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Méthode de calcul des ponts a poutres multiples tenant compte
de leur résistance a la torsion

Berechnungsmethode fur Briicken mit mehreren Lingstrigern mit
 Beriicksichtigung ihres Torsionswiderstandes

Method of calculation for bridges with several longitudinal beams, taking into
consideration thevr torsional resistance

CHARLES MASsONNET, Professeur & I'Université de Lidge

1. Introduction

La trés grande majorité des méthodes proposées jusqu’ici pour rechercher
les sollicitations des ponts & poutres multiples sont basées sur 1’hypothése
simplificatrice que les éléments de I’ouvrage n’offrent aucune résistance & la
torsion.

Cette hypothese s’impose avant tout par le souci de simplifier radicalement
un probléme extrémement complexe; en effet, alors que le degré d’hyperstati-
cité réel d’un grillage de poutres assemblées rigidement est égal a trois fois
le nombre de noeuds de ce grillage, celui d’un grillage & poutres sans résistance
a la torsion n’est égal qu’a ce nombre de noeuds seulement.

Quand on envisage le mécanisme suivant lequel travaille le pont, on s’aper-
¢oit que I’hypotheése en question est en réalité fort peu justifiée; en effet, la
trés grande majorité des ponts & poutres multiples comportent actuellement
une dalle de tablier en béton armé dans laquelle les sollicitations de torsion
jouent un réle prépondérant. Si I’on peut négliger pratiquement cet effet de
torsion dans les ponts & poutres métalliques, il n’est guére admissible de le
faire dans les ponts monolithes nervurés en béton armé et moins encore dans
les ponts-dalles en béton armé ou précontraint dont 1’usage se généralise de
plus en plus.

Il existe quelques méthodes pour analyser les réseaux de poutres en
tenant compte de leur résistance a la torsion; il nous semble cependant que ces
procédés sont tellement compliqués que peu d’ingénieurs de bureaux d’études
auront la patience de les appliquer, dans le calcul réel d’un ouvrage, aux
multiples sollicitations qu’il faut toujours prendre en considération.
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Notre but est de décrire une méthode nouvelle, qui nous parait plus rapide
que celles connues jusqu’ici.

Dans I’étude que nous avons consacrée au calcul des ponts sans résistance
a la torsion) [6], nous avons montré que les procédés de calcul imaginés par
LEoNHARDT [1, 2] et Guyon [3] étaient particulierement commodes & utiliser
et se complétaient d’ailleurs en quelque sorte; il y a donc lieu d’essayer de
généraliser ces procédés pour y inclure 1’effet de la torsion.

La méthode de LEONHARDT ne se préte pas a cette extension, parce qu’elle
est basée sur le remplacement des entretoises réelles par une entretoise médiane
fictive équivalente. Il est visible que des charges appliquées, par exemple, au
milieu du pont, tordent les entretoises réelles, alors qu’elles n’aménent aucune
torsion de ’'entretoise unique équivalente.

La méthode de GuyoN, au contraire, est susceptible d’une généralisation
aisée, comme on le verra dans les pages qui suivent.

2. Rappel de la théorie générale des plaques anisotropes et des grillages
continus de poutres

Un pont & poutres multiples se présente toujours comme un grillage de
poutres résistant & la torsion, solidaire d’une dalle formant platelage du tablier.

L’importance relative des deux éléments ci-dessus est variable selon les
dispositions constructives adoptées: on peut imaginer une série continue
d’ouvrages, s’étendant depuis le grillage de poutres a dalle trés mince jusqu’a
la dalle d’épaisseur constante.

Le comportement de l’ouvrage est donc intermédiaire entre celui d’un
grillage continu et celui d’une dalle anisotrope.

Nous allons rappeler briévement les équations qui régissent les déformations
de ces deux systéemes portants?).

A. Plaques anisotropes

L’anisotropie de la plaque provient en fait de ce qu’elle est différemment
armée ou nervurée dans les deux sens perpendiculaires. Néanmoins, pour
pouvoir étudier son comportement, nous la supposerons faite d’un matériau
homogéne et anisotrope fictif et nous supposerons que ce dernier posséde des
propriétés élastiques symétriques par rapport & trois plans orthogonaux.

Prenons ces plans comme plans coordonnés et examinons le cas d’un état
de tension plane dans le plan des zy. Nous pouvons écrire les relations existant

1) Les chiffres entre crochets renvoient a la bibliographie placée a la fin de la présente

note. :
2) Ce rappel est rédigé d’apres l'ouvrage du Professeur TimosHENKO, Theory of

Plates and Shells, Mc-Graw Hill, New York, 1940, pp. 188 & 191.
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sous la forme

entre les tensions o, o,, 7, et les déformations e, ¢,,v,,,
générale
o, =H, e, +E"¢,
. ’ ”
o, =B,/¢,+E"¢, (1)
Tpy = G'}’xy

Nous supposerons remplie 1’hypothése classique de la théorie des plaques,
d’apres laquelle des éléments de droite perpendiculaires au plan moyen de la
plaque (plan des xy) avant flexion restent droits et normaux au feuillet moyen
déformé. Les composantes de la déformation sont dés lors:

*w Pw o*w

€, =—2—

= — _ = — _— 2
z w2’ v z@yz’ Yay 2z6x8y (2)

En les introduisant dans les équations (1), on trouve

, 02w » Pw

Lo =—2(E$ EPe +E 3y2)
,0Pw , 02w

s (B ) )
Pw

Tw—_zazaxﬁy

Les moments de flexion et de torsion ont done pour valeurs

+h/2 Pw  Pw
Mo = [ reetem = e i)
+hiz Pw  Pw
Uy = [ o te= (o o) W
+1/2 2w
My,=-M,= ——f_h/z'rwzdz —2‘yax 5y’

a condition de poser

E. h? E, h3 E" h3 Gh3 ~
Pp = 12 H PE = 712 > Pt = 12 ’ Y = 12 ('“))

L’effort tranchant vertical 7', se déduit de 1’équation d’équilibre de rotation
d’un élément de plaque autour de I’axe des z (fig. 1). On trouve ainsi

oM, oM,
L=y = (6)

ou, en remplacant les moments par leurs valeurs (4),

3w Bw

Tﬂ=_”an3 “Yox? oy @
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L’équilibre vertical du méme élément de plaque conduit & ’équation (fig. 1a)

M, o*M, &#M, *M,
0 x? +*9x_8y oy dxdy p(zy) (8)

M
7, Myx
oM,

M, M < ‘Mx'}?x_d*
8w /h g’w + Py
y M, a/v Xy X X

, )
Eﬂ’;o'x

el
J7,
Ty"@,xdf

Fig. 1

En introduisant dans cette relation les expressions (4), on obtient 1’équation
suivante

*tw . *w ot w
Ppa*xz+2(Pt+27)'3x2—a—y§+PE'3?‘=P(x,y) (9)
Nous poserons
pot2y=H,

ce qui nous permettra d’écrire 1’équation différentielle des plaques anisotropes

sous la forme
tw orw ot w
¥ og_ T cw _
PP Gt + H3x28y2+pan4 P (x,y) (10)

B. Grillages continus

Envisageons le grillage de maille 7,5, (fig. 2) dont les poutres sont assem-
blées rigidement et résistent a la torsion.

Désignons par Bp=FE I, la rigidité flexionnelle des poutres espacées de
b, et par By = E I celle des entretoises espacées de /;.

Le grillage continu fictif équivalent aura pour rigidités flexionnelles par

unité de longueur

B

pp =3~ et pE=-—lE (11)
1 1

respectivement, de sorte qu’il sera le siége de moments fléchissants unitaires
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2w 2w
o= TPrgt My =" Pey

M (12)

Appelons d’autre part Cp et Cg les rigidités torsionnelles respectives des
poutres et des entretoises. Considérons la torsion d’un élément b,7, d’un
élément du grillage réel représenté a la figure 2. Le grillage continu équivalent
doit avoir les rigidités torsionnelles respectives

C C
‘}’P=*}3 et VEZJ (13)
by L

par unité de longueur, et, comme la torsion géométrique de la surface vaut
P wldxdy, il y nait les moments de torsion unitaires

2w 2w

Mxy=ypm‘s J'[ywz_"'yE%@ (14)

Fig. 2

L’effort tranchant vertical se calcule comme ci-dessus par la formule (6), ce
qui donne, en remplacant M, et M, par leurs valeurs (12) et (14),

3w >w
Ty=—'PEa—y§—me (15)
L’équilibre vertical d’un élément du grillage continu s’exprime par la méme
équation (8) que ci-dessus. En y remplagant M, et M, par leurs valeurs (12),
M,, et M,, par leurs expressions (14), on trouve pour 1’équation différentielle
du grillage continu

otw *w HAw
PP 5 +(VP+VE)W672+PE@4' = p(x,y) (16)

Elle est de la méme forme générale que 1’équation d’équilibre (10) des plaques
anisotropes.
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C. Comparaison des deux théories ci-dessus, en vue de leur application
aux ponts & poutres multiples

Un pont & poutres multiples, étant une construction intermédiaire entre
la plaque anisotrope et le grillage continu, doit obéir également & une équation
différentielle de la forme (10) ou (16).

Dans un tel pont, l'effet de plaque ne peut provenir que de la dalle du
tablier, qui est en béton armé. Le coefficient de Poisson du béton étant tres
faible (de l'ordre de 0,10), nous le prendrons pour simplifier égal & zéro, ce
qui revient a négliger la rigidité p, correspondante devant pp, pg et .

Dés lors, on voit que les expressions des moments fléchissants et 1’équation
de la déformée sont les mémes dans les deux cas. En vue de faciliter les calculs
ultérieurs, nous poserons

2H =yp+yg = 2aVpppn (17)

I’équation (10) ou (16) prend alors la forme

tw *tw

tw
xzayz_}_Panz; “'p(xay), (18)

PPW'FQ“VPPPE 3

ou 'influence relative de la torsion est caractérisée par le parameétre de torsion «.

Le grillage continu sans résistance & la torsion étudié par M.Guyox
correspond & «=0. La plaque isotrope, de son c6té, correspond & pp=py et
a=1, auquel cas ’équation (18) se réduit & 1’équation classique de Lagrange

tw *w *rw  plx,y)
W+28x28y2+8y4 T pp

Pour un pont réel, le terme de torsion de 1’équation (18) a toujours une valeur
intermédiaire entre celles correspondant aux deux cas extrémes envisagés ci-
dessus. On couvrira done tout le domaine & étudier en faisant varier le para-
meétre « entre 0 et 1.

Il importe de souligner, en terminant, que les théories de la plaque aniso-
trope et du grillage continu différent légérement en ce qui concerne la distri-
bution des moments de torsion M, et M, . Ceux-ci sont égaux dans la plaque,
par réciprocité, tandis qu’ils sont en général différents dans le grillage. Il
résulte de 14 que les expressions des efforts tranchants 7', sont légeérement
différentes dans les deux théories.

Remarquons & ce propos qu’une grande résistance & la torsion ne se ren-
contre que dans les ponts en béton armé et qu’elle est due en ordre principal
a l’effet de plaque dans la dalle du tablier. De plus, il faut que notre théorie
des ponts & poutres multiples puisse s’appliquer au cas-limite des ponts-dalles,
dont la construction en béton précontraint est susceptible de se développer.
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Ces considérations nous déterminent & adopter pour le pont 1’expression de
T, trouvée dans le cas d’une plaque anisotrope, & savoir

B w BAw
Ty=_pE3?_°‘1/P?PE'8x2—8y (19)

3. Conditions aux limites

Nous aurons besoin, dans la suite de ce travail, d’exprimer les conditions
aux limites existant le long d’un bord appuyé et d’un bord libre du pont.
Nous allons établir ces conditions dés & présent, pour les avoir & notre dis-
position au moment opportun. Rappelons qu’on a supposé pour simplifier
pr=0.

A. Conditions d’appus le long d’un bord appuyé

Le long d’un bord appuyé d’équation x=a, le déplacement vertical est
nul, ce qui s’exprime par la condition

w=0 pour x=a (20)

De plus, le moment fléchissant M, est également nul, ce qui donne, d’apres

les formules (4) ou (12),

2
g—;; =0 pour =z =a. (21)

B. Conditions d’appui le long d’un bord libre

Le long d’un bord libre d’équation y =b, le moment fléchissant M, s’annule,
ce qui donne, d’apres les formules (4) ou (12)

Fw
W =0 pour Y = b. (22)
De plus, la réaction d’appui
oMm,,
By =1y + 8xy"

est nulle. Pour expliciter cette condition, remplacons-y 1’effort tranchant par
son expression

oM, oM,
v ooy o (6)
oM, oM, oM,

11 vient Ry——&y\ T

En introduisant dans cette égalité les valeurs (4) ou (12) et (14) des moments,
on trouve que la condition R,=0 s’écrit
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. P>w Pw
plaque anisotrope PE P + H Gty 0, pour y=5.
N . >w Bw
grillage continu PE Er +(yp+vg) Taioy 0, pour y=»5b.

Ces deux équations sont identiques et s’écrivent, en tenant compte de (17),

Fw pp  Pw
5—?/—3+2a‘/im=0, pour y =25b. (23)

4. Equation générale de la déformée du pont dans une zone non chargée
de forces extérieures

Proposons-nous d’étudier 1’intégrale générale de 1’équation (18) dans une
zone non chargée du pont (p=0). Nous pouvons représenter la déformée w
par la série de Maurice Lévy

= Y, (y)sin 2, (24)
m=1

l

dont chaque terme satisfait aux conditions d’appui w=0 et &2w/d22=0 le
long des deux bords appuyés x=0 et x=I.

11 nous faut maintenant déterminer les fonctions Y,, (y) de maniére que la
série (24) satisfasse & 1’équation différentielle du pont non chargé:

*w *w *rw
PP & 4+2°‘VPPPE 2% 04 +Pan4 =0

En remplacant w par son expression (24) dans 1’égalité ci-dessus, on trouve
aisément que les fonctions Y,, doivent satisfaire &4 1’équation

(/4 n” m47T4
puYm—2aVpppg oy — o — Yu=0 (25)

Pour simplifier les calculs ultérieurs, nous poserons

r "
w="1/PP (26)
LV pe

ce qui permet d’écrire 1’équation (25) sous la forme
Y — 2am2w?Y + miawt, = 0. (27)

L’équation caractéristique correspondante est bicarrée et admet pour racines

o34 =tmolat Va2—1 (28)

Comme « est inférieur & 1’unité, ces quatre racines sont imaginaires. En
utilisant la formule connue d’algébre élémentaire
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Juif - V“ G CETN Va— 1/?;32

on peut écrire ces racines sous la forme complexe habituelle

I+a .o /l—a
71,2,3’4=imw(1/ 2“4—@]/ 2“) (29)

et I'intégrale générale de 1’équation (27) est par conséquent de la forme

i - -
Y=6m l/ 2 yl:Amcos(mw ]—z—ay)+Bmsm(mwl/12—ay)] -+
1ta 1—a 1—a
e 2 ¢ [Om cos (mw 1/1206 ?/) + D, sin (’mw ]!/1“2—0C y)] - (30)

Telle qu’elle est écrite, cette expression n’est plus valable dans le cas limite
ou a=1; en effet, les racines (29) se réduisent dans ce cas a

1,234 = T Mw
et la solution exacte pour ce cas est par conséquent
Y, =A4,em*Y + B, mwyem®¥ 4 (, e "V + D mwye ™2V, (31)
tandis que la solution générale (30) particularisée pour a =1 se réduit a
Ym = A4, em®Y 4 C,, e-moV,

Pour pallier cet inconvénient, il suffit de remplacer dans la solution (30) les

s . D .
constantes d’intégration B,, et D,, par ?_’ZL et ™ _ respectivement. La

—o l—«
solution générale (30) s’écrit alors l/ 2 2

-'/l—i-a _ _
Ym=emw TZI[A,ncos(nuu 1—Q—C)‘y)—|—~—?~”l~sin(mw‘/1 ay)]
—
]/ .

1+ta
S S R

2

et 1’on constate aisément qu’elle se réduit & 1’expression (31) pour «=1 si I’on

remarque que
in(mw)/t5%)
- sin(mo /5y

lim

a—1 T:E

2

=Mmwy.
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5. Le pont infiniment large, appuyé sur ses deux bords oppoéés et chargé de
forces p = p,,, sin marx/l réparties le long de ’axe des x

Supposons d’abord que le pont soit infiniment large (fig. 3) et soit chargé
de forces réparties suivant la loi sinusoidale

max

fo‘—”//‘\\\__—‘ p==pm8hkv7v
le long de 1’'axe des z, et proposons-nous
9 A % _x de rechercher sa déformée.

Considérons uniquement la partie OA BC
du pont qui correspond aux valeurs positives

I\—/—-\/\BJ 7, de y et observons que le déplacement vertical

w et ses dérivées doivent s’annuler & de

y} grandes distances de la charge, de sorte que
Fig. 3 l’intégrale générale (32) se réduit nécessaire-
ment a 3) .
i+a ' T :

N 1-— d . 1-—
Y, =¢ 2 ¢ C,, €08 | M w ay + —™ _gin|mw ay , (y=0)

m 2 l1—«x 2

==

et la déformée du pont a pour expression

—mw]/l—;gy 1 —o d, . | . MTL
w==e c,, COS | M w — Y| t+———=sm{mw —Y sm ——
m 2 ,Vl—a 2 l

2 (y20)

Par symétrie, on conclut que, le long de 1’axe des «,

)0~
3y y=0 ’

ce qui donne, apres simplifications,

1+«
%n=cmka§‘

En tenant compte de cette relation, 1’expression de w devient

i+a —— —— T
B —meTy . mwx ]l —« 1+ . ] —«
w=cy,e sin— [cos(mw‘/ 5 y)+l/1_a§1n mwl/ 5 Y|

(yz0) (33)

8) On a remplacé les lettres majuscules C et D, par les minuscules correspondantes,
pour éviter la confusion avec des notations ultérieures.
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Nous obtiendrons le coefficient c,, en exprimant que 1’effort tranchant 7', le
long de ’axe des « vaut —p,,/2.sinmxx/l, ce qui donne, d’aprés la formule (19),

0 Pw o> Pm . MTL
-2 o 28 = _Lm 4
3y(pan2+al/pPpEax2) 2 sin l (3 )
En remplacant dans cette égalité w par sa valeur (33), on trouve, tous calculs,
faits,
_ P T
Con = (35) ¢’
2Y2(1+4a) pgymdwd b X
‘ L b | 9] (w9 x
Si, au lieu d’agir le long de 'axe des @, |, e " |"F " "7/ =
la charge p=p,,sinmmnz/l agi't surune _4\%/:0,0_9) | Y(>0)
parallele & cet axe d’excentricité e <y i o
(fig. 4), on doit mesurer y’ par rapport
a cette parallele, c’est-a-dire remplacer . l
y par (y—e) =|y—e| dans la formule vy
(33). On obtient alors Fig. 4
)=¢,, e_mwl/wly_el i x{cos [mwl/l—a[y—el]
1+a 1—
1%; sin [mw ——of ly—el] } (yze) (36)

La ligne de charge M N est évidemment un axe de symétrie de la déformée.
Par conséquent, le déplacement d’un point de la plaque tel que C’, situé
au-dessus de M N (y, <e) sera égal au déplacement du point C symétrique de
(¢’ par rapport a M N (fig. 4) et son expression s’obtiendra en remplacant y
par (e—y)= |y —e| dans la formule (33).

On retrouve ainsi la formule (36), qui est done valable de maniére générale,

6. Le pont chargé de forces p = p,,, sin msx/l réparties le long d’une paralléle
a son axe d’excentricité e

Pour étudier le pont de largeur finie 25, libre sur ses deux bords latéraux
y= +b et chargé de forces sinusoidales p=p, sinmmz/l réparties suivant une
paralléle & son axe d’excentricité e, il suffit de superposer & la solution parti-
culiére (36), valable pour le pont infiniment large, la solution générale (32)
valable pour le pont non chargé. On obtient ainsi la formule suivante:

Abhandlungen X 11
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. mmx| mol/iity l—o B, . l—e
w =sin e 2 "4, ,cos|mw y)+ sinfmol]/——vy) +
[ 2 ] /1—c 2
2

o %ay[C cos(mw 1_ay)+ D sm( l/l—ay)]-}—
m 2 /]——nc \ 2 J

\ V :

——mw‘/H_—aly —e|
cosmw |y—el+ smmw ly—e (37)

On déterminera les coefficients 4,,, B,,, C,, et D,, de cette solution de maniére
que la somme des deux solutions satisfasse aux conditions d’appui (22) et (23)
le long des deux bords libres. Ces conditions s’écrivent, en remplacant dans
la seconde Vp,/p, par w?l?[n?,

e

2
rw_
ov* = 4b (38)
our y =
83w+2 Pw? Bw pour ¥y ==
oy’ *Tat datoy
Tous calculs faits, on obtient les conditions d’appui suivantes:
b Fw ’
1. pour y =456, 3?/ =0 (39)
_E)J]/l—f-ocsm mw ————(b—e ] —
}/l —o

Y1 —acos mw‘/——;ﬁ(b—e)]}+
emwl/%b{(“l}/f_]g: WA )sm( 1;“b)+ |

[ocAm-i- V2(1+a) Bm] cos (mw 1/1_;—“ b)}+
e Vﬁhb{(“}/zl) +V1—=a2C )sin(mwl/lg—ab)+

l—«
[chm— VmDm] cos (mwl/l__;—a b)} =0

32w_

2. pour y =—b, b—y;-—o. . (39)
1+a I
C,m —mw ‘—2‘“(8+b) p———— ]l —a _
}/l_ae | {}/1+oc’81n [mw]/ : (e+b)]
Vl—aCOS[Mw‘/lga(e+b)]}+
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i+a Y =
- —b 2B —— . 1-—
e "V 2 {_(ﬁ/:____m—l/l—ocAm)sm(mw]/ ab)—i—
]/1 —o 2

[oc A, +V2(1+a) Bm] cos (m w 1/112?; b) } +
emwl/gab{ - (“}/@m +¥1—a2 Om) sin (mw l/ — b) +

l—«
571 % 1—«
[aCm—~1/2(l+a) cos mw
>w Pw? Bw .
3. pour y=+b, Fo5+ 2wy = O (39”)
- ltae, 1T
1/2 me (b—e) wsin lm o 1 og(b_e) +
l/l—oc 2
T l—a
Y1 — o2 cos [mw —2—(b—e)]}+

-I/l-!-a — — o
e Tb{—sin (mwl/l—ab) h/ﬁBm_*_l/l;‘fAm] n
2 11—« 2
cos (mw]/l_ab) [—I/L:F—o‘»Am—!-Bm]}—l-
2 2
1—|—a —
a V l—« 1+« l1—«
{sm( 3 b) [ l_aDm~‘/~——2 O’m] +

98w w2 8w '
4. g— - _ =0. "
pour y b, 8y3+2<x - xRy 0 (39™)
Cn }/2 —mwl/lil(lﬁ) . 11—«
" l—«
]/1—052(308 [mwl/———z (b+e)]}+

VT o ) [ e
m(mwb)[_w )
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14+a
mol/—"b 1+« l—«a . l]—«
e 2 {—[Vl_“pnt— Tom] Sln(mw 9 b)+

cos (mw lgab) [l/];-dC’m +Dm]} =0

7Y me
—b—_ﬁ’ —_"l' (40)

Posons pour simplifier

et introduisons le parametre d’entretoisement

9 b1/er (41)
U Vg

en fonction duquel on peut exprimer w sous la forme
_mo 4///0—_1;_119 (42)
“Th ] pr b '
On voit qu’on a
wb+e)=F(r+h) et wb—e)=S(r—i) (43)

Posons de plus

[ e eV i [ S5 mo )] -

V1—a

Y1 —« cos h/?m&(w—gb)]} =M

1ta 1—o
_Om e_mg(ﬂ+¢)1/7 { Y1+ asin [‘/———1 % mo (7 + ) [ —
V1 —« 2

(44)

Y1— = cos [V%ma(ww)” =N

5 ifa o
———;’1" V2 e—mﬁ(ﬂ_@ T{zxsin [l/l 3 amﬁ(#—l/‘)] +
— o

Y1 — o2 cos h/?m&(w—«ﬁ)]} =P

o 1+a _
Cm Vz e—mﬂ(ﬂ'+lﬁ) T{asin [l/l “mﬁ‘(ﬂ—!—zﬁ):' n

V1—« 2

Y1 —0o2 cos [@mﬁ(w+¢)]} =Q
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et

m19' 1/lJra

1+a

mo
6

1+a

mo
e

T l/1—{-0L

g Vl-fa

—mdnw

2

—mdn l/1+0L

sin{mdn]

cos{mn]

(
i o
(

J1—a _
-5 =y,
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1;a)=/8,

(45)

1l —«
s,

cos(mz‘}w'

Additionnons et soustrayons les équations (39’) et (39”), puis (39”) et (39™),
en y introduisant les notations précédentes; il vient

2

-D,)
1/1——oc

(B,,

M+N+y[ Vl—af(Am+Cm)] +

8[a(Ay+Cy) + V2(1+a) (B,,—D,)] =

«y2

(B,,+D,,)

e[cx C,) + Vm—) (Bm"I‘Dm)] =
P+Q-p []/1+°‘<Bm—1>m)+]/1;“(Am+0m>]

M—N+B[V1 Vl—o@(Am_om)] +

(46)

l—«

P-Q—y [Vmw D,

Si nous posons encore

ad—Yl—o?y =

V2 ‘ l/l-l—oc/8
B cam— = € —
Vl—ocy K l—«

—V1—a®B+ae
| R
S —
‘/l—ocy

nous pouvons écrire les équations (46) sous la forme plus condensée

V2(1+a)8+

(47)

I
>

,8+1/‘> l+a)e =v =,

}/loc
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M+ N+L(4,+Ch) +1(B,—Dy,) =0
M—N+A(Am—0m) + V(Bm+Dm) =0

48
P +Q"'§(Am+0m)+a'(Bm_Dm):0 ( )
P -Q—-9(4,-C))+w(B,+Dy,)=0.
De la premiere et de la troisieme de ces équations, on tire
dsc, - PrO =t N)e o ) (MENELPERL 0
ol+n¢ ol+n¢ |
De la deuxieme et de la quatriéme, on déduit ensuite
40— PmQv=-M N o (M=N)g+P=Q) o

Aw+e@v Aw+oev

Les équations (49) donnent immédiatement les valeurs des coefficients 4,,,
B,, C,, et D, . Il suffit d’introduire ces valeurs dans la solution générale (37)
pour obtenir la déformée réelle du pont soumis & la charge sinusoidale

p = pmsininle.

-

7. Methode approchée de calcul des ponts a poutres multiples tenant compte
de leur résistance a la torsion

A. Généralités

Nous verrons au paragraphe 8 qu’il est possible de calculer rigoureusement
les efforts dans le pont pour n’importe quelle distribution de charges, mais
cette méthode exacte conduit & des calculs impraticables. C’est pourquoi nous
allons tout d’abord développer une méthode approchée de calcul, bien suffi-
sante pour la pratique.

Nous envisagerons tout d’abord le cas particulier ol le pont n’est chargé
que sur une bande longitudinale tres étroite, que nous assimilerons a une
paralléle & son axe d’excentricité transversale e.

Nous ferons la méme hypothese fondamentale que dans notre mémoire sur
les ponts sans résistance & la torsion [6], & savoir que la répartition transversale
des efforts entre les différentes poutres est la méme que si les forces appliquées
sur cette bande étavent réparties susvant la loi stnusoidale

p(@)=pssin 77,

La validité de cette hypothése a été discutée en détail dans le mémoire
précité [6]. ‘ '

Pour étudier le cas de charge qui vient d’étre défini, il suffit de faire m=1
dans toutes les formules du paragraphe précédent.
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B. Lignes d’influence du coefficient de répartition transversale K

Pour pouvoir utiliser les résultats numériques obtenus par GuyoN dans
le cas ol « =0, nous appellerons avec lui coefficient de répartition transversale K
le rapport du déplacement vertical d’un point du pont sous Ueffet de la charge p (x)
au déplacement que prendrait ce point st la charge p était uniformément répartie
sur toute la largeur du pont.
Ce déplacement moyen w? est défini par 1’équation
dtuw® P P . T

dx4 =2pr_ szPSIIll ’

d’ou I’on déduit
o D1 I 7 X

Pour obtenir les lignes d’influence du coefficient K, il suffit de calculer w,
puis de le diviser par w°. Il revient au méme de remplacer dans 1’équation (37)
le terme c,sinnwxz/l (ou le coefficient ¢, est donné par la formule (35)) par le
quotient

T T

l P, Psin l QbPPﬁ I b t/op T w

W 2Y2(l+x)ppwd Pi ﬂ“‘sinllf—l P V2(1+o) V2(1+a)

¢, 8in

Remarquons & présent que, si le pont est chargé uniformément sur toute sa
largeur, le déplacement de chaque point de sa section transversale devient
égal au déplacement moyen w°. Il suit de 14 que 1’ordonnée moyenne de la
ligne d’influence de w doit étre égale & w°, ou encore, que 1’ordonnée moyenne
de la ligne d’influence de K =w/w® doit étre égale a 1’unité. Il serait difficile
de calculer 1’aire exacte de la ligne d’influence. Mais, comme nous en déter-

minerons 8 ordonnées équidistantes (correspondant & y= —b, —?’Tb, —%,
—%, , %, ~2b~«, 3213 b), on obtient aisément une excellente valeur approchée de

cette aire par la formule de Simpson

.2
Aire = 2—:[22Km, ~ (Ky+K,,)+ 42K

impair]
On doit donc avoir
Aire

rd 1
ordonnée moyenne = —-- = o [22K,0— (Ko+Ky,) +4 2 Kpp0ir] =1. (50)

Par ailleurs, en vertu du principe de Maxwell, on a
K ab — K ba (51)

c’est-a-dire que le tableau des K doit étre symétrique par rapport aux dia-
gonales formées par les nombres en caractéres gras (voir les tableaux 2, 3 et 4
ci-apres). |
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Les relations (50) et (51) constituent deux vérifications trés précieuses en
fin des calculs, qui sont longs et périlleux.

Dans le cas particulier ol «=0, les expressions (39) a (49) se simplifient
trés considérablement et 1’on doit retrouver les résultats obtenus par Guyox
pour le treillis continu sans résistance & la torsion?).

Effectivement, les résultats obtenus par les deux méthodes sont presque
identiques, comme le montre le tableau suivant, calculé pour la valeur
#=0,66874 du paramétre d’entretoisement.

Tableaw n° 1
Comparaison de nos résultats avec ceux de GuyoxN

Position GuyoN MASSONNET
de la Position de la charge Position de la charge
poutre S ‘
—5 | 0 | b b | 0 | +b
0 +0,120 +1,618 + 0,120 + 0,119 + 1,620 + 0,119
b/4 —0,294 | 41,442 +0,874 — 0,306 +1,443 | 40,888
b/2 —0,517 +1,055 +2,113 — 0,518 +1,055 | +2,121
3b/4 — 0,635 + 0,595 + 3,871 — 0,627 +0,594 | 43,861
b —0,692 } +0,120 + 5,984 0,706 +0,119 | +5,986

Nous pouvons donc nous servir des résultats de GuyoN sans controéle
supplémentaire. Signalons & ce propos que nos calculs ont été effectués a la
machine & 1’aide de tables des lignes trigonométriques et fonctions exponen-
tielles & 4 et 5 décimales. De sorte que ’erreur sur nos résultats est moindre
en général qu'une unité du dernier chiffre conservé.

Variation de K avec le paramétre o

Il nous faudrait en principe déterminer les lignes d’influence de K pour
toute une série de valeurs réguliérement espacées du parameétre de torsion «,
ce qui conduirait & des calculs trés considérables. Pour éviter cet inconvénient,
nous avons essayé de trouver une loi empirique permettant de déterminer le
coefficient K par interpolation entre les valeurs extrémes qu’il prend pour
a=0et a=1.

Dans ce but, nous avons calculé toutes les lignes d’influence d’un pont de
paramétre d’entretoisement & = 0,66874 pour les valeurs 0, 1/,, 1/, et 1 du
parametre de torsion. Les résultats des calculs sont consignés dans le tableau
n® 2 ci-dessous.

4) Rappelons que nous avons déja obtenu l’expression générale du coefficient K
relatif & «=0 par une autre méthode dans notre mémoire antérieur [6].
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Tableau n® 2
Valeurs du coefficient de répartition K, pour des ponts de parametre d’entre-
toisement & =0,66874 possédant différentes résistances & la torsion

165

Valeurs P.OSI' Excentricité de la charge

du para-| tion

meétre de | de la Y 36 b b 0 b b 40 b

torsion | poutre 4 2 4 4 2 4
0 +0,120|+0,595|+ 1,055 | + 1,442 | + 1,618 |+ 1,442 |+ 1,055 |+ 0,595+ 0,120
b/4 |—0,294|+0,149 |+ 0,603 | + 1,051 |+ 1,442 |4+ 1,646 |+ 1,527 |+ 1,226 |+ 0,874

=0 b/2 |-0,517|—0,175,+0,195| + 0,603 |+ 1,055 |+ 1,527 |4+ 1,909+ 2,064 | 4 2,113
3b/4 |—0,635|—0,427|—0,175 +0,149| 40,5695 | + 1,226 | 4+ 2,064 | 4+ 3,004 | + 3,871
b —0,692| — 0,635 —0,517 | — 0,294 |+ 0,120 | 40,874 | +2,113 | + 3,871 | 4 5,984
0 +0,439|4+0,723 | 41,021 |+ 1,297 | + 1,434 |+ 1,297 | + 1,021 | + 0,723 | 4+ 0,439
b/4 |+0,092|40,359|+0,653|+ 0,980 | + 1,297 | 41,487+ 1,417 |+ 1,220 |+ 1,003

a=1/4 b/2 1-0,113|+0,103|+ 0,349 |+ 0,653 | 41,021 |+ 1,417 |+1,732 |+ 1,837 |+ 1,856
3b/4 |—0,242|—-0,085 +0,103|+0,358!4-0,723 |+ 1,220 |+ 1,837 | 4 2,483 | + 3,029
b —-0,344|— 0,242 — 0,113 | + 0,092 | + 0,439 | + 1,003 | + 1,857 | + 3,028 | + 4,446
0 40,589 (40,785 |+ 1,007 | + 1,227 | + 1,342 | + 1,227 | + 1,007 | + 0,785 | 4+ 0,589
b/4 }+0,297: 40,4804+ 0,697 |+ 0,958 | + 1,227 141,399+ 1,348+ 1,197 | + 1,040

a=1/2 b/2 |+0,114| 40,265+ 0,452 4+ 0,697 |+ 1,007 | 41,348 | 4+1,619 |+ 1,696 | 4 1,697
3b/4 |—0,006|+0,114| 40,267 |+ 0,480+ 0,785+ 1,197 41,696 |+ 2,196 | + 2,581
b —0,098| —0,006+0,114| + 0,297 | + 0,589 | + 1,040 | + 1,697 | + 2,581 | + 3,644
0 |+0,7331 40,849 | +0,995 | + 1,157 |+ 1,248 | + 1,157 | +0,995 | + 0,848 | + 0,733
b/4 |+0,611|40,617|40,759|+ 0,947 |+ 1,157 |+ 1,300 |+ 1,263 |+ 1,158 |+ 1,058

a=1 b/2 [+0,364|+0,455|+ 0,580 |+ 0,759 |+0,995|+ 1,263 | + 1,477 |+ 1,525 |+ 1,511
3b/4 |+0,269|4 0,346 |+ 0,455 +0,617 |+ 0,849 |+ 1,158 |+ 1,525 +1,875|+ 2,105
b + 0,202+ 0,269 | + 0,364 |+ 0,511 |+ 0,733 |+ 1,058+ 1,511 | + 2,104 | + 2,811
La figure 5, tracée pour &=0,66874, montre comment se modifient les

lignes d’influence de K quand « varie de 0 & 1. L’examen de cette figure et
du tableau ci-dessus montre que la formule d’interpolation suivante

K K—!—K Kl/cx

donne des résultats suffisamment précis pour la pratique.
Il nous suffira done, dans la suite, de calculer les lignes d’influence de K

pour les deux cas extrémes « =0 et o=

15).

(52)

Les résultats relatifs & «=0 sont tirés du mémoire de Guyon [3], ils sont
reproduits au tableau n® 3 ci-dessous.
Nous avons exécuté les calculs relatifs & « =1 pour les 4 premieres valeurs
de & adoptées par GUYON; les résultats obtenus sont consignés dans le tableau

5) Remarquons en passant que I'influence de la torsion est trés sensible méme pour
de petites valeurs de «, puisque, pour «=1/4, son effet est déja la moitié de celui qui
1). Ceci montre qu’on commettrait de grosses erreurs
en négligeant cette influence dans les ponts en béton armé.

correspond a la plaque isotrope («=
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n’ 4 ci-dessous. La figure 6 montre comment évoluent les lignes d’influence
de K (x=1) quand le paramétre ¢ augmente.

La valeur & =0 nécessite un examen particulier. Si « est différent de zéro,
#=0 correspond & un pont dont les entretoises présenteraient des rigidités
a la flexion py et & la torsion y, infiniment grandes. Par réciprocité, on doit
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admettre que la rigidité & la torsion yp, des poutres est également infiniment
grande. Dans ces conditions, les entretoises restent rectilignes quand on charge
le pont; au surplus, elles ne peuvent s’incliner sur 1’horizontale; car, si elles
s’inclinaient, le pont prendrait une déformée d’équation

w = (Ay+ B) sin’l;f,
et subirait la torsion d’amplitude finie

Rw T T
dray ~ A7 S

ce qui n’est pas possible si poutres et entretoises ont une rigidité torsionnelle
infinie.

11 est donc nécessaire de supposer 4 infiniment petit et le pont se déforme
par abaissement uniforme de toutes les entretoises parallélement & elles-
mémes; toutes les poutres ont donc la méme déformée. 1l suit de 14 que, pour
$# =0, on a pour toutes les valeurs de a 30

K =1,

quelles que soient les positions
de la charge et du point con-
sidéré de 1’entretoise.

Ce raisonnement n’est plus
valable dans le cas ou les entre-
toises n’ont aucune résistance &
la torsion (x=0). Ce cas corres-
pond & la méthode d’Engesser
et a été étudié en détail ail-
leurs [6].

On constate ainsi que les
valeurs de K sont des fonec-
tions discontinues de o« pour
a=0.

Il est difficile, & premiére vue, de se représenter comment le pont peut
transmettre aux appuis une charge sinusoidale psinzwz/l excentrée de la
longueur e, tout en prenant une déformée cylindrique (fig. 7). En effet,
les poutres, se déformant toutes également comme on 1’a montré ci-dessus,
exercent sur les entretoises des réactions uniformément réparties a raison de
p/2bsinwx/l kilogs par métre courant d’entretoise (fig. 7). La résultante de
ces réactions passe par I’axe du pont et n’équilibre pas la charge extérieure.

Ce paradoxe apparent s’explique aisément si1’on tient compte des moments
de torsion. En réalité, pour équilibrer le couple extérieur
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f’ . T
ep sin —-

0

dx,

les entretoises doivent tourner de 1’angle infiniment petit d¢, donnant au pont

la déformée

Tableau n° 3

Valeurs du coefficient de répartition K pour a=0

%= P_OSI' Excentricité de la charge
p 4 ;1: tion -
— V— de la 3b b b b b | 3b
s —p | =22 2 % 9 2 5 | 3 b
poutre 4 2 4 4 2 4
0 +1 1+l [+1 |+l | 41 [+1 41 |41 |41
b/4 + 0,25 1+ 0,437 |4+ 0,625 +0,812i +1 |+1,187+1,375,+ 1,562+ 1,75
0 b/2 | —0,5 |—0,125/4+0,250|+0,625| +1 |+1,375|+1,75 ‘+2,125}+2,5
3b/4 -1,25 | —-0,687—0,125|+ 0,437 +1 |+1,562|+2,125| 42,687+ 3,25
b —2 =125 =05 [4+025 | +1 +1,75 |+25 +3,25 |+4
0 +0,120|4-0,595 |+ 1,055 |+ 1,442 |+ 1,618 | + 1,442 +1,055;+0,595 + 0,120
b/4 [—0,294 40,149 |+ 0,603 | + 1,051 | + 1,442 + 1,646 + 1,627 41,226 | + 0,874
0,669 b/2 |-0,517 —0,1754 0,195 |+ 0,603 | + 1,055 | + 1,527 +1,909‘+2,064: + 2,113
3b/4 |—0,635—-0,427|—0,175|+ 0,149 |+ 0,595 | + 1,226 + 2,064 | 4 3,004 | + 3,871
b -0,692|-0,635|—0,517|— 0,294 |+ 0,120 | + 0,874 |+ 2,113 + 3,871 |+ 5,984
0 —0,733 |+ 0,109 +0,993’+1,944 + 2,403 | 41,944 | 40,9934+ 0,109 | — 0,733
b/4 |—0,595/—0,156 |+ 0,339 |+ 1,045 -+ 1,944 + 2,492 /41,894 |4+ 0,798 | — 0,383
1,057 b/2 |(—0,301|—-0,153|—0,003 |+ 0,339+ 0,993 ! + 1,894 + 2,490 | + 1,996 | + 1,049
3b/4 |+0,002|—0,114| —0,153|—0,156 |+ 0,109 +0,798 | + 1,996 | + 3,427 | + 4,403
b +0,225|4+ 0,002 | — 0,301 —0,595[—0,733 — 0,383 +1,049 +4,403 | + 9,452
0 —0,4671~—O,119 +0,594 |+ 2,073 | 4 3,344 +2,073‘+0,594 —0,119;—0,467
b/4 |—0,114—0,157|—0,058 |+ 0,576 | + 2,073 +3,398 | + 2,132 | 40,455 | — 0,883
1,495 b/2 |+0,023|-0,073 —0,152|—0,119 40,5694 |+ 2,132 | + 3,464 | + 2,043 | — 0,217
3b/4 |+0,044|+0,001 —0,073 —0,157|—0,119 + 0,455 |4 2,043 | +- 3,894 | + 3,887
b +0,051 |+ 0,044 |4-0,023|—0,114, — 0,467 | — 0,883 | — 0,217 | + 3,887 +13,827|
0 —-0,213|-0,186|+4 0,293 +2,045i+3,953 + 2,045 +O,293‘—0,186 —0,213
b/4 |+0,038—0,109|—-0,172 |+ 0,281 | + 2,045 + 3,985 |+ 2,102 |+ 0,229 | — 0,804 |
1,778 b/2 |—0,012|-0,029|—0,108 — 0,172 + 0,293 | + 2,102 + 4,100 | 4+ 2,039 | — 0,816
3b/4 |+0,032| 40,016 —0,029 | — 0,109 |— 0,186 | + 0,229 + 2,039 + 4,319 | + 3,218
b +0,013 40,032 | —0,012|+ 0,038 | — 0,213 | — 0,804 | — 0,816 +3,218|+15,801
0 +0,061|—-0,157|—0,133 |+ 1,750 | 45,200 | + 1,750 | — 0,133 —0,157 |4+ 0,061}
b/4¢ |+0,012|-0,010|—0,152|— 0,134 + 1,750 4+5,201 | 4+1,761 | — 0,143 | — 0,292
2,34 b/2 |+0,037|+0,013 —0,065 — 0,152 —0,133 +1,761 |+ 5,254+ 1,803 | — 1,402
3b/4 |+40,037|+0,003 +0,013|—0,010|— 0,157 —0,143+1,803 |+ 5,436 |+ 1,491
b + 0,051 +0,037 |+ 0,037 |+ 0,012 | + 0,061 | — 0,292 | — 1,402 | + 1,491 +20,795
0 +0,045—0,019|—0,284 |+ 1,012 |+ 7,016 | + 1,012 | — 0,284 - 0,019+ 0,045
b/4 |-0,052|+0,203|—-0,015 — 0,284 +1,012|+4+7,016 |+ 1,009 | — 0,297 | 4+ 0,108
3,162 b/2 0 0 +0,020 — 0,015 | — 0,284 | + 1,009 | + 7,032 | + 1,060 | — 0,852
3b/4 |—0,061|+0,058] O +0,023|-0,019 | — 0,297 |+ 1,060 | + 7,398 | — 1,125 |
b +0,211|—-0,061| 0 —0,052| 40,045 |+0,108 | — 0,852 | — 1,125 [+28,077
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Tableau n® 4
Valeurs du coefficient de répartition K pour a=1
# = P_OSi' Excentricité de la charge
Y tion -
T /2| dela X 3b b b oo | D b 3b y
P —— | —% | = | = s —
poutre 7 4 2 4 B ‘ 4 2 4
0 +0,733|4+0,849 | +0,995|+1,157 |+ 1,248 | + 1,157 |4+ 0,995 |+ 0,849 | + 0,733
b/4 |+0,511|+0,617|4+0,759|+0,947 |+ 1,157 | +1,300 | + 1,263 | + 1,158 | + 1,058
0,669 b/2 |+0,364|+0,455|+0,580|+0,759|+ 0,995 + 1,263 |+ 1,477 |+ 1,625 |+ 1,511
3b/4 |[+0,269|+ 0,346 | +0,455/+0,617 |+ 0,849 | 41,158 |4+ 1,525 |4+ 1,875 |+ 2,105
b 40,202 + 0,269 | 4- 0,364 |+ 0,511 |+ 0,733 |+ 1,058 | + 1,511 |+ 2,104 | + 2,811
0 40,428 +0,612 40,926 |+ 1,383 |+ 1,710 | + 1,383 |+ 0,926 | + 0,612 | 4 0,428
b/4 |+0,219|+0,330|+0,533 |+ 0,887 |+ 1,383 | +1,753 |+ 1,480 |+ 1,091 | +0,825] .
1,057 b/2 |+0,113+0,178/+0,301|+ 0,533 | + 0,926 | + 1,480 |+ 1,939 |+ 1,796 | + 1,541 |
3b/4 |+0,063{+0,102 +0,179+0,331|+0,613|+ 1,092 |+ 1,796 |+ 2,510 | + 2,733
b +0,037 |+ 0,063 | +0,113|+ 0,219 |+ 0,482 | 40,825 |+ 1,541 |+ 2,733 | + 4,429
0 +0,191|40,362|4+0,7751+ 1,593 | + 2,356 | + 1,589 |+ 0,775 |+ 0,362 | 4+ 0,191
b/4 |+0,070|+0,140|+0,323|+0,758 |+ 1,589 |+ 2,375+ 1,639 |+ 0,879 |+ 0,510
1,495 b/2 |+0,025|+0,053 |+ 0,128 |+ 0,323 |+ 0,774 |+ 1,639 | + 2,497 | + 1,903 | + 1,300
3b/4 |+0,010{+0,021|+0,053|+0,140|+0,362|+0,879| 41,903+ 3,104 | 4 3,072
b ’ + 0,005 | + 0,010 | + 0,026 | + 0,070 |+ 0,191 | 40,510 | + 1,301 | 4- 3,071 | + 6,263
0 +0,106 |+ 0,243 (40,658 |+ 1,660 | + 2,795 | + 1,660 | + 0,658 | + 0,243 | 4+ 0,106
b/4 |+0,031|+0,076 |+ 0,223 |+ 0,658 + 1,660+ 2,804 |4 1,687 |+ 0,726 |+ 0,349
1,778 b/2 |+0,009|+0,023|40,071|+ 0,223 | + 0,658 | + 1,687 | + 2,885 |+ 1,895 | + 1,093
3b/4 |+0,003|+ 0,007 +0,023|+0,076 |+ 0,243 |+ 0,726 |+ 1,895 |+ 3,453 | + 3,122
b 0 +0,003 | +0,009 |+ 0,031 | +0,106 | 4+ 0,349 | + 1,093 | + 3,122 | + 7,449
. T
w = ysin —l—dqo.
Le pont subit ainsi la torsion infiniment petite
Aw 7 cos’rrxd
oxdy 1 A
qui entraine dans les poutres des moments de torsion
Pw T T
M, =yp—7— =vyp5COS—d
zy Yp ox ay Yp 1 1 @,

uniformément répartis dans une section transversale du pont (fig. 7). Ces
moments sont d’intensité finie parce que yp est infiniment grand. Ils atteignent
leur valeur maximum yp7/l-de aux deux extrémités des poutres, ol 1’'on
doit supposer qu’il existe de fortes entretoises capables de les reprendre.
L’équilibre de rotation du pont entier autour de son axe longitudinal
(fig. 7) exige qu’on ait

4'b(Mxy)max =é€- pf

l

0

l

. T
sin —dr =

ko

2pel

b
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;o __pel
d ou (Mwy)ma:c = 27Tb
et _ pel cos7TTx. (53)

P

C. Calcul des moments fléchissants dans les poutres du pont

Les tableaux n° 3 et 4 permettent de tracer les lignes d’influence de K, et
K, pour les 5 valeurs suivantes de #: 0—0,669 — 1,057 — 1,495 —1,778. Pour
des valeurs différentes de ce parametre, il faut interpoler. Cette interpolation
est assez difficile, parce que la loi de variation de K est complexe. Pour la
faciliter, on se servira avec avantage de courbes donnant, pour les 5 positions
des poutres reprises aux tableaux, la variation de K en fonction de . Ces
courbes peuvent se construire facilement sur papier millimétré.

Supposons par exemple que nous prenions «=0 et $=1. On lira les valeurs
de K sur les courbes précitées, ce qui permettra de dresser le tableau suivant:

Position Position de la charge

de la , 3b b b | o, | B b 3b .

poutre 3| "z 71 T | 2 | 7
0 -0,70 | +0,17 | +1,00 | +1,90 | +2,30 | +1,90 | +1,00 | 40,17 | — 0,70
b/4 -0,59 | -0,12 | +0,40 | +1,08 | +1,90 | +2,36 | +-1,85 | +0,85 | — 0,28
b/2 -0,35|-0,16 | +0,03 | +0,40 | +1,00 | +1,85 | +2,36 | +2,00 | +1,26

3b/4 -0,09|-016 | —0,16 | —0,12 | 40,17 | +0,85 | +2,00 | +3,35 | 44,30
b +0,15| -0,09 | -0,35| —0,59 | —0,70 | — 0,28 | +1,26 | +4,30 | + 8,80

I1 est & recommander de faire deux vérifications (basées sur les deux pro-
priétés démontrées au littera B ci-dessus), qui permettent de retoucher le
tableau pour corriger les imperfections de la méthode graphique:

1. En vertu du théoréme de Maxwell, le tableau doit étre symétrique par
rapport aux deux diagonales formées des nombres en caractéres gras.

2. La valeur moyenne de K par ligne horizontale doit étre 1’unité; si 1’on
appelle K, K. .., Kg, les 9 coefficients d’une ligne & partir de la gauche,
on doit avoir sensiblement

ZZKpairs + 42Kimpairs - (K0+K8) = 24 (50)

Ayant obtenu par la méthode ci-dessus les valeurs de K, et K; pour la valeur
de & choisie, on calculera ensuite la valeur du paramétre de torsion o qui
correspond au pont étudié et on interpolera entre les valeurs de Kyet K, a
’aide de la formule

K, =Ky+ (K, - K,) Vo . (62)

Cette opération permettra de tracer les lignes d’influence du coefficient de
répartition transversale.
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Emploi des lignes d’influence de K:

Nous savons que, sous la charge
p(@) = pysin T

répartie sinusoidalement le long d’une paralléle & 1’axe du pont d’excentricité e,

le pont prend une déformée sinusoidale donnée par 1’équation (37) ou 1’on
fait m =1; cette déformée est de la forme générale

w = f(y) sinzlf .

Les moments fléchissants unitaires dans les poutres du pont sont liés a w

ar la formule

’ M ot 12

z="PPy3" (12)

ils sont donec de la forme ’>F

2 . T 2 I l
Tee f@)sinTt = TfEw, I T

M, = ll'_i

et sont proportionnels au déplacement
du point considéré de la poutre. Le
coefficient de répartition transversale

|
!
|
1
—t ! ! —
K, défini en B. par le quotient 0) ' IT

t

w |
.K=m, Fig.8

est donc encore égal au quotient M_ /M 0 ou M, est le moment fléchissant
réel dans la section z de la poutre et ou M ° représente le moment moyen qui
naitrait dans les poutres du pont, si elles fléchissaient toutes identiquement.

Supposons maintenant que le pont soit chargé de plusieurs files paralléles
de véhicules réglementaires et appelons P, P,,. .., P,, les charges concentrées
(constituées par les roues de ces véhicules) situées dans une section trans-
versale déterminée d’abscisse ¢ (fig. 8).

Appelons mg, le moment fléchissant provoqué dans une poutre sur deux
appuis d’extrémité par une force concentrée unitaire d’abscisse £. La force
concentrée P (£,7n) provoque dans la section  du pont le moment fléchissant
moyen M 0= Pm,,; elle provoque donc dans la section = de la poutre (y) le
moment fléchissant

P K (y,n)my,

L’ensemble des forces P d’abscisse ¢ provoque dans cette méme section le

moment fléchissant
n=+b

Moz (€) 2 P& K y,m) (a)

n=-
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Pour obtenir le maximum de ce moment, on doit placer les charges P trans-
versalement sur le pont dans une position déterminée, qu’on recherche par
tAtonnements. La figure 8a) montre la position des charges qui donne le
moment maximum dans les poutres centrales du pont et la figure 8b) celle
qui provoque le maximum dans les poutres de rive.

Enfin, pour obtenir le moment fléchissant total dans la poutre en question,
il faut faire la somme des quantités (@) ci-dessus pour toutes les files trans-
versales de charges placées sur le pont.

Généralement, toutes les charges P d’une méme file transversale sont
identiques et 1’expression du moment fléchissant total se réduit a

n=1b

£=1
> K(y,m) 25 P(&,m)my,(¢)
n=->b E=0

Les quantités m,, sont les ordonnées de la ligne d’influence (en forme de
chevron) du moment fléchissant dans la section (z) d’une poutre sur deux
appuis simples. Il suffit donc de rechercher, par la méthode classique des
lignes d’influence, le moment maximum dans une poutre isolée sur appuis
simples soumise & l’action d’une file longitudinale de charges de roues, puis
de multiplier le moment obtenu par le facteur X' K (y, n). En résumé, et nous
ne saurions assez le souligner, toute I’étude théorique des paragraphes précédents
doit servir uniquement & déterminer la répartition transversale la plus défavorable
des charges, caractérisée par le terme XK. Une fois cette répartition connue,
Uétude du pont se poursuit par les méthodes ordinaires de la stabilité des construc-
tions, indépendamment de la présente étude.

D. Lignes d’influence des moments fléchissants dans les entretoises

Le moment fléchissant par meétre courant d’entretoise est donné par
I’expression
' o%w

My=—PE5‘y“2" (12)

ou w est la déformée du pont.
L’expression développée de w s’obtient en faisant m =1 dans la formule (37)
et en y introduisant les notations (42) et (43); on trouve ainsi

- N
w = sinﬂ—x{eﬁﬂ/-?— [A 008,3191/1 =t

B ) 11—«
7 3 l_asmﬁﬂl/ 3 ]
]/ e ,

1+a CE E
+e_Bﬁ]ﬁT [OCOSB&V1;a+Vl£——& sinﬁﬁ]/lga] (54)

vond IV [aon (0955 210 )+  E 2 (075 -1 |
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La constante ¢ intervenant dans cette formule est définie par la formule (35)
qui s’écrit, avec la notation &,

pb?
2Y2(1 +a)pym93

¢ = (55)
En effectuant la double dérivation de w, on obtient I’expression suivante

My=,upbsin%9—6. (56)

Le coefficient u a la valeur suivante:

D .
igﬁ)-}-]/l-—ocz( AgB+ fﬁ )-l—oc(Ohﬁ-F @B)

+ }/Tjoc—(CzB 1/1)7 ) +e [1/1+ai13 s—hig_ W] (57)

ou l’on a posé, pour simplifier les écritures,

p,=oc(AfB+

_ P |
fg =€ cosﬁﬁl/ %5 gg =€ sin 8 5
1+a 1+a
hﬂ"—- e B&‘/ 2 COSB'B‘ 2 —* p 7:‘3 = e—ﬁﬁVT Slnﬁﬁ.‘l/l —z—a’ (58)

18— O ita 1—a —1B— 1 & l+e
hig-y = v OOSIB—sbIﬂ/—f; Uy =€ Ve in|B—4|d J

Nous avons calculé ci-dessous (Tableau n® 5) les valeurs du coefficient p
pour 3 =0,66874 et « variable de 0 & 1. Ce tableau permet de tracer les lignes
d’influence de u pour les quatre sections d’ordonnées 0, b/4; b/2 et 3b/4 (figures
9 & 12).

11 ressort de ce tableau et de ces figures que 1’on peut déterminer les valeurs
de p correspondant 4 une valeur quelconque de « par la formule empirique
suivante

Po = o T (11— o) 1/; (59)

avec une précision suffisante pour les besoins de la pratique. La précision
donnée par la formule (59) est cependant moindre que celle de la formule
analogue (52) relative au coefficient K.

Grace a la formule (59), il nous suffit de connaitre les valeurs de p, et de
M1, relatives aux valeurs « =0 et « =1 du parameétre o.

Les valeurs de u, ont été calculées par Guyon [3] pour les valeurs suivantes
de &: 0; 0,669; 1,495; 2,34; 3,162. Nous reprendrons ces résultats au Tableau
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Tableau n° 5 :
Valeurs du coefficient 104y pour & =0,66874 et « variable de 0 a 1

Position Excentricité de la charge
o de la
section —b | —3b/a| —b2 | —ba| o | b4 | b2 | 384 | b
0 —1419| —786 | —102 | +735 | +1830 | + 735| — 102| —786 | —1419
b/4 | — 869 —568 | —234 | +202 |+ 828 | +1713 |+ 361 | —814 | —1924
0 /2 |- 408| —301 | —179 | — 4 |+ 255|+ 698 |-+1300| —654 | —2139
3b/4 |- 106| — 87 | — 63 | — 25 |+ 43|+ 157+ 320| +559 | —1678
b 0 0 0 0 0 0 0 0
0 —807 | —560 | —142 | +486 | +1487 | + 486 | — 142 —560 | — 897
b/4 —576 | —447 | —277 | + 12 | + 534 +1411| + 296| —519 | —1189
1/4 b/2 ~303 | —281 | —242 | —149 |+ 63|+ 482 | +1221| —162  —1342
3b/4 —106 | —119 | —129 | —123 |— 78|+ 45| + 300| +755 | —1078
b 0 0 o|" o0 0 0 0 0 0
0 —652 | —445 | —153 | +360 | +1304 |+ 360 | — 153| —434 | —652
b/4 —443 | —377 | —274 | — 60 | + 390 | +1268 | + 247| —374 | —853
1/2 b/2 —260 | —260 | —248 | —191 | — 230 | + 366 | +1147| — 39 | —958
3b/4 —114 | —130 | —146 | —151 | — 120 + 1|+ 268 +825 - 783
b 0 0 0 0 0 0 0 0 0
0 —419 | —322 | —151 | +231 | +1096 | + 231|— 151| —322 | —419
b/4 —311 | —290 | —243 | —108 | + 246 +1081 |+ 179 —261 | —528
1 b2 —213 | —221 | —225 | —199 | — 86 + 239|+1025| + 30 | —591
3b/4 —117 | —130 | —145 | —156 | — 141 | — 54|+ 204| +837 | —498
b 0 0 0 0 0 0 0 0 0

n’ 6, bien qu’ils different légérement des ndtres. (On comparera, & ce point
de vue, les valeurs de u relatives a #=0,669 figurant dans les tableaux 5 et 6.)

Nous avons calculé les valeurs de p,; pour a=1 et les valeurs de & ci-apres:
0; 0,669; 1,057; 1,495; 1,778. Ces valeurs sont consignées dans le tableau n° 7.

La détermination des valeurs de u, pour $=0 demande quelques mots
d’explication. Il est possible d’obtenir ces valeurs en cherchant la limite de
Pexpression (57) pour ¢ tendant vers zéro. Les calculs sont trés longs parce
qu’il faut y conserver les trois premiers termes des développements en série
de e,, sinx, cosx. Nous ne les reproduirons pas ici, parce qu’on peut obtenir
le méme résultat par un raisonnement beaucoup plus simple et plus concret.

Examinons (fig. 13) I’équilibre de la bande élémentaire d’entretoise de
largeur dx située a 1’abscisse z. D’aprés 1’analyse faite ci-dessus & la fin du
littera b), cette entretoise est soumise de la part des poutres & des réactions
uniformes d’intensité p/2bsinzx/ldx, dirigées de bas en haut. Elle doit
reprendre également la variation, sur la longueur dz, des moments de torsion
dans les poutres, qui vaut, d’aprés la formule (53),

dM,, T

AMoy, _ _pelm . mx, _ _pe. 7L
I dx = 277blsmldoc— 2bs1nldx.
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Tableau n° 6
Valeurs du coefficient 10* p, (=0, & variable)

Valeurs du | pogition
paramétre

Excentricité de la charge

d’entre- de la
toisement | section _B \’_35/4\‘ —b/2 J\ —b/4 ! 0 ! b/4 E b/2 3b/4 ! b

0 —25005—1250} 0 | +1250 | +2500 +1250% *1250’—2500
9 =0 b/ | —1758 — 968 —178 |+ 612|+1403  +2195 4+ 487 |—1221 —2930

b2 | — 937 — 5465 —156 | + 234 |+ 625 41055 +1406i— 703 | - 2812
91=0 3b/4 | — 273 — 166 — 58 |+ 49|+ 156 | + 263 |+ 371+ 478 —1914

b 0 of 0 0 0 0 0| 0} 0

0 |—1418] —786 | —103 | +734 | +1828 |+ 734|— 103 —786 | —1418
5 =0,669| b/4 |— 873| —564 | —234 | +230 |+ 826 +1685 + 363 | —817 | —1920

b2 | — 435 —299 -1 +470 | + 266 + 649 +1306 —454 —2123
$1=0,2 | 3b/4 (- 109 — 86 — 60 + 25 + 40 + 106 + 331| +559 —1681

b 0 0 o o 0 of o o o

0 +16 | —s82 | —161| — 31| +758 | — 31| —161 | — 82 | + 16
3 =1495 b/4 | +45 | —21 | — 88| —155| — 26 | +764  — 26 —178 | —150

B2 | +12 | +10  — 33 — 81| —140 + 3| +795 ~106 | —562
$1=5 3b/4 | — 6 +60 | — 4| — 24| — 49| — 75 | 4+ 81 | +583 —975

b 0 0 0o 0 0 o o o o

0 +13 | =5 | —43 | —99 | +490| — 99| — 43| - 5| + 13
$=234| b4 | —11 | +10 | — 5 | —43 | — 98 +490 | —100  — 44 | + 17

b2 | =75 | — 9 | 414 | — 5 — 43| - 99 4488 — 98| — 0
=30 | 3b/4 | +62 —10 | —12 | 4+ 9 - 7 - 38 | — 77| +491 | —431

b 0 0| o0 0 0 0| 0 0 | 0

0 ol +2 | -8 | —71 | 4364 — 71| - 8|+ 2 0
5 =3,162) b4 | —117| +6 | +6 | — 9 | — 71| 4372 ‘ — 75| — 13 l +127
_ b/2 | +196 -8 | —4 + 4| — 8| — 72| +366 | — 66 —184
$=100 | 3b/4 | —122 | +2 | +3 + 1|+ 2| —- 8| —170] +370 | —117

b ol o | o o| o 0 l 0 0 0

s ' I X
y | Lopsin ZX ax A
<~ N
[ ﬁV l
PR == i I A
2 'I“‘E : !
Fig. 13

Le moment fléchissant dans la section y de I’entretoise vaut, d’apres la figure 6,

_p
Mydx_2bs1

x
anx 3

(b+y)*

pe .

T
SIN ——

2061

da (b +y)

(y=e)
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Tableaw n® 7
Valeurs du coefficient 104-u, pour =1 et ¢ variable
Position Excentricité de la charge
) de la : ‘ ‘ _
section | —b | —3b/4 —b/2 | —b4 | 0 | b/a | b2 | 3p/4 | b
0 — 2500 | — 1250 ‘ 0  +1250| 42500 | 4+ 1250 0| —1250 | — 2500
b/4 — 2345 —1407; —469 | + 469 | + 1407 | +2345  + 938 | — 938 | — 2345
0 b/2 —1875 | — 1250 | —625 0|+ 625 | +1250| + 1875 0| —1875
3b/4 — 1093 | — 781i —469 | — 157 |+ 157 |+ 469 | 4+ 781 | +1093 | — 1093
b 0 o 0 0 0 0 0 0 0
0 419 | —322 | —151 | +213 | +1096 | + 231 | — 151| —322 | —419
bja4 | —311 | —290 | —243 | —108 | + 246 | +1081 |+ 179 | —261 | —528
0,668 b/2 —213 | —221 | —225 | —199 |— 86|+ 239|4+1025| + 30 | —591
3b/4 —117 | —130 |, —145 | —156 | — 141 | — 54|+ 204 | +837 | —498
b 0 0 0 0 0 0 0 0 0
0 —121 | —131 | —117 | + 41 | +740 | 4+ 41 | —117 | —131 | —121
b/4 — 66 | — 84  —107 i —106 | + 43 | +827 | + 20 | —160 | —207
1,057 b/2 — 35 — 49| — 72| =101 | —106 | + 33 | +705 | — 47 | —317
3b/4 — 16 — 24 — 38 — 62| — 91 | — 99 | + 22| +623 | —363
b 0 | 0 0 0 0 0 0 0 0
0 —30 | —47 | —72 | —30 | +531 | — 30| — 72| — 47 | — 30
b/4 —12 —21 —41 —38 | — 14| +529 | — 37| — 87 | — 74
1,495 b/2 — 4 - 8 —-19 —40 | — 71| — 34 | +517 | — 67 | —159
3b/4 — 2 - 3 - 7 —18 | — 40 | — 72| — 37 | +475 | —257
b 0 0 0 0 0 0 0 0 0
0 —12 —24 —50 —44 | +447 | — 44 | — 50 | — 24 | — 12
b/4 — 4 - 9 —22 —49 | — 44 | +446 | — 46 | — 57 | — 38
1,778 b/2 -1 - 3 — 8 —22 | — 50 | — 46 | +440 | — 64 | —102
3b/4 0 -1 - 2 — 8| — 221 — 51| — 52| +410 | —206
b 0 0 0 0 0 0 0 0 0
Il peut se mettre sous la forme
. T
M, dx = upb sm%dw,
a condition de poser
1 y\2 1 Y\ e
=1+ - (1+L)~ <e
k= ( + b) 2 ( ) W=e
Pour y > e, on trouve de méme
1 y\% 1 y\ e y—e
=—\1+) —5l1+5) + (y>e
K=y ( b) 2 (I b) o5 W29
Ces deux relations peuvent se condenser en la formule générale
1 |y—el 42 ey
FETT T2 tapT 2 (60)
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La ligne d’influence de u s’obtient en considérant dans la formule (60) y
comme constante et ¢ comme variable. C’est une ligne en chevron formée de
deux droites (fig. 14). Les 3 ordonnées z définissant le chevron ont pour valeur

commune
1 e\?
“Z[‘*‘(z)] (61)

Les lignes d’influence actuelles ont une allure nettement différente de celles
correspondant au grillage sans résistance & la torsion®) («=0). Cette différence
s’explique par le fait que, dés que o est différent de zéro, si petit soit-il, il
apparait des moments de torsion finis qui modifient radicalement les con-
ditions d’équilibre de 1’entretoise élémentaire. Les valeurs de u sont donc des
fonctions de « discontinues pour «=0, tout comme les valeurs de K.

7 N

Fig. 14

8. Méthode rigoureuse de calcul

L’objectif de la méthode rigoureuse est d’établir les surfaces d’influence
des divers effets des charges, en tenant compte de la résistance du pont a la
torsion. s

Considérons, dans ce but, une force concentrée P de coordonnées x =c, y =e.
11 est facile de vérifier que cette force peut se remplacer par la série de Fourier?)

q =2—l}—) > sinmlwcsinm;x, (62)
m=1

D’autre part, on a vu au § 5 que la valeur 4,, du parametre d’entretoisement
qui correspond & la distribution de charges

(63)

. mmx 2P . mmc
Pp=p,,sin l‘ - (avec pm=Tsm l—)

8) Voir & ce sujet notre étude sur la ‘méthode d’ENGESSER [6] et le mémoire de
Guyon [3]. :
7} Cette formule est établie en détail dans notre mémoire cité [6].
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est 9, =mH. Cela signifie encore que, sous la charge (63), les entretoises se
comportent comme si elles étaient m fois plus souples que sous la charge
pysinmafl.

Par conséquent, les raisonnements faits au § 15 de notre mémoire précité
[6] et, en particulier, les formules (86) & (91) de ce mémoire, sont intégralement
applicables & un pont résistant & la torsion. Seules, les valeurs numériques
des coefficients K et p sont différentes et dépendent ici du paramétre de
torsion «.

A. Déformations et sollicitations des poutres

PP X1 . mmwC . MTX
w(x,y) = prw4m§17FK,,t (e, ) sin ZT sin ZT
Ma: (&’,‘,y) - % — —2Km (e7y) sin lﬂ' Sinm;x

B. Sollicitations des entretoises

M gy =222 S 4 gin BT i, TTE
v I = l I

9. Indications complémentaires concernant I’application de la méthode
de calcul proposée

Une grande partie des résultats généraux établis dans notre étude anté-
rieure [6] concernant les ponts sans résistance a la torsion peuvent s’étendre
au cas actuel. Nous nous permettons de renvoyer le lecteur & ce mémoire et de
nous borner & 1’énoncé des résultats essentiels.

bf 67 57 bf bf
2 B} 2
Fig. 15

A. Effet des hypothéses de base concernant la structure du pont sur la précision
des résultats obtenus

a) L’erreur commise en substituant aux poutres réelles en nombre fini
une répartition continue de poutres est tres faible, & condition de prendre soin
de considérer la répartition continue comme s’étendant sur une largeur b,/2
au-dela des poutres extrémes (fig. 15).
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b) L’erreur commise en substituant aux entretoises réelles en nombre fini
une répartition continue d’entretoises est absolument négligeable des qu’il y a
plus d’une entretoise (celles sur appuis non comptées). S’il n’y a qu’une entre-
toise médiane, 1’erreur est de 1’ordre de 1,5%,.

-

z Sz by b 4
¢) La méthode peut s’étendre au ca les poutres sont & moment d’inertie

T
I i i § 83 1244

(2]
[eid

nl
variable ainsi qu’aux poutres continues ou cantilever, mais sa précision dans
ces cas est nettement moins bonne.

B. Justification des hiypotheses concernant Uélasticité du béton

Les essais trés étendus entrepris & 'université d’Illinois sur des ponts a
dalle en béton supportée par des poutres métalliques [4, 5] nous permettent
d’affirmer que la fissuration du béton ne modifie pas sensiblement la distri-
bution transversale des charges dans un pont & poutres multiples de ce type
et que les sollicitations calculées dans I’hypothese de 1’élasticité indéfinie du
béton se maintiennent pratiquement jusqu’au stade précédant immédiatement
la rupture.

C. Précisions utiles pour Uapplication pratique de la méthode

Toutes les considérations développées a ce sujet dans notre mémoire
antérieur restent d’application.

D. Applications numériques

Les deux avant-projets calculés dans notre mémoire antérieur peuvent
étre repris en tenant compte de la résistance & la torsion. Les seules parties
a modifier sont celles concernant les lignes d’influence des coefficients K et .4
vrai dire, 1’effet de la torsion dans le premier avant-projet étudié est certaine-
ment faible et ne mérite sans doute pas d’étre pris en considération.

Résumé

L’auteur généralise la méthode de GuyoN (Ann. P. et Ch. France, 1947)
basée sur la considération d’un grillage continu de poutres et d’entretoises,
pour le cas ol ces piéces résistent & la torsion. Il établit les valeurs numériques
du coefficient de répartition transversale des charges pour tous les parameétres
d’entretoisement & et pour toutes les valeurs de la rigidité relative & la torsion
des poutres du pont. Il donne également des tableaux permettant de calculer
les coefficients caractéristiques des moments fléchissants dans les entretoises.

Pratiquement, la méthode s’applique, comme celle de GuyoN, en se limitant
au premier terme de Fourier; elle permet ainsi de prendre en compte la résis-
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tance du pont a la torsion sans supplément de calculs. D’autre part, elle permet,
si on le désire, d’analyser exactement 1’effet d’une charge quelconque par
développement en série de Fourier.

La méthode, non seulement donne des résultats plus précis que les méthodes
classiques dans les ponts habituels, mais encore s’applique directement aux
ponts & poutres jointives précontraintes transversalement, ainsi qu’aux ponts-
dalles en béton armé ou précontraint, qui sont s’application courante actu-
ellement.

Zusammenfassung

Der Verfasser verallgemeinert die Methode von Guyon (Ann. P. et Ch.
France, 1947), die auf der Voraussetzung eines kontinuierlichen Rostes von
Lings- und Quertriigern beruht, fiir den Fall des Verdrehungswiderstandes
dieser Bauteile. Er gibt Zahlenwerte des Querverteilungskoeffizienten der
Lasten fir alle Querverbands-Parameter und fiir alle Werte der Torsions-
steifigkeit der Triger an. Aullerdem stellt er Tabellen auf, die die Berechnung
der charakteristischen Koeffizienten der Biegemomente in den Quertrigern
ermoglichen.

Praktisch 148t sich die Methode wie diejenige von Guyon anwenden, wenn
sie sich auf das erste Glied von Fourier beschrankt; es wird dadurch moglich,
den Verdrehungswiderstand der Briicke ohne zusdtzliche Berechnungen zu
beriicksichtigen. Wenn nétig, erlaubt sie uns aber auch, durch Entwicklung
in eine Fourierreihe die genaue Bestimmung des Einflusses irgendeiner Last.

Das Verfahren liefert nicht nur genauere Ergebnisse als die klassischen
Methoden bei normalen Briicken, sondern kann auch direkt auf Briicken mit
zusammenhidngenden quervorgespannten Léngstrigern und auf Platten-
Briicken in Eisenbeton oder vorgespanntem Beton, wie sie in neuester Zeit
zu Bedeutung gelangt sind, angewandt werden. ' h

Summary

The author generalises GUyoN’s method (Ann. P. et Ch. France, 1947),
which is based on the assumption of a continuous grid of longitudinal and
transverse beams, for the case of the torsional resistance of these structural
parts. He gives numerical values of the transverse distribution coefficients of
the loads for all bracing parameters and for all values of the torsional stiffness
of the beams. In addition, he prepares tables which make it possible to cal-
culate the characteristic coefficients of the bending moments in the transverse
beams.

Practically the method may be adopted like that of Guyon, if it is restricted
to the first Fourier term; it thereby becomes possible to take the torsional
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resistance of the bridge into consideration without additional calculations.
If necessary, it allows us also to determine exactly the influence of any load
by developing into a Fourier series.

The method furnishes not only more accurate results than the classic
methods in the case of normal bridges, but can also be adopted for bridges
with continuous longitudinal beams prestressed transversely, and for slab
bridges in reinforced or prestressed concrete, such as are becoming of impor-
tance in recent times.
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