limite admissible

Si on fixe un coefficient de securite ä la traction et ä la compression, s en

prenant des contraintes admissibles R, R' telles que:

31 3T

R ~ R' ~S

on aura une nouvelle courbe pour laquelle

31 +SR' R + R
Jt>

(4)

G W -gl')
16

d'oü „„ B + B'T* — s • n

(B-B')*

16
S

On voit que vis-ä-vis de B et B' remplacant 9t et fft' on a une nouvelle
N Tcourbe dont les coordonnees sont x — et y — soit:
S " 8

B + B' (B-B')
y2 ö—»- -~ =o16

(5)

Nous appellerons cette courbe homothetique de la courbe intrinseque dans
le rapport s, la courbe limite admissible des contraintes. C'est cette courbe ä

l'interieur de laquelle devront se trouver tous les cercles de Mohr relatifs a
tous les points du triangle de soudure pour une sollicitation determinee: on
sera ainsi assure qu'en aucun point de la soudure les contraintes admissibles
ne sont depassees.
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En prenant s 2 on a la courbe indiquee sur la figure 4

T2-N-U 0

Chapitre II. Calcul des cordons d'angle frontaux

1. Generalites

Nous avons indique autrefois
t
dans le Bulletin 2—33) de la Societe des

Ingenieurs Soudeurs deux Solutions particulieres de l'equilibre elastique plan
d'un cordon frontal considere comme faisant partie d'un assemblage ä double
couvre-Joint symetrique (voir fig. 5).

La premiere Solution (I) correspond au point de passage de l'effort normal
dans le couvre-joint au tiers de la base OA ä partir de A. La seconde Solution
(II) correspond au point de passage de l'effort normal au milieu de OA.

/

\

Fig. 5

-J

Wr3

PI
w
¦1

1

Ol
¥

Fig. 6

m=tgf

P(x,y)

Fig. 7

3) Bulletin de la Societe des Ingenieurs Soudeurs — 32, Bld de la Chapelle Paris (18°)
n° 2—3 de Janvier-Fevrier 1931.
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Ces deux Solutions sont interessantes car d'apres les resultats d'experiences,
il semble bien que dans un tel assemblage le point de passage de l'effort
normal varie entre les deux positions correspondant ä (I) et (II).

Nous allons etudier successivement les deux etats de contrainte relatifs
ä ces deux Solutions.

2. Remarque sur les etats de contrainte plans

Nous definissons l'etat de contrainte par les trois contraintes principales
v±v2v3 classees par ordre de grandeur algebrique:

et nous envisageons plus particulierement, en vue de la consideration de l'etat
limite, le cercle de Mohr defini par v3 et v±.

On constate que dans un etat de contrainte plan oü une des contraintes
principales est nulle, ce sont les deux autres contraintes principales S± et S2

racines de 1'equation du 2eme degre ci-apres qui fournissent les deux nombres
algebriques v3 et v± ä condition que Sx et S2 soient de signes contraintes:

S2-(N1 + N2) S + N1N2-T32 0 (8)

Les racines de cette equation dont le descriminant est toujours ^0 sont:

S9 ¦

N1 + N2 (Ni-NtV
2 - O / \ O / ^ ^ 3f+T2 2

de sorte que: S2 v3 S1 v±

ä condition que: Nx N2 - T2 ^0 (9)

Les cercles de Mohr sont determines par l'abscisse de leur centre et par
leur rayon p

2 2 p 2 2

3. Etüde de Vetat de contrainte relatif ä la Solution (I)

En elasticite plane les expressions des efforts normaux N±N2 et de l'effort
tangentiel T3 (notations de Lame) sont:

Solution (I)
#! *(- 2 \

x + —y]ml
N9 Km*x (6)

'2

Ts=Ky
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dans lesquelles xy sont les coordonnees d'un point P du domaine OAB,
m — tg 99 et K est une constante qui a pour expression:

2FK
m*a*

(7)

dans laquelle F est l'effort normal unitaire resultant applique ä OA et a — OA
(voir fig. 6).

Dans ces conditions, la figure 7 montre l'etat d'equilibre du prisme de
soudure de section triangulaire OAB, sous l'action des contraintes s'exercant
sur les faces limites OB, OA et AB:
— Sur OB ne s'exerce aucun effort, cette face etant libre.
— Sur OA la contrainte normale est lineaire de 0 ä A, la resultante passant

au tiers de OA a partir de A. La contrainte de cisaillement est nulle.
— Sur AB la contrainte normale est lineaire de A ä B et est nulle au milieu

de AB', la resultante forme donc un couple egal a -^- en valeur
absolue. La contrainte de cisaillement est lineaire et a pour resultante

F.
FConstante K. — La contrainte normale de comparaison sur OA etant — n

on peut ecrire:

K 2n
m2 a {!')

Les formules (6) donnent:

N1N2 K2(-m2x2 + 2mxy) T3 Ky
et N±N2 - T2 -K2 (y -mx)2 toujours ^ 0

L'etat de contrainte de la section OAB du cordon
de soudure est defini par la double infinite des cercles
de Mohr attaches aux coordonnees xy d'un point quel-
conque P du domaine triangulaire OAB (voir fig. 8).
On a ici pour expression de A et p:

P.(x,y)

Fig. 8

— |(m2-l)a; + —y|m

K2 m2+ 1

4 m2 [(m x — 2 y)2 + m4 x2]

(10)

(11)

L'equation d'un cercle de Mohr relatif au point P (xy) quelconque est:

(N-X)2+T2 p2 (12)

Considerons une droite variable issue de 0 balayant le domaine OAB
depuis OA jusqu'ä OB (voir fig. 8), soit:
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y tx avec O^t^m

Substituons les variables t et x aux variables y et x (10) et (11) deviennent:

A=f |W-1) +^]* (10')

^ ^^-[(m-202 + m"]^ (11')

Keim etant donnes, pour une meme valeur de t, A et p sont proportionnels ä #.
Si maintenant nous eliminons t entre (10') et (11') nous pouvons exprimer

p2 en fonction de A et de x.
Ontirede (10'):

d'oü:

et

ou:

A mim2 — 1)

K x 2

m — 2t ml (m2 — -=r-1

m2+l[ / 2A\2
—-—— \mL\ml— ^— -|- ra4 x2

p2 ^_2 (m2+ i) |7m2 _ j^Y + m2l X2 (13)

Si nous considerons x comme fixe O^x^a, c'est-ä-dire que nous envi-
sageons des points P sur une droite parallele k AB, 1'equation du cercle (12)
depend alors du seul parametre A.

4. Etüde de la famille des cercles de Mohr pour la Solution (I)

Les formules precedentes montrent que la famille des cercles de Mohr
determines par p et A depend des variables x, y ou encore de x et t.

II importe tout d'abord d'etudier la configuration de cette famille de cercle.
La portion de cette famille relative aux points du domaine triangulaire OAB
doit se trouver entierement ä l'interieur de la courbe dite ,,courbe limite
admissible" comme nous l'avons precise page 40.

Pour se faire une idee de cette configuration un moyen simple consiste ä
etudier la Variation de p en fonction de A c'est-ä-dire ä determiner le lieu
geometrique des points diametraux des cercles situes sur le diametre vertical
parallele ä Taxe ON d'abscisse A. Ceci donne une idee de l'allure de la famille
des cercles. Nous utiliserons la formule (13).

La courbe repräsentative de (13) en fonction des deux variables A et p est

une hyperbole (voir fig. 9 et 10) dont le centre est le point:

A — m2x p 0
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Les sommets ont pour ordonnees:

+ p + — m im2 + 1 • x

La pente des asymptotes a pour valeur:

± im2 +T

D'autre part, les formules (10') et (11') permettent de suivre les variations
de A et p quand t varie de 0 ä m. On obtient facilement les resultats suivants:

K I K\
Pour 2 0 A0 — (m2 — l)x p0

-I—L (m2+ l)x

m x K o \K\ ,—k—7t
~2 K -2mx Pm=Y^rw2+la;

* m lAml Pm ^-(m2+l)^
De ces resultats, on deduit que le centre de figure de la famille de cercle

d'abscisse Xm ^m2x (sommets de l'hyperbole) correspond ä t -^.

Independamment de la forme geometrique de l'hyperbole (13) en A et p,
on peut montrer directement que l'on a toujours:

|A|^|Am| ou |A-Am|^0
et de meme que: p<Pm

ou, ce qui revient au meme, puisque p et pm sont positifs, que:

P2^pl ouencore: />2-/>^0

En effet: A ^ ^(m2-l)+^J x Xm ^(m2+l)x

K t -inet:A Am — -2xm 2 m

or: OSt^m donc |A-Am| ^ 0

m2 -4- 1
De meme: p2 K2

^ [(m-21)2 + m±] x2 (IV)

et: p^ ^-(m2+l)2x2

i, x 0 0 i£2 m2 +1 x 0d ou P ~pl —A ^~4:t(t-m)x2r r™ 4 m2 '
difference toujours ^ 0 car 0 ^ £ <; m.

Abhandlungen X 4
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Pour rester dans le domaine OAB, on doit de plus limiter la famille de

cercle aux points: (X0p0) pour £ 0 et (Xmpm) pour t m en remarquant d'ailleurs

que:
^m==Pm:=P0

Resultats indiques sur les figures 9 et 10.

SA-oPo)

yaleur
corr&spondanre m -*p m m!±L oJ u

m=2

Fig. 9. Solution I. Famille des cercles de Mohr pour K ou n< 0 et m> 1 (m= 2)

n=s
Wn

1*3 M
Wo)

3m m

:>>

valeur correspondante de t =m

Fig. 10. Solution I. Famille des cercles de Mohr pour üCouw<0etm<l (m 1/2)
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Des proprietes qui viennent d'etre etablies et de la comparaison de cette
figure avec la ,,courbe limite admissible" on conclut que ce sont, d'une maniere
generale, les cercles extremes:

('Wo) ^ 0 et avec x a (Point A)
ou (Xmp0)t m et avec x a (Point B)

qui sont les cercles que i'on peut appeler dangereux: si, en effet, ils sont
tangents interieurement ä la ,,courbe limite admissible", aucun des autres
cercles ne peut couper cette courbe, comme il resulte clairement de l'examen
des figures 9 et 10 et de la propriete etablie ci-dessus.

Mais nous remarquons que la position du faisceau des cercles de Mohr par
rapport ä l'origine depend des signes de A0 et Xm qui sont eux-memes fixes par
les signes de K et de m — 1. Plusieurs cas sont ainsi ä envisager:

1. K ou n sont <0: Dans ce cas F est un effort de traction correspondant ä

un assemblage tendu.

a) Si m > 1 A0 < 0 et Am < 0 mais Xm < A0 en valeur algebrique puisque K < 0

de sorte que le cercle le plus dangereux est le cercle relatif au point B:
Xmp0 avec Xm p0 c'est un cercle de traction.

b) Si m < 1 A0> 0 et Xm < 0 on a toujours Am < A0 en valeur algebrique et c'est
encore le cercle relatif au point B qui est le plus dangereux.

2. K ou n sont > 0: Dans ce cas, F est un effort de compression correspondant
ä un assemblage comprime.

a) Si m > 1 A0 > 0 Am > 0 mais A0 < Am en valeur algebrique puisque K > 0
de sorte que le cercle le plus dangereux est le cercle relatif au point A
(X0p0); c'est un cercle de Mohr qui n'est plus un cercle de traction, mais
relatif ä un*etat*de contrainte plus complexe.

b) Si m < 1 A0 < 0 et Xm> 0 on a encore A <Xm en valeur algebrique et c'est
encore le cercle relatif au point A qui est le plus dangereux.

En resume, comme on le voit sur les figures 9 et 10 c'est le signe de K ou n
seul qui est preponderant pour l'etablissement des formules que nous cherchons.

La position de m par rapport ä 1 intervient seulement pour modifier la
forme de la famille de cercles et surtout en ce qui concerne la position de cette
famille dont le centre est obtenu pour t ~, par rapport ä l'origine 0 (A 0)

qui correspond elle-meme ä

_ m(m2-l)

mais l'allure generale de la famille reste la meme. On remarquera que dans
ce cas de K ou n positif les figures 9 et 10 doivent etre regardees ä l'envers,
c'est-ä-dire qu'il faut changer A en — A.
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5. Etats de contraintes limites pour la Solution (I)

a) K < 0 — Soudure transversale tendue.

L'etat de contrainte limite dans ce cas est tout simplement un etat de
traction simple puisqu'on obtient le cercle de Mohr de traction. II n'y a donc

Xm(t=m)

Fig. 11

plus lieu de se servir de l'equation de la courbe limite admissible (fig. 11). La
c Dndition limite est: 2 Am 2 pm R'

d'oü 2^(m2+l)a^R' avec K -^ ^-2 mla* ml a

en posant: n — valeur de la contrainte unitaire de reference,

-,, v ^ m2 +1d ou:

et:

2ä-» -rx <
m2

B'

n=2
m2

(m2+l)
B' (14)

expression donnant la valeur limite admissible n de N.

Par exemple R' - 15 K° 00
si ra=l w ^ - 7K°, 5J -3K°75

m 2 n ^-12K°, 0i -6K°00

Comparaison avec le calcul classique. — (Suivant circulaire du Ministere des

Travaux Publics.)
a ß=y 0,ß5R a ß y 0,55

FOn doit avoir

d'oü:

h
S 0,65 R et h asuicp a

m
»T+ m*

Fjl +
a m

m*
^0,65J? ou n^0,65 m

il+m2
R

pour m l i? -13K°,00 ^-0,65-—13 w^-6K°,00
]/2
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Conclusion: Pour m 1 le calcul suivant la circulaire est plus favorable pour
les soudures d'angle transversales ä moins de prendre m 2, par exemple, avec
notre methode.

b) K> 0 — Soudure transversale comprimee.

Dans ce cas l'etat de contrainte limite correspond k t 0 c'est-ä-dire:

TT TT

Po y(m2+l)a

0 Ä0(t-o) \N

Fig. 12

Le cercle de Mohr n'est plus un cercle fondamental: il faut exprimer qu'il
est tangent ä la courbe limite admissible (voir fig. 12)

y2+(^-A0)2=Po2
T2 + BN + C 0

d'oü: (N-\0)2-BN-(Po2 + C) 0

ou jV2-(2A0 + ß)2y + (A02-Po2-C) 0

On doit avoir une racine double:

(2A0 + 5)2-4(A02-(0o2-C«) 0

4(JBA0+/v!) + JB2 + 4<7 0

On a d'ailleurs: B _B+W et B2 + iC BIi>

et lorsque: A0 />0 on retrouve naturellement a titre de verification les 2 racines

B B'
P

Reprenons 1'equation precedente:

4:Po*-2{B + B')A0 + BB' 0
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et remplaeons A0 et p0 par leurs valeurs:

K2(m2+l)2a2-K(m2-l)a(R + R') + RR' Q

d'oü l'on peut tirer K:

A (m2-l)2 a2 (R + R')2 - 4 (m2 +l)2a2RR'

R' < 0 et A > 0, (—) < 0. Les deux racines sont de signe contraire, il faut

prendre la racine positive.

K (m2 -1) (R + R') + i(m2 - l)2 (R + E')2 - 4 (m2 + l)2 RR'

Mais: K

2(m2+l)2a

m2
U< 4(m2+l)2

[(m2--l)(Ä+fi') + /(m2--l)2(i?+i?')--4(m2+l)2 Ei?']et

Par exemple pour: Ä=17K° 2J' -15K0 R + R' 2 RR'= -17x15
fl.2 /yyi2

(15)

m 1 n
4(m2+l)2 2(m2+l)

rc =— i -RR' n ^ — 4 K° environ
4

m 2 w 25 [3x2 ]/9x4 + 4x25xl7xl5] n= 6K°, 72

Remarque. — Si on fait R= — R' dans la formule (15), on retrouve la formule
(14). On constate que la prise en compte de R, different de R' en valeur
absolue, est avantageuse (formule 15).

6. Etüde de Vetat de contrainte relatif ä la Solution (II)
Les expressions des contraintes normales N1N2 et de la contrainte tangentiale

To sont:

Solution (II)

*.-*(f-»*+i»)
,T Ima \

T3=Kl—-mx + 2y\

(16)

dans lesquelles x,y—m,K,Feta ont la signification indiquee plus haut (page 7)

pour la Solution (I): (voir fig. 6).
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La figure 13 montre l'etat d'equilibre du prisme de soudure de section
triangulaire OAB.

— Sur OB ne s'exerce aucun effort, cette face etant libre.

— Sur OA la contrainte normale est con¬

stante de O k A, la resultante
passant au milieu de OA. La
contrainte de cisaillement est
lineaire et s'annule au milieu de
OA de sorte que la resultante des

contraintes de cisaillement sur OA
est nulle.

— Sur AB la, contrainte normale est lineaire
de A k B et s'annule au milieu
de AB; la resultante est donc un

TPn
couple egal ä ~^-. La contrainte
de cisaillement est lineaire de A k
B et s'annule au 1/4 de AB k
partir de A et la resultante est
egale ä F.

Constante K — Comme pour (I):
2n

Nr

,h

/- V

¦FI
*<il

1F
Fig. 13

K
m*a

(17)

Les remarques faites pour la Solution (I) (page 6) restent valables ä
condition toujours que:

Pour simplifier le calcul, mettons les expressions (16) sous la forme:

1
NX K

N9 Km

T3=K

(ma \
\¥ + y)+2(y~mx)

(ma \

Ima \

et posons:

ou si on introduit t on a

d'oü:

ma
y-mx P —+y==Q

(t-m)x P (fig. 8)

N1 K — (2P + Q)
m

N2 KmQ
T3=K(P + Q)

ma + tx=Q

(16')
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On obtient immediatement:

N± N2 -T32=-K2P2=- K2 (y -mx)2 toujours ^ 0

comme avec la Solution (I).
On a donc les memes expressions de p et A (voir page 7). Calculons $x + S2

et S± — S2 *

S1+82=N1 + N2 S,- S2 2 j/p^2)2 + T32

Or N1 + N2 K — [2P + (m2+l)Q]m

Donc:

ou:

et

N1-N2 K-[2P-{m*-\)Q]m

P*

p2

K2 J_
4 m2

4 m2

X2 J_
4 m2

[2P-(m2-l)#]2 + Z2(P+£)2

[4P2-4(TO2-i)pg+(m2-i)2g2+4w2(P2+2Pg+g2)]

[4(m2+l)P2 + 4(m2+l)Pg + (m2+l)2Ö2]

A

K2 m2+l
4 m2

K 1

[4P2 + 4PQ + (m2+l)Q2]

2 m [2P + (m2+l)#]

(18)

(17)

Cherchons ä eliminer t entre ces deux equations et, pour cela, eliminons
d'abord Q: de la 2eme equation, on tire:

Q=-2l-j(~mX-2p)
m2 + 1 \K

En remplagant dans la lere Q par cette expression, on a:

n2 -
K2
4

m2+ 1

m2 4P2+ 4 P M2m\ op"!,^™'\-2P)2"
2+l JP - -* p "»'1 ¦" •* 1 1

m2 +1 ya / m

d'oü: p2 K2P2 + X2

et: f p2 Z2(£-m)2£2 + A2 (18')

avec:
l 2 m

2(<-m)x + (m2+l)fc + «a;)) (17')

Tirons t de la 2eme equation et remplacons dans la lere, on a:

<x
m r A + 2a;-(m2+l)^l

m2 + 3f
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tx — mx

et, par suite: p2 K2
(m2 + 3)2[x-(m2+1^(a;+-2-)]

m2 + 3| K
m2

+ A2 (19)

x etant considere comme fixe O^^aon peut etudier, comme pour la Solution
(I) les cercles de Mohr en fonction de A.

7. Etüde de la famille des cercles de Mohr pour la Solution (II)
Comme pour la Solution (I), nous examinerons la configuration de la

famille de cercle en etudiant la Variation de p en fonction de A. On trouve
encore que la courbe repräsentative est une hyperbole, donc le centre est le
point:

X 2K m*
m2 + 9 K) p 0 (voir fig. 14 et 15)

<<W»J

(Kpo)

3.12tr

m=2

valeur correspondante de t

Fig. 14. Solution II. Famille des cercles de Mohr pour K ou n < 0 et m > 1 (m 2)

Les sommets ont pour ordonnees:

K a
Lorsque x + 0 pour x 0 on a toujours p X — (m2+ 1)—-

£ £
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La pente des asymptotes a pour valeur:

1

+
ra2 + 3 i (m2 + 1) (m2 + 9) independante de x

hx

0*6

valeur correspondante de l

>"1i

Fig. 15. Solution II. Famille des cercles de Mohr pour Xouw<Oetm<l (m 1/2)

On peut en outre suivre la Variation de A et p quand t varie Okm.

K\Pour t 0 Ao y ["(»»*+1)|—2«

t=™ A?
2 * 1 A^(m2+1)|+(m2_1)|

Po=2 l?m2+1y(m2+l)~-2ax+ 4:x2

\K\ o ^t/«2 w2— 1 ax x2

* m Am — (m2 + 1) ij +x\ Pm \Xn

II faut remarquer que pour la Solution (II) nous n'avons plus A et p pro-
portionnels ä x comme c'etait le cas avec la Solution (I). II est donc necessaire
d'etudier l'influence de la Variation de x entre 0 et a sur les valeurs de A et p.
Mais les proprietes etablies pour la Solution (I) quant aux grandeurs relatives
de A et Xm, p et pm restent vraies.

Nous allons montrer en effet qu'en valeur absolue, la plus grande valeur
de A est toujours celle qui correspond k t m, c'est-ä-dire que l'on a: |A| ^ |Am|

ou |A — A*J<0. Mettant en evidence t et x on a:
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et

d'oü

or

A — (m2 + 3) tx — 2 mx + rn (m2 + 1) ~-\
2 m \_ 2]

Km2 + 3.

t — m S 0 donc: |A — Xm\ est toujours ^ 0

On peut voir de meme que p ^ pm ou, ce qui revient au meme, puisque p et pn
sont positifs, que p2<p£ ou encore:

En effet:

et on doit avoir:

p2-p^o
p2 K2(t-m)2x2 + X2

2 _ \ 2
Pm Am

K2(t-m)2x2 + X2-X%^0

Or, nous connaissons A — Xm calculons: A + Am

A + AM ~p^z + (m2-l)z + (m2 + l)a]
de sorte que:

,2 X2m2 + 3|7m2 + 3, 2
_\

2
1

X2 — AI — I-——t + m2 — 11 x+(m2+ l)a\ (t — m)x4 m
et on doit avoir:

K*u \ Wau m2 + 3(m2 + 3^ \] (m2 + 3)(m2+l) 1

—-(£-m)ax 4(Z —m)H tf + ra2 — 1 x + - — -a>^04 IL m \ m /J m J

or, t — m<0, il faut donc que:

\u \
™a + 3/ma + 3, 2 ,\1 (m2 + 3)(m2+l) ^A4 (£ — m H { £ + m2 — 1 x + — a ^ 0

m \ m \ m
ou:

f["(m2 + 3)2 1 (m2 + 3)(m2-l) ] (m2 + 3)(m2+l)
{ ^+4^ + - — - — 4:m\x+- — -a^O[l m J m J m

ou:
/m4+10ra2 + 9 m4-2ra2-3\ (ra2 + 3)(ra2+l)t + )x + - -a^ 0
\ mz m I m

remarquant que: m4+10m2 + 9 (m2+1) (m2 + 9)

et: m4- 2m2-3 (m2 + l) (m2-3)

on a:
m2 +1

m*
[(ra2 + 9)/ + ra(ra2-3)]# + ra(ra2 + 3)a} ^ 0
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m -r~ 1
ou 2— [(m2 + §)tx + m3(a + x) + 3m(a — x)] ^ 0

l'inegalite est bien satisfaite pour O^x^a, tous les termes etant positifs.
En resume, pour une valeur donnee de x, d'ailleurs quelconque, mais com-

prise entre 0 et a toujours vis-ä-vis des deux cercles (Xm pm) pour t m et (A, p)

pour t quelconque comprise entre 0 et m:

lAml lAl Pm^P

Mais comme on a pm \Xm\ et que la plus grande valeur possible de |Am|

correspond ä x a, le cercle le plus dangereux est le cercle:

Pm=[Am|=^(m2+l)^ (voir fig. 14 et 15)

Cette conclusion est valable pour K<0 comme dans la Solution (I).
Lorsque K> 0 on n'a plus ici pm p0 et il faut voir quel est le cercle le plus
dangereux quand t varie de 0 ä m.

Ici, comme pour la Solution (I) page 46, il faut limiter la famille de cercles

aux points (A0p0) pour t 0 et (Xmpm) pour t m et on a: Xm pm.
Ces resultats sont indiques sur les figures 14 et 15.

Des proprietes qui viennent d'etre etablies et de la comparaison de ces

figures avec la ,,courbe limite admissible", on conclut que ce sont toujours
les cercles extremes:

(X0p0) t 0 avec x a (Points!)

ou: (Xmpm) t m avec x a (Point B)

qui sont les plus dangereux.
Mais dans ce cas encore, comme precedemment, (page 46), la position des

faisceaux de cercle de Mohr par rapport ä l'origine depend des signes de A0 et
Am, en relation eux-memes avec les signes de K et de la quantite:

% (m2+ 1)— — 2x (voir page 54)
£

Plusieurs cas doivent etre aussi envisages ici, mais en fonction de m et de x.

a) K ou n sont < 0, cas de Vassemblage tendu:

a) <& (m2+l)~-2x> 0 A0<0 et Xm < 0
£

mais Am < A0 en valeur puisque K < 0 de sorte que le cercle le plus dangereux
est le cercle relatif au point B (Xmpm) avec Xm pm; c'est le cercle de traction,
sous reserve que l'on ait bien 91 > 0.
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Une discussion simple donne les resultats suivants

m< i~$

1

x<(m2+l)~ 9l> 0
4

m >

x>(m2+\)a- 91 <0

f3 91 >0

On a toujours Am<A0 en valeur algebrique et c'est encore le cercle relatif
au point B qui est le plus dangereux, sous reserve, cependant, que 91 < 0,

inegalite qui n'est satisfaite que si:

a(m2 + l) —- < x < a avec m < ]/3 d'apres le paragraphe a).

b) K ou n sont > 0, cas de Vassemblage comprime:

ß) 91 (m2+l)-^ -2x> 0 A0>0 Am>0
£

mais A0 < Am en valeur algebrique puisque K > 0 de sorte que le cercle le plus
dangereux est le cercle relatif au point A (X0p0) qui n'est pas un cercle de
traction.

Ceci n'a lieu que si 91 > 0 c'est-ä-dire que l'on a:

x < (m2 + 1) — avec m < ]/ 3

ou x quelconque entre 0 et a si m> j/3

y) 91 (m2+l)^--2x<0 A0<0 et Xm > 0
£

on a encore A0 < Am en valeur algebrique et c 'est encore le cercle relatif au point
A qui est le plus dangereux. II faut que 9t <0 c'est-ä-dire que:

(m2 + 1) — < x < a avec m < ]/ 3

En resume:

Pour K ou n < 0 (traction) c'est le cercle relatif au point B qui est le plus
eloigne de l'origine, en general, quelque soit m, excepte si m<}/3 pour
x > (m2+ 1) — alors c'est le cercle relatif ä A.

Pour K ou n> 0 (compression) c'est toujours le cercle relatif au point B
qui est le plus eloigne de l'origine en general quelque soit m excepte si m^ ^3

pour x> (m2+ 1) ~ alors c'est le cercle relatif ä A.
Mais l'examen des figures 14 et 15 montre que dans tous les cas possibles

les hyperboles situees entre le point x 0 et l'hyperbole x a donnent toujours
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la meme allure generale ä la famille des cercles de Mohr (voir page 54 et fig. 15).
On constate, d'apres ces resultats, que l'allure du faisceau des cercles de

Mohr reste la meme dans le cas (1) et par suite, le cercle le plus dangereux est

toujours celui qui correspond k t m pour x a lorsque K ou n< 0.

Mais lorsque K ou n > 0 il y a doute, notamment pour les petites valeurs
de m (voir fig. 15).

Une discussion plus serree conduite avec les donnees:

R 17 Ko
R'=-15K°

montre que pour m< ä 2,32 environ, le cercle le plus dangereux est celui
correspondant ä T 0 pour x a.

Pour m superieur ä 2,32 environ, le cercle le plus dangereux est celui
correspondant k t m pour x a.

8. Etats de contrainte limite pour la Solution (II)

a) K < 0 — Soudure transversale tendue.

Nous venons d'arriver ä la meme conclusion que pour la Solution (I) et la
condition limite est encore (voir page 48):

2A™ 2 p™ R'

d'oü:

d'oü:

K 0 ..3ft ^ n,Y(m2+l)-Y^R>

pour x

avec K ¦¦

2u
m2a

n
2 m2

3(ra2+l)
R' (20)

pour valeur de la limite admissible de n.

Par exemple pour: R' — 15K°00

si ra=l ?^-5K000
si m 2 w<-8K°00

b) K > 0 — Soudure transversale comprimee

Nous sommes ainsi arrives ä la meme conclusion que pour la Solution (I)
pour m< ]/3 et nous devons exprimer que le cercle de Mohr A0p0 est tangent
ä la courbe limite admissible (voir page 49). On obtient la meme condition:

4Po2-2(R + R')XQ + RR' 0 pour x a

On a, en se reportant aux valeurs de A0p0 (page 54):

K m2 - 3 K l/(m2+l)(m2 + 9)
A° ~2 ~~2~a p» T 2

a



Resistance intrinseque des cordons de soudure d'angle 59

(m2+l)(m2 + 9)a2.K2-2(m2-3)(R + R')a-K + ±RR' 0

on a: A (m2-3)2 (R + R')2a2-4,(m2 + 1) (m2 + 9) RR'a2

or R' < 0 donc A > 0 et le produit des racines est < 0. Nous prendrons la racine
> 0 pour K et on aura par suite:

n ot an"?/ 2^A(™2-3)(R+R')+i(m2-3)2(R+R')2-Hm2
2(m2+l) (m*+9)L

(21)
Par exemple pour:

i? 17K° R'=-15K° R + R=2 RR' -17x15

m \ m -—J——f-2x2+|/4x 4 + 4x2 X 10X17X15]2x2xlOL J

d'oü: n 3K°, 27

m 2 n ———— fix 2 /ix 4 + 4x5 X 13X17X15]2x5xl3L
d'oü: 7i 8K°, 00

Remarque. — Si on fait R= — R' dans la formule (21) on a:

n ~ n^=(-R')
}/(m2+l)(m2 + 9)

mais ici on ne retrouve pas naturellement la formule (20) parce que. avec la
Solution (II) Po*Pm-

On constate ici, contrairement ä ce qui a ete indique pour la Solution (I)
page 50 que la prise en compte de i? + R' en valeur absolue n'est pas forcement

avantageuse, cela depend de la valeur de m.
Lorsque m> 2,32 il faut considerer le cercle (Xmpm) et on retombe sur la

formule (20).

Chapitre III. Calcul des cordons d'angle lateraux 4)

1. Equation d'equilibre elastique

Nous negligeons le couple des deux forces F et une Solution approchee est
donnee pour les deformations:

4) Une partie des resultuts qui suivent a ete exposee dans le Bulletin de la Societe
des Ingenieurs Soudeurs (voir page 5). Ils sont approches, ainsi que ceux etablis dans
le paragraphe 3 page 25, parce que les conditions aux limites ne sont pas entierement
satisfaites.
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>-

Fig. 16

r u o

v o

to =— (^4x + .Bi/)
A6

qui satisfont aux equations gene-
rales de l'elasticite pour le cordon
OAB (voir fig. 16). Les contraintes
sont les suivantes:

TX B T2 A T3 0

Les 3 contraintes principales v1v2v3 (v3<v2<vx) sont les racines de l'equation
en S:

_S 0 A
0 _S B
A B _S

0

d'oü: S(S2-A2-B2) 0; onadonc:

v3 -iA2 + B2 v2 0 v1 + ]/A2 + B2

On a donc un probleme de cisaillement pur et -\/A2 + B2 est le rayon du cercle
de Mohr.

On demontre d'ailleurs que:
FiA2 + B2
h

h OH etant la hauteur du triangle OAB. L'equation du cercle de Mohr est:

JST2+T2 r2 (22)

r etant le cisaillement egal en valeur absolue ä vx et v3 de sorte que:

r ]/A2+B2 (23)

2. Si nous considerons toujours la courbe limite admissible:

T2 + BN + C 0 (24) B - R + R'
C - (R-R')2

16

quand la limite permise est atteinte il faut que le cercle de Mohr soit tangent
ä cette courbe.

En eliminant T entre les deux equations on a l'equation en iW

N2-BN-(t2 + C) 0
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qui doit avoir une racine double:

-ß2 + 4(T2 + O) 0 ou 4r2 + RR' 0

61

on en tire: t= »il-RR' (25)

condition evidente puisque la courbe limite admissible a precisement ete
determinee comme tangente au cercle de Mohr de cisaillement pur:

Si: R' ~y -15i? +17K°00

r ^ \ 1/T5X17 + 8K°00

3. Cas d'un cordon d'angle travaillant longitudinalement au cisaillement
et ä Vextension

Ce cas se produit quand le cordon d'angle assemble des semelles de mem-
brures de poutres. Le cordon faisant partie integrante de la membrure participe
aussi forcement ä la sollicitation generale de la membrure.

Ce fait est generalement perdu de vue, de sorte que l'on declare quelquefois
ä tort que les cordons d'angle travaillent tres peu.

Si nous combinons le cas de la traction ou compression simple:

N± N2 0 N3 v ri T2 T3 0

avec celui du cisaillement pur on a l'etat de contrainte resultant:

NL N2 0 N3 v TX B T2 A T3 0

Les 3 contraintes principales sont racines de l'equation:

_S O A
O _S B
A Bv_S

0

ou: S[S2-vs-(A2 + B2)] 0 ou 8(S2-vs-t2) 0

equation dont les racines sont:

i/-/y2 + 4r2 A v+yv2 + T2
^3 ä V2 ° Vl 2

On obtient alors un cercle de Mohr dont le rayon est:

\i^+4^2 ou ij/J- + T2

Abhandlungen X
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et l'abscisse du centre: -~-. Son equation est:

T2 + N2-vN-t2 0 (25')

La figure 17 montre la composition des cercles de Mohr, composants du
cisaillement simple et de la traction ou compression simple.

II doit etre tangent ä la courbe limite. En element T2 entre les deux
equations on a l'equation en N

N2-(v + B)N-((t2-^ + c\ 0

wes°.

^Jücompr^^
de */,cerc o/>

Fig. 17

qui doit avoir une racine duoble:

(v + B)2 + ±(t2- ^ + 6\ 0

ou:

ou:

d'oü

2 + 2 _B + jB2 + 4t2-2 + 4C 0

4r2 + 2 + 2B+RR' ^ 0

4=t2 + v2-(B + B')v + BB' 0

T H(B + B')v-v2-BB'

(26)

(26')

or: — RR' est >0 et est le terme principal sous le radical; le terme v2 est
toujours soustractif. Quant au terme (R + R')v son influence est assez faible;
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il est soustractif si v<0 (cas d'un effort normal de traction) et additif si v> 0

(cas d'un effort normal de compression).
En reprenant l'exemple numerique du paragraphe 2°— et en choisissant:

v - 13 K°, 00 (traction) on a:

t ^ J 1/^1x13-169 + 255

ou: r^3K°9
Par consequent si on ne tient pas compte de v on a droit ä une contrainte de

cisaillement: t 8K°, 00, alors que si on en tient compte la contrainte maxi-
mum permise est t 3K°, 9.

^¦S kS

10 11 12 13 tt 15 16 17 n-5 -411 -10

Si

ou:

Fig. 18

v + 13i<L0, 00 (compression) on a:

t J/2X13-169 + 255

r < 5K°3

resultat plus favorable.

Etüde de la relation (26) liant r et v:

On voit que l'infiuence de v sur un cordon longitudinal est importante. II
est donc interessant de tracer la courbe repräsentative de la formule (26) par
rapport aux variables n et r (voir fig. 18).

Conclusion

Cette etude nous a montre sur un cas concret qu'il est possible d'associer,
sans difficultes insurmontables, la recherche des contraintes par la theorie de
l'elasticite ä la notion de courbe intrinseque prise comme limite de securite\
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Ainsi que nous l'avons vu, il suffit d'envisager la famille des cercles de

Mohr, representant l'etat de contrainte auquel est soumis la piece que l'on
calcule. On limitera cette famille de cercles au contour de la piece et il restera
ä exprimer que l'ensemble de cercles, ainsi limite, est interieur ä la courbe
limite admissible homothetique de la courbe intrinseque de limite elastique.

Examinons maintenant l'influence de la forme des cordons sur les resultats
precedents:

Cordons d'angle frontaux
Solution I.

a) Soudure tendue — Contrainte maximum admissible:

n
m*

2(m2+l)
R' (14)

II est interessant de tracer la courbe repräsentative de n en fonction de m
(voir fig. 19), on constate qu'il n'y a pas interet ä depasser la valeur m 2.

En-dessous de m l les resultats sont tres defavorables. La valeur m |
semble pouvoir etre generalement adoptee.

solulionl4-f?

'onJlsojjili

Solution I
solutiojlL

Fig. 19

b) Soudure comprimee — Contrainte maximum admissible:

mf2

W-4(m2+l)2l(m2 1)(^+^')+V(m2--1)2{B + B')2-±(m2+\)2BB' \ (15)

Si (R + R') est petit, on peut utiliser la formule (14) et la courbe de la
figure 19 sans erreur sensible.
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Dans le cas contraire, il faut calculer avec la formule (15); les contraintes
enoncees au paragraphe a) restent vraies. D'ailleurs dans le cas de m=l on
trouve, comme nous l'avons vu page 50 que:

m
n "* i-^RR' i-RR'

2(m2+l) r 4

Solution II
a) Soudure tendue — Contrainte maximum admissible

(20)
2 m2

U= 3(m2+l)K

Sur la figure 19 est tracee la courbe repräsentative dont les ordonnees
sont celles de la formule (14) multipliees par -|. Les conclusions sont les memes.

b) Soudure comprimee pour m < j/3 — Contrainte maximum admissible:

n-
m2

2(m2+l)(m2+9)[(w2--3){R+R') + i(m2--3)2(B+B')2--4(m2+l)(m2+9) BB'\

(21)
Si (R-\-Rr) est petit, on peut utiliser la formule suivante:

n
l/(m2 + l)(m2 + 9)

i-RR'

Dans le cas de m j/3 les memes termes disparaissent de la formule (21)
et on a:

n 0,30 i-RR'
Les formules auxquelles nous parvenons par la methode exposee ici

semblent plus avantageuses que les formules classiques resultant de l'appli-
cation des reglements.

II faut remarquer que cette contradiction n'est qu'apparente parce que,
etant donne la rigueur de nos calculs ä partir des hypotheses faites, nous
faisons etat des cercles de Mohr limites, de diametre plus important que le
cercle de Mohr correspondant au sommet des hyperboles des fig. 9, 10, 14, 15.

II n'est pas douteux que, pratiquement, les zönes du cordon, au voisinage
de t n et de £ 0 se plastifieraient assez vite, sans danger pour la tenue de
l'ensemble du cordon.

Cordons d'angle lateraux

Les formules auxquelles nous sommes parvenus permettent de prendre
en compte ä la fois r et n. On partira d'une Solution initiale calculee avec r
seul et on corrigera le resultat obtenu en agissant sur la section du cordon

pour satisfaire ä la condition (26).
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Resume

Le probleme du calcul des cordons de soudure d'angle est tout d'abord
pose dans sa generalite. Les differences de sollicitation d'un cordon frontal
et d'un cordon lateral sont ensuite mises en lumiere. Dans les deux cas on est
amene ä calculer le cordon de soudure, isoie de Tensembie, moyennant cer-
taines hypotheses simphficatrices. Pour ces raisons, les calculs presentes n'ont
pas un caractere complet de rigueur mathematique mais constituent une
approximation tenant compte le mieux possible du mode de sollicitation de

chaque sorte de cordon. Les Solutions elastiques d'equilibre plan sont cepen-
dant rigoureuses ä partir des hypotheses faites.

Les proprietes mecaniques intrinseques du metal des cordons de soudure
sont definies par une courbe intrinseque de forme parabolique, faisant etat
de la limite elastique ä la traction et de la limite elastique ä la compression.
On en deduit par homothetie dans le rapport du coefficient de securite une
courbe dite ,,courbe limite admissible".

Le calcul des cordons de soudure d'angle frontaux est alors etabli pour
deux Solutions d'equilibre elastique plan differant par le point de passage de
la force exterieure normale ä la base du cordon. Ces deux Solutions semblent
encadrer la realite. Les etats de contrainte sont definis par la famille des
cercles de Mohr attaches ä chaque point du domaine triangulaire limite par
les faces du cordon.

Les formules sont alors obtenues en ecrivant que la portion de famille
ainsi hmitee est toute entiere ä l'interieur de la ,,courbe limite admissible".

Le calcul des cordons d'angle lateraux est fait par la theorie de l'elasticite
en supposant un cisaillement longitudinal uniforme sur les deux surfaces de

contact. Enfin, on a tenu compte du fait general suivant: le cordon de soudure
lateral faisant partie integrante des pieces qu'il assemble est egalement sollicite
ä la traction et ä la compression simple, circonstance qui diminue la contrainte
admissible au cisaillement pur.

II est essentiel de signaler que nous n'avons pas admis de coefficients de
securite differents pour la tension, la compression et le cisaillement.

En effet, la theorie des courbes intrinseques du moment oü on l'applique
tient compte de ce fait, et il serait, ä notre avis, illogique de superposer de

nouveaux coefficients de securite ä ceux resultant de cette theorie, etant
donne surtout que nos calculs sont bases sur la theorie de l'elasticite.

Zusammenfassung

Das Problem der Berechnung der Kehlnähte wird zunächst ganz allgemein
behandelt. Dann werden die Unterschiede der Beanspruchung zwischen einer
Stirn- und einer Flankennaht dargelegt. In beiden Fällen ist man genötigt,
die Schweißnaht getrennt vom Ganzen und unter gewissen vereinfachenden
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Voraussetzungen zu berechnen. Aus diesem Grunde haben die angegebenen
Berechnungen nicht eine umfassende Bedeutung im Sinne mathematischer
Genauigkeit, sondern sind eine Näherungsmethode, die aber so gut wie möglich
den Beanspruchungsarten jeder Schweißnahtform Rechnung trägt. Die
elastischen, ebenen Gleichgewichtszustände sind indessen unter den gemachten
Voraussetzungen genau.

Die inneren mechanischen Eigenschaften des Schweißgutes sind durch eine

,,Innenkurve" von parabolischer Form bestimmt, die die Elastizitätsgrenzen
für Zug und für Druck berücksichtigt. Man leitet daraus durch Gleichsetzen
in der Beziehung des Sicherheitskoeffizienten eine Kurve ab, die ,,zulässige
Grenzkurve" genannt wird.

Die Berechung der Stirnkehlnähte wird dann für zwei elastische ebene

Gleichgewichtszustände durchgeführt, die sich im Durchgangspunkt der
äußeren, zur Unterseite der Naht senkrechten Kraft unterscheiden. Der
tatsächliche Zustand scheint nun zwischen diesen beiden Fällen zu liegen. Die
Spannungsverhältnisse sind durch die Schar der Mohr'sehen Kreise bestimmt,
die zu jedem Punkt der dreieckförmigen, durch die Oberflächen der Naht
begrenzten Fläche gehören.

Man erhält dann die Formeln indem man angibt, daß die so begrenzte
Teilschar vollständig innerhalb der „zulässigen Grenzkurve" liegt.

Die Berechnung der Flankenkehlnähte geschieht nach der Elastizitäts-
theorie, indem man ein gleichmäßiges Längs-Abscheren der beiden Berührungsflächen

voraussetzt. Schließlich wird noch der folgende allgemeine Umstand
berücksichtigt: indem die Flankenkehlnaht einen wesentlichen Bestandteil
der Stücke, die sie verbindet, darstellt, ist sie auch einfachem Zug und Druck
unterworfen, wodurch die zulässige Spannung für reines Abscheren vermindert
wird.

Es muß betont werden, daß wir für Zug, Druck und Abscheren keine
verschiedenen Sicherheitskoeffizienten angenommen haben.

Die Theorie der Innenkurven berücksichtigt diese Tatsache bereits sobald
sie angewandt wird, und es wäre nach unserer Ansicht nicht logisch, neue
Sicherheitskoeffizienten denjenigen, die sich aus dieser Theorie ergeben, zu
superponieren; dies vor allem, well unseren Berechnungen die Elastizitätstheorie

zu Grunde gelegt wurde.

Summary

The problem of calculating fillet welds is first handled quite generally.
Then the differences in stressing between a butt weld and a flank weld are
illustrated. In both cases it is necessary to calculate the welded seam separate
from the whole and at the same time make certain simplifying assumptions.
For this reason the calculations which are given have no comprehensive



68 A. Goelzer

importance in the sense of mathematical accuracy, but represent an approxi-
mation method which, however, takes into account as far as possible the types
of stressing of each form of welded seam. The elastic, plane conditions of
equilibrium are nevertheless exact under the assumptions made.

The inner mechanical properties of the weld metal are determined by an
„internal curve" of parabolic form that takes into consideration the elastic
limits for tension and for compression. By equalising with respect to the
factor of safety, a curve is derived from this, which is named ,,permissible
boundary curve".

The calculating of the butt fillet welds is then carried out for two elastic,
plane conditions of equilibrium, which differ in the point of passage of the
external force at right angles to the lower side of the seam. The actual state
now appears to lie between these two cases. The stress relations are determined
by a set of Mohr's circles which belong to each point of the triangulär area
bounded by the surface of the seam.

The formulae are then obtained by assuming that the partial set of circles
thus limited lies completely within the ,,permissible limit curve".

The calculating of the flank fillet welds is made according to the theory
of elasticity, in that uniform longitudinal shearing of the two contact surfaces
is assumed. Finally also the following general circumstance is taken into
consideration: In that the flank fillet weld represents an essential constituent
part of the pieces which it connects, it is subjected to simple tension and
compression, whereby the permissible stressing for pure shear is diminished.

It must be pointed out that we have not used different factors of safety
for tension, compression and shear.

The theory of the inner curves takes this fact into consideration as soon
as it is applied, and in our opinion it would not be logical to superpose new
factors of safety on those given by that theory; particularly since our cal-
culations are based on the theory of elasticity.
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