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Methode de calcul des ponts ä poutres multiples tenant compte
de leur resistanee ä la torsion

Berechnungsmethode für Brücken mit mehreren Längsträgern mit
Berücksichtigung ihres Torsionswiderstandes

Method of calculation for bridges with several longitudinal beams, taking into
consideration iheir torsional resistanee

Charles Massonnet, Professeur ä l'Universite de Liege

1. Introduction

La tres grande majorite des methodes proposees jusqu'ici pour rechercher
les sollicitations des ponts a poutres multiples sont basees sur l'hypothese
simplificatrice que les elements de l'ouvrage n'offrent aueune resistanee ä la
torsion.

Cette hypothese s 'impose avant tout par le souci de simplifier radicalement
un probleme extremement compiexe; en effet, alors que le degre d'hyperstati-
cite reel d'un grillage de poutres assemblees rigidement est egal ä trois fois
le nombre de noeuds de ce grillage, celui d'un grillage ä poutres sans resistanee
a la torsion n'est egal qu'a ce nombre de noeuds seulement.

Quand on envisage le mecanisme suivant lequel travaille le pont, on s'aper-
coit que l'hypothese en question est en realite fort peu justifiee; en effet, la
tres grande majorite des ponts a poutres multiples comportent actuellement
une dalle de tablier en beton arme dans laquelle les sollicitations de torsion
jouent un röle preponderant. Si l'on peut negliger pratiquement cet effet de
torsion dans les ponts a poutres metalliques, il n'est guere admissible de le
faire dans les ponts monolithes nervures en beton arme et moins encore dans
les ponts-dalles en beton arme ou precontraint dont l'usage se generalise de

plus en plus.
II existe quelques methodes pour analyser les reseaux de poutres en

tenant compte de leur resistanee ä la torsion; il nous semble cependant que ces
procedes sont tellement compliques que peu d'ingenieurs de bureaux d'etudes
auront la patience de les appliquer, dans le calcul reel d'un ouvrage, aux
multiples sollicitations qu'il faut toujours prendre en consideration.
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Notre but est de decrire une methode nouvelle, qui nous parait plus rapide
que Celles connues jusqu'ici.

Dans l'etude que nous avons consacree au calcul des ponts sans resistanee
ä la torsion1) [6], nous avons montre que les procedes de calcul imagines par
Leonhabdt [1, 2] et Guyon [3] etaient particulierement commodes ä utiliser
et se completaient d'ailleurs en quelque sorte; il y a donc lieu d'essayer de

generaliser ces procedes pour y inclure 1'effet de la torsion.
La methode de Leonhardt ne se prete pas ä cette extension, parce qu'elle

est basee sur le remplacement des entretoises reelles par une entretoise mediane
fictive equivalente. II est visible que des charges appliquees, par exemple, au
milieu du pont, tordent les entretoises reelles, alors qu'elles n'amenent aueune
torsion de 1'entretoise unique equivalente.

La methode de Guyon, au contraire, est susceptible d'une generalisation
aisee, comme on le verra dans les pages qui suivent.

2. Rappel de la theorie generale des plaques anisotropes et des grillages
Continus de poutres

Un pont ä poutres multiples se presente toujours comme un grillage de

poutres resistant ä la torsion, solidaire d'une dalle formant platelage du tablier.
L'importance relative des deux elements ci-dessus est variable selon les

dispositions construetives adoptees: on peut imaginer une serie continue
d'ouvrages, s'etendant depuis le grillage de poutres ä dalle tres mince jusqu'ä
la dalle d'epaisseur constante.

Le comportement de l'ouvrage est donc intermediaire entre celui d'un
grillage continu et celui d'une dalle anisotrope.

Nous allons rappeler brievement les equations qui regissent les deformations
de ces deux systemes portants2).

A. Plaques anisotropes

L'anisotropie de la plaque provient en fait de ce qu'elle est differemment
armee ou nervuree dans les deux sens perpendiculaires. Neanmoins, pour
pouvoir etudier son comportement, nous la supposerons faite d'un materiau
homogene et anisotrope fictif et nous supposerons que ce dernier possede des

proprietes elastiques symetriques par rapport ä trois plans orthogonaux.
Prenons ces plans comme plans coordonnes et examinons le cas d'un etat

de tension plane dans le plan des xy. Nous pouvons ecrire les relations existant

x) Les chiffres entre crochets renvoient ä la bibliographie placee ä la fin de la presente
note.

2) Ce rappel est redige d'apres l'ouvrage du Professeur Timoshenko, Theory of
Plates and Shells, Mc-Graw Hill, New York, 1940, pp. 188 ä 191.
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entre les tensions ax, ay, rxy et les deformations ex, ey, yxy, sous la forme
generale

Gx Ex €x + E" €y

Ey €y + W €„ (l)
G«

Nous supposerons remplie l'hypothese classique de la theorie des plaques,
d'apres laquelle des elements de droite perpendiculaires au plan moyen de la
plaque (plan des xy) avant flexion restent droits et normaux au feuillet moyen
deforme. Les composantes de la deformation sont des lors:

e^ — z-
d2w d2w

dx2' €y dy2' 7xy

En les introduisant dans les equations (1), on trouve

-2z d2w

dx dy
(2)

orA —Z
,d2w
8y2

d2w

(w ,d2w d2w\
(3)

TXV- 2GZdxdy

Les moments de flexion et de torsion ont donc pour valeurs

C+hl2 l d2w d2w\
Mx=\_^oxZdz=-[Pp^+PlJ¥}

-/
(4)

M -M ¦¦^rM xy ^rj- yx

* + h/2

r_. zdz=2
d2w

dx dy'
ä condition de poser

E 'K*
Pp 12 Pe

Ey'jf
12 ' Pt

E"h*
~12~'

GW
12

(5)

L'effort tranchant vertical Ty se deduit de l'equation d'equilibre de rotation
d'un element de plaque autour de Taxe des x (fig. 1). On trouve ainsi

dj^__ dMxy
v dy dx '

ou, en remplacant les moments par leurs valeurs (4),

m _
d*w d3w

v~~9B¥f~y'd^dy

(6)
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L'equilibre verticaldu meme element de plaque conduit ä l'equation (fig. la)

d2Mr d2M„, d2M„ d2M,
'- + ¦ + Lxy _

dx2 dxdy dy2 dxdy
¦ v to y) (8)

rh

M»

y. m,

K iy*

*> W X\W Ah
dMv.

& + %*
3MXi

**f*/ "**T*
*<y+W*

b)

*£

T"+JTdx

Fig. 1

En introduisant dans cette relation les expressions (4), on obtient l'equation
suivante

irw c^w d*w
ppj^ + 2(pt+2Y) ä^nü* + pe-^tä v(x>y)dxi

Nous poserons
pt + 2y H,

(9)

ce qui nous permettra d'ecrire l'equation differentielle des plaques anisotropes
sous la forme

Pp^ + 2H-?^^ + Pe-^ V{x,y) (10)
dx* dx2dy2 rtjdy*

B. Grillages Continus

Envisageons le grillage de maille l-^b-^ (fig. 2) dont les poutres sont assem-
blees rigidement et resistent ä la torsion.

Designons par BP EIP la rigidite flexionnelle des poutres espacees de

b1 et par BE EIE celle des entretoises espacees de lx.
Le grillage continu fictif äquivalent aura pour rigidites flexionnelles par

unite de longueur

PP ^f et pE ^ (11)

respectivement, de sorte qu'il sera le siege de moments flechissants unitaires
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M Pp
d2w
dx2 ' M Pe

d2w

dy2
(12)

Appelons d'autre part CP et CE les rigidites torsionnelles respectives des

poutres et des entretoises. Considerons la torsion d'un element b± lx d'un
element du grillage reel represente a la figure 2. Le grillage continu equivalent
doit avoir les rigidites torsionnelles respectives

7p
G C** et Ye Yi li

(13)

par unite de longueur, et, comme la torsion geometrique de la surface vaut
d2w\dxdy, il y nait les moments de torsion unitaires

M̂xy 7p
d2w

dx dy' MyX ¦Ye
d2w

dx dy
(14)

*1 17 r*—

<

0
- —-- --

1

h
t

r* l

Fig. 2

L'effort tranchant vertical se calcule comme ci-dessus par la formule (6), ce

qui donne, en remplacant My et Mxy par leurs valeurs (12) et (14),

„, d3 w 8sw
(15)

L'equilibre vertical d'un element du grillage continu s'exprime par la meme
equation (8) que ci-dessus. En y remplacant Mx et My par leurs valeurs (12),
Myx et Mxy par leurs expressions (14), on trouve pour l'equation differentielle
du grillage continu

d^w
x

d^w d±w

PpIx^+{y^yE)Ix~2^pEW V{X,y) (16)

Elle est de la meme forme generale que l'equation d'equilibre (10) des plaques
anisotropes.
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C. Comparaison des deux theories ci-dessus, en vue de leur application
aux ponts ä poutres multiples

Un pont ä poutres multiples, etant une construetion intermediaire entre
la plaque anisotrope et le grillage continu, doit obeir egalement ä une equation
differentielle de la forme (10) ou (16).

Dans un tel pont, 1'effet de plaque ne peut provenir que de la dalle du
tablier, qui est en beton arme. Le coefficient de Poisson du beton etant tres
faible (de l'ordre de 0,10), nous le prendrons pour simplifier egal ä zero, ce

qui revient ä negliger la rigidite pt correspondante devant pP, pE et y.
Des lors, on voit que les expressions des moments flechissants et l'equation

de la deformee sont les memes dans les deux cas. En vue de faciliter les calculs

ulterieurs, nous poserons

2H =yP+yE 2<xipPpE (17)

L'equation (10) ou (16) prend alors la forme

pPI¥+2cc1PppE^W2+PEjyT P(*,y), (18)

oü l'influence relative de la torsion est caracterisee par le parametre de torsion a.
Le grillage continu sans resistanee ä la torsion etudie par M. Guyon

correspond a a 0. La plaque isotrope, de son cöte, correspond ä pP pE e^

a=l, auquel cas l'equation (18) se reduit ä l'equation classique de Lagrange

d*w d*w d*w
_ p(x,y)

ää?+ dx2dy2 + Jy* ~~
pP

Pour un pont reel, le terme de torsion de l'equation (18) a toujours une valeur
intermediaire entre Celles correspondant aux deux cas extremes envisages ci-
dessus. On couvrira donc tout le domaine a etudier en faisant varier le
parametre <% entre 0 et 1.

II importe de souligner, en terminant, que les theories de la plaque anisotrope

et du grillage continu different legerement en ce qui concerne la distri-
bution des moments de torsion Mxy et Myx. Ceux-ci sont egaux dans la plaque,
par reeiprocite, tandis qu'ils sont en general differents dans le grillage. II
resulte de la que les expressions des efforts tranchants Ty sont legerement
differentes dans les deux theories.

Remarquons ä ce propos qu'une grande resistanee ä la torsion ne se ren-
contre que dans les ponts en beton arme et qu'elle est due en ordre prineipal
ä l'effet de plaque dans la dalle du tablier. De plus, il faut que notre theorie
des ponts ä poutres multiples puisse s'appliquer au cas-limite des ponts-dalles,
dont la construetion en beton precontraint est susceptible de se developper.
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Ces considerations nous determinent a adopter pour le pont l'expression de

Ty trouvee dans le cas d'une plaque anisotrope, a savoir

„ d3w d3w /lf..

3. Conditions aux limites

Nous aurons besoin, dans la suite de ce travail, d'exprimer les conditions
aux limites existant le long d'un bord appuye et d'un bord libre du pont.
Nous allons etablir ces conditions des a present, pour les avoir ä notre dis-
position au moment opportun. Rappeions qu'on a suppose pour simplifier
Pi 0.

A. Conditions d'appui le long d'un bord appuye

Le long d'un bord appuye d'equation x a, le deplacement vertical est
nul, ce qui s'exprime par la condition

w 0 pour x a (20)

De plus, le moment flechissant Mx est egalement nul, ce qui donne, d'apres
les formules (4) ou (12),

d2w
JaÄ 0 Pour x a' (21)

B. Conditions d'appui le long d'un bord libre

Le long d'un bord libre d'equation y b,le moment flechissant My s'annule,
ce qui donne, d'apres les formules (4) ou (12)

2
0 pour y b (22)d^w

dy

De plus, la reaction d'appui
8M^

v v+ dx

est nulle. Pour expliciter cette condition, remplacons-y l'effort tranchant par
son expression

J dy dx

Ilvient 8M1_8MSi+8M„
dy dx dx

En introduisant dans cette egalite les valeurs (4) ou (12) et (14) des moments,
on trouve que la condition Py 0 s 'ecrit
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d3 w d3 w
plaque anisotrope Pej^+h 8x28y

°> Pour V b-

d3w d3 w
grillage continu pE -^ + (yP + yÄ) 8a.ag

0> P°ur 2/ b.

Ces deux equations sont identiques et s"ecrivent, en tenant compte de (17),

d3w ^ IpP d3w

^+2-VS^^ 0'pour y=b- (23)

4. Equation generale de la deformee du pont dans une zone non chargee
de forces exterieures

Proposons-nous d'etudier l'integrale generale de l'equation (18) dans une
zone non chargee du pont (p 0). Nous pouvons representer la deformee w

par la serie de Maurice Levy

w S Ym (y) sin—^-, (24)
m=l

dont chaque terme satisfait aux conditions d'appui w 0 et d2wjdx2=^0 le

long des deux bords appuyes x 0 et x l.
II nous faut maintenant determiner les fonctions Ym (y) de maniere que la

serie (24) satisfasse ä l'equation differentielle du pont non charge:

d*w n d*w d*w ^
PPJx^ + 2afp^Ix^dy2 + PEW

En remplacant w par son expression (24) dans l'egalite ci-dessus, on trouve
aisement que les fonctions Ym doivent satisfaire ä l'equation

pEYZ-2ocipPpB-jrY£ + Pp—p-Ym 0 (25)

Pour simplifier les calculs ulterieurs, nous poserons

(26)
_'7T -,/pp

l V Pe'

ce qui permet d'ecrire l'equation (25) sous la forme

YZ-2ccm*co*Y£ + mia>iYm 0. (27)

L'equation caracteristique correspondante est bicarree et admet pour racines

ri,2,3,4 ±ww]/a ± l/ot2-l (28)

Comme a est inferieur a l'unite, ces quatre racines sont imaginaires. En
utilisant la formule connue d'algebre elementaire
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i^±iP^I* + r?+P±^-i*+P
on peut ecrire ces racines sous la forme complexe habituelle

'1,8,3,4 =±mu> (j/^ + i]/1^) (^
et 1'integrale generale de l'equation (27) est par consequent de la forme

Y=emCOV 2 v|4mcos(mcoy—g^yj+Bmsm\majy -^y)

c mo)V 2 ^Cmcos [m ^y—2°Cy)+ Dm sin \maj]/~2^^j

+

(30)

Teile qu'elle est ecrite, cette expression n'est plus valable dans le cas limite
oü a= 1; en effet, les racines (29) se reduisent dans ce cas a

ri,2,3,4 ±ma)

et la Solution exacte pour ce cas est par consequent

Ym Amema)y +Bmmcoyemo}v + Cme-ma>v + Dmmcoy e~ma}y, (31)

tandis que la Solution generale (30) particularisee pour a=l se reduit a

Ym Am ema>y + Gm e~mü)y.

Pour pallier cet inconvenient, il suffit de remplacer dans la Solution (30) les

constantes d'Integration Bm et Dm par N
m et

N
m respectivement. La

Solution generale (30) s'ecrit alors \ 2 [/ 2

f-m — e

+ e-™^k cos (m» j/^y) + -§=sin (mo> j/^y)] (32)

]/"2~

et l'on constate aisement qu'elle se reduit ä l'expression (31) pour a= 1 si l'on
remarque que

sin [mwy-^yj
lim —_L_ '

a->l i l~cc
V 2

mcoy.
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5. Le pont infiniment large, appuye sur ses deux bords opposes et charge de

forces p pm sin nijtx/1 reparties le long de Taxe des x

Supposons d'abord que le pont soit infiniment large (fig. 3) et soit charge
de forces reparties suivant la loi sinusoidale

^c
BVa

p pmsm-
rrnrx

l

-*m — e

Fig. 3

,/i+ a

le long de Taxe des x, et proposons-nous
x de rechercher sa deformee.

Considerons uniquement la partie OABG
du pont qui correspond aux valeurs positives
de y et observons que le deplacement vertical
w et ses derivees doivent s'annuler ä de

grandes distances de la charge, de sorte que
1'integrale generale (32) se reduit necessaire-
ment ä 3)

c^cos (m w yVy)+ -rfcsin (m w ]/V* -

et la deformee du pont a pour expression

' l c... cos mco l ——— y M =sin mm /——y\

(y^o)

w — e sm
m-rrx

(y^o)
Par symetrie, on conclut que, le long de l'axe des #,

ce qui donne, apres simplifications,

_ n/l + a
am — cm \I 2

En tenant compte de cette relation, 1'expression de w devient

,/lTa
C™ ß ' l Silw C™ e sin-

m-nx
COS (mwyVy)+i/r~sin(mcüyV4

(y^O) (33)

3) On a remplace les lettres majuscules Cmet Dm par les minuscules correspondantes,
pour eviter la confusion avec des notations ulterieures.
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Nous obtiendrons le coefficient cm en exprimant que l'effort tranchant Ty le

long de l'axe des x vaut — pm\2. sin mnx\l, ce qui donne, d'apres la formule (19),

d / d2w d2w\ P niTTX
2

Sm l (34)

En remplacant dans cette egalite w par sa valeur (33), on trouve, tous calculs,
faits,

cw —
Pn

2 ]/2(l + oc)pEm3co3
(35)

Si, au lieu d'agir le long de Taxe des x,
la charge p pm^vnmTix\l agit sur une
parallele a cet axe d'excentricite e<y
(fig. 4), on doit mesurer y' par rapport
a cette parallele, c'est-ä-dire remplacer
y par (y — e) \y — e\ dans la formule
(33). On obtient alors

t
b

c'

1 o \_^ ]

\-yA>°)

| M e j
b

i

~l 1 {

y

yefx>)
"A O

i

N

\y
Fig. 4

,/l+ a
c.e-m(°V-^w(y) c„e

\y-e\ mrrx
sm—z,— <[coscos mcoy-^ly-el

1+a
s]n moj 1-a,\y-e\ (y^e) (36)

La ligne de charge MN est evidemment un axe de symetrie de la deformee.
Par consequent, le deplacement d'un point de la plaque tel que G', situe
au-dessus de MN (yc, < e) sera egal au deplacement du point G symetrique de
G' par rapport a MN (fig. 4) et son expression s'obtiendra en remplacant y
par (e—y) \y — e\ dans la formule (33).

On retrouve ainsi la formule (36), qui est donc valable de maniere generale.

6. Le pont charge de forces p pm sinmjrx/1 reparties le long d'une parallele
ä son axe d'excentricite e

Pour etudier le pont de largeur finie 2 b, libre sur ses deux bords lateraux
y= +6 et charge de forces sinusoldales p pm$mmTTxß reparties suivant une
parallele ä son axe d'excentricite e, il suffit de superposer ä la Solution parti-
culiere (36), valable pour le pont infiniment large, la Solution generale (32)
valable pour le pont non charge. On obtient ainsi la formule suivante:

Abhandlungen X
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w sm
mrrXX wo>

^jema7 2 ^mcos^mcojA^

ma)]/--^\y-e\[ ,/l-a, -,/l + a n/l-a, ,11 /rtWVr 2 cosmcoy-^l^-el + yY^smm^y——\y-e\ | (37)

On determinera les coefficients ^4m, 2?m, 0m et Z>m de cette Solution de maniere

que la somme des deux Solutions satisfasse aux conditions d'appui (22) et (23)
le long des deux bords libres. Ces conditions s'ecrivent, en remplacant dans

Cm e

la seconde ipPjpE par oj212Jtt2,

d2™

dy'^2=0,
d3w ft l2co2 d3w
-r—Y + 2 a—r 0
dy6 TT* dxzdy

pour y ±b (38)

Tous calculs faits, on obtient les conditions d'appui suivantes:

d2w1/ HU
1. pour y +b, ^r 0 (39')

+

Cm -ma>]/±±^(b-e) f ,- f l\ - a 1
m ft r 2 jyl + asm mce^y—--(6-e) -

l/l — a cos m a> y (6 — e) >

UAm + l/2 (1+a) Bml cos (ma> 1/^^ &) j +

[a <7m - l/2(l+«)Z>m] cos (ma»|/~ ^ } 0

d2w
2. pour 2/= -6, ^2- 0- (39")

}/l-a
m " ' 2 ' yl + asm mcol/——-

/l — acos [«„|/i=f(e + 6)]}.
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,s(wa,]Air6)}<xAm+i2 {1+*)B„ +

!?,{-Ä+fl^c-)'b(-/ii-"') +

\aCm - ^2(T+^Z)m] cos (mai j/i^ fij [ 0

3. pour y + b, r-T + 2a
d3w ^ Z2co2 d3w

dx2dy
0.

- ft ' 2 asin ma>|/-—— (6 — e)
}/l-a l L V 2 J

}/l — a2cos

+

./1+ai.
mcü|/—2~ ö

COS hf-rLi>)[-f-Ti*-+B.]}+
-fflO)T/ fr -(«y^»)^*--^-] +

COS (..|/i^6)[^i+2O.+l,.]}.0

d3W ^ Z2a>2 d3W
4. pour<, -6, ^+2«^-^^ 0.

,/2 mu)l/I+^(6+e)| r /I^ -i
e ' z la sin m w / —— (o + e)

/T +

.A + a*

l/l-a2cos m^y—^(6 + e) | +

+

cos {m^„)[^A„ + B,]} +

(39'")

(39"")
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cos ImtoV-^-bJ I y-^Cm + An 0

Posons pour simplifier

vy o ?re
j>- ß> -&- *

et introduisons le parametre d'entretoisement

1 pp
Pe

en fonction duquel on peut exprimer co sous la forme

co — — l/^p — 7?^ b l I Pe b

On voit qu'on a

o>(6 + e) #(tt + 0) et tü(b-e) =&(tt-i[j)

Posons de plus

¦eyr^ ^rt'J/i + asin i/i_?m^(w_^)l

'1 — <x cos

_6es_e-m»(^)1/l+-
yr

<A) -
¦a

I /l + ocsin \y—^m&(TT +

(40)

(41)

(42)

(43)

Cmi2 e-m»(

l/l-a

Cml/2 -m#(.r+*)yip

yi-a

/1-acos l/—^-m&iTT + ip) \ N

/I^^cos[|/^^m^(77-^) } P

jasin l/—^m#(7r + </>) +

(44)
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(45)

[e r 2 + e F 2 j smlm^TT 1/^—1 ß,

le '2 — e ^2jsmim^7rT/ __^—
i y 9

\ m**fi¥ —^l/^l / -. A^ £I e r 2 + c K 2
J cos I m ^ 77 1 / —-— 1=0,

U f 2 _ e ,k 2 j CQSI m^77- 1 / | €

Additionnons et soustrayons les equations (39') et (39"), puis (39'") et (39,,,/),

en y introduisant les notations precedentes; il vient

M + N +y\-pL(Bm-Dm)-1l-«f(Am + C„
Lyi-a

+

8[*(Am + Cm) + /2(l + a) (Bn-DJ] 0

M-N + ß\-0=(Bm + DJ-1l-**{Am-C„Lyi-a
+

e[«(Am-Cm) + 12(1+*) (Bm + DJ] 0

P+Q-ß y~(Bm-Dm) + ^]-^(Am + Cm)j +

e [(5m-flm) -]/^(^ + Cm)] 0

]P-Q-y

Si nous posons encore

1 + a

1-a (jBm+dj + y-^ (4m - Cm) | +
— a

"2"

(5w + 2)J-l/^(4w-0m)] =0

aS-j/T^x2 r

a}/2/2(l + a)S + -=L=y 77

yl-a
-/l-a2|8 + a6 =A

a}/2

yi-a
j8 + ^2(l + a)"€ v

f~ß+f-¥<=e
.-,;i±!ß

f-?r+f-?>
'-l/l^r

95

(46)

(47)

nous pouvons ecrire les equations (46) sous la forme plus condensee
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{ M + N + C(Am + Cm) + r, (Bm-Dm) 0

M-N + X(Am-CJ + v(Bm + DJ 0

P +Q-t(Am + CJ + o(Bm-Dm) 0

l P -Q-<p(Am-CJ + a>(Bm+DJ 0.

De la premiere et de la troisieme de ces equations, on tire

_(P+Q)y]-{M + N)a (Jf + jy)| + (P + y)g

De la deuxieme et de la quatrieme, on deduit ensuite

_(P-Q)v-(Jf-.y)Q,. ^^ (if-i\0y+(P-£)A

Les equations (49) donnent immediatement les valeurs des coeffieients Am,
Bm, Cm et Dm. II suffit d'introduire ces valeurs dans la Solution generale (37)

pour obtenir la deformee reelle du pont soumis ä la charge sinusoi'dale

mirx
p pm8W.—j—.

7« Methode approchee de calcul des ponts ä poutres multiples tenant compte
de leur resistanee ä la torsion

A. Generalites

Nous verrons au paragraphe 8 qu'il est possible de calculer rigoureusement
les efforts dans le pont pour n'importe quelle distribution de charges, mais
cette methode exaete conduit ä des calculs impraticables. C'est pourquoi nous
allons tout d'abord developper une methode approchee de calcul, bien
süffisante pour la pratique.

Nous envisagerons tout d'abord le cas particulier oü le pont n'est charge

que sur une bände longitudinale tres etroite, que nous assimilerons a une
parallele ä son axe d'excentricite transversale e.

Nous ferons la meme hypothese fondamentale que dans notre memoire sur
les ponts sans resistanee a la torsion [6], ä savoir que la repartition transversale
des efforts entre les differentes poutres est la meme que si les forces appliquees
sur cette bände etaient reparties suivant la loi sinusoidale

TTX
p(x)=p1sm -j-,

La validite de cette hypothese a ete discutee en detail dans le memoire
precite [6].

Pour etudier le cas de charge qui vient d'etre defini, il suffit de faire m= 1

dans toutes les formules du paragraphe precedent.
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B. Lignes d'influence du coefficient de repartition transversale K
Pour pouvoir utiliser les resultats numeriques obtenus par Güyon dans

le cas oü a 0, nous appellerons avec lui coefficient de repartition transversale K
le rapport du deplacement vertical d'un point du pont sous Veffet de la charge p (x)
au deplacement que prendrait ce point si la charge p etait uniformement repartie
sur toute la largeur du pont.

Ce deplacement moyen w° est defini par l'equation

d'oü l'on deduit

d*w° p p, ttxx — m x sin
dx*- 2bpP 2bpP l ''

p1 Z4 TTX

2bpP TT* l
w° —^ T sm

Pour obtenir les lignes d'influence du coefficient K, il suffit de calculer w,
puis de le diviser par w°. II revient au meme de remplacer dans l'equation (37)
le terme c^hnTxß (oü le coefficient cx est donne par la formule (35)) par le

quotient
TT X 7o • TTX

cisin~r_ Pils^-r 2bPpi* i _b\iJP tt _
tt&1 b \]Pp

in™ l t Pew° 2]/2(l+oc)pPco3 Pi ^ sm™ l Pe l/2(I + x) ^(l+a)
Remarquons a present que, si le pont est charge uniformement sur toute sa

largeur, le deplacement de chaque point de sa section transversale devient
egal au deplacement moyen w°. II suit de la que l'ordonnee moyenne de la
ligne d'influence de w doit etre egale ä w°, ou encore, que l'ordonnee moyenne
de la ligne d'influence de K w/w° doit etre egale ä l'unite. II serait difficile
de calculer l'aire exacte de la ligne d'influence. Mais, comme nous en deter-

Ol l
minerons 8 ordonnees equidistantes (correspondant ä y= —b, —-r, ~~1P

~~T' ^' T' T' ~T~ ty' on OD^en^ aisement une excellente valeur approchee de

cette aire par la formule de Simpson

2b
Aire =—[22JKpair - (K0 + K2n) + ±ZKimpair]

On doit donc avoir

ordonnee moyenne -^- — [2SKpatr-(K0+KSn) + ^SKimjtatr\=l. (50)

Par ailleurs, en vertu du principe de Maxwell, on a

Kab Kba (51)

c'est-ä-dire que le tableau des K doit etre symetrique par rapport aux
diagonales formees par les nombres en caracteres gras (voir les tableaux 2, 3 et 4

ci-apres).
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Les relations (50) et (51) constituent deux verifications tres precieuses en
fin des calculs, qui sont longs et perilleux.

Dans le cas particulier oü a 0, les expressions (39) ä (49) se simplifient
tres considerablement et l'on doit retrouver les resultats obtenus par Guyon
pour le treillis continu sans resistanee ä la torsion4).

Effectivement, les resultats obtenus par les deux methodes sont presque
identiques, comme le montre le tableau suivant, calcule pour la valeur
# 0,66874 du parametre d'entretoisement.

Tableau n° 1

Comparaison de nos resultats avec ceux de Guyon

Position
de la

GüYON Massonnet

Position de la charge Position de la charge
poutre -6 o + 6 -b 0 + 6

0 + 0,120 + 1,618 + 0,120 + 0,119 + 1,620 + 0,119
6/4 -0,294 + 1,442 + 0,874 -0,306 + 1,443 + 0,888
6/2 -0,517 + 1,055 + 2,113 -0,518 + 1,055 + 2,121

36/4 -0,635 + 0,595 + 3,871 -0,627 + 0,594 + 3,861
6 -0,692 + 0,120 + 5,984 -0,706 + 0,119 + 5,986

Nous pouvons donc nous servir des resultats de Guyon sans contröle
supplementaire. Signaions ä ce propos que nos calculs ont ete effectues ä la
machine ä l'aide de tables des lignes trigonometriques et fonctions exponen-
tielles ä 4 et 5 decimales. De sorte que l'erreur sur nos resultats est moindre
en general qu'une unite du dernier ehiffre conserve.

Variation de K avec le parametre oc

II nous faudrait en principe determiner les lignes d'influence de K pour
toute une serie de valeurs regulierement espacees du parametre de torsion a,
ce qui conduirait a des calculs tres considerables. Pour eviter cet inconvenient,
nous avons essaye de trouver une loi empirique permettant de determiner le
coefficient K par interpolation entre les valeurs extremes qu'il prend pour
a 0 et a= 1.

Dans ce but, nous avons calcule toutes les lignes d'influence d'un pont de

parametre d'entretoisement # 0,66874 pour les valeurs 0, 1/4, 1/2 et 1 du
parametre de torsion. Les resultats des calculs sont consignes dans le tableau
n° 2 ci-dessous.

4) Rappelons que nous avons dejä obtenu l'expression generale du coefficient K
relatif a a=0 par une autre methode dans notre memoire anterieur [6].



Methode de calcul des ponts ä poutres multiples 165

Tableau n° 2

Valeurs du coefficient de repartition K^ pour des ponts de parametre d'entre¬
toisement # 0,66874 possedant differentes resistances ä la torsion

Valeurs
du
parametre de

Position

de la

Excentricite de la charge

-6 36 6 6
0

6 6 36 6
torsion poutre 4 2 T 4 2 4

0 + 0,120 + 0,595 + 1,055 + 1,442 +1,618 + 1,442 + 1,055 + 0,595 + 0,120
6/4 -0,294 + 0,149 + 0,603 +1,051 + 1,442 +1,646 + 1,527 + 1,226 + 0,874

a 0 6/2 -0,517 -0,175 + 0,195 + 0,603 + 1,055 + 1,527 +1,909 + 2,064 + 2,113
36/4 -0,635 - 0,427 -0,175 + 0,149 + 0,595 + 1,226 + 2,064 + 3,004 + 3,871

6 - 0,692 -0,635 -0,517 -0,294 + 0,120 + 0,874 + 2,113 + 3,871 + 5,984

0 + 0,439 + 0,723 + 1,021 + 1,297 +1,434 + 1,297 + 1,021 + 0,723 + 0,439
6/4 + 0,092 + 0,359 + 0,653 + 0,980 + 1,297 +1,487 + 1,417 + 1,220 + 1,003

a=l/4 6/2 -0,113 + 0,103 + 0,349 + 0,653 + 1,021 + 1,417 +1,732 + 1,837 + 1,856
36/4 -0,242 - 0,085 + 0,103 + 0,358 + 0,723 + 1,220 + 1,837 + 2,483 + 3,029

6 - 0,344 -0,242 -0,113 + 0,092 + 0,439 + 1,003 + 1,857 + 3,028 + 4,446

0 + 0,589 + 0,785 + 1,007 + 1,227 +1,342 + 1,227 + 1,007 + 0,785 + 0,589
6/4 + 0,297 + 0,480 + 0,697 + 0,958 + 1,227 +1,399 + 1,348 + 1,197 + 1,040

a=l/2 6/2 + 0,114 + 0,265 + 0,452 + 0,697 + 1,007 + 1,348 + 1,619 + 1,696 + 1,697
36/4 - 0,006 + 0,114 + 0,267 + 0,480 + 0,785 + 1,197 + 1,696 + 2,196 + 2,581

6 - 0,098 -0,006 + 0,114 + 0,297 + 0,589 + 1,040 + 1,697 + 2,581 + 3,644

0 + 0,733 + 0,849 + 0,995 + 1,157 +1,248 + 1,157 + 0,995 + 0,848 + 0,733
6/4 + 0,511 + 0,617 + 0,759 + 0,947 + 1,157 +1,300 + 1,263 + 1,158 + 1,058

a=l 6/2 + 0,364 + 0,455 + 0,580 + 0,759 + 0,995 + 1,263 + 1,477 + 1,525 + 1,511
36/4 + 0,269 + 0,346 + 0,455 + 0,617 + 0,849 + 1,158 + 1,525 +1,875 + 2,105

6 + 0,202 + 0,269 + 0,364 + 0,511 + 0,733 + 1,058 + 1,511 + 2,104 + 2,811

La figure 5, tracee pour # 0,66874, montre comment se modifient les

lignes d'influence de K quand a varie de 0 a 1. L'examen de cette figure et
du tableau ci-dessus montre que la formule d'interpolation suivante

Ka K* + {Kx-K0)1* (52)

donne des resultats suffisamment precis pour la pratique.
II nous suffira donc, dans la suite, de calculer les lignes d'influence de K

pour les deux cas extremes a 0 et a 15).
Les resultats relatifs ä a 0 sont tires du memoire de Gttyon [3], ils sont

reproduits au tableau n° 3 ci-dessous.
Nous avons execute les calculs relatifs ä a 1 pour les 4 premieres valeurs

de # adoptees par Guyon ; les resultats obtenus sont consignes dans le tableau

5) Remarquons en passant que l'infmence de la torsion est tres sensible meme pour
de petites valeurs de a, puisque, pour a=l/4, son effet est dejä la moitie de celui qui
correspond ä la plaque isotrope (a= 1). Ceci montre qu'on commettrait de grosses erreurs
en negligeant cette influence dans les ponts en beton arme.
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Fig. 5

n° 4 ci-dessous. La figure 6 montre comment evoluent les lignes d'influence
de K (oc= 1) quand le parametre # augmente.

La valeur & 0 necessite un examen particulier. Si a est different de zero,
# 0 correspond ä un pont dont les entretoises presenteraient des rigidites
ä la flexion pE et a la torsion yE infiniment grandes. Par reciprocite, on doit
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admettre que la rigidite ä la torsion yP des poutres est egalement infiniment
grande. Dans ces conditions, les entretoises restent rectilignes quand on charge
le pont; au surplus, elles ne peuvent s'incliner sur l'horizontale; car, si elles

s'inclinaient, le pont prendrait une deformee d'equation

TT X
w (Ay + B) sin -y-,

et subirait la torsion d'amplitude finie

d2w

dx dy
A TT TTX

A -j- COS -y-

ce qui n'est pas possible si poutres et entretoises ont une rigidite torsionnelle
infinie.

II est donc necessaire de supposer A infiniment petit et le pont se deforme

par abaissement uniforme de toutes les entretoises parallelemeht ä elles-

memes; toutes les poutres ont donc la meme deformee. II suit de la que, pour
t? 0, on a pour toutes les valeurs de a 4= 0

K l,

quelles que soient les positions
de la charge et du point con-
sidere de l'entretoise.

Ce raisonnement n'est plus
valable dans le cas oü les entretoises

n'ont aucune resistanee ä

la torsion (a 0). Ce cas correspond

a la methode d'Engesser
et a ete etudie en detail ail-
leurs [6].

On constate ainsi que les
valeurs de K sont des fonctions

discontinues de a pour
a 0.

II est difficile, a premiere vue, de se representer comment le pont peut
transmettre aux appuis une charge sinusoidale psmTTXJl excentree de la
longueur e, tout en prenant une deformee cylindrique (fig. 7). En effet,
les poutres, se deformant toutes egalement comme on l'a montre ci-dessus,
exercent sur les entretoises des reactions uniformement reparties a raison de

pfäbsmTrxß kilogs par metre courant d'entretoise (fig. 7). La resultante de
ces reactions passe par Taxe du pont et n'equilibre pas la charge exterieure.

Ce paradoxe apparent s'explique aisement si l'on tient compte des moments
de torsion. En realite, pour equilibrer le couple exterieur

/^L

K

<&<*>/?4&

Fig. 7
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Tableau n° 4

Valeurs du coefficient de repartition K pour a 1

b \[7p
l V Pe

Position

de la
poutre

Excentricite de la charge

-6 36 b
2

6

4
0

6 6

~2

36
4

6

0,669

0

6/4
6/2

36/4
6

+ 0,733
+ 0,511
+ 0,364
+ 0,269
+ 0,202

+ 0,849
+ 0,617
+ 0,455
+ 0,346
+ 0,269

+ 0,995
+ 0,759
+ 0,580
+ 0,455
+ 0,364

+ 1,157

+ 0,947
+ 0,759
+ 0,617
+ 0,511

+1,248
+ 1,157

+ 0,995
+ 0,849
+ 0,733

+ 1,157
+1,300
+ 1,263

+ 1,158
+1,058

+ 0,995
+ 1,263
+ M77
+ 1,525

+ 1,511

+ 0,849
+ 1,158
+ 1,525
+1,875
+ 2,104

+ 0,733
+ 1,058

+ 1,511

+ 2,105
+ 2,811

1,057

0

6/4
6/2

36/4
6

+ 0,428
+ 0,219
+ 0,113
+ 0,063
+ 0,037

+ 0,612
+ 0,330
+ 0,178
+ 0,102
+ 0,063

+ 0,926
+ 0,533
+ 0,301
+ 0,179
+ 0,113

+ 1,383
+ 0,887
+ 0,533
+ 0,331
+ 0,219

+ 1,710
+ 1,383

+ 0,926
+ 0,613
+ 0,482

+ 1,383
+1,753
+ 1,480
+ 1,092
+ 0,825

+ 0,926
+ 1,480
+1,939
+ 1,796
+ 1,541

+ 0,612
+ 1,091
+ 1,796
+ 2,510
+ 2,733

+ 0,428
+ 0,825
+ 1,541

+ 2,733
+ 4,429

1,495

0

6/4
6/2

36/4
6

+ 0,191
+ 0,070
+ 0,025
+ 0,010
+ 0,005

+ 0,362
+ 0,140
+ 0,053
+ 0,021
+ 0,010

+ 0,775
+ 0,323
+ 0,128
+ 0,053
+ 0,026

+ 1,593

+ 0,758
+ 0,323
+ 0,140
+ 0,070

+ 2,356
+ 1,589

+ 0,774
+ 0,362
+ 0,191

+ 1,589
+ 2,375
+ 1,639
+ 0,879
+ 0,510

+ 0,775
+ 1,639
+ 2,497
+ 1,903
+ 1,301

+ 0,362
+ 0,879
+1,903
+ 3,104
+ 3,071

+ 0,191
+ 0,510
+ 1,300
+ 3,072
+ 6,263

1,778

0
6/4
6/2

36/4
6

+ 0,106
+ 0,031
+ 0,009
+ 0,003

0

+ 0,243
+ 0,076
+ 0,023
+ 0,007
+ 0,003

+ 0,658
+ 0,223
+ 0,071
+ 0,023
+ 0,009

+ 1,660
+ 0,658
+ 0,223
+ 0,076
+ 0,031

+ 2,795
+ 1,660

+ 0,658
+ 0,243
+ 0,106

+ 1,660
+ 2,804
+ 1,687

+ 0,726
+ 0,349

+ 0,658
+ 1,687

+ 2,885
+ 1,895
+ 1,093

+ 0,243
+ 0,726
+ 1,895
+ 3,453
+ 3,122

+ 0,106
+ 0,349
+ 1,093
+ 3,122
+ 7,449

TTX 7
w y sin -=- d cp.

Le pont subit ainsi la torsion infiniment petite

d2w TT TTX

ycosxd 9>dx dy

qui entraine dans les poutres des moments de torsion

d2w
_" "" lM*v=yrjx-dy

TT TTX 7

yp-rvos — dcp,l
uniformement repartis dans une section transversale du pont (fig. 7). Ces

moments sont d'intensite finie parce que yP est infiniment grand. Ils atteignent
leur valeur maximum yPTTJl^dop aux deux extremites des poutres, oü l'on
doit supposer qu'il existe de fortes entretoises capables de les reprendre.

L'equilibre de rotation du pont entier autour de son axe longitudinal
(fig. 7) exige qu'on ait

±b(Mxy)n e - p \ si
J o

ttx T 2pel
sin —=- dx

l TT
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pel
V-"* xyfmax

TUT Pel
M*» 2r7bCOS l

2-rrb

TTX
(53)

C. Calcul des moments flechissants dans les poutres du pont

Les tableaux n° 3 et 4 permettent de tracer les lignes d'influence de K0 et
K1 pour les 5 valeurs suivantes de #: 0-0,669-1,057-1,495-1,778. Pour
des valeurs differentes de ce parametre, il faut interpoler. Cette interpolation
est assez difficile, parce que la loi de Variation de K est complexe. Pour la
faciliter, on se servira avec avantage de courbes donnant, pour les 5 positions
des poutres reprises aux tableaux, la Variation de K en fonction de 9. Ces

courbes peuvent se construire facilement sur papier millimetre.
Supposons par exemple que nous prenions a 0 et # 1. On lira les valeurs

de K sur les courbes precitees, ce qui permettra de dresser le tableau suivant:

Position
de la

poutre

Position de la charge

-6 36
4

6

2

6

4
0

6

4
6

2
36
4

6

0
6/4
6/2

36/4
6

-0,70
-0,59
-0,35
-0,09
+ 0,15

+ 0,17
-0,12
-0,16
-0,16
-0,09

+ 1,00

+ 0,40
+ 0,03
-0,16
-0,35

+ 1,90

+ 1,08
+ 0,40
-0,12
-0,59

+ 2,30
+ 1,90

+ 1,00

+ 0,17
-0,70

+ 1,90
+ 2,36
+ 1,85
+ 0,85
-0,28

+ 1,00
+ 1,85
+ 2,36
+ 2,00
+ 1,26

+ 0,17
+ 0,85
+ 2,00
+ 3,35
+ 4,30

-0,70
-0,28
+ 1,26

+ 4,30
+ 8,80

II est a recommander de faire deux verifications (basees sur les deux pro-
prietes demontrees au littera B ci-dessus), qui permettent de retoueher le
tableau pour corriger les imperfections de la methode graphique:
1. En vertu du theoreme de Maxwell, le tableau doit etre symetrique par

rapport aux deux diagonales formees des nombres en caracteres gras.
2. La valeur moyenne de K par ligne horizontale doit etre l'unite; si l'on

appelle K0, Kx. K8, les 9 coefficients d'une ligne ä partir de la gauche,
on doit avoir sensiblement

%ZKpairs + 4:UKimpairs — (K0 + K8) 24 (50)

Ayant obtenu par la methode ci-dessus les valeurs de K0 et K1 pour la valeur
de # ehoisie, on calculera ensuite la valeur du parametre de torsion a qui
correspond au pont etudie et on interpolera entre les valeurs de K0 et Kx ä

l'aide de la formule
Ka Kt + (Kx-Kt)ifc. (52)

Cette Operation permettra de tracer les lignes d'influence du coefficient de
repartition transversale.
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Emploi des lignes d'influence de K:
Nous savons que, sous la charge

p (x) px sin
TTX

l

repartie sinusoidalement le long d'une parallele ä Taxe du pont d'excentricite e,

le pont prend une deformee sinusoi'dale donnee par l'equation (37) oü l'on
fait m 1; cette deformee est de la forme generale

w f(y) sin
TTX

l
Les moments flechissants unitaires dans les poutres du pont sont lies ä w

par la formule
(12)Mx - Pp

d2w
Jx2'

ils sont donc de la forme

¦nr
IT2

x TTX TT2 ppMx -pPPf(y)sin-£- -jF^,
et sont proportionnels au deplacement
du point considere de la poutre. Le
coefficient de repartition transversale
K, defini en B. par le quotient

a) LAT

b)\ Y t 1

LI

K w
Fig. 8

est donc encore egal au quotient Mx/Mx°, oü Mx est le moment flechissant
reel dans la section x de la poutre et oü Mx° represente le moment moyen qui
naitrait dans les poutres du pont, si elles flechissaient toutes identiquement.

Supposons maintenant que le pont soit charge de plusieurs flies paralleles
de vehicules reglementaires et appelons P1, P2,..., Pn, les charges concentrees
(constituees par les roues de ces vehicules) situees dans une section
transversale determinee d'abscisse £ (fig. 8).

Appelons m0x le moment flechissant provoque dans une poutre sur deux
appuis d'extremite par une force concentree unitaire d'abscisse £. La force
concentree P(£,rj) provoque dans la section x du pont le moment flechissant

moyen Mx° Pm0x; eile provoque donc dans la section x de la poutre (y) le
moment flechissant

PK(y,rj)m0x

L'ensemble des forces P d'abscisse | provoque dans cette meme section le

moment flechissant

»o*(0 S P($,r))K(y,v) (a)
rj=—b
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Pour obtenir.le maximum de ce moment, on doit placer les charges P trans-
versalement sur le pont dans une position determinee, qu'on recherche par
tätonnements. La figure 8 a) montre la position des charges qui donne le

moment maximum dans les poutres centrales du pont et la figure 8b) celle

qui provoque le maximum dans les poutres de rive.
Enfin, pour obtenir le moment flechissant total dans la poutre en question,

il faut faire la somme des quantites (a) ci-dessus pour toutes les files
transversales de charges placees sur le pont.

Generalement, toutes les charges P d'une meme file transversale sont
identiques et 1'expression du moment flechissant total se reduit ä

"S K{y,r,)j] P({,v)m0x(£)
rj=,-b £ 0

Les quantites m0x sont les ordonnees de la ligne d'influence (en forme de

chevron) du moment flechissant dans la section (x) d'une poutre sur deux

appuis simples. II suffit donc de rechercher, par la methode classique des

lignes d'influence, le moment maximum dans une poutre isolee sur appuis
simples soumise ä l'action d'une file longitudinale de charges de roues, puis
de multiplier le moment obtenu par le facteur SK(y,rj). En resume, et nous
ne saurions assez le souligner, toute Vetude theorique des paragraphes precedents
doit servir uniquement ä determiner la repartition transversale la plus defavorable
des charges, caracterisee par le terme ZK. Une fois cette repartition connue,
Vetude du pont se poursuit par les methodes ordinaires de la stabilite des constructions,

independamment de la presente etude.

D. Lignes d'influence des moments flechissants dans les entretoises

Le moment flechissant par metre courant d'entretoise est donne par
1'expression

Mv -p*W' (12)

oü w est la deformee du pont.
L'expression developpee de w s'obtient en faisant m 1 dans la formule (37)

et en y introduisant les notations (42) et (43); on trouve ainsi

TTX
w sm -=-

+ e

y 2

^ h°s^i/1?+7fesin^i/1?] (^)
y 2

+ c-e V 2
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La constante c intervenant dans cette formule est definie par la formule (35)

qui s'ecrit, avec la notation #,

pb3
° 2l2{l + *)pEiÜP (55)

En effectuant la double derivation de w, on obtient 1'expression suivante

TT X
My jjipb sin.-y~. (56)

Le coefficient /jl a la valeur suivante:

+ TTTZ^^Ciß—^hß) +c [yi±^p_„-Ä|/M|] (57)

y^~
oü l'on a pose, pour simplifier les ecritures,

fß=e r 2 cosßtfT/-^--; ^ e r 2 sin^y__j

*, -^l/1^ oqi/1^ • W1^ • P^l/1^ (58)hß=e r 2 cospfll/ ; ^ e ' 2 smj8#l/—-—. v '

V<M=e ' cos|^-0|#y-2-; ^ii8-0i e r 2
sm|ß_0|#y_

Nous avons calcule ci-dessous (Tableau n° 5) les valeurs du coefficient fju

pour # 0,66874 et a variable de 0 a 1. Ce tableau permet de tracer les lignes
d'influence de /x pour les quatre sections d'ordonnees 0, 6/4; 6/2 et 3 6/4 (figures
9 ä 12).

II ressort de ce tableau et de ces figures que l'on peut determiner les valeurs
de fju correspondant ä une valeur quelconque de a par la formule empirique
suivante

Pol /*o + 0*i-f*o) V* (59)

avec une precision süffisante pour les besoins de la pratique. La precision
donnee par la formule (59) est cependant moindre que celle de la formule
analogue (52) relative au coefficient K.

Gräce a la formule (59), il nous suffit de connaitre les valeurs de /x0 et de

lix, relatives aux valeurs a 0 et a 1 du parametre a.
Les valeurs de /a0 ont ete calculees par Guyon [3] pour les valeurs suivantes

de#: 0; 0,669; 1,495; 2,34; 3,162. Nous reprendrons ces resultats au Tableau
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Tableau n° 5

Valeurs du coefficient 104-^, pour # 0,66874 et a variable de 0 a 1

<x

Position
de la

section

Excentricite de la charge

-b -36/4 -6/2 -6/4 0 6/4 6/2 36/4 6

0 -1419 -786 -102 + 735 + 1830 + 735 - 102 -786 -1419
6/4 - 869 -568 -234 + 202 + 828 + 1713 + 361 -814 -1924

0 6/2 - 408 -301 -179 - 4 + 255 + 698 + 1300 -654 -2139
36/4 - 106 - 87 - 63 - 25 + 43 + 157 + 329 + 559 -1678

6 0 0 0 0 0 0 0 0

0 -897 -560 -142 + 486 + 1487 + 486 - 142 -560 - 897

6/4 -576 -447 -277 + 12 + 534 + 1411 + 296 -519 -1189
1/4 6/2 -303 -281 -242 -149 + 63 + 482 + 1221 -162 -1342

36/4 -106 -119 -129 -123 - 78 + 45 + 300 + 755 -1078
6 0 0 0 0 0 0 0 0 0

0 -652 -445 -153 + 360 + 1304 + 360 - 153 -434 -652
6/4 -443 -377 -274 - 60 + 390 + 1268 + 247 -374 -853

1/2 6/2 -260 -260 -248 -191 - 230 + 366 + 1147 - 39 -958
36/4 -114 -130 -146 -151 - 120 + 1 + 268 + 825 -783

6 0 0 0 0 0 0 0 0 0

0 -419 -322 -151 + 231 + 1096 + 231 - 151 -322 -419
6/4 -311 -290 -243 -108 + 246 + 1081 + 179 -261 -528

1 6/2 -213 -221 -225 -199 - 86 + 239 + 1025 + 30 -591
36/4 -117 -130 -145 -156 - 141 - 54 + 204 + 837 -498

6 0 0 0 0 0 0 0 0 0

n° 6, bien qu'ils different legerement des notres. (On comparera, ä ce point
de vue, les valeurs de jjl relatives ä & 0,669 figurant dans les tableaux 5 et 6.)

Nous avons calcule les valeurs de ^ pour oc= 1 et les valeurs de # ci-apres:
0; 0,669; 1,057; 1,495; 1,778. Ces valeurs sont consignees dans le tableau n° 7.

La determination des valeurs de ^x pour # 0 demande quelques mots
d'explication. II est possible d'obtenir ces valeurs en cherchant la limite de

l'expression (57) pour # tendant vers zero. Les calculs sont tres longs parce
qu'il faut y conserver les trois premiers termes des developpements en serie
de ex, sinx, cosx. Nous ne les reproduirons pas ici, parce qu'on peut obtenir
le meme resultat par un raisonnement beaucoup plus simple et plus concret.

Examinons (fig. 13) l'equilibre de la bände elementaire d'entretoise de

largeur dx situee a l'abscisse x. D'apres l'analyse faite ci-dessus ä la fin du
littera b), cette entretoise est soumise de la part des poutres ä des reactions
uniformes d'intensite p\2bsm.Trx\ldx, dirigees de bas en haut. Elle doit
reprendre egalement la Variation, sur la longueur dx, des moments de torsion
dans les poutres, qui vaut, d'apres la formule (53),

dM.xy
dx

dx pel
JrTb

TT TTX

Y sin -y- dx pe ttx 7j-,- srn—f- dx.
26 l
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La ligne d'influence de /x s'obtient en considerant dans la formule (60) y
comme constante et e comme variable. C'est une ligne en chevron formee de

deux droites (fig. 14). Les 3 ordonnees z definissant le chevron ont pour valeur
commune

(*)' (61)

Les lignes d'influence actuelles ont une allure nettement differente de Celles

correspondant au grillage sans resistanee ä la torsion6) (a 0). Cette difference
s'explique par le fait que, des que a est different de zero, si petit soit-il, il
apparait des moments de torsion finis qui modifient radicalement les
conditions d'equilibre de 1'entretoise elementaire. Les valeurs de [i sont donc des

fonctions de a discontinues pour a 0, tout comme les valeurs de K.

A \z
n—/^—\nz / -^- \

Fig. 14

8. Methode rigoureuse de calcul

L'objectif de la methode rigoureuse est d'etablir les surfaces d'influence
des divers effets des charges, en tenant compte de la resistanee du pont ä la
torsion.

Considerons, dans ce but, une force concentree P de coordonnees x c,y e.

II est facile de verifier que cette force peut se remplacer par la serie de Fourier7)

2 P ^ niTTC mTrx
q -j- 2j sm —^— sm'

V m=l i i (62)

D'autre part, on a vu au § 5 que la valeur &m du parametre d'entretoisement
qui correspond ä la distribution de charges

p pmsin-
mirx 2P mTTc\

avec pm -j- sm -j-\ (63)

6) Voir a ce sujet notre etude sur la methode d'ENGESSER [6] et le memoire de
Gxjyon [3].

7) Cette formule est etablie en detail dans notre memoire cite [6],
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est #m m#. Cela signifie encore que, sous la charge (63), les entretoises se

comportent comme si elles etaient m fois plus souples que sous la charge
P^UlTTXJl.

Par consequent, les raisonnements faits au § 15 de notre memoire precite
[6] et, en particulier, les formules (86) a (91) de ce memoire, sont integralement
applicables ä un pont resistant ä la torsion. Seules, les valeurs numeriques
des coefficients K et \x sont differentes et dependent ici du parametre de
torsion a.

A. Deformations et sollicitations des poutres

niTTC tyittxPP Ä 1 m-rrc
l

PI °° 1

o tt m=\ m l
m-rrc m-nx

sin —-n— sm —=—

B. Sollicitations des entretoises

v 2Pb Ä m77C m77^
My(x,y) —~— 2j ^msm—*—sml l

9. Indications complementaires concernant Papplication de la methode
de calcul proposee

Une grande partie des resultats generaux etablis dans notre etude ante-
rieure [6] concernant les ponts sans resistanee ä la torsion peuvent s'etendre
au cas actuel. Nous nous permettons de renvoyer le lecteur ä ce memoire et de
nous borner ä l'enonce des resultats essentiels.

~T
ht 3, hT

->4< T-—>| -IL K
z

Fig. 15

A. Effet des hypotheses de base concernant la strueture du pont sur la precision
des resultats obtenus

a) L'erreur commise en substituant aux poutres reelles en nombre fini
une repartition continue de poutres est tres faible, ä condition de prendre soin
de considerer la repartition continue comme s'etendant sur une largeur bj2
au-delä des poutres extremes (fig. 15).
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b) L'erreur commise en substituant aux entretoises reelles en nombre fini
une repartition continue d'entretoises est absolument negligeable des qu'il y a

plus d'une entretoise (celles sur appuis non comptees). S'il n'y a qu'une entretoise

mediane, l'erreur est de l'ordre de 1,5%.

n\ T q mofVir\r\o nonf a'ofor-irlr^ cm r»nc rm Iog nonfrPQ qatiI » moment r\ 'iriortio\j i _M_J[UU 1X1VL1J.WA.V ^VOt-U KJ VUVli.VJ.JLV> Ultl V^VA/KJ VVA jl\-/kj jjvy »avj. v/u kjv-<-i.j.v/ v/v j-j-».\^ j.j.j-v^j.j-»^ \^«. uivo. KJ.V

variable ainsi qu'aux poutres continues ou cantilever, mais sa precision dans

ces cas est nettement moins bonne.

B. Justification des hypotheses concernant Velasticite du beton

Les essais tres etendus entrepris ä l'universite d'Illinois sur des ponts ä

dalle en beton supportee par des poutres metalliques [4, 5] nous permettent
d'affirmer que la fissuration du beton ne modifie pas sensiblement la distri-
bution transversale des charges dans un pont ä poutres multiples de ce type
et que les sollicitations calculees dans l'hypothese de l'elasticite indefinie du
beton se maintiennent pratiquement jusqu'au stade precedant immediatement
la rupture.

C. Precisions utiles pour Vapplication pratique de la methode

Toutes les considerations developpees a ce sujet dans notre memoire
anterieur restent d'application.

D. Applications numeriques

Les deux avant-projets calcules dans notre memoire anterieur peuvent
etre repris en tenant compte de la resistanee a la torsion. Les seules parties
ä modifier sont celles concernant les lignes d'influence des coefficients K et jjl.A
vrai dire, 1'effet de la torsion dans le premier avant-projet etudie est certaine-
ment faible et ne merite sans doute pas d'etre pris en consideration.

Resume

L'auteur generalise la methode de Guyon (Ann. P. et Ch. France, 1947)
basee sur la consideration d'un grillage continu de poutres et d'entretoises,

pour le cas oü ces pieces resistent ä la torsion. II etablit les valeurs numeriques
du coefficient de repartition transversale des charges pour tous les parametres
d'entretoisement & et pour toutes les valeurs de la rigidite relative ä la torsion
des poutres du pont. II donne egalement des tableaux permettant de calculer
les coefficients caracteristiques des moments flechissants dans les entretoises.

Pratiquement, la methode s'applique, comme celle de Gttyon, en selimitant
au premier terme de Fourier; eile permet ainsi de prendre en compte la resis-
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tance du pont ä la torsion sans Supplement de calculs. D'autre part, eile permet,
si on le desire, d'analyser exactement l'effet d'une charge quelconque par
developpement en serie de Fourier.

La methode, non seulement donne des resultats plus precis que les methodes
classiques dans les ponts habituels, mais encore s'applique directement aux
ponts ä poutres jointives precontraintes transversalement, ainsi qu'aux ponts-
dalles en beton arme ou precontraint, qui sont s'application courante actu-
ellement.

Zusammenfassung

Der Verfasser verallgemeinert die Methode von Guyon (Ann. P. et Ch.
France, 1947), die auf der Voraussetzung eines kontinuierlichen Rostes von
Längs- und Querträgern beruht, für den Fall des VerdrehungsWiderstandes
dieser Bauteile. Er gibt Zahlenwerte des Querverteilungskoeffizienten der
Lasten für alle Querverbands-Parameter und für alle Werte der Torsions-
Steifigkeit der Träger an. Außerdem stellt er Tabellen auf, die die Berechnung
der charakteristischen Koeffizienten der Biegemomente in den Querträgern
ermöglichen.

Praktisch läßt sich die Methode wie diejenige von Guyon anwenden, wenn
sie sich auf das erste Glied von Fourier beschränkt; es wird dadurch möglich,
den Verdrehungswiderstand der Brücke ohne zusätzliche Berechnungen zu
berücksichtigen. Wenn nötig, erlaubt sie uns aber auch, durch Entwicklung
in eine Fourierreihe die genaue Bestimmung des Einflusses irgendeiner Last.

Das Verfahren liefert nicht nur genauere Ergebnisse als die klassischen
Methoden bei normalen Brücken, sondern kann auch direkt auf Brücken mit
zusammenhängenden quervorgespannten Längsträgern und auf Platten-
Brücken in Eisenbeton oder vorgespanntem Beton, wie sie in neuester Zeit
zu Bedeutung gelangt sind, angewandt werden.

Summary

The author generalises Guyon's method (Ann. P. et Ch. France, 1947),
which is based on the assumption of a continuous grid of longitudinal and
transverse beams, for the case of the torsional resistanee of these structural
parts. He gives numerical values of the transverse distribution coefficients of
the loads for all bracing parameters and for all values of the torsional stiffhess
of the beams. In addition, he prepares tables which make it possible to cal-
culate the characteristic coefficients of the bending moments in the transverse
beams.

Practically the method may be adopted like that of Guyon, if it is restricted
to the first Fourier term; it thereby becomes possible to take the torsional
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resistanee of the bridge into consideration without additional calculations.
If necessary, it allows us also to determine exactly the influence of any load
by developing into a Fourier series.

The method furnishes not only more aecurate results than the classic
methods in the case of normal bridges, but can also be adopted for bridges
with continuous longitudinal beams prestressed transversely, and for slab

bridges in reinforced or prestressed concrete, such as are becoming of impor-
tance in recent times.
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