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DIE KNICKSICHERHEIT DER DRUCKGURTE
OFFENER BRÜCKEN.

LA SECURITE AU FLAMBAGE DES MEMBRURES COMPRIMEES
DE PONTS OUVERTS.

SECUR1TY AGA1NST BUCKLING OF THE COMPRESSION FLANGES
IN OPEN BRIDGES.

Prof. Ing. Dr. Z. BAZANT, Prag.

Die Druckgurte einer offenen Brücke können aus der Trägerebene
ausbiegen, wenn der Widerstand gegen solche Ausbiegungen nicht genügend
groß ist. Es ist, wie bei der Knickfestigkeit, ein Fall, wo nicht die Spannung

maßgebend ist. Der Bruch kann dadurch erfolgen, daß die äußeren
Kräfte den kritischen Wert erreichen. Bis zu diesem Werte sind alle Teile
im stabilen Gleichgewicht. Sobald aber der kritische Wert der Belastung
erreicht wird, hört das Gleichgewicht auf, stabil zu sein, und wird labil.
Die kleinste Überschreitung des kritischen Wertes verursacht eine plötzliche
Störung des Gleichgewichts und hat eine Formänderung des Trägers zur
Folge, dessen innere Kräfte nicht mehr das Gleichgewicht mit den äußeren
Kräften halten können; die Formänderung wächst schnell bis zum Bruch.
Die Ausbiegung des Obergurtes war oft die Ursache des Zusammenbruchs
von Brücken; es ist deshalb nötig, so zu konstruieren, daß die Ausbiegung
nicht erfolgen kann.

Mit dieser Frage haben sich schon Engesser x) und Timoschenko 2)
befaßt; der letztere hat auf Grund der Aufgabe von Jasinskij (Knickfestigkeit
der elastisch nachgiebig gestützten Stäbe) eine angenäherte Berechnung
gegeben, welche auf der Voraussetzung eines gleichbleibenden Querschnittes
der Gurtung und einer stetigen Verteilung der Lasten und Widerstände
beruht. Eine strenge Lösung und andere angenäherte Lösungen gibt Fr.
Hartmann 3) an.

Nach M. Keelhoff4) kann man versuchsweise so rechnen, daß man die
Ausbiegung des Obergurtes in der waagrechten Ebene wählt und daraus die auf
den Obergurt wirkenden Biegungsmomente und die den Momenten entsprechende

Ausbiegung ermittelt. Bekommt man eine kleinere als die gewählte
Ausbiegung, so bedeutet es, daß bei der gewählten Ausbiegung das
Gleichgewicht nicht möglich ist und die ausgebogene Gurtung in die ursprüngliche
gerade Lage zurückkehren würde. Wenn man umgekehrt eine größere als die
gewählte Ausbiegung bekommt, so ist das Gleichgewicht bei der gewählten
Ausbiegung auch nicht möglich; da aber die auf die Gurtung wirkenden

*) Zentralblatt der Bauverwaltung 1884.
2) Zeitschrift für Mathematik und Physik 1910.
3) Knickung, Kippung, Beulung (1937), S. 130.
4) ,,La stabilite des membrures comprimees des ponts metalliques" (Annales des

Ponts et Chaussees 1920, S. 193); hier ist eine zeichnerische Lösung gegeben.
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50 Z. Bazant

Kräfte den Widerstand der Trägerwände überwinden, wächst die Ausbiegung
bis zum Bruch, sodaß also die Grenze der Knickfestigkeit überschritten ist.
Wenn die gewählte und die berechnete Ausbiegung identisch sind, so besteht
Gleichgewicht auf der gebogenen Gurtung; wir sind also gerade an der
Knickfestigkeitsgrenze (kritische Belastung), wo die Kräfte bei jeder
Durchbiegung das Gleichgewicht halten können. Es handelt sich aber um labiles
Gleichgewicht, das durch die mindeste Überschreitung der Belastung gestört
wird.

Od 7 C2 2

d)

a—-*— a

t) r°

17
Qr

PnCC) ro ri

Fig. 1.

Wir untersuchen zuerst den Parallelträger (Fig. la). Der gedrückte Obergurt

kann bei symmetrischem Träger und Belastung, die wir hier voraussetzen,

aus der ursprünglichen geraden Lage acb in die zur Trägermitte
symmetrische Lage a'c'b' ausknicken. Auf diese ausgebogene Gurtung wirken
in den Knotenpunkten die Stabkräfte der Füllstäbe; ihre Resultierende P in
einem Knotenpunkt ist parallel zur ursprünglichen Lage der Gurtung ab;
denn die in dem Knotenpunkt zusammentreffenden Füllstäbe liegen in einer
durch diesen Punkt und die gerade Achse des Untergurtes gegebenen Ebene.
Die Kräfte P bestimmt man als Differenz AS der Stabkräfte in den angrenzenden

Obergurten; sie sind gegen die Trägermitte gerichtet. Soll der Träger

mit einem Sicherheitsmaß ju der Ausbiegung des Obergurtes widerstehen,
so muß man mit den Kräften P ßAS rechnen. Außerdem wirkt in jedem
Knotenpunkt der Widerstand Q gegen die Ausbiegung y\ er ist proportional
der Ausbiegung:

Q t*y, 0)
wenn ß den Widerstand für die Ausbiegung y 1 bedeutet.

Erzeugt die waagrechte Kraft Q= 1 (Fig. 2) die Ausbiegung A, so ist
die der Ausbiegung y 1 entsprechende Kraft

Die Ausbiegung A setzt sich aus dem durch die Biegung des Querträgers
verursachten Teil A0 und aus dem Nachgeben der Füllstäbe A± zusammen:
A=^A0-\- A±. Die Ausbiegung Aö berechnet man bei symmetrisch wirkenden
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Kräften Q aus dem konstanten Biegungsmoment M=Qh, das bei
unveränderlichem Trägheitsmoment / des Querträgers eine konstante Krümmung
mit dem Halbmesser o EJM erzeugt. Die Biegelinie des Querträgers
ist also ein Kreis und die Abweichung der Endtangente ist

tgy
ÖM

__ bhQ
2EJ~ 2EJ'

für Q 1 bekommt man

J0 htgip bh2^

2EJ' (2)
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Fig. 2.

Bei veränderlichem Trägheitsmoment / berechnet man den
Durchschnittswert so, daß man A0(yj) gleich wie beim unveränderlichen
Querschnitt bekommt. Aus der Grundgleichung für Biegung

folgt

es gilt also für /0

d*y
dx* _

1 M
~ El

dy f
dx J

Mdx
EJ ~~ E J

dx

T
die Gleichung

b " dx
17 ~' Zu J ' (3)

Wirken die Kräfte Q auf beide Hauptträger in derselben Richtung, so
bekommt man für A0 ein Drittel des obigen Wertes, der Widerstand ist also
dreimal größer. Weil der kleinste Widerstand maßgebend ist, kann man
diesen Fall außer Acht lassen.

Ist ein Füllstab durch die Kraft P gedrückt und durch die Querkraft Q
gebogen (Fig. 3a), so bekommt man die größte Durchbiegung4)

j\> P \ al wo EJ'
Wir setzen xl (p und entwickeln tg q)!cp in eine Reihe; es ist möglich, weil

n2EJ
<p<7i/2; denn für cp==jt/2 würde man P= bekommen, also die Euler-

Last für einen oben freien, unten eingespannten Stab, ohne jegliche Sicherheit.

Diese Last darf nicht erreicht werden. Man kann also schreiben

tp
+ 3 + 15 315 2835 ' ~<p~

' 1
cp2t 2cp2 n<pi Gi<p*
3 l 5 105 + 945
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Für cp nß haben alle Glieder mit cp in der letzten Klammer sehr annähernd
den gleichen Wert 0,986 (mit kleineren Abweichungen als 1/1000). Setzt man

P
'EJ

4/2a
so folgt

cp 3 EJ
i +

oder

+

Die Summe der geometrischen Reihe ist

sodaß

tgp
9° 3EJ\

1 + a — \) und

q>2
n-
4a'

1 +-W. + -

1 '

0,986\

(4)

-4%

#*
__i

d) l

Fig. 3.

Für einen durch die Kraft P gezogenen und durch Q gebogenen Stab
(Fig. 3b) folgt die größte Durchbiegung

J\>

Da tghy
cp

VC
(p2 2 (p4.

so folgt wie oben

tgh<p_<p2/ 2q>2 17 <p4 62<p61-

tgha/

IL?6
315 +

62 y8
2835

0,986

9 3 V ~~5™ + lÖ5 ""945^+"')_3"£y[ ~ ~~ä

1 1 1
¦ + 5---.+.. ¦)]¦

Die Summe der geometrischen Reihe ist hier

1
1 1

0 ol i +
1 +

es folgt also

y»
9HL
3 £7

0,986 \
a+\)- (5)

Beide Formeln für y0 können durch die letzte ausgedrückt werden, wenn
man a algebraisch nimmt: ist P Druck (Zug), so setzen wir es negativ
(positiv) ein und bekommen o auch negativ (positiv).

Die Kraft Q verteilt sich auf alle Füllstäbe, welche in einem Knotenpunkt

des Obergurtes zusammentreffen: Q Xt-\-X2 + Xs -f..., wo Xm die
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auf die einzelnen Füllstäbe entfallenden Teile sind. Die oberen Enden aller
Füllstäbe, die in einem Knotenpunkt zusammentreffen, erleiden dieselbe
Durchbiegung

Ai yx Xx — y2 X2 y3 X<6

sodaß

0 ^(1 + 1+1 +

Für Q 1 bekommt man

daraus folgt

A '
z\

' A Ax + Ju Z\ + A0
¦ { >

Da für die Brücke ein Sicherheitsmaß pi gefordert wird, muß man P juS
bei der Berechnung von a einsetzen, wenn 5 die Stabkraft bedeutet; ist
/= s die Stablänge, so hat man

n2 EJ
a T7¥77c- (7)

(8)

As2uS
Aus Gl. (5) folgt für Q=\ der Beiwert y y0, also

1

_ 3EJ

Die Ableitung setzt voraus, daß der gedrückte wie auch der gezogene
Füllstab unten bei der Biegung aus der Trägerebene eingespannt ist. Wenn
die Anschlüsse dieser Voraussetzung entsprechen, kann man auch mit dem
Widerstände der Zugstäbe rechnen und dieser kann sogar größer als der
Widerstand der Druckstäbe werden.

Bei einer symmetrischen Ausbiegung des Druckgurtes (Fig. lb) heben
sich die Kräfte P auf beiden Hälften des Trägers auf, weshalb die Kräfte Q
allein im Gleichgewicht sein müssen; aus diesem Gleichgewicht ermittelt
man bei einer gewählten Biegelinie die Schlußlinie. Es muß nämlich sein

2<2-0 oder %ßy= %ß(z-c) 0;
daraus folgt

Aus den Ordinaten y z—c kann man die Kräfte Q ermitteln. Darauf
berechnet man die Biegungsmomente durch Addition der Momente der Kräfte
Q und P links von m (positiv, wenn sie rechts drehen):

Af* 2(Q)«+2(/%, (10)
0 0

wo (Q)m das Moment der Kraft Q i. B. auf den Punkt m bedeutet. Aus den
Biegungsmomenten ermittelt man die Biegelinie. Man kann sich auf die
Ordinaten in den Knotenpunkten beschränken. Hat man in den Punkten
(m—1), m, (m+l) die Momente Mm-U Mm, Mm^t und in den Feldern
{m—\)m am, m(m-\-\)= am+1 verschiedene Gurtquerschnitte mit den
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Trägheitsmomenten /,„, ///l41, so folgt die Biegelinie als Seilpolygon zu den
elastischen Gewichten

™
1 (Mm_x + 2Mm 2Mm + Mm+i

n \ nn^m €E\—Zu—am + —ä^— *H' }

wenn man in jedem Feld die Momentenänderung annähernd geradlinig
annimmt. Bei gleichen Feldlängen am am+1 =¦ a folgt

_ a iMm_x + 2Mm 2Mm+ Mm+1\

^-6f( lm +
Jm+1 j" (Ha)

Positive Biegungsmomente geben positive elastische Gewichte ^ß und
eine nach oben hohle Biegelinie. Wenn man eine nach oben hohle Biegelinie
gewählt hat und negative Momente sich ergeben, die eine umgekehrte Krümmung

der Biegelinie bedeuten, dann folgt, daß die gewählte Biegelinie bei
dem gewählten Sicherheitsgrad ju überhaupt nicht stattfinden kann; der wirkliche

Sicherheitsgrad wird für die gewählte Ausbiegung weit höher sein.
Wenn man bei gewählter Biegelinie und Sicherheitsgrad positive

Biegungsmomente bekommt, dann bedeuten die berechneten Ordinaten z', die
kleiner sind als die gewählten z, daß die ausgebogene Gurtung in die
ursprüngliche Lage zurückkehren würde. Wenn umgekehrt zf >z sich ergibt,
so ist die Knickfestigkeitsgrenze schon überschritten; die ausgebogene
Gurtung würde weiter bis zum Bruch ausbiegen. Für z' z sind wir gerade an
der Bruchgrenze, wo labiles Gleichgewicht herrscht; die mindeste
Überschreitung würde den Bruch herbeiführen.

Ist die Biegelinie (Ordinaten z) beliebig gewählt, so wird die berechnete

Linie nicht die gleiche Form wie die gewählte aufweisen; man könnte
sich aber durch wiederholte Rechnung der gewählten Linie beliebig nähern,
wenn man für weitere Berechnungen die vorher errechnete Biegelinie wählt.
Zur Ermittlung des Sicherheitsgrades genügt aber der Vergleich der größten
Ordinaten oder der Ordinatensummen (der durch die gewählte und berechnete

Biegelinie gegebenen Flächen) bei einer beliebigen Form der gewählten
Linie.

Ist die laut Fig. lb) gewählte Ausbiegung nicht möglich, so wählt man
als zweite Form eine Biegelinie, die zur Mitte des Trägers c gegensymm-
trisch ist; in c besitzt die Linie einen Wendepunkt (Fig. lc). Infolge der
Gegensymmetrie bilden je zwei symmetrische Kräfte P und Q ein Kräftepaar.

Das Gleichgewicht erfordert, daß die Summe der Momente aller Kräftepaare

gleich Null sei oder

Me 2(P)e+jJ(Q)c 0.
0 0

Wie oben ist hier Q ßy, weiter ist

1 o o o \ * / o ' o

o o o o \ * / o *o
Durch Gleichsetzen folgt

n *• n i\ *• n0 "0 0
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was

c /•
&P*-Eßx'z
0 0

j^Px'-j^ßx'2
ergibt. (12)

Kennt man c, so kann man die Ausbiegungen y, dazu die Kräfte Q und
die Biegungsmomente M für die Knotenpunkte berechnen; daraus ermittelt
man die Biegungsordinaten, bezogen z. B. auf die Achse a'c, und vergleicht
sie mit den gewählten Ordinaten z. Es können wie oben wieder drei Fälle
auftreten.

Beispiel. Ein Parallelträger von der Spannweite 21= 20 m hat 8 Feldlängen
je a 2,5 m und eine theoretische Höhe A=2,5m (Fig. la). Es handelt sich um den
Hauptträger einer offenen Brücke, der mit q 4,8 t/m gleichmäßig belastet ist.

Die Obergurt- und Füllstäbe besitzen Querschnitte, deren Flächen F (für
Obergurte) und Trägheitsmomente / zu Achsen in der Trägerebene in Tab. 1 zusammengestellt

sind; Tab. 1 enthält auch die Stabkräfte 5 für Vollbelastung (größte
Gurtkräfte). Die Länge der Diagonalen ist e \/a2 4- h2 3,535 m. Die Entfernung der
Hauptträger beträgt b 6 m und das durchschnittliche Trägheitsmoment der Querträger
/„= 120000 cm*. Beim Elastizitätsmodul für Stahl £=2150 t/cm2 folgt

bh2
Ao 7TWT °>0726 cm/*-

Tab. 1.

Stab F(cm2) /(cm4) 5(t) Stab /(cm4) S(t) Stab /(cm4) 5(t)

Q 110 2000 -42 V» 4000 -42 E, 1600 59,40
c2 110 2000 -72 v* 1800 -30 E9 1000 42,43
c\ 140 3000 -90 v* 1300 -18 Es 700 25,46
c\ 150 4000 -96 900

600
-6

0
Et 400 8,49

Wir führen die Berechnung für den Sicherheitsgrad jjl -

für die Ständer

für die Diagonalen

n*E

ji*E

9,87-2150
4 • 2502

9,87-2150
4 • 353,52

0,0849,

0,0425,

3E
s3

3E

4 aus. Die Hilfswerte sind:

3 • 2150
2503

3 • 2150

353,5«

0,000413,

0,000146.

Weiter berechnet man für die Füllstäbe die Werte ^—r-J o aus der Formel (7) und

\jy aus der Formel (8); man setzt ju 4 ein und für S die Stabkraft algebraisch aus
Tab. 1. Die Ergebnisse sind in Tab. 2 enthalten.

Tab. 2.

Stab Vo Vi K2 Vi V, Ei E, E9 E*

n*EJ
4 s2

o

339,5

-2,020
0,841

152,8

-1,273
0,161

110,3

-1,533
0,188

76,4

-3,183
0,256

50,9

oo

0,248

67,9

+0,285
1,004

42,4

+0,250
0,691

29,7

+0,292
0,431

17,0

+0,502
0,170

Die Werte ß berechnet man aus Gl. (6), wie Tab. 3 zeigt. In jedem Knotenpunkt
addiert man \/y für die im Knotenpunkte zusammentreffenden Stäbe.
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Tab. 3.

Knoten 2
V̂

1

y 2-y
ß z ßz

0
1

2
3
4

1,845
0,852
0,619
0,426
0,248

0,542
1,173
1,615
2,348
4,033

0,615
1,246
1,688
2,421
4,106

1,627
0,803
0,592
0,413

2.0,122

0
7

12
15
16

0
5,621
7,104
6,192

2.1,952

/
2
0

3,557 20,869

a) Zuerst wählen wir die Biegelinie laut Abb. lb und die Ordinaten z z. B., wie in
Tab. 3, nach dem Gesetze einer quadratischen Parabel. Wir berechnen noch ßz und die
Summen 2ß und 2ßz für eine Trägerhälfte (von den Werten im Knoten 4 nehmen
wir also nur eine Hälfte). Laut Gl. (9) berechnet man

c
2ßz _ 20,869
Sß 3,557

5,868;

das Ergebnis ist in cm, wenn die z auch in cm gewählt werden.
Nun kann man y z — c und Q ßy berechnen (Tab. 4). Zu diesen Kräften

ermittelt man die Querkräfte TQ durch Addieren von Q, von der Stütze angefangen, weiter
MQ/a, durch Addieren von TQ auch von der Stütze angefangen; daraus folgt MQ durch
Multiplizieren mit a 250 cm. Zur Kontrolle dient, daß i/2 2Q 0 sein soll, also
im Punkte 4 infolge der Symmetrie T0 — i/2 Q4 ist.

Tab. 4.

Knoten y Q TQ
a

Mq P
-H-AC

T LTP\Ay
1

TpAy MP MP+MQ

0 - 5,868 - 9,54 0 0 168J 0 0
y -9,54^ T 168 7 1176 1

1 + 1,132 + 0,91
-8,63

- 9,54 -2385 120
288 5

r
1440

1176 -1209

2 + 6,132 + 3,63 -18,17 -4543 72 2616 -1927
-5,00 1 360 3 1080

3 + 9,132 + 3,77
-1,23

-23,17 -5793 24
384 1 384

3696 -2097

4 +10,132 +2.1,23 -24,40 -6100 0 4080 -2020

Weiter berechnet man P —ju-AC (absolute Werte, die Kräfte sind gegen die
Trägermitte gerichtet), daraus durch Addieren vom Stützpunkt 0 die Kräfte TP, die
man mit den Differenzen der Ordinaten Ay Az zm — zm_± multipliziert und diese
Produkte wieder vom Stützpunkt aus angefangen addiert; das ergibt die Momente MP.
Die resultierenden Momente sind M MP -f- Mq. Die ganze Berechnung ist in Tab. 4
enthalten.

Die Kräfte Q erzeugen negative, P positive Momente. Die resultierenden Momente
sind hier negativ, was eine umgekehrte als die vorausgesetzte Krümmung der Biegelinie
bedeutet. Um positive Momente zu erhalten, müßte man die Kräfte P, also den
Sicherheitsgrad ju vergrößern. Für die gewählte Form der Biegelinie würde man also einen
Sicherheitsgrad gegen Ausbiegung bekommen, der viel größer als 4 ist.

b) Setzen wir nun eine gegensymmetrische Biegelinie nach Fig. lc voraus und
wählen deren Ordinaten z (von der Sehne a'c gemessen) nach, dem Gesetze einer
quadratischen Parabel; die absolute Größe der Ordinaten ist gleichgültig, weil die
Bruchlast das Gleichgewicht bei jeder Ausbiegung hält. Wir wählen wieder den
Sicherheitsgrad ju 4.

Man berechnet zuerst die Abszisse c aus Gl. (12). Die Berechnung der Hilfswerte
ist in Tab. 5 enthalten; ß entnimmt man aus Tab. 3, P aus Tab. 4. Die Kräfte P sind
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in t, die Längen xf, z in cm. Es folgt hier c — 1000 ¦
720 3302

1,323 cm.
300 000 — 2 252 500

Tab. 6 enthält die Berechnung der Biegungsmomente. Dazu braucht man

y c-f, Q ßy\

Tq, Mq/ü und Mq berechnet man wie in Tab. 4. Weiter bekommt man aus den Kräften
P durch Addieren von oben TP, berechnet TP-Ay und durch Addieren von oben MP.
Die resultierenden Momente sind M MP -j- MQ. Als Kontrolle dient, daß im Punkte
4^c das Moment Mc=0 sein muß, also MP —Mq.

Tab. 5.

Knoten z x' P Pz Px' ßx' ßx'z ßx'2

0
1

2
3
4

0
3
4
3
0

1000
750
500
250

0

168
120
72
24

0

0
360
288

72
0

168 000
90 000
36 000

6 000
0

1627
602
296
104

0

0
1806
1 184

312
0

1 627 000
451 500
148 000
26 000

0

/
2
0

720 300 000 3 302 2 252 500

Tab. 6.

Knoten *' i

CT y Q TQ
Mq

a
Mq P TP Ay TpAy Mp MP+MQ

0 1,323 -1,323 -2,15j
-2,151

0 0 168 1

y 168 +3,331 +559,51
0 0

1 0,992 +2,008 +1,61 T

-0,54
-2,15 -537,5 120

288 +1,330
y

+ 383,0
+559,5 + 22

2 0,662 +3,338 +1,98
+1,44

-2,69 -672,5 72
360 -0,669 - 241,0

+942,5 + 270

3 0,331 +2,669 +1,10
+2,54

-1,25 -312,5 24
384 -2,669 -1024,0

+701,5 + 389

4 0 0 0 +1,29 +322,5 0 -322,5 0

Positive Momente bedeuten, daß die Biegelinie nach oben hohl ist, wie vorausgesetzt

wurde. Wir berechnen nun die elastischen Gewichte mit vorläufiger Außerach1>
lassung des ständigen Faktors a/6E, also laut Formel

Mm l + 2Mm 2Mm+ Mm,,
%im _«_zi HL + "L "*±I (1, b)

'm 'tn+l
die Trägheitsmomente / des Obergurtes sind in Tab. 1 enthalten. Es folgt:

_0 + 2-22 2-22 + 270_ _ 22 + 2-270 2-270 + 389
+si — ^ir^ r nnnn — + 0,157 ^2 — ^^ 1 ^^ + 0,5912000 2000 2000 3000

270 + 2 • 389 2 - 389 + 0
ft K „ 389 + 2 - 0 2 • 0 - 389

3000 4000 4000 ' 4000

Die Belastung ist gegensymmetrisch, weshalb in symmetrischen Knotenpunkten die
Momente M und elastische Gewichte $ denselben Wert und entgegengesetztes
Vorzeichen haben; in der Mitte ist ^34 0.

Die Biegungsordinaten, von der Sehne a'c gemessen (Fig. lc), ermittelt man
(Tab. 7) als Biegungsmomente eines durch die Gewichte $ belasteten einfachen Trägers
ac. Der Auflagerwiderstand in a ist

~%1 + 1i%\ + \%21 ~ g»i + ~r%\ + + $& + 0,549.

Von diesem Wert zieht man die Gewichte $ ab, wodurch die Querkräfte % bestimmt
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werden; deren Addieren von oben gibt Wl/a. Daraus folgen die wirklichen Biegungs-
ordinaten durch Multiplikation mit

a 25°2
a q:;a'6E 6^2150= 4>*5'

Das ergibt die Ordinaten z' -= 4,85 Wl a. Zur Kontrolle dient, daß z\= 0 ist.

Tab. 7.

i

2R
Knoten * $

a
zf

0
y + 0,549j

0 0

1 + 0,157 + 0,549 2,66
+ 0,392

2 + 0,591
i -0,199

+ 0,941 4,56

3 + 0,544
1

- 0,743
+ 0,742 3,60

4 0 -0,001 0

Gegenüber den gewählten Ordinaten z (Tab. 5) sind die errechneten zr bis auf
den Punkt / größer. Das bedeutet, daß wir den Sicherheitsgrad ju =^ 4 zu groß gewählt
haben. Durch Änderung von ju ändert sich die ganze Berechnung, auch die Verhältnisse
der Ordinaten. Um uns den richtigen Werten zu nähern, wählen wir z nach dem Ergebnis
der vorherigen Berechnung; zum besseren Vergleich wählen wir z2 4.

Tab. 8.

Knoten z y Q Mq P MP
I

MP +

MQ $ %
a

z'

0 0 -1,153 -1,882 0 151,2 0 0 o 1y + 0,369^
0 0

1 2,2 +1,335 +1,081 -471 108,0 +376 - 95 -0,017 +0,369 1,79
+ 0,386

2 4,0 +3,424 +2,047 -671 64,8 +917 +246 + 0,493
-0,107

+0,755 3,66

3 3,2 +2,912 +1,201 -359 21,6 +751 +392 + 0,539
-0,646

+0,648 3,14

4 0 0 0 +254 0 -254 0 0 +0,002 0

Wir nehmen jetzt den Sicherheitsgrad u ==- 3,6 an. Wie oben (Tab. 2, 3) würde
man ß 1,632; 0,810; 0,598; 0,414; 0,244'bekommen. Der Vergleich mit ß in Tab. 3

zeigt, daß der Sicherheitsgrad die Werte ß verhältnismäßig wenig beeinflußt, sodaß

man auch sehr angenähert mit den Werten ß für ju =- 4 rechnen könnte. Wir sahen
schon, daß die erste Form der Ausbiegung (nach Fig. lb) nur für einen Sicherheitsgrad
möglich ist, der viel höher als 4 ist. Man kann also gleich den zweiten Fall annehmen
(Fig. lc).

Die Berechnungen würde man wie oben in Tabellen durchführen (Tab. 5, 6). Für
die neu gewählten Durchbiegungen z (Tab. 8) würde man aus Gl. (12) c= 1,153
erhalten; es ist dann y=z — cx'/l, Q ßy und daraus folgen die Momente MQ.
Aus den Kräften P —ju-AC ermittelt man die Momente MP und aus den
resultierenden Momenten M MP-\-MQ die Gewichte $ laut Gl. (Hb), aus ihnen durch
bloßes Abziehen vom Auflagerwiderstand 21 -f- 0,369 die Querkräfte % und durch
Addieren die Werte M/a (Tab. 8).

a2 ffi „ Wl
Die Lasten P und Q erzeugen die Biegungsordinaten zr j-=, • — 4,85 die

kleiner als die gewählten Ordinaten z sind. Daraus ergibt sich der wirkliche Sicherheitsgrad

etwas größer als 3,6. Hätten wir für zwei Werte des Sicherheitsgrades ju zu
denselben gewählten Ordinaten z die Ordinaten zf berechnet, so könnten wir annähernd den
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wirklichen Sicherheitsgrad durch geradlinige Interpolation aus der Bedingung z' — z
bekommen. Wir würden in diesem Falle ju=3,66 berechnen; für diesen Sicherheitsgrad
würde annähernd das Gleichgewicht für jede Durchbiegung bestehen, d. h. die gewählten
(z) und berechneten Ordinaten (z') wären einander gleich, wenn die Form der Biegelinie

wenigstens annähernd richtig gewählt wäre.
Die obigen Berechnungen setzen voraus, daß die Spannung bei kritischer Belastung

die Elastizitätsgrenze nicht übersteigt. Bei dem Sicherheitsgrad ju 3,66 hat man in
den Obergurtstäben die Kräfte

— ^C 153,72; 263,52: 329,40; 351,36 t,
denen für einfachen Druck die Spannungen entsprechen

— ^ 1,397; 2,396; 2,353; 2,342t/cm2,r
weil bis zur kritischen Belastung keine Biegung zustande kommt. In den Stäben
C2,CZ,C± übersteigen diese Spannungen die Elastizitätsgrenze von St 37; die wirklichen
Spannungen wären hier in dem Verhältnis kleiner, in welchem im unelastischen Bereich
die Knickspannungen a* kleiner sind als die nach Euler errechneten Spannungen a£.

Ei2 l TfEs ist oE jt2 -y^- ; daraus folgt der Schlankheitsgrad —r- n V-B- •

Für den Stab C2, wo die Spannung am größten ist, erhält man für E 2150 t/cm2

/ 4.2150
2,396

94.

Laut der tschechoslowakischen Brückennorm (CSN 1230—1937) entspricht diesem
Verhältnis der Knickkoeffizient c= 1,928, also die Knickspannung

UK

da für St 37 die Bruchgrenze x"
Sicherheitsgrad

/'
UK

c
~~~

1,928

3,7 t/cm2 beträgt

F

1,918 t/cm2

C2

1,918 110

72
2,93

Für C3, C4 bekommt man ju 2,96.
Wenn der errechnete Sicherheitsgrad jul zu klein wäre, müßte man die Brücke

verstärken, und zwar die Trägheitsmomente / der Querschnitte der Obergurt- und
Füllstäbe zur Achse in der Trägerebene vergrößern.

m+j

m+

m+

AS

Fig. 4.

Es könnte geschehen, daß die Ausbiegung des Obergurtes in drei
Halbwellen erfolgen würde. Wenn die Berechnung des zweiten Falles (zwei
Halbwellen nach Fig. lc) darauf hinweisen würde, könnte man ähnlich wie im
ersten Fall (Fig. lb) rechnen. Aus allen möglichen Fällen der Ausbiegung
wäre natürlich derjenige maßgebend, welcher zum kleinsten Sicherheitsgrad
führt, und das wäre der wirkliche Sicherheitsgrad der Brücke.

Ähnlich wie den Parallelträger könnte man auch den Träger mit
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gekrümmten Obergurt berechnen (Fig. 4). Für AS nimmt man
hier die waagrechte Komponente der Mittelkraft der Stabkräfte Em+1, Vm,
weil deren lotrechte Komponente kein Biegungsmoment zur lotrechten Achse
ergibt, was wir hier brauchen. Anstatt der Feldlängen würde man hier die
Längen der Obergurtstäbe nehmen. Sonst wäre der Gang der Berechnung
derselbe. Die gekrümmte Qurtung würde sich bei der Ausbiegung auch
verdrehen; ihren Verdrehungswiderstand kann man aber vernachlässigen.

Dieselbe Berechnungsart kann man auch zur Kontrolle des gedrückten
Obergurtes der Vollwandträger anwenden. Anstatt der Differenz der
Stabkräfte in den Obergurten würde man hier die innere Schubkraft
einsetzen, welche zwischen dem Obergurt des Trägers und dem Stehblech auf
die Feldlänge a wirkt; sie hat den Wert

a T d)l
X c

I *

wenn %RC das statische Moment des Obergurtquerschnittes (Lamellen und
Winkeleisen) zur neutralen Achse, T die Querkraft bedeutet. Zur Berechnung

der Beiwerte ß würde man die Querträger und die lotrechten Steifen
des Hauptträgers in Rechnung ziehen.

Bei einem strebenlosen Fach werk (Vierendeelträger) wäre
dieselbe Methode wie beim gewöhnlichen Fachwerkträger anzuwenden.

Ist der mittlere Brückenteil mit Quer- und Windverstrebung

versehen, so genügt es, eine symmetrische Ausbiegung (nach
Fig. lb) vorauszusetzen; der verstrebte Trägerteil würde gerade und parallel
zur ursprünglichen Lage bleiben.

Zusammenfassung.
Die Knicksicherheit des Druckgurtes einer offenen Brücke läßt sich (nach

M. Keelhoff) dadurch ermitteln, daß man die Ausbiegung des Obergurtes
in der waagrechten Ebene wählt, daraus bei gewähltem Sicherheitsgrad die
auf den Obergurt wirkenden Momente ermittelt und dann die entsprechende
Biegelinie des Obergurtes berechnet. Durch wiederholte Rechnung bekommt
man die kritische Belastung (die Knicksicherheit), bei der die gewählte und
die daraus berechnete Ausbiegung identisch sind.

Resume.
La stabilite de la membrure comprimee d'un pont metallique peut etre

verifiee (d'apres M. Keelhoff) en choisissant la deviation de la membrure
dans le plan horizontal et en calculant d'abord les moments flechissants
düs ä cette deviation et au degre de securite choisi, et ensuite la ligne
elastique de la membrure. Par un calcul repete, on obtient la charge critique
(le degre de securite) pour laquelie la ligne elastique choisie et celle qui
a ete calculee sont identiques.

Summary.
The stability of the compression chord of a bridge truss can be calculated

(method of M. Keelhoff) by choosing the deflection of the chord in
the horizontal plane and determining from it and from the chosen degree
of safety the bending moments and the bending line of the chord. By re-
peating this calculation we obtain the critical "load (the degree of safety)
at which the chosen and the calculated deflections are identical.
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