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A STUDY OF THREE-DIMENSIONAL PILE-GROUPS

UNTERSUCHUNG RAUMLICHER PFAHLGRUPPEN
ETUDE DE GROUPES DE PIEUX DANS L’ESPACE

Dr. S. O. ASPLUND, Orebro.

In his famous thesis 1) CHR. NeKKENTVED has treated the calculation ac-
cording to the elastic theory of three-dimensional pile-groups. His method
is based upon the determination of three principal screw-axes of the pile
group and the reduction of the acting forces to these axes. The present paper
proposes a more direct method that should be easier to grasp in general and
should lead to more mechanical computations without being more lengthy.
A simple iteration method is also proposed that sometimes may prove to be
expedient.

In the following exposition of the subject elementary vector and tensor
‘(or matrix) algebra is applied, which greatly abbreviates and simplifies
theoretical and practical treatment. To explain notation and other funda-
mentals a short review of vector and matrix algebra will first be given.
For full proofs or further particulars the reader is referred to standard text-
books 2) 3).

Elements of matrix algebra

A set of numbers xy, x,,...x, is called a vector a. In three-dimen-
sional space the vector may be represented by a directed distance, whose
projections upon three orthogonal coordinate axes are the three compo -
nents x;, x,, x5 of the vector. The scalar product of two vectors u
and y is written oy and defined as xq y; - x5y, -+ x5 y3. The square-root
of the scalar product of a vector o by itself, {x,2 - x,2 1 x,2, is thelength
of the vector. A vector of unit length is called a unit vector. It is easily
demonstrated that oy is equal to the length of o times the projection of
y upon 2. The vector product of two vectors o and ¥ is written
[xy] and is defined as a vector whose length is equal to the area of the
parallelogram formed by o and ¢, coinitially drawn, and whose direction
is perpendicular to both o and ¥ in such a way that o, ¥, and [x¥], conse-
cutively drawn, form a right handed screw. Evidently [ya] = — [ ¥].
The components of [axy] are easily found to be xy y,— x; yo, X5 ¥i—Xy Vs,
and x; y,—x, yy. The parallelepiped formed by three coinitial vectors wx, ¥,
and z obviously has the volume x[y2] = y[2x] = #[xy]. Another useful
vector formula is [ [y2]] =y -x2—2-axy. Other elements of vector al-
gebra may be found in standard text-books 2) 3).

1) CHR. NoKKENTVED, Beregning av Paelevaerker. Copenhagen 1923. The treatment
of general three-dimensional pile-groups is excluded from the German edition, Berech-
nung von Pfahlrosten. Berlin 1928. -

2) GeorG Joos, Theoretische Physik. Leipzig 1943,
%) MarceNau and MurpPHY, Mathematics of Physics and Chemistry. New York 1943.
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“An expression of the form y = e.-ax+ f-bac+ g - cac = Tac coordi-
nates by ,affine‘‘ or ,linear‘ transformation a vector ¢ to every vector .
T is called a tensor. It is easily seen that the expression for ¢ may
be brought to the form

Y= To = Tyt 1o+ Tty - o+ T3t - T30+ To1ts -G + ...

where 4, 42, and 43 are unit vectors in the three coordinate axes of a right-
handed orthogonal coordinate system. Written in component form this is
equivalent to the linear system of equations

n=Tuxi+ Texe+ Tizxs, y2=7Tax1+ etc

The array Ti The Ty
(Tw) = | Taa Tz2 T
Ts1 T3 Ty

of the nine components or elements of 7' is called the matrix of T. Where
no misunderstanding can occur the notation 7 will be used for (7). Itis
easily seen that the transposed tensor expression ' =1"x¢ = a-ex + b fo +
¢-gx has the matrix elements 77z, = 7. (7Tx) is called the transposed
matrix of (7). The trace (Spur) of a tensor 7T is defined as the sum
of its main diagonal elements 7'y; -+ T4y~ T33.

If 2= Sy one has # = 8Ta — Ro. It can easily be proved that R
is a tensor whose matrix elements R;, are formed by multiplying together
in order and adding the elements of the k£th row of (S;) and mth column

of (T},) that is Ry, =>,Su T, The same rule is prescribed for the mul-

7
tiplication of two rectangular (not necessarily square) arrays or matrices
Sy and T4 S and T must only be conformable, that is, the number of
columns in S must equal the number of rows in 7. Tensor and matrix mul-
tiplication follow the associative but not the commutative law. When a
matrix product is transposed the sequence of the matrices must be reversed:
if R=_S8T then R'=7"S’". This holds true for any number of factors.

The cofactor T* of an element 7, of a square matrix is (—/)*
times the determinant obtained from the array after striking out the row
and column in which 7, appears. According to the LapLACE development

the determinant (7 | of the matrix is equal to Z Tw TH((= 1, 2, 3). The

matrix of the cofactors 7% is the adjoint matrlx to (7). Note that
the adjoint is formed by first finding the cofactors 7% of the elements 7T,
and then transposing the resulting matrix. The adjoint matrix
of T, divided by |7 is called the reciprocal matrix of 7 and is de-
noted 7-1. It is obviously only necessary that |7 |- 0. From the properties
of determinants it follows that 77-1==7—-17T = E where the unitmatrix
E has unity for elements along the main diagonal and all other elements zero.
For every matrix AE—=FEA=A. Multiplication of a system of equations
y = Tax by T solves the system: T 'y =T 1 Ta = Ea — o.

Numerical examples

To make himself familiar with these vector and matrix rules the reader should check
the following numerical results. The scalar product of the two vectors x = (X, ¥, ¥3) ==
(1,2, 3) and y= (13, 17, 19) is ay = 1-13 - 2. 17 -I- 3.19 = 104. Their vector

product is [oey] = (— 13, 20, — 9). The length of x is /12 ~= 22 2= 3 = \/14,
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The product of the two matrices

103 203 11 6 6
S = 013) and 7 = 001) is R=ST—(964)
221 321 720

1
The product of 7 and the conformable one-column matrix x = (2) (also denoted
3

x = {1, 2, 3} to save space) of the vector .c above is Tx == {11, 3, 10}. One also finds
S (Tx) == {41, 33, 38} or by using R, Rx == {41, 33, 38}.
The cofactors of 7., form thegmatrix (T#) below. From 7 and (7*‘) the de-

terminant |7 may be calculated by 2 T.; T* in six different ways to — 4. The ad-
korl=1
joint matrix of 7 is (7'%) and the reciprocal matrix is 7-1:

. 2 30 " 26 0 1/2-6 0
(T")={6-7T-4), (Th=|3-7-2), T"i= 13 7 2
0-2 0 0-4 0 4

Finally the reader may verify numerically that the product of the above matrices
T and 771 equals the unit matrix E.

Fundamental assumptions for pile groups

The first assumption in the calculation of pile groups is that the pile
reactions are elastic and follow Hookg’s law. A pile j is driven to refusal
through loose soil so that its end ¢; (Fig.1) bears upon a hard stratum.
Its head /; is encased in the footing of the structure. The length /;¢; of the
pile is /;, its cross section area A; and its modulus of elasticity E;. If the
pile is shortened by a small length A/; an axial compressive force

Po = EI/;IAI/:)J/]G ‘ (1)
J
will be induced in the pile.

In a frictional pile the compressive force decreases from head to end.
Then formula (1) cannot be applied. It will instead be necessary to determine,
by tests or by reasoning, a ratio 7; between pile force and the corresponding
elastic displacement of the pile head. This ratio 2, will be termed pile
stiffness. Usually all piles in a pile-group are driven to the same prefixed
penetration for the last hammer blow. In such a case the same stiffness 2
may be applied to all piles of the same dimension in the group.

A second supposition for the analysis is that no transversal forces nor
moments shall be transferred from the piles to the pile encasement. Every
~ pile is supposed to act as a straight column, hinged at both ends and cen-
trally loaded #). A generalization to account for said transversal forces and
moments may be easily carried through along the same lines as given in
NokkeNTVED’s cited work ?). As a rule not much is gained by the inclusion

4) This does not imply that a pile driven in an elastic medium must be designed
as a free column. On the contrary, it has been shown by ForsseLL (Beridkning av pilar,
Betong 1918) and by GrannoLm (On the Elastic Stability of Piles Surrounded by a
Supporting Medium, Stockholm 1929), that the buckling of a pile hardly ever needs to
be considered, even if the pile is driven into quite loose soil (cf. TimosHENKO, Theory
of Elastic Stability, New York 1936, p. 108). If a pile is partly free to buckle, for
instance if a part of it is surrounded by water, its safety for buckling must be in-
vestigated.

%) Per GULLANDER in his work Teori f6r grundpilningar, Stockholm 1914, cf. also
Theorlie der Pfahlgriindungen, Bautechnik 1028, p. 818, includes transversal forces from
the piles. j
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of these transversal forces and moments ¢). For constructive and other rea-
sons the existence of and satisfactory evaluation of these forces sometimes
may be rather uncertain or ambiguous. Some building specifications there-
fore require that transversal forces and moments in the piles be neglected in
the stress analysis.

An elastic reaction from the pressure of soil upon the sides of the pile
head encasement, or upon a street piling surrounding it, may be accounted
for by attaching to the encasement fictive piles with the same clastic pro-
perties and strength as the soil.

A third supposition is that the pile head encasement, which henceforth
will be termed pier, is perfectly rigid. For the concrete footings now
almost exclusively used this supposition closely agrees with actual couditions.
On the other hand, timber pile grillages have sometimes been used as piers
in such a manner that said condition of rigidity has not been complied
with. For such designs the developments of this paper must necessarily be
modified.

Movements, forces, and conditions of equilibrium

The acting forces will impart to the rigid pier a small translation, de-
fined by a .vector ¢ (Fig.1), and a small rotation of the amount » about
an axis of rotation 7 through the point 0. The rotation is thus defined by
the vector . The pile heads /; in the pier are located by the vectors

Fig. 1.
Location and movements of pile j
Lage und Bewegung von Pfahl j

Position et mouvement du pieux ;.

Olhj = b; = b (henceforward indices j will be omitted where no misunder-
standing can occur), or by the vectors C/ = a from the point C located by
the vector OC = ¢. The total movement of the head /% is given by the
vector ¢ + [» b].

Each pile is localized by the head vector &; and the unit vector p; along
the pile axis. The projection of the movement of the pile head upon the
pile axis thus is the scalar product

p(t+|rd]) =pt+ [bp]lr =pt+ [mp]r

where m, is the shortest (normal) vector from 0 to the pile axis. The last
formula shows that the projection of the movement does not depend upon
which point on the pile axis the vector & locates: b need not necessarily

8) Cf. A. Acarz, Der Kampf des Ingenieurs gegen Erde und Wasser im Grundbau,
Berlin 1936, p. 193.
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run to the pile head. The projection p¢ + [bp]» obviously is equal to the
shortening A/; of the pile. This causes a compressive force (1)
po = L(pt+ [bp]7) (2)

in the pile. The force by which the pile acts upon the pier may then be
represented by the vector

—pop = — hp(pt+ [bp]r) 3)

Aside from the pile reactions, all other forces that act upon the pier
may be reduced to a force f and a moment m about the point 0. The equi-
librium of the pier demands that

f+ Zj:—/?ojpj =0
m + ,2 [0,—pojp]] =0

The sums should be extended over all the piles in the pile-group. The vec-
tor [b,— po;p;] is the moment about O of the force in the jth pile. Entering
(3), (4) will become

f=2ip -pt+2ip. [bplr=Tt+ Ur } 5)
m = 2L[bp] -pt+2ZL[bp]- - [bp]r =U't+Vr
Here 2ip.-p =T, Zip-[bp] =U, Zi[bp]l-p = U’, and 2i[bp] -
[bp] = V may be recognized as tensors. The tensor U, for instance, may
be written U = % 7u(/]1 4G + p2 i + p3 7'3) . ([b/]]l 4 + [b/]]g i + [bp]g ’0.3) =
2/1[71 [bp]11:1°’l:1 + 2&[]1 [bp]g/l:riz + 2)./]1 [bp]g’l:l-?:3 + Elpz [bph’l.«g . ?:1 + oo ee

where Uy = 2'Ap[bp]; are the matrix elements of the tensor with regard
to the nine units - 4;.

Arraying in a rectangular matrix the components of {1 p or Yi times
the direction cosines of the piles

VEI’aI ‘/E/Jbl ‘/T_cpcl = :
A = Vf‘gpaZ Vﬁpb2 ‘/&pCZ'-- — Aa,b,c,... (6)
V}va Pa3 V)Vb Po3 Vllc Pe3 -

and the components of the vectors Y4 [bp] in another rectangular matrix

VE [67]a1 ‘/E [6p]61 V_]E [6p)er- .. .
B =y a [bplaz V}g [6pls2 VA [bp)e2...| = Bas,q, ... (7)
Via[6plas  Vis [bplss Vi [bples. ..

one observes that the following matrix products form sums of proportional
matrices of the third order

4)

P PiPjz  Piibss
AA':;ZJ' Pi2 Pt pjg piepis| =Ta+To+Tc+...=T (8)
L pjspjr Pj3 pje /Jj?z»
[ pinlbplin  pilbpliz  pialbpls
AB' =X 1; | pielbplin  pialbplie  pielbpls| = Ua+ Us+ Uct ... = U (9)
T Lesloplin pislbpliz  pislbplis




6 S. O. Asplund
BA" = U/ + Us+ Ui+ ... = U’ (10)
[op)j1[6p)in [bplj1[6p)i2  [OP)j1l0p]))s
=2 4| [6P)2 (6Pl 1 [6P)2[0P)s2  [6)j20P)3| = Vat Vet Vet...=V (11)
7 loplslerlin (6p)3[6p)2  [6P1is (6P

One also observes that each term of these sums represents the contribu-

tion of the individual piles to the matrices 7, U, U’ and V, respectively.
The matrix U’ is the transposed matrix /. Their common trace is zero,

for

Un + Unp + Uss = 21(pr [bpls + p2[bple + pslopls) = 2 2 p[bp]l = 22 b [pp] = 0.

The unit vectors p are perpendicular to their respective vectors =, or
np = 0. Hence

[pnpll=n-pp-pnp=mn, [n[pn]]=p-nn-n-pn=pr*,
[rn] = [r[p[np]]] = p-r[np] - [np]-rp
and, consequently, as [np]| = [bp],

Zip:[bplr =2i[bp]-pr + [r2in) (12)
Ur=Ur+|[rZin)=U'r+ Dr (13)
where D is an antimetric (skew-symmetric) tensor with the matrix
0 2hngs —2nge
(Dr) = | -2 dnps 0 2 kg (14)

Zlﬂog —2117201 0

as may easily be verified by expanding the expressions [72 Amn9] and D»
in component form.

T and V obviously are symmetric: 7 — Ty, Vi = Vp Their traces are
Sh(pe® + po + pa?) = =4 and SA([bpli[bph+ [6p) [6p]e + [6p]:[52)s) =
2A[bp] [bp] = A [nep] [nep] = 2 ino[p[rop]] = 2 A no.

Solution of the equilibrium equations

The equations (5)
f=Tt+ Ur

m=U't4+ Vr
are solved by multiplying the first by U’'T—1 and the second by U¥V—1
| UT'f=Ut+UT'Ur
UVim=UV'U't+ Ur

(5)

subtracting
UV im = (T-UVU)t = Tyt

m-U'Tf=(V-U'T'U)r = Vyr
and multiplying by T, and ¥; ', respectively,
t =T, f-T;"UV "' }

15
=-V, U T+ V' m (15)
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The transposed matrix to UV—1U’ is U"V-VU’ = UV-1U’ owing to the
symmetry of V—1. Hence UV—1U’ is symmetric. By the same argument U’7-1U
is symmetric. Consequently 7, V,, 7y1, and V1 are symmetric. The
transposed matrix of 7(—lUV—1is VU T, 1=V, ,—1U’'T—1, because

W' =U0T'T, (V-UT*U)V*U =UTY(T-UVU),

-~ TV U =-U'TtUV U,
but 7(—1UV—1 and V,U’'T-1 are as a rule unsymmetric, even if U = U".

The course of the practical computations for a given pile-group is in-
dicated by the formulas. Pile symbols, stiffnesses 4, location & and slope p
in any suitable coordinate system is entered in a table, where also the vec-
tors [bp] are computed for each pile. From this table the matrices 7,U, and V
are determined and from these, by matrix arithmetic, V-1, UV—1, UV—-1U"’,
To=T-UV-U, T, , T, UVt and T4, U'T-, U'T-U, Vo=V -U'TU,
V,Y, Vo' U'T-t. This performed, the translation ¢ and rotation » of the

pier may be directly computed from (15) for any set of external forces, £,
m, and substituted in (2) which yields the pile forces.

The elements of the primary matrices 7, U, and V, the adjoint matrices
and the matrix products are most conveniently evaluated by multiplications
and cumulative additions or subtractions on an ordinary calculating machine.

Example 1
e e e
/7 .
] £ quJ—>l’ EJF M= 3:1
v e 8% ¢ 4
=3 m Oz 3:7
i it [
I Tl
I Fig. 2.
Pile foundation
o0l 72 Pfahlfundation
\ T Fondation sur pieux (pilotis).
s
Je
Ty
Ty

. .Apile group is given by Fig. 2 (cf. NekkenTvED, loc. cit., p. 143). The pile stiffness
4 will be assumed in this example to be the same for all piles. NoKKENTVED’S assumption
v =1 is slightly different, since his v is also a function of the pile batter.

Locate the origin O at the height 3¢ above the bottom of the pier at pile g. The

vectors b are drawn in the plane b; == 0. Table 1 lists the piles and calculates the
vectors [bp].
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Table 1.
[/ bpl = |n - 12
pile | 7 | | p WA[WI'] - [220 p] 7 [710,1’)]2
by | by f f’?, 1 ] P2 i P3 [b/)]Li [b,ﬂfi,[ﬂp]*,i,,,,,oﬁ
a | 1|1 10,316 | 0,949 | 0,049 -0316| 1
b | 1 0,316 | 0,949 '
c | 111 0,316 | 0,949 0,949 |+0,316 | 1
d 1 1 1 0,316 | 0,049 | 0,949 10,949 [-0,316| 1,9
e 1 1 0,316 , 0,949 ~-0,949 0,9
1|1 1 -1 1
g 1 i1
h |1 |- 1 1 1
Mult.} -2 e e | -e ; e | e e e
The primary matrices are calculated from Table 1:
02 0 06 /1,44 054 -0,187
T=Chpyp) = ﬂ( 03 0,9) T1Ti=:22( 054 114 »0,18)
06 09 75 0,18 -0,18 0,06
T| = 0,18 23 (figured three ways)
03 -0,6 -0,1 0 -06 -1,0
:(Zi.pk[bp]l):ﬂ.e<0 0 0 ) D=U- U’—/e(O() 0 1,8)
09 -1,8 -03 10 -1,8 0
09 -09 -03 1,59 036 1,95
= (T4 [bpl, [bp]) = e2( 9 56 0,3) VY = ;.2e4(o,36 0,18 0,54)
—0,3 -03 03 : 1,05 0,54 4,23
V| =0,52213 ¢5 (figured three ways)
; (3046 0,690 3,736 1 10,1262 -0,1045 -0,3105
V1= =72 (0690 0,345 1,035) UV = —(0 0 0 )
3,736 1,035 8,103 0,3786 -0,3135 -0,0315
0,1316 0 0,3048 0,0684 0 0,2052
UV"‘U'ZX(O 0 0 ), T0=T~UV‘1U':/1(O 0,3000 0,9000)
0,3948 0 11,1845 0,2052 0,9000 6,3155

. 1,0847 0,1847 -0,0616 |

T; Im:zz( 0,1847 03899 —0,0616) (T, — 00615 2* (figured three ways)
-0,0616 -0,0616 0,0205 '

o, 1 /1764 300 -1,00 | (185 153 -455

Ty =7( 3,00 634 —1.00), T;luy—lzre(g 0 0 )

1,00 -1,00 0,333 0 0
(8 3 -1 15 0 0
T1= |3 6% -1), U’ T—l—e(—3,0 0 0)
A1 a1 -05 0 0
045 -0,90 -0,15 045 0 -0,15
U'T U =1¢ (—0.90 180 0,30 ) Vo=V-U'TU=1¢ ( 0 3,80 —0,60)
-0,15 030 0,05 -0,15 -0,60 0,25
» 059 0,09 057
Vo [ Vo] =A%e* (0,0Q 0,00 027 ) | Vol = 0,1800 235 (figured three ways)
057 027 1,71
3278 05 3,167 1833 0 0
V{‘:%(O,S 05 15 ) V"UTIﬁT(-I,S 0 0)
“€°\3167 15 95 “€\45 0 0
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A partial check upon the correctness of the matrices 7, U, and V is the value of their
traces, 24, 0, and 27,2, respectively. Checks upon calculations are furnished by the
determinants, each figured three ways, by the symmetry of UV-1U’ and U’T~1U and by
the fact that 7,71UV™1 and V,—1U’T—! have transposed matrices. Equations (15) may
now be written down directly in component form

Lty = 17,64 f; + 3,00/, — 1,00 f; — 1,83 myfe + 1,5 mle + 4,5 msle
ity = 3,00/; + 6,34 f> — 1,00/

Aty =-1,00f; — 1,00/, + 0,33 f5
lery =-183f -+ 3,28 mye 4 0.5 msfe + 3,17 msle
ler,= 15 f; + 0,5 myfe + 0,5 myje + 1,5 msle
lers= 45 £ + 3,17 myje + 1,5 myle + 9,5 msle

From these formulas the translation and rotation may be easily figured for any
external load £, m. Substitution in (2) yields all the pile forces.
Thus the force in the pile a (fig. 2)

b=~€’i1, p=0,3]6(i2+3@.3), [bp]=0,316€(3i2_’i/3)

will be pit+ [bp]%/ier — 0,316(3,00 f, -+ 6,34 /s —1,00 f; — 3,00 f; — 3,00 f> - 1,00 f; +
45f; +1,5myle ~15myle + 4,5ms)e —45 f; -- 3,17 myle — 1,5 my|e — 9,5 mz[/e) = 0,316
(334f2——l 67m1/e——5m3/ e).

A similar formula may be written down for every pile in the group. Each formula
clearly shows which movable external forces should be included to cause maximum force
in the pile. From the formula influence lines or influence surfaces for live loads may be
easily drawn.

Coordinate transformations. Pile-center

The computations of Example 1 show that the direct calculation of the
translation and rotation is comparatively simple. The question arises whether
changes of origin or coordinate transformations may expedite the procedure.
In his treatment of pile groups NoxkkENTVED determines three principal screw
axes and employs one principal axis transformation. Still his computations
corresponding to the example just figured become rather extensive.

Even if a suitable transformation can be found that admits of simple
relations between forces and moments in a certain coordinate system, there
still remains to determine this reference system, to express the external
forces in it, to calculate the movements, and, eventually, to refigure the
resulting expressions for the movement of the pier to a suitable form for
use with formula (2). The combined work may very well exceed that of
the direct calculation shown. -

However, equation (12) or (13) suggests a change of origin in order
to make U and U’ symmetric and equal, namely to remove the origin O to
such a point C that 2in = 21n.,= 0. Also the skew-symmetric tensor 1D
will then become null. To the point C in space where 2in = 0 the term pile-
group center or, in short, pile-center will be applied. At the piie-center
the scalar point function

SZA[np): = 2TA{n2p? - (np)?} = 2in?

has a minimum. For if C (Fig.1) is regarded as a movable point located
by the point vector ¢ from the fixed origin O, one sees that

n=a—ap-p=b—c—(b-c)p-p =mny—(c—cp - p) (16)
where
n="5b—>bp p (17)

Abhandlungen VIII 2
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By common vector analysis formulas 2) 3),
gradm?® = 2[nrotn] 4+ 2ngrad-n =-2ngrad-c+2ngrad -cp jp = - 2n

hence grad 2in2 = — 232 n. The condition for an extreme value of the func-
tion 22 [mp]?2= Zinm? that its gradient is zero, is satisfied at the point
where Zisa= 0. This extreme value obviously must be a minimum.

The pile-center is thus located by the equation

Sin = 3kng—(€Zh—ecZip-p) =0 (18)

or, in tensor form,

(AE —T)c = Fe = 2ing (19)

whose solution ‘
c = 1T 13Lng (20)

vields the position of the point C. The vector 22 m, is most easily obtained
from the matrix (14): D=U —U".

Example 2

Find the pile-center of the pile-group of Example 1. Matrix D: evaluated in
Example 1, yields 2in, = 4ie(1,84; + 1,04, — 0,6 45). From 7 and 24 = 8] is obtained

78 0 -06 , 3,04 054 4,62

SIE—T=F= /1( 0 7,7 —0,9) , F1 F|=122 (0,54 3,54 7,02)

-06 -09 05 462 17,02 60,06

|F| =20,92% (figured three ways), ¢ = F~* Jin, = {(3,04-1,8 + 0,54 -1—4,62 - 0,6) i, +
+(0,54-1,8 + 3,54 -1—7,02- 0,6) 45 + (4,62-1,8 + 7,021 — 60,06 - 0,6) 45} 13¢/| F| =
= ¢(0,1554; + 0,014 4, — 0,989 ¢;).

Ascertainment of the pile-center in regularly spaced
pile-groups.

In many cases of regular pile arrangement the pile-center can be wholly
or partly ascertained by considerations of symmetry or of the minimum of
Z2n2. For instance, if the pile-group is composed of a number of sub-
groups of mutually parallel piles in such a manner that the center-of-gra-
vity lines of the individual sub-groups intersect at one point, the pile-center
will be located at that point. For in each sub-group 2An2 will be a minimum
along its center-of-gravity line, and for all the piles 22x#2 will be a minimum
at the intersection of these lines. This is the characteristic of the pile-center.
If the pile-center can be established by such a conclusion, the first origin
O obviously should be immediately located at the pile-center to avoid the
computations for a change of origin.

Advantages gained by establishing the pile-center.

By choosing the origin at the pile-center the number of different
matrices in (5) will be reduced from four to three symmetric. The nume-
rical computations will be somewhat facilitated thereby, but not so very
much, since the matrices 7,1 UV~ and VU’ T-1 of the solution (15) will
generally be unsymmetric and unequal anyhow.

Further, by one principal axis transformation it is possible io diago-
nalize by well-known methods any one of the three matrices 7,U =U",0r V.
By a linear transformation it is even possible to diagonalize any two of



A study of three-dimensional pile-groups 11

these three matrices. Each transformation will require rather much numerical
work, including the solution of a characteristic equation of the third degree.
When that is performed, the subsequent computations will be simplified,
even if the total computation is not. Particularly, a diagonalization of U
may save work.

Addition of a fictive pile

However, with the object of saving numerical work, anothier course
may be tried. It is sometimes possible to add to the original pile-
“group a fictive pile in such a way that the resulting pile-group wili
be more easily calculated. The woriginal external forces f, s induce
in the fictive pile a compressive force p,=¢ cf. (2), to be evaluated. To
the original external forces then is added along the unit vector pys of the
fictive pile a force g, which neutralizes the force from the fictive pile upon
the pier.

A force = 1 along the axis p; of the fictive pile, applied as an ex-
ternal force to the pier, will cause in the fictive pile a force ¢. A force
equal to ¢, applied along p; as an external force will thus induce in the
fictive pile a force Qg. This force Qg is neutralized by adding another ex-
ternal force, Qg, along ;. The latter force causes in the fictive pile a force
Q2%¢, etc. In practical cases, and if the fictive pile is suitably placed, the
geometric series will converge. Consequently, to counteract all the pile forces
in the fictive pile the original external force system jf, m¢ must be com-
pleted with the force ¢ - Qg -- Q%¢--...-— ¢g,(1—Q) acting along the axis
pr of the fictive pile. The forces in the other, real piles obviously should
be computed from the completed external force system f + prg/(1 — Q),
m + [Ur prlg/ (1 — Q).

Each pile, fictive or real, contributes to the matrix of U = Xip - [bp]
(and also to the matrices of 7 and V) with a matrix with proportional
rows and columns, cf. (9),

Lpilbple  Apilbpl: Api|bpls
AU =\ tp2oply  ip2lopl: Apzlbpls
kpsloply  Apslople Apslopls

Conversely, it is easy to find a pile that yields a given proportional
matrix increment AU. Of the quantities determining the pile, 4 or the length
of & may be put equal to a prefixed value 1 or |6, respectively. The di-
rection cosines p,, p,, and p; of the piles obviously must be chosen to agree
with the factors of proportionality between the rows and to agree
with the condition pp = 1. It only remains to determine [bp],, [6p], and
|bpl; equal to the three numbers d,, /, and d; respectively. The vector b
that runs from the origin to the pile axis may be drawn in any plane through
the origin. If it is drawn in the plane &,=0, the two other components
of b are determined by [bp]y = bop;=d,, [bply=—b,p3=4d,, and the
dependent equation [bpls = byp, — byp; = d.

Example 3

The matrix U of Exampile 1 is, by coincidence, proportional. It is easily seen that
U becomes null if a fictive pile lf = 1, bf = —2e%; — e1,, Py = 0,316 (i, + 3 %3),

[6spf] = 0,316 (-3¢, + 64, + 4;) is introduced. The primary matrices become
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03 0 09 | 1,71 081 -0,27
T=1 (0 03 009 ) ., T T =12 ( 081 171 0,27) (T =1027.8
0 0,00
7

3
09 09 84 027 -027 0O
S /18 27 06 350 0,00 4,71
V=1e (—2,7 92 0,3) VLV = 22 et (090 036 1 08) . |V =1,206:3 ¢
06 03 04 471 1,08 927

| T and [V | have been figured in three ways. As U = 0 the solution of the equation
system (5) is simply ¢ =T71f, »r =¥V 1an, or

;~_t = (631;f1 +3f —f) i+
+ (3£ +63f— fo) 4+
+(-fi — fo +3/)s
A force = 1 in the direction of the positive axis of the fictive pile
f=20316 (¢ +34d3), m =[bf] = 0316 (-3 4, + 69y + i5)
yields it = 0316314, Zer =0,316(- 05504, + 0,452, 1- 1,348 ;)
and, by (2), Q@ = 0,316 - 3% 4 0,316 (1,650 + 2,712 -+ 1,348) = 0,9043

ietr = (2,977 my + 0,746 my + 3,905 m;) i, +
+ (0,746 my -+ 0,299 m, - 0,896 ms) is 4
+ (3,905 m, - 0,806 my 4 7,687 m;) is ]

The external forces f, m cause in the fictive pile a force (2)
g = 0,316 - 3% /i + 0,316 (- 0,550 my + 0,452 my + 1,348 ms) /e

This force multiplied by 1/(1—Q) = 10.45 is cancelled by adding 4f = 10,45 gy
to the applied forces and 4 m =10,45gq [bfpf] to the applied moments.

Afy = 3,48f; — 0,575 myje + 0,472 myle -+ 1,400 msle
A 10,45 f;, — 1,724 myje + 1,417 myle -+ 4,226 me
Amy =-1045fie+-1,724 my — 1,417 m, — 4,226 m,
dmy = 209 fie— 3,449 m, + 2,834 m, -} 8,452 m;
Admg= 348 fie— 0575 my + 0472 my - 1,400 m,

Addition to the corresponding forces and moments in the above expressions for 2¢ and
Ae? r yields

ltl == 17,gf1 + 3 f2 — f;; e 1,92 m1//e+ ],57 ”lgljfe—{' 4,70 mg!'(e

ity = 3 f +6Lfsi—fy

Lty =- SHi— St %fé

ler, =-193f; + 3,29 my/e + 0,49 myle + 3,13 mgle
ler, = 15T1f + 0,49 m,/e 4 0,51 myje + 1,53 mgfe
ler; = 4,671 + 3,13 myje + 1,53 mfe + 9,59 mgle

The discrepancies from the result of Example 1 are attributable to the use of a limited
number of places.

More than one fictive pile

It may be useful or necessary in some instances to add to the pile-group
a number of fictive piles. If, for example, three such piles /, g, and % are
added, a force =1 along the axis p; of / will produce in the fictive pile
[ a force Qy, and in the fictive piles g and 7 forces Q,; and Q;, respec-
tively. An external force =1 inthe pile axis p, will produce in the fictive
piles the forces Qy,, Q.., and Qy,, ctc. The original external forces f; m
will induce in the fictive piles compressive forces ¢;, ¢,, and ¢,. These will
be neutralized by introducing additional external forces ¢;, ¢,, and ¢; acting
along the positive unit vectors py, Pg, and py, in the respective fictive pile
axes. These latter forces will produce in the three fictive piles the new com-
pressive forces
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Qi gr+ Qrege + Qmqn, Qorqr+ Qo+ Qenqn, Qurqr+ Qugge + Qrrqn

These forces may be regarded as the components of the product Qq of a
tensor () with the matrix

Qr Cr Un
Q — ( ng Qgg Qgh) (2])
th th thz

and a vector ¢ with the components ¢y, g,, and ¢,. Both the tensor and the
vector may suitably be referred to a coordinate system with the axis unit
vectors Py, Pg, and p,. The components of Qg, that is, the last mentioned
compressive forces in the piles, are again counteracted by adding to the ex-
ternal forces the forces (Qq); »;, (Qq).P., (Qg): i acting along the respec-
tive fictive pile axes. These forces will induce in the fictive piles compressive
forces that obviously are equal to the components of the vector Q*q. These
forces are again applied as external forces, and the process is continued ad
infinitum, if it is convergent. The sums of the external forces applied
in the axes of the fictive piles /, g, and %, thus are equal to the components
of the vector

A+0q+0*q+Qq+ ... =(E+Q+Q*+...)qg = Nq (22)

This NEUMANN series may be formally treated as a geometric series 7). Fron-
tal multiplication with the matrix Q and subtraction yields £ =N — QN ==
(E—QN, (E—-Q) =N

: Ng = (E—Q)'q (23)

By this formula, which evidently must hold for any number of fictive
piles added, it is possible to determine the forces by which the external force
system must be completed to balance the forces'set up in the fictive piles 8).

The components of }4 p or Vi times the direction cosines of the fictive
piles may be arrayed in a rectangular matrix A4y, ¢, 5,... as in (6), and the
components of the vectors V4 [bp] in another rectangular matrix By, 4,1, .. .,
as in (7). One observes that the following matrix products form sums of
proportional matrices of the third order, cf. Equations (8) to (11),

AA =Tp + Ty+ Ty +...= AT
AB' =Ur + U+ U, + ... = AU
BA =Uf + U/ + U + ... = AU"
BB = V; + Vg—|—Vh—|—...:AV

the terms of which represent the increments by the individual fictive piles
to the matrices of 7, U, U’ and V. By the addition of fictive piles the

7) Cf. CouranT-HiLBERT, Methoden der mathematischen Physik, I, 2nd. Ed., Berlin
1931, p. 8.

8) The method of iteration just demonstrated resembles in some aspects the me-
thods of successive approximation for the solution of statically indeterminate problems.
It must be possible by simple matrix methods to establish the coincidence of these me-
thods with the classical methods of solution. For example, the NEUMANN series of (22)
represents the complete course of successive approximations in a statical problem. The
total result of the infinite number of approximations is given in finite form by (23)
which should duplicate the direct classical solution. In cases of rapid convergence it
may be more practical to use approximations of the type (22) instead of a cumbersome
direct solution (23).
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matrix 7 thus will change to 7 - A4’, U to U 4- AB’, U’ to U’ BA’, and
V to V4 BB'. By a suitable choice of fictive piles, which can be made in
several ways, these resulting matrices and, consequently, the ensuing com-
putationis may be considerably simplified. ‘

The most practicable choice of fictive piles depends much upon the ori-
ginal pile constellation and should most conveniently be judged from case
to case. .

In cases when a definite choice of fictive piles is not apparent the sim-
plification of the matrices may, for instance, be undertaken with the first
aim of making the matrix U equal to null. To that end it eppears to be
expedient to start out with a change of origin to the pile-center as pre-
viously explained, and exemplified in Example 2. Then fictive piles are
added to make the new matrix U, U - AB’ equal to null. This will mot move
the pile-center, for a null matrix is symmetric, and a symmetric matrix U/
is an indication that the origin is at the pile-center, cf. (12) or (13).

The choice of fictive piles can simply be made in such a manner that
the matrix 4 is made equal to a square unit matrix, whence B will equal
the matrix —U’, making U -- AB’=U — EU = 0. The individual fictive
piles are fully determined from A and B according to (6) and (7) and the
method explained above for one fictive pile. This decomposition of the ma-
trix —U may many times be as serviceable as any other decomposition. The
contintied procedure consists in determining the new values of 7, 7 - AA’ =
I' + E and of V, V -+ BB'. The solution of the equations (5), t = (T + E) ' f,
r = (V + BB')"'m can be effected either directly, or by means of a sepa-
rate (orthogonal) principal axis transformation for each equation, or by
means of a single linear transformation, which diagonalizes both equations
at the same time, by well known methods. Finally the corrections for the
forces in the fictive piles are added as previously demonstrated, (22) or (23).

Using more finesse the fictive piles may instead be chosen so as to
simplify the changed matrices 7 4 AA’ and V -- BB’ also. Instead of making
A equal to a unit matrix it may, for instance, be given such a form that
V 4+ BB’ becomes a multiple of 7 -- 4A4’, at the same time as U - AB’ is
made null. A single orthogonal principal axis transformation then diagona-
lizes both 7+ AA’ and V - BB'.

However, even such a theoretically simple procedure involves far more
numerical work than the direct computation, as in Example 1. The appli-
cation of fictive piles seems practicable mainly when the structure of the
original pile-group clearly signals that a definite simplification, for instance
simple or double symmetry, may be won by the addition of a relatively
small number of fictive piles. In such a case no mathematical intricacies
are needed to determine the fictive piles.

The writer by no means wishes to create the impression that all possi-
bilities of treating pile-groups by matrix methods have been exhausted in
this paper. On the contrary, developments and amplifications may be anti-
cipated in several directions, the pursuit and exploration of which may lead
to serviceable, practical methods.

Summary

Elastic theory calculations of plane pile-groups (GULLANDER, HULTIN) are
easily carried through according to NekkenTvED’s methods. However, the
corresponding calculations of spatial pile-groups become so tedious and
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unsurveyable that they must be considered as practically prohibitive. This
paper aims at showing how matrix treatment of such pile-groups clearly
interprets the theoretical interrelations and makes possiblie systematical and
practical computations according to (15), cf. Example 1.

Also demonstrated is how it sometimes may be possible to add to an
actual pile-group one or more fictive piles in such a manner that the
resulting pile-group may be more expediently analyzed, e.g. by resulting
symmetry. Then the forces that the original external forces f, m induce in
the fictive piles may be evaluated and added to f, m to neutralize the
reactions upon the pier from the same fictive piles. The ad d ed forces cause
in the fictive piles further reactions which are again calculated and added
etc. This iteration often converges, and it is theoretically and by examples
demonstrated in the paper that the finite summation of the corresponding
geometric matrix series (NEUMANN series) yields the exact solution of the
pile-group problem. In other words, this iteration approaches as a limit
the direct solution according to (15) of the actual original pile-group.

Zusammenfassung

Flastizitatstheoretische Berechnungen von ebenen Pfahlgruppen (GuL-
LANDER, HULTIN) sind mit Hilfe der Methode von NekkeNTVED leicht durchzu-
fithren. Dagegen gestalten sich die entsprechenden Berechnungen von
raumlichen Pfahlgruppen so mithsam und uniibersichtlich, daB sie praktisch
undurchfiithrbar sind. Die vorliegende Abhandlung bezweckt zu zeigen, wie
die Matrizenrechnung die theoretische Behandlung solcher Pfahlgruppen
klar und einfach behandelt und die systematische und praktische Berechnung
nach Gl. (15) im Beispiel Nr. 1 moglich macht.

Es wird ebenfalls gezeigt, daB es Fille gibt, wo es moéglich ist, zu einer
bestehenden Pfahlgruppe einen oder mehrere fiktive Pfahle so hinzuzufiigen,
daB die sich daraus ergebende Pfahlgruppe rascher untersucht werden kann,
z. B. durch die sich ergebende Symmetrie. Dann konnen die Krifte, die die
urspriinglichen duBern Krifte f, m in die fiktiven Pfiahle einfiihren, bewertet
werden und zu f, m hinzugefiigt werden, um die Reaktionen, die von den
gleichen fiktiven Pfahlen auf die Quaimauer ausgeiibt werden, unwirksam
zu machen. Die zusitzlichen Krifte verursachen in den fiktiven Pfahlen wei-
tere Reaktionen, die wiederum berechnet und hinzugefiigt werden etc. Diese
[teration konvergiert oft, und es wird in der vorliegenden Arbeit sowohl theo-
retisch wie durch Beispiele gezeigt, daB die Endsumme der entsprechenden
geometrischen Matrizen-Reihe (NEUMANN’sche Reihe) die genaue Losung des
Pfahigruppenproblems ergibt. Mit andern Worten bildet diese Iteration eine
sukzessive Approximation der direkten Losung der Gl. (15) der gegebenen
urspriinglichen Pfahlgruppe.

Résumé

Dans le domaine de la théorie de I’élasticité, les calculs des groupes
de pieux ordonnés dans un plan (GuLLANDER, HULTIN) peuvent étre effec-
tués facilement par la méthode de NokkeNTVED. Par contre, les calculs cor-
respondants pour un groupe spatial de pieux s’averent si pénibles et si
compliqués qu’ils ne rentrent pas en ligne de compte pour la pratique. Le
présent travail a pour but de montrer que le caloul de matrices permet ide
traiter tres clairement le probleme théorique et permet d’effectuer systé-
matiquement le calcul pratique ainsi que ’indique I’équation (153).
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On démontre également qu’il est quelquefois possible d’ajouter aux
groupes donnés de pieux un ou plusieurs pieux fictifs de teile sorte que le
groupe ainsi augmenté permet un calcul plus expéditif, du fait p.ex. de
Iintroduction d’une symétrie. Les réactions dues aux forces extérieures f,
m introduites dans les pieux fictifs peuvent étre évaluées et ajoutées a f, m,
afin de neutraliser les réactions que ces mémes pieux operent sur la jetée.
Les forces ajoutées produisent dans les pieux fictifs de nouvelles réactions
qui sont de nouveaux calculées et ajoutées, etc. Ce calcul par itération con-
verge souvent et il est démontré aussi bien théoriquement que par des
exemples que la somme des séries de matrices géométriques correspondantes
contient la solution exacte du probleme du groupe de pieux. En d’autres
termes, ce calcul par itération approche par approximation successive la
solution directe donnée par ’équation (15) du groupe de pieux.
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