
Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band: 8 (1947)

Artikel: Some contributions to the theory of elastic and plastic stability

Autor: Bijlaard, P.P.

DOI: https://doi.org/10.5169/seals-8885

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.09.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-8885
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


SOME CONTRIBUTIONS TO THE THEORY OF ELASTIC
AND PLASTIC STABILITY

EINIGE BEITRÄGE ZUR THEORIE DER ELASTISCHEN UND
PLASTISCHEN STABILITÄT

QUELQUES CONTRIBUTIONS A LA THEORIE DE LA STABILITE
ELASTIQUE ET PLASTIQUE

Prof. Ir. P. P. BIJLAARD,
Technische Hoogeschool Delft, Technical Adviser I. A. B. S. E.

1. General considerations on the plastic stability of thin plates
and shells

1. 1. Tests by Kollbrunner.
Our theory on the plastic stability of plates *) 2) is based on the actual

behaviour of structural steel with changing ratio of the deviator components
which follows from the tests of Hohenemser and Prager 3) writh tubes, so
that we may assume that its results will be in good acoordance with the
actual behaviour of buckling plates. Nevertheless many designers will be
more inclined to use it, if they possess a more direct demonstration of its
applicability. This direct proof is given, anyhow for aluminium, by the
extensive and careful tests on the buckling of plates, executed and published
by Kollbrunner4).

The tests were effected with thin plates of avional, an aluminium alloy,
whilst the stress strain graph of the material was determined by compression

of short sheets. We will oompare the tests as given by Kollbrunner
in his figures 33, 34 and 35 with the results of our theory. All these tests
relate to plates, compressed in longitudinal direction and supported at the
unloaded sides.

Fig. 33 refers to plates of which the unloaded sides are simply
supported. According to our theory the buckling force per unit breadih of such
plates is, if the entire plate deforms plastically5)

hoP= Qn2EJ\b2)(fXD + B + 2F) (1)

The modulus of elasticity Zf of avional is 715 000 kg/cm2. The thickness
h and the breadth b of the plates were 0.2 cm and 6.2 cm respectively, so
that n2 EJ/b2 ji2Eh*/12 b2 =-122.8 kg/cm. Furthermore, as in this case the

1) Bijlaard, Proc. Royal Neth. Acad. of Sciences, Amsterdam, nos. 5 and 7, 1938.
2) Bijlaard, Publ. Int. Ass. f. Bridge and Struct. Eng., Zürich, Vol. 6, p 45—69.
3) Hohenemser and Präger, Zeitschr. f. ang. Math. u. Mech., no. 1, 1932
4) Kollbrunner, Mitt. a. d. Inst. f. Baustatik, Zürich, no. 17, 1946.
3) Bijlaard, ht. footnote 2, p. 55, eq. (38).



18 P. P. Bijlaard

second principal stress is zero, so that ß o2 Iq± 0 and ?]2 ß2 — /? -{-1 -= 1,

values A, B, D and F in eq. (1) are given by 6)

A — (pilwi, B — cp2\np±, D 993/<T4, E= m\(2m+ 2 + 3em),
in which cpi m2{E + (4 + 3e) tan cp}

cp2 2 tn (m E + 2 tan cp) \ (2)

(ps 4tn2(E+ tancp)

994 m(5m — 4 + 3em) E+ [4(m2 — 1) + 3em2} tan cp

value tn being 1/^=10/3, whilst v is Poisson's ratio, e=-Esp/o and tan >p-=do/d?n,
the latter two values having to be measured from the stress-strain graph with
pure compression at a stress o equal to the buckling stress op. Value eD is the
plastic strain and tan cp is equal to7) E Et/(E—Et), Et=da/ds being the tangent
modulus. With a stress o>= 2200 kg/cm2 we find from the stress-strain
graph of avional £,= 350 000 kg/cm2 0.49 E, £ 0.065, tan <p 0.96 E,
by which eqs. (2) yield 4=0.655, 5 0.41, £>=1.02, Zr=0.36, so that it
follows from eq. (1) that oP= 3.886 T2EJ/b2h= 2385 kg/cm2, being more
than the stress 2200 kg/cm2 we started from. Assuming now a stress oP -=
2300 kg/cm2 we find in the same way ^=300 000 kg cm2=0.42 E,e QAl,
tan cp 0.725 E, A 0.59, B 0.41, D 0.985, F 0.34, o> 2276 kg/cm2.
Interpolating linearly between assumed as well as between resulting values
oP we finally find a buckling stress oP 2288 kg/cm2.

With these tests the eccentricity of the load was certainly such, that
with buckling practically no discharge occurred, so that we shall have to
assume that the plates showed no elastic region. Hence the buckling stress
is indeed determined by eq. (1) only, in the same way as also in practice,
in connection with small eccentricities, the critical stress for a plate, assumed
to be plastic all over, is determinant for the strength of the plate, as we stated
already previously8).

According to our theory 2) the plate should buckle in waves with a half
wave length a/p= (A/Dyi*b. With a buckling stress 2288 kg;cm: we find
A= 0.60 and D= 0.99, so that the half wave length a/p aB 0.S8 b. This
wave length will occur if the plate is free to select its most favourable
wave length, i. e. if it is infinitely long. With the tests the loaded edges
were not simply supported, but somewhat clamped, so that we have here
about the same case as studied by Schleicher9), where in the elastic region
the transition from p to p-\-\ half waves occurs if a b}jp(p -,- 2). As in
that case the most favourable half wave length is equal to the breadth b of
the plate, we shall assume that with the tests this transition occurs when
a aB)/p(p + 2). In Table I we give successively the lengths a of the

plates tested by Kollbrunner, the limiting lengths ^=0.88 b V (p— 1) (p+1)
and 0.88 b^p(p -\- 2) on either side of these lengths a, the theoretical number
of half waves pß p between these limiting lengths according to our theory
and the number of half waves pT observed in the tests, the lattcr number
followed by the number of tests in brackets.

6) Bijlaard, lit. footnote 2, p. 50, eqs. (20)—(23).
7) Bijlaard, lit. footnote 2, p. 53.
8) Bijlaard, lit. footnote 2, p. 54, footnote 10
9) Schleicher, Mitt. Forsch. Gutehoffnungshutte Konzerns, vol. 1, 1931. Cf.

Timoshenko, Theory of Elastic Stability, p. 364.
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Table I.

19

a 32 b 4.85 6 6 45 6 8.16
aL — °L 2.49 6 — 3.40 b 4.316—5 216 6.10 6- 6.986 7 876 — 8.756

Pb 3 5 7 9

Pt 3(3) 5(3) 7(3) 9(3)

The conformity between theory and tests is complete.
The buckling stresses of the 12 testplates vary between 2040 and 2190

kg/cm2, except one that yields the low value 1950 kg/cm2. Hence, disregar-
ding the latter value, the lowest buckling stress is only 11 o/0 below our
theoreticai value 2288 kg/cm2. As this discrepancy is not more than the per-
centage the experimental values in the elastic domain remain below the
theoreticai values, owing to unavoidable inaccuracies, and the theoreticai
values in the elastic domain being undoubtedly correct, we may conclude also
that our buckling stresses for the plastic domain are accurate.

We now consider the buckling of plates of which the unloaded sides
are fixed, the test results of which are given in Kollbrunner's fig. 34. The
plates have a thickness h 0.2 cm and a breadth b 4.4 cm. The buckling
condition for these plates in the plastic domain is10)

«i tanh (^6/2) + a2 t<m(a2bj2) 0 (3)

in which a1>2 ]/ + G X2 + X VMX2 + K<r*

G
B + 2F

D H (B + 2F)2—AD
D2 K= VD

hop
EJ np\

(4)

After assuming o> to be 3100 and 3150 kg/cm2 it appears that its real value
is about 3140 kg/cm2. With a/> 3150 kg/cm2 we found, in the same way
as before, £, 0.04E, *?=1.49, tan cp E/24, 4 0.157, £=0.238, D
0.485, 7^= 0.141 and, according to eqs. (4) G=1.07, H 0.825, #=2.06,
9?2=1.32. Assuming now /l 1.55 we obtain ^=2.435 and a2=0.89, so
that eq. (3) yields

«i tanh («! 6/2) + a2tan(a26/2) 0.27

instead of zero. Assuming now oP -=3140 kg/cm2 we find G= 1.072, Fi
0.827, 7<=2.01, cp2= 1.315, yielding, with 2 1.55, values ai 2.431 and
a2 0.872, by which eq. (3) yields

«i tanh (ai 6/2) + a2tm(a2bl2) 0.02

so that op is round 3140 kg/cm2 with X jtp/a=^ 1.55 and a half wave
length aB a/p 7i/1.55 2.02 cm 0.46 b.

Calculating in the same way the buckling stresses with other values /.

it appeared that with A 1.55 the critical stress is about a minimum. In
Table II we give the data for these tests, the limiting lengths aL for p half
waves being now assumed to ^qual 0.46 b i (p — 1) (p -p 1) and 0.46 b
V/K7+2).

10) Bijlaard, ht. footnote 2, p. 57.
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Table II.

a 4.55 6 6.80 6 9.10 6 11.35 6

aL~aL 4.116 — 4.58 6 6436 — 6886 8.73 6 — 9.19 6 11.046 — 11.506

Pb 9 14 19 24

Pt 9(3) 13(2), 14(1) 18(2), 19(1) 24(3)

Also here the conformity between theory and tests is very good.
One extraordinarily low value excepted, the buckling stresses for the

other 11 tests are between 2830 and 3115 kg/cm2, the lowest value being only
10 n below our theoreticai value.

Finally considering fig. 35 4), referring to plates that are simply
supported at one unloaded side and fixed at the other, with // 0.2 cm and
b 5.3 cm, the buckling condition is given by n)

«! coth ctib — a2 cot a2 b 0 (5)

whilst ol± and <x2 follow from eqs. (4). Here we find that the buckling stress
op acquires a minimum value with about X= 0.865, hence with a half wave
length a/p a/X 3.63 cm 0.685 b, whilst oP 2882 kg cm2. Making here
the limiting lengths aL for p half waves equal to 0.685 b\(p—X)(p + \) and
O.bSo}1 p(p -T- 2), the data for this case are given in Table III.

Table III

a

aL — aL

Pb

Pt

3.8 6

3 366 — 4.05 6

5

5(1), 6(3)

5.65 6

5446 — 6.126
8

8(3)

7 55 6

7.506 — 8.206
11

10(1), 11(2)

9 45 6

8.886 — 9.566
13

13(1), 14(2)

The conformity between our theory and the tests is here again better than
could be demanded.

The buckling stresses of all thirteen tests vary from 2660 to 2850 kg/cm2,
the lowest value being only 8 °o below our theoreticai value.

Hence we may conclude, that Kollbrunner's tests have proved the appli-
cability of our theory to plates of aluminium, as the number of waves shows
that the anisotropic behaviour of the material is exactly such as predicted
by our theory, whilst the discrepancies of the buckling stresses are not more
than in the elastic domain. As with nonchanging ratio of the deviator
components the plastic behaviour of soft steel and aluminium is determined
by the same laws, whilst our theory is based on the real behaviour of soft
steel with changing ratio of the deviator components, it is not so great a
jump to conclude also that our theory is applicable to plates of soft steel.
Apart from that we showed already in our preceding paper2) that the
results of the few tests with steel plates are not contradictory to our theory.

u) The condition is identical with that in the elastic domain, only xt and <x2 are
now given by eqs. (4). In our paper, l:>c. cit. footnote 10, there is a misprint in" this
buckling condition; the latter funetion should be cot oc26 instead of coth a,26.
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1. 2. On the plastic deformation of soft steel with
changing ratio of the deviator components.

As it appears that the derivation of our fundamental formulae, given in
our first paper2), is somewhat difficult to understand for readers who are
not accustomed to work in problems of plasticity, we shall try to elucidate
our line of thought a little more, whilst we shall also give a purely analytical
derivation of our formulae that demands a less imaginative faculty.

The fundamental question is, that with the buckling
of plates and Shells another state of stress, with another
ratio of the deviator components, is superposed on the
initial state of stress and that with changing ratio of
the deviator components the material no longer behaves
quasi-isotropically, as with a constant ratio of these
components, but behaves anisotropically. The components
of the stress deviator being

Ox CJX O (Jy Oy O (J2 0Z O TXy Tyz TZx Tyx %zy attU XXZ

whilst o=(ox-roy-\-oz)/3, the deviator components of the elastic deformation,

&xe —— &xe ^ —— Gxf£ C/, Eye Eye — E ==: Oyj Z G, Sze 8ze € Ozj Z C/,
yxyel2 Txyj2G, yyze\2 Tyz\2G, etc.

in which e (exe + eye + eze)/3, are obviously always proportional to those
of the stress deviator. However, the components exp, eyp, ezp, y^yp/2, etc. of
the plastic deformation tensor, which is identical with the plastic deformation

deviator, as exp + eyp + ezp 0, are proportional to the components of
the stress deviator only under special simplifying assumptions, whilst their
increases are only proportional to the increases of the stress deviator
components if the ratio of the stress deviator components remains constant. The
elastic shearing energy that governs the plastic deformation may be
expressed as follows

*s -== 2 \Px ^xe + Gy ^ye + ^z £ze + ^xy 7xye + ^yz 7yze + ^zx Yzxe)

(1/4 O) {ÖV + 0/ +o2 + 2 (Tx2y + Ty2z + rz2x)} S!2/4 G (6)

Hence at the yield stress, where Vs is constant, also

Sl=\ ÖV + Oy2 + O2 + 2 (Txy + Tyl + Tzx) (7)

is constant. Hohenemser and Prager3) executed tests at the yield stress
with steel tubes that were alternately subjected to pure tension and to
torsion, so that here too the ratio of the deviator components changed. They
represented the stress deviator and the deformation deviator by representative

vectors r0 and T0 in a nine-dimensional space, the components being
equal to the nine components of the deviators. Hence, since at the yield
stress S± is constant, according to eq. (7) the length of the stress vector jT0
and that of the vector Toe of the elastic deformations will not change, wThilst
with constant ratio of the stress deviator components, the direction of all
vectors does not change either. In that case the vectors of the plastic and
elastic deformation, being for example Top AB and Toe =- BC respectively,
will become after further deformation T'op AB' and Toe B'C/==BC
respectively, whilst the representative vector f0 of the stress deviator, being
placed at the end of the total (i. e. elastic plus plastic) deformation course,
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moves from C to O, its direction and length remaining con^tani (fig. 1).
The excess plastic deformation BB' equals the excess total deformation CO.

If, however, the direction of the total deformation course changes,
as is the case with plastic buckling of plates, so that after having a
direction AC, in which AB and BC represent the plastic and elastic
deformation respectively, it proceeds in a direction CDE (fig. 2),
several possibilities for the course of the excess plastic deformation exist.
In our computations we assumed, that in the representative point E of
the total deformation, the Situation is the same as with a straight
deformation course AE, so that, as the representative vector of the elastic
deformation FE remains equal to BC, the excess plastic deformation is
represented by BF, whilst the stress deviator is represented by F01 in E. So

\« \#

\$

\#

AfFo

6/\4 FJ.
s-

«/
/ /K$ '//

Fig. 1 Fig. 2

we attributed a complete memory to the material. According to the tests
of Hohenemser and Prager3), however, the memory of structural steel is
not so complete. Free deformations, i.e. deformations during which the
ratio of the deviator components does not change, are forgotten. Hence with
an excess total deformation CE the free plastic deformation AB is forgotten,
so that the continuation of the representative vector of the elastic defoima-
tion deviator, GE BC, passes through B, the excess plastic deformation
course being represented by BG and the stress deviator by F02. Moreover
superposed vibrations effected a total loss of remembrance, so that at any
moment the excess plastic deformation components were proportional to
the components of the stress deviator, by which the increase of the plastic
deformation course has always the same direction as the representative
vector of the stress deviator, so that the beginning Fi of the vector of the
elastic deformation, ME BC, is to be found on the trail curve BM be-
longing to the course of the total deformation CE, by which the excess
plastic deformation course is given by BM and the vector of the stress
deviator by r03. In our former papers x) 2) we called bodies with plastic
deformation courses BF, BG and BM a Hencky, Hohenemser-Prager and
Prandtl-Reuss body respectively.

With buckling the superposed excess deformations are infinitely small.
With an infinitely small total deformation CD the excess plastic deformation
for a material with a complete memory is given by BK, the continuation
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of the elastic vector KD BC passing through A and the stress deviator
being represented by r01 in D. With both partial (r02 in E) and complete
(r03 in E) loss of remembrance the vectors of the elastic deformation will
pass through B in this case, the excess plastic deformation being given
by BL. As, however, deformations below the yield stress, where the tangent
modulus Et do/de has a positive value and with which we have to do with
buckling, cannot be considered as free, as at the yield stress, if the ratio
of the deviator components is constant, in our theory wre took all preceding
deformations into account and thus contributed a complete memory to the
material. Hence we reckoned with the resulting stress vectors F01. We did
this especially, as in this way we were sure not to o v eres

t i m a t e the buckling stresses of the plates. For in this
case the excess stress deviator, which after an excess total deformation
course CE is represented by A-Jt^, is smaller than with partial or complete
loss of remembrance, as may be seen directly in fig. 2. As with infinitely
small excess deformation a partial or complete loss of remembiance amounts
only to a neglect of the initial plastic deformation course AB, we ma}- even-
tually take it into account in our formulae by equating value e to zero, as
we did already in our first paper2), page 56, in order to compare our
results with the tests of Chase. The conformity of Kollbrunner's tests with
the results of our theory, obtained by taking value e into account, shows,
however, that for aluminium it yields reliable results in that way, whilst
with steel, where e is small, so that taking it into account or not makes little
difference, we had better remain on the safe side.

It also follows from fig. 2 that the more the direction of the excess
deformation course CD deviates from that of the initial deformation course
AC, the more the direction of r01 will deviate from that of F0, and the
larger the excess stress deviator vector A±ro will be. Hence the excess
stress and thus the resistance to buckling will be the
higher, the more the ratio of the excess deformation
deviator components differs from that of the original
o n e s. We will demonstrate it under here too by comparing the plastic
buckling stresses at the yield stress for several cases of buckling (Table IV).

If with buckling the material would deform quasi-isotropically, as was
assumed by Ros-Eichinger16) and Chwalla, so that for example at the yield
stress an excess deformation would not cause excess stresses and hence no
excess elastic deformations, with which only plastic deformations would
occur, an excess total deformation course CE would cause an equal excess
plastic deformation course BM. The elastic deformation is then represented

by ME, parallel to BC, whilst the resulting stress deviator is represented
by r0 in E, being parallel to T0 in C, AT0 being zero. It is clear that such
a behaviour is contrary to the actual mode of deformation of steel according

to the experiments of Hohenemser and Prager.

1. 3. Purely analytical derivation of our fundamental
formulae on the plastic stability ofplates and Shells.

From fig. 2 it follows that, with the mode of deformation as assumed
by us, the total plastic deformation AK or AF and the state ot stress,
represented by rQ1 in D or E, determine each other reciprocally, the stresses
with a total (elastic plus plastic) deformation AD or AE being the same
as if this total deformation. were built up along the straight line AD or AE.
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Hence the excess stresses ox and oy with buckling can be determined by
subtracting the initial stresses ox and q2 before buckling from the total
stresses,ox and oy, belonging to the total strains sx and ey after buckling,
— the way we followed in our first paper2) 12). We may, however, follow
also a more direct way in order to find the relations between the excessi
stresses ox', o/ and rxv and the excess strains ex', eyf and yxy13), the primes
indicating in point of fact differentials, so that for example 0/ means dox.
For we may write

S £jc c:ex c ex
d ex „ — d ox + —— doy + - d txv

c ox doy ' c TXy

c £y d ey c €y
dey -* dox + ~- doy + ^r-2- drxy

cox c ov * <j Txy

dyxy=^dOX + ^dOy+ p^dTXy

(8)
CT,

öox " '

c Oy ' c r
Furthermore the strains may be split into elastic and plastic strains, e. g

€x ^xe + &xp

i ^ %x O Sxe C Exp { \*)
dox COx c Ox

It needs no further explanation that

oExe\dox — cE}e\doy — \\E
cExe\doy cEyeje ox -\\tnE \ (10)

cyXye\c)TXy 1/G

whilst all other partial derivatives of the elastic strains with respect to the
stresses are zero.

In order to calculate the partial derivatives of the plastic strains we
remark that, as the shearing energy governs the plastic deformation, a plane
istate of stress is equivalent to a linear stress

Oq
V Ox2 — Ox Oy + Oy2 + 3 Txy (11)

For a material with a complete memory the total plastic strains and the
state of stress determine each other reciprocally, as explained above here14),
so that we may W|rite for the plastic strains, as the coefficient of lateral
contraction tn equals 2,

l2) We may take this opportunity to indicate some disturbing misprints in our
first paper2) of which, owing to the war, we could not read the proofs. Eqs. (Ha) and
(IIb) read as follows

Ql=~Ep(2exp + eyp) (Ha) and Q2 { Ep(2syp +exp) (IIb)
In eq. (37), p. 55, the first term in the large brackets should be Ap2b2/a2 instead of
Apb2/a2. In eq. (57), p. 60, all sine and cosine functions should be changed into sinh
and cosh respectively. On p. 62 in eq. (61) sinh <x26 should be sin oc26 and in the
formula for a'i 2 values h and N should be h! and N'. See also footnote 11.

«) Bijlaard, lit. footn. 1, eqs. (21)—(24), lit. footn. 2, eqs. (20) —(23).
14) For a material without remembrance, on the other hand, we have a relation

between the excess strains and the stresses, hence

*ExP °xlEP - «V/2 E'p and dsyp oyjFp - ox\2 Ep
We considered such a body more in detail in lit. footn. 1, p. 734.
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ox\2Ep*>xp — ox\Ep — oy\2Ep (12a) and eyp oy\Ep

whilst, as Gp mEp/2(m+ \)=Ep/3,
yxyp z=z rxyjGp OTXyjC.p

Inversely it follows from eqs. (11) that

°x § Ep(2exp + Eyp) (13a), oy § Ep(2Eyp + Exp)

and rxy — i Ep yxyp

Substitution of eqs. (13) in eq. (11) yields
2«-*

Oq — "7— Ep J/ Exp + Eyp + Exp Eyp + 3; yXyp
y j V3

Ep Eq — IZp Epq

25

(12b)

(12 c)

(13 b)

(13c)

(14)

With a stress-plastic strain diagram for pure compression as given in fig. 3a,
at a certain point P the total plastic modulus Ep ox/sp is given by the
tangent of the angle between OP and the ep axis. From eq. (14) it follows that
with an arbitrary plane state of stress, represented by point P in a oQ—epq

arcf-antp
drctg.Ep

arc ten tp
are fy. Ep

Fig. 3 a Fig. 3 b

diagram (fig. 3b), value Ep is also the tangent of the slope of the straight
line OP. Hence the oq—epq diagram is identical with the o—ep diagram for
pure compression, so that at corresponding points P, where oq o, also the
slopes cp of the two graphs are equal. Hence we have

(15 a) and dOgjdEpg

Furthermore it follows from eq. (11) that

doa 2ox
dOx 2oa

(16a),
C On 2ov
cJ ov 2on

(16b),

tan cp

C Oq ö ^xy

(15 b)

dt.
(16c)

xy

Using eqs. (15a), (15b) and (16a) we have now
S (1\ d (Epqjpg)

__ d(Epq\oq) dOq _ Qg dEpq\dOq — Epq 2px Oy

^x\eJ dox doq d Ox 2 0a

— °q\^n(P °qlEp 2ox
20a

so that finally we get
C' ] =20X — 0y( Ep \

c ox \Ep> 2 Oq2 Ep Vtan cp /
(17a)

Abhandlungen VIII
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Interchanging ox and oy we obtain from this equation
d 1 V 2oy—ox( Ep \

dof\Ep)~ 2oq2Ep \tancp
K D}

Finally we find in the same way, using also eq. (16c)
1 \ _ o(EpqjOq) _ d(Epq\oq) d Oq __

Oq\tZX\ cp - - Oq\Ep 3 Txy

d Txy \Epl 6 rXy doq c rxy oq2 oq

so that ^(l) 1^(A--l) 07c>
dxXy\Epi oq2Ep Vtancp 1

With the aid of eqs. (12a) and (17a) we find now

C Exp __ J 1

_
v __

1_ 2 0X—Oy 2 QX Oy l Ep _ \
__

dox - lox 2EPK 7x 0y) ~ Ep^ 2 2oq2Eq Itanp ~

k + *wP&-') <18a)

whilst with eqs. (12b) and (17b) or by interchanging x and y in eq. (18a)
we get

CEyp 1 {2^y~J^f (JIp_ _
\

b
d Oy Ep^ 4 oq2 Ep Vtan cp 1 v ;

Furthermore with eqs. (12b) and (17a) we obtain

tjrp_J_ K(2a-a)-- }
I (2a*-°yH2ay-a*)( E» _lhl8c)

6ox- aox2Ep{Za> °x)- 2E„+ 4aq*Ep Vtan? lJ(liiC)
whilst interchanging x and y shows that

(18d)
C EXp

C Ov c ox

(18e)

Computing now the partial derivatives containing yKyp or rxy we find, using
eqs. (12) and (17)

d £xP
___

c y>yp_ _ 3 rv< (2 ox— Oy) Ep^
c)Txy

~~
dox ~ 2oq2Ep vtan cp

deyp _.
d "/xyp 3iXy{2oy — o1)/_Ep_ _ A ,lgf

C TXy O Oy 2 Oq2 Ep Vtan Cp

^ J- + ll*L (--EfJ 1^1 (18g)
0Txy Gp^ 0fGp\t3Ln<p

V *'
In order to obtain resulting formulae that are not unnecessarily intricate,
we place, as before, the X- and K-axes in the direction of the principal
stresses of the state of stress before buckling. Hence in eqs. (18) the stress
rxy is zero, by which all partial derivatives of unit shears yxyp or with respect
to shearing stresses rxy are zero, except dyxyp/drxy, that equals \jGP. At the
other hand, with an arbitrary initial state of stress qx o2, we shall replace
ox and oy in eqs. (18) by g± and q2. Hence we obtain from eqs. (8), after
Splitting the partial derivatives into an elastic and a plastic part, as we did
for example in e^q. (9), after insertion of eqs. (10) and (18), equating Ep
to E/e and indicating differentials by primes
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A+e (2q1-q2)2 E-etanw.
€*' 1 ~ET + ^ o - -="7 ~ Ox +f 4(7/ Zftan??

2 + me (2q1-q2)(2q2-q1) E-etancp
2tnE 4oq2

/=(-

/ *J>

2 + //z£ (2(>1-()2)(2^2-()i) E-etancp
2mE 4oq2 Etanq?

2m + 2 + 3em

ff«'+(:

Zftan<p

+£ (2g2-?i)2 f-etangj
4V ftan^

O + G,I?J^ //Z/f vxy

(19)

Inversely we may compute from eqs. (19) the excess stresses as functions
of the excess strains. As with our choice of the X- and K-axes in eq. (11)
V(2 — Q±2 — Qi92JrQ22> we obtain in this way the following formulae

in which

and

oK'= e(Aex' + Be;),
A 991/994 B

0;= E(Bex'+ De/)
cp2Jcpi, D cp^cp±

r/l tn 1 r (l-2/i)^+(4/y2 + 3^)tan^}
r/2 m{(2 — ß)(\ -2ß)mE + (4r,2 + 3etnß)iancf)
7, ==m*{(2—ß)*E+(At* + 3eß*)\Mi<p}
cfJe m{(5m -4)(1 + ß2) +2(5 — 4m)ß + 3emY}E

+ [4(tn2 — \)>j2 + 3em{mri2 + (m — 2) ß}]tancP
— Q2IQ1 and rj2 (j^2/

//z/if
Fxy ~ 2m+ 2 + 3em

2

(20)

(21)

(22)

(23)

The resulting formulae are of course exactly identical with eqs. (20) — (23)
01 our first paper2), only the numerators and denominators cp of the frac-
tions given in eq. (21) have been divided by a factor (1—2ß). In a similar
way as shown here for a plane state of stress we may also calculate the
stress-strain relations for an dasto-plastic body, subjected to a thiee di-
mensional state of stress, on which an infinitely small three dimensional
excess stress tensor is superposed (by buckling), which relations may be
useful in order to solve three dimensional cases of plastic stability10).

Also with eqs. (18) it may be seen easily, wh> Ros and Eichinger lb) came
to the wrong oonclusion, that with buckling of plates the material behaves
quasi-isotropically. They assumed that with a stress-strain diagram for
pure compression as in fig. 3a, for example excess stresses dox and doy cause
an extra plastic strain

dexp (\jtancf)(düx — doy\2)

The real relation is, however, according to eqs. (18), with oK — o1, ox ~=q2
and tav= 0

& &xp — c€x"dox+ c°^
c ox

1

dOy +
Cj Ov <j T

xp drxy
xy

- + n~Q2)2( E» \\\do if l
¦

(2Qi-Q2)(2q2-Qi)( Ep \\
oq2Ep\tancp VI * l 2EpJr 4oq2Ep \tany VI

dox-dOyl2 2q1~q2( Ep \
4 Og2 Ep Vtan cp

Vtan cp

(2Q2-Ql)dOy)

do»

(24)

lJ) Appears in Comptes Rendus, 6>»e Congres de Mecanique Appliquee, Paris
1() Rofe and Eichinger, Int Ass. for Bridge and Struct Eng, Paris Congress, Final

Repoit. 1932.
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Only if dox'.dcty^Q^.Q^ hence if the ratio of the stress components and
thus also of the deviator components does not change, eq. (24) yields

H* _dox — doy\2 2q1 — q2( Ep *\0n2 do-
dexp- _ +1__^ta_?_^2^ ^

dox — doy\2 dox—doy\2l Ep A
~~~ ~

~EP +
Ep Vtan<p

~" /

(\\tan cp)(dox — döy\2) (25)

in accordance with the equation used by Ros and Eichinger, the material
behaving only quasi-isotropically if the ratio of the deviator components
remains constant, as with buckling of bars.

1. 4. Application of our theory to several cases of
buckling of plates.

As follows from the tests of Kollbrunner and from the reasoning on
which we based our formula

oB oE\4 + 3oP\4 (26)

given in eq. (35) of our first paper2) 8), with a given stress-strain diagram
the buckling stress has to be computed under the assumption that the entire
plate deforms plastically. If, however, it is not the stress-strain graph which
is given, but the relation between slenderness ratio and buckling stress of
columns, it evidently makes little difference, whether both columns and
plates are assumed to show elastic regions or not. In our first paper we
worked with the first assumption. With buckling under pure compression
we found just below the yield stress for the plastic region 7)

A 0.421, B 0.426, D 0.938 F 0.322 (27)

whilst in the elastic domain

A D 1.099, B 0.329 F 0.385 (28)

so that according to eq. (26) we worked practically with the following
average values for the entire plate

A 0.591, B 0.402, D 0.978, F 0.338 (29)

Assuming on the contrary that the slenderness-buckling stress relation for
bars is based on an entirely plastic deformation, so that we have to reckon
with the tangent modulus Et, we find just below the yield stress Et
tfol/7t2 602 2400/^2 875 000 kg/cm2, tan 9? 0.715E and *-= 0.073, so
that for pure compression we obtain

A 0.593, B 0.422, D 1.012 F — 0.355 (30)

which values are at most 5 o/0 higher than those of eq. (29), so that with
eq. (26) we remain on the safe side. As the actual conditions are rather*
intricate and as in the latter way our computations remain in concurrence
with the current calculations for bars, we shall use eq. (26) also for our
further computations.

In order to oompare several cases of buckling, we shall calculate the
ratios of the buckling stresses oB just below the yield stress and those in
the elastic domain, oF, the result being given in Table IV.
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Case 1 is an infinitely long plate, subjected to compression in axial
direction, of which one unloaded side is simply supported whilst the other
is free (fig. 4). In this case buckling occurs by pure twisting, so that on
the original pure compressive stresses pure shearing stresses are superposed.
Hence a maximum resistance will occur here, as the infinitely small shearing
stresses will not increase oq in eq. (11), as may be seen readily by differentiation.

More directly it follows from fig. 5, that an infinitely small stress
dx, superposed on a pure compressive stress ox, increases the diameter of
the stress circle only by an amount that is infinitely small of the second
order, so that, independent of the used plasticity condition, the equivalent
linear stress oq does not increase by it17). Hence in fig.3b the state of
stress remains represented by the same point P, so that Ep remains constant.
This explains also why in this case the slope angle cp does not influence
the resistance to buckling. Plastic deformations occur only because, according

to fig. 5, the principal axes of the state of stress rotate through a
small angle <x'. The total shearing strain is accordingly given by yxy in
eqs. (19).

-* +z

< ..dx »|

"Tö^Hf
ihep " U—¦^rrJ^5£j

Mn Ml

bherp

Fig. 4

^dr
"TgdzT\

Fig 5

We have already investigated this case before17). As in the elastic
region we can use here the energy method18). The work done by the stresses
ox - oP is

a b

Vo i\\ hop(dwjdx)2dxdy (31)
o o

The strain energy of the entirely plastically deformed plate is, as C^=B19)
a b

(33)

ßy* \6yV ' \öxvy.

With buckling V0 VI, which condition yields, with (fig. 4)

w Kysinnxja
and as /=/z3/12, the critical stress

" '(^ + ')(t)' (34)

17) Bijlaard, De Ingenieur in Ned. Indie, no. 3, 1939.
18) Timoshenko, loc. cü, p. 325. Hartmann, Knickung, Kippung, Beulung, p. 168.
19) Bijlaard, lit. footiaote 2, eq. (66).
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With an infinitely long plate b/a 0, so that

aP EFh2\b2 (35)

It looks somewhat stränge to use so much mathematics to solve a case which
is in principle so simple. A simple Solution is, however, possible in sexeral
ways. If we consider an element bh dx of an infinitely long plate (fig. 4),
no bending stresses occur in the cross sections. With a slope angle x of
edge y -=- b, the thrusts bhox bhoP give a total outer moment

M0t J b h Opa dx

As, with w, also dw/Bx is proportional to y, the individual outer moments
M0 by the stresses oP are also proportional to y (fig. 4), so that the twisting
moment Mt in sections h dx, perpendicular to the F-axis, is distributed
parabolically, as shown in fig. 4. As in the plastic region we ha\e, instead
of G Txyl/'xye, value xxy\yxy EF according to eq. (23), we get

b

a \Mt dy\EFJd § Mt0 b\EFJd
o

so that the twisting moment Mt0 at y 0, that has to balance the total outer
moment Mot, is ^ §^tt{b hEFh,adxjb
Equating Mot and Mto yields eq. (35). That we found here a parabolic
distribution of Mt instead of the actual equal distribution, in accordance with w
being proportional to y, is a consequence of our intentional neglect of the
real distribution of the equivalent shearing forces VX QX — £MX] dy along
the elemenv bh dx. This is allowed because additional shearing forces AVX

b

cause a slope angle Ax^=dx J AV\ydyfEFJ'd in which the integral is zero
o

owing to equilibrium conditions, so that Ax — 0.

Although in this case a decrease of oq is nowhere caused by the excess
stresses, so that elastic regions nowhere occur, it is sufficiently safe to use
value F of eqs. (29), being less than that of eq. (30). Hence eq. (35) yields,
as in the elastic region F=- 0.385 according to eq. (28),

ob 0,338 Eh2\b2 (0,338/0,385) oE 0 878oE.

In case 2 of Table IV — a long plate, compressed in longitudinal
direction, of which the unloaded sides are simply supported —, also rather
high twisting stresses occur with buckling. If one or both sides are fixed
(cases 3 and 4), the twisting stresses are less, so that the^e three
cases show decreasing values of oB oE. We found2) hoB 3.65 n2EJlb2,
4.77 ti2EJjb2 and 5.97 7i2EJ/b2 respectively, whilst in the elastic region we
have hot 4.40 n2EJ/b2, 5.94 n2E1jb2 and 7.67 n2EJjb2 respectively, yielding
the ratios given in Table IV.

In case 5 of Table IV — an infinitely long plate, simply supported
at the edges and subjected to pure shearing (fig. 6) — the X-axis is placed
parallel to the long edges. Wie can calculate values, A, B, D and F first
for the state of stress q2 —ov assuming X- and F-axes in the directions
of the principal stresses. As stresses and strains transform as the components

of a tensor, we subsequently apply the respective equations20) to

20) See for transformation equations e. g. Timoshenko, Theory of Elasticity, 1934,
p. 191, 192.
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transform the stress-strain relations to those for the X- and F-axes parallel
to the edges of the plate. We find then that we have to introduce in eqs. (20).

A D 4m2(l + e)j{4(tn2 — \) + 4em(2m—\) + 3e2 tn2}

B 2m(2 + em)l{4(m2 — \) + 4etn(2m~-\) + 3e2m2}
whilst in eq. (23)

F mtancp\{3mE+ 2(m + 1) tan99}

in accordance with eq. (67) of our first paper2).

(36)

\y
X

Fig. 6

de^

Pi \\P. p ipi

Yde

Fig. 7

We have here the inverted case of case 1, as here before buckling
ox oy=0, so that the excess stresses ox and 0/ do not increase the
equivalent stress oq in eq. (11), for e. g. doq\cox= (2ox — oy)/2oQ= 0. More
directly we see in fig. 7 that additional stresses dox and doy increase the
maximum shearing stress only by an amount of the second order21), so that,
as the envelope of the stress circles g-lg2 with constant shearing energy has
a horizontal tangent here22), the shearing energy and oq do not increase.
Hence also if the maximum shearing stress were determinant for the plastic
deformation, the equivalent stress would not increase21). In fig. 3b value
Ep remains constant now, so that

ex' z'xe + z'xp ox'lE — Oy'jmE + ox'\Ep — oy'\2Ep

{2/^(1 + e) ox' — (2 + em) Oy'}\2mE (37)
and by interchanging x and y

Ey' {2m(l + e)Oy'—(2 + etn)ox'}l2mE (38)

fnverseiv expressing ox and 0/ in sx and ey we obtain from eqs. (37) and
(38) the relations given by eqs. (20 and (36). On the other hand, with
excess stresses x'xy the ratio of the initial stress components does not change,
so that in this case quasi-isotropic deformation will occur, in which the
Tfxy—yxy relation is determined by the slope angle of the x—y diagram. As
Gp Ep/3i the slope of the xxy—yxyp diagramm is tan 99/3, so that

Yxy y'xye + y'xyp ^xyjÖ + 3 rxyJtan(p

[{3mE + 2(tn + 1) tancp)\mEtan99] %'xy

yielding again the same value F =-Txy\Eyxy as given in eqs. (36).

(39)

21) Bijlaard, De Ingenieur in Ned. Indie, no. 4, 1939.
22) Bijlaard, Publ. Int. Ass. f. Bridge and Struct. Eng., Zürich, Vol. 6, p. 27—44,

fig. 3.
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We may also insert directly in eqs. (18) ox oy 0 and xxy + 0, by which
eqs. (18a)—(18d) yield dExpj6ox dEyP\dOy \jEp, dEyp\dox dExp\doy=~\\2Ep,
whilst for dyxyp/drxy eq. (18g) applies, in which oq2=3xly. The other
derivatives are zero. Insertion of these values and of eqs. (10) in eqs. (8) leads
again to eqs. (37), (38) and (39) and hence to eqs. (36).

We calculated the critical stress for case 5 with the method as given
by Southwell and Skan 23) for the elastic region and as used by Seydel 24)

for orthotropic plates. In eq. (68) of our first paper2) we gave already
the final result of our oomputations for plates with various proportions,
but in order to facilitate a check by designers who want to use it, we shall
give here and in section 2.4 a short indication of its derivation. As according

to eqs. (36) D A and the shearing stresses rxy xP acting on an
element // dx dy produce with buckling a resulting force hxp(d2w/öxdy)dxdy,
whilst the same force is given by xyx, the differential equation (30) of our
first paper2 )becomes now1)

fyU(^+^)+2(ß + 2/0^r^|-2Ärp^f 0 (40)
l Vc/jc4 dy*J cx2dy-\ dxdy '

With w Yeiax, in which Y is a funetion of y only and i ^—1, eq. (40)
yields

EJ{AY""—2(B + 2F)a2Y" + Aa*Y} — 2iahTPY' 0 (41)

primes denoting differentiation with respect to y. Inserting Y =- eißy in this
equation, we obtain

ß* + 2^±^a2ß2 + 2^aß + a± 0 (42)

so that, ß1—ß± being the roots of equation (42)

Y M e^y + N2 el^y + Ns eiß^ + N* eiß^ (43)

The boundary conditions at y ^-c yield
Y 0 and Y" 0 (44)

Insertion of eq. (43) in here gives us four homogeneous linear equations,
yielding only values N, that differ from ziero, if the denominator
determinant is zero, which gives the buckling condition

(ft2 — ß22) (ßs2 — ft2) sin (ft c — ft c) sin (ß2 c — ft c)

(ßr - ßz2) (ß22- ft2) sin (ft c- ft c) sin (ft c-ß4c) (45)

Writing, as Southwell and Skan, the roots of eq. (42) as

ft,2 y ± ä, ft,4 — y ± e (46)

in which y is real and S and e either real or pure imaginaries, comparing
of coefficients yields

2* \9 o n " * 21
%

y- __ ()- €- 2 or

(y*-V)(y*- *2) «4

(47)

23) Southwell and Skan, Proc. Royal Society of London, Series A, 1924, p. 582.
2*) Seydel, Zeitschr. f. Flugt. u. Motorluftsch., 1933, p. 78.
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Insertion of eqs. (46) in eqs. (45) gives

8 y2 de(cosöb cosEb - cos2 yb) {4y2(d2 + E2)-(d2-E2)2} sin dbs'mEb (48)

In our paper on this subject21), using eq. (26), we calculated first xP.
Just below the yields stress, with tan 99 0.294 E and e 0.1675 2), eqs.
(36) yield, with m=\0/3

A 0.960, B 0.316, F 0.078 (49)
which values were inserted in eqs. (47). As w Yelax, the half wave length
in X-direction is 71/x. For several half wave lengths 71/x value xP was calculated

from eqs. (47) and {48) be trial and error. We found the srnallest
value xP with a half wavelength tc/k= 1.1 b, for which

TP= 3.38 Eh2\b2 (50)
In the elastic domain the most accurate value is25) xE 4.82 Eh2/b2, so that
eq. (26), in which now o has to be substituted by r, yields

tb= 3.14Eh2\b2 (51)

by which the ratio xBjxE as given in Table IV is obtained.

y b

Fig. 8

Case 6 of Table IV, a square plate, simply supported at the edges
and subjected to pure shear (fig. 8), was computed by the energy method.
As here, according to eqs. (36), D — A, eq. (32) may be written as follows 21)

a b

Vi ^EJ\\\A[~ + ^) +2(B-A)^^ + 4F(^7y}dxdy (52)
c x cjy

The work done by the stresses xxy ¦= xP is 26)

a b
' dw dw

Vo — h xp dx dy
dxdy

The expression oo oo

^ 2 2 aPgS\n(p7txja) s\n(qn;ylb)
p=l q=l

(53)

(54)

satisfies the boundary conditions. After Substitution of eq. (54) in eqs. (52)
and (53), the condition V0 Vi yields

TP
n,EJ Aa2b2ZZalq{^ + ^-2(A^B-2F)ZZa;gp2q2

32abh 2222 aDaat pq rs (55)

P^rs(r2_p2){g2_s2)
2b) Seydel, Ingenieur-Archiv, 1933, p. 169.
26) Timoshenko, I.e., footnote 9, p. 314.
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To make xP a minimum, w<e have to equate to zero the derivatives of xP
with respect to each of the coefficients apq, by which a System of homo-
geneous linear equations is obtained, containing, except the coefficients apq,
value xP as the only unknown quantity. The denominator determinant of
these equations, which has to be zero, is, as in the elastic region, the product
of two determinants, one for which p 4- q are odd numbers and the other
for which p-\~q are even numbers. The latter gives the smallest values xP.
If we limit our calculations to five constants, atl, an, a22, a31 and fl33, it
has the following form

pq\ 11 13 22 31 33

11

13

22

31

33

in which ß =-u * — W^r ~ and P=*(A — B-2F)b 32 a-ßhxp
For a square plate, ß being 1, it yields1) 21)

i{A(uß*y -Pß2}
4

9
•

• l{A(\+9ß2)2 -VPß2} -\ •

4

9

4

5
16l{A(l+ß2)2-Pß2} —

*

- *
l{A(9+ß*)* -9Pß2}

36

25

36
9^

81 ;.{4( \+ß2)2-Pß2}

^=±-J8lT^ + B + 2F)E(b) \824gA + 2601 (B + 2F)
(56)

Insertion of eqs. (49) gives
TP 5.64 Eh2\b2 (57)

In the elastic domain, with values A D, B and F according to eqs. (28),
eq. (56) yields

iE 8.52 Eh2\b2 (58)

so that eq. (26), with o replaced by x, yields

tb= 6.36 Eh2\b2 (59)

by which we obtain value xß/xE=^ 6.36/8.52 0.747 as inserted in Table IV.
As eq. (40) is the differential equation of a so called orthotropic plate

—— + 2DS -r-rr-^ + D2 -^-^ — 2 h tp ^——dxA dx2cy2 dy2 dxoy*^ + 2*J^ + *^-™*P-£iz <> (60)

in which D± D2 EJA and D3 EJ(B T2/r), xP may also be found from
a graph, derived by Seydel2^) from computations based on eq. (60). We
got in this way for cases 5 and 6, values xP 3.42 Eh2/b2 and xP -= 5.54
Eh2jb2 respectively, being in good accordance with eqs. (50) and (57).

For case 7 (fig. 9), a plate, subjected to a state of stress 0«, ^ or
ß Q2/Qi=i> 1* follows from eqs. (20) —(23) that
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A D

B

m2{E+(4 + 3*)tan«p}
{2(m+ \) + 3em){mE+ 2(m~ \)tancp)

m{—mE + (4 + 3em) tan99}

{2(m + \) + 3em}{mE + ^2(m — \)tancp}

(61)

value F having the value of eq. (23). In this case it appears that B-\- 2F -=
A D, so that, as C B, eq. (30) of our first paper2) transforms into

AEJ (d*w
+ 2- d±w

cjxzöy2 dy
(d2w d2w\

(62)

so that the differential equation has the same form as in the elastic domain.
With tan cp 0.294 E and e 0.1675 it follows from eqs. (61) that 4= 0.531,
whilst in the elastic domain A 1.099. As it is clear that a deflection
surface w w0 sin (jtx/a) sin (ny/b) will give here the smallest buckling stress,
it follows immediately from eq. (62) that oP g±= (0.531/1.099)ov and,
according to eq. (26) oB/oE 0.673/1.099== 0.612, which value has been in-
serted in Table IV. Furthermore eq. (62) yields, after Substitution of this
deflection surface,

h GP h Qi (jt2A EJ\a2) (1 + a2\b2) (63)

In the elastic region AEJ transforms into the flexural rigidity of the plate,
by which eq. (63) becomes identical with the buckling value given by
Timoshenko27).

uaiauiiiiiiiiiiiii
* :=

ttnttttttmtttittttt
r \V

Fig. 9 Fig. 10

For a circular plate with clamped edges (fig. 10), case 8, where also
/?=-£2A?i= 1> we have only to replace in the differential equation for the
elastic region 28) the flexural rigidity of the plate by value AEJ, so that
it becomes

„*g + „g + („=-,„ o

in which cp —dw/dr, u xr and x2 hoP/AEJ.
Eq. (64) is a Bessel equation, being satisfied by

99 — CJi(u) CJ\(ar)

(64)

(65)

in which J^(u) is the Bessel funetion of the first order. At the edge r^=as
the condition

er CA(aa) 0 (66)

') Tivoshznko, 1 c, footrote 9, p 334
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has to be satisfied. Just as in the elastic region this yields xa 3.832,
by wrhich

14.68,4 £7
hop AEJ et1 (07)

a-

so that, as in the preceding case, oP-= (0.531/1.099) oE and oB= (0.673/1.099)
oE=0.612oE. Furthermore we obtain with eq. (26) hoB= 0.673(14.68EJ/a2).

If the circular plate is simply supported, case 10, the ratio oB/oE is
not the same, as now also value B appears in the boundary condition, being
that the radial moment Mr has to vanish at r=a. Placing coordinate axes
A' and Y as in fig. 10, we have, according to eqs. (29) of our first paper2)

Mr= Mx — EJ(Ad2wldx2 + Bd2wjdy2) EJ(Adcp\dr + Bcplr)

so that the boundary condition at r a is

dcp\dr+(B\A) (plr=0 (68)

As dJ1/du=^ J0—JJu, in which /0 is the Bessel funetion of zero order, this
boundary condition transforms into

aaJo(aa) — (\—BjA)J1(aa) 0 (69)

With /ra 10/3, tan cp 0.294E and £ 0.1675, eq.(61) yields £ —0.114,
so that, with A 0.531, eq. (69) becomes

a aJo (a a) — 1.215 J\ (ad) 0

From a table of Bessel funetions it follows that the smallest root of this
equation is xa =1.66, so that

2.756 AEJ /7mhop AEJa2 - (70)
a2 '

whilst in the elastic region 28)

kaE 4.70-^-j^ (71)
m2 — 1 a2

With 4 0.531 and m2/(m2—l)= 1.099 we get, using eq. (26)

hoP 1.465 EJ\a2, hoE 4.616EJ\a2, hoB 2.253EJ\a2 (72)

so that oB 0.488 oE.
For case 9, an infinitely long plate, compressed in the short direction

with length a, so that ß=0, we have, according to our first paper2)
hop^jr2EJA/a2, in which according to eqs. (27) A 0.421. Hence we get with
eqs. (29) and (28) AaÄ= 0.591 Jt2EJ/a2 and hoE \.099n2EJ/a2, so that
°bI<*e 0.536.

If on the same plate moreover a compressive stress o2 ox/2 is acting
in the other direction, so that ß y2, according to c a s e 1 1 in Table IV,
eqs. (20)—(23) yield 4=0.289. As here also hoP=7t2EJA/a2, we find, with
4=1.099 in the elastic domain, hoB= 0.491 n2EJju2, so that oB/oE=0.446.

For a column, ca s e 1 2, oB/oE TjE, so that, just below the yield stress,
oB oE 875/2100 0.417.

Table IV öhows clearly that the less the ratio of the
deviator components, as superposed by buckling, differs

28) Timoshenko, 1. c, footnote 9, p. 368, 369.
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from that of the original deviatorcomponents, the smaller
is the ratio oBloE. With a bar the ratio remains the same, yielding

the smallest ratio.

Table IV.
Cases of buckling with decreasing difference between the ratios of the
deviatorcomponents of the superposed (by buckling) and the initial state of

strain (before buckling).

Case

1

2

3

4

5

6

7

8

9

10

11

12

Boundary conditions
and loading

'/////////////////Z/s.
T

3f'/////////SS///////,

V//////S////S////;?'

C It

o <

uninmuiii

ItlltTOnlf^uummu
r<%

mm i

'¦^\Q\ Ratio OßjoE or tbIte with buckling
just below the yield stress

0

0

0

1

1

1

1

0

1

0.878

0.830

0.804

0.778

0.775

0747

0.612

0.612

0.536

0.488

0.446

0.417

In eqs. (69) and (70) of our first paper2) we gave a general method of
computation of the plastic buckling stresses for plates supported on three
or four sides. It is based on the fact that plates, having on the supposition
of proportionality of stress and strain a buckling stress, belonging to a
slenderness ratio 80, being oE n2 E/k2 3240 kg/cm2, have in the plastic
domain a buckling stress equaling the yield stress ov 2400 kg/cm2, so that
oB/oE 2400/3240 =0.740. Table IV shows, that for the cases occurring in
bridge and structural engineering, namely, cases 1 to and including 6, this
method yields safe results.
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1. 5. Plastic stability of shells.
A short indication will be given here as to the application of our theory

to the buckling of Shells. Our fundamental equations are those giving the
relation between the excess stresses and the excess strains with buckling,
being, according to eqs. (20) — (23)

Ox

' xy

e(Aex' + Be;)
E{Bex' + DEy')

EFy'xy

(73)

Using the same notations as Timoshenko29), except that our primes indicate
infinitely small stresses and strains occuring with buckling, we have

«1 — 7x z

£2 — Xy Z

)'xy — y ^ Xxy Z

(74)

in which «/, e2' and y' are the excess strains of the middle surface, yj and yj
are the excess curvatures and x'xy is the twist, whilst z is the distance from
the middle surface. Substituting eqs. (74) in eqs. (73) we get

E{Aei' + B s2' — z(Axx'+B Xy')}

E{Be!'+D s2' — z (B yj + D y/)}
EF(/-2Xxyz)

(75)

Hence we find 30)

+Ä/2

U'-

Nx' J Ox dz Eh (A Ei + B e2')
—///2

n;
+ Ä/2

\ oy! dz Eh{ßE{ + Df2')
-h/2

Nxy
+Ä/2

J rxy dz —- EFh y'
-h/2

Mx>
+ Ä/2

| ax'zdz=- EJ(AyJ + Byy')
-A/2

m;
+A/2

\ oy'zdz=—EJ(ByJ + DyJ)
-h/2

MXy
+Ä/2

— j Txy z dz 2 EJFyXy

(76)

Fig. 11

As an example we shall consider the buckling of a cylindrical shell under
the action of uniform axial pressure hoP per unit breadth. If buckling occurs
symmetrical to the axis of the cylinder, the equilibrium of an element h dx
of a strip OP of unit width (fig. 11) requires, if compressive stresses are
denoted as positive and denoting displacements in Z direction by w,

29) Timoshenko, I.e., footnote 9, Chapters VIII and IX.
30) Cf. values in elastic regions, I.e., footnote 9, p. 421, 422.
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dQx'jdx — hopd2wldx2 — Ny'la 0 (77)

Value Qx' dMx/dx. Owing to impediment of distortion of the cross-section,

yj may be equated to zero, so that eqs. (76) yield

Mx' — EJA yj - EJA d2w\dx2
and, as e{ —w/a,

Nx' Eh(AE{—Bw\a)
As, however, hoP does not increase with buckling, AV must be zero, yielding

et' (B A)(WjO), by which we obtain

N; Eh(B2 A—D)w\a
Substitution of these values in eq. (77) yields, as in (77) Ny' is a compression,

the differential equation

r,Äd*w d2w (B2 AEhw „ ,„
With U'=w0 sin (pnx l) eq. (78) yields, after ranging

hoP= EJA p2n2\l2 + (D — B2\A) (Ehja2) l2\p2 u2 (79)

With sufficiently long cylinders the wavelength can establish itself in such a
way as to make hoP a minimum. Differentiation shows that then

pjz ___ y/AD — B2 h

l ~ )' Ä2 aU

Insertion of w^hich in eq. (79) yields the critical stress

op (Ehja) HAD — B2)j3 (80)

whilst the length of the half waves in X-direction is
4

lP-^WÄ^hw)^ah (81)

In the elastic domain e 0 and tan cp oo, so that eqs. (20) — (22) yield
^1-Z> m2 (m2—1) and £ m/(m2 — 1), by which eqs. (80) and (81)
transform in

Eh \ m2 / i/ tri2 a'2 h2
oE =- — 1/ -;— —- and — 7i \hnn— ,ta ]3{m2—\) p \\2(/ri2 — 1)

in accordance with the values obtained directly for this case31).
In this case we find with eqs. (80) and (27) o> 0.264 Ehja, whilst

^ 0.605 Eh/a, so that according to eq. (26) oB= 0.349 Eh/a and oB/oE-=
0,577, this ratio being between that for cases 8 and 9 in Table IV.

Considering the more general case of buckling of a cylindrical shell
under axial compression and denoting the displacements with buckling in
X-, Y- and Z-directions by u, v and w respectively, our equations (76) yield,
after expression of values e±', e{, y', yj, %/ and %'xy in terms of the
displacements 32),

31) Timoshenko, I.e., footnote 9, p. 440, 441.
32) Timoshenko, 1. c, footnote 9, p. 434.
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l dx \ad0 an

NS=Eh\B¥ + D(e*-»)\* \ ox \acj 0 a J)

N'Xy NyX EFh[^ + r\ad0 cx

J a \c x cx cjvJ

(82)

value & being indicated in fig. 11.
The conditions of equilibrium are in our notations, and neglecting

second order terms33),

dN'dN'yXa— h —-cjx de
o

dNy' dNXy- + a ——+ - ahopdß CJX

«2i

d^ dMXy
dx2 dx

cAV 0
adß

u ö*w*ki>* d2w.d2M;xd2M;— ahop- + Ny' + a-^-v~+ -+a -\ ^dx2 * dx2 c x et) ac 6~

Substitution of eqs. (82) in eqs. (83) yields

A
d2u B + F d2v B dw F d2u n

C2MXy _dxdO

(83)

dx'- + ßxdd a dx a2 oö2

inj. p\ ß2u
_l Pc2v D(c*v 6w\

\D(d*v 63w\ Pw pc9-v\ ahaP c9-v

ahop d2w du D dv
~eY d^ + B- + ~~cx

d*wa*A"— + 2a(B + 2F)

_ D
a dß a

dAw

c6v D d*v

r0v2 Pf)2dx* ' x ' cJXz ö

in which a, A2/12 a2. Assuming

a u0 cos n 6 cos p TT xjl
v v0s\nn6 sinpjzxll
w w0 cos nß s\npjix\l

eqs. (84) transform into

w-a\^B+4F^-ee+ a ce

^ a cÖM

3 +

(84)

(85)

33) Timoshfnko, 1 c, footnote 9, p. 454.
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(Ah* + Fn2) u0 — (B + F)nlv0 + Bkw0=:0
— (B + F)nluo + {Dn2(l + a) + Fl2(\ + 2a) — opl2lE)v0 —

— n{D(\ + an2) + (B + 2F)al2} w0 0 [(86)
Bluo — n{D(l + an2) + (B + 4F)al2}v0 +

+ {A al± + 2(B + 2F)an212 + D(\ + an*) — oPl2\E) w0 0

in which l-=-pna/L Hence the critical stress oP follows by equating the
determinant of the equations to zero. Further computations may be effec-
ted along the same lines as in the elastic region.

In order to check eqs. (86) we again assume buckling symmetrical to
the axis of the cylinder, so that in eqs. (85) we have to equate n to zero„
by which also v beoomes zero. Hence the second equation (86) vanishes and
eqs. (86) transform into

Akuo + Bwo 0

Blu0 + (Aal± + D — Gpl2\E)w0 0
}

yielding oP E{Aal2 + (AD — B2)\AX2}

or hoP EJAp27t2\l2 + (D ~B2\A)(Eh\a2)l2\p2n2
in accordance with eq. (79).

As a matter of fact thick tubes, buckling in the plastic domain, do thisusuallv
in a symmetrical way, whilst with thin tubes buckling which is non-symme-
tricai with respect to the axis usually occurs34). This behaviour is in good
accordance with our theory, because non-symmetrical buckling causes twisting
stresses, against which, if e is small, as with steel, the resistance is only
slightly diminished according to our theory, value F in eqs. (29) being not
much less than in eqs. (28). We can prove it directly with our eqs. (86).
For the elastic domain Timoshenko proves that, if l2 is a large number^
the critical stress with non-symmetrical buckling is equal to that with
symmetrical buckling35). Taking into account the same terms as he does, we
find for the plastic domain, by equating the determinant of eqs. (86) to zero,
the following equation

{(AI2 + Fn2)(Fl2 + Dn2) — (B + F)2 n2 l2)l2-oPjE
(AD-B2)Fl± + a{AlH2(B+2F^n2l2+Dn±){(Al2+Fn2)^

or, after transformation

Op__ (AD-B2)l2 t a{Al* + Dn± + 2(B + 2F)n2l2}
E ~~ Al* + Dn± + {(AD-B2)lF-2B}n2l2 ' l2 ™'
In the elastic domain we have2) A D m2/(m2—1, B m/(m2—1),
F m/2(m + l), so that (AD—B2)/F—2B= 2(B + 2/r) 2m2/(m2—l),by
which the denominator of the first fraction of the second member of eq.
(88) is equal to the term in brackets of the numerator of the second frac-
iion. If in the plastic region this were so too, we could write eq. (88) as
follows

oP\E =(AD — B2)yj + aly> (89)

34) Timoshenko, 1. c, footnote 9, p. 443.
35) Timoshenko, 1. c, footnote 9, p. 456.

Abhandlungen VIII
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value xp being a funetion of values l and n that determine the number of
waves in axial and circumferential direction. In order to make op a minimum,
we then would have the condition

V }/al(AD — B2)

by which eq. (89) would yield

oP 2E]/~o(ÄD — B2) or oP= (Ehld)i(AD — B2)j3

in accordance with the buckling stress for symmetrical buckling as given
by eq. (80). In the plastic domain, however, considering for example buckling
at the yield stress with mild steel, value (AD—B2)/F—2B will be much
less than 2(B -2F). In this case we have, according to eqs. (27), (AD—B2)i
F—2B= — 0A9, whilst 2(B^2F) 2A4. Consequently the second frac-
tion to the second member of eq. (88) has a much higher value than with
our assumption that gave eq. (89). Hence we may conclude that with higher
values l2 in the plastic domain the critical stress with non-syrnmetrical
buckling is higher than with symmetrical buckling, which may explain why
short and thick tubes usually buckle symmetrically. In another paper we
shall consider these questions more in detail.

2. Stability of the webs of bridge members and girders
2. 1. Columns with open or closed box section.

In our first paper2) we gave in Table I, page 68, design formulae for
compression members in structural steel No. 37. After wre wrote it, we had
also values ys determined, relating to sections 4 of Table I (fig. 12),

Ul t7

4 4L_i Fig. 12

published first in a more extensive paper on this subjeet 36) and reproduced
here in fig. 13. These values ys have consequently to be used for sections 4,
as given in fig. 12, instead of values y2, which we recommended provisionally
for want of values ys. Also these curves were calculated by my former
assistent in Bandoeng, Ir. L. F. Cooke and by Ir. P. Th. Wijnhamer. They
have the same general trend as the curves for y± and y2, a difference being,
however that for example the point of intersection of the two curves for
ß=3 is at about ^=0.87, whilst for yt andy2, given in figs. 13 and 14 of our
first paper2), this point is at ju 0.76. In order to make this problem and
the graphs better understood, we shall explain this difference.

In the same way as y± and y2 were inserted in eq. (62) of our first paper,
73 is inserted in the equation

f=ai-{$.--m»'SF ss

36) Bijlaard, De Ingenieur m Ned Indie, no. 10, 1939.
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(b/h)st being the value o*f b/h if one unloaded side of the plate is simply
supported and the other side is fixed and (b/h)ss being valid if both sides
are simply supported. If both values are expressed in the slenderness ratio
of a bar that has the same buckling stress, we obtain for the elastic domain

=°iss
606

/ and t) =070-h Jsf r (91)h /ss
insertion of which in eq. (90) yields

b\h (0.7 — 0.094 y3) l\r 0.7 (1 — 0.14 y3) l\r (92)

according to the formula given in Table I for section 4 for l/r> \00.
Our computation of yd is based on eq. (59) of our first paper2), in which
O=0b according to eqs. (53) and (54) there. With values ß=\j2, 1 or

0.2 OA 0.6 0.8 1.0 tt_hb

0.2

OA

0.6

0.8

1.0

ß-3
i *+-

P--2

&a

J8=f

/?-1 Sectio/? j—X
QuerschnittLX

4f
ß=0

M= h"b

n
Fig. 13

3/2 the ß curves in fig. 13 are continuous, a2' having a real value, so that
the deflection surface of the „resisting" plate is given by eq. (44) of our
first paper, being

u/'^Ci'coshof!'/ + C2'sinhori'j/ + Cs'cosatf/ + C4 sin a2'y') cos(pjrxja) (93)

The curves for ß 2 and 3, however, consist of two branches. With ß 3
and values p, smaller than 0.87, value y3 is about 0.03, so that the „buckling"
plates, with thickness h, being the vertical plates in fig. 12, are practically
fixed at the upper sides by the thick „resisting" plate. In this case the
latter has a thickness 3 h, so that the thinner „buckling" plates influence
it only slightly. Therefore the „buckling" plates will buckle with a half
wave length a/p that is practically the same as if one side is fixed and
the other simply supported, being about 0.8 b. If for example ju 0.8, value
b' will equal 2.4 b, so that this will bend the thick „resisting" plate in
half waves with a length of about one third of its breadth. We showed this
in fig. 14 a, by rotating the vertical plates in the plane of the upper plate,
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buckling to the out- and inside being indicated* by plus and minus signs
respectively. As the most favourable wavelength for buckling of the upper
plate is about equal to its breadth, this will not promote its own buckling.
Apparently it acts here as a number of plates with breadths 0.8 b and
lengths b'. As with a length larger fhan the breadth 0.8 b, the resistance of
suchlike plates against angular rotation at the short edges 55 and TT
(fig. 14a) practically does not vary, this explains too why y3 is practically
constant with p varying between 0.25 and 0.8. As here, moreover, the
compressive stresses in the upper plate have little influence, so that it is not

V jp V y
-*- ^_ ,• +

,b K
b*2kb J

+
S T

~
S

+
T

+ - +

—~——-"-"¦"—¦

+ - +

xb x
b'=2 7b

3
b

-h -

+ -
9

— ¦+- —

Fig. 14 a Fig. 14 b

äctually buckling, but is bent only by the „buckling" plates, the sine and
cosine functions, which are typical for buckling, do not appear here in the
equation of the deflection surface w. Value <x2' is imaginary here, so that
w* ist given by eq. (50) of our first paper2), being

w* (Cfcosh a{y' + C% sinhfli/ + CS cosh a'iy' + Clsinh a2/) cos(p7ix\a) (94)

If, however, ratio b'/h! of the upper „resisting" plate, equals about the ratio
with which it would buckle itself, if its sides were simply supported, being,
according to eq. (91)

V\K — 0.606 l\r or fx hV\Kb 0.606 (l\r) h\b (95)

it will buckle itself in its own most favourable half wavelength, being about
equal to b\ It forces the same wavelength to the thin „buckling" plates
which offer only little oonstraint to it. This is shown in fig. 14b. As with
ys between 0 and 1, value b/h varies according to eq. (92) between 0.7 l/r
and 0.6 l/r, this kind of buckling, for which <x2' is real, so that the deflection

surface is given by eq. (93), will occur according to eq. (95) with
values p that vary between about 0.87 and 1 with 73 varying between 0 and 1.
This is in accordance with the second branch of curve ß= 3 in fig. 13. The
fact that with yu=l, although both plates have the same ratio b'/h' b/h,
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value j'o is still smaller than unity, so that the buckling stress of the plates
is still higher than with simply supported edges, is explained as follows.
As h' is more than h, the breadth b' is more than b, by which the most
favourable wavelength of the plates is different. As, however, they have
to buckle in the same common wavelength, their buckling stress will be en-
hanced, being higher than that of a plate with simply supported edges.
Only if ß 1, so that, with /u=l, also b' b, by which for both plates the
most favourable wavelength is b' b, with p-=\ value y3 is equal to
unity too.

All these remarks are generally valid as well for values y1 and y2, given
in figs. 13 and 14 of our first paper2). The difference is, however, that
there y 0 relates to a plate of which both sides are fixed, so that for y 0
the ratio b/h 0.8 l/r. Therefore in the graphs for y± and y2 the second
branch of the curves ß =- 3 will correspond, according to eq. (95), with values
p varying from 0.76 to 1 with y varying from 0 to 1. This tallies with
those graphs and explains why there the point of intersection of the two
curves is at ju= 0.76, whilst in fig. 13 of our present paper it is at u 0.87.

2. 2. Stability of Tee stiffeners.
Fhis subject has already been treated37). It involves the proper choice of

stiffeners to support the plating of reinforced monocoque construction or
for example the web of plate girders. The ends x 0 and x =- a and the edge
y 0 of the stiffener web being assumed to be simply supported (fig. 15),

a

Fig. 15

h-

E±3

the relative boundary conditions, which we may omit here, reduce the Solution

of the differential equation of the stiffener web to

w= (C2S\nha1y + d sin a2y) sin (p jz xla) (96)

using the same notations as in our first paper2). For the edges y b of the
stiffener web Windenburg, who assumes moreover the deformations to be
elastic up to the yield stress, admits however the following two boundary
conditions

KT(d'Jw 2m — 1 63w \ D d*w d2 w

\cjys m dx2dy) c *4 dx2 v '

Kr(d2w 1 d2w\ dBw

\dy2 m dx2) cx2dy '
in which N is* the flexural rigidity of the web and B2, C and A2 are the
flexural rigidity, the torsional rigidity, and the area of the flange respectively,

whilst w denotes the deflection of the stiffener web perpendicular;
to the AY-plane. These are the same boundary conditions as assumed by

37) Windenburg, Proc. of the 5th Int. Congress for Applied Mechamcs. Cambridge,
Mass.
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Chwalla38), of which, as we showed2), condition (98) neglects the tor-
sional action of the compressive forces in the flange, so that the torsional
rigidity of the flange is overiestimated. In order to take this action into
account, we have to replaoe eq. (98) by the boundary condition (IV),
preceding eq. (61) in our first paper2), so that in the elastic region we get

dy2 tn c x2 &2 cy '
in which, as follows from eqs. (56) and (58) given there2)

/q _ * (h\3(ai2r'2-apq'2)m\\aib'ma2b'-aia2(q'2 + r'2)m\\aib'ma2b' 2a[a2q'r'" 2 — 2VÄ7 (a{2 + aP) (a{ r'2 COSll a{ V SM a2' b' - a2 q'2 sinh a{ V COS a2 b')

Introducing eq. (96) in the boundary conditions (97) and (99), these yield
two homogeneous linear equations in C2 and C4. Equating the denomma-
tor determinant of these equations to zero, leads to the same condition,
as obtained, if in the general buckling condition (61) of our first paper2)
we equate values s± and 6^ to zero, namely

(sinh«i£ sin a2b) {02 S2t2 + ata2t2 cothatb cota2b + a2t(02q2-s2)cota2b —

— a1t(S2r2 — s2)cothai*} 0 (101)

As we pointed out already2), a Solution of eq. (101) is only obtained if the
last factor is equated to zero. Using, as did Windenburq, the notations
introduced by Miles and some additional ones, this yields

q __ (1-v-o)2dicoth dt-^-v + o)2d2cotd2-2Ro }!o2 1 coth dt cotd2 /jo2)

in which

R=2Vr ^d-.-rt'Y^i-^d-^^rg-T (103)
^1{(i-)')2-(i-2v)e2}-<f4{(i-»')2+?2}Vo2-i + {(i~i)2 eaj>eJ-i

and

<Pi

R Ei _
A tbD bh (f2

b

cp
h cp y<r+i d2 rzr f/ o^\

h ei cos e2, $3 coshei sin £2, #4 COSh ii COS S2t

*2
2 ft v v<? -1, Q .*

t
- h '

=»^*-
wehere D is the flexural rigidity of the web and EJ and A are the flexural
rigidity and the area of the flange respectively, being in our notations N9
B2 and A2 respectively. The values / and t replace our values 2 b' and If
and are shown in fig. 16, whilst values b, b'', h and h! are shown in fig. 15.
For the number of half waves in X-direction we keep the notation p, whilst
v is Poisson's ratio. With given values ff/h and bf/b, we can calcuiate with
eqs. (102) and (103) values ©corresponding to given values cp and yj. in
this way we had graph fig. 16 made by our former assistant in Bandoeng,
Ir. Lie Han Yang and his sister Miss Lie Lien Nio. The general trend of

38) Chwalla, Ingenieur-Archiv, Vol. 5, no. 1, 1934.
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the curves of constant 0 is the same as that in the graph of Windenburo,
as could be expected. If 0 equals 50, the buckling of the web, that occurs
also with a value xp of about 2 cp, will require practically the same xp value
as with infinite 0. With infinite 0, xp 2 99 and v =- 0.3 we find from eqs.
(102) and (103)

HV3coth(9>V3)-cotW jM^'V^-fr^g)'^ir Y)&1(0.49-0Aq2)~&40.49+q2)^q2-1+(0.49~q2)^q2-\

by means of which we had the graph in fig. 17 calculated, the füll lines
being those according to our theory. Whilst, with a given value
t/h, a computation based on boundary condition (9 8) will
always show an increase of \p with increasing ratio f/b, as xp

EJ
bh f1TN

<f =pjrb/a

V=bY*£

N'EhYnh-v*)

L 4--os
V=03

9s:

pd

5 <f

Fig. 16

increases with C/bD=\A ft*/bh$ up to7.30 as an upper
limit37), as is s hown in fig. 17 by the dotted lines, it does
not according to eq. (10 4). As a matter of fact, with agiven
value of f/b, the value xp will reach a maximum. For example,
with t/h= lthis happens with a ratio f/b of about 0.4,
because then the increase of C will be cancelled by the
increase of the buckling action of the compressive
stresses ox in the flange. With f/b 0.75, the value of xp with
t/h -= 1 is even equal to that with f/b 0, so that the flange does not offer
any twisting resistance to the web, wrhilst with higher values of f/b it even
promotes the buckling of the web. So we see that with lower l/h values
neglect of the buckling action of the compressive stresses ox in the flange
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causes an appreciable over-estimation of the buckling stress. If both sides
of a web plate are supported by flanges this over-estimation will be about
twice.

Besides a buckling of the web, a torsional buckling of the stiffener as
a whole may occur. This case is also included in the graph, fig. 16. One
reason for our having the graph made was, that we wanted to see, down
to which ratio a/b the modified Wagner formula, that supposes the web
to remain plane, may be applied with varying values of C/bD, the case of
fig. 16 representing about the highest value that will occur. With this graph
we found, that with cp 1 the Wagner formula gives xp values being at
most somewhat more than 10 % too high, whilst with q> 0.5 the error is not
more than 5<>/o. With qp smaller than 0.2 the error is negligible. From the
graph for Miles' case37), where C/bD 0, we found that with cp--1 the
errors were much greater, but with ^ 0.5 they were already smaller than
in the former case.
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We demand the stiffeners to be designed in such a way, that they will
not buckle below the yield stress. Gonsidering the twisting stability, it
will then be necessary, accürding to our theory of plastic stability 2), to take
into account the decrease of the torsional rigidity by replacing the modulus
of rigidity G by EF. To take intb account the decrease of the flexural
rigidity of the flange, we shall have to replace in the relative term the
modulus of elasticity E by the reduced modulus T. In this way the modified
Wagner formula for a Tee section 37) will become in the plastic domain

EF
Ot

\k + nV + y 4 l* U» h "*" 3 h)

A»"1" h°- h h "*" 4 A3 h

(105)

Just below the yield stress, according to eq. (27) F equals 0.322 in the
plastic part of the cross-section, and as in this case the overlargest part of
the cross-section will deform plastically, we remain on the safe side by
keeping this value for the entire cross-section. Furthermore T is here 0.417 E.
Furthermore, with Windenburg, we shall take into account the fact, that
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ai the ends the stiffener is not simply supported and that the plating, to
which it is attached, will give it a partial fixation, by equaling y to 2, thus
assuming the effective length of the stiffener, that we called a, to equal
l/i~2, l being the real length. Ifwe demand that aT shall equal the yield stress
ov-= 2400 kg/cm2, we find from eq. (105) that the allowable ratio Ijh of a
stiffener is

i.8\h3 h.- + ^ -r

V/r
1 /

\h ^ h hV)\^ + 3
(106>

0.322 -r-4-4-

According to t he preceding we considered for this special case this formula
to be sufficiently accurate down to a ratio l/b 6, thus down to a/b 4.2
or up to cp 0.75. Although with cp 0.75 the Wagner formula may give x\)
values that are about 7 o/o too high and so a buckling stress in the elastic
region that is about 15o/0 too high, in the plastic region it is not so bad.
It means only a difference of 7 o/o in the comparable slenderness ratio. As
the buckling stress depends to a great extent on the reduced modulus T>
this corresponds at most to an error of about 2 <y0 in the plastic buckling
stress. With respect to the assumptions on which suchlike computations have
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Stiffeners with buckling stress equal to yield stress 2400 kg/cm2 — Aussteifungen mit
Beulspannung in der Größe der Fließgrenze von 2400 kg/cm2 — Raidisseurs dont les

contraintes de voilement sont egales a la limite d'ecoulement de 2400 kg/cm2
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to be based, as for example the fixation of y, we refrained from introducing
any correction, save breaking of the graphs at a value l/b 6. Eq. (106)
is represented graphically in figs. 18, 19 and 20. These curves and those
of fig. 17 were calculated in Bandoeng by ir. Wijnhamer and the students
E. and P. Smith.

As to the buckling of the stiffener web, we see in Table IV that for
cases 2 and 3, being its limiting cases, the ratio oB/oE is at least 0.804.
The modulus of rigidity, to which the twisting rigidity of the flange is
practically proportional for the sections for which buckling of the web has
to be considered, i.e. with b/h more than 51, is with our assumption
/'=¦-= 0.322 only 0.322/0.385 0.535 times its value in the elastic domain.
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Stiffeners with buckling stress equal to yield stress 2400 kg/cm2 — Aussteifungen mit
Beulspannung in der Größe der Fließgrenze von 2400 kg/cm2 — Raidisseurs dont les

contraintes de voilement sont egales ä la limite d'ecoulement de 2400 kg/cm2

We may thus save ourselves the trouble of making a special computation
for the plastic domain, as we are safe and sufficiently aecurate, if we reckon
with a reduced modulus of 0.8 E. We have consequently to demand that
the elastic buckling stress of the web shall not be less than 1.25 ov^= 3000
kg/cm2. This requires, according to the expression for value xp as given
below e*q. (103), that b/h shall be smaller than 8 xp, whilst xp is given in
fig. 17, from which the curves, that shall not be surpassed lest the web will
buckle, as drawn in figs. 18,19 and 20, have been computed. As at these
curves the 0 values of the sections are not less than about 50, it is allowable,
according to the preceding, to reckon here with the graph of fig. 17,
computed for infinite 0.
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Furthermore the f/h curves in figs. 18—20» have been bounded by
two other curves, in order to prevent buckling in a plane perpendicular to
!the supported plating and thus in the plane of the stiffener web, one for
the case of a one-sided stiffener, the other for a two-sided stiffener. We
had to demand here only, that the slenderness ratio of the stiffener, simply
supported at the ends, should equal its maximum value at the yield stress,
being 60. In this calculation we took into account a strip of thickness h and
breadth 30 h of the supported plating. This was done too for the curves*
of equal A/h2 values, where A is the total area of the stiffener, which were
drawn to facilitate the finding of a proper section. The two values for
A/h2 refer to one and two-sided stiffeners. It is understood that the
allowable stress in these stiffeners is that corresponding to a slenderness
ratio 60.
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Stiffeners with buckling stress equal to yield stress 2400 kg/cm2 — Aussteifungen mit
Beulspannung in der Größe der Fließgrenze von 2400 kg/cm2 — Raidisseurs dont les

contraintes de voilement sont egales a la limite d'ecoulement de 2400 kg/cm2

There is still another way to take the buckling action of the
compressive stresses in the flange into account, viz. to reckon with a reduced
C value, Cr, of the torsional rigidity. If os is the buckling stress of the
flange in case it is simply supported on the stiffener web, value os with
varying buckling length being given in the handbooks, at this stress os the
buckling action of the compressive stresses obviously cancels the rigidity
to twisting of the flange. Consequently with an arbitrary stress ox the frac-
tion ox/os of the rigidity to twisting will be cancelled, by which it becomes
only (\—ox/os) times the rigidity of a flange without compressive stresses.
So its reduced torsional rigidity is approximately

Cr (1 -oxios)C (107)
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In this way data, obtained by the formerly customary computation based on
eq. (98), may be oorrected by using values Cr instead of C, by which ox, the
respective wavelength and os may be found by trial and error.

2. 3. Stability of angles.
As we communicated already in our first paper2), we derived the design

formulae for steel angles, as given there in Table I, by a new and easy
method, given in a special paper on the stability of angles 1T). As this method
was used by us later for many other problems of stability, a summary of
which is given in Chapter 3 of the present paper, we expose it here. We
shall not investigate, as we did before17), which part of the angle behaves
plastically and which elastically, but we shall simply use eq. (26). We first
assume that the entire cross-section deforms plastically. If with buckling
of the flanges the line of intersection of their middle planes were to remain
straight, as was always assumed in literature before, the cross-section would
come in the dotted position (fig. 21), each of the flanges deflecting an
average amount wf perpendicular to its plane. If flange AC was not
supported by flange AB in A, with buckling its cross-section would obtain a
pure translation w perpendicular to its plane. In the longitudinal section
through A, however, flange AB transfers shearing forces and twisting
moments to flange AC, by which point A of the cross-section is restrained.
Inversely, however, in the longitudinal section through A, flange AC will
transfer by its deflection the inverted forces to AB\ these forces may be
taken together as an equivalent load pc39), shown in fig. 21. In the same
way flange AB transfers, by its own deflection, an equivalent load pb to
flange AC. The resultant p of these loads has to be taken by the angle as
a whole and as it is not infinitely rigid against bending it will obtain a
deflection wa by it, bringing the cross-section in the position B' A' O.

\
wa

Pb

1Pc

V \
' B

Fig. 21

So we may distinguish here two rigidities, namely the rigidity of the
angle as a whole against bending with respect to axis Y—Y and the
rigidity of the flanges against „plate buckling". Our method, the first part
of which we used already a long time ago40), consisted of imagining these
rigidities sequentially to become infinite. Let us assume first that the flanges
are infinitely rigid against „plate buckling", whilst the angle as a whole
has its normal rigidity, so that with buckling only a translation wa of the

39) Cf. py in eq. (60) of our first paper2).
40) Bijlaard, De Ingenieur, no. 4, 1932, footnote 2 and no. 7, 1933.
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cross-section will occur. Let under this assumption the critical thrust of the
angle be PaY, if buckling in a plane perpendicular to axis Y—Y. With an
arbitrary deflection wa the inner moment M, will equal the outer moment
Pay wa. Now we assume the rigidity of the flanges to plate buckling to
decrease from infinity to its real value, during which the inner moment,
however, does not change. By this a rotation, yielding an average deflection
wt of the flanges (fig. 21), will be superposed on the translation wa of the
cross section, by which the deflection of the centroid 0 in Z-direction becomes
Wa-\~wf/^2, whilst the critical thrust decreases to its real value Pcr. The
equality of inner and outer moments will yield now the equation

PayWa Pcr (wa + Wftf 2) (108)

In the same way we assume now the angle as a whole to be infinitely rigid
against bending and the flanges to have their normal rigidity against plate
buckling, so that only a rotation of the cross-section will occur, as shown
in fig. 21 by the dotted lines. In this case the critical thrust Pf of one flange
will be bhop, value oP being given by eq. (34), but, leaving the bending
stresses in the flange out of account, practically by eq. (35). The inner
moment for one flange, being given by the stresses acting in the longitudinal

section through A, has now to balance the outer moment Pf wf.
Assuming then the angle as a whole to get back its normal rigidity, during
which the inner moment for the flange remains constant, a translation wa
of the cross-section will be superposed on the initial rotation, by which the
total .deflection of a flange perpendicular to its plane becomes wf-\- wa/^/2.
Equating inner and outer moments for one flange yields now

PfWf=±PCr(waliJ+wf) (109)

as the real critical thrust of one flange is Pcr2. Eliminating wa and wf from
eqs. (108) and (109) we get

Per Pay+IPf- Vjp£ + 4 Pf
The cross-section of the entire angle being A, we have Pcr Aocr, Pay ~-=

Aoay and 2Pf Aof, so that the buckling stress of the flanges is

ocr= oay+of—iö2y + Gf2 (110)

As the maximum moment of inertia Jy of the cross-section with respect to
axis Y—Y is about four times the minimum moment of inertia Jz, the
critical stress oay with buckling of the angle in a plane perpendicular to Y—Y
will be about four times the critical stress oaz for buckling in a plane
perpendicular to Z—Z, which is the real buckling stress of the angle as a
whole. Substitution of this in eq. (110) yields

ocr 4oaz+of— i(4oazy+ of (111)

in accordance with eq. (28) of our publication mentioned in footnote 17.
If we demand now, that the buckling stress ocr of the flanges according

to eq. (111) shall not be less than the minimum buckling stress of the angle,
oai, this equation yields

°f^i°a* (H2)
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In the elastic region of is practically given by eq. (35), in which, according
to eq. (28) value F= 0.385. So we have, if the slenderness ratio of the
angle is l/r

of 0.385 Eh2\b2 and oaz 7i2E\(l\r)2

Substitution of which in eq. (112) yields

bjh<:0A8llr (113)

in accordance with the value given for l/r >: 100 in Table I of our first
paper2). In the plastic region just below the yield stress value F in eq. (35)
equals 0.338 according to eq. (29), whilst oaz amounts to the yield stress,
so that

of 0,338 Eh2\b2 and oaz 2400 kg/cm2

Substitution of which in eq. (112) gives the condition

bjh< 15.8 (114)

being rounded of to 15.5 for l/r < 60 in Table I of our first paper. Linear
interpolation between l/r 60 and l/r= 100 yields the condition given there
for values l/r between 60 and 100.

In the same paper17) we compared ocr according to eq. (111) with that
calculated from the differential equation of the flanges. The buckling
condition may be found directly from the general buckling condition according
to eq. (61) of our first paper2), by equating s2 to zero and &t and 02 to
infinity. With s± s we obtain in this way

(«i2 /-4 - a22<74) sinh «ib sin a2b -2a1a2q2r2 cosh a±b cosa2 b +

+ a2q2 ls sittlich cosa2b - a±r2 ls coshatb s\na2b + 2a1a2q2r2 0 (115)

Assuming an angle with a length ß-=100 cm, b 5 cm and a thickness
h 0.25 cm, the ratio b/h is 20, so that it buckles in the elastic region.
The values of the notations in eq. (115) in the elastic region being given on
page 62 of our first paper, the only unknown quantity in eq. (115) is the
buckling stress oE. The flexural rigidity B of a flange against bending in
its own plane, appearing in value s, is Eb3h/3, as the strain in the longitudinal

section through A (fig. 21) is zero. By trial and error we find with
eq. (115) that for the given angle the buckling stress of the flanges is ocr
0.000875 E. Using eq. (111) we find with eqs. (35) and (28) of 0.000Q63 E.
Equating the minimum moment of inertia Jz to b^h/12 and A to 2bh, value b
being the breadth of a flange, measured between the edge and the middle
plane of the other flange, we have r=b/\24 and l/r a/r= 98, yielding
oaz -ji2 E/982 0.001028 E. Insertion of a, and <saz in eq. (111) yields ocr
0.000852 E, being safe and in good accordance with ocr according to
eq. (115).

2. 4. Stability of the web of plate girders.
As through lack of space we gave also eq. (68) of our first paper2)

without derivation, we will elucidate this formula here. In the same way
as Bleich we assumed the relation

tb r0 + (Vl~-T0)(bla)* (116)
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t0 and rt being the buckling stresses with ratios bja equaling 0 and 1

respectively. With the accurate values found by Seydel 25) this gives for the
elastic domain

te= {4.82 + 3.62 {b\a)2)Eh2\b2 (117)
As at the yield stress values A, B, D and F are constants, we may assume
there the same relation (116). According to eq. (51) t0 3.74Eh2/b2. Eq.
(58) gives for the elastic domain %1 8.52Eh2/b2, but Seydel25), who took
more coefficients apq into account, found 8.44 Eh2jb2, so that we may im-
prove our result according to eq. (59) for the plastic region by multipli-
cation by 8.44/8.52, yielding t1 xb-= 6.30Eh2/b2. By Substitution of r0 and
r1 in eq. (116) we obtain

rB rv {3.74 + 2.56 (b\a)2)Eh2\b2 (118)

According to the slenderness-buckling stress relation assumed by us, at the
border between elastic and plastic region T=(2073/y3)kg/cm2=1197kg/cm2.
According to eq. (117) this stress will be reached if

(b\h)E V8456 + 6351 (b\d)2 (119)

The yield stress xv (2400/V3) kg/cm2 1386 kg/cm2 is reached, according
to eq. (118), if „g(b j h)v )/5667 +3879 (b ja)2 (120)

Assuming a linear relation between ratio b/h and buckling stress xB, we
finally obtain eq. (68) of our first paper2).

3. Stability of latticed struts, sandwich plates and
foundation piles

3. 1. Stability of latticed struts.
The method we used in section 2.3 is still much more simple in its appli-

cation if the deflections, caused by the different parts in which the elasticity
of the strueture may be divided, occur in the same direction, as happens indeed
in most cases. As an example we used it in 1939 in a paper in the same
number17) to derive Engesser's formula for latticed struts with hatten plates
connection only (fig. 22a). We assumed again the elasticity to be divided into
two parts, say 1 and 2. We assume first part 1 to have its normal elasticity,

but part 2 to be absolutely rigid. At the critical thrust P±, with an
arbitrary deflection y±, the inner moment M1 will be equal to the outer moment
P1 y±. Now we assume the rigidity of part 2 to decrease from infinity to
its real value, during which the inner moment does not change. The
deflection y1 will now increase to y, so that the equilibrium demands that
the critical thrust decreases to its real value Pcr, whilst from the equality
of inner and outer moments it follows that P1y1 Pcry. In the same way
we assume now part 1 to be rigid and part 2 elastic, by which the equation
P2y2 Pcry is obtained. As y y± + y2 we get in this way the equation

y=Jrl+y2 P^1 + p,1) y (121)

yielding «) Pcr (Pf1 + PY1)'1 (122)

or 17) ocr {oT1 + oi1)'1 (123)
41) This same equation was given later on other grounds by Buckens, Publ. Int.

Ass. f. Bridge and Struct. Eng., Zürich, Vol. 7, 1943/1944.
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ct and o2 being the critical stresses for cases 1 and 2 respectively. The
results given by eqs. (122) and (123) will be the more accurate the more
the deflection curves in both cases 1 and 2 are similar.

As may be done in most cases of steel columns, the hatten plates are
first considered as infinitely rigid. We divide the elasticity of the columns
into that by which they bend with respect to their common middle plane
(fig. 22b), and into that by which each Single column bends with respect
to its own neutral plane (fig. 22c). The critical thrust for the first case

® © ©

Fig. 22

is ot 7t2T/Xc2, values T and lc being the reduced modulus and the
slenderness ratio l/rc for a solid column respectively, in which rc ^Jc/A and
JC 2JS-^-Ah2/4, values A and Js being the total cross sectional area and
the moment of inertia of the cross-section of a single column respectively,
whilst h is given in fig. 22a. As to the second case (fig. 22c) it needs no
further explanation that o2 n2T/ls2, value ls being the slenderness ratio
cjr% of the Single struts, in which rs is the radius of gyration of a single
column and c is the panel length as given in fig. 22a. Insertion of these
values in eq. (123) yields

it2 T n2T
kc -j- Ks

7f

so that the ideal slenderness ratio of the latticed oolumn is

h ih + v

(124)

(125)

in accordance with the well-known Engesser equation.
Anticipating our next computations, it follows that eq. (125) holds as

well for columns consisting of p single struts, of which the hatten plates
have an appreciable length, if Xc is the slenderness ratio of the solid column
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and >is is equated to cQ/rs=(c—2^),/',, value 2a being the effective length
of the hatten plates.

Considering now a latticed strut, with length l, of which the two ribs
are connected by diagonal lacing (fig. 23), of which the elasticity has to
be taken into account, the only right way to use eq. (122) is to split of first
the proper rigidities of the single columns, before applying it, as other-
wise either the part, assumed to be rigid, would prevent the .deformation
of the elastic part or the same rigidities would have to be taken into account
twice. So we assume first the single struts to have no proper rigidity, but
add its influence, P0 2ji2TJs/12, afterwards. Subsequently we split the
elasticity of the remaining System into that by which bending with respect
to the common middle plane occurs, leaving consequently the proper moments
of inertia /s of the single struts out of account, and into that of the lacing.
Hence we have for the first case

/\ z= n2 TJt\l2 in which Jt Ah2\A (126)

In order to find P2 we remark that an angular distortion ß (fig. 23) causes
a shearing force Q P2ß that has to be taken by the lacing. Denoting the
fictituous shearing force that would cause a unit angular distortion by 5,
the modulus of rigidity of the latticing, we obtain the equation Q~=S ß, so
that we get

P2 5 (127)

In order to find the critical thrust of the column, we have to add now the
proper critical thrust P0 of the two single struts to the critical thrust according

to eq. (122), combined with (126) and (127), yielding

P - P + (pr1 4- pr1)-1 - 2 n*—s + nl TJtS

P- %T(2J'+l^+^TJtlS^ (128)

— •——V<v

WA

Fig. 23

It is a simple question to check that with diagonals alone (fig. 23)

5 EAdsin2a cosa (129)

whilst with a double lattice value 5 has the double value, Ad being the
cross-sectional area of the diagonals. If the lattice consists of single diagonals

and verticals it is easier to give S as follows

1/S IjEAasin'acosa + iana\EAv (130)

Av being the cross-sectional area of the verticals. Of course the slenderness
ratio c/rs of the single struts (fig. 23) must be smaller than the ideal
slenderness ratio of the entire column.

Abhandlungen VIII 5
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Our formulae are more accurate than existing similarly constructed
formulae, especially for very weak latticing. If for example Ad=--0 these
formulae yield Pcr=0, whilst our formula (128) yields with value S=0>
given in that case by eqs. (129) or (130), the right value Pcr=2üi2TJs/l2.

In modern timber structures nearly all compression members are built-
up columns, viz. two or more single struts that are joined to one another
at two or more places by means of wooden couplings (fig, 24). The connection

may be effected by bolts, wooden disks, nails or otherwise. Notwith-
standing the methods of computation for these built-up columns were very

l«*.U c° *Ua >u* >l- Co +a, t<?, 1_
C0

_ ^1* J
i

t

* 1
j

—.1 } i I i

—^—ja ii !i i! M 1!

c _^W c Hh<
c J

Fig. 24

unsatisfactory. According to the German prescriptions DIN 1052 (May
1938), for example, the buckling force for such timber columns had to be
computed by assuming that they had a moment of inertia / /0~f-i(/1—/0),
in which J± is the mom,ent of inertia of the total cross-section and J0 is
the same as if the single struts are pushed close together. It is clear that
this method is quite insufficient, as it takes into account neither the number
and length, nor the rigidity of the couplings. At the request of ir. H. Krull,
expert in timber structures of the Department of Forestry in the Netherlands

Indies, we derived a simple formula, in which, besides the elasticity
of the couplings, also their length is taken into account. Our reasoning
given above here holds good too if the elasticity of the strueture, after
Splitting of the proper rigidities of the single struts against bending in a
single half wave, is divided into more than two parts. Let y 2yk. Assume
first part 1 as elastic, the rest as infinitely rigid. Then we obtain in the same
wray as before the equation P1y1 Py, if P is the critical thrust of the
System after Splitting of the proper rigidities of the single struts. Thin-
king successively only part 2, 3, etc. elastic, we get P2y2 Pj% Pdy^ P yt
etc., from which it follows, as y 2yk, that y P(2 PJ )y or P
(2PJ'1)-1, so that the critical thrust of the column

pcr P0 + P P0 + (SP*1)-1

so that Ocr ff0 + a °o + (^tf/T1)-1 (131)

P0 and o0 representing the influence of the proper rigidities of the single
struts42).

Using eq. (131), we split the elasticity of the remaining System into
three parts. Part 1 yields a deflection as given in fig. 22b, so that P± is
given by eq. (126), by which the critical stress is

42) The equation Pcr (2PÄ_1)_1 was also derived otherwise by Buckens, I.e.,
footnote 41. As he, however, split the strueture itself, and not its elasticity, into diffe-
Tent parts and did not split off before the ligidities yielding the complementary thrust
Po, he could onlv solve rather simple problems of bars and frames by it, using only the
equation P (P^i __ />9-i)-i.
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ai ^ T\lt- in which 2//A (132)

Part 2 gives a deformation according to fig. 22c, with the difference that,
owing to the length of the couplings (fig. 24), only lengths c0=-c — 2a of
the single struts can bend, by which their Virtual buckling length (the length
of a half sine wave) is also c0 and

$2 TIL in which Colrs (c-2a)\rs (133)

Part 3 consists of the elasticity of the couplings. The deformation of these
wooden couplings by the shearing forces 5/ acting in them (fig. 25a) will
be principally a shearing. Denoting the displacement of the single struts
with respect to each other per unit shearing force in a coupling by v, the
magnitude of the shearing force S„ by which a displacement hct* is effec-
ted, is

Si hat\v (134)
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Assuming all couplings as equally rigid, the equilibrium of each of the
joints 0,1 and 2 in fig. 25a, representing one half of a column with an even
number of panels, yields approximately

i P3 y£cai Sih\2 (i 0, 1, 2) (135)

With eq. (134) this equation gives

P3yic h2lv (/ 0,1,2) (136)

Addition of the three equations represented by eq. (136) yields

/W/2 -ya*) 3h2[v

Approximating y% by 0.5 and taking into account that a similar relation
holds good for a column with an arbitrary even number of panels n, this
equation may be written as follows

P*(n — \)c!2 nh'l2v
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n h1
whence P3 H (137)

n —1 cv
If the rigidity of the end couplings is assumed to be half of that of the
intermediate couplings, the first equation (136) yields P3y0c — h2/2v,
whence we find, after addition of all equations (136) and transformation

P3 h2\cv (138)

With an odd number of panels eqs. (135) and (136) hold good approxima-
tely for all joints i, so that it follows from fig. 25b that by addition of all
equations (136) we obtain

Pdncj2 (n + l)h2l2v

A=Ä-±1A2 (139)
n cv

whilst with end couplings of the half rigidity we get again eq. (138). De-
noting generally P3 as ^ ß^ ^in which ß follows from eqs. (137), (139) or (138), we have

oa= — A (141)
cv A

Hence eq. (131), combined with (132), (133) and (141), yields

° °~-°* \-zrr- + w) v (142>

(143)
in which X2 lt2 + ls2 + lw2

and lt 2llh, As £0/rs and lw2 n2TAcv\ßh2
In case 2 no deflection of the single struts in a half wavelength / occurs,
so that value o0 has to be equalled to

a°~ y <//*)'
(144)

As P9y2 Py, (y—y2) y= 1 ~ P/P2=r 1 — o/o2, or, according to eqs. (133)
and 042), (y — y2) y =-(l2~h2)/K2. Hence eq. (131) yields, paying attention

to eqs. (142) and (144)

V —V ^T jt2T
0'er + ^=^{'+^-v)(?),|v2 {i\rsy

so that the ideal slenderness ratio lL is given by
V2

A'2 T+w=üw*\iy (145)

in which ls and K are given by eqs. (143). With infinitely weak con-
nections, with which lw is infinite, eq. (145) yields the right value Xt -=l/rs.
It follows from fig. 22 and fig. 25a that, if the column has only one panel,
we have to consider it as consisting of two panels, putting c 1/2.

In the same way we derived formulae for built-up columns, consisting
of p single columns. With rigid connections we may use eq. (123). In case 1

now o± 7&T/XC2, in which lc llrc, whilst rc ^Jc/A and Jc pJ, ~j- 2AS ak2,
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value ak being the distance between the axis of any single column and that
of the builtnup column. Fig. 26 represents a length yt c of the column in
deformed condition, the single struts being indicated by Single lines. Value
A& is the cross-sectional area of a single strut, so that A pAs. Value
o.^n2T/Xs2, whilst the ideal slenderness ratio is given by eq. (125). It
follows that the formula X/2 X2-+ pXs2/2, as recommended in the German
prescriptions 1939 (DIN E 4114) is erroneous.

NM

/ -

w

Fig. 26

Taking into account the elasticity of the oonnections, o± and o± are again
given by eqs. (132) and (133), but now Xt l/rt, whilst rt=^Jt/A and
Jt=- 2Asak2. Denoting the shearing force between two single struts by Sk,
it follows from fig. 26 that for Joint / we get

v2Sk hat (146)

Furthermore it follows by adding the total moments with respect to the
6 points, denoted by crosses in fig. 26, and using eq. (146), that

Ps yiccti e ISk e h at\v (147)

Adding the equations for all points / we obtain in the same way as with
two coupled struts

os L~1r (148)
cv A v 7

in which ß is nj(n—1) or (n-\- l)/n for an even or odd number of panels
n and for connections of equal rigidity and ß=l if the end connectionsi
have the half rigidity. Eq. (131) yields now

l2
kr l + (K2-K2)(rs\lY

in which

and

l2 Xt2 + l2 + lw2

kt Hrt, ls c0lrs, Xw2 n*TAcv\ßeh,

rt y/7t\Ä and Jt 2Asak2

(149)

In order to check formula (145) we compared its results with the exact
values, which for two connected single columns are given by43)

43) v. Mises and Ratzersdorfer, Zeitschr. f. ang. Math. u. Mech., 1926. Hartm\nn,
I.e., footnote 18, p. 67. Bulaard, De Ingenieur, no. 7, 1933. Van der Eb, De Ingenieur
in Ned. Indie, no. 10, 1937.
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h2 2tt
m

cos cos

(l — cos — j sin

'tn r, TAsvt. tt\\- - 1 + 1 — cos
7t \ c \ n / I (150)

m

if the rigidity of the end connections is half of that of the intermediate ones
and with c0 c. Equating in eqs. (145) and (150) P to £ 100000 kg/cm2,
our former assistant in Bandoeng, Ir. Lie Han Yang, calculated for several
built-up timber columns values m-=7JXs with eq. (145) as well as with eq.
(150), the result being given in Table V. As follows from fig. 22a value //

is the distance between the axes of the single struts. The breadth and
thickness of a single column was 20 and 8 cm respectively.

Table V.

/
cm

h

cm

m kt j As

c

cm

n
V 0 v 0,04 cm/ton v 0,30 cni/ton

(145) (150) (145) (150) (145) (150)

1.80260 130 2 16 1.11 1.09 1.45 1.37 184
390 130 3 16 1.27 1.24 1.70 1.63 2 47 2.42
520 130 4 16 1.47 1.43 1.90 1.85 2.94 2.89
520 130 4 24 1.24 121 1.51 1.46 2.39 2.33
780 130 6 16 1.92 1.89 2 30 2.26 3.56 3.53
156 78 2 16 1.12 1.09 1.56 1.48 1.89 1.89
390 78 5 16 1.69 1.65 2.30 2.26 3.68 3.66
780 78 10 16 2.94 2.91 3.37 3.34 5.09 5.09

It follows from Table V that the values given by eq. (145; are suffi-
ciently accurate and incline to the safe side.

We made an extensive study of this kind of column, but cannot say
much more of it in this pap'er. We only give here some results of tests,
executed by us in the Laboratory for Testing Materials in Bandoeng at the
request and in Cooperation with Mr. Krull, mentioned above, in order to
determine the value v and the effective length 2a of the couplings, whether
effected by wooden disks, bolts or nails. Fig. 27a gives some load-deflec-
tion diagrams of columns as indicated in fig. 27b. As here the columns as
a whole were fixed at the ends, so that the single struts could not receive
different axial strains, Xt in eq. (143) has to be equated to zero. The single
struts had a breadth of 21 cm and were 5 cm thick. Like the wooden blocks
between them, they were made of Java teak (Tectona grandis). In order to
characterize this material we give in fig. 28 the results of our tests, also
made in Cooperation with Mr. Krull, with single bars, for centric buckling
(m 0) and for an eccentricity equaling 1/6 of the thickness (m 1). Our
tests (slow tests) were made in such a way that the „creep" of the wood
was taken into account, as the load was not increased before the deflecting
had come to a standstill. With slenderness ratios higher than 90, Euler's
formula applies with £=130 000 kg/cm2.

The curves denoted by D. 1, D. 2 and D. 3 in fig. 27a relate to columns
connected by wooden disks, as indicated in fig. 27b, the shearing forces S0
(fig. 25a) being taken by one disk only. The allowable .shearing force in
these disks is 1100 kg. They were made of hard Indian wood, those of
D. 1 and D. 2 of sonokling (Dalbergia latifolia) and those of D. 3 of marbau
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(Intsia Amboinensis). In test D. 2 value v was extraordinary large, being
due to a rather much play between disks and column, owing to shrinking
of the disks. As in practice such play does not occur, as according to Mr.
Krull columns and disks are worked with such a moisture content, that after
shrinking they fit, we left this test out of consideration. Test D. 4 consisted
of 4 coupled struts of the same proportions as those of fig. 27b, the shearing
force being, however, taken by 2 disks, whilst the wooden connecting blocks

P en t (la valeur doit etre prise double seulementpour D4) — P in t (Der doppelte Wert ist nur für D^

zu nehmen) — P in tons (only For ü/, to take double value)QJll
131t

ÖM.O 63t

59t

f
W7t

m V.3
DJmi B.V1

-M

W~2 ^ "53Ut
BMJDJ SB.K

mi $.2-
¥.2 Mi22.2t

2EJ21 2E.12117t

T 5cm

Fig. 27 a

17U 5 cm
168

Fig. 27 b

had lengths and thicknesses of 42 cm and 5 cm respectively. Tests B. V
refer to struts as in fig. 27 b, but each connection being effected by 4 bolts
of \" diameter, as shown in fig. 29. The total allowable shearing force for
4 bolts is 1600 kg. In tests B.V. 1 and B.V. 2 the holes were drilled 1/16"
larger than the diameter of the bolts, as is usual in practice. In B.V. 1,
however, the nuts were tightened with the usual monkey wrench of 20 cm
length, whilst in B. V. 2 they were not tightened and were held free 2 mm
from the washers. In B.V. 3 the £"• bolts were fitting in the holes, but
just as with B. V. 2 the nuts were not tightened and held free from the
washers. In tests S. 1 and S. 2 the oonnections were made as shown in
fig. 30, comprising 9 nails of 6.5 mm diameter, fitting in predrilled holes,
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representing an allowable shearing force of 1330 kg. Finally 2E 121 gives
the double thrust value for a single bar of the same proportions as the
single bars used in the built-up columns, so that the difference between
graph 2E. 121 and the other curves shows the influence of the connection®.
The horizontal part of this graph is due to creep.

6B in kg/cm
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&*WO r^z piä rmf\300
7=6)h \ \*<^« VSN

200

115
^s-Jr.

WO

130 150 X-l/r

Fig. 28.

Graph for buckling stresses of Java teak with varying slenderness ratio X — Diagramm
der Beulspannungen von Java Teakholz mit einem veränderlichen Schlankheitsgrad X.

— Graphique des contraintes de voilement du bois de teak de Java avec un coefficient
d'elancement X variable.

(1) Centric loading with slow test (m 0) — Zentrische Belastung beim langsamen
Versuch (m=0) — Essai lent pour charge centree (m 0).

(2) The same with rapid test — Dasselbe beim schnellen Versuch — Essai rapid pour
charge centree.

(3) Excentric loading with excentricity 1/6 t (m 1) — Exzentrische Belastung mit
Exzentrizität 1/6 t (m= 1) — Charge exoentrique pour Pexcentricite Vö t (m= 1).

(4) Test piece with one, two or three faults — Versuchsstück mit einem, zwei oder
drei Fehlern — Eprouvette avec une, deux ou trois fautes.

(5) Test piece contains heart-wood — Versuchsstück mit Kernholz — Eprouvette con-
tenant du bois de coeur.

(6) Proposed allowable stress — Vorgeschlagene zulässige Spannung — Contrainte
admissible proposee.
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Our conclusions were that with disk connected columns we have to
measure the theoreticai length of the couplings (2a or a in fig. 24) from,
one end of the coiupling block up to the bolt that is nearest to the other
end, whilst the specific displacement v is (0.08/m) cm/ton, if m is the number
of disks of 6 cm» diameter that transmits the shearing force. With bolt con-
nections with non-fitting bolts, as used in practice, where we are not sure
that the nuts remain tightened, the effect of the couplings is very slight
and problematic. With nail connected aolumns the theoreticai length of
the couplings may be put equal to the length of the coupling blocks, whilst
v -= (0.36//^) cm/ton, if m is the number of nails of 0.65 cm diameter. The
latter conclusions hold good for practice in Java with relatively hard timber,
but in principle they may be of value for other circumstances too.

3. 2. Stability of Sandwich plates.
In order to check our assumption that wave formation in the surface

of roads, as often foiund in Java, is caused by horizontally directed
compressive forces, originated in the road oover by rolling and traffic, we
considered the road oover as a plate, supported by a semi-infinite elastic body44).
If the plate is subjected to an arbitrary plane state of stress, it will always
buckle in waves perpendicular to the direction of the largest principal
compressive stress, also with plastic buckling of the plate45). Hence a state of
plane strain will occur here, so that the stress distribution in the elastic sub-
stratum is governed by the Airy funetion. Taking into account a complete
connection between plate and substratum and thus taking also into account
the shearing forces transmitted between them, we calculated the buckling
stress of such a plate. After our arrival in Europe our attention was called
to publications, in which the stability of thin sheets of metal and plywood,
laterally supported by a thicker layer of an elastic material with small specific

weight, as used in the construction of wings and bodies of aeroplanes,
was considered as the same theoreticai case46) as worked out previously by
us44). In a paper, in which we called attention to this fact, we corrected
these computations in accordance with our earlier ones and gave along the
same lines an aecurate calculation for so-called Sandwich plates, being two
thin outer plates of metal or plywood (the faces) with an intermediate
supporting layer of light material (the core)47). As we use these formula^
in the following section we will give here some results. For a long plate,
supported by a semi-infinite body, in the elastic domain the critical thrust
per unit breadth is 47)

hocr B l2 + E'\2l + \whE*
in which, with 5 E{\E £i/(l — vt2)E,

(l + v){A(l-v) + (l-2v)lh)lhs + 2

(\ + v){(l + v)(3 — 4v)Xhs+2(\— v)} { K }

} _ 2(1+ y){l — 2v + (l — v)Xh}Xhs
W ~ (\ + v){A(l — v) + (\~2v)lh}Xhs + 2

14)

4 Bijlaard, De Ingenieur in Ned. Indie, no. 9, 1939.
Appears in Comptes Rendus, 6me Congres de Mecanique Appliquee, Paris.

46) Gouoh, Elam and de Bruyne, Journal of the Royal Aeron. Soc, 1940 and some
later papers of other authors.

47) Bijlaard, Proc. Royal Neth. Acad. of Sciences, Amsterdam, no. 10, 1946.
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B is the flexural rigidity P1//3/12(l—v±2) of the plate, h is its thickness
and E± and vx are the elastic modulus and Poisson's ratio of the plate
respectively. E and v are the latter values for the supporting body. Finally
X 7t/a, a being the half wave length of buckling. With an infinitely long
plate the optimum wave length, yielding the smallest critical stress ocn
may be found by differentiation, whence we obtained 4T)

a 7i(4BjE'yU
hacr %(4BE'2)xl* + \whE'

(152)

As may be easily checked, a state of plane strain in faces and core
of a sandwich plate will only be possible with rather broad plates, owing
to the small modulus of rigidity of the core. Therefore, except for the
bending of the faces with respect to their own middle plane, a plane state
of stress was assumed here. For the formulae we got on this assumption
in the above-mentioned way for sandwich plates, we refer to our paper47)
on the subject. In the same paper we derived, however, by the method given
in section 3.1 of the present paper, a formula for the critical thrust, that
is practically identical with the results obtained from our exact Solution
by developing sinh and cosh in series. Using the formula

P0 + (Pf1 + P21)- (153)

\P,ih 2r2

Tdx

&adx M
Fig. 31

in w*hich P0 is the proper critical thrust of the faces per unit breadth, we
assume first the modulus of rigidity Q of the intermediate layer to be
infinite. The free supported length of the plate, of which the unloaded sides
are free, being L and denoting thickness of faces and core by h and t
respectively, we obtain per unit breadth

Pt n2Bt\L2 (n2\L2) {±Et(t+h)2h + ±Et*} (154)

For case 2 we assume the moduli of elasticity P1 and E of plates and core
to be infinite, but the modulus of rigidity G of the core to have its real
value. Considering an element dx of the plate (fig. 31) we get

t Qy G(ct + ß) Oa(t+h)\t (155)

w7hilst the equilibrium of one half of the element demands that

\(t+h)xdx iP2adx (156)
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Combination of these equations yields
P2 Q(t+h)2 t (157)

Insertion of P0 and of P± and P2 according to eqs. (154) and (157) in eq,
(153) yields, with G -= E/2(lJrv) and assuming the thrust Pcr to be taken
by the faces alone, so that the critical stress per unit breadth in the faces
is ot/ - Pcr/2 h

n2Exh2 gr8f1(/+A)2 + (^/6A)f^
cr 12(l-n2)L2 ^ 4(\ + v)7i2E1th + 4EL2 + z(l+v)jz2Et±i(t + hy

K }

For sandwich plates, supported at three or four sides, we cannot apply
the above-mentioned exact method, as in that case the deformations with
buckling are three dimensional, so that no state of plane strain exists and
we cannot apply the Airy funetion any longer. The method as shown above,
however, may be applied as well in this case. We reason here as follows.
Let the plate, being supported at the unloaded sides too, be subjected for
example to a compressive force P per unit breadth. If part 1 behaves elastic-
ally, it will buckle with a force Px. With an arbitrary deflection w± of an
element H dxdy, value M being the total thickness 2li-\-t, the restraining
force on the element will equal the deflecting force, being cPxw±, value
c being a proportional factor. Assuming now the rigidities of the
other parts to get back their values, whilst the inner stresses do not
change, the deflecting force, being now cPw, will have to balance the
restraining force cP-^w^, yielding again P1w1 — Pw. In the same way
we get P2w2 Pw, P^w$ Pw, etc., by which, just as in the preceding
section, we get finally P (2 Pj/ 1. The same holds good if the plate
is subjected to an arbitrary state oi stress. Of course the results will
be the more aecurate, the more the deflection surfaces for the several
cases have the same form. As, however, admission of diverging
deflection surfaces means a lack of constraint, our results are anyhow on
the safe side. Referring to our respective papers for further details48), we
only state here, that after Splitting off the proper rigidities of the faces
(case 0), the critical thrusts Px 2hox, Py 2ho} or (and) Sxy= 2hxxv per
unit breadth have to be calculated for case 0 and case 1 (assuming G for
the core to be infinite) from the well-known differential equation

\dx* cx26y2 dy*/ dx2 cy2 y dxdy
and for case 2 (assuming only value G of the core to be finite) from the
differential equation

^G(^+^yPxKZ,-P/~Z+2Sxy-f^ 0
t \t)x2 cy2/ cx- dy2 ydxcy

as derived in our paper48).

3. 3. Stability of rammed piles, surrouned by soil.
Although they are not exactly applicable here, as the horizontal

displacement of the soil in the horizontal planes of the inflection points of the
piles is not exactly zero, which we shall take into account by introducing in
eqs. (151) and (152) a value E' — \ E', these equations may give us an idea

48) Bijlaard, Proc. Royal Neth Acad of Sciences, Amsterdam, nos. 1 and 2, 1947.
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of the critical thrust of a pile surrounded by bad soil, supported horizontally
at its top and standing with its point in a sand layer. As value E for soil
will always be only approximately known, we may simplify eqs. (151) b\
remarking that hX jth/a is in this case a rather small value in comparison
with unity, whilst value 5 and also Xhs is very large, so that, equating v
to zero, we find E' \ E and ip \. In this way eqs. (152) yield

* h (Et 14 E)1!* and ocr \(2E1E2)^ +\e (159)

Let us assume a concrete pile, for which h 40 cm, whilst its cross-sectional
area is 1600 cm2. Leaving the steel reinforcement out of account, we assume
Zfj 200 000 kg/cm2 for the pile. For the soil we admit E to have the lowr

average value of 15 kg/cm2, so that E =-10 kg/cm2. As the soil supports the
pile at both sides, whilst in deriving eqs. (151) and (152) only a support at
one side of the plate was assumed, we shall have to reckon with the double
value E, by which £=20 kg/cm2. Hence eqs. (159) yield a buckling length

1 2
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a 1700 cm and a critical stress for the pile of ocr ¦= 275 kg/cm2. With a free
supported length of 17 meters the assumed pile, if not supported by the
soil, having a slenderness ratio 1700/11.6== 147, would have a buckling
stress jt2P1/1472 - 91 kg/cm2, so that the soil gives an excess buckling stress
of 184 kg/cm2. As, however, in reality the pressure, eXerted by the buckling
pile on the soil, will spread sideways, the soil will behave much more rigidly
than assumed here, where only a breadth of soil, equal to the breadth b=-h
of the pile has been taken into account, so that the excess buckling stress
will be many times 184 kg/cm2, say m times, by which the real buckling
stress of the pile is (91 + 184 m) kg/cm2, surpassing certainly, even if a
reduced modulus smaller than Et were taken into account, the compressive
strength of the material.

If, however, we have not one pile, but a complete foundation, we have
a case more similar to that of a sandwich plate. If there was only soil
between piles 2 and 3, as shown in fig. 32 by cross hatching, we would
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have here the same case, but as the soil is at both sides, we have again to
insert the double values for the rigidity of the soil. If we have many piles
it is clear that P1 is practically infinite, so that eq. (153) yields

P'er P» + Pi (160)

In the planes between the piles, for example ab in fig. 33, ,the thickness
of the piles has no influence, so that we had better assume h to be zero
here. Then eq. (157), with the double value G, yields P2=^2Gt per unit
breadth of soil and for two piles. Taking into account a breadth q (fig. 33)
of the soil, we get for one pile P2 qtG. This may also be derived directly
from fig. 33, oonsidering the equilibrium of an element dx of a pile and the
accessory soil. With an angle of distortion y, equilibrium demands that
P2ydx-=tGyqdx, yielding P2 qtG, so that, according to eq. (160)

P„ n2ExJ\L2 + qtG (161)

qi being the area of the soil belonging to ia pile. Hence, if the total
foundation has a total area of QT (fig. 34), Q being for example 20 q and
T being 40 t, the total value ZP2 equals QTG.

Q+03T Gt+037

-OJL
Fig. 34

At the boundaries of the foundation it will moreover experience a
constraint, for which, if the piles are supported horizontally at their upper
ends, for example by batter piles, again eq. (151) applies, if E' is replaced
by E\ The first term, BX2, relating to the proper rigidities of the piles,
has, however, already been taken into account in P0, whilst the last term
may be neglected, so that the excess value of the total buckling force,
caused by restraint at the boundaries, amounts to E'/2X per unit breadth of
the constraining boundary. This breadth will be smallest with buckling in
the direction of the largest dimension T. We assume? that the constraining
breadth at the boundary is Q+ 0.3 T at both sides (fig. 34). As the stresses
in the soil die out rapidly, having nearly vanished ait a distance L from
the boundary, the real breadth to be taken into account will not be much
more, if Q>L. As, with v 0, £' ¦?-£ jE-™G and X=-Jz/a=r-jz/L,
this yields the total excess buckling force

ZPe 2(Q + 03T)E'\2l (0.57 Q + 0.17 T) GL
We assumed T>Q, so that 0.57 Q-j- 0.17 T may safely be approximated
by 0.7 Q, so that with equally distributed piles in both directions the
excess buckling force for one pile is

Pe 0.7 qtGL\T (162)
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Consequently the critical thrust of the piles is, using eqs. (161) and (162)

Pcr P'tr + Pe x*EtJlL* + qtG(\ + 0.7 LJ) (163)

With the values assumed above, G E 2—7.5 kg cm2, so that, with q -=
^=150 cm and P 60 m, we get for one pile

Pcr (1600 X 91 + 22500 X 7.5 X 1.2) kg 350 tons

or crt, (91 - 126) kg/cm2 217 kg/Cm2, being much less than for a soli-
tary pile.

4. On ihe stability of wharves and bridge piers and of
the portals of a through truss bridge

4. 1. Haarman's method of the Virtual buckling length.
Let a bar, having arbitrary boundary conditions at A and B, buckle in

a curve as given in fig. 35. Then the critical thrust Pir will aei along the

+

Fig. 35 Fig. 36 £j.
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straight line that connects the points of inflection of the bar. At any point
of the curve the outer moment Pay has to balance the inner moment
—TJy", yielding the differential equation

Pa-y + TJ d2y\dx2 — 0 (164)

It follows immediately, that the elastic line will be a sine wave, with the
axis of pressure as X-axis and that, if the origin is placed at a point of
inflection, the form
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y ¦=. f s\n(jixlL) (165)
saüsfies the boundary conditions. Substitution of eq. (165) in (164) yields

Pcr= n2TJ\L2 (166)

in which L is the length of a half sine wave. Haarman's method of solving
buckling problems consists in determining, from the geometrical properties
of sine waves, this half wave length L, called by him the Virtual buckling
length and being the length of a simply supported bar with same critical
thrust. Haarman computed in this way the critical thrust of bars of variable
cross-section and of bars on elastic supports49). His method gives a better
insight into buckling problems than more mathematical methods, and in
cases that are not too intricate it leads quickly to a Solution50). In very
intricate cases the trouble is to solve the large number of equations, but
if some supplementary properties of the elastic line are known, so that it
is sufficient to write down the equations for an arbitrary panel, an exact
Solution may be found very simply. In the latter way we used Haarm yn's
method in order to solve the problem of a bar, simply supported at the
ends and elastically supported in an arbitrary number of points at equal
distances 51), yielding the same buckling condition as found by Bloch52)

-for this case. Also eq. (150) of section 3.1 we derived in this way13).
Moreover we found in a similar way the following exact buckling condition

for p single struts, connected by rigid end bauen plates with lengths a
and rigid intermediate hatten plates with effective lengths 2a, being with
the same notations as used in section 3a

2rt2\r2 (jtIm) {tan (ji12m0) + naltnc} cot2 (jr\2n)
— (7tjm0) cot(jzl2m0) + n2a(c — a)\m2c2

Value m0 Xl Xs, in which Xs c0/rs and m= (cQlc)mQ, whilst rt is given in
eqs. (149). For elastic couplings an exact Solution is fictituous, as the effec-
tixe length 2a depends on the elasticity of the connections. We shall use
Haarman's method here below, in order to solve some interesting buckling
problems.

4. 2. Stability of a timber pile bent.
Let the piles EB (fig. 36), being assumed as clamped in A, support

posts PC53). Considering Joint B practically as a hinge, with buckling
perpendicular to the plane of the bent, the Virtual buckling length L of the
piles may be very large. This may be seen without calculation by conti-
nuing to sketch the axis of pressure CO and the sine curve OA until they
meet in 5, yielding L=OS. It follows directly from fig. 36 that with a
fixed length ,4C, L will be the larger the higher Joint B occurs. Also we
find directly from fig. 36

dy jt 7i r
1 7i

a — / cos — / —— / sin - /dx L L a + r L

^) Haarman, Indisch Tijdschrift voor Spoor- en Tramwezen, 1918, 1919, 1920.
Handelingen Ned. Ind. Natuurwetensch. Congres. Bandoeng, 1924. Uittreksel uit de
Theorie der Virtueele Kniklengte. Edited by Technische Hoogeschool, Bandoeng, 1926.

j0) Bijlaard, De Ingenieur, no. 42, 1931, p. B. 285, with erratum in no. 51, p. B. 344.
ol) Bijlaard, De Ingenieur, no. 4, 1932.
b-) Bleich, Theorie und Berechnung der eisernen Brücken, 1924, p. 202.
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yielding the buckling condition
tan (n HL) 7t(a-\-l)\L (167)

4. 3. S t a b i 1 i t y o f a wharve.
For a bar, simply supported at one side and fixed at the other side,

it follows directly from fig. 37 that

l a or /sin /
71 TTl Lfcos Ll

yielding tan(nl\L) ttIJL or L 0.7 / (168)

Let us now consider a wharve of which the piles are rather slender, only
a small portion of their length being driven into a sand layer. In order
to stabilize the wharve batter piles are driven, by which the tops of the
vertical piles are held horizontally. As a rule the floor beams are so rigid,
that the piles are practically built-in at their tops, whilst their lower point
of inflection 0 with buckling will have to be assumed near their lowrer end.

i Lamm

7\

JS—0.

Fig. 37 Fig. 38

Hence with a sufficient number of hatten piles, we have the case of fig. 37,
yielding eq. (168). In order to check whether the number of batter piles
is indeed sufficient, however, we shall assnme that we have m vertical piles,
that are held by n pairs of battered piles, so that per pair of batter piles
we have m/n p vertical piles. If the vertical piles buckle (fig. 38), the
critical thrust Pcr of each pile will have a horizontal component &Pcr, so that
p piles, buckling in the same direction, exert a horizontal force ti =- xpP(ii
which has to be taken by the pair of batter piles, having for example a

slope 1/5. Hence these piles have axial loads B fi]/26/2, yielding axial
displacements u Bk/EA-\-us of the tops, k and A being their lengths and
cross-sectional areas and us due to yielding of the sand. So the horizontal

°3) Bijlaard, De Ingenieur in Ned. Indie, no. 1, 1939.
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displacement of the tops is e^=u^26 -= 13Hk/EA wsV26 H)R &pPct/R,
value R being the horizontal force causing a displacement f — 1. It follows
now from fig. 38 that

a l e + d upPcr\R — / sin (n l\L)
or a(l—pPcrjR) —fs\n(7TllL) (169)
Furthermore we have

a — dyjdx — (njL) f cos (jtIJL)
insertion of which in eq. (169) yields, after writing Pir — zz2EJ L2, the buckling

condition
nl nl 7T°EJ /f7rfcv

ian-L L-pia* (170)

With eq. (170) we find always a value L that is somewhat more than 0.7 /,
as given by (168), and we can judge by it whether it is necessary to place
more batter piles. Of course this investigation has to be made for each
independent part of the wharve, if not restrained in another way, whilst
it has to be done for two horizontal directions that are mutually perpendicular.

If the resultant of the forces H, caused by the buckling vertical
piles, does not coincide with the resultant of the forces H, taken by the batter
piles, the remaining moment has to be taken by the two Systems of batter
piles in mutually perpendicular directions, causing an excess displacement t.

4. 4. Stability of a bridge pier, supported b} battered
piles.

In order to judge the stability of the bridge piers in a deep river in
Sumatra, supported by sets of batter piles (fig. 39), of which only the lower
part has been driven into a sand layer, we wanted to know, how far, with
unequal loading of the piles, the least loaded ones support the most loaded
ones, by decreasing their Virtual buckling length. In a direction perpendicular

to the cross-section of the pier, as given in fig. 39, it is held by
other batter piles, so that for buckling in this direction the Virtual buckling
length of all piles is about 0.7 /. The pier is loaded in such a way, that
each pair of batter piles takes a force R (fig. 39). By this the piles are
subjected to axial loads P and Q. If buckling, the axes of pressure, Ol 5 and
02S of the piles will now deviate in such a way from their initial directions

OxT and 02T, that the Virtual buckling length L of the
pile with the greatest thrust P is decreased, whilst that
of the other one is increased. For we have the relations

Pcr ji2 EJjU* and Qcr n2 EJjL22

so that we get L2 ßLx and ß i~P[Q (171)
As distance r ST is infinitely small, in fig. 39

et (r\k)s\n(a — y) and e2 — (r\k)$\n(a+ y) (172)

Assuming an infinitely small rotation cp of the rigid body of the pier with
respect to T, we may write down for the ordinate and slope of the sine curve
of the right pile in A' the following equations

/isin(7r//Li) (p(k — l) — etl (173)
— (rc/£i)/iC0s(*r//£i) cp + e1 (174)

and for the left pile in B'

Abhandlungen VIII 6
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f2 sin (jtI\L2) ~ cp(k — l) + €2l

— (jtJL2) f2 cos (tt ljL2) <p — e2

(175)

(176)

Taking into account that e± and e2 are expressed in r by eqs. (172), we have
got 5 equations, (171) and (173)—(176), with 6 unknown values, viz. cp,

r> fi> /2> ^i and< E2. Als values cp, r, f± and /2 are arbitrary, so that only
their ratios need to be known, this is necessary and sufficient. It is very
easy to eliminate all values except L± from these equations, yielding the
buckling condition

{tan (ttI'L^) — 7Tl\L1}{tan(7ilißL1) + 7r(k — l)ißL1}

- ß2 {tan (tt l\U) + Tj(k~ -l)jLt}{tan (nllßU) - - nllßLi] (177)

——\

Wf

r.
\r

i-

34 —

Fig. 39

This gives for the special case Q P (ß= 1)

tan(nl\L1) -n(k — l)\Lx
For Q 0 we get

n l _ jr / 3 k Li2 — n2 l2 (k — l)atl Lt~ Li 3kL12 + 7i2P

and for Q= — P

tan (71 ljLt) tanh (tt ljLt) or Lt 0.8 /

(178)

(179)

(180)
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4. 5. Stability of the portals of a through truss bridge.
According to Hertwig and Pohl51) the stability of the portals of a

truss bridge, whose end posts have to transfer axial loads P (fig. 40a),
should be computed by assuming that they have to transmit vertical loads P
(fig. 10b). We showed that this is wrong53). If both end portals buckle

0 0'

Fig. 40 a Fig. 40 b

iterL.^:
/ /

oc; i

Fig. 40 c

v=ah

otefL.j-.

5/

V—-l°
Fig. 40 d

sideways, both trusses rotate through the same angle <x as the end posts,
by which the direction of the thrusts P, being the resultants of the forces
U and D in the Upper chords and end diagonals and hence having the same
direction as verticals 1 — V, rotates through the same angle <x

(fig. 40d). A small part of the total load on the bridge acts, however, in the

JN j

r\ f
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W /

l\ \F°
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Fig. 40e
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dhs 0

Fig. 41

upper joints, so that a fraction y Q of the load Q per panel, acting in an
arbitrary Joint if (fig. 40c) of the upper chord, causes a load cny Q on the
upper lateral bracing. Hence the portal has to transmit, besides the loads P,
acting in the direction of the endposts, a load ayP from the upper lateral
bracing, by which the resulting force, that has to be taken by the portal,

^ Hertwio and Pohl, Stahlbau, no. 17, 1936.
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would embrace an angle (l~~y)oc with the vertical direction. But the loads
(1—y)Q Per penal, that act in the joints i of the bottom chord, cause loads
<x(l—y)Q on the bottom lateral bracing, by which it deflects more than the
upper lateral bracing. In fig. 40e we show one of the trusses in horizontal

projeetion, the top joints 0' of the portals having a horizontal displacement

v <xh. As for example the force F2, transmitted by the diagonals
1—2' and 2'—3 to Joint 2' of the upper chord, acts parallel to the straight
connection 1—3 of joints 1 and 3 of the bottom chord, the larger
horizontal deflection of the bottom lateral bracing has the consequence, that
the forces E/ have components that load the tipper lateral bracing laterally.
We took this influence into account53). Value y will vary between about
0.05 and 0.25, according to the kind and span of the bridge and we found
that it is sufficiently aecurate, to assume that the resulting force, by which
the portal is loaded, embraces an angle <9oc=(0.9—;>)a with the vertical
direction55). We also considered the case of antimetric buckling of the
portals, assuming one portal buckling to the right and the other to the
left, by which the entire bridge would be twisted. We found that, even if
the portals had no proper rigidity, joints 0 and 0' being hinges, there is
a sufficient factor of safety against this kind of buckling53).

Considering now the stability of a portal, the axis of pressure of a
post having a slope Gx and passing through the point of inflection B (fig.
41), we see that r7 et h =~ r) et h + ou + nb

or (\--S)ah / jsin * a + sin £ (h — a)J (181)

At x =- a we have ßup ßuu, in which ßull Mub/ 6 EJU. Value Mu Pcrö„
and Ja is the moment of inertia of 0'—0'. Using eq. (166), in which /= Jp,
the moment of inertia of a post, the equality ßup ßuu yields, after
transformation, 9

^ t
TT TT T 7T~ 71 .- _ _.O a + f cos a fsma (182)
JL# jL* JJ 1~* JLrf

in which t=T/E and p 6Ju/bJp.
In the same way the equality of ßbp and ßbb at x-=a -// yields

71 n,i v T 71 2

Öo + T/cos £(h — a) - LJsm L (h-a) (183)

in which q 6Jb/bJp.
Elimination of a. from eqs. (181) and (182) yields

fan^«_ "IL + {0/(1 -S)h)sin(nhjL)
L ~ Jtix\pLiAr{@\{\ — S)h){cos(nh IL) — 1)

y '
whilst by elimination of o. from eqs. (182) and (183) we obtain

na __
1 — cos(nhjL) + (jtr\qL) sin(nh\L) „„„30 T ~ JtTJpL+ (m\qL) cos(7tÄ/Z.)"+lin"M]Z) '

Combination of these equations yields the buckling condition

$(L) {2pqr-(n*lL*)(p + q)r} COS(nhjL) +
+ {(n3jLs)T9' — (nlL)pq — {7ijL){p-{-q)rz}sm(jthjL) — 2pqr 0 (186)

86) Bijlaard, De Ingenieur in Ned. Indie, no. 4, 1939, p. I, 82.
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in which r 0 (1 — &)h. From this equation L, by which also r is
determined, has to be solved by trial and error. As the endposts have to transmit

also the wind forces, taken by the upper lateral bracing, to the bearings,
they are subjected to eccentric compression, so that we have to judge
whether, with the computed Virtual buckling length L, this eccentric loading
is allowable. If in eq. (186) we equate (-> to zero and t to unity, we obtain
the wrong equation, given by Hertwio and Pohl for this case:

tan (.-7 // /.) n L (p + q) (r,1 p q L1)

f***-

^

Fig. 42

We will conclude this paper by giving our computation for the
stability of the portals of a reinforced concrete cantilever bridge in Sumatra

(fig. 42), designed by us in 1936 in Cooperation with N.V. Volker Aanne-

niing Maatschappij, in order to give an example of a System in which the

buckling bars have different moments of inertia. Ii' the portals of the

suspended span buckle sideways, the horizontal displacement of the upper
lateral bracing will result in the forces, exerted by the diagonals of the

trusses, having horizontal components H, that oppose the horizontal movement

of the upper bracing (fig. 43). These forces determine the slope angle
«x of the axis of pressure in the portal posts. In order to clamp the

upper chords of the bridge, forming the posts of the portals, at the ends,
where otherwise, owing to the bearing on the cantilever arms, the fixation
woidd be rather poor, we made an extra floor beam. By this the System
of the portal became as shown in fig. 14, the posts being elastically
supported by the end floor beam I and the extra floor beam II, giving
reactions A and B per unit displacement respectively. We took also the
connection with the upper chords QR into account, but assumed, for sake of
simplicity, a hinge at R. In fig. 14 the axes of pressure for the three
branches of the elastic line are drawn. Owing to the displacements ö and e

the floor beams I and II exert reactions Ad and Be respectively, whilst the
reactions in Q and R are denoted by Q and R. In Q a shifting c of the
axis of pressure occurs, owing to the moment M„ bt/JS'b, exerted bv the
horizontal bar Q Q, so that

e Mu, Pcr 6 E.l„ ß b Prr (187)

If 'J\, /'.,, r3 and /j, /2) h are the r^duced moduli and the moments of inertia
of the bärs AB, BQ and QR respectively, whilst Lv /..„ L3 are the respective

unknown Virtual buckling lengths, we have
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and hence
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Denoting also other values, relating to bars AB, BQ and QR by the sub-
scripts 1, 2 and 3 respectively, the equilibrium demands, according- to
fig. 44K #<*/>.,. 4 <) — ßc (I)

ö « P«. /? + Q (II)
^ r)/P„ =fKd + £ + fl sin(-Tflr/Z.1)j/ß (III)
/?/*>*¦ =/3S!n(jrc/Z.3)/^ (IV)

Continuity at 5 and Q demands, as far as the ordinales are concerned, and,
taking into account eq. (187)

f2 sin (ttx2 IL2) - /i sin (tt a, Li) (V)
/2sin{7r(A —jc2)/L2} — /3sin(jrc/L3) + 6EJußlbPcr (VI)

and as far as the slope angles are concerned

(TTlL2)f2COs(jrX2jL2) Be\Pcr~ (tt jLt) ft cos (tt a ILt) (VII)
W£2)/2COS{rc(A— X2)/L2} =—QlPcr — (TTlU)f3COS(7TclL3) (VIII)
,* (hlc)sm(7rclLB) - (TTlU)hcos(jrclL*) (IX)

whilst finally the total lateral displacement is

^ Äff e + /x sin (tt ajLt)+ 0 a h + 6EJußjb Pcr + /3sin(,TC Z.3) (X)
So we have 10 equations. According to teqs. (188) and (189), Ptn /.„ and L3
are functions of Lv so that these 10 equations comprise 11 unknowm
quantities, viz. Lt, x2, <x, ß, fl9 f2, /3, d, e, Q and R. All these quantities, except
L± and x2, have however a common arbitrary factor, so that the 10 equations
are necessary and sufficient. Elimination of all values but £x is very easy,
though the resulting buckling condition, which we shall not write down here,
is rather extensive53).
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Summary
1. It is shown that the results of Kollbrunner's experiments on buckling

of plates in the plastic domain confirm our theory on the plastic
stability of plates. In order to elucidate this theory somewhat more, it is*

explained how it is based on the real behaviour of steel with changing ratio
of the deviator components, whilst an entirely analytical derivation of its
fundamental formulae is given. Subsequently the plastic buckling stresses
of plates with various loading and boundary conditions have been calculated,
in order to show, as follows also from a direct consideration on the behavioui
of steel with changing ratio of the deviator components, that the plates
show a higher rigidity as the ratios between the superposed deviator
components (with buckling) differ more from the ratios between the initial
deviator components (before buckling) (Tabl. IV). Also it is shown howr the
theory is applied to the plastic buckling of shells.

2. Some complementary data on the stability of the webs of built-up
members are given, followed by an investigation in the stability of Tee
stiffeners. Furthermore the method is given, by which we computed the buckling
stress of the flanges of angles, taking into account, that at that the inter-
section line of the middle planes of the flanges does not remain straight.

3. The latter method is used in order to compute the critical thrust
of latticed struts, consisting of two or more single struts, that are connected

by hatten plates or by a single or double bar lattice. Application to
timber columns, by which also the proper length of the wooden coupling
blocks is taken into account. Cornmunication of tests on timber columns
Making use of the same method for the determination of the critical thrust
of so called sandwich plates, as applied in aeroplane construction, with
arbitrary boundary conditions, and of rammed piles, surrounded by soil.

4. After some introductory remarks Haarman's method of the Virtual
buckling length is used in order to find the required number of batter piles
to stabilize a wharf, to compute the stability of piers supported by battered
piles and that of the portals of through truss bridges.

Zusammenfassung
1. Es wird gezeigt, daß die Ergebnisse der Plattenbeulversuche von

Kollbrunner die Theorie des Verfassers über plastisches Ausbeulen bestätigen.

Um diese Theorie zu veranschaulichen, wird gezeigt, wie sie auf das
wirkliche Verhalten von Stahl mit veränderlichem Verhältnis der Deviator-
komponenten aufgebaut ist. Eine rein analytische Ableitung der Grundformeln

wird gegeben. Ferner werden die plastischen Beulspannungen von
Platten unter verschiedener Belastung und mit verschiedenen Randbedingungen

berechnet, um zu zeigen, daß die Platten eine umso größere Steifigkeit
besitzen, je mehr die Verhältnisse zwischen den superponierten

Deviatorkomponenten (mit Beulen) von den Verhältnissen zwischen den
anfänglichen Deviatorkomponenten (vor dem Beulen) abweichen (Tab. IV)
Dieses Ergebnis folgt auch aus einer direkten Betrachtung über das Verhalten
von Stahl mit veränderlichem Verhältnis der Deviatorkomponenten. Es wird
auch die Anwendung der Theorie auf das plastische Beulen von Schalen
gezeigt.

2. Es werden einige ergänzende Angaben über die Stabilität der Steh-
bleche zusammengesetzter Stäbe und eine Untersuchung über die Stabilität
von Aussteifungen mit ^-Querschnitt gegeben. Ferner wird ein Verfahren
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gezeigt, mit welchem die Beulspannungen von Winkelflanschen berechnet
werden können, wobei berücksichtigt ward, daß die Schnittlinie der
Flanschmittelebenen nicht gerade bleibt.

3. Diese letztere Methode wird angewendet, um die kritische Belastung
zwei- oder mehrteiliger Rahmen- oder Gitterstäbe zu berechnen. Diese
Ergebnisse werden auf zusammengesetzte Holzstützen angewendet, unter
Berücksichtigung der Größe der Verbindungsstücke, und mit Versuchsergebnissen

verglichen. Das gleiche Verfahren wird ferner angewendet zur
Bestimmung der kritischen Belastung der sogenannten „Sandwichs-Platten,
mit beliebigen Randbedingungen, wie sie im Flugzeugbau verwendet werden,
und von gerammten Pfählen im Boden.

4. Nach einigen einleitenden Bemerkungen wird die Methode der
virtuellen Knicklänge von Haarman verwendet, um die erforderliche Anzahl
von Schrägpfählen zur Stützung einer Mole zu finden und die Stabilität eines
durch Schrägpfähle unterstützten Brückenpfeilers und diejenige der Portale
von Fachwerkbrücken zu berechnen.

Resume
1. On demontre que les resultats des essais de Kollbrunner sur le voile-

nienc de plaques dans le domaine plastique confirment la theorie de la
stabilite plastique etablie par Fauteur. Pour illustrer cette theorie, on ex-
plique comment eile est basee sur le comportement effectif de Parier quand
le rapport des composantes du deviateur varie, et ceci au moyen de formules
fondamentales basees sur un calcul purement analytique. Les tensions critiques

de voilement de plaques sont etablies pour differentes charges et dif-
ferentes conditions aux limites, ce qui permet de demontrer que les plaques
om une rigidite d'autant plus grande que les rapports entre les composantes
superposees du deviateur (avec voilement) different des rapports des
composantes initiales du deviateur (avant le voilement) (Tableau IV). Ce
resultat decoule aussi d'une consideration directe sur le comportement de
Parier dont le rapport des composantes du deviateur est variable. Une appli-
cation de la theorie est egalement faite au voilement plastique deb voiles
minces.

2. Quelques indications complementaires sont donnees sur la stabilite
des ämes de poutres composees auxquelles s'ajoutent des recherches sur la
stabilite des raidisseurs en forme de T. Puis une methode est exposee qui
permet de calculer les tensions critiques de voilement des ailes de corniere,
en supposant que la ligne d'intersection des plans medians des ailes ne reste
pas rectiligne.

3. La meme methode est utilisee pour calculer la charge critique de
poutres en treillis ou ä etresillons se composant de deux ou plusieurs barres
simples. Ces resultats sont appliques ä des colonnes en bois composees,
compte tenue de la grandeur des assemblages et ils sont compares avec les
resultats d'essai. Une autre application de la meme methode permet de
determiner la charge critique des plaques dites „Sandwich", soumises ä des
conditions ou limites quelconques telles qu'elles sont utilisees dans la
construction d'avion, de meme que pour le calcul de pieux dames.

4. Apres quelques remarques preliminaires, la methode de la longueur
virtuelle de flambage de Haarman est utilisee pour determiner le nombre
d'etan^ons necessaires ä la stabilisation d'un debarcadere, pour etudier la
stabilite de piles de ponts etayes d'etancons, de meme que celle des por-
tiques de ponts ä treillis.
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