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DECOMPOSITION DES
COEFFICIENTS D'INFLUENCE DANS LES PROBLEMES

DE VIBRATION ET DE FLAMBAGE.)
[DETERMINATION APPROCHEE DE FR^QUENCES OU DE CHARGES CRITIQUES]

ZERLEGUNG DER EINFLUSSKOEFFIZIENTEN IN DEN
SCHWINGUNGS- UND KNICKPROBLEMEN.

RESOLUTION OF THE INFLUENCE COEFFICIENTS IN PROBLEMS
OF VIBRATION AND BUCKLING.

FELIX BUCKENS, Ing. civ. Mecanicien-Electricien U. I. Lv., Docteur en Sciences Appliquees,
Charge de Recherches au Fonds National de la Recherche Scientifique Beige, Heverle (Louvain).

Les systemes physiques dont s'occupe la theorie de Pelasticite se de-
finissent completement par la repartition des coefficients d'influence et par
la distribution des masses.

Nous conserverons dans la suite de cet article le sens ordinaire attache
au mot coefficient d'influence en Resistance des Materiaux, celui d'un ooeffi-
cient de proportionnalite entre Teffort agissant en un point d'un Systeme
et le deplacement resultant en un autre de ses points.

On congoit qu'un Systeme ä n degres de liberte se caracterise par un
tableau de n2 coefficients d'influence. Ce tableau est symetrique par rapport
ä la diagonale principale, dont les elements sont dits «locaux»; en effet le
coefficient «mutuel» epq, qui mesure le deplacement suscite en p par une
force unitaire agissant en q, suivant des directions donnees, ce coefficient est
egal ä son symetrique eqp, selon le theoreme de reciprocite de Maxwell.

Lorsqu'il s'agit d'un probleme de dynamique, par exemple de Vibration,
il faut joindre ä ce tableau la repartition massique, de maniere ä disposer
de toutes les donnees necessaires ä la resolution. Si cette repartition se
prete ä une decomposition en systemes «partiels», que Ton obtient en y fai-
sant figurer successivement certains groupes de masses, tout en conservant
la strueture elastique primitive, on peut se reclamer de la formule de Dun-
klklev 2) pour calculer une borne inferieure de la premiere frequence propre
du Systeme. En appelant /, les frequences fondamentales des systemes
partiels, nous avons:

x) Cet article resume l'essentiel d'une these de Doctorat en Sc. Appl. presentee
aux Ec. Spec. de PUniv. Cath. de Louvain. Nous nous limitons ä une decomposition
lineaire des coefficients d'influence, pratiquement la plus importante, et evitons toute
discussion de possibilite des decompositions. Nous nous sommes servi de cette theorie
dans un travail qui obtint le Prix Scientifique Interfacultaire L. Empain, en 1941.

2) Obtenue empiriquement par Dunkerley (Phil. Trans. R. S. London A Vol. 185,
1894) cette formule fut demontree par E. Hahn (Schweiz. Bauz., Vol. 72, 1918) et
par F. H. van den Düngen (C. R. Acad. Sc. Paris, Vol. 177, 1923).
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En general Pinegalite entre les deux membres est peu prononcee; eile
doit plutöt servir ä indiquer le sens de Fapproximation obtenue en la rem-
plagant par une egalite.

Nous allons montrer qu'il est possible d'utiliser une formule analogue
en procedant ä une decomposition, non plus des masses, mais de Pelasticite,
ou pour etre plus precis, des coefficients d'influence du Systeme. En nous
limitant ä des problemes de stabilite et de Vibration de systemes elastiques,
nous pouvons eviter la question delicate de la possibilite generale d'une teile
decomposition. II nous suffit de montrer que les differents systemes par-
tiels soumis ä un type quelconque de sollicitations exterieures reproduisent
par superposition des deformations respectives la deformation du Systeme
primitif.

Nous verrons que cette verification se fait en general directement dans
toute decomposition des coefficients d'influence. Quant ä la decomposition
et ä la maniere correcte et efficace d'y proceder, c'est de fagon tres intuitive
et toute naturelle que Pon y arrivera par la suite.

Demonstration de la formule de decomposition.
Nous prenons pour point de depart le theoreme de Rayleioh. Rap-

pelons-en le principe. On sait que pour chaque mode normal de Vibration,
les amplitudes de Variation des energies potentielle (U) et cinetique (T) sont
egales en vertu du principe de conservation de Penergie totale, en Pabsence
de frottements et de sollicitations exterieures. Ces energies s'expriment en
fonetion des donnees massiques et elastiques du probleme, mais aussi en
fonetion des deformations et frequences, grandeurs qu'il s'agit de determiner.

Ces deux inconnues peuvent toutefois se determiner gräce a une pro-
priete extremale de Pequation energetique

T U.
Supposons en effet que nous adoptions une deformation arbitraire qui

soit une fonetion sinusoidale du temps. Des lors, la frequence de cette
fonetion decoulera de Pequation precedente.

La frequence «forcee» ainsi obtenue differe generalement de la ou des
frequences naturelles du Systeme. On montre cependant facilement que si
Pon fait varier de maniere tres generale la deformee arbitraire adoptee, cette
frequence «forcee» passe par un extremum chaque fois qu'il se produit une
eoineidance avec Pun des modes normaux.

Cet extremum est evidemment egal dans ce cas ä la frequence naturelle

qui correspond ä ce mode. Tel est le theoreme de Rayleioh: on voit
immediatement que le minimum absolu de la frequence forcee se situe au
niveau de la frequence propre fundamentale 3).

11 suffit donc de se donner une deformation arbitraire, toutefois pas
trop differente du premier mode normal, pour obtenir une frequence «forcee»
peu differente de la fundamentale, et qui peu servir de borne superieure ä

celle-ci.
Nous appliquons ce theor(eme ä une decomposition lineaire des

coefficients d'influence, et cela de la maniere suivante.
Soit l le carre de la pulsation, zp Pamplitude corrspondant ä Pelement

de masse dmp, enfin epq le coefficient d'influence; le maximum de Penergie
cinetique vaut

s) Dans le cas des modes normaux superieurs, il existe un theoreme de maximum
minimorum du ä Courant.
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l J z2p dmp

Pintegrale etant etendue au Systeme entier (eventuellement au sens de
Stieltjes). L'energie potentielle maxima s'ecrit

A2 JJ etJQzpzqdmpdmq

de sorte que Pequation energetique donne

l_1 JJ ePq zpZgdmpdmq
~ J zl dmp

D'apres cela, Pinverse du carre de la pulsation est une fonetion lineaire
du coefficient d'influence ^-i __ j^(epg\

Une decomposition lineaire de epq donne des lors

k k

Nous avons vu que nous obtenons la pulsation fundamentale en adop-
tant pour deformee arbitraire le premier mode normal zt et dans ce cas

k

A chaque terme epg de la decomposition de epq correspond un Systeme
partiel qui conserve la repartition massique primitive, mais presente une
strueture elastique differente de celle du Systeme propose. Soit lxk le carre
de la pulsation fundamentale du khme Systeme; comme la fonetion zt dif-
fere en general du premier mode de chacun des systemes partiels, nous
aurons, suivant le theoreme de Rayleigh

*7* » I, (eP)

En effet, Pequation energetique ne fournit dans ce cas qu'une borne
superieure de la premiere pulsation propre de ce Systeme partiel.

Rapprochons cette inegalite de Pegalite precedente, nous obtenons

Ai ^ 2ja>u
k

ou encore __ 1

k

d'oü le theoreme important: si une decomposition des coefficients
d'influence fournit des systemes partiels dont on

peut evaluer les pulsations f on d am e n t a 1 e s, la formule
precedente permet de fixer une borne inferieure de la
frequence fondamentale du Systeme propose. De plus, les
conditions extremes dans lesquelles joue le theoreme de Rayleigh garantis-
sent en meme temps une bonne valeur approchee de Xv

En fait, le theoreme de Rayleigh traduit un principe bien connu de la
theorie des valeurs propres; c'est ce qui explique qu'on peut formuler son
equivalent dans Petude des charges critiques d'un Systeme dont la stabilite
depend de charges statiques exterieures. En general, il s'agit d'un
probleme de flexion ordinaire et il se fait que le cisaillement n'a souvent pas
grande influence sur la valeur de la charge de flambage Pcr. C'est en tout
cas ce que nous supposons ici, quitte ä faire subir aux resultats les corrections

voulues pour tenir compte de Pelancement fini des differentes parties
du Systeme.
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Soit öpq le coefficient d'influence angulaire (angle de deformation en p
sous Paction d'un moment unitaire en q); yp est la Variation angulaire de la
tangente ä la «fibre neutre» en p.

La part du travail exterieur qui interesse la stabilite vaut

c'est la somme des travaux effectues par les moments elementaires

dMp Pyp dlp

dlv se rapportant ä la fibre neutre.
La Variation d'energie potentielle correspondante est

]Pypdlp\ÖPq.P.yqdlq,
de sorte que Pequation energetique donne enfin

p-i _ /J ^yPyqdlpdlq
\fpdl„ '

la suite du raisonnement est analogue ä celui qui precede. Pareillement,
une decomposition lineaire du coefficient angulaire

k

permet, si Pon connait les charges critiques «partielles» correspondant aux
systemes (k), d'evaluer une borne inferieure de la charge critique Pcr par
laformule /w(2/vV (2)

k

Remarque.
II ne manque pas d'interet de noter qu'il correspond ä ces inegalites

des formules qui tiennent compte des differentes harmoniques des valeurs
propres l et P. Designons par lt le carre de la /^e pulsation propre du
Systeme; on peut montrer en toute generalite que

]ewdmp= ^ll1*
i

la sornme s'etendant ä tous les modes normaux.
D'apres cela, une simple decomposition des coefficients d'influence lo-

caux suffit ä donner ^ ^J1 S S tä (3)
/ k i

en notant par Xlk le carre de la /«ne pulsation propre du Systeme partiel (k).
De meme, les charges critiques «harmoniques» du Systeme propose et de
systemes partiels verifient la formule suivante

2 pj' s s Pr*1 (4)
/ k i

Pareilles formules peuvent s'averer utiles si Pon dispose tout au moins
de formules asymptotiques des valeurs propres d'ordre superieur.

Decomposition generalisee des masses et des coefficients d9influence.
On aura releve la parfaite similitude qui relie les formules (1) et (3)

avec les resultats que Pon obtient par decomposition des masses. En fait,
on peut toujours effectuer une decomposition ulterieure des systemes par-
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tiels, indifferemment du point de vue des coefficients d'influence ou des
masses, sans changer le sens de Pinegalite (1). Pour resumer ceci, notons
qu'une decomposition quelconque du produit eppdmp dans Pintegrale ecrite
plus haut conduit directement ä la formule (3), qui se trouve ainsi validee
pour une decomposition generalisee et des masses et des coefficients d'in-
fluence.

Application des formules de decomposition.
Nous allons eprouver Pefficacite de ces formules dans quelques exemples

de Vibration et de flambage, ce qui va nous permettre de fixer les meilleures
conditions d'application de la nouvelle methode.

Problemes de Vibration.
Poutre sur appuis elastiques.

Envisageons le cas simple d'une poutre de masse m par unite de
longueur et de caracteristiques constantes; soient K± et K2 les constantes de
rigidite des appuis4).

La resolution exacte conduit ä une equation aux frequences contenant
des fonetions circulaires et hyperboliques, dont la Solution peut s'obtenir
par tätonnement dans chaque cas particulier.

Nous pouvons considerer ici deux systemes partiels qui decomposent
les coefficients d'influence; le premier suppose les appuis rigides, tandis
que le second comporte une poutre inelastique, ä la difference des appuis.
Dans le premier cas, le carre de la pulsation d'ordre n se retrouve dans la
formule classique ^ w 4

„, El lnn\
kn~ mVf)

tandis que les deux frequences propres du second Systeme (ä deux degres
de liberte) resultent d'un calcul elementaire; on trouve

2 ml v l z/

la formule (1) fournit une borne inferieure de la premiere pulsation

Le facteur yt fait ressortir Finfluence de l'elasticite des appuis sur la
frequence fondamentale de la poutre; il vaut

_
1

r'~ i + £(i + i-yr+3£)
formule dans laquelle nous avons pose

(Ki — K2

naturelle ^j

=^a.+«) - '=t
Ces parametres mesurent respectivement Pelasticite de Pensemble des

deux appuis vis-ä-vis de celle de la poutre, et la difference de raideur
relative entre les appuis.

4) Nous entendons par lä qu'une force agissant sur Pappui dont la constante est
K provoque un deplacement F/K-

Abhandlungen VII 5
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II s'agit maintenant d'evaluer le degre d'approximation atteint par cette
formule. Plagons-nous au point de vue de Pingenieur et cherchons une borne
superieure de la premiere pulsation par la methode dite de Rayleigh5).
D'apres le theoreme rappele plus haut, on obtient une valeur approchee
par exces en adoptant une deformee proche du premier mode normal, par
exemple x nxz — a + (b — a) ' + f sin ——

L'abscisse x se compte ä partir de Pun des appuis. Les constantes a,
b et c sont determinees par les conditions aux limites. Introduisons z dans
Pequation energetique T U
nous obtenons

*•="{")'¦*
le facteui valant cette fois

1 + 2s

1 ^As + Y~(1 +
Le diagramme (PI. I, fig. a) donne les courbes de yt et ys en fonetion de s,

dans les cas extremes oü ß=0 (appuis egalement elastiques) et ß= 1 (Pun
des appuis est rigide). On notera la modeste influence deß sur la valeur de^;
c'est donc surtout Pelasticite d'ensemble des appuis (s) qui modifie la
frequence fondamentale de la poutre.

Nous y joignons une courbe donnant le pour-cent d'erreur possible e
au cas oü Pon adopte une valeur moyenne de X:

ls—Jj,

On remarquera que cette marge d'erreur est tres faible pour les valeurs
de s, soit tres petites, soit tres grandes. c. ä d. suivant la preponderance de
Pelasticite de la poutre ou des appuis. En effet, le Systeme donne tend dans
ce cas ä se confondre avec Pun des systemes partiels formes, les frequences
de Pautre Systeme deviennent tres grandes, de sorte que leurs inverses
peuvent etre negligees dans la formule (1).

Remarque.
II est interessant d'observer ce que donne la formule (3) dans cet

exemple: on a ^ ^
2j ^i — 2j ^n + 2j i
i l n=l 1,2

Les expressions de Xn' et de X" donnent au second membre

mP ml i 1 1

90£7 + 3~ fe AV

Poutre semi-encastree.

Nous supposons qu'un moment A4 agissant au droit de Pencastrement
imparfait produise une rotation Ai/C de la tangente ä Pelastique en ce point.
La poutre est supposee homogene sur toute sa longueur.

5) Voir par ex. Den Hartoo, «Mechanical Vibration».
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L'equation aux frequences ou «determinante» comporte egalement des
fonetions circulaires et hyperboliques et peut se resoudre par tätonmemeats.
Une decomposition des coefficients d'influence conduit cependant imme-
diatement ä une valeur approchee, par defaut, de la premiere frequence
propre.

Le premier Systeme suppose Pencastrement parfait (C oo). On dis-
pose du resultat classique 6)

X'=k — (y] avec k (0,597...)* 0,127

Le second Systeme suppose la poutre rigide mais semi-encastrce; ont
trouve aisement pour le carre de la pulsation

3Cr ml*

L'approximation par defaut (1) devient ici

EI«.-».=(«-+1"-)-=^'i:)-*.
avec

^
k /* n±

3

ElLe parametre ^^-r-mesure Pelasticite relative du semi-encastrement

et dd la poutre. Une borne superieure de X± s'obtient de maniere moins
simple par la methode de Rayleigh. Adoptons cette fois la deformee
approximative „X TT X

z=zn+px + q-~ rcos —j-

et fixons n, p, q, r conformement aux conditions aux limites, nous obtenons

suivant Pequation energetique une pulsation approchee par exces dont
le carre vaut 4

K= m (l) 'ks

aVeC Q I Q3 + 8^
7+ —3- + 10 + <"'16 + 4jT + n) + ^ T"

A Pencontre de la borne inferieure, Xs ne se confond pas avec X± pour
Pencastrement parfait (^ 0). On a dans ce cas &, 0,1284, superieur de
1,1 o0 ä £ 0,1270.

La borne inferieure semble donc fournir une meilleure approximation
malgre sa forme plus simple. L'erreur maxima qu'offre Padoption d'une
valeur moyenne de X± correspond ä la moitie du pourcentage de Pecart
indique sur le diagramme de la planche I, fig. b, ce qui met en evidence Pex-
cellente approximation de ces resultats. En pratique, on pourrait adopter ici
sans plus Pexpression plus simple de Xt que fournit une decomposition des
coefficients d'influence.

6) Lord Rayleioh, «Theory of Sound».
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Systemes de poutres ä noeuds rigides.
Les vibrallons de pareils systemes fönt intervenir Pinertie d'oscillation

aussi blen angulaire que lineaire; le theoreme de decomposition des coefficients

d^influence jpourra etre applique, ä condition de definir un coefficient
d'influence generalise qui englobe les coefficients lineaires et angulaires.
Nous ne reprenons pas ce sujet ici; qu'il nous suffise de remarquer que pa-
reille definition se fait fort simplement7). La recherche d'une borne
inferieure peut donc se faire suivant notre methode; nous en trouvons un exemple
dans le cas du poteau en forme de T.

Poteau en T.

Soit ä chercher la pulsation propre fundamentale d'un poteau en T,
oscillant dans son plan (Fig. la). Nous faisons ici abstraction des charges
exterieures eventuelles que portent les bras, ainsi que de Pinfluence du poids
de la superstructure sur la frequence du poteau vertical. Notons cependant
que la marche ä suivre en cas de charges exterieures n'est pas differente.

Nous supposons pour simplifier Pexemple que le Systeme puisse etre
assimile ä deux poutres de caracteristiques (EI, m) et (ET, m') constantes
sur leurs longueurs (Fig. lb). La resolution exacte conduit ä une equation
difficile ä resoudre. Une decomposition des coefficients d'influence est ici
tout indiquee.

i il'-vJVJ
rr
\ m

I
Fig. 1

Un premier Systeme comporte des bras rigides (I), le second suppose
ces bras flexibles, mais encastres rigidement ä leur naissance. Ce Systeme
(II) se resoud immediatement; on a

ET /ji\4
~mT\T) (k 0,127)

La resolution du premier Systeme: poutre encastree munie ä Pextremite
2 m'i3

libre d'une masse 2 m'i, d'inertie polaire —^—, peut se faire de maniere

exacte8). Mais Pequation determinante ne peut se resoudre sans tätonne-
ments; il est donc utile de pousser plus loin la decomposition, cette fois,
du point de vue des masses, en considerant deux sous-systemes derives du
Systeme (I) par Separation des masses mh et 2m'i (Fig. 1).

7) Voir par exemple: Hohenemser, «Die Meth. z. angenäh. Lös. v. Eigenwertpr.
in der Elastokinetik» (Ergebn. d. Math. u. ihrer Grenzgeb.) 1932 ou Biezeno und
Grammel, «Technische Dynamik».

8) Wilh. Hort, «Techn. Schwingungslehre».
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La premiere frequence du Systeme (P) est celle d'une poutre simple en-
castree; eile provient de la formule

%i k
EI /7t\A
m \h) (k 0,127)

Le Systeme I" comporte une masse rigide 2m'l ä Pextremite d'une poutre
h depourvue de masse. La premiere frequence se calcule sans difficulte;
on obtient ~FJ

*' IrnF (] + v'1 - irrT7T\)
oü y remplace hjl. D'apres la formule de Dunkerley on a

1

l/M*/ + *>t ' * — (-rm\h) i + ^L(l+ y*_ Vy±+y* + l)-i
II reste ä reunir les resultats obtenus^ suivant la formule (\)\
i ^ (xj1 + xjj1)-1 ^ it (x'r1 + X'i"1 + 11?)'1

En fait, nous avons realise ici une decomposition generalisee des masses
et des coefficients d'influence.

Nous avons ainsi obtenu

h £7/^4
m\ h
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l + ^i(l+y2.3y
yy4+y2 + 1)-i + ßt*

avec £7
£7"

h_

T et

A titre de contröle, nous avons recherche une borne superieure par la
methode de Rayleigh, en adoptant par approximation un mode de Vibration
de la forme (v. fig. 2)

1 Tl/Ll f
U /, U\«=i-cos-f+ rT(A + <T)

Les coefficients p, n, b, c sont determines par les
conditions geometriques aux limites. Nous trou-
vons de cette maniere, apres d'assez longs calculs,
une borne superieure
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2jt2 n2 f 4 _ 2jt2 ji4
*=-/»" + " et C T + ,+^ C=7+T+TÖ-

La comparaison entre les bornes superieure et inferieure est suggestive;
leur aspect rend un compte assez exact des calculs qu'exige leur obtention.
En ecrivant _ _

s m \h) s

on peut comparer les valeurs de kL et de ks dans un cas donne; par exemple
P°Ur

y 2, f(=0,5 et ß 4

noustrouvons ki=0fi350 et *s 0,0354

c'est ä dire un ecart entre les deux bornes de Pordre de 1 pour-cent.
Si on adopte une valeur moyenne, Perreur est certainement inferieure

au demi-pour-cent, ecart qui se reduit encore ä sa moitie pour la pulsation,
racine carree de X.

On voit par cet exemple qu'il est en meme temps avantageux et süffisant
d'evaluer X par sa borne inferieure, donc par une simple decomposition en
systemes partiels.

Remarque.

II est des problemes de vibrations tournantes qui se pretent egalement
ä une resolution rapide par decomposition des coefficients d'influence. Un
exemple remarquable est celui du couplage des vibrations d'une helice avec
les oscillations de torsion de Parbre coude qui Pentraine. II s'agit ici des
vibrations de flexion de Phelice dans le plan de rotation. On pourrait tenir
compte de la presence d'engrenages reducteurs en appliquant aux frequences
le rapport de transmission realise. Soit /' la frequence fundamentale de
Parbre coude, calcule en supposant Phelice non flexible. Soit /" celle de
Phelice supposee accouplee ä un arbre inelastique. Notons qu'en general on
adapte une helice de marque connue, de sorte qu'on peut le plus aisement
determiner f" en accouplant une masse de moment d'inertie equivalent ä
celui de Parbre. D'apres le theoreme de decomposition on a

/^(r2 + /-2)-2
le second membre donnant une bonne valeur approchee de la frequence
fondamentale /.

Problemes de stabilite.
La methode de decomposition des coefficients d'influence semble de-

voir prendre dans les problemes de Vibration une importance egale ä celle
de la decomposition des masses; par contre, dans les problemes de stabilite,
il ne petit etre question de decomposer des masses.

Seule une decomposition des coefficients d'influence permet de sim-
plifier la recherche de charges critiques par la formation de systemes
partiels plus facilement resolubles. Donnons-en quelques exemples.

Poutre semi-encastree, sollicitee axialement.
Le coefficient C de semi-encastrement conserve la signification qui lui

a ete donnee precedemment. L'equation determinante prend la forme
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if-ffiEl — EI',
P l2

la courbe en trait plein (PI. I, fig. b) donne la premiere racine ^ en fonetion

de ju EI/Cl. Une decomposition des coefficients d'influence angulaires
peut s'effectuer dans ce cas avec les systemes partiels adoptes dans le
probleme des frequences.

Le premier Systeme suppose Pencastrement parfait; on a

__
Ji2n2EIln~ AI2

Le second suppose la poutre non flexible, ce qui donne

rP" —/
La formule (4) permet d'ecrire

kri ~nh n + i ~ 3ei+ i
La borne inferieure de la charge critique resulte de (2)

Pcr ^ Pt (P'-l + P""l)-1
jr*EI l

412 i ,/^^ 4

La courbe en trait interrompu donne Pallure de Pt; on constate que dans
les conditions les moins favorables eile s'ecarte de moins de 5 o/0 de la
valeur exacte. Sa determination par decomposition des coefficients d'influence
suffit donc en general aux besoins de la technique.

Poutres ä sections discontinues sur la longueur.
Soit une colonne encastree ä sa base, comportant un certain nombre de

sections differentes, par exemple deux, dans les parties a et b (PI. II, fig. a).
L'equation determinante du probleme de la stabilite sous Paction de charges
axiales, est

*-1h-«>iirt=fi!h
Une borne inferieure de la premiere racine Pcr peut etre determinee

en envisageant deux systemes partiels. Dans le premier, nous supposons
la partie a rigide; nous avons immediatement

n2EIhP'
Ab2

Le second Systeme est forme en supposant la partie b rigide ä son tour
(EIh =- oo). L'equation determinante

aim.*aiTr. ir- a a
h a 4- b

se resoud plus facilement que l'equation precedente. Soit P" la premiere
racine, on a
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Ce probleme est equivalent ä Petude de la stabilite d'une poutre ren-
forcee ä sa partie centrale, soumise ä Paction de deux charges axiales (PI. II,
fig. a). Ce dernier probleme a ete resolu exactement 9), de sorte que nous
pouvons comparer les valeurs exactes de Pcr aux bornes inferieures fixees
par notre methode. Dans ce but, nous avons ecrit

P" k ~A¥
Le facteur k exprime Paugmentation de la stabilite due au renforcement

central. La borne inferieure a ete affectee du facteur k''. Un diagramme re-
produit les variations de k et de k' (PI. II, fig. a).

Remarque.

L'exemple precedent nous a revele qu'une valeur approchee par defaut
de la premiere racine de l'equation

ArtgA: — v
est donnee par Pexpression

9 n"X'= 4

1

' + *r
Nous pourrions appliquer ceci au second Systeme partiel et ecrire

^ Aa2 \-m*r r 4
de sorte que

n 1ff 7l2EIfy ,„ l
Per ^ * * ,o aVeC * F ^Ahi 0-')'+^+<l + /)?j

Cadre ä trois articulations.
Une charge P agit au droit du noeud rigide C (Fig. 3). Le probleme de

la charge critique a dejä ete resolu10), ce qui permet un controle des
resultats que va nous livrer tres rapidement une decomposition des coefficients
d'influence.

Les systemes partiels s'obtiennent en supposant successivement les par-
ties DC et CB rigides. Dans le premier Systeme, nous nous trouvons, en
mouvement relatif, dans le cas d'une poutre CB encastree-libre, c. ä. d.

n^Eh
Ah2

Le second Systeme se resoud facilement. Soit M le moment agissant en
C; Pangle de deformation en ce point vaut (Fig. 3)

Ml~ ~3Eli;
or ce moment vaut w ^,M Ph o<

&) V. Ratzersdorfer, «Die Knickfestigkeit von Stäben und Stabwerken».
10) Wilh. Bültmann, «Die Stabilität des Dreigelenkrechteckrahmens» (Der Stahlbau,

14, 1941, S. 3).
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de sorte qu'on trouve P" — 3E/i
hl

On dispose enfin d'une borne inferieure gräce ä la formule (2)

Pcr~^ Pi (P'-i + P"~iy
nous y posons

r'=2j/l + 12c avec

{q'hf
Ehh
Ehlc

Or il se fait que Chwalla (DIN. E. 4114) a indique une formule
approximative reproduisant les resultats d'une Solution rigoureuse,
«Faustformel», dont l'expression est la suivante

ol/i 0,7 0,035
q 2y\ + ~'c+^r- pour c^; 2, sinon q ^, + <*

dans la formule / cy —
n2 Ein

Notons que y^ 0,82 > 0,7 ce qui verifie le sens de Pinegalite
Per > Pi

Le tableau suivant renseigne Papproximation atteinte par notre borne
inferieure.

c EIrhlEIh-l q' q approx.

1

2
3
4

2,635
2,320
2,220
2,170

2,696
2,375
2,555
2,195

6,6%
4,3°/o
3,2%
2,5%

0\ >^

Fig. 3

MO,

(1'P)h Oh

mfr7T ~W777T

Fig. 4

Remarque.
C'est la partie superieure du montant h qui se trouve la plus sollicitee.

II est naturel de chercher ä augmenter la stabilite du Systeme en renfor-
gant cette region (Fig. 4). Soit q • h la portion de h renforcee, et soit jaEIu
sa caracteristique elastique.

Nous pouvons envisager trois systemes partiels, definis en ne conser-
vant successivement que la flexibilite des parties DC, CO et OB et nous
avons dans ce cas p^ __ /p,~i _j_ p,,-x ^ p^-n-i
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Toutefois Pensemble CO, OB a dejä ete traite dans le cas d'une
colonne presentant deux sections differentes. Nous avions trouve

TL2 EIjt^COB
Ah2

Le facteur k (ou k', k"...) traduit le renforcement du montant. Nous
obtenons de cette maniere

Pcr^>
7t2 Elfi

avec nk + \2c '

ceci Concorde absolument avec la formule approchee donnee par Bültmann
apres une resolution rigoureuse, mais plus longue, du meme probleme.

Probleme de stabilite de la poutre Vierendeel.

Remarquons d'abord qu'un cadre ä noeuds rigides, que nous considerons
comme la cellule de la poutre Vierendeel, peut etre etudie ä partir du
probleme precedent. En fait, le cadre sollicite en ses quatre sommets peut, au
point de vue deformation, etre suppose articule en A, B, C et D et relie
ä une articulation centrale 0 (Fig. 5); ceci nous restitue le probleme du cadre
ä trois articulations, de sorte qu'on a

;>>
n2EIh

avec 2l/l +t
HY

\2c

ou

et

Sn^EJh

c Eli-hlEIh ¦ l

D'ailleurs, une decomposition des coefficients d'influence nous mene-
rait directement au meme resultat (Fig. 6). II est plus interessant d'operer

+

X ^S

Fig. 5

p ~ p

nr

T I -
Fig. 6

cette decomposition dans le cas general de la poutre ä n cellules. Le
Systeme partiel I suppose les barres transversales rigides; la charge critique
partielle peut etre evaluee sans peine ä

1

_ n>EIk
2 ~

a tfiV c. ä d. P' 2n2EIh

4(»y --- ¦ - *•

eile ne depend pas du nombre d'etages, car nous faisons momentanement
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abstraction de toute deformation longitudinale des poutres. Le second
Systeme partiel suppose les poutres principales inelastiques; d'apres la fig. 7:

Ml

et comme !/11 M\
M — P • nhoc fL n

'

^\ + n 2 yp^_j£*^-—
on a /L i.^TJ

p» * + \2 —Ih
La formule de composition (2) donne

Fig. 7

8ji2EIh
(9 h)2

avec

2j/l + ^±±r
ce qui constitue une generalisation de la formule trouvee pour une cellule.
Notons que pour des valeurs de n suffisamment grandes, nous pouvons
ecrire i

Sous des hypotheses identiques, la meme formule peut s'appliquer au cas
donne PI. II, fig. b. Ceci nous amene ä faire une comparaison entre nos
resultats et ceux que Pon obtient dans ce dernier casu) dans les memes
conditions d'indeformabilite longitudinale des poutres (v. courbes PI. 11,

fig. b).
La comparaison se fait en posant

_ 2EIhz2
lcr~ h2

2jt
le coefficient z' correspondant ä notre formule vaut z' —.

Remarque.
L'influence de la deformation longitudinale se fait sentir d'autant plus

que n est grand. La theorie qui en a ete faite12) donne une resolution assez
simple dans le cas oü les traverses sont supposees rigides. Or ceci correspond

ä notre premier Systeme partiel.
Les courbes construites dans cette hypothese 13), donnent z en fonetion

du parametre 4 % j
F designant la section des poutres principales. On trouve ainsi

P'= 2z2EIh\h2

n) V. Ratzersdorfer, loc. cit.
12) Ratzersdorfer, loc. cit.: Der Rahmenstab, S. 201 u. 210.

13) Les courbes en traits Continus de la PI. IV ont ete empruntes ä l'ouvrage de
M. Ratzersdorfer.
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Moyennant cette correction, on pourra tenir compte de la flexibilite
des traverses en la combinant avec la valeur precedente de P"

gräce ä la formule (2)

p* .l+Li2^n In

Pcr^(P'~x + P"'1) l>

Conclusion.
Les exemples qui precedent permettent quelques conclusions. Nous

avons vu qu'une decomposition des coefficients d'influence conduit ä une
valeur approchee (par defaut) du premier nombre propre (frequence ou
charge critique) d'un probleme.

L'approximation est meilleure, semble-t-il, dans les problemes de Vibration

que dans ceux de flambage, fait qui s'harmonise heureusement avec
les exigeances de la technique; en effet, ce qui interesse generalement Pin-
genieur, c'est une valeur aussi approchee que possible de la frequence, tandis
qu'il lui suffit de connaitre simplement une borne inferieure d'une charge
critique. Pourvu que cette borne ne s'ecarte pas exagerement de la valeur
exacte, une approximation meilleure perd un peu de son interet en se noyant
dans les corrections «d'elancement» et dans le coefficient de securite.

Nous avons pü remarquer que la determination de valeurs approchees
par exces par Pune des methodes energetiques, variationnelles iteratives etc.

exige des calculs plus longs que Pevaluation d'une borne inferieure par notre
methode.

Notons enfin qu'une decomposition des coefficients d'influence n'est
pas toujours applicable; eile est par contre indiquee dans les cas oü la com-
plexite de la strueture elastique permet de former des systemes partiels plas
simples. Joints aux cas de systemes oscillants, oü la complexite de la
repartition des masses appelle egalement une decomposition, ces derniers
problemes sont precisement ceux dont la resolution directe s'avere la plus
ingrate.

Resume.

II est question de surmonter, en la divisant, la difficulte que presentent
certains problemes de Vibration et de stabilite de systemes ä struetures
elastiques complexes. On montre a cet effet qu'une definition de systemes
partiels par decomposition des coefficients d'influence permet de determiner
une valeur approchee par defaut de la frequence fondamentale ou de la
charge critique, suivant une formule de decomposition quadratique des pe-
riodes, respectivement de decomposition lineaire des inverses des charges
critiques.

Quelques exemples traitent de vibrations de poutres sur appuis elastiques,
de poutres semi-encastrees, egalement de la stabilite de ces dernieres sous
charge axiale, ainsi que des charges critiques de poutres ä sections discon-
tinues sur la longueur, de cadres ä trois articulations, enfin de la poutre
Vierendeel.

Ces exemples, choisis de maniere ä perrnettre le controle des resultats,
conduisent aux conclusions suivantes: 1° l'approximation est en general sa-
tisfaisante du point de vue technique. 2° Elle est meilleure dans les
problemes de Vibration que dans ceux de flambage, circonstance fort heureuse
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du point de vue pratique. 3° La nouvelle methode vient, non pas remplacer
d'autres dejä existantes, mais en completer Parsenal, quoique les calculs
qu'elle demande soient generalement plus reduits que ceux qui surgissent
dans Pevaluation de bornes superieures par des methodes energetiques ou
autres.

Zusammenfassung.
Die Schwierigkeiten, welche gewisse Schwingungs- und Stabilitätsprobleme

von verwickelter Struktur bieten, werden durch Unterteilung behoben.
Es wird gezeigt, daß an Hand der Definition von Partialsystemen, die durch
Zerlegung der Einflußkoeffizienten möglich ist, ein angenäherter Wert (untere

Schranke) der Qrundfrequenz oder der kritischen Last bestimmt werden
kann; dies geschieht mittels einer quadratischen Zerlegungsformel der
Perioden, beziehungsweise durch eine lineare Zerlegung der Reziproken der
kritischen Belastungen.

Einige Beispiele behandeln die Schwingungen von elastisch gelagerten,
halb eingespannten Balken, sowie auch deren Stabilität unter axialer
Belastung; ferner werden die kritischen Lasten von Balken mit veränderlichem
Querschnitt von Drei-Qelenkrahmen und Vierendeelträgern untersucht.

Die Beispiele sind so gewählt, daß die Resultate leicht kontrolliert
werden können. Die Folgerungen seien kurz zusammengefaßt:

1. Vom technischen Standpunkte aus sind die Näherungen genügend
genau.

2. Diese sind in den Schwingungsproblemen besser als in den
Knickproblemen, was für die Praxis erfreulich ist.

3. Die neue Methode soll nicht andere, schon bestehende ersetzen^
sondern vielmehr ergänzen. Dabei ist der Arbeitsaufwand im allgemeinen kleiner
als bei denjenigen Methoden, welche durch eine Energiebetrachtung eine
obere Grenze zu bestimmen suchen.

Summary.
The difficulties which are incurred in certain Vibration and stability

Problems in Systems of complicated elastic strueture, are surmounted by
subdividing them. It is shown that a definition of partial Systems by re-
solving the influence coefficients, allows an approximate value of the
fundamental frequency or of the critical load to be determined; this is effected
by means -of a quadratic formula of resolution of the periods, or a linear
resolution of the reeiproeals of the critical loads.

A few examples are given regarding vibrations in elastically supported
beams, in beams fixed at one end, and also regarding the stability of the
latter under axial load, as well as the critical loads for beams with variable
cross-sections, three-hinged frames and Vierendel girders.

The examples are chosen so that the results can easily be checked. The
conclusions reached are briefly as follows:

1. The approximations are sufficiently aecurate for practical technical
requirements.

2. The approximations are better in the Vibration problems than in the
buckling problems, a fact which is satisfactory in practice.

3. The new method is not intended to replace existing methods, but
rather to amplify them. The amount of work involved in calculating with
the new method is in general much less than when an endeavour is made to
determine an upper limit from energy considerations or otherwise.
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