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A STUDY OF THREE-DIMENSIONAL PILE-GROUPS

UNTERSUCHUNO RÄUMLICHER PFAHLORUPPEN

ETÜDE DE GROUPES DE PIEUX DANS PESPACE

Dr S O ASPLUND, Orebro

In his famous thesis x) Chr. Nokkentved has treated the calculation
according to the elastic theory of three-dimensional pile-groups. His method
is based upon the determination of three principal screw-axes of the pile
group and the reduction of the acting forces to these axes. The present paper
proposes a more direct method that should be easier to grasp in general and
should lead to more mechanical computations without being more lengthy.
A simple Iteration method is also proposed that sometimes may prove to be
expedient.

In the following exposition of the subject elementary vector and tensor
(or matrix) algebra is applied, which greatly abbreviates and simplifies
theoretical and practical treatment. To explain notation and other
fundamental a short review of vector and matrix algebra will first be given.
For füll proofs or further particulars the reader is referred to Standard text-
books 2) 3).

Elements of matrix algebra
A set of numbers x±, x2,... xn is called avector x. In three-dimen-

sional space the vector may be represented by a directed distance, whose
projections upon three orthogonal coordinate axes are the three components

xx, x2, x$ of the vector. The scalar product of two vectors oc
and y is written ocy and defined as x1y1-\- x2y2-{- xd ys. The square-root
of the scalar product of a vector oc by itself, |/'x±2 -1- x22 -\- xd2, is the 1 e n g 1 h
of the vector. A vector of unit length is called a unit vector. It is easily
demonstrated that ocy is equal to the length of oc times the projection of
y upon oc. The vector product of two vectors oc and y is written
[ory] and is defined as a vector whose length is equal to the area of the
parallelogram formed by oc and y, coinitially drawn, and whose direction
is perpendicular to both oc and y in such a way that oc, y, and [ocy], conse-
cutively drawn, form a right handed screw. Evidently [yoc] =— [ocy].
The components of [ocy] are easily found to be x±y2— x1y2, x2y1—^^y^
and x± y2—x2 yt. The parallelepiped formed by three coinitial vectors oc, yy
and £ obviously has the volume oc[y&] =y[&x] &[ocy]. Another useful
vector formula is [oc[y&]] y • ocz — # • ocy. Other elements of vector
algebra may be found in Standard text-books2) 3).

Chr. Nokkentved, Beregning av Paelevaerker. Copenhagen 1923. The treatment
of general three-dimensional pile-groups is excluded from the German edition, Berechnung

von Pfahlrosten. Berlin 1928. *

2) Georg Joos, Theoretische Physik Leipzig 1943.
3) Mxroenau and Murphy, Mathemat'cs of Physics and Chemistry New York 1943
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An expression of the form y e aoc+f- boc + g • coc Tac ooordi-
nates by „affine" or „linear" transformation a vector y to every vector oc.

T is called a t e n s o r. It is easily seen that the expression for y may
be brought to the form

y Toc Tnii • iioc + T^ii • i^oc + T\$ii • hoc + T^iii • Hoc +
where ii, i%, and €3 are unit vectors in the three coordinate axes of a right-
handed orthogonal coordinate System. Written in component form this is
equivalent to the linear System of equations

yt Tnxi + Tt2x2 + 7i3*3, yz T2\Xi + etc.

The array
(7"«)

of the nine components or elements of T is called the matrix of T. Where
no misunderstanding can occur the notation T will be used for (Tki)* It is
easily seen that the transposed tensor expression y' — T'oc a-eoc + b-foc +
c• goc has the matrix elements T'ki Tik. (Tlk) is called the transposed
matrix of (Tki). The trace (Spur) of a tensor T is defined as the sum
of its main diagonal elements ^11 + ^22 + ^33-

If & Sy one has z= SToc ttoc. It can easily be proved that JS
is a tensor whose matrix elements Rkm are formed by multiplying together
in order and adding the elements of the &th row of (Ski) and mth column
of (Tim) that is Rkm==^SkiT/m. The same rule is prescribed for the mul-

tiplication of two rectangular (not necessarily square) arrays or matrices
Ski and Tki. S and T must only be conformable, that is, the number of
columns in 5 must equal the number of rows in T. Tensor and matrix mul-
tiplication follow the associative but not the oommutative law. When a
matrix product is transposed the sequence of the matrices must be reversed:
if R ST then R' T'S'. This holds true for any number of factors.

The cofactor Tkl of an element Tkt of a square matrix is (—/); l

times the determinant obtained from the array after striking out the row
and column in which TM appears. According to the Laplace development

the determinant [T[ of the matrix is equal to 21 ^u Tn(l^= 1, 2, 3). The

matrix of the cofactors Tlk is the ad Joint matrix to (Tki). Note that
the adjoint is formed by first finding the cofactors Tu of the elements Tkt
and then trän s posin g the resulting matrix. The adjoint matrix
of Ty divided by \T\ is called the reciprocal matrix of T and is de-
noted T—1. It is obviously only necessary that [ T \ =b 0. From the properties
of determinants it follows that TT-1 ¦= T~XT E where the unitmatrix
E has unity for elements along the main diagonal and all other elements zero.
For every matrix AE EA A. Multiplication of a System of equations
y Toc by T~x solves the System: T ly T~x Toc JSor ~ oc.

Numerical examples
To make himself familiär with these vector and matrix rules the reader should check

the following numerical results. The scalar product of the two vectors x — fx1} r^, t3) —

(1, 2, 3) and y (13, 17, 19) is xy -= 1 • 13 + 2 • 17 -J- 3 • 19 104. Jheir vectoi
product is [xy] (— 13, 20, —9). The length of x is \/V — 2^ -- 32 \/l4
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The product of the two matrices

(\ 0 3\ /2 0 3\ /ll 6 6
S 0 1 3 and 7=001 is R ST \ 9 6 4

\2 2 1/ 1321/ \ 7 2 9

The product of T and the conformable one-column matrix x =12) (also denoted

x {1, 2, 3} to save Space) of the vector x above is Tx — {11, 3, 10}. One also finds
S (Tx) {41, 33, 38} or by using R, Rx -= {41, 33, 38}.

The cofactors of TkL form the matrix {Tk[) below. From T and (Tkl) the

determinant T may be calculated by ^ Tu TkL in six different ways to — 4. The ad-
£or 1=1

Joint matrix of T is (Tlk) and the reciprocal matrix is 7_1:

/-2 3 0\ „ /-2 6 0\ W2-60(7*') - 6-7 -4 (7/Ä) 3 -7 -2 T1 \ {-3 7 2

\o~2oy \o-4o; 4\040
Finally the reader may verify numerically that the product of the above matrices

T and 7_1 equals the unit matrix E.

Fundamental assumptions for pile groups
The first assumption in the calculation of pile groups is that the pile

reactions are elastic and follow Hooke's law. A pile / is driven to refusal
through loose soil so that its end e, (Fig. 1) bears upon a hard Stratum.
Its head //,- is encased in the footing of the strueture. The length h,ej of the
pile is //, its cross section area A} and its modulus of elasticity E}. If the
pile is shortened by a small length AI, an axial compressive force

___ EjAjAlj (1)
7

will be induced in the pile.
In a frictional pile the compressive force decreases from head to end.

Then formula (1) cannot be applied. It will instead be necessary to determine,
by tests or by reasoning, a ratio /, between pile force and the corresponding
elastic displacement of the pile head. This ratio X, will be termed pile
stiffness. Usually all piles in a pile-group are driven to the same prefixed
penetration for the last hammer blow. In such a case the same stiffness l
may be applied to all piles of the same dimension in the group.

A second supposition for the analysis is that no transversal forces nor
moments shall be transferred from the piles to the pile encasement. Every
pile is supposed to act as a straight column, hinged at both ends and cen-
trally loaded4). A generalization to account for said transversal forces and
moments may be easily carried through along the same lines as given in
Nokkentved's cited work5). As a rule not much is gained by the inclusion

4) This does not imply that a pile driven in an elastic medium must be designed
as a free column. On the contrary, it has been shown by Forssell (Beräkning av palar,
Betong 1918) and by Granholm (On the Elastic Stability of Piles Surrounded by a
Supporting Medium, Stockholm 1929), that the buckling of a pile hardly ever needs to
be considered, even if the pile is driven into quite loose soil (cf. Timoshenko, Theory
of Elastic Stability, New York 1936, p. 108). If a pile is partly free to buckle, for
instance if a part of it is surrounded by water, its safety for buckling must be in-
vestigated.

ö) Per Gullander in his work Teori for grundpälningar, Stockholm 1914, cf. also
Theorie der Pfahlgründungen, Bautechnik 1928, p. 818, includes transversal forces from
the piles.
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of these transversal forces and moments6). For constructive and other rea-
sons the existence of and satisfactory evaluation of these forces sometimes
may be rather uncertain or ambiguous. Some building specifications therefore

require that transversal forces and moments in the piles be neglected in
the stress analysis.

An elastic reaction from the pressure of soil upon the sides of the pile
head encasement, or upon a street piling surrounding it, may be accounted
for by attaching to the encasement fictive piles with the same elastic pro-
perties and strength as the soil.

A third supposition is that the pile head encasement, which henceforth
will be termed pier, is perfectly rigid. For the concrete footings now
almost exclusively used this supposition closely agrees with actual conditions.
On the other hand, timber pile grillages have sometimes been used as piers
in such a manner that said condition of rigidity has not been complied
with. For such designs the developments of this paper must necessarily be
modified.

Movements, forces, and conditions of equilibrium
The acting forces will impart to the rigid pier a small translation,

defined by a vector t (Fig. 1), and a small rotation of the amount r about
an axis of rotation r through the point 0. The rotation is thus defined by
the vector r. The pile heads //,- in the pier are located by the vectors

C Uj

ap

Pi

Fig. 1.

Location and movements of pile /
Lage und Bewegung von Pfahl /
Position et mouvement du pieux /'.

Ohj — bj — b (henceforward indices / will be omitted where no misunder-
standing can occur), or by the vectors C/i= a from the point C located by
the vector OC -= c. The total movement of the head h is given by the
vector t + [rb].

Each pile is localized by the head vector bj and the unit vector pj along
the pile axis. The projeetion of the movement of the pile head upon the
pile axis thus is the scalar product

p(t + [rb]) jyt + [bp]r =zpt + [nop]r
where n0 is the shortest (normal) vector from 0 to the pile axis. The last
formula shows that the projeetion of the movement does not depend upon
which point on the pile axis the vector b locates: b need not necessarily

6) Cf. A. Agatz, Der Kampf des Ingenieurs gegen Erde und Wasser im Grundbau,
Berlin 1936, p. 193.
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run to the pile head. The projeetion pt + [bp]r obviously is equal to the
shortening Al} of the pile. This causes a compressive force (1)

Po Hpt+ [bp]r) (2)
in the pile. The force by which the pile acts upon the pier may then be
represented by the vector

— PoP — hp(pt+ [bp]r) (3)
Aside from the pile reactions, all other forces that act upon the pier

may be reduced to a force / and a moment m about the point 0. The
equilibrium of the pier demands that

f+H — PojPj 0

^ (4)
™ +2j[*, — PojPj] o

j
The sums should be extended over all the piles in the pile-group. The vector

[&, — PojPj] is the moment about O of the force in the /th pile. Entering
(3), (4) will become

f 2lppt + 21p [bp] r Tt + Ur
m 2k[bp] -pt + 2l[bp] • [bp]r U't+ Vr (5)

Here 21 p p T, 2lp.[bp] U, 2l[bp] p V, and 2l[bp] -

[bp] V may be recognized as tensors. The tensor 17, for instance, may
be written U 21 (px ii + p2i2+ Ps is) • ([Mi *i + [bph ^ + [bp]s n)
2kpi[bp]iii-i1 + 2Xpi[bp]2ii-i2 + 2lpi[bp]%i1-is + 2lp2[bp]ii2-i± +
where Uki 2lpk[bp]i are the matrix elements of the tensor with regard
to the nine units in- ii-

Arraying in a rectangular matrix the components of yjl p or |// times
the direction cosines of the piles

'iKpai ihpbi ihpci-
iKPaZ ihpb2 ihPc2-

-iKpaS ihPbS ihPcS-

and the components of the vectors |/ä [bp] in another rectangular matrix

'i~K_ [Mai fh_[bp]bi fk~e [bp]ci...
}/^ [bP]a2 V^ [bP]b2 fk~e [bp]c2 • • •

-VX [bp]as ih [bp]bs \%[bp]cs • •..

A a, b,c, (6)

B Ba, b,c, (7)

one observes that the following matrix produets form sums of proportional
matrices of the third order

AA' %Xj
j

AB' S lj

Pn PjiP/2 pjipjs
2

PjZPjl Pj2 PJ2PJ3 Ta + Tb + Tc+ T

-PJ3PJ1 Pj3Pj2 Pj3
'
Pß\bp]jx Pji[bp]j2 p
Pn \bP\n Pn \bP\n P

.Pjs[bp]jl Pjz\bp\j2 P

n [bp]ji
«V>p]j»

(3 [bp]js_

ua + ub + uc+

(8)

U (9)
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Va+Vb+Ve+... V (11)

BA' !/«' + W + Ui + U' (10)

[~[Myi [Myi [bp]ji [bp]j2 [bp]ji [bp]js

BB' S >y [My2 [Myi [bp]j2 [bp]j2 [bp]/2 [M/3
7 L [My3 [Myi [Mys [Myz [Mi3 [My3

One also observes that each term of these sums represents the contribution

of the individual piles to the matriceis 7, U, U' and V, respectively.
The matrix U' is the transposed matrix U. Their common trace is zero,

for
f/u + U22 + f/aa 21 (pi [Mi + W [M2 + pa [Ms) 2'*>P [bp] 2lb [pp] 0.

The unit vectors p are perpendicular to their respective vectors rt> or
n^> 0. Hence

[l?[w£>]] npp-pnp — n, [n[pn]] p-wn-n-pn =: p-n2,
[vn] — [r [p [np] ]] pv [np] ~ [np] * rp

and, consequently, as [np] [bp],
2hp>[bp]r 2l[bp]-pr + [r2lno]
Ur U'r+ [r2ln0] U'r + JDr

where I) is an antimetric (skew-symmetric) tensor with the matrix
0 2ln03 -2n02

(Dki) -2ln^ 0 2Xnoi
2kriQ2 ~21uqi 0

as may easily be verified by expanding the expressions [r2lno] and Dr
in component form.

T and V obviously are Symmetrie: Tki Tik, Vu Vik- Their traces are
2l(pi*+p2* + pf) 2l and 2l([bp]±[bp]i+[bp]2[bp]2 + [bp]3[bp]3)
2l[bp][bp] 2l[n0p][n0p] 2lno[p[n0p]] =2ln02.

(12)

(13)

(14)

Solution of the equilibrium equations
The equations (5)

/ Tt + Ur
m U't+ Vr

are solved by multiplying the first by VT-1 and the second by UV-1
U T1 f b't+U' T-1 Ur
UV-1m= UV1 U't+ Ur

subtracting
f-UV xm (T-UV-1 U')t TQt

m-U'X'-*f= (V-U'T'1V)r V0r
and multiplying by T^1 and F0-1, respectively,

(5)

r= V;1 V T~lf+ V'1 m
(15)
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The transposed matrix to UV~W is UnV-vU' VV~W owing to the
symmetry of V-1. Hence UV-W is Symmetrie. By the same argument U'T-UJ
is Symmetrie. Consequently 70, V0, 70_1, and Vq-1 are Symmetrie. The
transposed matrix of T^-WV-1 is V~1U/T0~1 V0-1U/T~1y because

V0 V~l W V T1 T0, (V~ V 7"1 U) V~x W U' 7~* (7- UV'1 W),
- Uf T'1 UV-1 U' — -U9 7-1 UV~l U',

but Tq-WV-1 and Vof/T"1 are as a rule unsymrnetric, even if U ~ £/'.
The course of the practical computations for a given pile-group is

indicated by the formulas. Pile Symbols, stiffnesses X, location b and slope p
in any suitable coordinate System is entered in a table, where also the vectors

\bp] are computed for each pile. From this table the matrices T,U, and V
are determined and from these, by matrix arithmetic, V'1, UV-1, UV—1U\
To^T-UV^U', T~ T^UV-1 and T \ U'T-L, U'TW, Vo^V-U'T^U,
V^~, V^~x U'T'1. This performed, the translation t and rotation r of the
pier may be directly computed from (15) for any set of external forces,/,
m, and Substitute«! in (2) which yields the pile forces.

The elements of the primary matrices 7, U, and V, the adjoint matrices
and the matrix produets are most conveniently evaluated by multiplications
and cumulative additions or subtractions on an ordinary calculating machine.

Example 1

1*2

3 1 3-1 3:f

Je

UZ

c d
d a:

13 1

Z3:l

o{ >'z
\

-
1

'0

1

w

Fig. 2.

Pile foundation
Pfahlfundation
Fondation sur pieux (pilotis).

3:1

A pile group is given by Fig. 2 (cf. Nokkentved, loc. cit., p. 143). The pile stiffness
1 will be assumed in this example to be the same for all piles. Nokkentved's assumption
v 1 is slightly different, since his v is also a funetion of the pile harter.

Locate the origin O at the height 3 e above the bottom of the pier at pile g. The
vectors b are drawn in the plane b3 0. Table 1 lists the piles and calculates the
vectors [bp].



S. O. Asplund

'fable 1

Pile h
b P [bp] [noP] [n0p]2

ri»2

1

1

1,9
0,9
1

h b2

1

b3 Pi

0,316
0,316

P2 Pz [Mi \bp\t [bph

-0,316

+0,316
-0,316

a
b
c
d
e
f

1

1

1

1

1

1

-l
l
l
l
l

0,316
0,316
0,316

0,949
0,949
0,949
0,949
0,949
1

0,949

9,949

-0,949
-0,949
-0,949
-1

g
h

1

1 -l
i 1

1 * 1 1

Mult. -X • e • e ¦ e i
• e e • e -e2

The primary matrices are calculated from Table 1:

0,2 0 0,6 >0
0,3

0,6 0,9
| T\ 0,18 P (figured three ways)

/ 0,2 ü ü,ö \
T (2Xpkpj) X 0 0,3 0,9

\ 0,6 0,9 7,5 /
7

/ 1,44
X2[ 0,54

U (ZXpk[bp]l)
-0,6 -0,1

leI0 0 0
0,3
0
0,9 -1,8 -0,3

0,9 -0,9 -0,3

0,54 -0,18 \
1,14 -0,18

18 -0,18 0,06/

-0,6 -1,0

V=(2X[bp\k\bp\ü Xfi -0,9 5,6
V-0,3 -0,3

V\ 0,522 A3*6 (figured three ways)

i / 3,046 0,690 3,736 \
V-1 -^ 0,690 0,345 1,035

A* V 3,736 1,035 8,103/

0,1316

\ /0 -0,6 -l,i
D U-U' Xe 0 6 0 l,i

/ \1,0 -1,8 0

0,3 x

0,3
0,3/

1,59 0 36 1,95
V-1 V =/.2^l 0,36 0,18 0,54

1,95 0,54 4,23

UV~
> 0,1262 0,1045

0
3786 -0,3135

uv-
/u,

[Ur X[ 0
VO.0,3948

0,3948 >

0
1,1845 >

T, T-UV

UZ
e Vo,:

1 £/' /. 0
Vo,

-0,3105
0

-0,9315

0,3000 0,9000)
,2052 0,9000 6,3155/

1,0847
771 l^o |=^| 0,1847

-0,0616
0,3899 -0,0616

-0,0616 0,0205 /

0,1847 -0,0616
-0

0

-f 3,00 6,34 -1.00 j, TölUV~1 J

T0 0,0615 P (figured three ways)

i /17,64 3,00 -1,00
1 V-l,i,00 -1,00 0,333 ^

71-:
3

-l

1 /1,85
A 0

0 0>

-1,53 -4,55

U'T
0,45
0

0
3,80

-0,15 -0,60

/ l,b U U\
U' 7-1 * -3,0 0 0

\~0,5 0 0/

/ 0,45 -0,90 -0,15 x

U Xe2 -0 90 180 0,30 K0 V-U' 71 U - Xe
\-0,15 0,30 0,05/

/0,59 0,09 0,57 \
l/"11 K01 X2 e* 0,09 0,09 0.27 | V01 0,1800 A3*6 (figured three ways)

\0,57 0,27 1,71/

0 0x
0 0
0 0/

-0,15 \
-0,60
0,25/

i / 3,278 0.5 3,167
FIT =i-2 0,5 0 5 1,5le V

3,167 1,5 9,5
V?U'T

1,833 0
1,5

-4,5
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A partial check upon the correctness of the matrices 7, U, and V is the value of their
traces, 2X, 0, and 2Xn02, respectively. Checks upon calculations are furnished by the
determinants, each figured three ways, by the symmetry of UV'W and U'T~XU and by
the fact that 70~1£/V~1 and V^U'f—1 have transposed matrices. Equations (15) may
now be written down directly in component form

X tt 17,64/i + 3,00/2 — 1,00/g — 1,83 mx\e + 1,5 m2\e + 4,5 mz\e

Xtt= 3,00^ + 6,34/2 - 1,00/i
X t3 -1,00a - i,oo./2 + 0,33/3

X e rt -1,83/t + 3,28 mx\e + 0.5 m2\e + 3,17 m%\e

Xer2 l,5/i +0,5 mtje + 0,5 m2\e + 1,5 mz\e

Xer3= 4,5 ft + 3,17 mx\e + 1,5 m2\e + 9,5 mz\e

From these formulas the translation and rotation may be easily figured for any
external load /, m. Substitution in (2) yields all the pile forces.

Thus the force in the pile a (fig. 2)

b —eil9 p 0,316 (i2 + 3 *8), [bp] 0,316* (3 £2 — i3)

will be pXt+ \bp\~Xer 0,316(3,00/ + 6,34f2 —1,00/3 — 3,00/— 3,00/2 + 1,00f8 +
4,5/ + \,5m1le ^- \$m2\e + 4,5 m3/e — 4,5/ — 3,17 mx\e — 1,5 m2\e — 9,5 m3\e) 0,316
(3,34/2 — 1,67 mx\e — 5 m3\e).

A similar formula may be written down for every pile in the group. Each formula
clearly shows which movable external forces should be included to cause maximum force
in the pile. From the formula influence lines or influence surfaces for live loads may be
easily drawn.

Coordinate Iransformaiions. Pile-center
The computations of Example 1 show that the direct calculation of the

translation and rotation is oomparatively simple. The question arises whether
changes of origin or coordinate transformations may expedite the procedure.
In his treatment of pile groups Nokkentved determines three principal screw
axes and employs one principal axis transformation. Still his computations
corresponding to the example just figured become rather extensive.

Even if a suitable transformation can be found that admits of simple
relations between forces and moments in a certain coordinate System, there
'still remains to determine this reference System, to express the external
forces in it, to calcujlate the movements, and, eventually, to refigure the
resulting expressions for the movement of the pier to a suitable form for
use with formula (2). The combined work may very well exceed that of
the direct calculation shown.

However, equation (12) or (13) suggests a change of origin in order
to make U and U' Symmetrie and equal, narnely to remove the origin O to
such a point C that 2Xn 2Xnc=0. Also the skew-symmetric tensor jD
will then become null, To the point C in space where 2Xn= 0 the term pile-
group center or, in short, pile-center will be applied. At the pile-center
the scalar point funetion

2X[np]2 2X{n2p2-(np)2} 2Xn2

has a minimum. For if C (Fig. 1) is regarded as a movable point located
by the point vector c from the fixed origin O, one sees that

n a — ap • p b — c — (b-c) p • p n0 — (c-cp • p) (16)
where

no b — bp p (17)

Abhandlungen VIII 2
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By common vector analysis formulas 2) 3),

gradn2 2 [n rotn] + 2ngrad • n 2n grad • c + 2n grad • cp • \p - 2n
hence grad 2Xn2 — 22Xn. The condition for an extreme value of the funetion

2X[np]2 2Xn2, that its gradient is zero, is satisfied at the point
where 2Xn=0. This extreme value obviously must be a minimum.

The pile-center is thus located by the equation

2ln 2ln0 - {c2l — c2lp • p) 0 (18)

or, in tensor form,
(2XE — T)c Fe 2Xn0 (19)

whose Solution
e F-^Xno (20)

yields the position of the point C. The vector 2Xn0 is most easily obtained
from the matrix (14): D U —U\

Example 2

Find the pile-center of the pile-group of Example 1. Matrix D: evaluated in
Example 1, yields 2Xn0 Xe(\,Si± + 1,0 i2 — 0,6 i3). From 7 and 2X — 8 X is obtained

7,8 0 -0,6 x /3,04 0,54 4,62
SXE- 7 F X 0 7,7 -0,9 F1 F\ X2 l 0,54 3,54 7,02

-0,6 -0,9 0,5/ \4,62 7,02 60,06

\F\ =20,9A3 (figured three ways), c F~1SXn(i {(3,04 1,8 + 0,54 1 —4,62 • 0,6) ix +
+ (0,54 • 1,8 + 3,54 • 1 — 7,02 • 0,6) i2 + (4,62 • 1,8 + 7,02 • 1 — 60,06 • 0,6) i3j XseßF\

e (0,155 <! + 0,014 i2 — 0,989 i8).

Ascertainment of the pile-center in regularly spaced
pile-groups.

In many cases of regulär pile arrangement the pile-center can be wholly
or partly ascertained by considerations of symmetry or of the minimum of
2Xn2. For instance, if the pile-group is oomposed of a number of sub-
groups of mutually parallel piles in such a manner that the center-of-gra-
vity lines of the individual sub-groups intersect at one point, the pile-center
will be located at that point. For in each sub-group 2Xn2 will be a minimum
along its center-of-gravity line, and for all the piles 2)ji2 will be a minimum
at the intersection of these lines. This is the characteristic of the pile-center.
If the pile-center can be established by such a conclusion, the first origin
O obviously should be immediately located at the pile-center to avoid the
computations for a change of origin.

Advantages gained by establishing the pile-center.
By choosing the origin at the pile-center the number of different

matrices in (5) will be reduced from four to three Symmetrie. The numerical

computations will be somewhat facilitated thereby, but not so very
much, since the matrices T^UV-1 and V^U'T-1 of the Solution (15) will
generally be unsymmetric and unequal anyhow.

Further, by one principal axis transformation it is possible to diago-
nalize by well-known methods any one of the three matrices T,U U',orV.
By a linear transformation it is even possible to diagonalize any two of
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these three matrices. Each transformation will require rather much numerical
work, including the Solution of a characteristic equation of the third degree.
When that is performed, the subsequent computations will bc simplified,
e\en if the total computation is not. Particularly, a diagonalization of U
ma> save work.

Addition of a fictive pile
However, with the objeet of saving numerical work, another course

may be tried. It is sometimes possible to add to the original pile-
group a fictive pile in such a way that the resulting pile-group will
be more easily calculated. The original external forces /, m induce
in the fictive pile a compressive force p0 q cf. (2), to be evaluated. To
the original external forces then is added along the unit vector p/ of the
fictive pile a force q, which neutralizes the force from the fictive pile upon
the pier.

A force -= 1 along the axis pj of the fictive pile, applied as an
external force to the pier, will cause in the fictive pile a force Q. A force
equal to q, applied along pf as an external force will thus induce in the
fictive pile a force Qq. This force Qq is neutralized by adding another ex-
fernal force, Qq, along pf. The latter force causes in the fictive pile a force
Q2q, etc. In practical cases, and if the fictive pile is suitably placed, the
geometric series will converge. Consequently, to counteract all the pile forces
in the fictive pile the original external force System /, m must be com-
pleted with the force q -r Qq -J- Q2q + -q (1 — Q) acting along the axis
Py of the fictive pile. The forces in the other, real piles obviously should
be computed from the completed external force System / + pfq\(\ — Q),
»i + [bfPf]qi(\-Q).

Each pile, fictive or real, contributes to the matrix of U 2Xp • [bp]
(and also to the matrices of T and V) with a matrix with proportional
rows and columns, cf. (9),

(Xpi [bp]i Xpi [bp]2 Xpt [bp]3\
A U l Xp2 [bp]i Lp2 [bp]2 Xp2 [bp]s

WsfMi ^Ps[bp]2 ^Ps[bp]sj

Conversely, it is easy to find a pile that yields a given proportional
matrix increment AU. Oi the quantities determining the pile, X or the length
of b may be put equal to a prefixed value X or [ b [, respectively. The
direction cosines p±, p2, and p$ of the piles obviously must be chosen to agree
with the factors of proportionality between the rows and to agree
with the condition pp \. It only remains to determine [bp]±, [bp]2 and
\bp\ equal to the three numbers d±, J2 and d3 respectively. The vector b
that runs from the origin to the pile axis may be drawn in any plane through
the origin. If it is drawn in the plane 63 0, the two other components
of b are determined by \bp\=^b2p?) d1, [bp]2^=—b1ps d2, and the
dependent equation [bp]3 b±p2— b2pi=d3.

Example 3

The matrix U of Example 1 is, by eoineidence, proportional. It is easily seen that
U becomes null if a fictive pile Xy /, bf — 2eit — ei2, Pf — 0,316 (i± + 3i3),
[bfPf] 0,316 (-3 <! + 6 i2 + i3) is introduced. The primary matrices become
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7
/0,3 0 0,9 n

X(0 0,3 0,9
V 0,9 0,9 8,4 /

/ 1,71 0,81 -0,27 \
71! 71 X2 0,81 1,71 -0,27

V-0,27 -0,27 0,09/

V
/ 1,8 -2,7 -0,6 x

-Xe2 -2,7 9,2 0,3
V-0,6 0,3 0,4 /

/3,59 0,90 4,71
V-i\V\=X2e± 0,90 0,36 1,08

V4,71 1,08 9,27

0,27 A3

IK1 1,206 A8*»

| 7 | and | V have been figured in three ways. As U 0 the Solution of the equation
System (5) is simply t T~xf, r=V~1m, or

A t (6 J ft + 3/2 - /8) ix + A ^ r (2,977 mt + 0,746 w2 + 3,905 m3) it +
+ 3/x + 6^/2 - f3) i2 + + (0,746 mx + 0,299 /rc2 + 0,896 m3) i2 +
+ (-fi — f2 + ifs) is j + (3,905 mt + 0,896 m2 + 7,687 m3) i3

A force 1 in the direction of the positive axis of the fictive pile

/=0,316(% + 3i3), m [bf] 0,316 e(-3 it + 6 i2 + i3)
yields X t 0,316 -3\ix, Xer 0,316 (- 0,550it + 0,452 i2 + 1,348 t8)
and, by (2), Q 0,3162 • 3^ + 0,3162 (1,650 + 2,712 + 1,348) 0,9043

The external forces /, m cause in the fictive pile a force (2)

q 0,316 • 3^/ + 0,316 (- 0,550 mt + 0,452 tn2 + 1,348 m3)je
»

This force multiplied by 1/(1 — Q) 10.45 is cancelled by adding Af 10,45 qpfto the applied forces and A m 10,45 q \bfpA to the applied moments.

A ft 3,48/ — 0,575 mx\e + 0,472 m2\e + 1,409 /w3^
Af3 10,45/ - 1,724^+ 1,417 m2\e + 4,226 m3le

Am1 -\0,45f1e+1,124 mt — 1,417 m2 — 4,226 m3
zl #z2 20,9 Ue— 3,449 z^ + 2,834 m2 + 8,452 m3

Am3= 3,48/ £ — 0,575 mx + 0,472 w2 + 1,409 m3

Addition to the corresponding forces and moments in the above expressions for Xt and
Xe2r yields

Xtx 17,9/ + 3/2 - f3 - 1,92 m1/e+ 1,57 m2,e + 4,70 mve
Xtt 3 / 4-6I/-/3
Xtz =- / - /2+J/3
X erx -1,93/ + 3,29 //z^ + 0,49 m2/^ + 3,13 m3\e
X er2 1,57 /j + 0,49 m^e + 0,51 w2/* + 1,53 m3je

Xer3 4,67/ + 3,13 w^ + 1,53 m2\e + 9,59 /rc3/*

The discrepancies from the result of Example 1 are attributable to the use of a limited
numbei of places.

More than one fictive pile
It may be useful or necessary in some instances to add to the pile-group

a number of fictive piles. If, for example, three such piles /, g-, and h are
added, a force 1 along the axis pf of / will produce in the fictive pile
/ a force Qff, and in the fictive piles g and h forces Qgf and Qht, respectively.

An external force 1 in the pile axis pg will produce in the fictive
piles the forces Qf?, Qgg, and Qhg, etc. The original external forces /, m
will induce in the fictive piles compressive forces qf, qg, and qh. These will
be neutralized by introducing additional external forces qt, qg, and qn acting
along the positive unit vectors pf, pg, and ph in the respective fictive pile
axes. These latter forces will produce in the three fictive piles the new
compressive forces
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QffV/+ QfgVg + Qfhih, Qg/qj + QggQg + Qgnqh, Qh/q/+ Qhgqg + Qhhqh

These forces may be regarded as the components of the product Qq of a

tensor Q with the matrix
/ Qff Qfg Qfh \

Q=lQgf Qgg Qgh\ (21)
V Qhf Qhg Qhh /

and a vector q with the components qf, qg, and qh. Both the tensor and the
vector may suitably be referred to a coordinate System with the axis unit
vectors pf, pg, and ph. The components of Qq, that is, the last mentioned
compressive forces in the piles, are again counteracted by adding to the
external forces the forces (Qq)fpf, (Qq),pg, (Qq)hPh acting along the respective

fictive pile axes. These forces will induce in the fictive piles compressive
forces that obviously are equal to the components of the vector Q2 q. These
forces are again applied as external forces, and the process is continued ad
i n f i n i t u m, if it is convergent. The sums of the external forces applied
in the axes of the fictive piles /, g, and h, thus are equal to the components
of the vector

q + Qq + Q2Q + Q" <i + • • • W + Q + Q2 + • • •)« N<J (22>

This Neumann series may be formally treated as a geometric series 7). Frontal

multiplication with the matrix Q and subtraction yields E M — QM -=

(L-Q)N,(E-Qyi N
Nq {E — Q)-'q (23)

By this formula, which evidently must hold for any number of fictive
piles added, it is possible to determine the forces by which the external force
System must be completed to balance the forces set up in the fictive piles 8).

The components of ijl p or IjX times the direction cosines of the fictive
piles may be arrayed in a rectangular matrix Af,g,h,... as in (6), and the

components of the vectors VI [bp] in another rectangular matrix B/5 g, /,,...,
as in (7). One observes that the following matrix products form sums of
proportional matrices of the third order, cf. Equations (8) to (11),

AA' Tf + Tg+ Th + AT
AB' Uf + Ug+ Uh + AU
BA' U/ + Ug'+ Uh' + AU'
BB' Vf + Vg + Vh + AV

the terms of which represent the increments by the individual fictive piles
to the matrices of 7, U, Ur and V. By the addition of fictive piles the

7) Cf. Courant-Hilbert, Methoden der mathematischen Physik, I, 2nd. Ed., Berlin
1931, p. 8.

8) The method of iteration just demonstrated resembles in some aspects the
methods of successive approximation for the Solution of statically indeterminate problemsi.
It must be possible by simple matrix methods to establish the coincidence of these
methods with the classical methods of Solution. For example, the Neumann series of (22)
represents the complete course of successive approximations in a statical problem. The
total result of the infinite number of approximations is given in finite form by (23)
which should duplicate the direct classical Solution. In cases of rapid convergence it
may be more practical to use approximations of the type (22) instead of a cumbersome
direct Solution (23).
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matrix 7 thus will change to 7 — AA', U to U T AB', U' to U' f R4', and
V to V^-BB'. By a suitable choice of fictive piles, which can be made in
several ways, these resulting matrices and, consequently, the ensuing
computations may be considerably simplified.

The most practicable choice of fictive piles depends much upon the
original pile constellation and should most conveniently be judged from case
to case.

In cases when a definite choice of fictive piles is not apparent the sim-
plification of the matrices may, for instance, be undertaken with the first
aim of making the matrix U equal to null. To that end it eppears to be
expedient to start out with a change of origin to the pile-center as pre-
viously explained, and exemplified in Example 2. Then fictive piles are
added to make the new matrix U, U n- AB' equal to null. This will mot move
the pile-center, for a null matrix is Symmetrie, and a Symmetrie matrix LT

is an indication that the origin is at the pile-center, cf. (12) or (13).
The choice of fictive piles can simply be made in such a manner that

the matrix A is made equal to a square unit matrix, whence B will equal
the matrix —Uf, making U + AB' U — EU 0. The individual fictive
piles are fully determined from A and B according to (6) and (7) and the
method explained above for one fictive pile. This decomposition of the
matrix — U may many times be as serviceable as any other decomposition. The
continued procedure consists in determining the new values of T,T — AA
T + E andofV, !/ + ££'. The Solution of the equations (5), t= (T + JE)~lf,
r (V + JBB'Y^m can be effected either directly, or by means of a separate

(orthogonal) principal axis transformation for each equation, or by
means of a Single linear transformation, which diagonalizes both equations
at the same time, by well known methods. Finally the corrections for the
forces in the fictive piles are added as previously demonstrated, (22) or (23).

Using more finesse the fictive piles may instead be chosen so as to
simplify the changed matrices 7 4- AA' and V -\~BB' also. Instead of making
A equal to a unit matrix it may, for instance, be given such a form that
V -\~BB' becomes a multiple of T-\-AA', at the same time as U ~j- AB' is
made null. A Single orthogonal principal axis transformation then diagonalizes

both T + AÄ and V + BB'.
However, even such a theoretically simple procedure involves far more

numerical work than the direct computation, as in Example 1. The appli-
cation of fictive piles seems practicable mainly when the structuie of the
original pile-group clearly signals that a definite simplification, for instance
simple or double symmetry, may be won by the addition of a relatively
small number of fictive piles. In such a case no maithematical intricacies
are needed to determine the fictive piles.

The writer by no means wishes to create the irnpression that all possi-
bilities of treating pile-groups by matrix methods have been exhausted in
this paper. On the contrary, developments and amplifications may be anti-
cipated in several directions, the pursuit and exploration of which may lead
to serviceable, practical methods.

Summary
Elastic theory calculations of plane pile-groups (Qullander, Hultin) are

easily carried through according to Nokkentved's methods. However, the
corresponding calculations of spatial pile-groups become so tedious and
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unsurveyable that they must be considered as practically prohibitive. This
paper aims at showing how matrix treatment of such pile-groups clearly
interprets the theoretical interrelations and makes possible systematical and
practical computations according to (15), cf. Example 1.

Also demonstrated is how it sometimes may be possible to add to an
actual pile-group one or more fictive piles in such a manner that the
resulting pile-group may be more expediently analyzed, e. g. by resulting
symmetry. Then the forces that the original external forces /, in induce in
the fictive piles may be evaluated and added to f, m to neutralize the
reactions upon the pier from the same fictive piles. The added forces cause
in the fictive piles further reactions which are again calculated and added
etc. This iteration often converges, and it is theoretically and by examples
demonstrated in the paper that the finite summation of the corresponding
geometric matrix series (Neumann series) yields the exact Solution of the
pile-group problem. In other words, this iteration approaches as a limit
the direct Solution according to (15) of the actual original pile-group.

Zusammenfassung
Elastizitatstheoretische Berechnungen von ebenen Pfahlgruppen (Qul-

lander, Hultin) sind mit Hilfe der Methode von Nokkentved leicht durchzuführen.

Dagegen gestalten sich die entsprechenden Berechnungen von
räumlichen Pfahlgruppen so mühsam und unübersichtlich, daß sie praktisch
undurchführbar sind. Die vorliegende Abhandlung bezweckt zu zeigen, wie
die Matrizenrechnung die theoretische Behandlung solcher Pfahlgruppen
klar und einfach behandelt und die systematische und praktische Berechnung
nach Gl. (15) im Beispiel Nr. 1 möglich macht.

Es wird ebenfalls gezeigt, daß es Fälle gibt, wo es möglich ist, zu einer
bestehenden Pfahlgruppe einen oder mehrere fiktive Pfähle so hinzuzufügen,
daß die sich daraus ergebende Pfahlgruppe rascher untersucht werden kann,
z. B. durch die sich ergebende Symmetrie. Dann können die Kräfte, die die
ursprünglichen äußern Kräfte f, tn in die fiktiven Pfähle einführen, bewertet
werden und zu f, tn hinzugefügt werden, um die Reaktionen, die von den
gleichen fiktiven Pfählen auf die Quaimauer ausgeübt werden, unwirksam
zu machen. Die zusätzlichen Kräfte verursachen in den fiktiven Pfählen weitere

Reaktionen, die wiederum berechnet und hinzugefügt werden etc. Diese
Iteration konvergiert oft, und es wird in der vorliegenden Arbeit sowohl
theoretisch wrie durch Beispiele gezeigt, daß die Endsumme der entsprechenden
geometrischen Matrizen-Reihe (NEUMANN'sche Reihe) die genaue Lösung des
Pfahlgruppenproblems ergibt. Mit andern Worten bildet diese Iteration eine
sukzessive Approximation der direkten Losung der Gl. (15) der gegebenen
ursprünglichen Pfahlgruppe.

Resume
Dans le domaine de la theorie de Felasticite, les calculs des groupes

de pieux ordonnes dans un plan (Gullander, Hultin) peuvent etre effec-
tues facilement par la methode de Nokkentved. Par contre, les calculs cor-
respondants pour un groupe spatial de pieux s'averent si penibles et si
compliques qu'ils ne rentrent pas en ligne de compte pour la pratique. Le
present travail a pour but de montrer que le calcul de matrices permet Ide
traiter tres clairement le probleme theorique et permet d'effectuer syste-
rnatiquement le calcul pratique ainsi que l'jndique l'equation (15).
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On demontre egalement qu'il est quelquefois possible d'ajouter aux
groupes donnes de pieux un ou plusieurs pieux fictifs de teile sorte que le
groupe ainsi augmente permet un calcul plus expeditif, du fait p. ex. de
Fintroduction d'une symetrie. Les reactions dues aux forces exterieures /,
m introduites dans les pieux fictifs peuvent etre evaluees et ajoutees ä /, in,
afin de neutraliser les reactions que ces memes pieux operent sur la jetee.
Les forces ajoutees produisent dans les pieux fictifs de nouvelles reactions
qui sont de nouveaux calculees et ajoutees, etc. Ce calcul par iteration con-
verge souvent et il est demontre aussi bien theoriquement que par des
exemples que la somme des series de matrices geometriques correspondantes
contient la Solution exacte du probleme du groupe de pieux. En d'autres
termes, ce calcul par iteration approche par approximation successive la
Solution directe donnee par l'equation (15) du groupe de pieux.
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