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BERECHNUNG DER VERANKERTEN HANGEBRUCKEN
FÜR VERTIKALE UND HORIZONTALE BELASTUNG.

SUR LE CALCUL DES PONTS SUSPENDUS POUR DES CHARGES
VERTICALES ET HORIZONTALES.

CALCULATING ANCHORED SUSPENSION BRIDGES FOR VERTICAL
AND HORIZONTAL LOADING.

Dr. Ing. A. AAS-JAKOBSEN, Oslo.

TEIL I. VERTIKALE BELASTUNG.

1. Einleitung.
Die verankerte Hängebrücke besteht einerseits aus primären Baugliedern,
nämlich den Verankerungen, den Kabeln, den Türmen, den Hängeseilen

mit Fahrbahn und anderseits aus den sekundären Baugliedern, d. h. den
senkrechten Versteifungsträgern und den horizontalen Windträgern. Um
unangenehme Schwingungen zu vermeiden, werden die Hängebrücken immer mit
irgendeiner Windaussteifung versehen, während die senkrechten Versteifungsträger

bei einfachen oder bei sehr schweren Hängebrücken ganz fehlen
können. Da die Tragfähigkeit der Hängebrücken nicht von den Versteifungsträgern

abhängt, ist es nicht möglich, diese durch gewöhnliche statische
Berechnungen zu bestimmen. Durch diesen Umstand wird die Berechnung
der verankerten Hängebrücken wesentlich verschieden von den gewöhnlichen
statischen Berechnungen.

Die Lösung des Hängebrückenproblems führt zu einer Differentialgleichung
4. Ordnung mit variablen Koeffizienten. Diese Differentialgleichung

kann mit sehr guter Annäherung durch eine Differentialgleichung 2. Ordnung
mit konstanten Koeffizienten ersetzt werden, und die genaue Lösung wird
durch eine einfache Korrekturberechnung erhalten. Die Lösung bietet darum
keine theoretischen Schwierigkeiten. Durch die Eigenart der Bauweise
können mehrere Größen frei gewählt werden, wie Spannweiteverhältnis,
Pfeilverhältnis, Eigengewicht (schwere oder leichte Fahrbahn) und Steifigkeit

der Versteifungsträger. Um den Einfluß dieser Größen auf die Steifigkeit
der Brücke und die Baukosten leicht ermitteln zu können, werden große

Anforderungen an die Übersichtlichkeit und Einfachheit des Berechnungsverfahrens

gestellt. Die Ergebnisse müssen in Zahlentafeln oder in
einfachen Formeln dargestellt werden können, aus denen der Einfluß der
verschiedenen Größen leicht ersichtlich ist, und man muß mit einem Minimum
an Rechenarbeit mehrere Ausführungen untersuchen können, um aus den
verschiedenen Lösungen, die den gestellten Anforderungen an Steifigkeit
genügen, das Kostenminimum zu erhalten. Ein solches Berechnungsverfahren
für die zwei wichtigsten Typen der Hängebrücken (Fig. la und lb) zu geben,
ist der Zweck dieser Arbeit.
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Bei der Berechnung haben wir die bei den Hängebrückenberechnungen
gewöhnlichen Voraussetzungen gemacht, wie gleichmäßig verteiltes
Eigengewicht und haben ferner angenommen, daß keine Momente aus Eigengewicht
in den Versteifungsträgern auftreten (d.h. parabolisch geformte Tragkabel),
und daß die Abstände zwischen den Hängeseilen klein sind.

F, Ir

JE*zlL
Irh

h jM
y -4

l,
Jht

Typet
Ponl suspendu a 3 ouvertures

Dreifeldnge Hangebrucke
Suspension bndge wilh 3 openings

Fig. la

2l5JE

Ponl suspendu a I ouverlure
Type E EmFeldrige Hangebrucke

Suspension bndge with I openmg

Fig lb

2. Aufstellung der Differentialgleichungen.
Die Berechnung der Hängebrücken für senkrechte Belastung ist von

zahlreichen Verfassern behandelt und entwickelt worden. Wir verweisen hier
auf das erschöpfende Literaturverzeichnis von S. O. Asplund 1). Die
Differentialgleichung zur Bestimmung der Durchbiegung v des Versteifungsträgers

wird durch Aufstellung des Gleichgewichts eines Brückenelementes

%rr EKFK

O *̂/r-—
v+av

u+du

JE g

"(i IV*>r\tf*dri
dx

Fig. 2

~^*Ö&1Htgfy+dy) Belastungen, Schnittkräfte und Verschie-^^* bungen eines Brückenelementes dx.

Charges, forces et deplacements cTun
element d'un pont dx.

Loads, forces and displacements of a
bridge element dx.

von der Länge ßü: (Fig. 2) gefunden. Durch Vernachlässigung der
Kabelverschiebung u in horizontaler Richtung erhalten wir die bekannte
Differentialgleichung zur Bestimmung des Biegungsmomentes M im Versteifungsträger

*) S. O. Asplund: On the Deflection Theory of Suspension Bridges Stockholm 1943.
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Hl2
(1 a) M" — -^ M - 8Hsf + pP 0

dM x
wo m, S -r HS HP + Ht+AH, H=HS+Hg.

Hg ist die Horizontalkomponente des Kabelzuges aus Eigengewicht,
Hp aus Nutzlast, Ht aus Temperaturänderung -A-t und AH aus der
Normalkraftverlängerung des Kabels.

Vr
r/2

-j-p- lautet die Lösung für M

(lb) M A$AnlS + BCosl£ — |/(//, — §£)

y/f
In Gleichung (la) wird /W ^- y" eingeführt und durch zweimalige

Integration erhalten wir die senkrechte Durchbiegung

(lc) v y(M0-M-Hsy)

wo Mq das Moment inf. Nutzlast im Versteifungsträger als frei aufliegender
Balken ist.

Die Horizontalkomponente im Kabel wird am einfachsten aus der
Bedingung, daß die Horizontalverschiebungen u des Kabels an den
Ankerklötzen verschwinden sollen, d. h. J du --= 0, bestimmt. Dies ergibt

v" f
i dx~^LS+ EtLt= — ^ \(vp+vt + Av)

Vp^Vt^r Av sind die zu Hs Hp\-Ht-\-AH gehörigen VertikalVerschiebungen,

e =- Temperaturkoeffizient,

„ dxf dx L==[
J COS3G? ' t J COS* 09

Sämtliche Integrale sind über das ganze Kabel zu erstrecken. Aus obiger
Gleichung erhalten wir zur Bestimmung

(1 d) von Mp ; \vp dx 0

(1 e) von Fit\ — .j \vtdx etLt,

(lf) von AH: — ^ f Avdx ~A Ls.
I2 J £i />

Abhandlungen VII
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3. Dreifeldrige, symmetrische Hängebrücke mit freiaufliegendem
Versteifungsträger von öffnungsweise konstantem Träg¬

heitsmoment nach Fig. 1 a.

Zur Bestimmung der Pfeilhöhe in den verschiedenen Feldern gilt die
Bedingung, daß die Horizontalkomponente Hg aus Eigengewicht in allen
Öffnungen gleich ist, oder

"<- 8/ - 8/,
*

Gewöhnlich wird das Eigengewicht in sämtlichen Feldern gleich sein, und
wir erhalten (Fig. la)

/ h
l2 A2'

Die Nutzlast für Straßenbrücken ist in den Belastungsvorschriften der
verschiedenen Länder in Form von Autolastzügen mit festgelegten Achsdrücken
angegeben. Bei größeren Spannweiten wird gewöhnlich auch die äquivalente
gleichmäßig verteilte Nutzlast angegeben, so daß es genügen würde, die
Maximalschnittkräfte für diese Belastung zu untersuchen. In einigen Ländern
wird die Nutzlast als gleichmäßig verteilte Belastung samt einer Einzellast
angegeben. Bei weichen Hängebrücken ist eine Einzellast in dem betrachteten

Punkt von ausschlaggebender Bedeutung, und es ist darum außer der
verteilten Belastung p auch von Interesse, eine Einzellast P im betreffenden
Punkt zu untersuchen.

a) Maximalmomente aus Nutzlast.

Das Maximalmoment für einen beliebigen Schnitt im Mittelfeld
erhalten wir *ür unbelastete Außenfelder und teilweise belastetes Mittelfeld.

Für die Einzellast P im Punkte # ist das Moment des Versteifungsträgers
im Punkte f durch Gl. (lb) gegeben. Die Integrationskonstanten sind

durch die Randbedingungen M 0 für $'¦ 0 und 1=1 und aus den

Kontinuitätsbedingungen im Lastpunkt M{-=Mr und —r- -—^-=P bestimmt.

Hieraus erhalten wir für f << #.

(2 a) Mt ~ |^ Sin l(1 - ») -1| HP(l + Tg A Sin li- - Cos li)
In ähnlicher Weise wird das Moment für f ># im Mittelfeld und das

Moment in den Seitenfeldern gefunden. Die zugehörige Horizontalkraft
Hp im Kabel ist durch Gl. (ld) bestimmt, wo vP aus Gl. (1c) zu entnehmen
ist. Nach Durchführung der Integration der Gl. (ld) wird

h - 3PUn <a
1-g?^(1+TgTSinAf-Cos^)

"'-«-*«-» (1 + 27)[l_«(,_aTg^'
Hier ist l ^Mfhl1 + TgAsinU- CosAf)
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und wir können für 1 + Tg Sin/lf — Cos lg den Durchschnittswert
2 X 1

1 — o Tg-^- einführen, entsprechend für #(1 — ^) den Durchschnittswert^.-.
A, Z O

Mit diesen Vereinfachungen erhalten wir:

(2b) HP=3Pl»<l-V

WO ixh l~Pl
4/ l+2r '

lf l-S(l-|Tgi)
oder v A£ JA) _ /AY lihl/ lf <p(l) —\l) cp(l)

¦

cp(Xx) und <p(X) können aus der Tafel 2 entnommen werden.
Für eine Streckenlast p von i =- a bis i b wird H„ aus Gl. (2b) durch

Einführung von P pld& und Integration von a bis b erhalten:

(2c) //, _££__(3A._2*»-3fl» + 2«»).

Das Biegungsmoment im Punkte £ für eine Streckenlast wird in
derselben Weise gefunden

ioa\ aa _ Pl*(* SinUCosMl —*) + SinA(l--f)CosAa\(2d) AfÄ_ ^1 gEI J

Die Begrenzung <7 und & der Streckenlast wird durch die Bedingung
bestimmt, daß das Moment der Einzellast P hier verschwinden soll. So
erhalten wir aus Gl. (2a) zur Bestimmung von b

/0 Sin Ä (1 — 6) 6 Sin/l /, T X \ 1

und eine entsprechende Gleichung zur Bestimmung von #.
Die Maximalmomente für eine gleichmäßig verteilte Belastung p treten

bei gewöhnlichen Hängebrücken in f ¦= 0,1 bis £ 0,25 auf und das Maximalmoment

für eine Einzellast P in £^0,1. Da das Maximalmoment aus P
und p sich in diesem Gebiet wenig ändert, wollen wir es für £ 0,1, £ ==- 0,2
und £ 0,5 berechnen, und zwar für die beiden Extremwerte y 0 und
y 0,05 (siehe Tafel 11). Das Maximalmoment Mp der Streckenlast /? wird
aus Gl. (2d) erhalten, nachdem a und b bestimmt sind. Die zugehörige
Horizontalkraft Hp ergibt sich aus Gl. (2c). Das Maximalmoment MP der Einzellast

P ist durch Gl. (2a) für £ # und die entsprechende Horizontalkraft
HP durch Gl. (2b) bestimmt. Diese Maximalmomente sind für verschiedene
Werte 1 ausgewertet und in Tafel la, lb und lc zusammengestellt. Außer
den zugehörigen //^-Werten sind auch die entsprechenden Lastlängen
lp=- l{b — a) angegeben.
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Tafel la. Maximalmoment für £ 0,1 im Mittelfeld, M§ 0tl.

\ X

7 \ 5 10 15 20 30 40 50 Multiplikator

MP 0

0,05
0,195
0,204

0,440
0,451

0,606
0,618

0,713
0,723

0,827
0,836

0,877
0,885

0,902
0,909

pl2
A2

"n 0

0,05
0,250
0,245

0,185
0,176

0,147
0,139

0,124
0,117

0,098
0,092

0,084
0,078

0,075
0,070

Pl2

8/
lP 0

0,05
0,33
0,34

0,27
0,28

0,24
0,25

0,22
0,22

0,19
0,20

0,18
0,18

0,17
0,17

/

MP 0

0,05
0,274
0,278

0,398
0,401

0,447
0,450

0,467
0,470

0,482
0,483

0,487
0,488

0,489
0,490

PI
l

HP 0

0,05
0,068
0,061

0,068
0,061

0,068
0,061

0,068
0,061

0,068
0,061

0,068
0,061

0,068
0,061

PI
f

K-]JE ' ^-JI^E' 7~ If !_!?/,_ 2_T A // <p(L)

Für J =Jt ist l1=*±-l.

qp(^t) und cp{X) können der Tafel 2 entnommen werden.

Tafel Ib. Maximalmoment für £ 0,2 im Mittelfeld, Af^=0,2.

5 10 15 20 30 40 50 Multiplikator

Mp 0

0,05
0,257
0,276

0,512
0,534

0,638
0,659

0,702
0,722

0,768
0,784

0,810
0,824

0,839
0,850

pP

»p 0

0,05
0,325
0,316

0,273
0,258

0,241
0,226

0,221

0,206
0,176
0,165

0,145
0,136

0,125
0,117

pl*
8/

lP 0
0,05

0,38
0,40

0,34
0,35

0,32
0,33

0,30
0,31

0,20
0,21

0,16
0,17

0,13
0,14

/

Mp1"* o

0,05
0,314
0,325

0,408
0,415

0,438
0,443

0,453
0,457

0,468
0,471

0,476
0,478

0,481

0,483
PI
l

HP 0

0,05
0,120
0,109

0,120
0,109

0,120
0,109

0,120
0,109

0,120
0,109

0,120
0,109

0,120
0,109

PI
f

In Tafel la—c wird für Hp+P geradlinig interpoliert. Für M wird zuerst
in y geradlinig, danach in X in folgender Weise parabolisch eingeschaltet:

Es sei die Funktion f(l) in den drei Punkten lx, l2 und /3, in gleichem
Abstand AX, bekannt. Dann ist die Funktion in einem beliebigen Punkt X

gegeben durch
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m h + ^ (h - m + ^d l~*
21

2AX

f1 f(lx) usw. oder mit s

AI
Ai Aj

(>-^)(>-'i-!t)

/ W h+ 2~ (4/2 - 3A - /„) - ~2 (2/. - /1 - /«) •

Tafel lc. Das Maximalmoment für i 0,5 im Mittelfeld, ^=0,5.

\ X
5 10 15 20 30 40 50 Multiplikator

yW„ 0
0,05

0,151
0,187

0,354
0,386

0,484
0,514

0,569
0,596

0,672
0,693

0,732
0,750

0,772
0,788

pl2

»p 0

0,05
0,434
0,454

0,377
0,370

0,327
0,314

0,287
0,274

0,231

0,218
0,194
0,184

0,169
0,159

pl2
8/

1p 0

0,05
0,30
0,35

0,26
0,28

0,22
0,23

0,19
0,20

0,16
0,17

0,13
0,14

0,11
0,12

/

MP 0
0,05

0,242
0,265

0,352
0,365

0,400
0,409

0,425
0,432

0,450
0,455

0,463
0,466

0,470
0,473

PI
l

HP 0
0,05

0,187
0,170

0,187
0,170

0,187
0,170

0,187
0,170

0,187
0,170

0,187
0,170

0,187
0,170

PI
f

Das Minimalmoment aus der Streckenlast p im Mittelfeld ist gleich dem
Maximalmoment, aber X ist hier verschieden

pj2
8/~//. M H+M •

Das Verhältnis M„
Mn

ist bei einem mittleren Wert von X(X «20)
Mn g+ P2

Mnlmin g + Pund nähert sich bei großem X dem Wert

Das Minimalmoment der Einzellast P wird aus Gl. (2a) und entspre-
P

chend HP aus Gl. (2b) bestimmt. Wenn pP= -— klein gegenüber p ist,
i tp

kann das Minimalmoment für eine Streckenlast p^-pP errechnet werden. Die
Momente aus der Kabelverlängerung und Temperatur werden getrennt
behandelt.

Das Maximalmoment in den Seitenfeldern wird bei gewöhnlichen

Werten von X -^ erhalten, indem man das betrachtete Außenfeld voll-
h

belastet und die anderen Felder nicht belastet. Für 21>16 kann eine
teilweise Belastung des Außenfeldes größere Momente als bei Vollbelastung
ergeben. So findet man für ^ 30 für eine Belastung von £ -0,19 bis
£=- 0,71 in Feldmitte l,7o/0 größere Momente als bei Vollbelastung. Diese
Abweichung ist jedoch ohne praktische Bedeutung, da sie erstens klein ist,
und zweitens kommen Brücken mit Aj>16 kaum vor (vergleiche Tafel 11).
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Für eine gleichmäßig verteilte Vollast p im betrachteten Seitenfeld sind
die Momente aus Gl. (lb) bestimmt. Werden diese Ausdrücke in Gl. (lc)
und (ld) eingeführt, so ergibt sich

(3 a) ""- \ + 27 8/
und die entsprechenden Biegungsmomente im Versteifungsträger

.max _ pl? 1 + 7
(3 b)

wo

M\

_ kt\ <p{h)

*(Aif),

' If <p(l) '

<p{}) \-™{\- \Tg^) und «(^Dzzrl + Tg^SinA^-Cos^f

1 Sin^(l — £) + Sin^f
Sin/t

können der Tafel 2 entnommen werden.

Tafel 2. Tafel der Funktionen &(X£) und <pQ).

10 15 20 30

<2>(U) l + TgySinA£ —CosU #(A,l-f)
0,5

0,25 1

0,75/

0,20 \

0,801

0,101
0,90 1

0,352 0,575 0,734 0,837 0,901 0,963 0,987 0,99 1,0

0,269 0,450 0,590 0,692 0,766 0,862 0,917 0,976 0,993

0,232 0,391 0,519 0,616 0,691 0,797 0,864 0,950 0,982

0,133 0,230 0,315 0,396 0,448 0,550 0,632 0,777 0,865

1,0

1,0

0,998

0,950

9(A) l_g|l. 2M)
0,285 I 0,471 I 0,612 I 0,709 I 0,777 I 0,859 I 0,904 I 0,954 I 0,973 I 0,988

Das Minimalmoment im Seitenfeld wird erhalten, indem man das
betrachtete Feld nicht und die übrigen Felder voll belastet;

»p \+2y 8/ '

M2 l + r 4>(h£)
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Mmax
Das Verhältnis —-r- wird

M\

mt i±j±ki ^ g±p
Mfn g+^L^p g* ^ 1 + 2;''

Für eine Einzellast P im Punkte # ergibt sich für das Seitenfeld in
ähnlicher Weise wie für das Mittelfeld

1 PI V
,3 c) „,= __¦.,<,_.,>_/_,

(3d) ^ K [StaJ,<,-,)*.,,, _6«, ,m]
(3e) «r gT,J(.-|T,';r+Vj-
Hier ist y < 1 und für Ax ^> 5 ist

(3f) Air 2jf.
Für /> in £ 0,5 im Mittelfeld wird das Moment im Seitenfeld

3 PI 1

Hkp 16 / 1 + 2y'

b) Momente aus Temperatur und Kabelverlöngerung.
Aus Gl. (le) erhalten wir zur Bestimmung der Horizontalkomponente Ht

aus einer Temperaturerhöhung-- t

(4a) Ht -H^mlr 'lW^V)'Wy
£ Temperaturkoeffizient,

Aus der Kabelverlängerung entsteht eine Horizontalkomponente AM
nach Ol. (If):
/a k\ /< *-/ H Hs Ls l 3
{4Ö) // — -—- p 16(] + 2y)^(I) >

Die entsprechenden Momente im Mittelfeld und Außenfeld sind

(4c) M =—*£(Ht+AH)0(l$),
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(4d) M1=-j{(Ht+Afi)0(k1^9
q?(X) und <P(X!;) werden der Tafel 2 entnommen.

Die gesamte Horizontalkraft aus Eigengewicht, Temperatur und Nutzlast

ergibt

H=^r+Hp^P+Ht+AH.
H wird hier durch Iteration gefunden, indem für die gegebene

Lastkombination zuerst ein angenäherter Wert für H und X angenommen wird

(z.B. // f£). Mit diesem Wert für X wird Hp+P der Tafel la oder lb
entnommen. Mit H -= Hg-\- Hp+P wird ein neuer Wert für X, X1 und y
berechnet. Diesen Werten entnehmen wir einen verbesserten Wert für HphP
aus der Tafel la und lb, und aus Gl. (4a) und (4b) erhalten wir Ht und AH.
Der so gefundene Wert für H ist infolge der guten Konvergenz der
Berechnung nur mit Fehlern behaftet, die kleiner als 1 %0 sind, was bei einer
neuen Durchführung des Rechnungsganges leicht gezeigt werden kann.

Beispiel 1.

Als Beispiel berechnen wir das Maximalmonient des Mittelfeldes in
£ 0,2 für eine Hängebrücke mit / 220 m, l± 75 m, / 22 m, f1 2,55 m,
EkFk^\,12- 106 t (beide Kabel), /=4-250, e=10-6, EJ EJ1 1,\ • 106 tm*
(beide Versteifungsträger), g= 11,75 t/m, /? 3,15 t/m, P=-45 t (für die
ganze Fahrbahn).

gl2Als erste Annäherung wird y ¦= 0,025 und H =//? ^ — gewählt.

"e ^§' 22°2 3231 *'

> i£ »°iwriü! "-
Aus Tafel lb wird für H entnommen

115. 2202 45 220
H=Hg + 0,25 ^8 7^- + 0,115 ^y 3231 + 217 + 52 3500 t.

Der verbesserte Wert für X und X± wird

3500_-42
10« ~ ' •

Für diese A-Werte werden ep(A, 2) und g?(12,4) der Tafel 2 entnommen und
es wird

v - ^lA y(4'2) _ 75 • 2,55 0.63 _7 ~ // 9>(12,4)— 220-22 0,92 '
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Mit diesen Werten für 1 und y werden:

Hg 3231 t

Aus Tafel lb (geradlinig eingeschaltet):

Hp 0,252 • ^^~- 218 t

HP 0,114 4522220 51 t

Aus Gl. (4a) und (4b) :

_ _ 3450 • 10 ¦' -25 • 388 ¦ 3 • 220 _ _"* — 16 • 222 • 0,92 • 1,054 ~~ " '

3450(3450 — 3231) • 400 • 220 • 3 _ _.-.~ 1,72 • 10« • 16 • 222 • 0,92 • 1,054
~~

_ JU
H 3456 t

Für diesen verbesserten Wert H wird

l 12,33

A, 4,20

y 0,027

und eine neue Durchführung der Berechnung ergibt //= 3456 t. Die 1. Iteration

für H ist also genau, und wir erhalten für das Maximalmoment in
1-0,2:

Aus Tafel lb (parabolisch eingeschaltet):

3,15^220ä
12,332

Mp 0,588 • -^psf- 590 tm

45 • 220
MP 0,422 • j2^T 339 tm

Aus Gleichung (4c) :

q 22
Mt+jH 1^33¥ (29 + 15) 0,904 47 tm

M^0t2 97f3lm

c) Maximale Querkräfte.
Die Versteifungsträger sind gewöhnlich als Fachwerkträger, als

genietete oder geschweißte Vollwandträger ausgebildet. Bei kleineren
Hängebrücken werden auch Walzprofile verwendet. Im ersten Fall werden die
Diagonalen, im zweiten Fall die Nietteilung oder Schweißnähte zwischen
Gurt und Steg, als auch die Aussteifung des Steges gegen Ausbeulen durch
die maximale Querkraft bestimmt. Auch bei Walzprofilen muß die Sicherheit

des Steges gegen Ausbeulen untersucht werden.

Da Q=——, wird die Querkraft am einfachsten aus den

Momentengleichungen durch Derivation ermittelt. Für eine Einzellast P im Punkte &
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Tafel 3. Max. Querkraft Qp aus gleichmäßig verteilter Belastung p und
Querkraft QP aus einer Einzellast für £ 0, £=0,1, £ 0,2 und £—0,5

im Mittelfeld.

\ x
5 10 15 20

1

30 40 50 Multiplikator

£ 0

Qp P, HP 0

% 0 0,565 0,766 0,848 0,891 0,934 0,954 0,966 pl
0,05 0,583 0,778 0,856 0,897 0,938 0,957 0,968 l

HP 0 0,197 0,130 0,092 0,069 0,044 0,032 0,024 pl*
0,05 0,195 0,124 0,124 0,066 0,042 0,030 0,022 8/

1P 0 0,28 0,23 0,19 0,16 0,13 0,11 0,09 /
0,05 0,30 0,23 0,19 0,16 0,13 0,11 0,09

£ 0,1

Qp 0 0,620 0,548 0,517 1 0,506 1 0,500 0,500 0,500 P
0,05 0,626 0,550 0,518 0,506 0,500 0,500 0,500

//P
PIn nftt°'068/(i+2r)

% 0 0,340 0,431 0,458 0,474 0,491 0,497 0,499 Pl
0,05 0,357 0,436 0,462 0,477 0,492 0,497 0,499 l

hp 0 0,297 0,245 0,213 0,193 0,168 0,152 0,141 pl2
0,05 0,298 0,233 0,201 0,181 0,156 0,141 0,130 8/

1p 0 0,28 0,24 0,22 0,20 0,18 0,17 0,16 /
0,05 0,30 0,25 0,23 0,21 0,19 0,17 0,16

£ 0,2

Qp 0 0,501 0,504 0,502 0,501 0,500 0,500 0,500 P
0,05 0,507 0,503 0,502 0,501 0,500 0,500 0,500

HP -on pl
0'Uf(l+2y)

% 0 0,305 0,431 0,476 0,492 0,499 0,500 0,500 pl
0,05 0,320 0,436 0,478 0,492 0,499 0,500 0,500 l

hp 0 0,460 0,430 0,406 0,388 0,361 0,343 0,331 pl2
0,05 0,441 0,404 0,379 0,360 0,333 0,315 0,303 8?

1p 0 0,34 0,32 0,31 0,29 0,28 0,26 0,26 /
0,05 0,36 0,33 0,31 0,30 0,28 0,27 0,26

L

£ 0,5

QP 0,5 P, HP- 0,1875/(1+'27)

Qp 0-0,05 0,424 0,493 0,499 0,500 0,500 0,500 0,500
| Pl
1 }-

»P
pl2 / — 0 k /

16/(1+2 y) > lp - [
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wird die Querkraft im Punkte £ des Mittelfeldes (£«<.#) aus Gl. (2a)
erhalten.

/k*\ ^ 0[CosA£SnU(l —#) 65(1 — #)/T i ^ lt Q. .AI

Aus Gl. (5a) kann der Nullpunkt & d der Querkraft gefunden werden, und
durch Belasten des betrachteten Schnittes £ bis £ rf, wird die maximale
Querkraft für die Streckenlast p durch Einführung von P pldfr in Gl. (5a)
und Integration von £ bis d erhalten. Diese ist zusammen mit QP für die
Einzellast P in dem betrachteten Schnitt in Tafel 3 zusammengestellt.

Die minimale Querkraft aus der Streckenlast p wird durch Vollast
aller Felder und Entlastung der positiven Einflußflächen erhalten, d. h.

Q^n —(Sax und die entsprechende Horizontalkraft wird Hp^^-~Hpax.

Die minimale Querkraft aus der Einzellast P wird Qpln P—Qpax.
Die Querkraft im Mittelfeld aus Temperatur und Kabelverlängerung ist

(5b) Q —8^(Ht + AH)(Tg~ Cos XS — Smli

Im Seitenfeld ergibt sich für eine Einzellast P im Punkte # die
Querkraft im Punkte £ in entsprechender Weise wie für das Mittelfeld

__ dMx
___

rCos /JxfSnUiQ —$)
1 ~ dx

~~~ L Sin /Ij

Da y eine kleine Größe ist, erhält man mit guter Annäherung die
maximale Querkraft Qp für eine gleichmäßig verteilte Belastung p durch
Belastung vom Auflager bis zu dem betrachteten Schnitt £. Diese Querkraft
wird aus obiger Gleichung durch Einführung von P -= pldd und Integration
von £ bis 1 erhalten zu

- r_^2- {JS
2

Cos l>f - Sin*i * 0 ~ 3 f * + 2 f3>] •

Für /kl<C5 ist diese Gleichung genau und für Ax 10 ist die Abweichung
vom genauen Wert lo/0, was ohne praktische Bedeutung ist.

Der maximale Auflagerdruck für die Streckenlast p ist

(5d) Q°-1TH^TgT-
Die Querkraft im Seitenfeld aus Temperatur und Kabelverlängerung ist

(5 e) Q - f-f* {Ht + A H) (Tg ^ Cos l,i - Sin l, i)



28 A. Aas-Jakobsen

d) Maximale Winkeländerungen und Durchbiegungen des Versteifungs¬
trägers nebst Schiefstellung des Querträgers.

Die Versteifungsträger gehören zu den sekundären Baugliedern der
Hängebrücken und können bei großen Brücken, wie z. B. bei der George
Washington-Brücke im 1. Ausbau, ganz wegfallen. Sie wirken im wesentlichen

lastverteilend und versteifend. Wird für den Versteifungsträger ein
beliebiges Trägheitsmoment gewählt, so können die Maximalmomente aus
der Tafel la und lb entnommen werden, und es ist immer möglich,
Querschnitte zu finden, die das gewählte Trägheitsmoment und gleichzeitig die
zulässige Randspannung aufweisen.

Außer den Versteifungsträgern können auch das Eigengewicht der Fahrbahn

und die Pfeilhöhe des Kabels frei gewählt werden. Diese Größen
müssen so abgestimmt sein, daß genügende Steifigkeit der Brücke mit kleinst-
möglichen Baukosten erhalten wird. Als Steifigkeitsmaße der Brücke werden
gewöhnlich die maximale Winkeländerung und die maximale Durchbiegung
des Versteifungsträgers verwendet. Am wichtigsten ist jedoch die maximale
Schiefstellung der Querträger. Wo diese Schiefstellung sehr große Werte

annimmt, wie z.B. bei der Tacoma-Brücke (tgß =~}~t—-=1:7), wird die

Brücke bei schiefen Belastungen und Wind so große Schiefstellungen der
Fahrbahn erhalten, daß sowohl die Fahrbahn als auch die Hängeseile mit
ihren Befestigungen zum Bruch kommen und ein teilweises Einstürzen zur
Folge haben. Um eine schnelle Übersicht über die verschiedenen
Steifigkeitsmaße zu erhalten, wollen wir dieselben in geschlossenen Formelausdrücken

und Zahlentafeln angeben.
Die maximale Winkeländerung der Versteifungsträger entsteht bei den

Türmen, und da tg<z=~~ ist, wird diese aus Gl. (lc) durch Derivation

erhalten.
Für das Mittelfeld ergibt sich für eine Einzellast P im Punkte #

eine Winkeländerung des Versteifungsträgers an den Türmen (£ 0)

P
(6a) tgaP= M

\
^

Sin X(l-3) 3*<l-S)(l-4)-
1 \F

Sin l 1 + 2 y

Die Nullstelle £ =- c wird durch folgende Gleichung bestimmt:

Snl(l-c) 3c(l-£)(l--f)
<6b> '-'--^wa^ rri7^- 0-

Die maximale Winkeländerung an den Türmen für eine Streckenlast p
entsteht durch Belastung von £ 0 bis £ c und wird durch Einführung von
P =- pldft in Gl. (6a) und Integration erhalten

(6c) tgaP ^ (3ci — 2c&){\ — j) Cosl(l~c) — Cos l
4(1 + 2 y) ^ ISml

In Tafel 4 sind die maximalen positiven Winkeländerungen tga,^ und
tgoc/> an den Türmen im Mittelfeld aus einer Streckenlast p und einer Einzellast

P angegeben. Die minimalen Winkeländerungen sind von derselben
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Größenordnung, da sie aber im unbelasteten Teil auftreten, fallen sie
weniger ins Gewicht.

Tafel 4. Maximale positive Winkeländerungen des Mittelfeldes an den
Türmen mit zugehöriger Horizontalkraft und Belastungslänge.

\ 1

y \ 5 10 15 20 30 40 50 oo Multiplikator

igap 0

0,05
0,042
0,055

0,081
0,095

0,101
0,115

0,112
0,126

0,124
0,137

0,130
0,143

0,134
0,147

0,148
0,161

Pl
H

»P 0

0,05
0,424
0,477

0,358
0,385

0,327
0,349

0,309
0,330

0,292
0,311

0,283
0,302

0,278
0,296

0,259
0,277

Pl*
8/

lP 0

0,05
0,45
0,52

0,40
0,45

0,38
0,42

0,37
0,41

0,36
0,39

0,35
0,39

0,35
0,38

0,33
0,37

/

tg«p 0

0,05
0,149
0,172

0,326
0,351

0,444 0,524
0,467 0,544

0,626
0,643

0,689
0,704

0,732
0,745

1,0
1,0

P
H

HP 0

0,05
0,102
0,100

0,084
0,080

0,071

0,067
0,063
0,059

0,051

0,048
0,043
0,040

0,038
0,035

0
0

PI
f

Die maximale Winkeländerung in den Seitenfeldern erhalten wir
für Vollast des betrachteten Feldes. Für die gleichmäßig verteilte Belastung
ist die Winkeländerung an den Türmen

(6d) tg«i P
2 H 1 + 2y\ + ' g

7

K

H _ Pl"'- 8/ \ + 2Y'

wird

(6e)

Die entsprechende Winkeländerung für eine Einzellast P im Punkte &

tg«i 1 »¦
Sin Ml —-3) 3 3(1 —#) IIHl' " Sin-Ix

Die Winkeländerung aus Ternperaturänderung
rung an den Türmen ist im Mittelfeld

^lHt + AH f. 2
~1*

V 1 + 2yJ+ 2yJ

t und Kabelverlänge-

(6f) tgat+JH H lM{] l g2
und entsprechend in den Seitenfeldern Ht und AH sind durch Gl. (4a) und
(4b) bestimmt.

Die Durchbiegung des Versteifungsträgers ist durch Gl. (lc) gegeben.
Im Mittelfeld ergibt sich die Durchbiegung im Punkt £ für eine Einzellast

P im Punkte #(£<#)

(6g) ^«r^.^StalfSlniO-»)l Sin l
3S(l-3)/

l + 2y l?
(p (U))]
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Ein entsprechender Ausdruck für v wird für £ >> # erhalten. Die maximale
Durchbiegung wird für die Einzellast im betrachteten Punkt erhalten.
Abhängig von X und y liegt dieser Punkt bei gewöhnlichen Brücken zwischen
£ ==- 0,22 und £ 0,29. Da es hier nicht auf den exakten Wert ankommt,
berechnen wir die Durchbiegung in £ 0,25. In extremen Fällen wird die
maximale Durchbiegung diesen Wert bis zu 3o/o überschreiten, was ohne
praktische Bedeutung ist. Für eine Streckenlast p wird die Durchbiegung
in £ 0,25 durch Einführung von P pldt; und Integration von 0 bis zur
Nullstelle der Durchbiegungen, die von / und y abhängig zwischen £ 0,44
und £ 0,58 liegt, erhalten. Diese Durchbiegungen sind für verschiedene
Werte von X und y ermittelt und in Tafel 5 zusammengestellt.

Aus der Kabelverlängerung entsteht eine horizontale Korrekturkraft AH
im Kabel. AH ist durch Gl. (4b) bestimmt und das zugehörige Moment
durch Gl. (4c). Diese Ausdrücke in Gl. (lc) eingesetzt, ergeben

(6 h)
3/HSLS

EkFk4f(\ + 2y)cp(l)
I2 — A2

0 (*£))¦

Tafel 5. Maximale Durchbiegung im Mittelfeld bei £=0,25 für eine
Streckenlast p und eine Einzellast P.

y \ 5 10 15 20 30 40
i i

50 oo Multiplikator

VP 0

0,05
0,050
0,076

0,092
0,123

0,110
0,141

0,117
0,148

0,123
0,154

0,126
0,156

0,127
0,157

0,129
0,159

pl2
SH

Hp [0,41 + ^ (1 + Sy)] (1 + y)P~

Vp 0

0,05
0,021
0,028

0,043 1 0,054 1 0,060
0,051 1 0,063 0,069

0,067 1 0,070
0,076 1 0,080

0,072
0,082

0,082
0,092

PI
H

9 PI 1

np 64 / l + 2y

Die maximale Schiefstellung der Querträger ist durch die relative
Durchbiegung der Versteifungsträger bestimmt

*gf»
vv — vh

wo b die Brückenbreite, v die Durchbiegung des linken und vh die
Durchbiegung des rechten Versteifungsträgers sind. Um einfache Formeln zu
erhalten, berechnen wir die Schiefstellung in £ 0,25 für eine Belastung bis
Brückenmitte. Die maximale Schiefstellung kann diesen Wert in extremen
Fällen bis zu etwa 4o/0 überschreiten.

Die größte Schiefstellung wird durch wechselweise Belastung bis Mitte
Fahrbahn erhalten. Durch diese einseitige Belastung ist die Belastung auf
dem einen Kabel px bzw. Pv, und auf dem andern ph bzw. Ph(pv^> ph)-

Die Schiefstellung in £ 0,25 bei Belastung auf der einen Seite mit pv
von £ 0 bis £ 0,5, mit ph von 0,5 bis 1,0 und auf der anderen Seite mit
ph von £=0 bis 0,5 und mit px von £-=0,5 bis £=1,0 wird
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Sin 0,75 / — Sin 0,25 X

31

«6D *A ^-ys-M' 0,5 Sin X
)]

Bei Belastung in den Seitenfeldern mit pv und ph wird die Durchbiegung

in £ 0,25 im Mittelfeld auf der einen Seite

vv
Pv_P_

H \ + 2y
7 I-3-- 2(Ll6 P\

2 / Sin 0,751 + Sin 0,25 X

X2\ SinA )]

und entsprechend auf der anderen Seite. Für die Einzellasten Pv und Ph
in £==0,25 und Ph und Pv in £=0,75 wird

(Pv — PÄ) /1 1 Sin 0,25 X (Sin 0,75 A — Sin 0,25 X)
(OK) »fr=v4^-'l8 X Sin A

Die Schiefstellung, die von y unabhängig ist, ist für verschiedene Werte
von X ausgerechnet und in Tafel 7 zusammengestellt. Dort sind gleichzeitig
die entsprechenden Horizontalkräfte angegeben.

Tafel 6. Schiefstellung der Querträger im Mittelfeld für £=0,25 für
Streckenlasten pv und ph und für Einzellasten Pv und Ph an beiden Kabeln.

10 15 20 30 40 50 Multiplikator

tgßp

KP*

0,040 0,076 0,092 0,100 0,108 0,113 0,115 0,125

q (Pv + Ph)l i

(Fv-Fh) bH

0,100 0,183

HP

0,216

64 /
0,230 0,241

l + 2y

0,245 0,247 0,250

Hp= (Pv+Ph)
P

16/

(Pv — Ph

+ l + 2y

>8^[1 +
2y

(3 +
TO

Die maximalen Durchbiegungen und die Schiefstellung der Querträger
treten in den Seitenfeldern bei £=0,5 auf. Die maximale
Durchbiegung entsteht für Vollast p im betrachteten Feld und P in £ 0,5

(61) max
Vi

pl? 1 + 7

8H 1 + 2y

Pix

L VV Cos 0,5 vJ
+ AH

1
2 x h
XTgT

3y /l
1+2/4 V

1 —
Cos *i

Die minimale Durchbiegung entsteht, wenn das betrachtete Seitenfeld
unbelastet und die übrigen Felder voll belastet sind.

(6 m) mm
Vi

Pk2 i + y

8H 1 + 2y

Die Durchbiegungen sind für verschiedene Werte von X1 und y berechnet und
in Tafel 7 zusammengestellt.
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Tafel 7. Maximale Durchbiegung vmax und Aufbiegung vmin für £=--0,5
in einem Seitenfeld.

h

max i y o,'y 0,02
05

Vp4-P

0,296

0,059
0,057

0,489

0,097
0,095

0,732

0,149
0,145

0,847

0,176
0,171

10

0,921

0,197
0,192

15

0,964

0,213
0,208

H,"+p l + y\Sf^l6 A
pl2 3 Pk

¦ +

0,296 I 0,489 | 0,732 0,847 0,921

H,
1 + y 4?(1 +P+P 14-27 8/

0,964

1,5P

1,0

0,246
0,241

1,0

Multiplikator

pli2 1 + 7

SH l+2v

H

i+l' MVj.. U5/>\
i + 2r 8// Pl

Die maximale Schiefstellung der Querträger in £ 0,5 wird aus Tafel 7
erhalten, indem man in die Multiplikatoren für v als Belastung p pv — ph
bzw. P Pv — Ph einführt. Die zugehörige Horizontalkraft wird

(6n) M t \ ^ _L
3 (P> + Ph)1 l

HP+P (pv + P*)Wf + 32 j Y+^7
Um eine Übersicht über die drei Deformationsgrößen, maximale

Durchbiegung vmax, maximale Neigung des Versteifungsträgers tga und maximale
Schiefstellung des Querträgers tg/? zu erhalten, sind diese Werte für einige
amerikanische und norwegische Brücken in Tafel 8 zusammengestellt. Es
sind hier auch die der Berechnung zugrundegelegten Belastungen angegeben.
Die übrigen Konstruktionsdaten gehen aus Tafel 11 hervor.

Tafel 8. Maximale Durchbiegungen vmax, Winkeländerung des Versteifungsträgers

tga und Schiefstellung des Querträgers tgß für einige ausgeführte
Hängebrücken. (Temperaturänderung nicht berücksichtigt.)

t/m
P

t/m
Pv-Ph

t/m
b
m

/
m

max

m

vmax
tg« tgß

Tocama Br

Bronx-Whitestone Br.

George W. Br. im
1. Ausbau (ohne i
Versteifungsträger) J

Fyksesund (norw.)

Framnes „

5,0

8,19

19,4

2,1

1,8

1,0

2,23

2,1

0,6

0,6

0,40

1,0

1,1

0,3

0,25

11,86

22,6

35,6

7,2

4,8

853

701

1067

230

150

2,55

2,60

1>41

1,04

0,64

1:333

1 :270

1 :760

1: 222

1:234

1 :53

1 :41

1:85

1:29

1 :35

1 :7

1 :12

1:27

1 :8

1:11
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4. Einfeldrige Hängebrücke mit frei aufliegendem Versteifungs¬
träger von konstantem Trägheitsmoment nach Fig. 1 b.
Für die einfeldrige Hängebrücke werden sämtliche Größen aus den

entsprechenden Ausdrücken für die dreifeldrige durch Einführung von
l1 l2= y 0 erhalten. Die in dieser Weise erhaltenen Maximalmomente
in £ 0,2 und £ 0,5 für die Streckenlast p und die Einzellast P mit
zugehöriger Horizontalkraft lassen sich auch folgendermaßen schreiben:

(7 a)

(7 b)

Afl=0,2 4^(°>939 ^ + ^) + ^(0,4Q9- 0j907
X X*J

J 00

21 PI4-'/ 0,120.<iP+P =^[0,35-0,77^ + 0,64^^,. /
45'6 g)+7(0,504^0,5 ^(0,947-9f X2

1,74 2,16
X + X

)¦

">+- =lfl0'47-,'1ii) + (reo
PI

+ --0,1875

Die maximale Querkraft für £ - 0 und f 0,2 mit zugehöriger Horizontalkraft

wird
pl{. 2,2\

(7 c)

(7d)

<2,-.=/>+£(l-*
> P /%35 _

45

ff\.l~ X*hp+p pl
8/

Q.=o,2 0,5 PA- Pl(o,5-^ + fs

Hp+P

X

wp;+%fa+T X*l

Die entsprechenden Belastungslängen können der Tafel lb, lc und 3 für
;• — 0 entnommen werden.

Aus Temperatur und Kabelverlängerung folgt:
H HSLS\

(le)

Ht + AH HetLt + EkTk / 16/2^(A)
8/.
X'Mt+jH - '(Ht+AH)0Hg),

Qt+JM -*((Ht + AH)(jg~CosX£ SiinAf).

cp(X) und 0(2£) können der Tafel 2 entnommen werden. Afc 0,i, Q$=o,i, Q^=o,3
tga, vmax, tgß mit den entsprechenden Horizontalkräften werden den Tafeln
la, 3, 4, 5 und 6 für y-=0 entnommen.

5. Korrekturmomente aus der Horizontalverschiebung u
des Kabels.

Da die vereinfachte Differentialgleichung (la) der Berechnung zugrunde
gelegt wurde, erfahren die erhaltenen Formeln und Zahlenwerte kleine
Korrekturen, die durch Iteration gefunden werden können. Die Bedingung für

Abhandlungen VII
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das Gleichgewicht in senkrechter Richtung eines Brückenelementes dx ist
nach Fig. 2

[g + P(x)] dx=-~dQ — H [tgfy + dip) — igxp] =—dQ- Hdtgyj.
JE

1

Hier ist dQ= —-^ v""dx,

dy + dv i / y u\

Aus dem geometrischen Zusammenhang (Fig. 3)

x.%1

dx+du

&
<?«*&

Hg, 3

Kabelelement ds mit zugehörigen Ver¬
schiebungen.

Element de cäble ds avec deplacements
correspondants.

y* v Cable element ds with corresponding
displacements.

y v und mit{dsJrAds)2={dx^-duYJr{dyJrdvY entnehmen wir uf -, ~

H =- Hg-\- Hs, gl2 ^Hgy" 0 erhalten wir die genaue Gleichung zur
Bestimmung von p(x).

(8 a) P(*) j-ßv" H
(/S v» + v»y2 + 2 V'y'y") - Hs ^

Führen wir die aus der Differentialgleichung (la) gefundene Durchbiegung
nach Gl. (lc) in Gl. (8a) ein, so erhalten wir, da

JE Hv" f
(p ist die gleichmäßig verteilte Belastung), folgende Korrekturbelastung

(8 b) Ap=p—p(x)=" (v"yf* + 2///').
Diese kleine Korrekturbelastung kann wieder in die vereinfachte

Differentialgleichung (la) eingeführt werden, und wir erhalten so das Korrekturmoment.

Dies kann in den Seitenfeldern bis zu 10<>/o des durch Gl. (la)
bestimmten Momentes betragen und kann darum nicht vernachlässigt werden.
Die Korrekturen für die Winkeländerungen, Durchbiegungen und die Querkraft

Q sind ohne praktische Bedeutung und werden hier nicht ausgewertet.
Im Mittelf eld ist die Umgebung des betrachteten Momentpunktes

i/« 0 für die Belastung, die dem Maximalmoment entspricht. Die Korrekturlast

Ap0 im Momentpunkt ergibt darum mit guter Annäherung:

""- J>^/-<i-2*)»,*po= /4
v"y"2

da v"
MP
JE

und y 4/(1 — 2f).



Berechnung der verankerten Hängebrücken 35

Die auftretende Korrekturlast Ap wird durch eine äquivalente, gleichmäßig

verteilte Streckenlast Ape ersetzt, so daß das Moment aus Ape gleich
dem Korrekturmoment wird. Da das Korrekturmoment klein ist, kann Ape mit
grober Annäherung bestimmt werden. Es kann darum von der Einwirkung
der Seitenfelder abgesehen werden (y =- 0) und mittels numerischer Sum-

T "*" "I— T^) ^ Po er~

halten. Diese Streckenlast wird in Gl. (7a) eingeführt und wir erhalten
für eine Einzellast P in £ 0,2

oder

m 5,76/2/2 3 5\/nft„ 5,18 8,84\AMP^-Mp^[-J + T-j2)(0,93Q r + -jr-)

(8 c) AMP=- MP (|)2 (3,8 - ^Pj

/ 09 13\
Für die Streckenlast p ist Ape \\+ j-+ -j~JAp0, und wir erhalten in

ähnlicher Weise wie oben das Korrekturmoment in £ 0,2

12 24\
X*>

(8d) AMp^-Mp^ (5,8-^
MP und Mr sind die nach Gl. (7a) berechneten oder aus Tafel lb entnommenen

Momente.
Da M proportional Ap0 ist, können die Korrekturmomente aus AM$=0,2

errechnet werden zu

Wie hieraus hervorgeht, ist AM 0 für £ =- 0,5. Die Korrektur in Hp aus Ap
ist ohne jede Bedeutung.

In den Seitenfeldern entsteht das Maximalmoment in Feldmitte.
Die Zusatzbelastung Ap wird nach Gl.(8b) bestimmt. Es kann hier das
zweite Glied nicht vernachlässigt werden. Mittels numerischer Summation
kann das Korrekturmoment in derselben Form wie im Mittelfeld erhalten
werden. Für eine Einzellast P in Feldmitte ergibt sich in dieser Weise

(8e> AMp^-Mp^J {0,53-^-).
Für die gleichmäßig verteilte Belastung erhalten wir für Feldmitte £ ¦= 0,5

(8f) AMp -Mp(Q\l,l-*-£).
Für £ =- 0,25 (£ vom Turm aus gerechnet) ist für gleichmäßig verteilte

Belastung

A *, -*. (|)' (2,2 _?f)

und für f —0,75 A Mp — mJ^'0,32
MP und Mp sind die nach den Gl. (3e) und (3b) berechneten Momente.
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Beispiel la.
Für die in Beispiel 1 behandelte Hängebrücke wird das Korrekturmoment

aus der Horizontalverschiebung der Kabel für £ 0,2 im Mittelfeld
nach Gl. (8d) und (8c)

AMP=- 590 (|0)J (5,8 - tJ233 -^ - 27 tm

/ 22 y/„^ 11
AMP - 339 [T20J (3ß - rm) - 10

AMp+r — 37 tm
d. h. 4o/o des Maximalmomentes.

6. Turmberechnung und verschiedene Korrekturen.
Bei der Aufstellung der Grundgleichungen wurde vorausgesetzt, daß

die Kabel sich am Turmkopf frei bewegen können. Wenn die Kabel im
Turmkopf befestigt sind, entstehen in den Seitenfeldern kleine Korrekturmomente

im Versteifungsträger und bei eingespannten Türmen auch
Turmmomente, die bei der Bemessung der Türme berücksichtigt werden müssen.
Bei den Türmen selbst wird gewöhnlich die Temperaturänderung nicht
berücksichtigt, da eine solche immer günstig wirkt. Dagegen sollen hier
sowohl die Deformationen der Hängeseile und Türme infolge Normalkraft
als auch die Verlängerung der Hängeseile infolge einer Temperaturänderung
untersucht werden. Es wurde weiter vorausgesetzt, daß der Abstand der
Hängeseile sehr klein sei, und daß die Nutzlast direkt in den Versteifungsträger

geleitet wird. Keine dieser Voraussetzungen trifft ganz zu, und es
entstehen dadurch kleine Korrekturen, die den schon berechneten Momenten
und Horizontalkräften im Kabel hinzugefügt werden müssen.

a) Kabel am Turmkopf befestigt.
Gewöhnlich werden die Kabel am Turmkopf befestigt und die Türme

unten eingespannt oder gelenkig gelagert. Turmkopf und Kabel erhalten
hier dieselbe Horizontalverschiebung uT, was eine Horizontalkraft H7 am
Turmkopf hervorruft (uf und Hr am Kabel positiv gegen Mittelfeld). Die
Horizontalverschiebung u der Kabel wird durch die geometrische Bedingung
(ds + Ads)2 (dx-f du)2 ^ (dy + dv)2 erhalten (Fig. 3). Hierausfolgt zur
Bestimmung von u

Ads y'du ~ *~ dv
cos cp l

und die Turmverschiebung wird durch Integration über das Seitenfeld
erhalten

\ Ads
l

A + 4A 8/x f
J COS cp lx lt J
0 0

v7 ist die senkrechte Turmverschiebung.
Für eine gleichmäßig verteilte Belastung p im Seitenfeld, wobei die

übrigen Felder unbelastet sind, wird nach Gl. (3a, 3b, lb und lc)

»••=%(£-«-)*v>t>-
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« »(%-*>• "•)(«-<•-»•
H dx f t dx.

Mit Ads -Er-^r iV~ + folgt durch Einsetzen und Auswertung der
EkFk cos-cp cos<p ^ s

Integrale:

//s Hp + Ht+ AH+ HT.

Hier ist zunächst /7/ nicht bekannt, und es wird bei der ersten Berechnung

von uj H7 - 0 eingeführt. Aus der Bedingung, daß die Turmkopfverschiebung

gleich uj sein soll, entnehmen wir den Turmbedingungen

Ht — aut.
Für eine senkrechte Turmbelastung N H (tgcps }-tgcpm), (q?s und cpm sind
die Neigungswinkel der Kabel am Turm), eine Turmhöhe hT und gelenkig
gelagerte Türme ist

- __^
Ht

Bei eingespannten Türmen mit einer mittleren Steifigkeit J/Ej wird

TV 1

hT ±ge_ _]
Q

f JtEt
7i ji^JtEtFür o— ist ^=0 und auch HT 0. Daraus folgt N =- ^— d.h.2 4 Arder Wert der Knickkraft für freie Auskragung der Türme. Für kleinere Werte

von q ist x positiv und für größere Werte negativ. Nachdem Hr= — xuT
bestimmt ist, kann HT in Gl. (9a) eingesetzt und ein verbesserter Wert für
ur gefunden werden. Die Berechnung ist stark konvergent.

Die Gl. (9a) gelten auch für ein unbelastetes Seitenfeld unter
Belastung der übrigen Felder. In letzterem Fall muß nur p -- 0 eingesetzt
werden.

Das Korrekturmoment des Versteifungsträgers im belasteten Seitenfeld
wird

AMT= —^-Ht&(IiS)
oder

(9 b) AMT — M
1 + k'

und Mx das schon berechnete Moment im Seitenfeld ist.
Dieser Ausdruck gilt auch für das Minimalmoment und für Einzellasten.

Bei Belastung des Mittelfeldes ist die Änderung der Horizontalkraft
hier
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AH H 2?kA Hp+P Hp+P yr^k
und das zugehörige Moment des Versteifungsträgers im Mittelfeld wird

AMt -^AHp+p&(1£).

Da sowohl y als k sehr kleine Größen sind, ist mit guter Annäherung für
das Mittelfeld

A MT 0

Die maximale Turmverschiebung gegen die Verankerung entsteht durch
Vollbelastung in einem Seitenfeld und einer Temperaturänderung —t im Kabel.
Die maximale Verschiebung gegen das Mittelfeld hin wird durch Vollast des
Mittelfeldes und des zweiten Seitenfeldes mit einer Temperaturänderung
-\-t im Kabel erhalten. Diese letzte Verschiebung ist auch numerisch die
größte, da hier die Verlängerung der Kabel infolge der Normalkraft am
größten ist und zu den anderen Verschiebungen addiert wird.

Bei der Berechnung eingespannter Türme muß x genau bestimmt
werden, da HT und die Turmmomente zu x proportional sind. Zu diesen
Turmmomenten in der Längsrichtung kommen die Windmomente in
Querrichtung der Brücke.

Für die Bronx-Whitestone-Brücke ist: f± 6,4 m, /x 224 m, hT =• 115 m,
//«9000 t, N 8500 t, /r£r=5107tm2 (geschätzt), EkFk 4 • 10* t. Aus
der Tafel 2,^(11) «1.

Die Türme sind eingespannt und es wird

8500- 1152

5 107

N 1 8500 1

hT jg£. i 115 tgl,5 1

Q 1,5

8,7,

16 /A2 n 16 8,7- 6,42 5700 nn_ „ s n* T 7%V{l'] T 9ÖÖ07224
] 0550710* <V« • 10 ' « 0.

d.h. AMT^0 sowohl im Seitenfeld als auch im Mittelfeld. Bei der
Belastung des Seitenfeldes mit p 2,23 t/m und einer Temperaturänderung
vo„-30.wM

(W.= *£™ 8.00.)

», 2^^0Ä¥ + 8255.30.,0-..,2,5™l 3

8-62 1,07
' 622 16-1,07

8255-155 701 3 -
-TTTÖT-

• 1250
62* 16TTÖ7

72 + 96-13 155 t.

16 6,42 /1CC 2,23 - 7012\ 155-224/ 1,5 • 622 + 8 • 6,42\
8-62 /+ 4-106 \ + 2242

622 4- 53 • 6 42\
224«

~~ °'24 + °'01 ~ °'°7 " °'3° m *

Ut 3 8255-224
1 133

— 30- io-6- 224(1 +
'

Ht —: 0,30 ¦8,7 — 2,6 t.



Berechnung der verankerten Hängebrücken 39

Bei Belastung des Mittelfeldes und des zweiten Seitenfeldes mit einer
Temperaturänderung r30° wird Hs 2135 — 116 — 182 =- 1837.

~=£$^ + ^-U2 + 30..0-..2*.U>8
0,18 + 0,12 + 0,07 0,37 m

Hr= — 0,37 8,7 — 3,2 t.

b) Verlängerung der Hängeseile.
Aus der Verlängerung der Hängeseile entsteht am Turm zwischen den

Versteifungsträgern und den Auflagern eine Trennung, deren Größe wir mit
vQ bezeichnen wollen. Diese Trennung muß rückgängig gemacht werden,
und es entsteht hierdurch im Mittelfeld eine Horizontalkraft Hr im Kabel
mit dem zugehörigen Moment nach Gl. (lb)

Durch zweimalige Integration der Gleichung (lc) wird die Durchbiegung v
erhalten. Die Bedingung der Horizontalverschiebung f vdx 0 ergibt

<*)

H - 3//Vq
v 4/(1+ 2yM*)-

Oben eingesetzt wird das Korrekturmoment im Mittelfeld
AM*o= TITTT^—/n*(*f)•

/,2(l + 2y)cp(A)

Da Mi;0 klein ist, können wir als gute Annäherungen y«0, cp <P 1

einführen, und wir erhalten für das Mittelfeld ein konstantes Korrekturmoment

(9c) AMvo ^v0.
A

Wenn die Verlängerung v0 an beiden Türmen auftritt, wird das Moment

AM UMA Mvo -p- v0.

Das Korrekturmoment ist der Spannweite proportional, und für das
Seitenfeld erhalten wir

<Qd> '*- 7Fi™«'
Für die Bronx-Whitestone-Brücke, wo i/0 0,17 m, //== 9000 t und

6 • 9000
362

tes. Bei kleineren Brücken ist AMv0 ohne Bedeutung.

X=~- 36 ist, wird AMv0 QA2
• 0,17=- 7,1 tm, d. h. lo/0 des Maximalmomen-

c) Zusatzmomente infolge der Lastübertragung aus den Hängeseilen.
Bei der Berechnung des Versteifungsträgers ist eine durchlaufende

Aufhängung und eine direkte Lastübertragung vorausgesetzt. Gewöhnlich wird
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die Belastung durch die Querträger übertragen, die an den Hängeseilen
aufgehängt sind, und die Versteifungsträger sind an den Querträgern befestigt.
In diesem Fall erhalten die Versteifungsträger nur zusätzliche Momente aus
Eigengewicht und werden für diese Belastung als Durch laufträger auf starren
Stützen berechnet. Bei kleineren Brücken können die Versteifungsträger
gleichzeitig als Längsträger zwischen den Aufhängepunkten dienen und
werden hier als Durchlaufbalken auf starren Stützen mit der gesamten
Fahrbahnbelastung berechnet.

Zum Zweck der Übersicht über die möglichen Grenzen der Festwerte
X und 7 sind schließlich in Tafel 11 die Abmessungen einiger amerikanischer
und norwegischer Hängebrücken zusammengestellt.

Tafel 11. Abmessungen und Festwerte einiger amerikanischer und
norwegischer Hängebrücken.

Brücken /

m

k
/ 1

m*
1

/

] JE

K
y

Tacoma Br.1) 853 335 0,083 0,059 0 059 64 25 0,06

Bronx Whitestone Br.2) 701 224 0,08S 0,156 0,128 36 11 0,035

George Washington Br.3) 1067
186
198 0,G93 2,0 2,0 35 6 0,005

Golden Gate Br. 1280 343 0,113 2,6 1,67 26 9 0,018

Mount Hope Br. 362 152 0,10 0,255 0,249 7 3 0,040

Maumee River Br. 237 70 0,123 0,156 0,132 7 2 0,01

Fyksesund Br.4) 230 0 0,127 0,001 0 36 0 0

Framnes Br.4) 150 0 0,123 0,0013 °
i

15 0 0

x) Bei starkem Wind (22 m/s) eingestürzt.
2) Nachträglich gegen Schwingungen mit Schrägseilen ausgesteift.
3) Die angegebenen Werte für /, X und y entsprechen dem endgültigen Ausbau.

Im 1. Ausbau fehlt der Versteifungsträger ganz.
4) Einfeldrige Hängebrücken.

TEIL IL HORIZONTALE BELASTUNG.
1. Aufstellen der Differentialgleichung und formale Lösung

durch Reihen.
Die horizontale Belastung aus Seitenwind kann als gleichmäßig verteilt

über die ganze Brückenlänge angesehen werden. Die Windkräfte werden
in Funktion der Steifigkeit El des Windverbandes, teilweise durch die Kabel
zum Turmkopf, teilweise durch die Windverbände zum Turmfuß abgeleitet.
Wo die Windaussteifung in der Fahrbahn ganz fehlt, werden alle Windkräfte
durch die Kabel zum Turmkopf übertragen, und wir erhalten hier das
Kostenminimum. Selten wird man dies ausnützen können, da man, um unangenehme
Schwingungen zu vermeiden, eine gewisse Seitensteifigkeit der Fahrbahn
anstreben muß.
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Die Lösung des Windproblems führt zu zwei gekoppelten linearen
Differentialgleichungen mit variablen Koeffizienten1)2)3); die Integration
muß darum mittels Reihen durchgeführt werden. Wir werden hier zeigen,
daß man durch geeignete Wahl der Reihen i. A. einfache explizite
Formelausdrücke angeben kann, bzw. immer mit zwei Reihengliedern auskommt,
und es wird für diesen Fall eine Koeffiziententafel angegeben.

In den Außenfeldern dreifeldriger Hängebrücken ist die entlastende
Wirkung der Kabel ohne Bedeutung, und wir können uns darum auf die
Untersuchung des einfeldrigen frei aufliegenden Windverbandes beschränken
(Fig. 4).

Cäble-Kabel-Cable

T
¦Cable de Suspension
Hängeseile

Suspension rope

Poulre de contrevenlernen!

Windlräger
Wind brace

Belastungen des Kabels und des
Windverbandes aus Wind.

Charges des cäbles et des contre-
ventements dues au vent.

Loads on cäbles and wind-bracing
caused by wind.

Fig. 5

71

Cäble
Kabel
Cable -A2*

fxUL
(R

IE
4f+A

Pouire^de conlrevenlemeni

Windlräger
Wind brace

Kabel- und Windverbandverschiebungen.
Deplacements des cäbles et des poutres de contre-

ventement.
Displacements of cäbles and wind-bracing.

Fig. 4

Das Gleichgewicht in horizontaler Richtung eines Brückenelementes von
der Länge dx 1 ergibt für die Kabel

wk- T, wo(10a) Hdn

und für die Fahrbahn

(10b) lErfv wb — T.

Hier ist H die Horizontalkraft in beiden Kabeln

q r-k

*i f«
dx2

H
8 /

/2

q Gesamtgewicht der Fahrbahn,
k =- Gewicht der Kabel, Hängeseile usw.,
T Horizontale Rückhaltekraft aus der Schiefstellung der Hängeseile,
w, — Gleichmäßig verteilte Windbelastung auf die Fahrbahn,
wk Gleichmäßig verteilte Windbelastung auf alle Kabel,
w wk + wt,
ö Kabelverschiebung, i] Windverbandverschiebung.

x) L. S. Moisseiff og F. Lienhard: Suspension Bridges under the Action of Lateral
Forces. Trans. Am. Soc. Civ. Eng. 1933, S. 1080.

2) A. Selbfro: Berechnung des Verhaltens von Hängebrücken unter Windbelastung.
Stahlbau 1941, H. 21/22, S. 106.

3) O. F. Theimer: Beitrag zur Theorie der Seitensteifigkeit weitgespannter
Hängebrücken. Bauingenieur 1941, H. 45/46, S. 399.
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Zur Bestimmung von T besteht folgende geometrische Bedingung (Fig. 5)

(10c) E=^(i] — d).

Aus (10a) und (10b) folgt
A11/ 1

IErjlv — HdiI=rwb + Wk w= —2j~ sinnji£, n 1, 3, 5
Tr n

und nach zweimaliger Integration folgt:

(10 d) lEr/'—HÖ 4- 4-U^2 S-^sin/z^f 0.

Die Lösung dieser Differentialgleichung muß mittels Reihen
durchgeführt werden. Um die bestmögliche Konvergenz zu erzielen, wählen wir
zT als Unbekannte und führen die Reihe in folgender Form ein

z T f
(lOe) — -r~-x— 2 #* sin/zjrf,v ' q k + q

wo an die unbekannten Koeffizienten sind. Gl. (lOe) wird in Gl. (10c)
eingesetzt:

(10 f) rj ö + — d + -j^—%ansmnaS.

Diese Gleichung hat konstante Koeffizienten, und es müssen d und ?j

folgende Form haben:
d 2 An sin nn£
rj 2 Bn sin nn$

Dies in Gl. (lOf) und (10d) eingesetzt ergibt
32a w 2

l2 ~W^ — n Un HP
An

Damit wird
8H n2 + a ' n2lE

32aw n2an

(IIa) ^ST/S^^^sin^l,
32 w

„iUX al2 s^TiW + Ä»

v ' ' 8/7 nl + a

32w>

(ll c) A,= ^S?^L^Ä.sin^ff
32 u^

(lld) Q _ _2^T_„3COS^|.
Zur Bestimmung der unbekannten Koeffizienten a„ wird die Gl. (I0b)
benützt:

32 w

wö-T= IEhw= ^ S^fr—^4sin/27t|.' 8 nl + a
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Diese Gleichung wird der Reihe nach mit sin ni;, sin 3 jrf,... sin mn% d£
multipliziert und von 0 bis 1 integriert; wir erhalten damit ebensoviele Glei-

v> 4w/,
chungen wie unbekannte Koeffizienten art. Wir führen wb=2j—— sin nji^

ein, und nach Multiplikation mit smmn£d£ können die Bestimmungsgleichungen

in folgender Form geschrieben werden
i i

(11 e) Tsm mix^ d% Zj J nn
sin/ZTrf sin/ftjrf d£

l 32 w
n o

nl V ^- n
>*4 sin njrS sin mn$ d£

8 ^J /z2 + «

2. Angenäherte Lösung durch direkte Summation
der Reihe für M.

Wir führen in Gl. (11c) an 0 ein und erhalten
32 w

"=** n2 sin nji£.n2 + a

Diese Reihe konvergiert gut, und wir erhalten als Maximalwert
wl2 Hl2

(12a) Mmax — 8(1 + «) TT2 IE
Bei steifen Brücken (a, < 2) tritt das Maximalmoment in Feldmitte auf

und verschiebt sich bei weicheren Brücken gegen die Türme hin. Für die
Rückhaltekraft T bei den Hängeseilen können wir den in Fig. 6 gezeigten
Verlauf annehmen. Zur Bestimmung von Tm verwenden wir folgende
Momentengleichung

wbJ*
"8 +

13

Tm

12 • 16

24

TmF

w

w P__
8(1 + «)'

13 Vi + a
Wb).

•W Tm k\,Z/<r
M ¦*iß 1/2

Die horizontale Auflagerreaktion A des
Windträgers am Turmfuß wird

w l (4 Wb 9

w
(12b) 26 V w

+
1 + -J

AIIure approximative de T
Angenäherter VertauF von T
Approximate course of T

Fig. 6

und die Auflagerreaktion R der Kabel am Turmkopf

(12 c) R
wl wl (4 Wi

26 + 1 +
«)

In entsprechender Weise wird die maximale Ausbiegung der Fahrbahn nach
Gl. (IIb) gefunden

02 d) ,_ ^ Mf-.
v ' *

q + k 1 + a
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3. Horizontale Verschiebung des Turmkopfes.
Die horizontale Reaktion R des Turmkopfes infolge der Kabel ist durch

Gl. (12c) und diejenige A der Fahrbahn durch Gl. (12b) bestimmt. Hierzu
kommt die Windbelastung direkt am Turm und die Einwirkung der
senkrechten Turmbelastung. Für diese Turmbelastungen wird in bekannter Weise
eine relative Verschiebung d0 zwischen Turmkopf und Fahrbahnauflager
berechnet.

Um den Einfluß dieser Verschiebung auf den Windverband zu ermitteln,
wird dieser zuerst von seinem Turmauflager getrennt gedacht. Durch die
Verschiebung des Turmkopfes wird der Windträger d0 von seinem Auflager
entfernt und zunächst durch eine Belastung A w zurück an sein Auflager
gebracht. Wird diese Belastung auf Kabel und Fahrbahn im Verhältnis zu den
senkrechten Belastungen verteilt, so verbleiben Kabel und Windverband in
einer Ebene und der Windverband ist momentenfrei. Die Bedingung^ daß
die Verschiebung des Auflagers des Windverbandes gleich d0 ist, ergibt

A w ='¦k + $ A

Zt

bei

zt '
kd0

wk —z
Zt

oder für Windverband und Kabel

wb

Mit dieser Belastung Aw wird der Windverband auf sein Auflager
zurückversetzt, in dieser Stellung festgehalten und mit der gegebenen
Windbelastung belastet. Da die Verschiebungsbelastung A w nicht vorhanden ist,
muß die Windlast um diesen Wert erhöht werden. Hierdurch entstehen im
Windverband zusätzliche Momente, Querkräfte und Auflagerreaktionen,
während die Turmkopfreaktionen R vermindert werden

AM=M^,
w

A A A
dW

AA A
w

_ Awl _ Aw
A

Aw
AR — — + /? — _ A

2 w w

wo M und A die ohne Verschiebung des Turmkopfes berechneten Momente
und Auflagerreaktionen sind.

4. Lösung mit zwei Reihengliedern.
Mit den zwei ersten Reihengliedern ist nach Gl. (11c) und (lld)

/1Q x w l* (1,032 w+ax 0,344 w+ 9a3 Q \
(13a) M= Q i-2—^—-J—-sin^f + --jr-, — sin3jr£

8 \ i -f a y + tt /

/iqux r, nl(\,032w + ax 0,344w + 9ßs 0 0 \
(13b) Q _l^_-J_lcosjrf + n *-3cos3ji£ö\l + a y -f- a i

(13 c) T 7—^-7z— (at sinjrf + ß3 sin 3 n f).
(q + k) z
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Ähnlich wie bei den frei aufliegenden Balken konvergiert die Reihe für
Q weniger gut als diejenige für M. Da die Auflagerreaktionen A des
Windverbandes und R der Kabel für die Windmomente in den Türmen maßgebend
sind, müssen sie mit derselben Genauigkeit wie die Momente des Windverbandes

ermittelt werden. Wir berechnen darum A aus den Größen M^, Q±

und T± für f =-= -. Nehmen wir an, daß der Verlauf für pt (Fig. 7) symmetrisch

i. B. auf | sei, so wird

/
A Q4 + -j- (Wb + fmittel) ¦

MA A
32

(Wb + fmittel)

TJ
8 '

TJ2
96

i/a U

Hieraus ergibt sich die Auflagerreaktion des
Windverbandes zu

(13 d) l + 24 ^4

Force de retenue T de % 0 ä # 0.25
RückhaltekraFt Tvon §-0 bis § - 0.25
Reslraining Force T from § 0 to # - 0.25

Fig. 7

w, wb und wk sind hier die für die Verschiebung des Turmkopfes nach
Abschnitt 3 verbesserten Belastungen aus Wind und den Verschiebungskräften

Aw.
Zur Bestimmung von ax und ad erhalten wir für m 1 und m 3 durch

Integration der Gl. (He)

(13e)

Hier ist ß

Werte von

C2 ax + C3 ß;}

-ßV(i-+ä){aWb'Wk-°'91a^'

9f
(q + k)z0—, a, -

___ ^ (aB,,_ 9 „,,_ 235,503).

Hl2
Yfp'y Qi> ^2 und Q können für verschiedene

(vergl. Fig. 4) der Tafel 12 entnommen werden.

Tafel 12.

_*o__ Q c2 c,
Zl Z0

0,010 0,1275 0,0952 0,09937
0,015 0,1524 0,1075 0,1157
0,020 0,1717 0,1155 0,1281
0,025 0,1876 0,1210 0,1381
0,030 0,2010 0,1248 0.1466
0,035 0,2126 0,1275 0,1541
0,040 0,2229 0,1294 0,1607
0,050 0,2405 0,1315 0,1723
0,060 0,2552 0,1323 0,1823
0.070 0,2678 0,1323 0,1911
0,080 0,2787 0,1316 0,1991
0,090 0,2884 0,1307 0,2065
0,100 0,2971 0,1294 0,2133
0,110 0,3049 0,1280 0,2197
0,120 0,3120 0,1265 0,2256
0,130 0,3185 0,1249 0,2313
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Beispiel 2.

Als Beispiel untersuchen wir das Mittelfeld einer Hängebrücke mit
folgenden Abmessungen und Belastungen:

/ 1200 m / 150 m z0 3 m, 153 m,
1E=2- 109 tm2, k 9 t/m q 32,75 t/m
wk — 0,2 t/m wb 1,8 t/m iv 2 t/m

Die gesamte Kabelkraft wird
* 4- q ,9 __

9 + 32,75
H

8/
///2

/2
8 150

50000 • 12002

12002 50000 t,

a 3,6ö.ti21E n2 • 2 • 109

Die zwei Reihenglieder ^ und % entnehmen wir der Tafel 12 für

z0 3

153
0,02,

Aus Gl. (13e)
d 0,1717, C2 0,1155, C8 0,1281.

0,1717 a, — 0,1155 ö3 0,02225 — 0,00338 a,

- 0,1155 at + 0,1281 ß3 0,00205 — 0,10066 a3

ergibt sich ^-=0,1994 und a3 0,1097.
Das Moment im Windverband ist nach Gl. (13a)

12002
M= ^^ (0,4857 sin n g + 0,1323 sin 3 jt f).

o

Der Momentenverlauf ist in Tafel 13 zusammengestellt.

Tafel 13. Momentenverlauf im Windverband.

£ M (nach Gl. 13a) \ M (nach Theimer)
tm tm

Abweichung in %

0 0 0 0

0,2 74 000 72 600 + 1,9

0,3 78100 1 77 800 -0,9
0,4 69 200 70 600 -2,0
0,5 63 600 63 700

i

-0,2

Die Auflagerreaktionen sind nach Gl. (13d)

A 1200 (^'| + 0,393 • 0,4857 + 1,21 • 0,1323) 511 t (Theimer, A 5061)

R — 2 ¦ 600 — 511 689 t (Theimer, R 694 t).
Die Ausbiegung der Fahrbahn wird nach Ol. (Hb)

3,66 • 12002

8 • 50000 (0,4857 sin n f + 0,0147 sin 3 ng),



Berechnung der verankerten Hängebrücken 47

tjmax 13,18 • 0,471 6,21 m (Theimer, ritnax 6,219 m).
Ohne Reihen erhalten war nach den Gl. (12a—d)

2 .12002
Mmax - 8(j l™^) 773°° tm (AbW' 0,? %h

2 • 1200/4 -1,8 9 \ K11 x /ak 1 0/\

__
2-150 1^13?66 __'/W " 41,75 1 + 3,66 "" ' m-

Da die Gurtungen des Windverbandes gewöhnlich aus den Versteifungsträgern

gebildet werden, genügt es oft, die Maximalmomente zu kennen,
'und die Gl. (12a—d) können auch bei Hängebrücken mit weichen Wind*
verbänden, bei denen das Maximalmoment nicht in Brückenmitte auftritt,
verwendet werden.

Mit einer Verschiebung des Turmkopfes
Ö0 -= 0,725 m

wird nach Gl. (13b)

Aw 02,75 + 9)-0,725
3 + 150

i Mome

100Aw 100 • 0,198

Die Erhöhung der berechneten Momente, Auflagerreaktionen und Schubkräfte
im Windverband werden

2,0
9,9% (Abw.0,9%).
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Zusammenfassung.
Für die Versteifungsträger der ein- und dreifeldrigen Hängebrücken

werden Tafeln und geschlossene Formelausdrücke für die Maximalmomente,
maximalen Querkräfte, maximalen Winkeländerungen des Versteifungsträgers

und sowohl für die maximale Schiefstellung der Querträger als auch
für die maximalen Durchbiegungen mit zugehörigen Horizontalkräften aus
senkrechter Belastung angegeben. Es werden die Korrekturmomente aus der
Horizontalverschiebung der Kabel und die Verschiebungen des Turmkopfes
mit den zugehörigen Korrekturmomenten im Versteifungsträger angegeben.

Für Seitenwind wird gezeigt, daß das Maximalmoment von der ein-

fachen Form M ^-tt-—r, a -^r^ ist und daß der Momentenverlauf durch
8(l + a) nlIE

so gut konvergierende Reihen angegeben werden kann, daß zwei Reihenglieder

immer genügen. Die zugehörigen Koeffizienten sind in einer Zahlentafel

angegeben. Das gezeigte Lösungsverfahren läßt sich leicht auf
beliebige Belastungen und einen durchlaufenden Windverband ausdehnen.

Resume.
Ce memoire contient des tables et des formules explicites, se rapportant

aux poutres raidisseuses des ponts suspendus ä une et trois ouvertures;
elles mettent en evidence les moments de flexion et les efforts tranchants
maximaux, de meme que les deviations angulaires et les forces horizontales

correspondantes dues ä des charges verticales. Le deplacement
horizontal des cäbles est egalement pris en consideration. Les corrections ä

apporter aux moments de flexion, dues aux deplacements horizontaux des
cäbles, sont indiquees, de meme que les deplacements du sommet de la
tour et les corrections correspondantes des moments de flexion de la poutre
raidisseuse.

11 est demontre ensuite que sous Peffet lateral du vent, le moment
wl2 Hl2

maximal prend la forme simple: M ¦= Q-r% r, oü <x
9 .„ ; en plus, la

O (1 + CC) 71* IL
Variation du moment peut etre representee par des series qui convergent ra-
pidement, ce qui permet d'en considerer uniquement les deux premiers
termes. Les coefficients respectifs sont indiques dans une table numerique.

Summary.
For the bracing members of Suspension bridges with one and three

openings, tables and definite formulae are given for the maximum moments,
maximum transverse forces and alterations in angles, with the respective
horizontal forces caused by the vertical loading. The horizontal displacement
of the cable is also taken into consideration. The correcting moments from
the horizontal displacement of the cäbles are given, as well as the displacements

of the head of the tower with the corresponding correcting moments
in the stiffening girders.

For side winds it is shown that the maximum moment is of the simple
w l2 H l2

form M= -zt-tz r, oc^~vr^> and that the course of the moments can be
8(l+a) ji2 IE

expressed by series which converge so rapidly that two terms of a series
are always sufficient. The respective coefficients are given in a numerical
table.
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