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SOME CONTRIBUTIONS TO THE THEORY OF ELASTIC
AND PLASTIC STABILITY

EINIGE BEITRAGE ZUR THEORIE DER ELASTISCHEN UND
PLASTISCHEN STABILITAT

QUELQUES CONTRIBUTIONS A LA'THEORIE DE LA STABILITE
ELASTIQUE ET PLASTIQUE

Prof. Ir. P. P. BIJLAARD,
Technische Hoogeschool Delft, Technical Adviser 1. A.B.S.E.

1. General considerations on the plastic stability of thin plates
and shells

1. 1. Tests by KOLLBRUNNER.

Our theory on the plastic stability of plates!) 2) is based on the actual
behaviour of structural steel with changing ratio of the deviator components
which follows from the tests of HoHENEMSER and PRAGER®) with tubes, so
that we may assume that its results will be in good accordance with the
actual behaviour of buckling plates. Nevertheless many designers will be
more inclined to use it, if they possess a more direct demonstration of its
applicability. This direct proof is given, anyhow for aluminium, by the ex-
tensive and careful tests on the buckling of plates, executed and published
by KOLLBRUNNER ¢). :

The tests were effected with thin plates of avional, an aluminium alloy,
whilst the stress strain graph of the material was determined by compres-
sion of short sheets. We will compare the tests as given by KOLLBRUNNER
in his figures 33, 34 and 35 with the results of our theory. All these tests
relate to plates, compressed in longitudinal direction and supported at the
unloaded sides.

Fig. 33 refers to plates of which the unloaded sides are simply sup-
ported. According to our theory the buckling force per unit breadth of such
plates is, if the entire plate deforms plastically )

hop = (2a2EJ[b%)(YAD + B + 2F) (1)

The modulus of elasticity £ of avional is 715000 kg/cm2. The thickness
i and the breadth & of the plates were 0.2 cm and 6.2 cm respectively, so
that a2 EJ /b2 = a2Eh3/12 2 = 122.8 kg/cm. Furthermore, as in this case the

1} Byraarp, Proc. Royal Neth. Acad. of Sciences, Amsterdam, nos. 5 and 7, 1938.
2) Byraarp, Publ. Int. Ass. f. Bridge and Struct. Eng., Zurich, Vol. 6, p. 45—069.
3) HoHENEMSER and PRrAGER, Zeitschr. f. ang. Math. u. Mech., no. 1, 1932.

4) KOLLBRUNNER, Mitt. a. d. Inst. f. Baustatik, Zurich, no. 17, 1946.

%) ByLaarp, lit. footnote 2, p. 55, eq. (38).
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second principal stress is zero, so that = g,/0,;==0 and 72 =f? — g +1=1,
values A, B, D and F in eq. (1) are given by 6)

A = ¢1/ps, B = @afps, D= @3|/qy, F= m|(2m+ 2 4+ 3em),
in which ¢1 = m*{E 4+ (44 3¢)tan¢}
w2 = 2m(mE + 2 tan ¢) (2)
w3 = 4m*(E + tang¢) S
oo =m(Bm—4+3em) E+ {4(m*—1)+ 3em?*} tangp

value m being 1/»=10/3, whilst» is PoissoN’s ratio, e=Ee,/o and tan p =do/dz,,
the latter two values having to be measured from the stress-strain graph with
pure compression at a stress s equal to the buckling stresso,. Value ¢,is the
plastic strainand tan ¢ is equal to?) £ E,/(E—E,), E~do/de being the tangent
modulus. With a stress op= 2200 kg/cm? we find from the stress-strain
graph of avional E,= 350000 kg/cm?=0.49 E, ¢=0.065, tan ¢ =0.96 E,
by which egs. (2) yield A=0.655, B=0.41, D=1.02, F = 0.36, so that it
follows from eq. (1) that op = 3.886 @2 £J/b2/r = 2385 kg/cm?, being more
than the stress 2200 kg/cm? we started from. Assuming now a stress op ==
2300kg/cm? we find in the same way £,=~300000kg/cm2=0.42 E,e==0.11,
tan ¢ = 0.725 E, A=0.59, B=0.41, D=0.985, F = 0.34, op = 2276 kg/cm?2.
Interpolating lmearly between assumed as well as between resulting values
op we finally find a buckling stress op = 2288 kg/cm?2.

With these tests the eccentricity of the load was certainly such, that
with buckling practically no discharge occurred, so that we shall have to
assume that the plates showed no elastic region. Hence the buckling stress
is indeed determined by eq. (1) only, in the same way as also in practice,
in connection with small eccentricities, the critical stress for a plate, assumed
to be plastic all over, is determinant for the strength of the plate, as we stated
already previously 8).

According to our theory 2) the plate should buckle in waves with a half
wave length a/p= (4/D)+b. With a buckling stress 2288 kg/cm? we find
A=0.60 and D = 0.99, so that the half wave length a/p=a,=0.88 b. This
wave length will occur if the plate is free to select its most favourable
wave length, i.e. if it is infinitely long. With the ‘tests the loaded edges
were not simply supported, but somewhat clamped, so that we have here
about the same case as studied by ScHLEICHER 9), where in the elastic region
the transition from p to p--1 half waves occurs if a= b6V p(p --2). As in
that case the most favourable half wave length is equal to the breadth & of
the plate, we shall assume that with the tests this transition occurs when

a=uapVp(p+2). In Table I we give successively the lengths a of the
plates tested by KoLt KOLLBRUNNER, the limiting lengths ¢;=0.88 6 V (p —1) (p+1)

of half waves pp=p between these hmltmg lengths accordmg to our theory
and the number of half waves pr observed in the tests, the latter number
followed by the number of tests in brackets.

6) Biraarp, lit. footnote 2, p. 50, eqgs. (20)—(23).

7) BijLaarp, lit. footnote 2 p. 53.

8) BiLaarp, lit. footnote 2 p. 54, footnote 10.

9) SCHLEICHER, Mitt. Forsch. Gutehoffnungshutte Konzerns, vol. 1, 1931. Cf. Tino-
sHENKO, Theory of Elastic Stability, p.’364.
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Table 1.
a 320 4ssb | 6456 | 810
ap—ay | 2496—340b | 4316 —521b | 6.106— 6.98b | T87b—8.750
P 3 | 5 | 7 ! 9
Pr 33) 5(3) 73) | 9(3)

The conformity between theory and tests is complete.

The buckling stresses of the 12 testplates vary between 2040 and 2190
kg/cm?, except one that yields the low value 1950 kg/cm2. Hence, disregar-
ding the latter value, the lowest buckling stress is only 11 oo below our
theoretical value 2288 kg/cm2. As this discrepancy is not more than the per-
centage the experimental values in the elastic domain remain below the
theoretical values, owing to unavoidable inaccuracies, and the theoretical
values in the elastic domain being undoubtedly correct, we may conclude also
that our buckling stresses for the plastic domain are accurate.

We now consider the buckling of plates of which the unloaded sides
are fixed, the test results of which are given in KoLLBRUNNER’s fig. 34. The
plates have a thickness /2= 0.2 cm and a breadth 4 = 4.4 cm. The buckling
condition for these plates in the plastic domain is 19)

oy tanh (e 6/2) + ep tan (a2 6/2) = 0 (3)
in which  @p =] +Gr +2VHL + Kg*
G = Bﬁ%zf, H = (B+21;), =40 k=1up [ )
7 =g L= ap|e

After assuming op to be 3100 and 3150 kg/cm? it appears that its real value
is about 3140 kg/cm2. With 6p = 3150 kg/cm? we found, in the same way
as before, £,=0.04 E, e=1.49, tan ¢ = E/24, A=10.157, B=0.238, D=
0.485, F'=0.141 and, according to eqgs. (4) G=1.07, H = 0.825, K == 2.06,
@?=1.32. Assuming now 1= 1.55 we obtain «; = 2. 435 and oy == 0.89, so
that eq. (3) yields

ar tanh (a1 6/2) + a2 tan (ap6/2) = 0.27

instead of zero. Assuming now op = 3140 kg/om? we find G=1.072, H =
O 827, K= 2.01, ¢? = 1,315, yielding, with 1=1.55, values oy = 2.431 and
— 0. 872, by which eq. (3) yields

ay tanh (oqb/ ) + a3 tan(agb ) = 0.02

so that op is round 3740 kg/ecm? with i=ap/a=1.55 and a half wave
length ap=a/p=m/1.55=2.02 cm =046 b.

Calculating in the same ‘way the buckling stresses w1th other values 7
it appeared that with 1= 1.55 the critical stress is about a minimum. In
Table Il we give the data for these tests, the hmltmg lengths a; for p half

waves being now asswned to equal 0.46 6y (p —1) (p +1) and 0.4606
Vr(p+2).

16y Brraarp, lit. footnote 2, p. 57.
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Table II.
a | 4556 | 680b i 9105 11.35 b
L —ap | 4116 — 4585 | 643b~—6881; 873b—919b 11046 —11.50b
DB 9 { ‘ 24
pr 9@ | 13(2), 1401 | 18(2) 19 (1) 24 (3)

Also here the conformity between theory and tests is very good.

One extraordinarily low value excepted, the buckling stresses for the
other 11 tests are between 2830 and 3115 kg/cm?, the lowest value being only
10 o5 below our theoretical value.

Finally considering -fig. 354), referring to plates that are simply sup-
ported at one unloaded side and fixed at the other, with Z= 0.2 cm and
b = 5.3 cm, the buckling condition is given by 11)

oy cothey b — as cotagb — 0 (5)

whilst «; and «, follow from eqs. (4). Here we find that the buckling stress
op acquires a minimum value with about 1= 0.865, hence with a half wave
length a/p = a/i = 3.63 cm = 0.685 b, whilst 6p = 2882 kg/cm2. Making here
the limiting lengths a; for p half waves equal to 0.6856V (p—1) (p-+1) and
0.685Y p(p —2), the data for this case are given in Table III.

Table III.
¢ | 386 | 5656 | 1556 | 045
|
a, l 3365 — 405 f 5445 — 6.12b { 7505 — 8.20 [ 8.885 — 0.56 6
pr 51, 6) | 8(3) | 10(D, U@ | 13(1), 14(2)

The conformity between our theory and the tests is here again better than
~could be demanded.

The buckling stresses of all thirteen tests vary from 2660 to 2850 kg/cm?,
the lowest value being only 8 9o below our theoretical value.

Hence we may conclude, that KOLLBRUNNER’s tests have proved the appli-
cability of our theory to plates of aluminium, as the number of waves shows
that the anisotropic behaviour of the material is exactly such as predicted
by our theory, whilst the discrepancies of the buckling stresses are not more
than in the elastic domain. As with nonchanging ratio of the deviator com-
ponents the plastic behaviour of soft steel and aluminium is determined
by the same laws, whilst our theory is based on the real behaviour of soft
steel with changing ratio of the deviator components, it is not so great a
jump to conclude also that our theory is applicable to plates of soft steel.
Apart from that we showed already in our preceding paper?) that the re-
sults of the few tests with steel plates are not contradictory to our theory.

11) The condition is identical with that in the elastic domain, only e, and o, are
now given by eqs. (4). In our paper, loc. cit. footnote 10, there is a misprint in this
buckling condition; the latter function should be cot b instead of coth b,
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1. 22.0n the plastic deformation of soft steel with
changing ratio of the deviator components.

As it appears that the derivation of our fundamental formulae, given in
our first paper ?), is somewhat difficult to understand for readers who are
not accustomed to work in problems of plasticity, we shall try to elucidate
our line of thought a little more, whilst we shall also give a purely analytical
derivation of our formulae that demands a less imaginative faculty.

The fundamental question is, that with the buckling
of plates and shells another state of stress, with another
ratio of the deviator components, is superposed on the
initial state of stress and that with changing ratio of
the deviator components the material no longer behaves
quasi-isotropically, as with a constant ratio of these
components, but behaves anisotropically. The components
of the stress deviator being

0y =0y — 0, Oy = 0y — 0, G;== 0, — 0, Tyy, Tyz, Tzx, Tpy, Tz ANd Ty,
whilst 0= (0,+0,-}0,) /3, the deviator components of the elastic deformation,

Exe:€xe—8:6x{20, Eyg:f,‘yg—azay/za’ Eze:‘sze**f?:——(—fz/zay
Vx)’f/z = Ty|2Q, }’yze/z = Tyz/ZG, etc.

in which &= (¢, + ¢, 1 &.)/3, are obviously always proportional to those
of the stress deviator. However, the components ¢.,, ¢,,, €,, 7.u»/2, €tc. of
the plastic deformation tensor, which is identical with the plastic deforma-
tion deviator, as ¢, -}¢,, ¢, = 0, are proportional to the components of
the stress deviator only under special simplifying assumptions, whilst their
increases are only proportional to the increases of the stress deviator com-
ponents if the ratio of the stress deviator components remains constant. The
elastic shearing energy that governs the plastic deformation may be ex-
pressed as follows

I/s == ‘;]i (ax txe + ‘_Fy Eye + 0, €20 + Txy 7 xye + Tyz Yyze -+ Tzx Ver)
= (1/4G) {6 + 0,2 46 + 2(vgy + 7z + Tx)} = S2/4C (6)

Hence at the yield stress, where V; is constant, also

St = Vo + 62+ 02 + 2(r + 1,0 + 7)) (7)

is constant. HoHENEMSER and PRrRAGER?) executed tests at the yield stress
with steel tubes that were alternately subjected to pure tension and to tor-
sion, so that here too the ratio of the deviator components changed. They
represented the stress deviator and the deformation deviator by represen-
tative vectors I'y and 7, in a nine-dimensional space, the components being
equal to the nine components of the deviators. Hence, since at the yield
stress S, is constant, according to eq. (7) the length of the stress vector I',
and that of the vector 7',, of the elastic deformations will not change, whilst
with constant ratio of the stress deviator components, the direction of all
vectors does not change either. In that case the vectors of the plastic and
elastic deformation, being for example 7',, = AB and 7,.= BC respectively,
will become after further deformation 77,,= AB and 7,,= B C’'= BC
respectively, whilst the representative vector I'y of the stress deviator, being
placed at the end of the total (i.e. elastic plus plastic) deformation course,
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moves from C to C’, its direction and length remaining constant (fig.1).
The excess plastic deformation BB’ equals the excess total deformation CC’.

if, however, the direction of the total deformation course changes,
as is the case with plastic buckling of plates, so that after -having 'a
direction AC, in which AB and BC represent the plastic and elastic
deformation respectively, it procceds in a direction CDE '(fig. 2), se-
veral possibilities for the course of the excess plastic deformation exist.
In our computations we assumed, that in the representative point £ of
the total deformation, the situation is the same as with a straight defor-
mation course AE, so that, as the representative vector of the elastic de-
formation FE remains equal to BC, the excess plastic deformation is re-
presented by BF, whilst the stress deviator is represented by [’y in E. So

4/

/
A
g sl
LY A
(4
\) f 4
c Q“ ) /
S TH 6//
(4
AS)
A ZZ7F A
% A L ////, N
>/
S /] Bf7
VAN
A /)
A A —
Fig. 1 , Fig. 2

we attributed a complete memory to the material. According to the tests
of HOHENEMSER and PRAGER 3), however, the memory of structural steel is
not so complete. Free deformations, i.e. deformations during which the
ratio of the deviator components does not change, are forgotten. Hence with
an excess total deformation CE the free plastic deformation AB is forgotten,
so that the continuation of the representative vector of the elastic deforma-
tion deviator, GE = BC, passes through B, the excess plastic deformation
course being represented by BG and the stress deviator by I',,. Moreover
superposed vibrations effected a total loss of remembrance, so that at any
moment the excess plastic deformation components were proportional to
the components of the stress deviator, by which the increase of the plastic
deformation course has always the same direction as the representative
vector of the stress deviator, so that the beginning H of the vector of the
elastic deformation, HE =BC, is to be found on the trail curve BH be-
longing to the course of the total deformation CE, by which the excess
plastic deformation course is given by BH and the vector of the stress de-
viator by I'y;. In our former papers!) 2) we called bodies with plastic de-
formation courses BF, BG and BH a HeENcky, HOHENEMSER-PPRAGER and
PRANDTL-REUSs body respectively.

With buckling the superposed excess deformations are infinitely small.
With an infinitely small total deformation CD the excess plastic deformation
for a material with a complete memory is given by BK, the continuation
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of the elastic vector KD = BC passing through A4 and the stress deviator
being represented by I'y, in D. With both partial (I'y, in E) and complete
(I'ys in E) loss of remembrance the vectors of the elastic deformation will
pass through B in this case, the excess plastic deformation being given
by BL. As, however, deformations below the yield stress, where the tangent
modulus E,=do/de has a positive value and with which we have to do with
buckling, cannot be considered as free, as at the yield stress, if the ratio
of the deviator components is constant, in our theory we took all preceding
deformations into account and thus contributed a complete memory to the
material. Hence we reckoned with the resulting stress vectors I'y;. We did
this especially, as in this way we were sure not to over-
estimate the buckling stresses of the plates. For in this
case the excess stress deviator, which after an excess total deformation
course CE is represented by 4,1, is smaller than with partial or complete
loss of remembrance, as may be seen directly in fig. 2. As with infinitely
small excess deformation a partial or complete loss of remembrance amounts
only to a neglect of the initial plastic deformation course 4B, we may even-
tually take it into account in our formulae by equating value e to zero, as
we did already in our first paper 2), page 56, in order to compare our re-
sults with the tests of CHase. The conformity of KOLLBRUNNER’s tests with
the results of our theory, obtained by taking value ¢ into account, shows,
however, that for aluminium it yields reliable results in that way, whilst
with steel, where e is small, so that taking it into account or not makes little
difference, we had better remain on the safe side.

It also follows from fig. 2 that the more the direction of the excess de-
formation course CD deviates from that of the initial deformation course
AC, the more the direction of I'y; will deviate from that of I',, and the
larger the excess stress deviator vector 4,I", will be. Hence the excess
stress and thus the resistance to buckling will be the
higher, the more the ratio of the excess deformation
deviator components differs from that of the original
ones. We will demonstrate it under here too by comparing the plastic
buckling stresses at the yield stress for several cases of buckling (Table V).

If with buckling the material would deform quasi-isotropically, as was
assumed by Ros-EICHINGERY6) and CHwALLA, so that for example at the yield
stress an excess deformation would not cause excess stresses and hence no
excess elastic deformations, with which only plastic deformations would
occur, an excess total deformation course CE would cause an equal excess
plastic deformation course BM. The elastic deformation is then represen-
ted by ME, parallel to BC, whilst the resulting stress deviator is represented
by I'y in E, being parallel to I'j in C, 41" being zero. It is clear that such
a behaviour is contrary to the actual mode of deformation of steel accor-
ding to the experiments of HoHENEMSER and PRAGER.

1. 3. Purely analytical derivation of our fundamental
formulae on the plastic stability of plates and shells.

From fig. 2 it follows that, with the mode of deformation as assumed
by us, the total plastic deformation 4K or AF and the state of stress, re-
presented by I'y; in D or E, determine each other reciprocally, the stresses
with a total (elastic plus plastic) deformation AD or AE being the same
as if this total deformation were built up along the straight line 4D or AE.
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Hence the excess stresses o, and o,/ with buckling can be determined by
subtracting the initial stresses o, and g, before buckling from the total
stresses, o, and o,, belonging to the total strains ¢, and ¢, after buckling,
— the way we followed in our first paper2) 12). We may, however, follow
also a more direct way in order to find the relations between the excess
stresses ¢/, 0,/ and ty, and the excess strains ¢, ¢/ and yg, 13), the primes
indicating in point of fact differentials, so that for example o, means do,.
For we may write

o€ ce C &
dex == ,\"*x‘d()'x + 77&_.76_ d()'y + 7‘—d’[xy
00y d 0y C Ty
e oe X
dey = Y doy +—2Ldo,+ Y dr,y (8)
cGa ¢a ' Ty
x v  xy
ay 0 3
dyy=Vdo, + S do, + S gy,
Oax C’(iy C/ny

Furthermore the strains may be split into elastic and plastic strains, e.g.

& = &, + Exp
0¢ ce ‘e 9
and ';—'x’ e o + —‘:—XE
O Oy OO0y ¢ Oy

It needs no further explanation that
0|00y = O8e/00, = 1E
€ |00y = C&pel]C 0, = —1/mE (10)
0 Yaye| 0 Ty = 1/G
whilst all other partial derivatives of the elastic strains with respect to the
stresses are zero.
In order to calculate the partial derivatives of the plastic strains we

remark that, as the shearing energy governs the plastic deformation, a plane
istate of stress is equivalent to a linear stress

oq:\/o'xz——oxoy-; oy2+f}:rx§ (11)

For a material with a complete memory the total plastic strains and the
state of stress determine each other reciprocally, as explained above herelt),
so that we may write for the plastic strains, as the coefficient of lateral
contraction m equals 2,

) 12) We may take this opportunity to indicate some disturbing misprints in our
first paper ) of which, owing to the war, we could not read the proots. Eqgs. (11a) and
(11b) read as follows '

2 2
0, = ?E/J@ et &) (112) and 0, = —3~E,, 22y, + 2,p) (11b)

In eq. (37), p. 55, the first term in the large brackets should be Ap?62/a? instead of
Apb?/a®. In eq. (57), p. 60, all sine and cosine functions should be changed into sinh
and cosh respectively. On p. 62 in eq. (61) sinh «,b should be sin a,b and in the for-
mula for «';, values 2 and N should be #’ and N’. See also footnote 11.

13) Biraarp, lit. footn. 1, egs. (21)—(24), lit. footn. 2, egs.’ (20)—(23).

14) For a material without remembrance, on the other hand, we have a relation
between the excess strains and the stresses, hence

a’expzax/E,'J-ay/Z E, and deyp—:ay/E;, "“x/ZE;;

We considered such a body more in detail in lit. footn. 1, p. 734.
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&xp = Ox|E, — 0,[2E, - (12a) and &p = 0y|E, — 0,|2E, (12Db)
whilst, as G,=mE,/2(m 1) =E,/3,

Yayp = Txy|Gp = 314[E, (12¢)
Inversely it follows from eqs. (11) that )
0r = 4 E, (260 + ¢p) (132), 0y = £ E,(2¢y, + &xp) (13b)
and Ty = 3 Ep 79y (13¢)
Substitution of eqs. (13) in eq. (11) yields
0g = ‘723 £, Vex/i + &p+ e + A rgp = V% Eyeq = Epépg (14)

With a stress-plastic strain diagram for pure compression as given in fig. 3a,
at a certain point P the total plastic modulus £,=g,/¢, is given by the tan-
gent of the angle between OP and the ¢, axis. From eq. (14) it follows that
with an arbitrary plane state of stress, represented by point P in a o,—¢,,

G Gy
P P
# F
are fan £y arclonk,
are /g. £p arcty. £,
6p fpg
0 0
Fig. 3a Fig. 3b

diagram (fig. 3b), value E, is also the tangent of the slope of the straight
line OP. Hence the o,—¢,, diagram is identical with the o—¢, diagram for
pure compression, so that at corresponding points P, where o, =0, also the
slopes ¢ of the two graphs are equal. Hence we have

0g/¢pg = E, (15a) and dogld e,y = tang (15b)
Furthermore it follows from eq. (11) that
005 __20:—
00, 20,
Using eqs. (15a), (15b) and (16a) we have now

4 ( 1 ) — 0 (£pg/94) — d(pg|0g) 00q _ 04d8pg|d 04— &pg 20, — 0, —
E,

67(7q:20y_0x (16b) é)_o;q:%([,x;y (16(:)

0 0y 20, OTxy o4

“ (16a),

00y dog 0o 042 20,
__ og/tang — o, /E, 20,— 0,
= 2
Og 20,

so that finally we get |
(1Y 20— "y< £, ) v
¢ Oy <Ep) 204 E, \tang ! (17a)

Abhandlungen_ VIII 3
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;Interchanging o, and o, we obtain from this equation
| o (1 2(7y—(fx(' E, )
— == —1 17
39, (E,,) 202, \tang (17b)
Finally we find in the same way, using also eq. (16c)
K (l) _(gpglog) _ d(epglog) 004 oq/té}nqo—f— (rdeg 3/{,2

07y \E, 0ty do; 0Ty 042 0q
so that . (L) = 32[’9’ ( Ey —-1) (17¢)
0Ty \Ep: o E, \tang
With the aid of eqs. (12a) and (17a) we find now
Cée&p ;(7 71 - 1 20,— 0y 2‘@—6}, ff’, . ) .
bo. oy 2F, (20x==0y) = E, 2 202 E, (tan«p -
' 1 (20,—ay)?( Ep ) :
— — 18
E, 40 E, (tan @ 1 (18a)

whilst with eqs. (12b) and (17b) or by interchanging x and y in eq. (18a)
we get

Oy 1, 20y —09* ( B 1) 18b
co, E, 40,E, \Mang ( )
Furthermore with eqgs. (12b) and (17a) we obtain
7(’\ ﬁ'/{ . (" 1 . ,,,,1_,, (2 Oy — 0)’) (2 (fy (Tx)( ) 1
Co, ~dop 2B, BT = =g+ 40E, tang — 1) (189)
whilst interchanging x and y shows that
Cowp _ Cp (18d)
c 0y O Oy

Computing now the partial derivatives containing y,,, or 7., we fmd using
€gs. (12) and (17)

Otxp __ Otap _ 31 (2 (rt—Gy)( - 1) (18¢)
0Ty oo, 207E tan

aé‘yp _ &yx)lp — 3’\}/(2_ 01 r rx)< — 1) (18f)
0ty 00y 204 [:,, tan ¢

Oymp _ 1 | 3us (’;Ep»ﬂ ) 18
0ty Gy * o4 Gy \tang ! (5e)

In order to obtain resulting formulae that are not unnecessarily intricate,
we place, as before, the X-iand Y-axes in the direction of the principal
stresses of the state of stress before buckling. Hence in eqs. (18) the stress
7y 1S zero, by which all partial derivatives of unit shears y,,, or with respect
to shearing stresses z,, are zero, except ¢y,,,/0r,,, that equals 1/G,. At the
other hand, with an arbitrary initial state of stress g, 05, we shall replace
o, and o, in eqs. (18) by o; and g,. Hence we obtain from egs. (8), after
splitting the partial derivatives into an elastic and a plastic part, as we did
for example in eq. (9), after insertion of eqs.(10) and (18), equating E,
to E/e and indicating differentials by primes
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I,_(lie+(201~02) E- etan(p) (’_2+me+(291~92)(292—g£)E—etan(p)g;
“=\E ' 452 FEtang )"\ 2mE 4o Etang )
6,_(_2+’”€+(291—92)(292—91) E_etanqa)o, (1_+f+(292—91)95—€ta“99>0,

77\ 2mE 40, Etang ) * "\ E 40,2 Etang /7

(1 1) , _2m+2+3em ,

w=\g*g, mE w

Inversely we may compute from eqs. (19) the excess stresses as functions
of the excess strains. As with our choice of the X- and Y-axes in eq. (11)
= 0,2 — 04 05 - 0,2, we obtain in this way the following formulae

o/ = E(A&’ + Bg)), o/ = E(Be/ + Dg)) - (20)
in which A = (])1/(}94, B = ()0‘)/974, D — (}’)3(([54 (21)
and 1= /n~f(1——2/>’) E+ (452 + 3¢)tang}
ge=m{(2—pB)(1—28)mE+ (4% + 3emp) tang}
Gy = m?* {(2* B)2E + (412 +3ep?) tang} (22)
ge =m{(Bbm--4)1+ pB*)+2(5—4m)p+3emy*} E
+ [4(m*—1)y2 4+ 3em{mn? 4+ (m—2)p}]tan¢
B =g/ and p® = 0g,%e® = B —p 41

I mE
YT 2m 2+ 3em Ve =

‘The resulting formulae are of course exactly identical with eqs. (20)—-(23)
of our first paper?), only the numerators and denominators ¢ of the frac-
tions given in eq. (21) have been divided by a factor (1—2p). In a similar
way as shown here for a plane state of stress we may also calculate the
stress-strain relations for an elasto-plastic body, subjected to a three di-
mensional state of stress, on which an infinitely small three dimensional
excess stress tensor is superposed (by buckling), which relations may be
useful in order to solve three dimensional cases of plastic stability 19).

Also with eqs. (18) it may be seen easily, why Rog and EICHINGER 1Y) came
to the wrong conclusion, that with buckling of plates the material behaves
quasi-isotropically. They assumed that with a stress-strain diagram for
pure compression as in fig. 3a, for example excess stresses do, and do, cause
an extra plastic strain

dey, = (1/tan¢) (d oy — d o, [2)

The real relation is, however, according to egs. (18), with o,==9,, 0,= g,
and t7,,=0

EFy,, (23)

dep=C0do+ S do 1 S a,
co UTxy
(1 (201~02) ( p )} o { 1 (20102)(202_91)< E, )}
__lEp+ io7E, \tang 1)idoe+t —ZE,,{ 402 E, tang ~-1)ido,
doy—day2 201~92( E, )
— L . _ - ! — 0o -
£ (o ) e do+ Rume)da) (24

" 1d) Appears in Comptes Rendus, 6me Congres de Mécanique Appliquée, Paris.
19) Ros and EICHINGER, Int. Ass. for Bridge and Struct. Eng., Paris Congress, Final
Report. 1932,

(19)
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Only if do,:do, =9,:0,, hence if the ratio of the stress components and
thus also of the deviator components does not change, eq. (24) yields

d()‘x——dﬂyj2+291—92( E, 1)2%2 do,

Aoy =

E, 4 o2 E, \tan P o 01
_ d0x—doy2 | do,—dg)|2 (_Ez_ _1)
o E, E, tan ¢ '
= (1/tan¢) (d o, —d 5,/2) (25)

in accordance with the equation used by Roi and EICHINGER, the material
behaving only quasi-isotropically if the ratio of the deviator components
remains constant, as with buckling of bars.

1. 4. Application of our theory to several cases of
buckling of plates.

As follows from the tests of KOLLBRUNNER and from the reasoning on
which we based our formula

o = 0p/4 + 3opl4 (26)

given in eq. (35) of our first paper?2) 8), with a given stress-strain diagram
the buckling stress has to be computed under the assumption that the entire
plate deforms plastically. If, however, it is not the stress-strain graph which
is given, but the relation between slenderness ratio and buckling stress of
columns, it evidently makes little difference, whether both columns and
plates are assumed to show elastic regions or not. In our first paper we
worked with the first assumption. With buckling under pure compression
we found just below the yield stress for the plastic region7)

A = 0421, B = 0426, D = 0938, F = 0322 (27)
whilst in the elastic domain ‘
A =D =1.099, B = 0329, F = 0.385 (28)

so that according to eq. (26) we worked practically with the following
average values for the entire plate

A=0591, B=0402, D =0978, F=0338 (29)

Assuming on the contrary that the slenderness-buckling stress relation for
bars is based on an entirely plastic deformation, so that we have to reckon
with the tangent modulus E,, we find just below the yield stress E;=
220, /72 = 602 - 2400/72 = 875 000 kg/cm2, tangp=0.715E and e-=10.073, so
that for pure compression we obtain

A=0593, B=0422, D=1012, F=0355 (30)

which values are at most 5 9 higher than those of eq. (29), so that with
eq. (26) we remain on the safe side. As the actual conditions are rather
intricate and as in the latter way our computations remain in concurrence
with the current calculations for bars, we shall use eq. (26) also for our
further computations.

In order to compare several cases of buckling, we shall calculate the
ratios of the buckling stresses o, just below the yield stress and those in
the elastic domain, oz, the result being given in Table IV.
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Case 1 is an infinitely long plate, subjected to compression in axial
direction, of which one unloaded side is simply supported whilst the other
is free (fig.4). In this case buckling occurs by pure twisting, so that on
the original pure compressive stresses pure shearing stresses are superposed.
Hence a maximum resistance will occur here, as the infinitely small shearing
stresses will not increase ¢, in eq. (11), as may be seen readily by differen-
tiation. More directly it follows from fig.5, that an infinitely small stress
dz, superposed on a pure compressive stre%s o, increases the diameter of
the stress circle only by an amount that is infinitely small of the second
order, so that, independent of the used plasticity condition, the equivalent
lmear stress o, does not increase by it1?). Hence in fig. 3b the state of
stress remains represented by the same point P, so that £, remains constant.
This explains also why in this case the slope angle ¢ does not influence
the resistance to buckling. Plastic deformations occur only because, accor-
ding to fig. 5, the principal axes of the state of stress rotate through a
small angle «’. The total shearing strain is accordingly given by yy, in

eqs. (19).
a

=

= d__ B
Mo M ¥ it = =dT

— L
drTU ¢
Fig. 5

We have already investigated this case beforel?). As in the elastic
region we can use here the energy method 18). The work done by the stresses
G, == 0Op iS

ab
Vo =4[ hop(dw[dx)®dxdy (31)
00 :
The strain energy of the entirely plastically deformed plate is, as C=25B 19)
ab
[{a(Ea) 2055 T o () + 4
, — 1 -
VL_QEJJJ{A(M +ZBax2 .~ LAY +ar(s o) e @2

With buckling V,=V,;, which condition yields, with (fig.4)
w = Kysinax/a (33)

and as J=#~3/12, the critical stress
2 b® h\?
P E( 2 +F)(b> (34)

17) BiyLaarp, De Ingenieur in Ned. Indié, no. 3, 1939.
18) TiMoOsHENKO, loc. cit., p. 325. HARTMANN chkung, Kippung, Beulung, p. 168.
13) BIJLAARD, 11t footmete 2, eq. (66).
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With an infinitely long plate &/a=0, so that
op = E Fh?|b? | (35)

It looks somewhat strange to use so much mathematics to solve a case which
is in principle so simple. A simple solution is, however, possible in several
ways. If we consider an element 6/ dx of an infinitely long plate (fig.4),
no bending stresses occur in the cross sections. With a slope angle o« of
edge y =10, the thrusts b/, = bhop give a total outer moment

Mot = b hopadx

As, with w, also dw/dx is proportional i{o y, the individual outer moments
M, by the stresses op are also proportional to y (fig. 4), so that the twisting
moment M, in sections /2 dx, perpendicular to the Y-axis, is distributed
parabolically, as shown in fig. 4. As in the plastic region we have, instead
of G=1y, /7., value 1y /7y, = EF according to eq. (23), we get
b ,
= [ Midy|EFJs = % My b|EF/y
0

so that the twisting moment M, at y = 0, that has to balance the total outer

Equating M, and M,, yields eq. (35). That we found here a parabolic distri-
bution of M, instead of the actual equal distribution, in accordance with w
being proportional to y, is a consequence of our intentional neglect of the
real distribution of the equivalent shearing forces V,= Q, — ¢M,, /0y along
the elemen' bA dx. This is allowed because additional shearing forces AV,

b
cause a slope angle Ao =dx J‘AVAydy/EF](, in which the integral is zero

owing to equilibrium condltlons, so that Ao =

Although in this case a decrease of g, is nowhere caused by the excess
stresses, so that elastic regions nowhere occur, it is sufficiently safe to use
value F of eqgs. (29), being less than that of eq. (30). Hence eq. (35) yields,
as in the elastic region F==0.385 according to eq. (28),

op = 0,338 E h2[6* = (0,338/0,385) 65 = 0.8780k.

In case 2.of Table IV — a long plate, compressed in longitudinal
direction, of which the unloaded sides are simply supported —, also rather
high twisting stresses occur with buckling. If one or both sides are fixed
(cases 3 and 4), the twisting stresses are less, so that these three
cases show decreasing values of op/or. We found?) fiogp=3.65 a2EJ/b>,
4.77Tx72EJ /b2 and 5.97 72EJ] /b2 respectively, whilst in the elastic region we
have /oy = 4.40 n2EJ] /b2, 5.94 72EJ /b% and 7.67 a2E]/b? respectively, yielding
the ratios given in Table IV.

- Incase 5 of Table IV — an infinitely long plate, simply supported
at the edges and subjected to pure shearing (fig.6) — the X-axis is placed
parallel to the long edges. Wi can calculate values, A, B, D and F first
for the state of stress g, = —o;, assuming X- and Y-axes in the directions
of the principal stresses. As stresses and strains transform as the compo-
nents of a tensor, we subsequently apply the respective equations29) to

20) See for transformation equations e. g. TlMOSHENKO Theory of Elasticity, 1934,
p. 191, 192,
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transform the stress-strain relations to those for the X- and Y-axes parallel
to the edges of the plate. We find then that we have to introduce in eqs. (20).

A=D=4m*(1+o/{4d(m*—1)+4em(2m—1) 4+ 3e*m?}
B=2mQ2+em)[{4(m*—1)+4em(2m—1)+ 3e*m?} l

- (36)
whilst in eq. (23) ’
= mtang/{3mE+ 2(n + 1) tang¢}
in accordance with eq. (67) of our first paper?).
~ T
-3 0,5:}’
= // | N
. / I \\
b X 1 j @
1 AR
\
- “4
Fig. 6 o
Fig. 7

We have here the inverted case of case 1, as here before buckling
o,=o0,= 0, so that the excess stresses ¢, and o, do not increase the equi-
valent stress o, in eq. (11), for e.g. do,/¢0,= (20,—0,)/20,= 0. More di-
rectly we see in fig. 7 that additional stresses do, and do, increase the ma-
ximum shearing stress only by an amount of the second order 21), so that,
as the envelope of the stress circles o,0, with constant shearing energy has
a horizontal tangent here 22), the shearing energy and ¢, do not increase.
Hence also if the maximum shearing stress were determinant for the plastic
deformation, the equivalent stress would not increase 2t). In fig.3b value
[, remains constant now, so that

& = &xe + &xp = 0|E —0)|mE + 0./|E, — 0,/|2E,

=2m(l+eo/—2+em)o)/}|2mE (37)
and by interchanging x and y
& ={2m(1+e)o/— (24 em)o,}2mE (38)

Inverseiy expressing o, and ¢, in ¢, and ¢’ we obtain from eqs. (37) and
(38) the relati'ons given by eqs. (20 and (36). On the other hand, with
excess stresses 1y, the ratio of the initial stress components does not change,
SO that in this case quasi-isotropic deformation will occur, in which the
7yy— 'y Telation is determined by the slope angle of the z—y diagram. As
G,=FE,/3, the slope of the 7,,—y,,, diagramm is tan ¢/3, so that

Yy = Ve + Vap = Tiy|Q + Sy [tang =
= [{3mE+ 2(m+ 1)tan¢}/mE tan ] 7y, (39)
yielding again the same value F =1y, [Ey;, as given in egs. (30).
21) Byraarp, De Ingenieur in Ned. Indié, no. 4, 1939. |

22) Buyraarp, Publ. Int. Ass. f. Bridge and Struct. Eng., Zurich, Vol. 6, p. 27—44,
fig. 3.
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We may also insert directly in eqs. (18) o, =o0,= 0 and z,, 5= 0, by which
eqs. (18a)—(18d) yield de.,/ 00, = 0¢yp[ 00y =1/ Ep, 68y,,/oox——asxp/(?oy:—]/ZE,,,
whilst for dy,,,/0t., eq. (18g) applies, in which o,2=31;,. The other deri-
vatives are zero. Insertion of these values and of eqs. (10) in eqs. (8) leads
again to eqs. (37), (38) and (39).and hence to eqgs. (36).

We calculated the critical stress for case 5 with the method as given
by SoutHWELL and SkaN 23) for the elastic region and as used by SEYDEL 2%)
for orthotropic plates. In €q.(68) of our first paper?2) we gave already
the final result of our computations for plates with various proportions,
but in order to facilitate a check by designers who want to use it, we shall
give here and in section 2.4 a short indication of its derivation. As accor-
ding to eqgs. (36) D= A and the shearing stresses z,, = 7, acting on an ele-
ment /# dx dy produce with buckling a resulting force %z,(c?w/dxdy)dxdy,
whilst the same force is given by t,,, the differential equatlon (30) of our
first paper? )becomes now 1)
otw wo| 0w

gyl )+2(B+2F)QM,[ —2nep S =0 (40)

EJ{A (

(#)
With w = Yei«, in which V is a function of y only and i =y —1, eq. (40)
yields {
EJ{AY"" —2(B+2F)a?Y"+ Ac'Y} —2ichtpY =0 41)
primes denoting differentiation with respect to y. Inserting Y =: ¢/ in this
equation, we obtain

/;’4-{-25;;—2’1: /)’+251Aa/1+a4::0 (42)
so that, ,—p, being the roots of equation (42)
Y = Nyeifry 4+ Nyeifed 4 Nyeitsb 4 Nyeibey (43)
The boundary conditions at y =--¢ yield
Y=20 and Y'=20 (44)

Insertion of eq. (43) in here gives us four homogeneous linear equations,
yielding only values N, that differ from zero, if the denominator deter-
minant is zero, which gives the buckling condition

((5’12 - ﬂ22) (25)32 - ﬂ42) sin (ﬁ1 c— ,33 C) sin ({)’2 c— /)’4 C) =

(81 — 35%) (82— 34%) sin (B1c — Pac) sin(Bsc — Pac) (45)
Writing, as SouTHWELL and SkaN, the roots of eq. (42) as
S P =y £, faa=—y+e (46)

in Wthh y is real and J and ¢ either real or pure imaginaries, comparing
of coefficients yields
B+2F

2 vi.’ ()"3 2 .
— C¥ ' A
2 htp (47)
- 2 ___ 82} == y
70 —&) =gz @
( 2 "’2 ’*'82) = «?

23) SoutHweLL and SkaN, Proc Royal Society of London, Series A, 1924, p. 582.
24) SevpeL, Zeitschr. f. Flugt. u. Motorluftsch., 1933, p. 78,
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Insertion of egs. (46) in eqs. (45) gives
8 y2de(cosdbcoseb—cos2yb) = {4y%(d%+ &%) —(02—¢2)?}sindbsined (48)
In our paper on this subject?!), using eq.(26), we calculated first zp.
Just below the yields stress, with tan ¢ =0.294 E and ¢ = 0.1675 2), eqs.
(36) yield, with m =10/3

A = 0.960, B = 0316, F = 0.078 (49)

which values were inserted in eqs. (47). As w=Ye* the half wave length
in X-direction is n/a. For several half wave lengths z/a value 7, was calcu-
lated from eqs. (47) and (48) be trial and error. We found the stmallest
value 7, with a half wavelength n/a==1.10, for which

zp = 3.38 Eh*|b? (50)
In the elastic domain the most accurate value is2?%) 7= 4.82 EA2/b2, so that
eq. (26), in which now o has to be substituted by 7, yields

rp = 3.74 Eh2|b? (51)

by which the ratio zz/tz as given in Table IV is obtained.

(.
>

a

X
>

A -

Fig. 8

Case 6 of Table IV, a square plate, simply supported at the edges
and subjected to pure shear (fig 8), was computed by the energy method.

As here, according to eqgs. (36), D= A, eq. (32) may be written as follows 21)
ab
o:w 0w ) otw 0w (62 )}
— 4 er,Le” 2(B — e
% 2EJ6‘.6HA(8x2+ + 2(B T 8y2+4F ixdy dxdy (52)
The work done by the stresses t,, = 1p is 26)
ab .
——Izrpjjgb—v —O—E)dxd (53)
44 ox dy :
The expression o oo
= le 24 apq Sin (pv x/a) sin (g .y/b) (54)
=1 g=

satisfies the boundary conditions. After substitution of eq. (54) in eqgs. (52)
and (53), the condition V=V, yields

2 %\2 cv 2 9
wEs A6 EZay (b + 1) —2(4-—B—2F) XX ay p* g°

TP_ —
32abh Y S, pqrs
Qpq Qrs (,.2 p-f)](qz _.52)

(55)

25; SEYDEL, Ingenieur-Archiv, 1933, p. 169.
26 TIMOSHENKO l. c., footnote 9, p. 314.
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To make 7p a minimum, we have to ‘equate to zero the derivatives of 7p
with respect to each of the coefficients a,,, by which a system of homo-
geneous linear equations is obtained, containing, except the coefficients a,,,

value 7, as the only unknown quantity.

The denominator determinant of

these equations, which has to be zero, is, as in the elastic region, the product
of two determinants, one for which p--¢ are odd numbers and the other

for which p -+ ¢ are even numbers.

The latter gives the smallest values tp.

If we limit our calculations to five constants, ayy, a3, @y, a3y and azz, it

has the following form

11 13 22 31 33
»?-{A (H‘gz)z_pﬁz} g
2{A (1+98%)2-0 Pp2} #7;1
4 4 . 4 36
5 — 162{A(1+%2-Pp%}  — ¢ o5
— f; O AO+p2)2-9Pp)
36 ; o .
= 81:{A (l+ﬂ2)~~P/)‘2}§
. . a . atEJ
=, A== = 2(A—B—2F
in which 153 b " 324 8 hip and P (A ) |

For a square plate, § being 1, it yields 1) 21)

22571 h\*y/ 41A+9(B+2F)
A+ B+2F
=+ 3gy ATBH2NE ( ) V8249A+2601(B+2F) (50)
Insertion of eqs. (49) gives
tp = 5.64 E h?|b? (57)

In the elastic domain, with values A==D, B and F according to eqs. (28),
eq. (56) yields

tg = 852 Eh?|b* (58)
so that eq. (26), with o replaced by 7, yields
g = 0.36 E7?|b* (59)

by which we obtain value zz/7r = 6.30/8.52 = 0.747 as inserted in Table IV.
As eq. (40) is the differential equation of a so called orthotropic plate

N2

ot w ; 5
le-v;+2037;——‘1,‘”.+02? W—zmpm Y =0 (60)
0x%oy? oy?

in which Dy = Dy,=EJA and Dy=EJ}(B -+ 2F), 7p may also be found from
a graph, derived by SEYDEL ?!) from computations based on eq. (60). We
got in this way for cases 5 and 6, values z,=3.42 EA2/b2 and 1p=5.54
EA%/b® respectively, being in good accordance with egs. (50) and (37).

For case 7 (fig.9), a plate, subjected to a state of stress g,=0; or
B=0,/0,=1, it follows from egs. (20) —(23) that
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A—D—. m*{E + (4 + 3e¢) tan ¢}
- {2(m+l)+3€m} mE + 2(m—1)tan ¢} ] 61
B _ —mE + (4 + 3em) tang) l D)
{2(m+1)+3em}{mE+ 2(m—1)tang)}

value F having the value of eq. (23). In this case it appears that B4- 2F =
A= D, so that, as C = B, eq. (30) of our first paper2) transforms into

otw w ot otw 0w
‘]( ) p2 ) ( 'A) =
AE. oy EPE oy -I— + kot Epe + oy 0 (62)

so that the differential equation has the same f‘orm as in the elastic domain.
With tan ¢ = 0.294 E and ¢==0.1675 it follows from eqs. (61) that 4 = 0.531,
whilst in the elastic domain A= 1.099. As it is clear that a deflection sur-
face w = w, sin (nx/a) sin (ny/b) will give here the smallest buckling stress,
it follows immediately from eq.(62) that op= 9, = (0.531/1.099)0- and,
according to eq. (26) op/or=0.673/1.099 = 0.67/2, which value has been in-
serted in Table IV. Furthermore eq. (62) yields, after substitution of this
deflection surface,

hop = ho1 = (n*AEJ|a®) (1 + a?[b?) (63)
In the elastic region AEJ transforms into the flexural rigidity of the plate,

by which eq. (63) becomes identical with the buckling value given bv
TIMOSHENKO 27).

5

WHHN LU,

V4 6 e ]
iR AR

Fig. 9 Fig. 10

W
I

For a circular plate with clamped edges (fig. 10), case 8, where also
B =05/01=1, we have only to replace in the differential equation for the
elastic region 28) the flexural rigidity of the plate by value AEJ, so that

it becomes
2

~aa2+uﬁ+(u‘=’—l)(p:0 (64)

in which ¢ = —dw/dr, u =ar and a?= hop/AE].
Eq. (64) is a BESsEL equation, being satisfied by

@ = CJi(u) = Ch (ar) , (65)

in which J,(z) is the BesseL function of the first order. At the edge r=a,
the condition
g = Cli(ea) =0 (60)

27) TmmosHeNKO, 1. c., footrote 9, p. 334.
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has to be satisfied. Just as in the elastic region this yields aa==3.832,
by which
‘ ‘ 14.68AEJ
a?

so that, as in the preceding case, op=(0.531/1.099) o and oz==(0.673/1.099)
or=0.012 0. Furthermore we obtain with eq. (26) /iep=0.673(14.68 EJ/a2).

If the circular plate is simply supported, case 10, the ratio oz/og is
not the same, as now also value B appears in the boundary condition, being
that the radial moment M, has to vanish at » =a. Placing coordinate axes
X and Y as in fig. 10, we have, according to eqs. (29) of our first paper 2)

=M, =—FEJ(Aé*w|ox*+ Bo*w|dy?) = EJ(Ade|dr+ Bolr)

hop = AEJa®> = (67)

so that the boundary condition at r=a is
doldr+ (B|A) plr =0 (68)

As dJy/du = Jy,—J/u, in which /, is the BesseL function of zero order, this
boundary condition transforms into

aaly(ea) — (1—B|A)Jy(ea) = 0 (69)

With m =10/3, tan ¢ = 0.294 E and ¢=0.1675, eq.(61) yields B = —0.114,
so that, with 4 = 0.531, eq. (69) becomes

aaly(ea)—1.215/;(ea) = 0

From a table of BEesseL functions it follows that the smallest root of this
equation is aa = 1.66, so that

a
whilst in the elastic region 28)
m* EJ
hUE-——4.2O m2_1 ““l? (71)

With 4=0.531 and m2/(m2—1)=1.099 we get, using eq. (26)
hop = 1465 EJ|a®, hop = 4616 EJ[a®, hopg = 2.253 EJla®> (72)

so that o5 = 0.488 of. /

For case 9, an infinitely long plate, compressed in the short direc-
tion with length 4, so that =0, we have, according to our first paper ?)
lo,=n2EJA/a?, in which accordlng to egs. (97) A= 0.421. Hence we get with
egs. (29) and (28) hop=0.591 a2EJ/a? and /o= 1.099 #n2EJ /a2, so that
og/op = 0.530.

If on the same plate moreover a compressive stress o, =0,/2 is acting
in the other direction, so that g ==15, according to case 11 in Table IV,
egs. (20)—(23) yield A—0. 289. As here also hop=n2EJA/a?, we find, with
A=1.099 in the elastic domain, 4oz;=0.491a2EJ /a2, so that 03/Ot~0 446.

For a column,case 12, oB/oE =T/E, so that, ]ust below the yield stress,
op/op=875/2100 = 0417.

Table IV shows clearly that the less the ratio of the
deviator components, as superposed by buckling,differs

28) TIMOSHENKO, 1. c., footnote 9, p. 368, 369.
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from that of the original deviatorcomponents, the smal-
ler is the ratio og/og. With a bar the ratio remains the same, yielding
the smallest ratio. '

Table IV.

Cases of buckling with decreasing difference between the ratios of the de-
viatorcomponents of the superposed (by buckling) and the initial state of
strain (before buckling).

Boundary conditions

B = o] Ratio og/of or Tg/TE with buckling
and loading TSR

just below the yield stress

Case ‘

0 0.878

0 0.830

0 | 0.804

0 | 0.778

-1 0.775

T
|
1
I
) |
e B T -
|
I
|
|
|

1 0.612

1 0.612

0 0.536

1 ‘ 0.488

. T

12 —o —o— 0 | 0.417 )

™

Yy 0.446

In eqs. (69) and (70) of our first paper?) we gave a general method of
computation of the plastic buckling stresses for plates supported on three
or four sides. It is based on the fact that plates, having on the supposition
of proportionality of stress and strain a buckling stress, belonging to a
slenderness ratio 80, being or = n2 E /2 = 3240 kg/cm?2, have in the plastic
domain a buckling stress equaling the yield stress oy = 2400 kg/cm?2, so that
op/or = 2400/3240 =0.740. Table IV shows, that for the cases occurring in
bridge and structural engineering, namely, cases 1 to and including 6, this
method yields safe results.
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1. 5. Plastic stability of shells.

A short indication will be given here as to the application of our theory
to the buckling of shells. Our fundamental equations are those giving the
relation between the excess stresses and the excess strains with buckling,
being, according to egs. (20)—(23)

o = E(Ae/ + Bg)) l
o)/ = E(Be&’ + Dgy) ] ' (73)

7,;_}) = EF}’.;y

Using the same notations as TIMOSHENKO 27), except that our primes indicate
infinitely small stresses and strains occuring with buckling, we have

exl — 81’ —_ le Z l
o ! .,

g =& —y z I (74)
4 ’

vy =7 2y 2

in which ¢/, ¢,’ and y’ are the excess strains of the middle surface, z,” and yx,’
are the excess curvatures and yy, is the twist, whilst z is the distance from
the middle surface. Substituting egs. (74) in egs. (73) we get

o) = E{A&'+Be' —z(Ay + By)} I ;
)

of = E{Be&'+ D&’ —z(By' + Dyy)y l "
Ty = EF(y — 2 1y 2)
Hence we find 30)

—{-/Z/?

Ny = | o/dz = Eh(Ae/ + Bey)
—h[2

; N, = 1/20},’ dz = Eh(Be' + De')

—h .
+h[2

Ny = [ thydz= EFhy
—hj2 '

! o . (76)
M, = J‘ O zdz — — E-/(A 1+ BZ}’,)
i —n2

+h[2

M, = [ o/zdz= —EJ(By/ + Dyy)
—h2 ‘

+h/2
My, = — | 1,z2dz = 2EJFy;
Fig. 11 M —i/z ’ i

As an example we shall consider the buckling of a cylindrical shell under
the action of uniform axial pressure /i0p per unit breadth. If buckling occurs
symmetrical to the axis of the cylinder, the equilibrium of an element 7/ dx
of a strip OP of unit width (fig.11) requires, if compressive stresses are
denoted as positive and denoting displacements in Z direction by w,

29) TimosHENKO, l.c., footnote 9, Chapters VIII and IX.
30) Cf. values in elastic regions, l.c., footnote 9, p. 421, 422.
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dQ,|dx — hopd®*w|dx* — N)/|]a = 0 (77)

Value Q) =dM, /dx. Owing to impediment of distortion of the cross-sec-
tion, y,’ may be equated to zero, so that eqs. (76) yield
M) =—EJAy = — EJAd*w|dx?

and, as &’ = —w/a,
N, = Eh(A&'— Bw/a)

As, however, o, does not increase with buckling, N,/ must be zero, yiel-
ding ¢ = (B/A)(w/a), by which we obtain

N, = Eh(B*/A—D)w|a
Substitution of these values in eq. (77) yields, as in (77) N,/ is a compres-
sion, the differential equation

d*w d*w B? Ehw
E1a %+ oSy — (5 — ) T =0 (78)
With w=w, sin (pax/{) eq.(78) yields, after ranging
hop = EJAp*a®|l® + (D — B2|A)(Eh|a?) 12| p? a* (79)

With sufficiently long cylinders the wavelength can establish itself in such a
way as to make /6, a minimum. Differentiation shows that then

pn __{/AD—B* h
[ l R

insertion of which in eq. (79) yields the critical stress

op = (Eh|a) V(AD —B?)]|3 (80)
whilst the length of the half waves in X-direction is
' / ST i

/]7 = T l/ mﬁ/B'?)’ ‘/ a/Z (81)

In the elastic domain ¢ =0 and tan ¢ =<0, so that eqs. (20)—(22) yield
A=—=D=m2/(m*—1) and B=m/(m2—1), by which eqs. (80) and (81)
transform in
__Enq 2 g - 2 mra’h?
PET g 13(,712_1) ame =MV 12w )
in accordance with the values obtained directly for this case31).

In this case we find with eqs. (80) and (27) op==0.264 LA/a, whilst
og=0.605 E//a, so that according to eq. (26) o= 0.349 E/i/a and opg/oy ==
0,577, this ratio being between that for cases 8 and 9 in Table IV.-

Considering the more general case of buckling of a cylindrical shell
under axial compression and denoting the displacements with buckling in
X-, Y- and Z-directions by «#, v and w respectively, our equations (76) yield,
after expression of values &, &', 7', z/, 7,/ and yx;, in terms of the dis-
placements 32),

31y TimosHENKO, l.c., footnote 9, p. 420, 441.
32) TimosHENKO, L. c., footnote 9, p. 434.
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Ne=enfalyp( 2 M)
Ny = E”{Bgf (aoave—g)}

Ny = Ny = EFh fé‘a + f;
me=—es{aly B2y o0
My =—E/BEY LD (f; + (9‘: |
My —— ity —2Ers (204 D) |

value © being indicated in fig. 11.

(82)

The conditions of equilibrium are in our notations, and neglecting se-

cond order terms 33),
ONY | 0Ny

ex Tag =0
ONy Ny ety aMy, My
do +a ox ahap&xz + 0x acl i
0w MY My My M
—ah e N,/ Jx Y g
ahopy s+ N+ 5+ T i~ ayes =0
Substitution of eqs. (82) in eqs. (83) yields
0tu B+ F o%v Bo F&?u_o
0 x2 a dxd0 a ox | a o0
¢tv D [¢%v aw)
(B+F)5 tef x2+ a<802—60 T
D (o%v ) ow ; E‘~’v} ahop ¢2v
el A 2aF — =
“la(ae2+a93 taB+2F) gt 2eF o~ Ty e =0
ahop 0*w ou D ¢v D { a3y D é3v
~ Eh éx2 ox T ae0  a”” ““(B+4F)~2~9+a ¢ 03

o*w €4w

(B+2F)

in which a=ﬁ2/12 a?. Assuming
u = uycosnbcosprx|l l
v = v,sinnfsinpax/l
. w=w,cosnfsinpax|l I
eqs. (84) transform into

33) TIMOSHENKO, l.c., footnote 9, p. 454.

(83)

 (84)

(85)
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(Akt 4+ Fr2®)uy— (B+ F)nhvy + B w, = 0
— B+ F)niug+{Dn>(1 + o) + FA2(1 + 2¢) — 6pA2[E) vy —
—n{D(1 + anr®) + (B+ 2F)ai?} wp = 0 3(86)
Blugy—n{D(1 4+ an® + (B+4F)al?}vy +
+{Aalt+2(B+2F)an®i? + D(1+ an*) — oph?|E}wy =0

in which 2= pna/l. Hence the critical stress op follows by equating the
determinant of the equations to zero. Further computations may be effec-
ted along the same lines as in the elastic region.

In order to check eqs. (86) we again assume buckling symmetrical to
the axis of the cylinder, so that ineqs. (85) we have to equate » to zero,
by which also v becomes zero. Hence the second equation (86) vanishes and
eqs. (86) transform into

Aiug + Bw, =0 } (87)
Bluy+ (Aah*+ D —oph2|E)yw, = 0

yielding op = E{Aal®+ (AD — B})[AA?}

or hop= EJAp*a®|l2 + (D — B2|A)(Eh|a®) I2[p® a*

in accordance with eq. (79).

As a matter of fact thick tubes, buckling in the plastic domain, do this usually
in a symmetrical way, whilst with thin tubes buckling which is non-symme-
tricai with respect to the axis usually occurs34). This behaviour is in good.
accordance with our theory, because non-symmetrical buckling causes twisting
stresses, against which, if ¢ is small, as with steel, the resistance is only
slightly diminished according to our theory, value F in eqgs. (29) being not
much less than in eqs. (28). We can prove it directly with our egs. (86).
For the elastic domain TiIMOSHENKO proves that, if 12 is a large number,
the critical stress with non-symmetrical buckling is equal to that with sym-
metrical buckling 3%). Taking into account the same terms as he does, we
find for the plastic domain, by equating the determinant of eqs. (86) to zero,
the following equation

{(AA% + Fn?)(FA* + Dn?%* —(B+ F)?n®i?)A%0p|E =
~(AD-B?) FA* + a{AM4+2(B+2 F)n*A2+ Dn*}{ (AL + Fn2) (Fi2 +Dn2)—(B+F)®n21.%
or, after transformation )

ap _ (AD - B?) A* | afAA+Dn*+2(B+2F)n?A%) 88
E — AM+Dn*+{(AD-B?*)|F-2BYn?A? " Az (88)

In the elastic domain we have?) A=D=m2/(m2—1, B=m/(m2—1),
F=m/2(m -+ 1), so that (AD—B?)/F—2B=2(B + 2F)=2m2?/(m2—1), by
which the denominator of the first fraction of the second member of eq.
(88) is equal to the term in brackets of the numerator of the second frac-

tion. If in the plastic region this were so too, we could write eq. (88) as
follows

- 0plE = (AD— By + aly (89)

34) TimosHENKO, 1. c., footnote 9, p. 443.
35) TIMOSHENKoO, 1. c., footnote 9, p. 456.

Abhandlungen VIII 4
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value y being a function of values 1 and » that determine the number of
waves in axial and circumferential direction. In order to make ¢, a minimum,
we then would have the condition

y = Ve/(AD— B?)
by which eq. (89) would yield
op = 2EYa(AD—B?) or op = (Ehja) Y (AD — B¥)[3

in accordance with the buckling stress for symmetrical buckling as given
by eq. (80). In the plastic domain, however, considering for example buckling
at the yield stress with mild steel, value (AD—B?2)/F—2B will be much
less than 2(B--2F). In this case we have, according to eqs. (27), (AD—B?)/
F—2B=—10.19, whilst 2(B- 2F) = 2.14. Consequently the second frac-
tion to the second member of eq. (88) has a much higher value than with
our assumption that gave eq. (89). Hence we may conclude that with higher
values 12 in the plastic domain the critical stress with non-symmetrical
buckling is higher than with symmetrical buckling, which may explain why
short and thick tubes usually buckle symmetrically. In another paper we
shall consider these questions more in detail.

2. Stability of the webs of bridge members and girders
2. 1. Columns with open or closed box section.

In our first paper?) we gave in Table I, page 68, design formulae for
compression members in structural steel No. 37. After we wrote it, we had
also values y; determined, relating to sections 4 of Table I (fig. 12),

b

published first in a more extensive paper on this subject 3¢) and reproduced
here in fig. 13. These values y; have consequently to be used for sections 4,
as given in fig. 12, instead of values y,, which we recommended provisionally
for want of values 73. Also these curves were calculated by my former
assistent in Bandoeng, Ir.L.F.Cooke and by IR.P. TH. WijNHAMER. They
have the same general trend as the curves for y, and y,, a difference being,
however that for example the point of intersection of the two curves for
p=3 is at about ©=0.87, whilst for y, and y,, given in figs. 13 and 14 of our
first paper 2), this point is at u= 0.76. In order to make this problem and
the graphs better understood, we shall explain this difference.

In the same way as y, and; 7o were inserted in eq. (62) of our flrst paper,
vs is inserted in the equation

D I P

8¢) ByLaarp, De Ingenieur in Ned. Indié, no. 10, 1939.
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(b/h)sr being the value Jf b/i if one unloaded side of the plate is simply
supported and the other side is fixed and (&/#)ss being valid if both sides
are simply supported. If both values are expressed in the slenderness ratio
of a bar that has the same buckling stress, we obtain for the elastic domain

1’) _ i (’?) —o70t
| (h 00007 and () —o070- 1)
insertion of which in eq. (90) yields .

blh = (0.7 — 0.004 y3) {[r = 0.7T(1— 0.14 y3) |r (92)

according to the formula given in Table I for section 4 for //r = 100.
Our computation of y; is based on eq. (59) of our first paper2?), in which
O = 6, according to eqs. (53) and (54) there. With values #=1,/2, 1 or

0 02 04 0.6 08 10 s hd
1 /”b
N f=3 \
N
\
0.2 \ ;
RIS
: S
0.4 Y \\ ™
=1
“I\ A
06 \
_1 | Section
"2 auersmni/fn \\
=
08 \\iﬁ N \\
e
10 A=0
el
Fig. 13

3/2 the p curves in fig. 13 are continuous, a,’ having a real value, so that
the deflection surface of the ,resisting‘‘ plate is given by eq. (44) of our
first paper, being

w = (Cy coshey'y' + Gy’ sinhey'y’ + Cy' cos 'y’ + Cy'siney’y') cos(pnx/a) (93)

The curves for =2 and 3, however, consist of two branches. With =3
and values u smaller than 0.87, value y4 is about 0.03, so that the ,,buckling*¢
plates, with thickness %, being the vertical plates in fig. 12, are practically
fixed at the upper sides by the thick ,resisting‘‘ plate. In this case the
latter has a thickness 3/, so that the thinner ,buckling‘‘ plates influence
it only slightly. Therefore the ,buckling‘‘ plates will buckle with a half
wave length a/p that is practically the same as if one side is fixed and
the other simply supported, being about 0.8 4. If for example ‘u = 0.8, value
& will equal 2.4 6, so that this will bend the thick ,resisting‘‘ plate in
half waves with a length of about one third of its breadth. We showed this
in fig. 14a, by rotating the vertical plates in the plane of the upper plate,
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buckling to the out- and inside being indicated®by plus and minus signs
respectively. As the most favourable wavelength for buckling of the upper
plate is about equal to its breadth, this will not promote its own buckling:
Apparently it acts here as a number of plates with breadths 0.84 and
lengths &’. As with a length larger than the breadth 0.8 &, the resistance of
suchlike plates against angular rotation at the short edges SS and 77
(fig. 14a) practically does not vary, this explains too why y; is practically
constant with u varying between 0.25 and 0.8. As here, moreover, the com-
pressive stresses in the-upper plate have little mfluence, so that it is not

b

r-(——‘——*-»
b
\‘t_ - ___AL}{ \ [ _____ /
= T =T + ’\—;—r'\_’/jrr
PR YT IR W) 27
+ d - T+
f— + -_—
— $ + T._
+ - + v
— + - +
— b\—’-/i.\/— —
Fig. 14a Fig. 14b

actually buckling, but is bent only by the ,buckling‘ plates, the sine and
cosine functions, which are typical for buckling, do not appear here in the
equation of the deflection surface w. Value oy’ is imaginary here, SO that
w’ ist given by eq. (50) of our first paper 2), being

w = (C{cosh ey’ + Cisinhai y’ + Cicosh ez y’ + C'sinhas y’)cos(pnx|a) (94)

If, however, ratio &’//’ of the upper ,resisting‘‘ plate, equals about the ratio
with which it would buckle itself, if its sides were simply supported, being,
according to eq. (91)

b =0606/r  or  u= hb[h'b = 0606 () hlb (95)

it will buckle itself in its own most favourable half wavelength, being about
equal to &. It forces the same wavelength to the thin ,,buckling‘ plates
which offer only little constraint to it. This is shown in fig. 14b. As with
ys between 0 and 1, value &// varies according to eq. (92) between 0.7 //r
and 0.6 //r, this kind of buckling, for which «,” is real, so that the deflec-
tion surface is given by eq. (93), will occur according to eq. (95) with
values u that vary between about 0.87 and 1 with y3 varying between 0 and 1.
This is in accordance with the second branch of curve =3 in fig. 13. The
fact that with x4 =1, although both plates have the same ratio &'/#' = b/h,
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value y, is still smaller than unity, so that the buckling stress of the plates
is still higher than with simply supported edges, is explained as follows.
As /' is more than %, the breadth &’ is more than 4, by which the most
favourable wavelength of the plates is different. As, however, they have
to buckle in the same common wavelength, their buckling stress will be en-
hanced, being higher than that of a plate with simply supported edges.
Only if p=1, so that, with p=1, also &' =0, by which for both plates the
most favourable wavelength is ' =0b, with u=1 value p; is equal to
unity too.

All these remarks are generally valid as well for values y; and y,, given
in figs. 13 and 14 of our first paper2). The difference is, however, that
there y = O relates to a plate of which bo th sides are fixed, so that for y=0
the ratio &6/ /= 0.8 I/r. Therefore in the graphs for y; and y, the second
branch of the curves g = 3 will correspond, according to eq. (95), with values
w varying from 0.76 to 1 with y varying from O to 1. This tallies with
those graphs and explains why there the point of intersection of the two
curves is at u = 0.70, whilst in fig. 13 of our present paper it is at == 0.87.

2. 2. Stability of Tee stiffeners.

This subject has already been treated?7?). It involves the proper choice of
stiffeners to support the plating of reinforced monocoque construction or
for example the web of plate girders. The ends x= 0 and x = a4 and the edge
y = 0 of the stiffener web being assumed to be simply supported (fig. 15),

- — — 7
& N7 b
[ 1/7: |
E] 25
Fig. 15

the relative boundary conditions, which we may omit here, reduce the solu-
tion of the differential equation of the stiffener web to

w = (Cesinheyy + Cysineay) sin(pax/a) (96)

using the same notations as in our first paper 2). For the edges y = & of the
stiffener web WINDENBURG, who assumes moreover the deformations to be
elastic up to the yield stress, admits however the followmg two boundary
conditions

odw  2m—1 o3w) otw 0w
( +&I;Z ()x2 oy 27;”—A20x "yt 0 (97)
0w 1 02w 3w
L,
oy? T m 0x® Cox~6y (98)

in which N is the flexural rigidity of the web and B,, C and A, are the
flexural rigidity, the torsional rigidity, and the area of the flange respec-
tively, whilst w denotes the deflection of the stiffener web perpendicular
to the XV -plane. These are the same boundary conditions as assumed by

37) WINDENBURG, Proc. of the 5th Int. Congress for Applied Mechanics. Cambridge,
Mass. .
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CHwALLA 38), of which, as we showed 2), condition (98) neglects the tor-

sional action of the compressive forces in the flange, so that the torsional

rigidity of the flange is over-estimated. In order to take this action into

account, we have to replace eq. (98) by the boundary condition (1V), pre-

ceding eq. (61) in our first paper?), so that in the elastic region we get
0w 1 ¢*w 1 cw

oy: ' m éx* Oy ¢y (99)

in which, as follows from egs. (56) and (58) given there 2)

. l(£)3 (1?2 7% — 32 q?)simay &'sinaz b’ — af s (g™ + r?) coshay &' C0s asb’ ~ 2 a1 3 g' 1’ (100)

@‘ — ’ ’ 7 . ’ ’ 5 . ’ ’
T 2\w (a1?+a32) (a1 72 cosh g &' Sinees &' — g g2 sinh a1 &' 005 3 0')

Introducing eq. (96) in the boundary conditions (97) and (99), these yield
two homogeneous linear equations in C, and C,;. Equating the -denomina-
tor determinant of these equations to zero, leads to the same condition,
as obtained, if in the general buckling condition (61) of our first paper 2)
we equate values s; and @, to zero, namely

(Sil’lh a1 b sin Otgb){@252 2+ ajast? cothay b cotas b + as t(@g(]'z“Sg) cotash —
——alt(@gr‘l—sz) coth by =0 (101)

As we pointed out already ?), a solution of eq. (101) is only obtained if the
last factor is equated to zero. Using, as did WINDENBURG, the notations intro-
duced by MiLEs and some additional ones, this yields

O — (1-v—0)2d1cothdy—(1-»+0)2dacotda—~2 R0 y/g-’iili CO“] ()i C70t7()2 (102)
R (01 coth 0y —da cot da) + 2y ¢

in which
. Y. 21/ o o 2 /’_ -
R =2y p? ‘ Gy(1-v—0)*Verl —Po(l-r+e)*Vo-1 _ o
¢1{(1—1/)3_(1~2V)92}__@4 {(1_1')2+Q2}‘/92_1+{(1*"’)2“Q?}V(l"~l
and 2
o EJ A y? oy — .
0_—55 bhg?’ ° T g dh=¢Vot+tl, d=qglo-1,
@y = sinh ¢ siney, = sinhe cosey, D3=coshesine, Dy=coshe cose
=L oyert / [ Y t
b = S 7. _ v g —
€ 2b‘}7‘/9+1; &2 2[)(}0‘/9 1, 0 q)/f’ ‘ .
b ok
(f:/]ﬂa : qJ:b‘/Alx)’

where D is the flexural rigidity of the web and EJ and A are the flexural
rigidity and the area of the flange respectively, being in our notations N,
B, and A, respectively. The values f and ¢ replace our values 24" and /'
and are shown in fig. 16, whilst values &, &', # and #’ are shown in fig. 15,
For the number of half waves in X-direction we keep the notation p, whilst
v is PoissoN’s ratio. With given values #’/# and &’/b, we can calcuiate with
egs. (102) and (103) values O corresponding to given values ¢ and . In
this way we had graph fig. 16 made by our former assistant in Bandoeng,
Ir. LiE HAN YANG and his sister Miss Lie LieN Nio. The general trend of

38) CHwaLLA, Ingenieur-Archiv, Vol. 5, no. 1, 1934.
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the curves of constant @ is the same as that in the graph of WINDENBURG,
as could be expected. If © equals 50, the buckling of the web, that occurs
also with a value v of about 2 ¢, w111 require practlcally the same 7 value
as with infinite ®. With infinite @, v =2 ¢ and » = 0.3 we find from eqs

(102) and (103)
42 (Y3 coth(py3)—cotp) 20T+ Vel - %507 —0)* Vel

@1(0.49-0.4 02)— D4(0.49 +02) Yo2—1 +(0.49 — 9?)Yo*-1

by means of which we had the graph in fig. 17 calculated, the full lines
being those according to our theory. Whilst, with a given value
t/h,a computation based on boundary condition (98) will
always show an increase of v with increasing ratio f/b, as y

~1 (104)
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increases with C/oD=1.4 j3/bh% up to7.30 as an upper
limit37"), as is shown in fig.17 by the dotted lines, it does
not according to eq.(104). As a matter of fact, withagiven
value of f/b, the value v will reachamaximum. For example,
with Z/h= 1this happens with a ratio f/6 of about 0.4, be-
cause then the increase of C will be cancelled by the
increase of the buckling action of the compressive
stresses o, in the flange. With f/6=0.75, the value of ¢ with
t/h =1 is even equal to that with /6 =0, so that the flange does not offer
any twisting resistance to the web, whilst with higher values of f/b it even
promotes the buckling of the web. So we see that with lower ¢/ values
neglect of the buckling action of the compressive stresses o, in the flange
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causes an appreciable over-estimation of the buckling stress. If both sides
of a web plate are supported by flanges this over-estimation will be about
© twice.

Besides a buckling of the web, a torsional buckling of the stiffener as
a whole may occur. This case is also included in the graph, fig.16. One
reason for our having the graph made was, that we wanted to see, down
to which ratio ¢/6 the modified WAGNER formula, that supposes the web
to remain plane, may be applied with varying values of C/6D, the case of
fig. 16 representing about the highest value that will occur. With this graph
we found, that with ¢==1 the WaoNER formula gives v values being at
most somewhat more than 10 o too high, whilst with ¢ = 0.5 the error is not
more than 50,. With ¢ smaller than 0.2 the error is negligible. From the
graph for MiLES’ case37), where C/6D =0, we found that with ¢ ==1 the
errors were much greater, but with ¢ = 0.5 they were already smaller than
in the former case.
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We demand the stiffeners to be designed in such a way, that they will
not buckle below the yield stress. Considering the twisting stability, it
will then be necessary, accbrding to ‘our theory of plastic stability 2), to take
into account the decrease of the torsional rigidity by replacing the modulus
of rigidity G by EF. To take into account the decrease of the flexural
rigidity of the flange, we shall have to replace in the relative term the mo-
dulus of elasticity £ by the reduced modulus 7. In this way the modified
WAGNER formula for a Tee section 37) will become in the plastic domain

b Lﬁ) S “(ﬁf 1 b)
‘__EF(h_*_h Wt Ty p\s T3 105
or ‘——- éf + 3?3 jﬂ t ] fg t ( )

e h:h b 4 K R

Just below the yield stress, according to eq. (27) F equals 0.322 in the
plastic part of the cross-section, and as in this case the overlargest part of
the cross-section will deform plastically, we remain on the safe side by
keeping this value for the entire cross-section. Furthermore T is here 0.417 E.
Furthermore, with WINDENBURG, we shall take into account the fact, that
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at the ends the stiffener is not simply supported and that the plating, to
which it is attached, will give it a partial fixation, by equaling y to 2, thus
assuming the effective length of the stiffener, that we called e, to equal
/Y2, I being the real length. If we demand that o7 shall equal the yield stress
oy = 2400 kg/cm2, we find from eq. (105) that the allowable ratio //%# of a

stiffener is
1/ ﬁ(ﬁ ¢ 1 2)
s8\w 3 = (205)

b
R RSB e f ot 1[5 £\oy b t3)
(s +3mratama)E—032(5+ 1 &

According tothe preceding we considered for this special case this formula
to be sufficiently accurate down to a ratio //b6 = 6, thus down to a/b0 = 4.2
or up to ¢ = 0.75. Although with ¢ = 0.75 the WAGNER formula may give o
values that are about 7 oo too high and so a buckling stress in the elastic
region that is about 15 9o too high, in the plastic region it is not so bad.
It means only a difference of 7 oo in the comparable slenderness ratio. As
the buckling stress depends to a great extent on the reduced modulus 77,
this corresponds at most to an error of about 2 oo in the plastic buckling
stress. With respect to the assumptions on which suchlike computations have
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to be based, as for example the fixation of y, we refrained from introducing
any correction, save breaking of the graphs at a value //6=6. Eq. (106)
is represented graphically in figs. 18, 19 and 20. These curves and those
of fig. 17 were calculated in Bandogeng by ir. WiNHAMER and the students
E. and P. SMITH.

As to the buckling of the stiffener web, we see in Table IV that for
cases 2 and 3, being its limiting cases, the ratio og/op is at least 0.804.
The modulus of rigidity, to which the twisting rigidity of the flange is
practically proportional for the sections for which buckling of the web has
to be considered, i.e. with &/# more than 51, is with our assumption
F==0.322 only 0. 322/0 385 =0.835 times its value in the elastic domain.
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Stiffeners with buckhng stress equal to yield stress 2400 kg/cm2? — Aussteifungen mit
Beulspannung in der GroBe der FlieBgrenze von 2400 kg/cm? — Raidisseurs dont les
contraintes de voilement sont égales i la limite d’écoulement de 2400 kg/cm?

We may thus save ourselves the trouble of making a special computation
for the plastic domain, as we are safe and sufficiently accurate, if we reckon
with a reduced modulus of 0.8 £. We have consequently to demand that
the elastic buckling stress of the web shall not be less than 1.25 oy == 3000
kg/ecm2. This requires, according to the expression for value y as given
below eq. (103), that b/h shall be smaller than 8 v, whilst o is given in
fig. 17, from which the curves, that shall not be surpassed lest the web will
buckle, as drawn in figs. 18,19 and 20, have been computed. As at these
curves the @ values of the sections are not less than about 50, it is allowable,
according to the preceding, to reckon here thh the graph of fig. 17, com-
puted for infinite €.
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Furthermore the f/& curves in figs.18—20: have been bounded by
two other curves, in order to prevent buckling in a plane perpendicular to
the supported plating and thus in the plane of the stiffener web, one for
the case of a one-sided stiffener, the other for a two-sided stiffener. We
had to demand here only, that the slenderness ratio of the stiffener, simply
supported at the ends, should equal its maximum value at the yield stress,
being 60. In this calculation we took into account a strip of thickness % and
breadth 30 % of the supported plating. This was done too for the curves
of equal A/A2 values, where A is the total area of the stiffener, which were
dirawn to facilitate the finding of a proper section. The two values for
A/h? refer to one and two-sided stiffeners. It is understood that the allo-
wable stress in these stiffeners is that corresponding to a slenderness
ratio 60. :
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Stiffeners with buckling stress equal to yield stress 2400 kg/cm?® — Aussteifungen mit
Beulspannung in der GréBe der FlieBgrenze von 2400 kg/cm? — Raidisseurs dont les
contraintes de voilement sont égales i la limite d’écoulement de 2400 kg/cm?

There is still another way to take the buckling action of the com-
pressive ‘stresses in the flange into account, viz. to reckon with a reduced
C value, C,, of the torsional rigidity. If o, is the buckling stress of the
flange in case it is simply supported on the stiffener web, value o, with
varying buckling length being given in the handbooks, at this stress o, the
buckling action of the compressive stresses obviously cancels the rigidity
to twisting of the flange. Consequently with an arbitrary stress o, the frac-
tion o,/0, of the rigidity to twisting will be cancelled, by which it becomes
only (1—o,/0;) times the rigidity of a flange without compressive stresses.
So its reduced torsional rigidity is approximately

C, = (1-—04lay) C (107)
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In this way data, obtained by the formerly customary computation based on
eq. (98), may be corrected by using values C, instead of C, by which o,, the
respective wavelength and o, may be found by trial and error.

2. 3. Stability of angles.

As we communicated already in our first paper 2), we derived the design
formulae for steel angles, as given there in Table I, by a new and easy
method, given in a special paper on the stability of angles17). As this method
was used by us later for many other problems of stability, a summary of
which is given in Chapter 3 of the present paper, we expose it here. We
- shall not investigate, as we did before 17), which part of the angle behaves
plastically and which elastically, but we shall simply use eq. (20). We first
assume that the entire cross-section deforms plastically. If with buckling
of the flanges the line of intersection of their middle planes were to remain
straight, as was always assumed in literature before, the cross-section would
come in the dotted position (fig.21), each of the flanges deflecting an
average amount w; perpendicular to its plane. If flange AC was not sup-
ported by flange AB in A, with buckling its cross-section would obtain a
pure translation w perpendicular to its plane. In the longitudinal section
through A, however, flange AB transfers shearing forces and twisting mo-
ments to flange AC, by which point A of the cross-section is restrained.
Inversely, however, in the longitudinal section through A, flange AC will
transfer by its deflection the inverted forces to AB; these forces may be
taken together as an equivalent load p.39), shown in fig.21. In the same
way flange AB transfers, by its own deflection, an equivalent load p, to
flange AC. The resultant p of these loads has to be taken by the angle as
a whole and as it is not infinitely rigid against bending it will obtain a de-
flection w, by it, bringing the cross-section in the position B’ A" C".

So we may distinguish here two rigidities, namely the rigidity of the
angle as a whole against bending with respect to axis Y—Y and the ri-
gidity of the flanges against ,plate buckling‘“. Our method, the first part
of which we used already a long time ago 49), consisted of imagining these
rigidities sequentially to become infinite. Let us assume first that the flanges
are infinitely rigid against ,plate buckling‘‘, whilst the angle as a whole
has its normal rigidity, so that with buckling only a translation w, of the

%) Cf. p, in eq. (60) of our first paper 2).
0) BiLaarp, De Ingenieur, no. 4, 1932, footnote 2 and no. 7, 1933.
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cross-section will occur. Let under this assumption the critical thrust of the
angle be P,, if buckling in a plaune perpendicular to axis Y—Y. With an
arbitrary deflection w, the inner moment M; will equal the outer moment
P, w,. Now we assume the rigidity of the flanges to plate buckling to
decrease from infinity to its real value, during which the inner moment,
however, does not change. By this a rotation, yielding an average deflection
w; of the flanges (fig.21), will be superposed on the translation w, of the
cross section, by which the deflection of the centroid 0 in Z-direction becomes
w, -+ w;/ VQ, whilst the critical thrust decreases to its real value .. The
equality of inner and outer moments will yield now the equation

Pay wa = Poy (wa + wy|Y2) (108)

In the same way we assume now the angle as a whole to be infinitely rigid
against bending and the flanges to have their normal rigidity against plate
buckling, so that only a rotation of the cross-section will occur, as shown
in fig. 21 by the dotted lines. In this case the critical thrust P; of one flange
will be bhop, value op being given by eq. (34), but, leaving the bending
stresses in the flange out of acoount, practically by eq. (33). The inner
moment for one flange, being given by the stresses acting in the longitu-
dinal section through A, has now to balance the outer moment P; w; As-
suming then the angle as a whole to get back its normal rigidity, during
which the inner moment for the flange remains constant, a translation w,
of the cross-section will be superposed on the initial rotation, by which the
total .deflection of a flange perpendicular to its plane becomes w; -+ w,/}2.
Equating inner and outer moments for one flange yields now

Prwr = % Pop(wa|V2 + wyp) (109)

as the real critical thrust of one flange is P, /2. Eliminating w, and w; from
egs. (108) and (109) we get

Py = Pgy + 2 Pr— ‘/};a?y"f"‘lpf{

The cross-section of the entire angle being A, we have P, = Ao, P, ==
Ao,y and 2P; = Ao, so that the buckling stress of the flanges is

6o = Oay+ 06—Vl + a2 (110)

As the maximum moment of inertia /, of the cross-section with respect to
axis Y—Y is about four times the minimum moment of inertia /,, the cri-
tical stress o,, with buckling of the angle in a plane perpendicular to Y—V
will be about four times the critical stress o,, for buckling in a plane per-
pendicular to Z—Z, which is the real buckling stress of the angle as a
whole. Substitution of this in eq. (110) yields

0 = 400z + 06— V(4 042)® + 072 (111)

in accordance with eq. (28) ofl our publication mentioned in footnote 17.

If we demand now, that the buckling stress o, of the flanges according
to eq. (111) shall not be less than the minimum buckling stress of the angle,
6., this equation yields

Ofg_g% (112)
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In the elastic region o; is practically given by eq. (35), in which, according
to eq. (28) value F=0.385. So we have, if the slenderness ratio of the
angle is //r

or = 0.385 Eh?|b? and Oz = A2 E|(l]1)?

substitution of which in eq. (112) yields |
blh < 0.181]r (113)

in accordance with the value given for //#= 100 in Table I of our first
paper 2). In the plastic region just below the yield stress value F in eq. (35)
equals 0.338 according to eq.(29), whilst o,, amounts to the yield stress,
so that

or = 0,338 Eh%|b? and 0oz — 2400 kgjcm?

substitution of which in eq. (112) gives the condition
b/h < 15.8 (114)

being rounded of to 15.5 for //r <60 in Table I of our first paper. Linear
interpolation between //r = 60 and [/r = 100 yields the condition given there
for values //r between 60 and 100.

In the same paper17’) we compared o, according to eq. (111) with that
calculated from the differential equation of the flanges. The buckling con-
dition may be found directly from the general buckling condition according
to eq. (61) of our first paper2), by equating s, to zero and &, and &, to
infinity. With s; =s we obtain in this way

()7t — a? g*) sinh ey b sinaab — 2y a2 g r? coshay b cosaz b +
+azqgitssinhoybcosarb—ogritscoshabsinead+2aagir? =0 (115)

Assuming an angle with a length 4-=100 cm, &= 5 cm and a thickness
h=0.25 cm, the ratio 6/4 is 20, so that it buckles in the elastic region.
The values of the notations in eq. (115) in the elastic region being given on
page 62 of our first paper, the only unknown quantity in eq. (115) is the
buckling stress or. The flexural rigidity B of a flange against bending in
its own plane, appearing in value s, is £63//3, as the strain in the longitu-
dinal section through A (fig.21) is zero. By trial and error we find with
eq. (115) that for the given angle the buckling stress of the flanges is o, =
0.000875 E. Using eq. (111) we find with egs. (35) and (28) o, = 0.000963 E.
Equating the minimum moment of inertia /, to #3%/12 and A to 264, value &
being the breadth of a flange, measured between the edge and the middle
plane of the other flange, we have r=6/V24 and !/r=a/r= 98, yielding
0, ==n? £/982 = 0.001028 E. Insertion of o; and a,, in eq. (111) yields o, =
0.000852 E, being safe and in good accordance with o, according to
eq. (115). ‘

2. 4. Stabjility of the web of plate girders.

- As through lack of space we gave also eq. (68) of our first paper 2)
without derivation, we will elucidate this formula here. In the same way
as BLEICH we assumed the relation

g = Ty + (v1— 7o) (b]a)? (116)
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7, and v, being. the buckling stresses with ratios &/a equaling 0 and 1 re-
spectively. With the accurate values found by SEYDEL 25) this gives for the
elastic domain
g = {4.82 4 3.62(b/a)*} ER?|b* (117)
As at the yield stress values A, B, D and F are constants, we may assume
there -the same relation (116). According to eq. (51) 7= 3.74 E h2/62. Eq.
(58) gives for the elastic domain 7, = 8.52 E #2/b2, but SEYDEL 2%), who took
more coefficients «,, into account, found 8.44 F A2/b2, so that we may im-
prove our result according to eq. (59) for the plastic region by multipli-
cation by 8.44/8.52, yielding 7, = 15== 0.30 E 4#2/b2. By substitution of 7, and
7, in eq. (116) we obtain
g = 1, = {3.74 + 256 (b/a)?} E h?|b* (118)

According to the slenderness-buckling stress relation assumed by us, at the

border between elastic and plastic region z=(2073/y3) kg/cm2? = 1197 kg/cm?.
According to eq. (117) this stress will be reached if

(b/R)e = V8456 + 6351 (b/a)* (119)

The yield stress 7, = (2400/Y3) kg/cm? — 1386 kg/cm? is reached, according
to eq. (118), if -

B(b/h), = V5667 + 3879 (b/a)* (120)

Assuming a linear relation between ratio #/# and buckling stress 7, we
finally obtain eq. (68) of our first paper2).

3. Stability of latticed struts, sandwich plates and
foundation piles

3. 1. Stability of latticed struts.

The method we used in section 2.3 is still much more simple in its appli-
cation if the deflections, caused by the different parts in which the elasticity
of the structure may be divided, occur in the same direction, as happens indeed
in most cases. As an example we used it in 1939 in a paper in the same num-
ber17) to derive ENGESSER’s formula for latticed struts with batten plates con-
nection only (fig.22a). We assumed again the elasticity to be divided into
two parts, say 1 and 2. We assume first part 1 to have its normal elasti-
city, but part 2 to be absolutely rigid. At the critical thrust P;, with an ar-
bltraly deflection y,, the inner moment M, will be equal to the outer moment

P;y,. Now we assume the rlgidity of part 2 to decrease from infinity to
its real value, during which the inner moment does not change. The de-
flection y, will now increase to y, so that the equilibrium demands that
the critical thrust decreases to its real value P.,, whilst from the equality
ofiinner and outer moments it follows that P;y, = P.y. In the same way
we assume now part 1 to be rigid and part 2 elastic, by which the equation
Psys =P,y is obtained. As y=y,+y, we get in this way the equation

y=yn+y=P,(Pi'+ Py (121)
yielding 1) P, = (P! 4+ Py (122)
or 17) 0 = (o1 + 07)7" (123)

41) This same equation was given later on other grounds by Buckens, Publ. Int.
Ass. f. Bridge and Struct. Eng., Zurich, Vol. 7, 1943/1944..
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oy and o, being the critical stresses for cases 1-and 2 respectively. The
results given by egs. (122) and (123) will be the more accurate the more
the deflection curves in both cases 1 and 2 are similar.

As may be done in most cases of steel columns, the batten plates are
first considered as infinitely rigid. We divide the elasticity of the columns
into that by which they bend with respect to their common middle plane
(fig. 22b), and into that by which each single column bends with respect
to its own neutral plane (fig.22c). The critical thrust for the first case

| == 1

[ ©]

is o, = 27T /i2, values T and 1. being the reduced modulus and the slen-

derness ratio /r. for a solid column respectively, in which r,= y/J.,/A and
J.=2J, - Ah?/4, values A and J,; being the total cross sectional area and
the moment of inertia of the cross-section of a single column respectively,
whilst £ is given in fig.22a. As to the second case (fig.22c) it needs mo
further explanation that o, =227 /A2, value A being the slenderness ratio
¢/rs of the single struts, in which 7; is the radius of gyration of a single
oolumn and ¢ is the panel length as given in fig. 22a. Insertion of these
values in eq. (123) yields

' w2 T n? T :

O = IRl (124)

'so that the ideal slenderness ratio of the latticed column is
hi = VA2 + A (125)

in accordance with the well-known ENGESSER equation.

Anticipating our next computations, it follows that eq. (125) holds as
well for columns consisting of p single struts, of which the batten plates
‘have an appreciable length, if 1, is the slenderness ratio of the solid column
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and J, is equated to c,/r;= (c—2a)/r,, value 2a being the effective length
of the batten plates.

Considering now a latticed strut, with length /, of which the two ribs
are connected by diagonal lacing (fig.23), of which the elasticity has to
be taken into account, the only right way to use eq. (122) is to split of first
the proper rigidities of the single columns, before applying it, as other-
wise either the part, assumed to be rigid, would prevent the deformation
of the elastic part or the same rigidities would have to be taken into account
twice. So we assume first the single struts to have no proper rigidity, but
add its influence, P,= 2x2TJ/I2, afterwards. Subsequently we split the
elasticity of the remaining system into that by which bending with respect
to the common middle plane occurs, leaving consequently the proper moments
of inertia J; of the single struts out of account, and into that of the lacing.
Hence we have for the first case

Py = n2TJ,/i* in which J = Ah?|4 (126)

In order to find P, we remark that an angular distortion g (fig.23) causes
a shearing force Q= P,f that has to be taken by the lacing. Denoting the
fictituous shearing force that would cause a unit angular distortion by S,
the modulus of rigidity of the latticing, we obtain the equation Q =S g, so
that we get

Py,=3S (127)

In order to find the critical thrust of the column, we have to add now the
proper critical thrust P, of the two single struts to the critical thrust accor-
ding to eq. (122), combined with (126) and (127), yielding

L 1 —I\—1 7[2 T./s :7'[2 TJtS
Por = Py (P 4 P2 =27 SE+a*TJ;

, e 2
or Pcr = *'12' (2./5 + '12 t—f—?TT‘;T./t/S -/t) (128)
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It is a simple question to check that with diagonals alone (fig.23)
S = EAysin*a cosa (129)

whilst with a double lattice value S has the double value, A4, being the
cross-sectional area of the diagonals. If the lattice consists of single diago-
nals and verticals it is easier to give S as follows

1/S = 1/EA;sin*« cosa + tan «|E A, (130)

A, being the cross-sectional area of the verticals. Of course the slenderness
ratio ¢/r; of the single struts (fig. 23) must be smaller than the ideal slen-
derness ratio of the entire column.

Abhandlungen VIII 5
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Our formulae are more accurate than existing similarly constructed
formulae, especially for very weak latticing. If for example A4,= 0 these
formulae yield P, = 0, whilst our formula (128) yields with value §-=0,
given in that case by egs. (129) or (130), the right value P, = 2a27//I2.

In modern timber structures nearly all compression members are built-
up columns, viz. two or more single struts that are joined to one another
at two or more places by means of wooden couplings (fig. 24). The connec-
tion may be effected by bolts, wooden disks, nails or otherwise. Notwith-
standing the methods of computation for these built-up columns were very

TN AR Co g 4. d Co .8

T T T i

i H . i L L
= 'L . ! | }

H n IH Hi I N JH
o o e - ——

¢ N c ¢ -
Fig. 24

unsatisfactory. According to the German prescriptions DIN 1052 (May
19638), for example, the buckling force for such timber columns had to be
computed by assuming that they had a moment of inertia J/ =/, 4 +(/;—/,),
in which /; is the moment of inertia of the total cross-section and / is
the same as if the single struts are pushed close together. It is clear that
this method is quite insufficient, as it takes into account neither the number
and length, nor the rigidity of the couplings. At the request of ir. H. KruLL,
expert in timber structures of the Department of Forestry in the Nether-
lands Indies, we derived a simple formula, in which, besides the elasticity
of the couplings, also their length is taken into account. Our reasoning
given above here holds good too if the elasticity of the structure, after
splitting of the proper rigidities of the single struts against bending in a
single half wave, is divided into more than two parts. Let y = Xy;. Assume
first part 1 as elastic, the rest as infinitely rigid. Then we obtain in the same
way as before the equation P,y,==Py, if P is the critical thrust of the
system after splitting of the proper rigidities of the single struts. Thin-
king successively only part 2, 3, etc. elastic, we get Py, =Py, Pyys =Py,
etc.,, from which it follows, as y=2y,, that y=P(2 P;l)y or 1P:=
(2 Py )1, so that the critical thrust of the column

Py =Py+P=Py+ (SP7)"
so that U = 04+ 0 = 64 + (Za5')™" (131)

P, and o, representing the influence of the proper rigidities of the single
struts 42),

Using eq. (131), we split the elasticity of the remaining system into
three parts. Part 1 yields a deflection as given in fig.22b, so that P, is
given by eq. (126), by which the critical stress is

42) The equation P, = (2P, 1) was also derived otherwise by Buckens, l.c.,
footnote 41. As he, however, split the structure itself, and not its elasticity, into diffe-
rent parts and did not split off before the rigidities yielding the complementary thrust
P, he could only solve rather simple problems of bars and frames by it, using only the
equation P = (P;71 -~ p,"1)—1,
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01 = 7® T/)»tg in which }.t e 21//] (132)

Part 2 gives a deformation according to fig. 22c, with the difference that,
owing to the length of the couplings (fig.24), only lengths ¢, =c — 2a of
the single struts can bend, by which their virtual buckling length (the length
of a half sine wave) is also ¢, and

oo = 72 T|A?* in which A, = ¢))rs = (c—2a)|rs (133)

Part 3 consists of the elasticity of the couplings. The deformation of these
wooden couplings by the shearing forces §; acting in them (fig. 25a) will
be principally a shearing. Denoting the displacement of the single struts
with respect to each other per unit shearing force in a coupling by v, the
magnitude of the shearing force S;, by which a displacement /o, is effec-
ted, is

Si = haylv (134)
J Hﬁ_jk e h
# ] —_ e
R X SZ ¥
2 -— %e
7, %2
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l 2’3 ! ? — ’?5
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Fig. 25a Fig. 25b

Assuming all couplings as equally rigid, the equilibrium of each of the
joints 0,1 and 2 in fig. 25a, representing one half of a column with an even
number of panels, yields approximately

Py yico; = Sihi2 (i =0,1,2) (135)
With eq. (134) this equation gives
Pyyic = h*lv (i=0,1,2) (136)

Addition of the three equations represented by eq. (136) yields
Pg(lfz'*f 736) = 3 kv
Approximating y; by 0.5 and taking into account that a similar relation

holds good for a column with an arbitrary even number of panels 7, this
equaticn may be written as follows

Py(n—1)c|2 = nh*[2v
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whence P= " " (137)
n—1 cv :

If the rigidity of the end couplmgs is assumed to be half of that of the
intermediate couplings, the first equation (136) yields Pgyoc==h2/2v,
whence we find, after addition of all equations (136) and transformation

Pz = h2lcv (138)

With an odd number of panels eqs. {135) and (136) hold good approxima-
tely for all joints i, so that it follows from fig. 25b that by addition of all
equations (136) we obtain

Pync|2 = (n+1)h*[2v
or py=ntl 2 (139)

whilst with end couplings of the half rigidity we get again eq. (138). De-
noting generally P, as Py — B htjcv (140
in which f follows from eqs. (137), (139) or (138), we ha\e

B h*
= (141)

Hence eq. (131), combined with (132), (133) and (141), yields

. (A 4 AT ch)‘lhrz‘zT
in which 2= A2 4 A2 +,AW2 } (143)
and e = 21k, As = cylrs and A,2 = a2TAcv/Bh® |

In case 2 no deflection of the single struts in a half wavelength { occurs,
so that value o, has to be equalled to

Yy a*T
4
y @y (149
As Pyy, =Py, (y—y5)/y=1—P/Py=1 — o/0,, or, according to eqs. (133)
and (142), (y — y,)/y = (4,2—A2)/2,2. Hence eq. (131) yields, paving atten-
tion to egs. (142) and (144)

. 1’1‘;‘2 ——}\,52 ﬂ2T 572T 2T{ ( ’)2‘
Ocr = )vrQ Zl/rs)2 + }'}’2 - ]+ (/»,- /us ) / J

so that the ideal slenderness ratio 4; is given by
4,2 3

1% = r S 145
T+ (b — A7) (] 1)* (145)
in which 2, and 1, are given by eqs. (143). With infinitely weak con-
nections, with which 7, is infinite, eq. (145) yields the right value ;= {/r,.
It follows from fig. 22 and fig. 25a that, if the column has only one panel,

we have to consider it as consisting of two panels, putting ¢ =1/2.
In the same way we derived formulae for built-up columns, consisting
of p single columns. With rigid connections we may use eq. (123). In casel

now o; = n27 /1,2, in which 1, = [/r., whilst r, = VJC/A and /.= pJ, - ZA; a;?,

0yg =
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value 4, being the distance between the axis of any single column and that
of the built-up column. Fig. 26 represents a length y; ¢ of the column in
deformed condition, the single struts being indicated by single lines. Value
A is the cross-sectional area of a single strut, so that A-==p A,. Value
o, —=a?T /42, whilst the ideal slenderness ratio is given by eq. (125). It
follows that the formula 4,2=21.2-- pi2/2, as recommended in the German
prescriptions 1939 (DIN E 4114) is erroneous.

Fig. 26

Taking into account the elasticity of the connections, o; and o, are again

given by egs.(132) and (133), but now 4,=1I/r, whilst »,=VJ,/A and
J, =X Asa;%2. Denoting the shearing force between two single struts by S,,
it follows from fig. 26 that for joint / we get
V23S, = ha; (146)
Furthermore it follows by adding the total moments with respect to the
6 points, denoted by crosses in fig. 26, and using eq. (146), that
Pg;/,'ca,':: eZSk:elza,-/v (147)

Adding the equations for all points / we obtain in the same way as with
two coupled struts Seh
: _ peh

03 — ——
cvA

in which g is n/(n—1) or (n--1)/n for an even or odd number of panels
n and for connections of equal rigidity and =1 if the end connections
have the half rigidity. Eq. (131) yields now

(148)

, 1,2
M= T A =2 ()
in which M2 = A+ A + 4y? (149)
and e = 1Ure, As = cofrs,  Aw® = n®TAcv|Bekh,
re =V/h|A and J;= 3 Asa

In order to check formula (145) we compared its results with the exact
values, which for two connected single columns are given by 43)

43) v. Mises and RATZERSDORFER, Zeitschr. f. ang. Math. u. Mech., 1926. HARTMANN,
L. c., footnote 18, p. 67. BriLaarp, De Ingenieur, no. 7, 1933. Van per EB, De Ingenieur
in Ned. Indié, no. 10, 1937.
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by 4
cos  —Cos-
n

!S.i

B _Za & -_f1+ TAV(] _cos ™ } (150)
2r? m 7| c n
1—cos - )sin -
n m

if the rigidity of the end connections is half of that of the intermediate ones
and with ¢y=c. Equating in egs. (145) and (150) 7 to E=100000 kg ,/cm?,
our former assistant in Bandoeng, Ir. Lie HAN YaNg, calculated for several
built-up timber columns values m = 7;/4; with eq. (145) as well as with eq.
(150), the result being given in Table V. As follows from fig.22a value /
is the distance between the axes of the single struts. The breadth and
thickness of a single column was 20 and 8 cm respectively.

Table V.
m —= 7\,,',} ls
l ¢ i ho|=— r=20 Tv= 0,04 cmj/ton v ~¥O/3‘(k)7c¥nTtbrT

cm cm cm (145) (150) (145) | (150) (145) (150)
260 130 2 16 1.11 1.00 1.45 } 1.37 1.84 i 1.80
390 130 3 16 1.27 1.24 1.70 | 1.63 247 ]‘ 2.42

520 | 130 4 16 1.47 1.43 1.90 | 1.85 2.94 2.89
520 130 4 24 1.24 1.21 1.51 | 1.46 2.39 ‘ 2.33
780 | 130 6 16 1.92 1.89 230 | 2.26 356 ' 353
156 78 2 16 1.12 1.09 1.56 | 148 1.89 1.89
390 78 .| 5 16 1.69 1.65 230 | 2.26 3.68 3.66
780 78 10 16 2.94 2.91 3.37 ] 3.34 5.09 5.09

It follows from Table V that the values given by eq. (143) are suffi-
ciently accurate and incline to the safe side.

We made an extensive study of this kind of oolumn but cannot say
much more of it in this paper. We only give here some results of tests,
executed by us in the Laboratory for Testing Materials in Bandoeng at the
request and in cooperation with MRr. KruLL, mentioned above, in order to
determine the value v and the effective length 2« of the couplings, whether
effected by wooden disks, bolts or nails. Fig.27a gives some load-deflec-
tion diagrams of columns as indicated in fig. 27b. As here the columns as
a whole were fixed at the ends, so that the single struts could not receive
different axial strains, 4, in eq. (143) has to be equated to zero. The single
struts had a breadth of 21 cm and were 5 cm thick. Like the wooden blocks
between them, they were made of Java teak (Tectona grandis). In order to
characterize this material we give in fig. 28 the results of our tests, also
made in cooperation with MRr. KruLL, with single bars, for centric buckling
(m =0) and for an eccentricity equalmg 1/6 of the thickness (m ==1). Our
tests (slow tests) were made in such a way that the ,,creep‘ of the wood
was taken into account, as the load was not increased before the deflecting
had come to a standstill. With slenderness ratios higher than 90, EULER’s
formula applies with £ = 130000 kg/cme.

The curves denoted by D. 1, D.2 and D. 3 in fig. 27a relate to columns
connected by wooden disks, as indicated in fig. 27b, the shearing forces S
(fig.25a) being taken by one disk only. The allowable shearing force in
these disks is 1100 kg. They were made of hard Indian wood, those of
D. 1 and D. 2 of sonokling (Dalbergia latifolia) and those of D. 3 of marbau
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(Intsia Amboinensis). In test D.2 value v was extraordinary large, being
due to a rather much play between disks and column, owing to shrinking
of the disks. As in practice such play does not occur, as according to MRr.
KruLL columns and disks are worked with such a moisture content, that after
shrinking they fit, we left this test out of consideration. Test D. 4 consisted
of 4 coupled struts of the same proportions as those of fig. 27b, the shearing
force being, however, taken by 2 disks, whilst the wooden connecting blocks

P en t (/s voleur doit élre prise dovble sevlement pour By) — P in ¢ (Der doppelte Wert ist nur fir D,

D4p4.; zu nebmen) — P in tons (only for Dy to take double valye)
7L ] ]
0.4.0'—§3t .07 0.4.1
60 S9¢ - i/ -
[ ST N
N 77t S . A
B suasNENTRNSN b
T =t ar IS LN PN L
/JI—/:’;‘ 23 T ~ S
/ ) 0.2 — = ~ J_R A4
Jg / / 2777 14 N ¢
— 1 | %)
222 BH2 T o=l lane
N ' — Ty
. 7¢ 2E.721 2£.72]
—
0
L, t
a7 7 2 3 4 Scm
Fig. 27a
— 745cm S
768 A ———’1 i
X I ‘
I i
. T —&
R [N | ?
S ! <
~ T
Fig. 27b

had lengths and thicknesses of 42 cm and 5 cm respectively. Tests B.V
refer to struts as in fig. 27 b, but each connection being effected by 4 bolts
of {” diameter, as shown in fig. 29. The total allowable shearing force for
4 bolts is 1600 kg. In tests B.V.1 and B.V.2 the holes were drilled 1/16”
larger than the diameter of the bolts, as is usual in practice. In B.V.1,
however, the nuts were tightened with the usual monkey wrench of 20 cm
length, whilst in B.V. 2 they were not tightened and were held free 2 mm
from the washers. In B.V. 3 the 1” bolts were fitting in the holes, but
just as with B.V.2 the nuts were not tightened and held free from the
washers. In tests S.1 and S.2 the connections were made as shown in
fig. 30, comprising 9 nails of 6.5 mm diameter, fitting in predrilled holes,
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representing an allowable shearing force of 1330 kg. Finally 2 E 121 gives
the double thrust value for a single bar of the same proportions as the
single bars used in the built-up columns, so that the difference between
graph 2E.121 and the other curves shows the influence of the connections.
I'he horizontal part of this graph is due to creep.
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Graph for buckling stresses of Java teak with varying slenderness ratio 4 — Diagramm

der Beulspannungen von Java Teakholz mit einem veridnderlichen Schlankheitsgrad A.
— QGraphique des contraintes de voilement du bois de teak de Java avec un coefficient
d’élancement A variable.

{1) Centric loading with slow test (m = 0) — Zentrische Belastung beim langsamen
Versuch (m=0) — Essai lent pour charge centrée (m = 0).
(2) The same with rapid test — Dasselbe beim schnellen Versuch — Essai rapid pour
charge centrée.

(3) Excentric loading with excentricity 1/; t (m= 1) — Exzentrische Belastung mit
Exzentrizitat 1/ t (m = 1) — Charge exceuntrique pour l’excentricité 1/; t (m = 1).
(4) Test piece with one, two or three faults — Versuchsstiick mit einem, zwei oder
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(3) Test piece contains heart-wood — Versuchsstiick mit Kernholz — Eprouvette con-
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Our conclusions were that with disk connected columns we have to
measure the theoretical length of the couplings (2a or « in fig. 24) from
onc end of the coupling block up to the bolt that is nearest to the other
end, whilst the specific displacement v is (0.08/m) cm/ton, if m is the number
of disks of 6 cm, diameter that transmits the shearing force. With bolt con-
nections with non-fitting bolts, as used in practice, where we are not sure
that the nuts remain tightened, the effect of the ocouplings is very slight
and problematic. With nail connected columns the theoretical length of
the couplings may be put equal to the length of the coupling blocks, whilst
v==(0.36/m) cm/ton, if m is the number of nails of 0.65 cm diameter. The
latter conclusions hold good for practice in Java with relatively hard timber,
but in principle they may be of value for other circumstances too.

3. 2. Stability of sandwich plates.

In order to check our assumption that wave formation in the surface
of roads, as often found in Java, is caused by horizontally directed com-
pressive forces, originated in the road cover by rolling and traffic, we con-
sidered the road cover as a plate, supported by a semi-infinite elastic body 4%).
If the plate is subjected to an arbitrary plane state of stress, it will always
buckle in waves perpendicular to the direction of the largest principal com-
pressive stress, also with plastic buckling of the plate45). Hence a state of
plane strain will occur here, so that the stress distribution in the elastic sub-
stratum is governed by the Airvy function. Taking into account a complete
connection between plate and substratum and thus taking also into account
the shearing forces transmitted between them, we calculated the buckling
stress of such a plate. After our arrival in Europe our attention was called
to publications, in which the stability of thin sheets of metal and plywood,
laterally supported by a thicker layer of an elastic material with small spe-
cific weight, as used in the construction of wings and bodies of aeroplanes,
was considered as the same theoretical case 46) as worked out previously by
us #4). In a paper, in which we called attention to this fact, we corrected
these computations in accordance with our earlier ones and gave along the
same lines an accurate calculation for so-called sandwich plates, being two
thin outer plates of metal or plywood (the faces) with an intermediate sup-
porting layer of light material (the core)¢7). As we use these formulae
in the following section we will give here some results. For a long plate,
supported by a semi-infinite body, in the elastic domain the critical thrust
per unit breadth is ¢7)

Roe = BA2+ E'[2\ + JyphE'
in which, with s = F'|E = Ei|(1—»?) E,
(494 —»)+ (1 —2») Lk} Ahs+ 2
T (A+9){(Q+r)B—4v)dihs+2(1—))
204+ ) {1 —2v+ (1—»)kk) hEs
YT O+ A0 —0) + (1 =20 ik hhs +2

EI

& (151)

44; ByLaarp, De Ingenieur in Ned. Indié, no. 9, 1939,
45) Appears in Comptes Rendus, 6me Congrés de Mécanique Appliquée, Paris.

46) GoucH, ELam and pE BrRuvne, Journal of the Royal Aeron. Soc., 1940 and some
later papers of other authors.

47) BiyLaarDp, Proc. Royal Neth. Acad. of Sciences, Amsterdam, no. 10, 1946.
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B is the flexural rigidity £,/43/12(1-—»,2) of the plate, % is its thickness
and £, and »; are the elastic modulus and PoissoN’s ratio of the plate res-
pectlvely E and v are the latter values for the supporting body. Finally

A=wm/a, a being the half wave length of buckling. With an infinitely long
plate the optimum wave length, yielding the smallest critical stress o,,,
may be found by differentiation, whence we obtained ¢7)

a = n(4B|E)"
hop = 3(4BE?)s + 3 whE

As may be easily checked, a state of plane strain in faces and core
of a sandwich plate will only be possible with rather broad plates, owing
to the small modulus of rigidity of the core. Therefore, except for the
bending of the faces with respect to their own middle plane, a plane state
of stress was assumed here. For the formulae we got on this assumption
in the above-mentioned way for sandwich plates, we refer to our paper?7)
on the subject. In the same paper we derived, however, by the method given
in section 3.1 of the present paper, a formula for the critical thrust, that
is practically identical with the results obtained from our exact solution
by developing sinh and cosh in series. Using the formula

(152)

Py = Py + (PT' 4+ P7H7! (153)
5 75
| Ve
g ¥4
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Fig. 31

in which P, is the proper critical thrust of the faces per unit breadth, we
assume first the modulus of rigidity G of the intermediate layer to be in-
finite. The free supported length of the plate, of which the unloaded sides
are free, being L and denoting thickness of faces and core by % and ¢ res-
pectively, we obtain per unit breadth

P = a?BL® = (n?|L ){ Ex(t+h)h+ 55 Et3} (154)

For case 2 we assume the moduli of elasticity £, and E of plates and core
to be infinite, but the modulus of rigidity G of the core to have its real
value. Considering an element dx of the plate (fig.31) we get

t=Gy=0(a+8) = Ga(t+ h)t (155)
whilst the equilibrium of one half of the element demands that
3(+h)yrvds = $Padx (156)



Some contributions to the theory of elastic and plastic stability 67

Combination of these equations yields
Py = G(t+ h)*/t (157)

Insertion of P, and of P, and P, according to eqs. (154) and (157) in eq.
(153) yields, with G =E/2(1-v») and assuming the thrust 7. to be taken
by the faces alone, so that the critical stress per unit breadth in the faces
is 0, =DP.,/2h

__ @A A2 Ey((4h)* + (26 h) EF
T 12(1-w?) L2 T A+ 2t Erth+4EL*+3(1+v) a E£Y[(£+h)?

For sandwich plates, supported at three or four sides, we cannot apply
the above-mentioned exact method, as in that case the deformations with
buckling are three dimensional, so that no state of plane strain exists and
we cannot apply the Airy function any longer. The method as shown above,
however, may be applied as well in this case. We reason here as follows.
Let the plate, being supported at the unloaded sides too, be subjected for
example to a compressive force P per unit breadth. If part 1 behaves elastic-
ally, it will buckle with a force P,. With an arbitrary deflection w,; of an
element H dxdy, value H being the total thickness 2/ ¢, the restraining
force on the element will equal the deflecting force, being cP,w;, value
¢ being a proportional factor. Assuming now the rigidities of the
other parts to get back their values, whilst the inner stresses do not
change, the deflecting force, being now cPw, will have to balance the
restraining force cP,w,, yielding again Pyw, — Pw. In the same way
we get P,w,= Pw, P,w,= Pw, etc.,, by which, just as in the preceding
section, we get finally P — (3 P;') 1. The same holds good if the plate
is subjected to an arbitrary state of stress. Of course the results will
be the more accurate, the more the deflection surfaces for the several
cases have the same form. As, however, admission of diverging de-
flection surfaces means a lack of constraint, our results are anyhow on
the safe side. Referring to our respective papers for further details 48), we
only state here, that after splitting off the proper rigidities of the faces
(case 0), the critical thrusts P,=2/%o,, P,=2ho, or (and) S,, = 2 /17, per
unit breadth have to be calculated for case 0 and case 1 (assuming G for
the core to be infinite) from the well-known differential equation

otw ctw owt o%w cZw 0w
D( p R R ) O R
axi T c‘/xzoy‘3+6y4 TP ? oyt ZSyaxay
and for case 2 (assuming only value G of the core to be finite) from the
differential equation

Oer E (158)

(t+ h)? (6‘2w 6'2w) 0w 0w o*w
G —P— — P, 28y =
¢ gx2 T oy? *eoxt ycy‘3+ Sxyéxéfy

as derived in our paper 48).

3. 3. Stability of rammed piles, surrouned by soil

Although they are not exactly applicable here, as the horizontal dis-
placement of the soil in the horizontal planes of the inflection points of the
piles is not exactly zero, which we shall take into acoount by introducing in

egs. (151) and (152) a value £’ - } F’, these equations may give us an idea
48) BijLaArD, Proc. Royal Neth. Acad. of Sciences, Amsterdam, nos. 1and 2, 1947.
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of the critical thrust of a pile surrounded by bad soil, supported horizoatally
at its top and standing with its point in a sand layer. As value £ for soil
will always be only approximately known, we may simplify eqs. (151) by
remarking that #2=w=/#/a is in this case a rather small value in comparison
with unity, whilst value s and also i/Zs is very large, so that, equating »

to zero, we find £’ = % E and yp =3%. In this way eqs. (152) yield
a=ah(E[4Eys and oy = 5 REE)k+ | E (159)

Let us assume a concrete pile, for which 7 = 40 cm, whilst its cross-sectional
-area is 1600 cm2. Leaving the steel reinforcement out of account, we assume
[[; = 200000 kg/cm? for the pile. For the soil we admit E to have the low
average value of 15 kg/cm?2, so that £= 10 kg/cm2. As the soil supports the
pile at both sides, whilst in deriving eqs. (151) and (152) only a support at
one side of the plate was assumed, we shall have to reckon with the double
value £, by which E =20 kg/cm2. Hence eqgs. (159) yield a buckling length
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«=:1700 cm and a critical stress for the pile of o, =275 kg/cm2. With a free
supported length of 17 meters the assumed pile, if not supported by the
soil, having a slenderness ratio 1700/11.6 = 147, would have a buckling
stress 7?E,/1472 == 91 kg/cm?2, so that the soil gives an excess buckling stress
of 184 kg/cm?. As, however, in reality the pressure, exerted by the buckling
pile on the soil, will spread sideways, the soil will behave much more rigidly
than assumed here, where only a breadth of soil, equal to the breadth b =/
of the pile has been taken into account, so that the excess buckling stress
will be many times 184 kg/cm?, say m times, by which the real buckling
stress of the pile is (91 - 184 m) kg/cm?2, surpassing certainly, even if a
reduced modulus smaller than E; were taken into account, the compressive
strength of the material.

If, however, we have not one pile, but a complete foundation, we have
a case more similar to that of a sandwich plate. If there was only soil
between piles 2 and 3, as shown in fig.32 by cross hatching, we would
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have here the same case, but as the soil is at both sides, we have again to
insert the double values for the rigidity of the soil. If we have many piles
it is clear that P, is practically infinite, so that eq. (153) yields

P, = Py + P, (160)

In the planes between the piles, for example ab in fig. 33, the thickness
of the piles has no influence, so that we had better assume % to be zero
here. Then eq. (157), with the double value G, yields P,==2G¢ per unit
breadth of soil and for two piles. Taking into account a breadth ¢ (fig. 33)
of the soil, we get for one pile P, == ¢gé¢GG. This may also be derived directly
from fig. 33, considering the equilibrium of an element dx of a pile and the
accessory soil. With an angle of distortion y, equilibrium demands that
Pyydx=1tGyqgdx, yielding P,= g¢ U, so that, according to eq.(160)

P, = a*EJ[L* + gtG (161)

gt being the area of the soil belonging to a pile. Hence, if the total
foundation has a total area of Q7 (fig. 34), Q being for example 20 ¢ and
T being 40 ¢, the total value 2P, equals Q7 G.

Fig. 34

At the boundaries of the foundation it will moreover experience a
constraint, for which, if the piles are supported horizontally at their upper
ends, for example by batter piles, again eq. (151) applies, if £’ is replaced
by E’. The first term, B12, relating to the proper rigidities of the piles,
has, however, already been taken into account in P;, whilst the last term
may be neglected, so that the excess value of the ‘total buckling force,
caused by restraint at the boundaries, amounts to £’/2i per unit breadth of
the constraining boundary. This breadth will be emallest with buckling in
the direction of the largest dimension 7. We assumé that the constraining
breadth at the boundary is Q- 0.3 7 at both sides (fig. 34). As the stresses
in the soil die out rapidly, having nearly vanished at a distance L from
the boundary, the real breadth to be taken mto account will not be much

more, if Q>L. As, with »=0, E——AE F~~ 16G and A=axa/a=mn/L,
this yields the total excess bucklmg force
P, =2(Q+037)E' 2. = (057TQ+017T)GL.

We assumed 7 > @, so that 0.57 Q—«O 177 may safely be approximated
by 0.7 Q, so that with equally distributed piles in both directions the ex-
cess buckling force for one pile is

P, = 07qgtGL|T (162)
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Consequently the critical thrust of the piles is, using eqgs. (161) and (162)
P, =P, + P, =a*EJ|L* + qgtG(1 +0.TL|T) (163)

With the values assumed above, G=FE /2=7.5kg/cm?, so that, with ¢ =
=150 cm and 7 =60 m, we get for one pile

P, = (1600 >< 91 4 22500 >< 7.5 >< 1.2) kg = 350 tons
or g, == (91--126) kg/cm? = 217 kg/cm2, being much less than for a soli-
tary pile.

4. On the stability of wharves and bridge piers and of
‘ the portals of a through truss bridge

4. 1. HaArRMAN’s method of the virtual buckling length.

Let a bar, having arbitrary boundary conditions at 4 and B, buckle in
a curve as given in fig. 35. Then the critical thrust P, will act along the

Fig. 35

straight line that connects the pointsof inflection of the bar. At any point
of the curve the outer moment P,y has to balance the inner moment
—T7Jy”, yielding the differential equation

Py + TJd2y[dx? = 0 o (164)

It follows immediately, that the elastic line will be a sine wave, with the
axis of pressure as X-axis and that, if the origin is placed at a point of
inflection, the form
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y = fsin(ax/L) (165)
satisfies the boundary conditions. Substitution of eq. (165) in (164) yields
P, = a*TJ|L? (166)

in which L is the length of a half sine wave. HaarmaAN’s method of solving
buckling problems consists in determining, from the geometrical properties
of sine waves, this half wave length L, called by him the virtual buckling
length and being the length of a simply supported bar with same critical
thrust. HAARMAN computed in this way the critical thrust of bars of variable
cross-section and of bars on elastic supports 4%). His method gives a better
insight into buckling problems than more mathematical methods, and in
cases that are not too intricate it leads quickly to a solution ®0). In very
intricate cases the trouble is to solve the large number of equations, but
if some supplementary properties of the elastic line are known, so that it
is sufficient to write down the equations for an arbitrary panel, an exact
solution may be found very simply. In the latter way we used HAARMAN’S
method in order to solve the problem of a bar, simply supported at the
ends and elastically supported in an arbitrary number of points at equal
distances 51), yielding the same buckling condition as found by Brrich 52)
~for this case. Also eq.(150) of section 3.1 we derived in this way 13).
Moreover we found in a similar way the following exact buckling condi-
tion for p single struts, connected by rigid end batten plates with lengths «
and rigid intermediate batten plates with effective lengths 2a, being with
the same notations as used in section 3a

2rr? = (a/m){tan (|2 m,) + malmc} cot® (z]2 n)
— (7t} my) cot(n/2my) + n*a(c—a)[m® c?

Value my=12;/2, in which A =c,/r; and m == (c,/c)m,, whilst r, is given in
eqs. (149). For elastic couplings an exact solution is fictituous, as the effec-
tive length 2a depends on the elasticity of the connections. We shall use
HaArmAN’s method here below, in order to solve some interesting buckling
problems. ‘

4. 2. Stability of a timber pile bent.

Let the piles EB (fig.36), being assumed as clamped in A, support
posts BC53). Considering joint B practically as a hinge, with buckling per-
pendicular to the plane of the bent, the virtual buckling length L of the
piles may be very large. This may be seen without calculation by -conti-
nuing to sketch the axis of pressure CO and the sine curve OA until they
meet in S, yielding L= OS. Itfollows directly from fig.36 that with a
fixed length AC, L will be the larger the higher joint B occurs. Also we
find directly from fig. 36

' dy 7 7 1 7

«= = »I;-fcosur— [ = P fsin-——1

19) HaarMmAN, Indisch Tijdschrift voor Spoor- en Tramwezen, 1918, 1919, 1920.
Handelingen Ned. Ind. Natuurwetensch. Congres. Bandoeng, 1924. Uittreksel uit de
Theorie der Virtueele Kniklengte. Edited by Technische Hoogeschool, Bandoeng, 1926.

%) Biyraarp, De Ingenieur, no. 42, 1931, p. B. 285, with erratum in no. 51, p. B. 344.

21) Byraaro, De Ingenieur, no. 4, 1932,

2) BireicH, Theorie und Berechnung der eisernen Briicken, 1924, p. 202.
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yielding the buckling condition
tan(n//L) = a(a+ 1)L (167)

4. 3. Stability of a wharve.

For a bar, simply supported at one side and fixed at the other side,
it follows directly from fig. 37 that
24

0=1Ila or —fsinjL—l«-l:—lZ—fcos / 4

yielding tan(n/|L) = xl|L or L =071/ . (168)
Let us now oconsider a wharve of which the piles are rather slender, only
a small portion of their length being driven into a sand layer. In order
to stabilize the wharve batter piles are driven, by which the tops of the ver-
tical piles are held horizontally. As a rule the floor beams are so rigid,
that the piles are practically built-in at their tops, whilst their lower point
of inflection 0 with buckling will have to be assumed near their lower end.

JNr
7 ,L

EJP”

Fig. 37 Fig. 38

Hence with a sufficient number of batten piles, we have the case of fig. 37,
yielding eq. (168). In order to check whether the number of batter piles
is indeed sufficient, however, we shall assume that we have m vertical piles,
that are held by 7z pairs of battered piles, so that per pair of batter piles
we have m/n=p vertical piles. If the vertical piles buckle (fig.38), the
critical thrust P, of each pile will have a horizontal component «P,,, so that
p piles, buckling in the same direction, exert a horizontal force fH =apPl,,,
which has to be taken by the pair of batter piles, having for example a
slope 1/5. Hence these piles have axial loads B=H \/26/2, yielding axial
displacements u = Bk/EA - u, of the tops, £ and A being their lengths and
cross-sectional areas and u; due to yielding of the sand. So the horizontal

53) Byraarp, De Ingenieur in Ned. Indié, no. 1, 1939,
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displacement of the tops is e=uy26 =13Hk/FA--u,yY26 = H/R —apP,/R,
value R being the horizontal force causing a displacement ¢ = 1. [t follows
now from fig. 38 that

al—=¢+4+ 0 =apP,|/R—[fsin(nl|L)
or a(l— p Py |R) = — fsin(zl|L) | (169)
~ Furthermore we have
¢ = —dy|ldx = — (a|L) f cos(nl|L)

insertion of which in eq. (169) yields, after writing P, — a2EJ/ ‘L2, the buck-
ling condition

i al  wl b E./

WL =L PR
With eq. (170) we find always a value L that is somewhat more than 0.7 l,
as given by (168), and we can judge by it whether it is necessary to place
more batter piles. Of course this investigation has to be made for each
independent part of the wharve, if not restrained in another way, whilst
it has to be done for two horizontal directions that are mutually perpen-
dicular. If the resultant of the forces H, caused by the buckling vertical
piles, does not coincide with the resultant of the forces /H, taken by the batter
piles, the remaining moment has to be taken by the two systems of batter
piles in mutually perpendicular directions, causing an excess displacement e.

(170)

4. 4. Stability of a bridge pier, supported by battered
piles.

In order to judge the stability of the bridge piers in a deep river in
Sumatra, supported by sets of batter piles (fig. 39), of which only the lower
part has been driven into a sand layer, we wanted to know, how far, with
unequal loading of the piles, the least loaded ones support the most loaded
ones, by decreasing their virtual buckling length. In a direction perpen-
dicular to the cross-section of the pier, as given in fig. 39, it is held by
other batter piles, so that for buckling in this direction the virtual buckling
length of all piles is about 0.7 /. The pier is loaded in such a way, that
each pair of batter piles takes a force R (fig. 30). By this the piles are sub-
jected to axial loads P and Q. If buckling, the axes of pressure, O, S and
O, S of the piles will now deviate in such a way from their initial direc-
tions O;7 and O,T, that the virtual buckling length L of the
pile with the greatest thrust P is decreased, whilst that
of the other one is increased. For we have the relations

P, = =n*EJ|L,* and Qo = a*EJ|Ly?

so that we get Ly = 8Ly and B =VPIQ (171)
As distance »==S8T is infinitely small, in fig. 39
& = (r/k)sin(a—y) and & = (r|k) sin(a + y) (172)

Assuming an infinitely small rotation ¢ of the rigid body of the pier with
respect to 7, we may write down for the ordinate and slope of the sine curve
of the right pile in A’ the following equations

fisin(nlily) = @(k—1) — &1/ (173)
— (/L) frcos(nl|Ly) = ¢ + & (174)
and for the left pile in B’

Abhandlungen VIII 6
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fasin(wl|Ls) = p(k—1) + &! (175)
————(JZ/Lg)fg COS(ﬂl/Lg) = @ — & (176)

Taking into account that ¢; and ¢, are expressed in » by eqs. (172), we have
got 5 equations, (171) and (173)—(176), with 6 unknown values, viz. ¢,
7y f1, foy Ly and L,. Als values ¢, 7, f; and f, are arbitrary, so that only
their ratios need to be known, this is necessary and sufficient. It is very
easy to eliminate all values except L, from these equations, yielding the
buckling condition

{tan (571’L1) — JT[/L1}{tan (Tll/p}Ll) + :r(k—l)/p’Ll} =
- /f?{tan (7 l/Ll) —+ ﬂ(k—~ l)/Ll}{tan (Wl/ﬁLﬂ - ﬂl/p’Ll} (177)

Fig. 39

This gives for the special case Q=P (f=1)
tan(zl|Ly) = —a(k—1)[L4 (178)

For Q=0 we get

nl _wl3kL®—a’2(k—1)

Ly - Ly 3.kL12 + 72 [3 (179)

tan

and for Q= —P ’
tan(n/|L;) = tanh(x//L;) or L; — 0.8/ (180)
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4. 5. Stability of the portals of a through truss bridge.

According to HerTwiGc and PonL %) the stability of the portals of a
truss bridge, whose end posts have to transfer axial loads P (fig.40a),
should be computed by assuming that they have to transmit vertical loads P
(fig. 40b). We showed that this is wrong ?3). If both end portals buckle

Fig. 40a Fig. 40b

sideways, both trusses rotate through the same angle « as the end posts,
by which the direction ef the thrusts P, being the resultants of the forces
U and D in the upper chords and end diagonals and hence having the same
direction as verticals 1—1’, rotates through the same angle «
(fig. 40d). A small part of the total load on the bridge acts, however, in the

h

Q
~ QT']

é

v

Fig. 40e Fig. 41

upper joints, so that a fraction y Q of the load Q per panel, acting in an
arbitrary joint & (fig. 40c) of the upper chord, causes a load ay @ on the
upper lateral bracing. Hence the portal has to transmit, besides the loads P,
acting in the direction of the endposts, a load «y” from the upper lateral
bracing, by which the resulting force, that has to be taken by the portal,

5y Hertwia and Pontr, Stahlbau, no. 17, 1936.
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would embrace an angle (1—y)a with the vertical direction. But the loads
(1—y) Q per penal, that act in the joints / of the bottom chord, cause lcads
«(1—y) @ on the bottom lateral bracing, by which it deflects more than the
upper lateral bracing. In fig. 40e we show one of the trusses in horizon-
tal projection, the top joints 0’ of the portals having a horizontal displace-
ment v=oah. As for example the force F,, transmitted by the diagonals
1—2’ and 2'—3 to joint 2’ of the upper chord, acts parallel to the straight
connection 1—3 wof joints 1 and 3 of the bottom chord, the larger hori-
zontal deflection of the bottom lateral bracing has the consequence, that
the forces F;/ have components that load the upper lateral bracing laterally.
We took this influence into account?53). Value y will vary between about
0.05 and 0.25, according to the kind and span of the bridge and we found
that it is sufficiently accurate, to assume that the resulting force, by which
the portal is loaded, embraces an angle @« = (0.9—y)« with the vertical
direction 55). Wie also considered the case of antimetric buckling of the
portals, assuming omne portal buckling to the right and the other to the
left, by which the entire bridge would be twisted. We found that, even if
the portals had no proper rigidity, joints O and O’ being hinges, there is
a sufficient factor of safety against this kind of buékling 53),

Considering now the stability of a portal, the axis of pressure of a
post having a slope @« and passing through the point of inflection B (fig.

- 41), we see that ah = Ocah+ 6+ 0

or (1) ah=7f sin- a + sin (/z——-a)1 (181)

L

At x=a we have f,,= f., in which f,, = Mub/‘ﬁ EJ,. Value M,=P.,9,
and /, is the moment of inertia of 0’—0’. Using eq. (166), in which J/=/,,
the moment of inertia of a post, the equality g,, = 8,, yields, after trans-
formation,

L L

in which t=7/E and p=67/,/0J,.
In the same way the equality of ﬂb,, and Bsy at x = a-—1N yields

, 7 14 T 7, . @
Oa+»[fcos~»—» a = /7 'L’Qfsm” a (182)

h— a) (183)

4 Jr
O« +~fcosz~<(h——a) == 7L fsm I (

in which ¢ =6/,/67,.
Elimination of « from eqs. (181) and (182) yields
na _ L +{0/(1—O)h}sin(xh|L)
tan L alzlpl? 4+ {O[(1 —O)h}{cos(zh|L)— (184)
whilst by elimination of « from egs. (182) and (183) we obtam
ma __  1—cos(nh[L) + (zz|qL)sin(zh|L)

L = ar[pL+ (mv/gL)cos(nh|L) + sin(zh/L)
Combination of these equatlons yields the bucklmg condition
B(L) = {2pgr—(=|L?) (p + q)v} cos (x h|L) +

+{@? LY v —(|L) pg—(2[L) (p + g) re}sin(zh|L)—2pgr=0 (186)

55) Brraarp, De Ingenieur in Ned. Indié, no. 4, 1939, p. I, 82.

tan (185)
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in which »— @ (1—©)k. From this equation £, by which also 7 is deter-
mined, has to be solved by trial and error. As the endposts have to trans-
mit also the wind forces, taken by the upper lateral bracing, to the bearings,
they are subjected to eccentric compression, so that we have to judge
whether, with the computed virtual buckling length L, this eccentric loading
is allowable. If in eq. (186) we equate @ to zero and v to unity, we obtain
the wrong equation, given by HerTwiG and PonL for this case:

tan{z hfL) = =mL{p 4 q)|(#®—pgL®)

We will conclude this paper by giving our computation for the sta-
bility of the portals of a reinforced concrete cantilever bridge in Sumatra
(fig. 42), designed by us in 1936 in cooperation with N.V. Volker Aanne-
ming Maatschappij, in order to give an example of a system in which the
buckling bars have different moments of inertia. If the portals of the
suspended span buckle sideways, the horizontal displacement of the upper
lateral bracing will result in the forces, exerted by the diagonals of the
{russes, having horizontal components 4, that oppose the horizontal move-
ment of the upper bracing (fig. 43). These forces determine the slope anglc
¢z of the axis of pressure in the portal posts. In order to clamp the
upper chords of the bridge, forming the posts of the portals, at the ends,
where otherwise, owing to the bearing on the cantilever arms, the fixation
would be rather poor, we made an extra floor beam. By this the system
of the portal became as shown in fig. 44, the posts being elastically sup-
ported by the end floor beam I and the extra floor beam II, giving reac-
tions A and B per unit displacement respectively. We took also the con-
nection with the upper chords @& into account, but assumed, for sake of
simiplicity, a hinge at K. In fig. +4 the axes of pressure for the three
branches of the elastic line are drawn. Owing to the displacements 0 and &
the floor beams I and II exert reactions A4 and Be respectively, whilst the
reactions in @Q and R are denoted by @ and R. In @ a shifting ¢ of the
axis of pressure occurs, owing to the moment M, - 6E/.,/b, exerted by the
horizontal bar @ — @, so that

e — M,,‘;[),.,. == 6 E‘/!li").b P”. (187)

It 7'y, Ty, Ty and /y, /4, /4 are the reduced moduli and the moments of inertia
of the bars AB, BQ and QR respectively, whilst Z,, L,, L; arc the respec-
tive unknown virtual buckling lengths, we have
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. ? T1./] . flgrg.l-g . a3 Tg‘/;),
Py = - 'Li?z — Ls* - [,3:'—’ (188)
and hence -
Ly = LV TaJo| Ty 4 and Ly = LiV Tats/ Ty /s (189)

Fig. 43

Axe des pressions
Oruckline o
Axis of pressure--~ q 7 R

Denoting also other values, relating to bars 4B, BQ and QR by the sub-
scripts 1, 2 and 3 respectively, the equilibrium demands, according to
fig. 44

Pal, = A)-—Be¢ 1))
OuPy, =R+ Q ‘ (1D
APy = {0+ ¢+ frsin(za|Ly)}]a (1)
R[P, = fysin(ac|Ly)/c (V)

Continuity at B and @ demands, as far as the ordinates are concerned, and.
taking into account eq. (187)

f2sin(zwxs/Ls) = fisin(za/Ly) (V)

fosin{m(h—x2)/ Lo} = fasin(nc/Ly) + 6 EJ, 310 P, (VD
and as far as the slope angles are concerned

(7| L) f2 cos(axa/Ls) = Be|P. — (/1) f1 cos (| Ly) (VI

(L) fo cos{m(h—x2)/ Lo} = — Q[P —— (7w|Ls) f3 cos(ac/Ls) (VIII)

B = (falc) sin(mwc|Ls) — (]L3) fa cos (7w ¢ | Ls) (IX)

whilst finally the total lateral displacement is
ve=ha=c¢+fisin(ra|l)) + Oah+6EJ,BbP,+ fasin(zc/ly) (X)

So we have 10 equations. According to eqs. (188) and (189), /°,,, L, and L,
are functions of L, so that these 10 equations comprise 11 unknown quan-
tities, viz. Ly, x5, o, B, [, f2, [3, 0, &, @ and R. All these quantities, except
L, and x,, have however a common arbitrary factor, so that the 10 equations
are necessary and sufficient. Elimination of all values but L, is very easy,
though the resulting buckling condition, which we shall not write down here,
is rather extensive 53),
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Summary

1. It is shown that the results of KOLLBRUNNER’S experiments on buck-
ling of plates in the plastic domain confirm our theory on the plastic sta-
bility of plates. In order to elucidate this theory somewhat more, it is
explained how it is based on the real behaviour of steel with changing ratio
of the deviator components, whilst an entirely analytical derivation of its
fundamental formulae is given. Subsequently the plastic buckling stresses
of plates with various loading and boundary conditions have been calculated,
in order to show, as follows also from a direct consideration on the behaviour
of steel with changing ratio of the deviator components, that the plates
show a higher rigidity as the ratios between the superposed deviator com-
ponents (with buckling) differ more from the ratios between the initial de-
viator components (before buckling) (Tabl. IV). Also it is shown how the
theory is applied to the plastic buckling wof shells.

2. Some complementary data on the stability of the webs of built-up
members are given, followed by an investigation in the stability of Tee stif-
tfeners. Furthermore the method is given, by which we computed the buckling
stress of the flanges of angles, taking into account, that at that the inter-
section line of the middle planes of the flanges does not remain straight.

3. The latter method is used in order to compute the critical thrust
of latticed struts, consisting of two or more single struts, that are connec-
ted by batten plates or by a single or double bar lattice. Application to
timber columns, by which also the proper length of the wooden coupling
blocks is taken into account. Communication of tests on timber columns.
Making use of the same method for the determination of the critical thrust
of so called sandwich plates, as applied in aeroplane construction, with
arbitrary boundary conditions, and of rammed piles, surrounded by soil.

4, After some introductory remarks HaarmMAN’s method of the virtual
buckling length is used in order to find the required number of batter piles
to stabilize a wharf, to compute the stability of piers supported by battered
piles and that of the portals of through truss bridges.

Zusammenfassung

1. Es wird gezeigt, daB die Ergebnisse der Plattenbeulversuche von
KoLLBRUNNER die Theorie des Verfassers iiber plastisches Ausbeulen besta-
tigen. Um diese Theorie zu veranschaulichen, wird gezeigt, wie sie auf das
wirkliche Verhalten von Stahl mit veridnderlichem Verhiltnis der Deviator-
komponenten aufgebaut ist. Eine rein analytische Ableitung der Grundfor-
meln wird gegeben. Ferner werden die plastischen Beulspannungen von
‘Platten unter verschiedener Belastung und mit verschiedenen Randbedin-
gungen berechnet, um zu zeigen, daB} die Platten eine umso groéfere Steifig-
keit besitzen, je mehr die Verhiltnisse zwischen den superponierten De-
viatorkomponenten (mit Beulen) von den Verhiltnissen zwischen den an-
finglichen Deviatorkomponenten (vor dem Beulen) abweichen (Tab.1V).
Dieses Ergebnis folgt auch aus einer direkten Betrachtung iiber das Verhalten
von Stahl mit verinderlichem Verhéltnis der Deviatorkomponenten. Es wird
auch die Anwendung der Theorie auf das plastische Beulen von Schalen
gezeigt.

2. Es werden einige erginzende Angaben iiber die Stabilitit der Steh-
bleche zusammengesetzter Stibe und eine Untersuchung iiber die Stabilitit
von Aussteifungen mit 7-Querschnitt gegeben. Ferner wird ein Verfahren
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gezeigt, mit welchem die Beulspannungen von Winkelflanschen berechnet
werden konnen, wobei beriicksichtigt wird, daB die Schnittlinie der Flansch-
mittelebenen nicht gerade bleibt.

3. Diese letztere Methode wird angewendet, um dic kritische Belastung
zwei- oder mehrteiliger Rahmen- oder Gitterstibe zu berechnen. Diese Er-
gebnisse werden auf zusammengesetzte Holzstiitzen angewendet, unter Be-
riicksichtigung der GroBe der Verbindungsstiicke, und mit Versuchsergeb-
nissen verglichen. Das gleiche Verfahren wird ferner angewendet zur Be-
stimmung der kritischen Belastung der sogenannten ,,Sandwich‘‘-Platten,
mit beliebigen Randbedingungen, wie sie im Flugzeugbau verwendet werden,
und von gerammten Pfihlen im Boden.

4. Nach einigen einleitenden Bemerkungen wird die Methode der vir-
tuellen Knicklinge von HaArRMAN verwendet, um die erforderliche Anzahl
von Schragpfahlen zur Stiitzung einer Mole zu finden und die Stabilitit eines
durch Schragpfihle unterstiitzten Briickenpfeilers und diejenige der Portale
von Fachwerkbriicken zu berechnen.

Résumé

1. On démontre que les résultats des essais de KOLLBRUNNE!\ sur le voile-
nient de plaques dans le domaine plastique confirment la théorie de la
stabilité plastique établie par Pauteur. Pour illustrer cette théorie, on ex-
plique comment elle est basée sur le comportement effectif de P’acier quand
le rapport des composantes du déviateur varie, et ceci au moyen de formules
fondamentales basées sur un calcul purement analytique. Les tensious criti-
qites de voilement de plaques sont établies pour différentes charges et dif-
férentes conditions aux limites, ce qui permet de démontrer que les plaques
ont une rigidité d’autant plus grande que les rapports entre les composantes
superposées du déviateur (avec voilement) different des rapports des com-
posantes initiales du déviateur (avant le voilement) (Tableau IV). Ce ré-
sultat découle aussi d’une considération directe sur le comportement de
Pacier dont le rapport des composantes du déviateur est variable. Une appli-
cation de la théorie est également faite au voilement plastique des \oﬂec
minces.

2. Quelques indications complémentaires sont données sur la stablhte
des ames de poutres composées auxquelles s’ajoutent des recherches sur la
stabilité des raidisseurs en forme de 7. Puis une méthode est exposée qui
permet de calculer les tensions critiques de voilement des ailes de coruniere,
en supposant que la ligne d’intersection des plans médians des ailes ne reste
pas rectlhgne

3. La méme méthode est utlllsee pour calculer la charge critique de
poutres en treillis ou a étrésillons se composant de deux ou plusieurs barres
simples. Ces résultats sont appliqués a des colonnes en bois composées,
compte tenue de la grandeur des assemblages et ils sont comparés avec les
résultats d’essai. Une autre application de la méme méthode permet de dé-
terminer la charge critique des plaques dites ,,Sandwich‘, soumises a des
conditions ou limites quelconques telles qu’elles sont utilisées dans la
construction d’avion, de méme que pour le calcul de pieux damés.

4. Apres quelques remarques préliminaires, la méthode de la longueur
virtuelle de flambage de HaAARMAN est utilisée pour déterminer le nombre
id’étancons nécessaires a la stabilisation d’un débarcadere, pour étudier la
stabilit¢ de piles de ponts étayés d’étancons, de méme que celle des por-
tigues de ponts a ftreillis.
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