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DECOMPOSITION DES .
COEFFICIENTS D'INFLUENCE DANS LES PROBLEMES

DE VIBRATION ET DE FLAMBAGE.")
[DETERMINATION APPROCHEE DE FREQUENCES OU DE CHARGES CRITIQUES]

ZERLEGUNG DER EINFLUSSKOEFFIZIENTEN IN DEN
SCHWINGUNGS- UND KNICKPROBLEMEN.

RESOLUTION OF THE INFLUENCE COEFFICIENTS IN PROBLEMS
OF VIBRATION AND BUCKLING.

FELIX BUCKENS, Ing. civ. Mécanicien-Electricien U. . Lv., Docteur en Sciences Appliquées,
Chargé de Recherches au Fonds National de la Recherche Scientifique Belge, Héverlé (Louvain).

Les systemes physiques dont s’occupe la théorie de 1’élasticité se dé-
finissent complétement par la répartition des coefficients d’influence et par
la distribution des masses.

Nous conserverons dans la suite de cet article le sens ordinaire attaché
au mot coefficient d’influence en Résistance des Matériaux, celui d’un coeffi-
cient de proportionnalité entre 'effort agissant en un point d’un systeme
et le déplacement résultant en un autre de ses points.

On congoit qu'un systeme a n degrés de liberté se caractérise par un
tableau de n? coefficients d’influence. Ce tableau est symétrique par rapport

a la diagonale principale, dont les éléments sont dits «locaux»; en effet le
coeff1c1er1t «mutuel» 7, qui mesure le déplacement suscité en p par une
force unitaire agissant en ¢, suivant des directions données, ce coefficient est
égal a son symétrique ¢?7, selon le théoreme de réciprocité de MAXWELL.

Lorsqu’il s’agit d’un probléme de dynamique, par exemple de vibration,
il faut joindre a ce tableau la répartition massique, de maniere a disposer
de toutes les données nécessaires a la résolution. Si cette répartition se
préte a une décomposition en systémes «partiels», que ’on obtient en y fai-
sant figurer successivement certains groupes de masses, tout en conservant
la structure élastique primitive, on peut se réclamer de la formule de Dun-
KERLEY 2) pour calculer une borne inférieure de la premiére fréquence propre
du systeme. En appelant /; les fréquences fondamentales des systémes par-

tiels, nous avons:
fr< 2l

1) Cet article résume Vessentiel d’une theése de Doctorat en Sc. Appl. présentée
aux Ec. Spéc. de P’Univ. Cath. de Louvain. Nous nous limitons a une décomposition
linéaire des coefficients d’influence, pratiquement la plus importante, et évitons toute
discussion de possibilité des décompositions. Nous nous sommes servi de cette théorie
dans un travail qui obtint le Prix Scientifique Interfacultaire L. EmpaiN, en 1941.

2) Obtenue empiriquement par DunkerLey (Phil. Trans. R. S. London A Vol. 185,
1894) cette formule fut démontrée par E. Haun (Schweiz. Bauz., Vol. 72, 1918) et
par F. H. van peN Duncen (C. R. Acad. Sc. Paris, Vol. 177, 1023).
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En général I'inégalité entre les deux membres est peu prononcée; elle
doit plutot servir a indiquer le sens de 'approximation obtenue en la rem-
placant par une égalité.

Nous allons montrer qu’il est possible d’utiliser une formule analogue
en procédant a une décomposition, non plus des masses, mais de Pélasticité,
ou pour étre plus précis, des coefficients d’influence du systeme. En nous
limitant 3 des problémes de stabilité et de vibration de systémes €lastiques,
nous pouvons éviter la question délicate de la possibilité générale d’une telle
décomposition. Il nous suffit de montrer que les différents systemes par-
tiels soumis a un type quelconque de sollicitations extérieures reproduisent
par superposition des déformations respectives la déformation du systeme
primitif.

Nous verrons que cette vérification se fait en général directement dans
toute décomposition des coefficients d’influence. Quant a la décomposition
et A la maniére correcte et efficace d’y procéder, c’est de facon tres intuitive
et toute naturelle que 'on y arrivera par la suite.

Démonstration de la formule de décomposition.

Nous prenons pour point de départ le théoreme de RAYLEIGH. Rap-
pelons-en le principe. On sait que pour chaque mode normal de vibration,
les amplitudes de variation des énergies potentielle (U) et cinétique (7') sont
égales en vertu du principe de conservation de I’énergie totale, en 1’absence
de frottements et de sollicitations extérieures. Ces énergies s’expriment en
fonction des données massiques et élastiques du probleme, mais aussi en
fonction des déformations et fréquences, grandeurs qu’il s’agit de déterminer.

Ces deux inconnues peuvent toutefois se déterminer grace a une pro-
priété extrémale de ’équation énergétique ‘

T =2U.

Supposons en effet que nous adoptions une déformation arbitraire qui
soit une fonction sinusoidale du temps. Des lors, la fréquence de cette
fonction découlera de I’équation précédente. ,

La fréquence «forcée» ainsi obtenue difféere généralement de la ou des
fréquences naturelles du systéeme. On montre cependant facilement que si
Von fait varier de maniére trés générale la déformée arbitraire adoptée, cette
fréquence «forcée» passe par un extremum chaque fois qu’il se produit une
coincidance avec 'un des modes normaux.

Cet extremum est évidemment égal dans ce cas a la fréquence natu-
relle qui correspond a ce mode. Tel est le théoreme de RAYLEIGH: on voit
immédiatement que le minimum absolu de la fréquence forcée se situe au
niveau de la fréquence propre fondamentale3).

[1 suffit donc de se donner une déformation arbitraire, toutefois pas
trop différente du premier mode normal, pour obtenir une fréquence «forcée»
peu différente de la fondamentale, et qui peu servir de borne supérieure a
celle-ci.

Nous appliquons ce théoréme a une décomposition linéaire des coef-
ficients d’influence, et cela de la manieére suivante.

Soit 4 le carré de la pulsation, z, "amplitude corrspondant a 1’élément
de masse dm,, enfin e le coefficient d’influence; le maximum de I’énergie
cinétique vaut

. %) Dans le cas des modes normaux supérieurs, il existe un théoréme de maximum
minimorum dit & Courant.
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L {22 dmy
Pintégrale étant étendue au systeme entier (éventuellement au sens de
StiELTJES). L’énergie potentielle maxima s’écrit
A2 [[ €79 zp 2y dmydmy,
de sorte que I’équation énergétique donne
f erq z,2, dmy, dm,
f zf) dm,,

Al —

D’apres cela, 'inverse du carré de la pulsation est une fonction linéaire
du coefficient d’influence ot = L(era)

Une décomposition linéaire de e»? donne des lors
It = L(Xef) = 2Lk
% %

Nous avons vu que nous obtenons la pulsation fondamentale en adop-
tant pour déformée arbitraire le premier mode normal z; et dans ce cas

= L, (er?) = D Ly (e})
k

A chaque terme e’7 de la décomposition de e”? correspond un systeme
partiel qui conserve la répartition massique primitive, mais présente une
structure élastique différente de celle du systéeme proposé. Soit 1,, le carré
de la pulsation fondamentale du k¢me systeme; comme la fonction z; dif-
fere en général du premier mode de chacun des systemes partiels, nous
aurons, suivant le théoréeme de RAYLEIGH

Aie = Ly (eh)

En effet, I’équation énergétique ne fournit dans ce cas qu’une borne su-
périeure de la premiere pulsation propre de ce systeme partiel.
Rapprochons cette inégalité de 1’égalité précédente, nous obtenons

s S

1 = (; A1), (1)

d’oit le théoréeme important: si une décomposition des coeffi-
cients d’influence fournit des systémes partiels dont on
peut évaluer les pulsations fondamentales, la formule
précédente permet de fixer une borne inférieure de la
fréquence fondamentale du systéme proposé. De plus, les
conditions extrémes dans lesquelles joue le théoreme de RAYLEIGH garantis-
sent en méme temps une bonne valeur approchée de i,.

En fait, le théoreme de RAYLEIGH traduit un principe bien connu de la
théorie des valeurs propres; c’est ce qui explique qu’on peut formuler son
équivalent dans P’étude des charges critiques d’un systéeme dont la stabilité
dépend de charges statiques extérieures. En général, il s’agit d’un pro-
bleme de flexion ordinaire et il se fait que le cisaillement n’a souvent pas
grande influence sur la valeur de la charge de flambage P.. C’est en tout
cas ce que nous supposons ici, quitte a faire subir aux résultats les correc-
tions voulues pour tenir compte de I’élancement fini des différentes parties
du systeme.

ou encore
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Soit é77 le coefficient d’influence angulaire (angle de déformation en p
sous l"action d’un moment unitaire en ¢); y” est la variation angulaire de la

tangente a la «fibre neutre» en p.
La part du travail extérieur qui intéresse la stabilité vaut

Py }’i dly;
¢’est la somme des travaux effectués par les moments élémentaires
dM, = Py, dl,
di, se rapportant a la fibre neutre.
La variation d’énergie potentielle correspondante est
[ Pypd, | 079 P y,dl,,
de sorte que l’équation énergétique donne enfin

pt = 110" ypyq dlyaly,

§ .V,2, di, ’

la suite du raisonnement est analogue a celui qui précede. Pareillement,
une décomposition linéaire du coefficient angulaire

0r9 — Z (qu
k

permet, si I’on connait les charges critiques «partielles» correspondant aux
systemes (%), d’évaluer une borne inférieure de la charge critique P, par

la formule P, - (% R (2)

Remarque.

Il ne manque pas d’intérét de noter qu’il correspond a ces inégalités
des formules qui tiennent compte des différentes harmoniques des valeurs
propres 1 et P. Désignons par A; le carré de la /tme pulsation propre du
systeme; on peut montrer en toute généralité que

J. e"”dm,, = Z 1;1)
i

la somme s’étendant a tous les modes normaux.
D’apres cela, une simple décomposition des coefficients d’influence lo-

caux suffit 2 donner . _
Zhilz };Z’»ikl 3)
z L

en notant par i, le carré de la jéme pulsation propre du systéme partiel (£).
De méme, les charges critiques «harmoniques» du systéme proposé et de
systemes partiels vérifient la formule suivante

gpfzggpx (4)

Pareilles formules peuvent s’avérer utiles si I’on dispose tout au moins
de formules asymptotiques des valeurs propres d’ordre supérieur.

Décomposition généralisée des masses et des coefficients d’influence.

On aura relevé la parfaite similitude qui relie les formules (1) et (3)
avec les résultats que I'on obtient par décomposition des masses. En fait,
on peut toujours effectuer une décomposition ultérieure des systémes par-
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tiels, indifféremment du point de vue des coefficients d’influence ou des
masses, sans changer le sens de l'inégalité (1). Pour résumer ceci, notons
qu'une décomposition quelconque du produit e””dm, dans l'intégrale écrite
plus haut conduit directement a la formule (3), qui se trouve ainsi validée
pour une décomposition généralisée et des masses et des coefficients d’in-
fluence.

Application des formules de décomposition.

Nous allons éprouver Pefficacité de ces formules dans quelques exemples
de vibration et de flambage, ce qui va nous permettre de fixer les meilleures
conditions d’application de la nouvelle méthode.

Problémes de vibration.

Poutre sur appuis élastiques.

Envisageons le cas simple d’une poutre de masse m par unité de lon-
gueur et de caractéristiques constantes; soient K; et K, les constantes de
rigidité des appuis ¢).

La résolution exacte conduit a une équation aux fréquences contenant
des fonctions circulaires et hyperboliques, dont la solution peut s’obtenir
par tatonnement dans chaque cas particulier.

Nous pouvons considérer ici deux systemes partiels qui décomposent
les coefficients d’influence; le premier suppose les appuis rigides, tandis
que le second comporte une poutre inélastique, a la différence des appuis.
Dans le premier cas, le carré de la pulsation d’ordre n se retrouve dans la

formule classique , El (nn>4
Ay = —[—-
m\ [

tandis que les deux fréquences propres du second systeme (2 deux degrés
de liberté) résultent d’un calcul élémentaire; on trouve

” 2 —_— A T ) .
lé s gmz <K1 + K, F VKf - K1 K2 + K;) ’
la formule (1) fournit une borne inférieure de la premiere pulsation
naturelle "
El [,
R

==+ )T =
Le facteur p;, fait ressortir 'influence de I’élasticité des appuis sur la
fréquence fondamentale de la poutre; il vaut _
v = 1
T == 52 1 ——
145 (14 5 V1+38)
formule dans laquelle nous avons posé
Eln? /1 1 K — K\2
= 4+ et 3 = [ -
(Kl * k) = (KT &)
Ces parametres mesurent respectivement 1’élasticité de 'ensemble des

deux appuis vis-a-vis de celle de la poutre, et la différence de raideur re-
lative entre les appuis.

m

4) Nous entendons par la qu'une force agissant sur ’appui dont la constante est
K provoque un déplacement F/K.

Abhandlungen VII 5
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Il s’agit maintenant d’évaluer le degré d’approximation atteint par cette
formule. Placons-nous au point de vue de I'ingénieur et cherchons une borne
supérieure de la premiere pulsation par la méthode dite de RAYLEIGH %).
D’apres le théoréeme rappelé plus haut, on obtient une valeur approchée
par exces en adoptant une déformée proche du premier mode normal, par
exemple . o
z=a+ (6 — a) ; + csinT

L’abscisse x se compte a partir de 'un des appuis. Les constantes «,
b et ¢ sont déterminées par les conditions aux limites. Introduisons z dans
I’équation énergétique T — U

nous obtenons

= Bl !
ST m (l) /s
le facteur valant cette fois

14 25

‘ a2 52 g
1 +4s+ = (\1—{——3’—)

Le diagramme (Pl.1, fig. a) donne les courbes de y; et y; en fonction de s,
dans les cas extrémes out f = 0 (appuis également élastiques) et §=1 (I’un
des appuis est rigide). On notera la modeste influence de g sur la valeur de y;
c’est donc surtout I’élasticité d’ensemble des appuis (s) qui modifie la fré-
quence fondamentale de la poutre.

Nous y joignons une courbe donnant le pour-cent d’erreur possible e
au cas ou ’on adopte une valeur moyenne de i:

7s —

On remarquera que cette marge d’erreur est trés faible pour les valeurs
de s, soit treés petites, soit tres grandes. c. ad. suivant la prépondérance de
Pélasticité de la poutre ou des appuis. En effet, le systeme donné tend dans
ce cas a se confondre avec I'un des systémes partiels formés, les fréquences
de l'autre systeme deviennent tres grandes, de sorte que leurs inverses peu-
vent étre négligées dans la formule (1).

Remarque.

Il est intéressant d’observer ce que donne la formule (3) dans cet

exemple: on a oo oo
¥ -1 r—1 n—1
St =S N
i—1 ne=1 1,2

Les expressions de 4,” et de 1” donnent au second membre
ml* ml /1 1
001 + '3 (K * k)
Poutre semi-encastrée.

Nous supposons qu’un moment M agissant au droit de l'encastrement
imparfait produise une rotation M/C de la tangente a 1’élastique en ce point.
La poutre est supposée homogéne sur toute sa longueur.

5) Voir par ex. DEN Harrtoa, « Mechanical Vibration».
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L’équation aux fréquences ou «déterminante» comporte également des
fonctions circulaires et hyperboliques et peut se résoudre par titonmements.
Une decomposmon des coefficients d’influence conduit cependant immé-
~ diatement a une valeur approchée, par défaut, de la premiére frégquence
- propre.

Le premier systeme suppose l’encastrement parfait (C=oc0). On dis-
pose du résultat classique ¢)

4
w—rkt! (”ll) avec k= (0597.. )t = 0,127

Le sécond systeme suppose la poutre rigide mais semi-encastrée; on
trouve aisément pour le carré de la pulsation

-5
 ompP
[’approximation par défaut (1) devient ici

—_ 7. r—1 1 E‘]/.T[\4 .
Ay = /»,_(l Ly h o (l) - ki

l”

avec

El
Le parametre u= 5, mesure Pélasticité relative du semi-encastrement

et de la poutre. Une borne supérieure de A; s’obtient de maniere moins
simple par la méthode de RavLEIGH. Adoptons cette fois la déformée appro-

ximative 9

z:rz—{—px—f—qx?—rcoszz—;E

et fixons »n, p, q, r conformément aux conditions aux limites, nous obte-
nons suivant ’équation énergétique une pulsatiton approchée par exces dont
le carré vaut
El
s = — (-] - ks
m l
avec

34+ 8u
/127! 5 8 at
T+ - 5 +10+‘u(16+4n2 n‘*)-}-yh—?’—

ks =

A Dencontre de la borne inférieure, 4, ne se confond pas avec i; pour
Iencastrement parfait (u=0). On a dans ce cas k; = 0,1284, supérieur de
1,1 9% a £=0,1270.

La borne inférieure semble donc fournir une meilleure approximation
malgré sa forme plus simple. L’erreur maxima qu’offre 'adoption d’une
valeur moyenne de A; correspond 2 la moitié du _pourcentage de I’écart in-
diqué sur le dlagramme de la planche I, fig. b, ce qui met en évidence I'ex-
cellente approximation de ces résultats. En prathue on pourrait adopter ici
sans plus I’expression plus simple de 1, que fournit une décomposition des
coefficients d’influence.

6) LO'{D RavLEiGH, « Theory of Sound».



Décomposition des coefficients d’influence ; 69

Systemes de poutres d noeuds rigides.

Les vibrations de pareils systemes font intervenir I'inertie d’oscillation
aussi bien angulaire que linéaire; le théoreme de décomposition des coeffi-
cients d’influence pourra étre appliqué, a condition de définir un coefficient
d’influence généralisé qui englobe les coefficients lin€aires et angulaires.
Nous ne reprenons pas ce sujet ici; qu’il nous suffise de remarquer que pa-
reille définition se fait fort simplement 7). La recherche d’une borne infé-
rieure peut donc se faire suivant notre méthode; nous en trouvons un exemple
dans le cas du poteau en forme de 7.

Potean en T

Soit a chercher la pulsation propre fondamentale d’un poteau en 7,
oscillant dans son plan (Fig.1a). Nous faisons ici abstraction des charges
extérieures éventuelles que portent les bras, ainsi que de 'influence du poids
de la superstructure sur la fréquence du poteau vertical. Notons cependant
que la marche a suivre en cas de charges extérieures n’est pas différente.

Nous supposons pour simplifier ’exemple que le systeme puisse étre
assimilé a deux poutres de caractéristiques (E/, m) et (EIl’, m’) constantes
sur leurs longueurs (Fig.1b). La résolution exacte conduit a une équation
difficile a résoudre. Une décomposition des coefficients d’influence est ici
tout indiquée.

Fig. 1

Un premier systeme comporte des bras rigides (I), le second suppose
ces bras flexibles, mais encastrés rigidement a leur naissance. Ce systeéme
(11) se résoud immédiatement; on a
El' [7t\*

Ay =k — (- = 0,1
n=r— (1) (k = 0,127)

La résolution du premier systeme: poutre encastrée munie a l’extrémité
) . . . 2m'B . .
libre d’une masse 2wm’l, d’inertie polaire 3 peut se faire de maniere

exacte 8). Mais 1’équation déterminante ne peut se résoudre sans tatonne-
ments; il est donc utile de pousser plus loin la décomposition, cette fois,
du point de vue des masses, en considérant deux sous-systéemes dérivés du
systeme (I) par séparation des masses m#h et 2m’'l (Fig.1).

7) Voir par exemple: HoHENEMSER, «Die Meth. z. angendh. Lés. v. Eigenwertpr.
in der Elastokinetik» (Ergebn. d. Math. u. ihrer Grenzgeb.) 1932 ou Biezeno und
GrAaMMEL, « Technische Dynamik».

8) WiLH. Hort, « Techn. Schwingungslehre».
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La premiére fréquence du systeme (I’) est celle d’une poutre simple en-
castrée; elle provient de la formule
, EI ;7\t
b=k (7) (# = 0,127)

L.e systeme I” comporte une masse rigide 2m’l a ’extrémité d’une poutre
h dépourvue de masse. La premiere fréquence se calcule sans difficulté;
on obtient
w SEly

W= L+ 72—Vt 4+ 72 +1)
olt y remplace #/l. D’apres la formule de DUNKERLEY on a
1

W) S

BT Y D)
11 reste a réunir les résultats obtenus, sulvant la formule (1) :
V=G )T = = (0T AT )T

‘En fait, nous avons réalisé ici une décomposition généralisée des masses
et des coefficients d’influence.
Nous avons ainsi obtenu

) R

: =1 Al
A= + Ay

i E[( ) k
i= Ty kux R s B u
AR A B G )+
avec , _EI A__,h_ 3} o
f—-EII,‘ /—l ‘Ll——-m.

A titre de contréle, nous avons recherché une borne supérieure par la
méthode de RAYLEIGH, en adoptant par approximation un mode de vibration
‘de la forme (v. fig. 2)

y=" (P +7%)

1 cos M L L3
z =1 cosl +yl(b+ch)

Les coefficients p, n, b, ¢ sont déterminés par les
conditions géométriques aux limites. Nous trou-
vons de cette maniére, aprés d’assez longs calculs,
une borne supérieure

Fig. 2

) __El(n)4 W+-7+§7?
s— o\ ) 2 3 2 ¢ 4
m \ h p?; pﬂ_,__?_l%_}_lc /gb.{_ +up + 2upn + un?

ol q

~£_-g . . lc 2 ]2 47‘5472
M R ”1)_‘/4/ T

2

p :27[ — 3n

V]
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2 72 2 4
b =27 4, et c— «% _7+27,70

La comparaison entre les bornes supérieure et inférieure est suggestive;
leur aspect rend un compte assez exact des calculs qu’exige leur obtention.
En écrivant

. El [ n\*
A.,' - — | — . k,-
s m \ h s

on peut comparer les valeurs de %; et de %, dans un cas donné; par exemple
pour y =2, u=05 e pf=4
ki = 0,0350 et ks = 0,0354

c’est a dire un écart entre les deux bornes de "ordre de 1 pour-cent.

Si on adopte une valeur moyenne, I’erreur est certainement inférieure
au demi-pour-cent, écart qui se réduit encore a sa moitié pour la pulsation,
racine carrée de A.

. On voit par cet exemple qu’il est en méme temps avantageux et suffisant
d’évaluer A par sa borne inférieure, donc par une simple décomposition en
systemes partiels.

nous trouvons

Remarque.

Il est des problemes de vibrations tournantes qui se prétent également
a une résolution rapide par décomposition des coefficients d’influencs. Un
exemple remarquable est celui du couplage des vibrations d’une hélice avec
les oscillations de torsion de ’arbre coudé qui ’entraine. Il s’agit ici des
vibrations de flexion de I’hélice dans le plan de rotation. On pourrait tenir
compte de la présence d’engrenages réducteurs en appliquant aux fréquences
le rapport de transmission réalisé. Soit // la fréquence fondamentale de
Parbre coudé, calculé en supposant I’hélice non flexible. Soit f” celle de
I’hélice supposée accouplée a un arbre inélastique. Notons qu’en général on
adapte une hélice de marque connue, de sorte qu’on peut le plus aisément
déterminer f” en accouplant une masse de moment d’inertie équivalent a
celui de Parbre. D’apres le théoreme de décomposition on a

fo ot 4 )

le second membre donnant une bonne valeur approchée de la fréquence
fondamentale f.

Problémes de stabilité.

La méthode de décomposition des coefficients d’influence semble de-
voir prendre dans les problemes de vibration une importance égale a celle
de la décomposition des masses; par contre, dans les problémes de stabilité,
il ne peut étre question de decomposer des masses.

Seule une décomposition des coefficients d’influence permet de sim-
plifier la recherche de charges critiques par la formation de systéemes par-
tiels plus facilement résolubles. Donnons-en quelques exemples.

Poutre semi-encastrée, sollicitée axialement.

Le coefficient C de semi-encastrement conserve la signification qui lui
a été donnée précédemment. L’équation déterminante prend la forme
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i P _c
’l/fz tg- ‘\/57—151;

la courbe en trait plein (PL. I, fig. b) donne la premiere racine

2

EI
de u=F£1/Ct. Une décomposition des coefficients d’influence angulaires
peut s’effectuer dans ce cas avec les systémes partiels adoptés dans le pro-

bleme des fréquences.
Le premier systeme suppose l’encastrement parfait; on a

en fonction

' n*n?El
Pn — **Tl’zv*"
Le second suppose la poutre non flexible, ce qui donne
w_ C
P =+
La formule (4) permet d’écrire
SNp-1_ sg-t, C__ 22 C
ZP =D =gt
La borne inférieure de la charge critique résulte de (2)
. 1 a*El 1
PC}‘\)/PIZ(P 1+p 1)1: 412" ‘L(,ﬂz
1+ 42

La courbe en trait interrompu donne ’allure de P;; on constate que dans
les conditions les moins favorables elle s’écarte de moins de 5 9o de la va-
leur exacte. Sa détermination par décomposition des coefficients d’influence
suffit donc en général aux besoins de la technique.

Poutres a sections discontinues sur la longueur.

Soit une colonne encastrée a sa base, comportant un certain nombre de
sections différentes, par exemple deux, dans les parties a et & (PL II, fig. a).
L’équation déterminante du probleme de la stabilité sous I'action de charges

axiales, est 5 5 i
a
g a 1/51,, 8V e = Ve

Une borne inférieure de la premiere racine P, peut étre déterminée

en envisageant deux systemes partiels. Dans le premier, nous supposons
la partie a rigide; nous avons immédiatement

n?El,
452
Le second systeme est formé en supposant la partie & rigide a son tour
(El; = 00). L’équati»on déterminante

-t r (,ﬁfl—ﬂ a >
£a E] 11— Tk a+b

se résoud plus fac1lement que l’équation précédente. Soit P” la premiere
racine, on a

P =

Py = (P~ + Pr=1)-t
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Ce probléeme est équivalent a I’étude de la stabilité d’une poutre ren-
forcée a sa partie centrale, soumise a P’action de deux charges axiales (Pl. I,
fig. a). Ce dernier probleme a été résolu exactement?), de sorte que nous
pouvons comparer les valeurs exactes de P, aux bornes inférieures fixées
par notre méthode. Dans ce but, nous avons écrit

a2 ET,
P, =k AR

Le facteur £ exprime "augmentation de la stabilité due au renforcement
central. La borne inférieure a été affectée du facteur #’. Un diagramme re-
produit les variations de £ et de &’ (Pl II, fig. a).

Remarque.

L’exemple précédent nous a révélé qu’une valeur approchée par défaut
de la premiere racine de 1’équation

xtgx = v
est donnée par I’expression
. n? 1
—_— "Z - ’*"—;2"
1+
Nous pourrions appliquer ceci au second systeme partiel et écrire
., 2El, 1
P" = 4q? | 1—ra?
r 4
de sorte que
*E] 1
P, =k T avec kR =

44 A=A+ Llrt (140 %]

Cadre a trois articulations.

Une charge P agit au droit du noeud rigide C (Fig. 3). Le probleme de
la charge critique a déja été résolu19), ce qui permet un contrble des ré-
sultats que va nous livrer trés rapidement une décomposition des coefficients
d’influence. |

Les systemes partiels s’obtiennent en supposant successivement les par-
ties DC et CB rigides. Dans le premier systeme, nous nous trouvons, en
mouvement relatif, dans le cas d’une poutre CB encastrée-libre, c. a. d.

7 El
4 h?

Le second systeme se résoud facilement. Soit M le moment agissant en

C; Pangle de déformation en ce point vaut (Fig. 3)

P =

~ — ML
- 3EIL’
or ce moment vaut M= Pho

¥) V. Rarzersporrer, «Die Knickfestigkeit von Stiben und Stabwerken».
10) WiLH. Bortmany, «Die Stabilitit des Dreigelenkrechteckrahmens» (Der Stahl-
bau, 14, 1941, S. 3).
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de sorte qu’on trouve pr— 3EI
hi
On dispose enfin d’une borne inférieure grice a la formule (2)
Pyp=P;= P+ P ) l= an,EI’i
(9'h)*?
nous y posons — ElLh
q'_2V avec ¢c="FErLil"

Or il se fait que CHwaLLa (DIN. E. 4114) a indiqué une formule ap-
proximative reproduisant les résultats d’une solution rigoureuse, «Faust-
formel», dont I’expression est la suivante

q:z‘/l-;-p’}—!—o’(c)gs pour ¢ < 2, sinon q:ZV +—QZ

a2 El,
dans la formule "= ke
Notons que 71%:0,82>0,7 ce qui vérifie le sens de P'inégalité
Pcr = Pz’

Le tableau suivant renseigne ’approximation atteinte par notre borne
inférieure.

|
c=EIl-h|EI, - l 9 | q approx.
1 } 2,635 | 2,606 | 6,6%
2 2320 | 2375 | 43%
3 | 2,220 ] 2,555 3,2%
4 | 2170 | 2195 | 259,
£l, g
‘ A
P (afL,
A
(1-pn L
, |
77477_—_"'_{__1"7/%)77;
Fig. 4
Remarque.

C’est la partie supérieure du montant /2 qui se trouve la plus sollicitée.
Il est naturel de chercher a2 augmenter la stabilité du systeme en renfor-
cant cette région (Fig.4). Soit o-#4 la portion de % renforcée, et soit nE/,
sa caractéristique élastique.

Nous pouvons envisager trois systémes partiels, définis en ne conser-
vant successivement que la flexibilité des parties DC, CC’ et C'B et nous
avons dans ce cas Py = (P'~1 4 P"=1 4 pr-1)-1



76 F. Buckens

Toutefois "ensemble CC’, C'B a déja été traité dans le cas d’une co-
lonne présentant deux sections différentes. Nous avions trouvé

ccp __, n*El
Pg " =k “‘4"/{5}‘
Le facteur k (ou &/, £”...) traduit le renforcement du montant. Nous ob-
tenons de cette maniere

 R2Fl, NEPOYS i
Pcrfy—('qv,;l‘)? avec qg = 2‘/7+T"2_2’

ceci concorde absolument avec la formule approchée donnée par BULTMANN
aprés une resolution rigoureuse, mais plus longue, du méme probléme.

Probleme de stabilité de la poutre Vierendeel.

Remarquons d’abord qu’un cadre a noeuds rigides, que nous considérons
comme la cellule de la poutre Vierendeel, peut étre étudié a partir du pro-
bléme précédent. En fait, le cadre solllc1te en ses quatre sommets peut, au
point de vue deformatlon étre supposé articulé en A, B, C et D et relié
a une articulation centrale 0 (Fig. 5); ceci nous restitue le probléme du cadre
a trois articulations, de sorte qu’on a

P, n? Ely 8a2E,
= ou Py = ——5+~
2 h\2 o = (g 7)®
(q '5)

/ 2
avec q:2V1+]§,C et C:EII'IZ/EI;I'I

D’ailleurs, une décomposition des coefficients d’influence nous mene-
rait directement au méme résultat (Fig. 6). Il est plus intéressant d’opérer

p - P P P P P
v 7, 2 2 7 2
-e——-Z—-"
P d
z &7 z }'
|
!
b
&,
ALYz 7 % Y7 7
7. [ % Im
Fig. 6

cette décomposition dans le cas général de la poutre a n cellules. Le sys-
teme partiel I suppose les barres transversales rigides; la charge critique
partielle peut étre évaluée sans peine 3

1, a*Fl, X . 2a%El,
*i— P = 74——(—157 c.ad. P = T
2

elle ne dépend pas du nombre d’étages, car nous faisons momentanément
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abstraction de toute déformation longitudinale des poutres. Le second sys-
teme partiel suppose les poutres principales inélastiques; d’apres la fig. 7:

M
T OEL
et comme : 1
on a \
fy'::'”<;-1 121?”

La formule de composition (2) donne
2
Pyp= (P~ P )t = ———=

avec

ce qui constitue une généralisation de la formule trouvée pour une cellule.
Notons que pour des valeurs de n suffisamment grandes, nous pouvons
écrire —
e 4
=211
=21+ 7
Sous des hypotheses 1der1t1ques la méme formule peut s’appliquer au cas
donné PI. II, fig. b. Ceci nous amene a faire une comparaison entre nos re-
sultats et ceux que l'on obtient dans ce dernier cas!!) dans les mémes
conditions d’indéformabilité longitudinale des poutres (v. courbes Pl 1li,
fig. b).
La comparaison se fait en posant
257222
Por= "4
.. . 27
le coefficient z’ correspondant a notre formule vaut z’:—qv.

Remarque.

L’influence de la déformation longitudinale se fait sentir d’autant plus
que n est grand. La théorie qui en a été faitel?) donne une résolution assez
sxmple dans le cas ou les traverses sont supposées rigides. Or ceci corres-

pond a notre premier systeme partiel.

Les courbes construites dans cette hypothese 13), donnent z en fonction
du parametre 4.1,

¢=Fp
F désignant la section des poutres principales. On trouve ainsi
P'= 2z*Ely|h?

1) V. RATZERSDORFER, loc. cit.

12) RATZERSDORFER, loc. cit.: Der Rahmenstab, S. 201 u. 210.

13) Les courbes en traits continus de la Pl. IV ont été empruntés a l'ouvrage de
M. RATZERSDORFER.
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Moyennant cette correction, on pourra tenir compte de la flexibilité
des traverses en la combinant avec la valeur précédente de P”

n+1 12511

P’ =— Ih

grace a la formule (2)
’ Py = (P~ 4+ P'-1)~1,

Conclusion.

Les exemples qui précédent permettent quelques conclusions. Nous
avons vu qu’une décomposition des coefficients d’influence conduit a une
valeur approchée (par défaut) du premier nombre propre (fréquence ou
charge critique) d’un probleme.

L’approximation est meilleure, semble-t-il, dans les problemes de vibra-
tion que dans ceux de flambage, fait qui s’harmonise heureusement avec
les exigeances de la technique; en effet, ce qui intéresse généralement I’in-
génieur, c’est une valeur aussi approchée que possible de la fréquence, tandis
qu’il lui suffit de connaitre simplement une borne inférieure d’une charge
critique. Pourvu que cette borne ne s’écarte pas exagérément de la valeur
exacte, une approximation meilleure perd un peu de son intérét en se noyant
dans les corrections «d’élancement» et dans le coefficient de sécurité.

Nous avons pfi remarquer que la détermination de valeurs approchées
par exceés par 'une des méthodes énergétiques, variationnelles itératives etc.
exige des calculs plus longs que I’évaluation d’une borne inférieure par notre
méthode.

Notons enfin qu’une décomposition des coefficients d’influence n’est
pas toujours applicable; elle est par contre indiquée dans les cas ot la com-
plexité de la structure élastique permet de former des systémes partiels plus
simples. Joints aux cas de systemes oscillants, out la complexité de la ré-
partition des masses appelle également une décomposition, ces derniers
problémes sont précisément ceux dont la résolution directe s’avere la plus
ingrate.

Résumé.

Il est question de surmonter, en la divisant, la difficulté que présentent
certains problémes de vibration et de stabilité de systemes a structures élas-
tiques complexes. On montre a cet effet qu'une définition de systémes par-
tiels par décomposition des coefficients d’influence permet de déterminer
une valeur approchée par défaut de la fréquence fondamentale ou de la
charge critique, suivant une formule de décomposition quadratique des pé-
riodes, respectivement de décomposition linéaire des inverses des charges
critiques.

Quelques exemples traitent de vibrations de poutres sur appuis élastiques,
de poutres semi-encastrées, également de la stabilité de ces dernidres sous
charge axiale, ainsi que des charges critiques de poutres a sections discon-
tinues sur la longueur, de cadres a trois articulations, enfin de la poutre
Vierendeel.

Ces exemples, choisis de maniere a permettre le controle des résultats,
conduisent aux conclusions suivantes: 10 I’approximation est en général sa-
tisfaisante du point de vue technique. 29 Elle est meilleure dans les pro-
blemes de vibration que dans ceux de flambage, circonstance fort heureuse
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du point de vue pratique. 3° La nouvelle méthode vient, non pas remplacer
d’autres déja existantes, mais en compléter V'arsenal, quoique les calculs
qu’elle demande soient généralement plus réduits que ceux qui surgissent
dans ’évaluation de bornes supérieures par des méthodes énergétiques ou
autres,

Zusammenfassung.

Die Schwierigkeiten, welche gewisse Schwingungs- und Stabilitdtspro-
bleme von verwickelter Struktur bieten, werden durch Unterteilung behoben.
Es wird gezeigt, da an Hand der Deflmtlon von Parhalsystemen die durch
Zerlegung der FinfluBkoeffizienten moglich ist, ein angenaherter Wert (un-
tere Schranke) der Grundfrequenz oder der kritischen Last bestimmt werden
kann; dies geschieht mittels einer quadratischen Zerlegungsformel der Pe-
rioden, beziehungsweise durch eine lineare Zerlegung der Reziproken der
kritischen Belastungen.

Einige Beispiele behandeln die Schwingungen von elastisch gelagerten,
halb eingespannten Balken, sowie auch deren Stabilitit unter axialer Be-
lastung; ferner werden die kritischen Lasten von Balken mit verinderlichem
Querschnitt von Drei-Gelenkrahmen und Vierendeeltrigern untersucht.

Die Beispiele sind so gewihlt, daB die Resultate leicht kontrolliert
werden konnen. Die Folgerungen seien kurz zusammengefaBt:

1. Vom technischen Standpunkte aus sind die Nédherungen geniigend
genau.

2. Diese sind in den Schwingungsproblemen besser als in den Knick-
problemen, was fiir die Praxis erfreulich ist.

3. Die neue Methode soll nicht andere, schon bestehende ersetzen, son-
dern vielmehr ergidnzen. Dabei ist der Arbeitsaufwand im allgemeinen kleiner
als bei denjenigen Methoden, welche durch eine Energiebetrachtung eine
obere Grenze zu bestimmen suchen.

Summary.

The difficulties which are incurred in certain vibration and stability
problems in systems of complicated elastic structure, are surmounted by
subdividing them. It is shown that a definition of partial systems by re-
solving the influence coefficients, allows an approximate value of the funda-
mental frequency or of the critical load to be determined; this is effected
by means .of a quadratic formula of resolution of the periods, or a linear
resolution of the reciprocals of the critical loads.

A few examples are given regarding vibrations in elastically supported
beams, in beams fixed at one end, and also regarding the stability of the
latter under axial load, as well as the critical loads for beams with variable
cross-sections, three-hinged frames and Vierendel girders.

The examples are chosen so that the results can easily be checked. The
conclusions reached are briefly as follows:

1. The approximations are sufficiently accurate for practical technical
requirements.

2. The approximations are better in the vibration problems than in the
buckling problems, a fact which is satisfactory in practice.

3. The new method is not intended to replace existing methods, but
rather to amplify them. The amount of work involved in calculating ‘with
the new method is in general much less than when an endeavour is made to
determine an upper limit from energy considerations or otherwise.
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