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BERECHNUNG DER VERANRKERTEN HANGEBRUCKEN
FUR VERTIKALE UND HORIZONTALE BELASTUNG.

SUR LE CALCUL DES PONTS SUSPENDUS POUR DES CHARGES
VERTICALES ET HORIZONTALES.

CALCULATING ANCHORED SUSPENSION BRIDGES FOR VERTICAL
AND HORIZONTAL LOADING.

Dr. Ing. A. AAS-JAKOBSEN, Oslo.

TEIL I. VERTIKALE BELASTUNG.

1. Einleitung.

Die verankerte Hangebriicke besteht einerseits aus primiren Bauglie-
dern, namlich den Verankerungen, den Kabeln, den Tiirmen, den Hingeseilen
mit Fahrbahn und anderseits aus den sekundiren Baugliedern, d. h. den senk-
rechten Versteifungstrigern und den horizontalen Windtrigern. Um unan-
genehme Schwingungen zu vermeiden, werden die Hingebriicken immer mit
irgendeiner Windaussteifung versehen, wiahrend die senkrechten Versteifungs-
trager bei einfachen oder bei sehr schweren Hingebriicken ganz fehlen
konnen. Da die Tragfihigkeit der Hangebriicken nicht von den Versteifungs-
tragern abhingt, ist es nicht moglich, diese durch gewdhnliche statische
Berechnungen zu bestimmen. Durch diesen Umstand wird die Berechnung
der verankerten Hingebriicken wesentlich verschieden von den gewdhnlichen
statischen Berechnungen.

Die Losung des Hangebriickenproblems fithrt zu einer Differentialglei-
chung 4. Ordnung mit variablen Koeffizienten. Diese Differentialgleichung
kann mit sehr guter Annaherung durch eine Differentialgleichung 2. Ordnung
mit konstanten Koeffizienten ersetzt werden, und die genaue Lésung wird
durch eine einfache Korrekturberechnung erhalten. Die Losung bietet darum
keine theoretischen Schwierigkeiten. Durch die Eigenart der Bauweise
konnen mehrere GroBen frei gewihlt werden, wie Spannweiteverhiltnis,
Pfeilverhiltnis, Eigengewicht (schwere oder leichte Fahrbahn) und Steifig-
keit der Versteifungstriger. Um den EinfluB dieser GréBen auf die Steifig-
keit der Briicke und die Baukosten leicht ermitteln zu kénnen, werden groBe
Anforderungen an die Ubersichtlichkeit und Einfachheit des Berechnungs-
verfahrens gestellt. Die Ergebnisse miissen in Zahlentafeln oder in ein-
fachen Formeln dargestellt werden konnen, aus denen der EinfluB der ver-
schiedenen GroBen leicht ersichtlich ist, und man muB mit einem Minimum
an Rechenarbeit mehrere Ausfithrungen untersuchen kénnen, um aus den ver-
schiedenen Losungen, die den gestellten Anforderungen an Steifigkeit ge-
niigen, das Kostenminimum zu erhalten. Ein solches Berechnungsverfahren
fiir die zwei wichtigsten Typen der Hangebriicken (Fig. 1a und 1b) zu geben,
ist der Zweck dieser Arbeit. )
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Bei der Berechnung haben wir die bei den Hingebriickenberechnungen
gewohnlichen Voraussetzungen gemacht, wie gleichmiBig verteiltes Eigen-
gewicht und haben ferner angenommen, daB keine Momente aus Eigengewicht
in den Versteifungstragern auftreten (d.h. parabolisch geformte Tragkabel),
und daB die Abstinde zwischen den Hingeseilen klein sind.

et 4

. ; \
JE l -gl JE

Ty ! -

L
Pont suspendu & 3 ouvertures

Dreifeldrige Héngebricke

Type I:
Suspension bridge with 3 openings
Fig. 1a
T
2/,
- ) JE Tﬂ A

Pont suspendu & | ouverfure

Type I: Einfeldrige Hangebricke
Suspension bridge with | opening

Fig. 1b

2. Aufstellung der Differentialgleichungen.

Die Berechnung der Hingebriicken fiir senkrechte Belastung ist von
zahlreichen Verfassern behandelt und entwickelt worden. Wir verweisen hier
auf das erschépfende Literaturverzeichnis von S.O. AspLunDp ). Die Diftfe-
rentialgleichung zur Bestimmung der Durchbiegung v des Versteifungs-
tragers wird durch Aufstellung des Gleichgewichts eines Briickenelementes

H{gyt‘\\.\ﬁv Echi

| \\\ vedv Flg. 2

1 \~.\ ﬂ '

| 17, :l * Belastungen, Schnittkréifte und Verschie-
v \flg/y+dy) ngen, €

,;' el I’ gy bungen eines Briickenelementes dx.

| ,’ Charges, forces et déplacements d’un

U g | élément d'un pont dx.

a /
AATOIITIN, Loads, forces and displacements of a
T bridge element dx.
( I il‘\mm
X ax a+d4

T 1

von der Lange dx (Fig.2) gefunden. Durch Vernachlissigung der Kabel-
verschiebung # in horizontaler Richtung erhalten wir die bekannte Differen-
tialgleichung zur Bestimmung des Biegungsmomentes M im Versteifungs-

trager
) S. O. Asplund: On the Deflection Theory of Suspension Bridges. Stockholm 1943,
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, HIEE 9
(1a) M — M —8Hf+plt =0,
am
wo qE =M g:,fl,‘,, Hy=H,+H,+AH, H=H+ H,.

H, ist die Horizontalkomponente des Kabelzuges aus Eigengewicht,
H, aus Nutzlast, H, aus Temperaturinderung + ¢ und A4H aus der Normal-
kraftverlingerung des Kabels.

. HI? c T ow ..
Mit 1 = ‘/—J-E— lautet die Losung fiir M

o _8F(y  rE
(1b) M=ASinA&+ BCoskié& )V‘Z(Hs Sf)'

J
In Gleichung (la) wird M = — _lg v” eingefithrt und durch zweimalige

Integration erhalten wir die seunkrechte Durchbiegung

1
(1¢) V:,*H’(MOMM*Hs.V)
wo M, das Moment inf. Nutzlast im Versteifungstriager als frei aufliegender
Balken ist.
Die Horizontalkomponente im Kabel wird am einfachsten aus der Be-
dingung, daB die Horizontalverschiebungen # des Kabels an den Anker-

klotzen verschwinden sollen, d.h. ({)du == 0, bestimmt. Dies ergibt

H _ l’fj
EF}ZLS—}-etLt_—ZQ (vp + v + Av) dx

(%)

v, + v, -~ Av sind die zu H,—~ H, - H, - AH gehorigen Vertikalverschiebun-
gen, ¢ = Temperaturkoeffizient,

dx dx
L= JE&E@’ Le = Jcos2¥'
(%) (%)

Samtliche Integrale sind iiber das ganze Kabel zu erstrecken. Aus obiger
Gleichung erhalten wir zur Bestimmung

(1d) von H,: Jv,,a’x:O,
(&)
(le) von H;: —{;jvtdeStLt,
(%)
: _ _ s
(11) von 4 H: 7 JAvdx__EkaLs.

(%)

Abhandlungen VII 2
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3. Dreifeldrige, symmetrische Hingebriicke mit freiaufliegen-
‘dem Versteifungstriger von offnungsweise konstantem Trig-
heitsmoment nach Fig. 1a.

Zur Bestimmung der Pfeilhéhe in den verschiedenen Feldern gilt die
Bedingung, daB die Horizontalkomponente H, aus Eigengewicht in allen
Offnungen gleich ist, oder

gr gy
Hy = =% = .
£ 8f  8f,
Gewohnlich wird das Eigengewicht in sdmtlichen Feldern gleich sein, und
wir erhalten (Fig. 1a)
f /1

12'_'12

Die Nutzlast fiir StraBenbriicken ist in den Belastungsvorschriften der ver-
schiedenen Lander in Form von Autolastziigen mit festgelegten Achsdriicken
angegeben. Bei groBeren Spannweiten wird gewohnlich auch die dquivalente
gleichmiBig verteilte Nutzlast angegeben, so daB es geniigen wiirde, die
Maximalschnittkrifte fiir diese Belastung zu untersuchen. In emlgen Landern
wird die Nutzlast als gleichmiBig verteilte Belastung samt einer Einzellast
angegeben. Bei weichen Hingebriicken ist eine Einzellast in dem betrach-
teten Punkt von ausschlaggebender Bedeutung, und es ist darum auBer der
verteilten Belastung p auch von Interesse, eine Einzellast P im betreffenden
Punkt zu untersuchen.

a) Maximalmomente aus Nutzlast.

Das Maximalmoment fiir einen beliebigen Schnitt im Mittelfeld er-
halten wir fiir unbelastete Auflenfelder und teilweise belastetes Mittelfeld.

Fiir die Einzellast P im Punkte ¢ ist das Moment des Versteifungstra-
gers im Punkte £ durch Gl. (1b) gegeben. Die Integrationskonstanten sind
durch die Randbedingungen M =0 fiir =0 und £=1 und aus den Kon-
aM, adM,
dx dx

tinuititsbedingungen im Lastpunkt M, = = P bestimmt.

Hieraus erhalten wir fiir £ <7 9.

Pl Sin A& 8 Ao
=2 S .9)«al(l+Tg§smg~-(:osxs).

(2a) M
In dhnlicher Weise wird das Moment fiir £ > 9 im Mittelfeld und das
Moment in den Seitenfeldern gefunden. Die zugehorige Horizontalkraft

Hp im Kabel ist durch Gl. (1d) bestimmt, wo vp aus Gl. (1c) zu entnehmen
ist. Nach Durchfithrung der Integration der Gl. (1d) wird

' 2
3P/ 1— 120(1 0)<1 +Tg Smlé‘—Coslé)

= 47 v (1+2y) [1"%( —~7Tg7)]

o 2 Ao, )
Hier ist 1> m(l + Tg~2~ Sindlé — Cosié
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und wir konnen fur 14 ng —Sm A& — Cos A& den Durchschnittswert

i Tg 5 einfiithren, entsprechend fiir ¥(1—9) den Durchschnittswert é’
Mit diesen Vereinfachungen erhalten wir:
_3PLI(1—9)
(2b) Pe="37 112y
. 27 "q
wo y = 11 f1 9( /; )
-0 7 Teg)
L f @ (44 ) (11) ¥ (41)
oder y — L1
f e() (%)

@(4;) und ¢(2) kénnen aus der Tafel 2 entnommen werden.

Fiir eine Streckenlast p von & =« bis £ = b wird H, aus Gl. (2b) durch
Einfithrung von P = pl/d® und Integration von a bis b’ erhalten:

pe 5 N 5
(2¢) H, = S7(1 47 )(31} —26%—3a® + 2a%).

Das Biegungsmoment im Punkte £ fiir eine Streckenlast wird in der-
selben Weise gefunden
P& ( _ Sinié& CosA(1—8) + Sini(l — &) Cosla)
(24) M=\ Sin 4

i{ H,,(l + Tg 5 Sini& — Cos 4 ;)

Die Begrenzung « und b der Streckenlast wird durch die Bedingung be-
stimmt, da das Moment der Einzellast P hier verschwinden soll. So er-
halten wir aus Gl. (2a) zur Bestimmung von &

Sini(1— b) _ 6 Sml( ) 1
(2e) “b(1—5) — 7 Sini 1+Tg251n},¢ Cos A& 12y

und eine entsprechende Gleichung zur Bestimmung von a.

Die Maximalmomente fiir eine gleichmiBig verteilte Belastung p treten
bei gewohnlichen Héingebriicken in & = 0,1 bis £ = 0,25 auf und das Maximal-
moment fiir eine Einzellast P in 5N01 Da das Maximalmoment aus P
und p sich in diesem Gebiet wenig dndert, wollen wir es fiir £ = 0,1, £ = 0,2
und £= 0,5 berechnen, und zwar fiir die beiden Extremwerte y = 0 und
y = 0,05 (siehe Tafel 11). Das Maximalmoment M, der Streckenlast p wird
aus Gl. (2d) erhalten, nachdem « und & bestimmt sind. Die zugehoérige Hori-
zontalkraft /1, ergibt sich aus Gl. (2c). Das Maximalmoment M, der Einzel-
last P ist durch GIl. (2a) fiir £=9 und die entsprechende Horizontalkraf{
Hp durch Gl. (2b) bestimmt. Diese Maximalmomente sind fiir verschiedene
Werte A ausgewertet und in Tafel 1a, 1b und 1c zusammengestellt. AuBer
den zugehorigen H,-Werten sind auch die entsprechenden Lastlingen
{,=1(b—a) angegeben.
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Tafel 1a. Maximalmoment fiir &= 0,/ im Mittelfeld, M:_,,.

\ 10 15 20 30 40 50 Muitiplikator
i
Mp 0,195 | 0,440 | 0,606 | 0,713 | 0,827 | 0,877 | 0,902 ot
0,05 0,204 | 0451 | 0,618 | 0,723 J 0,836 | 0,885 | 0,909 22
Hp 0 0,250 | 0,185 | 0,147 | 0,124 ’ 0,008 0,084 | 0,075 p2
0,05| 0,245 | 0,176 | 0,139 | 0,117 | 0,092 | 0,078 | 0,070 8f
l, 0 033 | 027 | 024 | 022 | 019 | 018 | 0,17 p
0,05 0,34 0,28 0,25 0,22 0,20 0,18 0,17
Mp | O 0,274 | 0,398 | 0,447 | 0,467 | 0,482 | 0487 | 0,480 P!
0,05| 0,278 | 0,401 | 0,450 | 0,470 | 0,483 | 0,488 | 0,490 )
Hp | O 0,068 | 0,068 | 0,068 | 0,068 | 0,068 | 0,068 | 0,068 Pl
0,05, 0,061 | 0,061 | 0,061 | 0,061 | 0,061 | 0,061 | 0,061 f
12 2 2
I — ‘/Hl‘) i Hl] y = L f 1~7é(1_—ZTg§k) - llfl ‘P(}“)
= Ay — =
JE ’ ./E lf IW—E(I*—/%Tg—g—) lf (p(A.)
.. . l
Fiir / =/, ist i = 7&.

@(4;) und @(4) konnen der Tafel 2 entnommen werden.

Tafel 1b. Maximalmoment fiir £ = 0,2 im Mittelfeld, M._

15 20 30 40 50 Multiplikator
{ ; -
M, 0,257 1 0512 | 0,638 | 0,702 | 0,768 | 0,810 | 0,839 pl2
0,05 0,276 | 0,534 | 0,659 | 0,722 | 0,784 | 0,824 | 0,850 iz
H, |0 0,325 | 0,273 | 0,241 | 0,221 | 0,176 | 0,145 | 0,125 pl
. 0,05 0316 | 0,258 | 0226 | 0,206 | 0,165 | 0,136 | 0,117 8f
A 0 0,38 034 | 032 0,30 |, 0,20 0,16 0,13 y
0,05 040 | 0,35 0,33 0,31 0,21 0,17 0,14
MBE™ 0 0,314 | 0,408 | 0,438 | 0,453 | 0,468 | 0,476 | 0,481 pPi
. 0,05 0325 | 0415 | 0,443 | 0457 | 0,471 | 0,478 | 0,483 )
Hp 0 0,120 | 0,120 | 0,120 | 0,120 | 0,120 | 0,120 | 0,120 Pl
0,05| 0,109 | 0,109 | 0,109 | 0,109 | 0,100 | 0,109 | 0,109 f
| |

In Tafel 1a—c wird fiir /H,,p geradlinig interpoliert. Fiir M wird zuerst
in y geradlinig, danach in 1 in folgender Weise parabolisch eingeschaltet:

Es sei die Funktion f(1) in den drei Punkten 4, 1, und 43, in gleichem
Abstand 42, bekannt. Dann ist die Funktion in einem beliebigen Punkt 2
gegeben durch
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f(2) =/ + zﬂll (fs — f) + l;l) (2‘* l;xkl)("?“‘fzi_izg')
A;zul‘l‘

f. = f(A) usw. oder mit s =

[0 = fo+ 5 @fa—3fi— 1) — 5 @h— i —Fy).

Tajel 1c. Das Maximalmoment fiir £ = 0,5 im Mittelfeld, M:—o5.

}b
x\ 5 ; 10 15

40 50 Multiplikator

M, O 0,151 | 0,354 | 0,484 | 0,569 1 0672 0,732 | 0,772 pl?
!
\
1
(
i
1

p \ LA
0,05| 0,187 | 0,38 | 0514 | 059 | 0,693 | 0,750 | 0,788 FE
H, | 0 | 0434 | 0377 | 0327 0287 | 0,231 | 0,194 | 0,169 | pl
l 005 0454 | 0370 | 0314 | 0274 | 0218 | 0,184 | 0159 8/
L, | 0 | 030 026 | 022 | 0,19 . 0,16 } 0,13 | 0,11 ;
005 035 | 028 | 023 | 020 017 | 014 | 012
Mp . 0 | 0242 | 0352 | 0,400 | 0,425 0450 | 0,463 | 0,470 PL
0,05| 0265 | 0,365 | 0400 | 0432 | 0455 | 0466 | 0473 7
’ [
Hp | 0 | 0,187 | 0,187 | 0,187 | 0,187 | 0,187 | 0,187 | 0,187 | rL
| 0,05 0,170 | 0,170 | 0,170 | 0,170 | 0,170 | 0,170 | 0,170 7

Das Minimalmoment aus der Streckenlast p im Mittelfeld ist gleich dem
Maximalmoment, aber 1 ist hier verschieden

Muas_g+Pps

Das Verhiltnis 2% ist bei einem mittleren Wert von I(h~20) 2
min

Mmirz
und nahert sich bei groBem 1 dem Wert g—gp

Das Minimalmoment der Einzellast P wird aus Gl. (2a) und entspre-

chend Hp aus Gl. (2b) bestimmt. Wenn pp= 1=

kann das Minimalmoment fiir eine Streckenlast p + pp errechnet werden. Die
-Momente aus der Kabelverlingerung und Temperatur werden getrennt
behandelt.
Das Maximalmoment in den Seitenfeldern wird bei gewohnlichen
12
L E
belastet und die anderen Felder nicht belastet. Fiir 4, > 16 kann eine teil-
weise Belastung des AuBenfeldes gréBere Momente als bei Vollbelastung
ergeben. So findet man fiir 1, = 30 fiir eine Belastung von £-=0,19 bis
£-=:0,71 in Feldmitte 1,70/ groBere Momente als bei Vollbelastung. Diese
Abweichung ist jedoch ohne praktische Bedeutung, da sie erstens klein ist,
und zweitens kommen Briicken mit 2,>> 16 kaum vor (vergleiche Tafel 11).

klein gegeniiber p ist,

Werten von 4, = erhalten, indem man das betrachtete AuBenfeld voll-
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Fiir eine gleichmiBig verteilte Vollast p im betrachteten Seitenfeld sind
die Momente aus Gl. (1b) bestimmt. Werden diese Ausdriicke in Gl. (1c)
und (1d) eingefiihrt, so ergibt sich

= r_ P
(32) =152, %
und die entsprechenden Biegungsmomente im Versteifungstrager
max __ pht 14y
(3b) My = A 1+27¢(}“15);
by @A)

woO : Y=

LTI @)

p(d) =1— ]l%(l—— iTg%) und @ (4, &) =1+ TgZ;l Sin,; & — Cosk, & =
~ Siniy (1—¢) + Sin4, &

=1 Sin 4

konnen der Tafel 2 entnommen werden.

Tafel 2. Tafel der Funktionen ®(1¢) und ¢(4).

N12!3i4i5iéiS?lO‘]SlQO;BO

®(.5) = 1+Tgé~smz§_cOsz5 = ®(,1--5)

0,5 0,352 | 0,575 | 0,734 | 0,837 | 0,901 | 0,963 | 0,987 ; 0,99 | 1,0 | 1,0
832} 0,269 | 0,450 | 0,590 | 0,692 | 0,766 & 0,862 | 0917 | 0,976 | 0,993 | 1,0
3::8} 0,232 | 0,391 | 0519 | 0,616 | 0,691 | 0,797 | 0,864 | 0,950 | 0,982 | 0,998
g:ég} 0,133 | 0,230 | 0315 | 0,396 | 0,448 | 0550 | 0,632 | 0,777 | 0,865 | 0,950

12 2 vl
7@ =1—5(1—7 Te g)

0,285 | 0,471 | 0,612 | 0,709 | 0,777 | 0,859 | 0,904 | 0,954 | 0,973 | 0,988
| 0285 OATH] 0OT2 | 0709 | OTTT | 9859 | 0504 | 09| W9

Das Minimalmoment im Seitenfeld wird erhalten, indem man das be-
trachtete Feld nicht und die iibrigen Felder voll belastet;

_1+y pr
=112, 81
min !_]jlf ,1,,—’:,7,4 :
M = — G 1, PO
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max

Das Verhiltnis //:111' wird

mn

_Mi"‘f”_g+1+2yp g+r
min
M g

1+2y”

Fiir eine Einzellast P im Punkte 9 ergibt sich fir das Seitenfeld in
ahnlicher Weise wie fiir das Mittelfeld

3 P!/
3 Hp="=""19(1—9) ——
Pl [Sml 1 (1— 9) Sin A, 9 I(1— )y ]
GD M= S a2y PO
max __ Pl ( 3 A, y )
(3e) My =27, Tg . 7 Tg—rr4 13,
Hier ist y <1 und fiir 4, = 5 ist
max Pl
(31) M = 2%,
Fiir P in £ = 0,5 im Mittelfeld wird das Moment im Seitenfeld
3 Pl 1
Pr=16 t 142,
8
M =— "l Hp ()
1

b) Momente aus Temperatur und Kabelverlingerung.

Aus Gl. (1e) erhalten wir zur Bestimmung der Horizontalkomponente #,
aus einer Temperaturerhohung — ¢

/ 3
fF16(1+2y) ()’
¢ = Temperaturkoeffizient,

1
L = Jd’f (1 |- 16 L) + 21 (1 + atléi’-(‘)
(k) :

(43) Hy = — He&{L;-

Aus der Kabelverlingerung entsteht eine Horlzontalkomponente AH
nach Gl. (1f):

HH L 1 3
4b AH — — s
(45) EcFe F16(1+27)0()
L= | = _ 1(1+8f,)+211(1+15/l TLS"‘).
()cos3<p 2 57

Die entsprechenden Momente im Mittelfeld und AuBenfeld sind
8
(4¢) M = — (4 b)Y B (18,
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(4d) M, — — i(Ht-}—AH)(I)(l g,

@(4) und @(i¢) werden der Tafel 2 entnommen.
Die gesamte Horizontalkraft aus Eigengewicht, Temperatur und Nutz-
last ergibt
gr
H =
8f

H wird hier durch Iteration gefunden, indem fiir die gegebene Last-
kombination zuerst ein angenidherter Wert fiir // und 2 angenommen wird

(z. B. H:g—lj). Mit diesem Wert fiir 1 wird H,,» der Tafel 1a oder 1b

entnommen. Mit H =H,+ H,,p, wird ein neuer Wert fiir 1, 2, und » be-
rechnet. Diesen Werten entnehmen wir einen verbesserten Wert fiir /,,,
aus der Tafel 1a und 1b, und aus Gl. (4a) und (4b) erhalten wir H, und 4H.
Der so gefundene Wert fiir / ist infolge der guten Konvergenz der Be-
rechnung nur mit Fehlern behaftet, die kleiner als 19/, sind, was bei einer
neuen Durchfithrung des Rechnungsganges leicht gezelgt werden kann.

+ Hp+P'* Ht+ 4H.

Beispiel 1.

Als Beispiel berechnen wir das Maximalmoment des Mittelfeldes in
& = 0,2 fiir eine Hangebriicke mit / =220 m,/; =75 m, f = 22 m, }, = 2,55 m,
E.Fr=1,72-106 t (beide Kabel), {=-4250 ¢=10-5 E/=FEJ,=1,1-106 tm?
(beide Versteifungstriger), g = 11,75 t/m, p — 3, 15 t/m, P= 45t (fiir die
ganze Fahrbahn).

2
Als erste Anndherung wird y = 0,025 und H =H, = ge gewihlt.

8f
11,75 .
H, = 3.2 - 220% = 3231 t,
H 3231
A =1 ﬁ_zzol——iﬁ_lz.
Aus Tafel 1b wird fiir /H/ entnommen
2
H=H, —|— 0,25 - 3, 185 22220 + 01154522220 = 3231 4+ 217 + 52 = 3500 t.

Der verbesserte Wert fiir 1 und Jq wird

JE 1,1.10¢
H 3500
h=04) g 751/1,1 v 4,2

Fiir diese i-Werte werden ¢(4,2) und ¢(12,4) der Tafel 2 entnommen und
es wird

_Lh 9(42) _ T15-255 063
T If ¢(124) T 220.22 0,02

= 0,027.
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Mit diesen Werten fiir 4 und y werden:

e = . 5 5+ + + & 2 3 2 & 3 5 3 s« = 22318
Aus Tafel 1b (geradlinig eingeschaltet):
3,15 . 220°
H, = 0,252 . R 218 t
45 .- 220
- " — T 1 t
Hp 0,114 55 5

Aus Gl. (4a) und (4b):
3450 - 107° .25 - 388 -3 -220

H: 16.22¢. 0921054  — - - 29t
3450 (3450 — 3231) - 400 - 220 - 3
A0 =—11 .( 105 .16 - 22)2 002 1,054 — — 19t
H = 3456t
Fiir diesen verbesserten Wert A wird

L = 12,33

Ly = 4,20

y = 0,027

und eine neue Durchfithrung der Berechnung ergibt H = 3456 t. Die 1. Itera-
tion fiir H ist also genau, und wir erhalten fiir das Maximalmoment in
£E=10,2:

Aus Tafel 1b (parabolisch eingeschaltet):
3,15 . 2202

M, = 0,588 - 233 = . 590 tm
45 . 220
Mp = 0,422 . a3 = 339 tm
Aus Gleichung (4c):
M 822 o 15) - 0,904 = 47 tm
t+dH — 12,33‘2( + U, = . .« . .

Mgz:axo’z = 076 tm

c) Maximale Querkrifte.

Die Versteifungstriager sind gewodhnlich als Fachwerktrager, als ge-
nietete oder geschweiBite Vollwandtrager ausgebildet. Bei kleineren Hange-
briicken werden auch Walzprofile verwendet. Im ersten Fall werden die
Diagonalen, im zweiten Fall die Nietteilung oder SchweiBnihte zwischen
Gurt und Steg, als auch die Aussteifung des Steges gegen Ausbeulen durch
die maximale Querkraft bestimmt. Auch bei Walzprofilen muB die Sicher-
heit des Steges gegen Ausbeulen untersucht werden.

Da Q= PP wird die Querkraft am einfachsten aus den Momenten-
gleichungen durch Derivation ermittelt. Fiir eine Einzellast P im Punkte ¢
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Tafel 3. Max. Querkraft @, aus gleichmiBig verteilter Belastung p und
Querkraft @, aus einer Einzellast fiir £ =0, £ = 0,1, £=0,2 und £ =-0,5
im Mittelfeld.

{ |
) 2 5 E 10 I 15 ‘ 20 | 30 11 40 ; 50 | Multiplikator
‘ 1 I R
E=0
Qp = P, Hp - 0
Q, | 0 0,565 | 0,766 | 0,848 | 0,801 | 0,934 | 0,954 | 0,966 pl
0,05| 0,583 | 0,778 | 0,856 | 0,807 | 0,938 | 0,957 | 0,968 i
H, | 0 | 0197 | 0,130 | 0,092 | 0,069 | 0,044 | 0,032 | 0,024 pl2
0,05| 0,195 | 0,124 | 0,124 | 0,066 | 0,042 | 0,030 | 0,022 8f
l, 0 028 | 023 | 019 | 0,16 0,13 | 0,11 0,09 p
0,05 030 | 023 | 0,19 | 0,16 0,13 | 0,11 0,09
£ =01
Qp | O 0,620 | 0548 | 0517 | 0,506 | 0,500 | 0,500 | 0,500 | p
0,05| 0626 | 0550 | 0,518 | 0,506 | 0,500 | 0,500 | 0,500 !
P!
Hp = 0,068 ———
P Fa+2y
Q, | 0 0,340 | 0,431 ‘ 0,458 | 0,474 | 0,491 | 0,497 | 0,499 pl
l 0,05| 0,357 | 0,436 | 0,462 | 0,477 | 0,492 | 0,497 | 0,499 e
H, | 0 0,297 | 0,245 t 0,213 | 0,193 | 0,168 | 0,152 | 0,141 L
% 0,05| 0,208 | 0,233 | 0,201 | 0,181 | 0,156 | 0,141 | 0,130 8f
A l 0 028 | 0,24 i 022 | 020 | 0,18 | 0,17 0,16 ;
005/ 030 | 025 | 023 | 021 0,19 | 0,17 | 0,16
£ =02
Qp | O 0,501 | 0,504 | 0,502 | 05501 | 0,500 | 0,500 | 0,500 p
0,05| 0,507 | 0503 | 0,502 | 0501 | 0,500 | 0,500 | 0,500
P!
Hp =012 —————
P Fa+2y :
Q, | 0 0,305 | 0,431 | 0,476 | 0,492 | 0,499 | 0,500 | 0,500 pl
0,05 0,320 | 0,436 | 0,478 | 0,492 | 0,499 | 0,500 | 0,500 i
H, | 0 0,460 | 0,430 | 0,406 | 0,388 | 0,361 | 0,343 | 0,331 p
0,05| 0,441 | 0,404 | 0,379 | 0,360 | 0,333 | 0,315 | 0,303 8f
l 0 0,34 | 032 | 0,31 0,20 | 0,28 l 0,26 0,26 ]
005! 036 | 033 | 031 030 | 028 | 027 0,26
£ =05
Qp = 05 P, Hp = 0,1875 Pt
P o TP TS A2y
Q, io-o,os‘ 0,424 1 0,493 j 0,499 l 0,500 ] 0,500 \ 0,500 t 0,500 E;lf
___pr _
= 65t ran v = 0!
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wird die Querkraft im Punkte £ des Mittelfeldes (£<_9) aus Gl. (2a)
erhalten.

_ p|Cos4éSind(1—9)  69(1— )( Ao . )]
(5a) @ =P| o Tty 2 (Tey Cosie—sinig)|.

Aus Gl. (5a) kann der Nullpunkt ¢ = d der Querkraft gefunden werden, und
durch Belasten des betrachteten Schnittes & bis £=4d, wird die maximale
Querkraft fiir die Streckenlast p durch Einfithrung von P = pld?d in Gl. (5a)
und Integration von & bis d erhalten. Diese ist zusammen mit Q, fiir die
Einzellast P in dem betrachteten Schnitt in Tafel 3 zusammengestellt.
Die minimale Querkraft aus der Streckenlast p wird durch Vollast
aller Felder und Entlastung der positiven EinfluBflichen erhalten, d. h.

"t — — Q® und die entsprechende Horizontalkraft wird H,— /élf — H™,
Die minimale Querkraft aus der Einzellast P wird Q5" = P — QB .

Die Querkraft im Mittelfeld aus Temperatur und Kabelverlingerung ist
(5b) 0= — i(Ht+AH)(Tg~CoslS——Sinl&).

Im Seitenfeld ergibt sich fiir eine Einzellast 7 im Punkte 4 die
Querkraft im Punkte & in entsprechender Weise wie fiir das Mittelfeld
_am, [Cos A ESin iy (1 —9)
Q=4 =P Sin 4,

dax

09 (1—9) y_( Moo o s . )J
— 152, Tg 5 Cos 4, &—Sink, &)].

Da y eine kleine GroBe ist, erhdlt man mit guter Annidherung die ma-
ximale Querkraft @, fiir eine gleichmiBig verteilte Belastung p durch Be-
lastung vom Auflager bis zu dem betrachteten Schnitt £&. Diese Querkraft
wird aus obiger Gleichung durch Einfithrung von P == p/dd und Integration
von & bis 1 erhalten zu

6o Q=2 Cosh——1)—

P 1 o 2 3
——1+2 (TgZCOQAlg Sm)tlf)(l 3¢& -{—25)].

Fiir 4, < 5 ist diese Gleichung genau und fiir 2, = 10 ist die Abweichung
vom genauen Wert 106, was ohne praktische Bedeutung ist.
Der maximale Auflagerdruck fiir die Streckenlast p ist

ph 1+ 4 by
Gd Q=" 1r2,' 82"
Die Querkraft im Seitenfeld aus Temperatur und Kabelverlingerung ist
(5e) Q= — —ISJ;I (H¢+AH)(Tg 1 Cos &, E—Sm:tle;)
1
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d) Maximale Winkelinderungen und Durchbiegungen des Versteifungs-
trigers nebst Schiefstellung des Quertrigers.

Die Versteifungstriger gehoéren zu den sekundiren Baugliedern der
Hangebriicken und koénnen bei groflen Briicken, wie z. B. bei der George
Washington-Briicke im 1. Ausbau, ganz wegfallen. Sie wirken im wesent-
lichen lastverteilend und versteifend. Wird fiir den Versteifungstriager ein
beliebiges Trigheitsmoment gewaihlt, so konnen die Maximalmomente aus
der Tafel la und 1b entnommen werden, und es ist immer moglich, Quer-
schnitte zu finden, die das gewahlte Triagheitsmoment und gleichzeitig die
zuldssige Randspannung aufweisen.

AuBer den Versteifungstragern konnen auch das Eigengewicht der Fahr-
bahn und die Pfeilhohe des Kabels frei gewihlt werden. Diese GroBen
miissen so abgestimmt sein, daB geniigende Steifigkeit der Briicke mit kleinst-
moglichen Baukosten erhalten wird. Als SteifigkeitsmaBe der Briicke werden
gewohnlich die maximale Winkelanderung und die maximale Durchbiegung
des Versteifungstriagers verwendet. Am wichtigsten ist jedoch die maximale
Schiefstellung der Quertrager. Wo diese Schiefstellung sehr grofe Werte
P 1:7), wird die
Briicke bei schiefen Belastungen und Wind so groBie Schiefstellungen der
Fahrbahn erhalten, daB sowohl die Fahrbahn als auch die Hingeseile mit
ihren Befestigungen zum Bruch kommen und ein teilweises Einstiirzen zur
Folge haben. Um eine schnelle Ubersicht iiber die verschiedenen Steifig-
keitsmaBe zu erhalten, wollen wir dieselben in geschlossenen Formelaus-
driicken und Zahlentafeln angeben.

Die maximale Winkeldnderung der Versteifungstriger entsteht bei den

annimmt, wie z. B. bei der Tacoma-Briicke (tg =

Tiirmen, und da tga = Z)‘: ist, wird diese aus Gl. (1c) durch Derivation

erhalten.

Fiir das Mittelfeld ergibt sich fiir eine Einzellast P im Punkte 9
eine Winkeldnderung des Versteifungstragers an den Tiirmen (& = 0)

g C 2
(6a) P [1 9 Sini(1—9) 39(1—9) <1 — 1)} |

'ger = Sini 1+2,

Die Nullstelle & =- ¢ wird durch folgende Gleichung bestimmt:

).
Sini(1-- ¢) 36(1—‘)(1*";?/)

(b} l—e——gn1 — 1+ 27

= 0,

Die maximale '\X/inkelénderung an den Tiurmen fir eine Streckenlast p
entsteht durch Belastung von £ == 0 bis & = ¢ und wird durch Emfuhrung von
P = pld9 in Gl. (6a) und Integratmn erhalten

(6c) tge L 5_964—265)(1_/) Cos 4 (1-—¢)— Cos 4
ST H 4(1+2y) 4 Sin A ‘
In Tafel 4 sind die maximalen positiven Winkelanderungen tga, und

tgap an den Tiirmen im Mittelfeld aus einer Streckenlast p und einer Einzel-
last P angegeben. Die minimalen Winkelinderungen sind von derselben
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GroBenordnung, da sie aber im unbelasteten Teil auftreten, fallen sie we-
niger ins Gewicht.

Tafel 4. Maximale positive Winkelinderungen des Mittelfeldes an den
Tiirmen mit zugehoriger Horizontalkraft und Belastungsliange.

N s [0 15 | 20 | 30 ‘ 40 | 50 | oo | Multiplikator
1 | i -
tgap 0 | 0042 0081 01010112 0,124 | 0,130 | 0,134 | 0,148 i
0,05 0,055 | 0,005 | 0,115 | 0,126 | 0,137 | 0,143 | 0,147 | 0,161 H
H, | 0 | 0424 0358 0327 i 0309 | 0,202 0,283 | 0,278 | 0,259 |  pl®
0,05 0,477 | 0385 0349 0330 0311 | 0302 | 0296 | 0277 8/
|
;, | 0 045 040 038 037 036 035 | 035 |033 ,
0,05 052 | 045 | 042 041 (039 | 039 |038 | 037
|
tgap| 0 | 0,149 | 0,326 | 0,444 | 0,524 | 0,626 | 0,689 | 0,732 | 1,0 P
0,05 0,172 | 0351 | 0,467 | 0,544 | 0,643 | 0,704 | 0,745 | 1,0 H
|
Hp | 0 | 0102 0084 0071 0063 0051 0043|0038 0 PI

0,05| 0,100 | 0,080 | 0,067 ‘ 0,059 | 0,048 | 0,040 | 0,035 0 f

Die maximale Winkelidnderung in den Seitenfeldern erhalten wir
fiir Vollast des betrachteten Feldes. Fiir die gleichmiBig verteilte Belastung
ist die Winkelanderung an den Tiirmen

_ﬁﬁliil« 2 &g
(6d) tgen = o 1o 71+)V1Tg2 .
_re v
Hy = 8f 1+ 2y

Die entsprechende Winkeldnderung fiir eine Einzellast P im Punkte 9
wird
_ P Sink, (1 — %) o . ( 2) y ]
(6e) tgo; = 7_1—[1 ——&———S{r-l—i;v—~~—~———3d(1~—d) 1———,[1 T3 250
Die Winkelinderung aus Temperaturinderung ¢ und Kabelverlinge-
rung an den Tiirmen ist im Mittelfeld '

4f Hi + AH ( 2 /1)
o T8y
und entsprechend in den Seitenfeldern /-, und 4H sind durch Gl. (4a) und
(4b) bestimmt.

Die Durchbiegung des Versteifungstriagers ist durch Gl. (1c) gegeben.

Im Mittelfeld ergibt sich die Durchbiegung im Punkt & fiir eine Einzel-
last P im Punkte 9(£&<Z9)

(ﬁf) tgaz+4H:——

P, .. SinA£Sini(1—9)
(6g) "= H [5(1_*'))” 4 Sin 4 o

3*_;’(1%:2_}2)(5%52_%@&5)”
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Fin entsprechender Ausdruck fiir v wird fiir £ > & erhalten. Die maximale
Durchbiegung wird fiir die Einzellast im betrachteten Punkt erhalten. Ab-
hiangig von 4 und y liegt dieser Punkt bei gewdhnlichen Briicken zwischen
£= 10,22 und £=-0,29. Da es hier nicht auf den exakten Wert ankommt,
berechnen wir die Durchbiegung in &= 0,25. In extremen Fallen wird die
maximale Durchbiegung diesen Wert bis zu 39/ iiberschreiten, was ohne
praktische Bedeutung ist. Fiir eine Streckenlast p wird die Durchblegung
in £= 0,25 durch Einfithrung von P = pld¢ und Integration von O bis zur
Nullstelle der Durchbiegungen, die von 4 und y abhidngig zwischen &= 0,44
und &= 0,58 liegt, erhalten. Diese Durchbiegungen sind fiir verschiedene
Werte von 4 und y ermittelt und in Tafel 5 zusammengestellt.

Aus der Kabelverlingerung entsteht eine horizontale Korrekturkraft 4AH
im Kabel. AH ist durch Gl. (4b) bestimmt und das zugehérige Moment
durch Gl. (4c). Diese Ausdriicke in GIl. (1c) eingesetzt, ergeben
_ HLg 31
T EFRAI1+27) ()

(6h) (5 g %qs(zg)).

Tajel 5. Maximale Durchbiegung im Mittelfeld bei &= 0,25 fiir eine
Streckenlast p und eine Einzellast P.

, ‘ |
N 5 ; 10 ’ 15 ! 20 . 30 | 40 l 50
| J o0 i l
| i |

00 ! Multiplikator
|
|
!

v 0 0,050 0092(0110 0117}0123 0,126 0127J0129

i pE
0,05| 0,076 | 0,123 | 0,141 | 0,148 | 0,154 | 0,156 | 0,157 | 0,150 SH
044
H,=|o, )] a+ng
vp | 0 | 0,021 | 0,043 | 0,054 | 0,060 | 0,067 | 0,070 | 0,072 | 0,082 P!
0,05| 0,028 | 0,051 | 0,063 | 0,069 | 0,076 | 0,080 | 0,082 | 0,092 H
9 Pl 1
Hp=1t4 f 142y

Die maximale Schiefstellung der Quertrager ist durch die relative Durch-
biegung der Versteifungstriger bestimmt

VV - vh
b b

wo 0 die Briickenbreite, v die Durchbiegung des linken und v, die Durch-
biegung des rechten Versteifungstrigers sind. Um einfache Formeln zu er-
halten, berechnen wir die Schiefstellung in &= 0,25 fiir eine Belastung bis
Briickenmitte. Die maximale Schiefstellung kann diesen Wert in extremen
Fallen bis zu etwa 40/ iiberschreiten.

Die groBte Schiefstellung wird durch wechselweise Belastung bis Mitte
Fahrbahn erhalten. Durch diese einseitige Belastung ist die Belastung auf
dem einen Kabel p,. bzw. P,, und auf dem andern p, bzw. P, (p, = ps).

Die Schiefstellung in &= 0,25 bei Belastung auf der einen Seite mit p,
von &£ =0 bis &= 0,5, mit p, von 0,5 bis 1,0 und auf der anderen Seite mit
pr von £=0 bis 0,5 und mit p. von &= 0,5 bis &= 1,0 wird

tgﬂ =
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g, — (oA [L B 1(1#_ Sin 0,754 — Sin 0,25/1)]
&P = "y 1327 i T 05Sina :

67

Bei Belastung in den Seitenfeldern mit p, und p, wird die Durchbie-
gung in &= 0,25 im Mittelfeld auf der einen Seite

ol ;/___13 2 (1_ Sin 0,752 + Sin 0,251)}
Sini

H 1+ 2yl16 22
und entsprechend auf der anderen Seite. Fiir die Einzellasten P, und P,
in £= 0,25 und P, und P, in &= 0,75 wird

(P, — Pyl [ 1 Sin 0,251 (Sin 0,75 1 — Sirp“OA,25 A)]
Ok tgdr="",5""1s — 7Sin 1 R

Die Schiefstellung, die von y unabhingig ist, ist fiir verschiedene Werte
von . ausgerechnet und in Tafel 7 zusammengestellt. Dort sind gleichzeitig
die entsprechenden Horizontalkriafte angegeben.

Vy = —

Tajel 6. Schiefstellung der Quertriger im Mittelfeld fiir &= 0,25 fir
Streckenlasten p, und p, und fiir Einzellasten P, und P, an beiden Kabeln.

y 5 | 10 { 15 { 20 ! 30 { 40 i 50 t oo Multiplikator

tg Ap | 0,040 l 0,076 i 0,092 0,113 1 0,115 | 0,125 (P,—Ph)b—lﬁ

9 (P, +PYL
T 64 f 14+2y

0,100 | 0,108

HP
2
tg 8, | 0,100 r 0,183 { 0,216 ’ 0,230 } 0,241 I 0,245 ' 0,247 ' 0.250 | (7, — 1) g 2 - [1 i

2 2y 70
Hy =y +01) 167 +pm (5

Die maximalen Durchbiegungen und die Schiefstellung der Quertrager
treten in den Seitenfeldern bei £=0,5 auf. Die maximale Durch-
biegung entsteht fiir Vollast p im betrachteten Feld und P in £= 0,5

gmax __ pLE 1+ l __%( . )]
©h  w" =gy 112,11 o\l ‘Cos 05 1,

Pl 2 Ay §l B 1 2 . 7_1
taH [1”’ZTg7“ i +2y(z* fg(] Cosg._l) :

2

Die minimale Durchbiegung entsteht, wenn das betrachtete Seitenfeld
unbelastet und die i{ibrigen Felder voll belastet sind.

6m) o 1+2y[1 Lz(l | L
2

Die Durchbiegungen sind fiir verschiedene Werte von 4; und y berechnet und
in Tafel 7 zusammengestellt.
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Tafel 7. Maximale Durchbiegung vm** und Aufbiegung v fiir £==0,5
in einem Seitenfeld.

1, ' 2 ‘ 3 ‘ 5 17 | 10 ] 15| Multiplikator
— o
pmax 0,206 | 0,489 | 0,732 | 0,847| 0,921 | 0964| 1,0 | 24’ 1+7
p b b b ) bl b} b SH 1+2:’
ma {y: 0,02 | 0,059| 0,097 | 0,149 | 0,176| 0,197 | 0,213 | 0,246 PL,
P \y =005 | 0,057| 0,005 0,145| 0,171| 0,102 | 0,208 | 0,241 A
_ v (p¥ 3 Pk
Hﬂ+”“1+y<8f 16 fl)
min 1+y /L{lf( L,5P )
v, 0,296{ 0,489! 0,732! 0,847§ 0,021 ! 0,9641‘ e

— 1ty pl2(  15P
H”+P_1+2;/ 8f< + /)l)

Die maximale Schiefstellung der Quertrager in & = 0,5 wird aus Tafel 7
erhalten, indem man in die Multiplikatoren fiir v als Belastung p = p, — p,
bzw. P = P, — P, einfithrt. Die zugehorige Horizontalkraft wird

23 P +Pyl 1
(on) H”+P:(””+””)‘167+32( fh)_1+27'

Um eine Ubersicht iiber die drei DeformationsgréBen, maximale Durch-
biegung v,..., maximale Neigung des Versteifungstrigers tge und maximale
Schiefstellung des Quertrigers tgf zu erhalten, sind diese Werte fiir einige
amerikanische und norwegische Briicken in Tafel 8 zusammengestellt. Es
sind hier auch die der Berechnung zugrundegelegten Belastungen angegeben.
Die uibrigen Konstruktionsdaten gehen aus Tafel 11 hervor.

Tafel 8. Maximale Durchbiegungen v+, Winkelanderung des Versteifungs-
trigers tgo und Schiefstellung des Quertrigers tgf fiir einige ausgefiihrte
Hangebriicken. (Temperaturinderung nicht beriicksichtigt.)

max

g | p |p—by| b [ ymes ] 2 | tge | tgp
t/m t/m t/m m m m I
Tocama Br. . . . . 5,0 1,0 0,40 11,86 | 853 255 11:3331:53|1:7

Bronx-Whitestone Br. | 8,10| 223 1,0 22,6 | 701 2,60 {1:270 | 1:411:12

George W. Br. im ]
1. Ausbau (ohne 194 | 21 | 1,1 (356 |1067 | 1,41 |1:760|1:851:27
Versteifungstriger) I

Fyksesund (norw.) .| 2,1 0,6 0,3 7,2 | 230 | 1,04 [1:222/1:291:8

Framnes y .l 1,8 06 | 025 | 48 | 150 | 0,64 [1:234|1:351:11
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4. Einfeldrige Hingebriicke mit frei aufliegendem Versteifungs-
triger von konstantem Trigheitsmoment nach Fig. 1b.

Fiir die einfeldrige Hingebriicke werden samtliche GroBen aus den
entsprechenden Ausdriicken fiir die dreifeldrige durch FEinfithrung von
ly=ly=y=0 erhalten. Die in dieser Weise erhaltenen Maximalmomente
in £=0,2 und &= 0,5 fiir die Streckenlast p und die Einzellast P mit zu-
gehorlger Horizontalkraft lassen sich auch folgendermaﬁen schreiben:

PP (g 518, 884) Pl 0901__91)
Moz =" (0030 — 2= 1 52 4 750400 — 20—
e P A 2\, P!
Moos =2 o (0,947 _9 7762 + fl—if — E;iZ) 4+ ! (o 504 — T4 o ‘23126>,
(7®) el PR
— PE - A i
Hpir = g5 [_0’47 Ll + (100) ]+ 7 01875

Die maximale Querkraft fiir & — 0 und &= 0,2 mit zugehoériger Horizontal-
kraft wird

Qo = P + P12

(7o) "
pr 135 45

Hyr =57 (01 24‘),

Qs=02 = 0,5 P + 131(0’5 — %’ + 1?) ,
7d) Pl [* 1,8 | 5

pl
Hpop =012 "+ G0 (03 + *“7;)-

Die entsprechenden Belastungsiangen koénnen der Tafel 1b, Ic und 3 fiir
» == 0 entnommen werden.
Aus Temperatur und Kabelverlingerung folgt:

HHL\ 31
sy (H”Lf+ EiF )mfz (?)
8
(Te) Miyan = — f(Hf—{—AH) ®(18),
. . |
QtraH = — ﬁ (Ht+ AH) (Tg—z- Coslf—SmlS) )

@(2) und ®(2£) konnen der Tafel 2 entnommen werden. M:_o1, Qs—0,1, Qc=0,
tga, vmar, tg B mit den entsprechenden Horizontalkriften werden den Tafeln
la, 3, 4, 5 und 6 fiir y =0 entnommen. '

5. Korrekturmomente aus der Horizontalverschiebung u
des Kabels.

Da die vereinfachte Differentialgleichung (1a) der Berechnung zugrunde
gelegt wurde, erfahren die erhaltenen Formeln und Zahlenwerte kleine Kor-
rekturen, die durch Iteration gefunden werden kénnen. Die Bedingung fiir

Abhandlungen VII 3
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das Gleichgewicht in senkrechter Richtung eines Briickenelementes dx ist
nach Fig. 2

[g + p(x)] dx = — a'Q H[tg(y+ dy) —tgy] = —dQ — Hd tgy.
Hier ist dQ = — /E v dx,

14
p= YLy,
v = gy VTV )

Aus dem geometrischen Zusammenhang (Fig. 3)

J
y Fig. 3
X
T 2 o Kabelelement ds mit zugehorigen Ver-
v 4 schiebungen.
LT (s Elément de cible ds avec déplacements
~o correspondants.
N 9% *
"‘{4% %% Cable element ds with corresponding
= displacements.

(ds + Ads)? = (dx + du)? - (dy +dv)? entnehmen wir «’ N—yzli und mit
H=—H,+ H,, g2 H,y” =0 erhalten wir die genaue Gleichung zur Be-
stimmung von p(x).

j H
(8 a) (x) E IIN__ 14 (l') VII + VI/ 2 + 2V! ’ H) H y .
Fithren wir die aus der Differentialgleichung (1a) gefundene Durchbiegung
nach GIL. (1c) in Gl. (8a) ein, so erhalten wir, da

JE H V" 4

R " - -}i
P = Iz 4 /2 H; 2

(p ist die gleichmiBig verteilte Belastung), folgende Korrekturbelastung

(8b) dp=p—pl) =1\ "y +20yp).

Diese kleine Korrekturbelastung kann wieder in die vereinfachte Diffe-
rentialgleichung (1a) eingefithrt werden, und wir erhalten so das Korrektur-
moment. Dies kann in den Seitenfeldern bis zu 1096 des durch Gl. (1a) be-
stimmten Momentes betragen und kann darum nicht vernachlissigt werden.
Die Korrekturen fiir die Winkelinderungen, Durchbiegungen und die Quer-
kraft Q sind ohne praktische Bedeutung und werden hier nicht ausgewertet.
. Im Mittelfeld ist die Umgebung des betrachteten Momentpunktes
v = 0 fiir die Belastung, die dem Maximalmoment entspricht. Die Korrek-
turlast 4p, im Momentpunkt ergibt darum mit guter Anndherung:

H 17 12 l) 16 2
dpy= 1wy == m O 120,
2
da v =—ME und y=4;0—29.

JE
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Die auftretende Korrekturlast 4p wird durch eine dquivalente, gleich-
maBig verteilte Streckenlast Ap, ersetzt, so daB das Moment aus Ap, gleich
dem Korrekturmoment wird. Da das Korrekturmoment klein ist, kann 4p, mit
grober Anndherung bestimmt werden. Es kann darum von der Einwirkung
der Seitenfelder abgesehen werden (y — 0) und mittels numerischer Sum-
mation wird fiir eine Einzellast P in &-- 0,2, Ap, = (§~ + %——;) 4 p, er-
halten. Diese Streckenlast wird in Gl. (7a) eingefiihrt und wir erhalten

fiir eine Einzellast P in &= 0,2

576#( 3 ) 5,18 8,84)
amp = —mp> 20 (2 1 5 2 ) (0030 2 4 B2
oder '

f 11
(8C) AMp:——Mp(l (38 l )

Fiir die Streckenlast p ist 4p, = (1 +§)/g + - )Apo, und wir erhalten in

ahnlicher Weise wie oben das Korrekturmoment in &= 0,2

| 2 12 24
(8d) AM, = — M, (’}) (5,8 — = 7) .

Mp und M, sind die nach Gl. (7a) berechneten oder aus Tafel 1b entnom-
menen Momente.
Da M proportional 4p, ist, konnen die Korrekturmomente aus 4 Mg_ o2

errechnet werden zu
1 —2&\2
'—‘(—)~6“) A M§:0’2 .

Wie hieraus hervorgeht, ist AM = 0 fiir £ = 0,5. Die Korrektur in /, aus Ap
ist ohne jede Bedeutung.

In den Seitenfeldern entsteht das Maximalmoment in Feldmitte.
Die Zusatzbelastung Ap wird nach Gl.(8b) bestimmt. Es kann hier das
zweite Glied nicht vernachlidssigt werden. Mittels numerischer Summation
kann das Korrekturmoment in derselben Form wie im Mittelfeld erhalten
werden. Fiir eine Einzellast P in Feldmitte ergibt sich in dieser Weise

AM&Z(

8e) 4 Mp__MP(”) (0,53-—0’34).
Fiir die gleichmaBig verteilte Belastung erhalten wir fiir Feldmitte &= 0,5
h 1,8
(81) AM, = — M,,(\—ll) (1 1 ll)
Fir &= 0,25 (£ vom Turm aus gerechnet) ist fiir gleichmiBig verteilte
Belastung
h 5,5
A4 = —
My = —my() (22— )
und fiir £==0,75 AM, = — M, (h) 0,32.

Mp und M, sind die nach den GI. (3e) und (3b) berechneten Momente.
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Beispiel 1a.

Fiir die in Beispiel 1 behandelte Hiangebriicke wird das Korrektur-
moment aus der Horizontalverschiebung der Kabel fiir &£ = 0,2 im Mittelfeld
nach Gl. (8d) und (8c)

B 22 ( 12 24 ) _
Ay = =90 (’zéo) 58— 1233 g3z = 2Tt
_ 22 )Z< 11 ) .
AMp = — 339 (T’zé‘d B—1am3) = —10 ,
AM,y,p = — 37 tm

d. h. 404 des Maximalmomentes.

6. Turmberechnung und verschiedene Korrekturen.

Bei der Aufstellung der Grundgleichungen wurde vorausgesetzt, daf}
die Kabel sich am Turmkopf frei bewegen konnen. Wenn die Kabel im
Turmkopf befestigt sind, entstehen in den Seitenfeldern kleine Korrektur-
momente im Versteifungstrager und bei eingespannten Tiirmen auch Turm-
momente, die bei der Bemessung der Tiirme beriicksichtigt werden miissen.
Bei den Tiirmen selbst wird gewohnlich die Temperaturinderung nicht be-
riicksichtigt, da eine solche immer giinstig wirkt. Dagegen sollen hier so-
wohl die Deformationen der Hingeseile und Tiirme infolge Normalkraft
als auch die Verlingerung der Hingeseile infolge einer Temperaturanderung
untersucht werden. Es wurde weiter vorausgesetzt, daB der Abstand der
Hangeseile sehr klein sei, und daBl die Nutzlast direkt in den Versteifungs-
triger geleitet wird. Keine dieser Voraussetzungen trifft ganz zu, und es
entstehen dadurch kleine Korrekturen, die den schon berechneten Momenten
und Horizontalkriften im Kabel hinzugefiigt werden miissen.

a) Kabel am Turmkopf befestigt.

Gewohnlich werden die Kabel am Turmkopf befestigt und die Tiirme
unten eingespannt oder gelenkig gelagert. Turmkopf und Kabel erhalten
hier dieselbe Horizontalverschiebung u#r, was eine Horizontalkraft /; am
Turmkopf hervorruft (2 und H, am Kabel positiv gegen Mittelfeld). Die
Horizontalverschiebung # der Kabel wird durch die geometrische Bedingung
(ds + Ads)? = (dx + du)? + (dy + dv)? erhalten (Fig.3). Hieraus folgt zur
Bestimmung von u«

und die Turmverschiebung wird durch Integration iiber das Seitenfeld er-
halten

7 1
[ dds | m+4f _8_f1j

“r = jcos«;o + / T , Ihn o
0 0

vy ist die senkrechte Turmverschiebung.
Fiir eine gleichmiBig verteilte Belastung p im Seitenfeld, wobei die
iibrigen Felder unbelastet sind, wird nach Gl. (3a, 3b, 1b und 1c)

8F,(pl | :
M, = 7?(‘5;7 “‘HS)QW” 9
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(8 —ann)(eo— 2o

Y AN v
. H; dx etdx .
Mit Ads = EyFy cosiy + cos . folgt durch Einsetzen und Auswertung der
Integrale:
_ 16f12(p(;t,)( pl3> Hs 1, 15/z"+8f1) ( /z2+5,3f;2>
(9a) ”T*—**B*ZH* H,— 87 +Ekl_—ﬁk(lr~~'l] +etl |1+ A

Hs = H, + H; + AH + Hr.

Hier ist zunidchst //; nicht bekannt, und es wird bei der ersten Berech-
nung von u#; Hy - 0 eingefiithrt. Aus der Bedingung, daBl die Turmkopfver-
schiebung gleich u;, sein soll, entnehmen wir den Turmbedingungen

HT = — AuUr.

Fir eine senkrechte Turmbelastung N = H (tg ¢, +tg ¢,,), (¢ und ¢, sind
die Neigungswinkel der Kabel am Turm), eine Turmhohe £; und gelenkig
gelagerte Tiirme ist

N

= —

hr

Bei eingespannten Tiirmen mit einer mittleren Steifigkeit /;£, wird

N 1 Nhi

_ 0 =

hr 1g8e 4 ~ VJrEr

, ’
Fir o= ; ist =0 und auch H;=0. Daraus folgt N = 714_/72;§T d.h.
T

der Wert der Knickkraft fiir freie Auskragung der Tiirme. Fiir kleinere Werte
von g ist » positiv und fiir groBere Werte negativ. Nachdem H; = — xur
bestimmt ist, kann H; in Gl. (9a) eingesetzt und ein verbesserter Wert fiir
Ur gefunden werden. Die Berechnung ist stark konvergent.

Die Gl. (9a) gelten auch fiir ein unbelastetes Seitenfeld unter Be-
lastung der iibrigen Felder. In letzterem Fall muB nur p= 0 eingesetzt
werden.

Das Korrekturmoment des Versteifungstrigers im belasteten Seiten-
feld wird

8
AMr = — lfl HT@(ME)
1
oder
k
(gb) A/WT——"MI TA:*:ik’
16 »f;
wo k= 3 HIi, (77()“1)

und M, das schon berechnete Moment im Seitenfeld ist.

Dieser Ausdruck gilt auch fiir das Minimalmoment und fiir Einzel-
lasten. Bei Belastung des Mittelfeldes ist die Anderung der Horlzontal-
kraft hier
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| Hp+P — f{p+P* 7
und das zugehodrige Moment des Versteifungstrigers im Mittelfeld wird
8 .
AMr = — [Z AH, p®D(LE).

Da sowohl y als £ sehr kleine Gréfen sind, ist mit guter Annidherung fiir

das Mittelfeld
AMr = 0.

Die maximale Turmverschiebung gegen die Verankerung entsteht durch Voll-
belastung in einem Seitenfeld und einer Temperaturinderung —7¢ im Kabel.
Die maximale Verschiebung gegen das Mittelfeld hin wird durch Vollast des
Mittelfeldes und des zweiten Seitenfeldes mit einer Temperaturinderung
-+¢ im Kabel erhalten. Diese letzte Verschiebung ist auch numerisch die
groBte, da hier die Verlingerung der Kabel infolge der Normalkraft am
groften ist und zu den anderen Verschiebungen addiert wird.

Bei der Berechnung eingespannter Tiirme muB » genau bestimmt
werden, da H; und die Turmmomente zu x» proportional sind. Zu diesen
Turmmomenten in der Lingsrichtung kommen die Windmomente in Quer-
richtung der Briicke.

Fiir die Bronx-Whitestone-Briicke ist: f; = 6,4m, /; = 224 m, iy = 115 m,
H ~9000t, N =8500t, J;E;=5-107tm? (geschitzt), E,Fr=4-105t. Aus
der Tafel 2, ¢ (11) == 1.

Die Tiirme sind eingespannt und es wird

Nhi 8500 1152

¢=V5nE = s5.i07
N 1 8500 1
“ T hr e [ 115 tgls | T St
o 15
2
o — 16 2f’ 16 8704 5700 _ 495. 105 ~ 0.

3 HI, ?(4) =3 5000224 | = 6050 . 10°

d.h. AM;~= 0 sowohl im Seitenfeld als auch im Mittelfeld. Bei der Be-
lastung des Seitenfeldes mit p—223 t/m und einer Temperaturinderung

von —300 wird
8,10 . 7012 )
(Hg S g = 8100t
2,23.701° 0,035 y 701 3
8255 155 701 3
g 1250 &5 Teqg7 = 12+ 96 —13 =155t
16 64 (1‘55 %%3;7012> | 155-:@3(”1,5_ 622 + 8 - 642)
“T =3 8255.224 T 8.62 4-108 2242
2 . 2
—30- 107 224 (14 233 O%) 04 4 0,01-007=-030m.

Hr =030 .87 = —261t.
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Bei Belastung des Mittelfeldes und des zweiten Seitenfeldes mit einer Tem-
peraturanderung -+300 wird H,= 2135 — 116 — 182 == 1837.

16 6,42 - 1837 1837 - 224

ur =3 9037.904 + 4.708 - L12+30-107°-224-1,08 =
= 0,18 + 0,12 + 0,07 = 037 m.
Hr = —037 .87 = —32t.

b) Veriingerung der Hdingeseile.

Aus der Verlingerung der Hingeseile entsteht am Turm zwischen den
Versteifungstragern und den Auflagern eine Trennung, deren Gro8e wir mit
v, bezeichnen wollen. Diese Trennung muB riickgingig gemacht werden,
und es entsteht hierdurch im Mittelfeld eine Horizontalkraft /, im Kabel
mit dem zugehorigen Moment nach Gl. (1b)

8F H,
12

Durch zweimalige Integration der Gleichung (1c) wird die Durchbiegung v
erhalten. Die Bedingung der Horizontalverschiebung | vdx =0 ergibt

(%)
H, — 3Hv, .
4i(1+27) 9 (4)
Oben eingesetzt wird das Korrekturmoment im Mittelfeld
6Hyv,
Et 29 T
Da M,, klein ist, kénnen wir als gute Anndherungen y =~ 0, ¢ = @ =1 ein-

fithren, und wir erhalten fiir das Mittelfeld ein konstantes Korrektur-
moment

(9 C) aM,, =

AMVO - —

D (18) .

AM,, =

6H

FEACE

Wenn die Verlangerung v, an beiden Tiirmen auftritt, wird das Moment
12H

7 Vo -

Das Korrekturmoment ist der Spannweite proportional, und fiir das
Seitenfeld erhalten wir

(94d) AM,, =

AMvo:

ly 6 Hv,

| 120+ 290
Fir die Bronx-Whitestone-Briicke, wo v,= 0,17 m, // = 9000 t und

A=:306ist, wird AM,, = %02—00 -0,17=17,1 tm, d. h. 19 des Maximalmomen-

tes. Bei kleineren Briicken ist 4M,, ohne Bedeutung.

ACTIE

c) Zusatzmomente infolge der Lastiibertragung aus den Hingeseilen.

Bei der Berechnung des Versteifungstrigers ist eine durchlaufende Auf-
hingung und eine direkte Lastiibertragung vorausgesetzt. Gewohnlich wird
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die Belastung durch die Quertriger iibertragen, die an den Héngeseilen auf-
gehiangt sind, und die Versteifungstriger sind an den Quertrigern befestigt.
in diesem Fall erhalten die Versteifungstriger nur zusitzliche Momente aus
Eigengewicht und werden fiir diese Belastung als Durchlauftriger auf starren
Stiitzen berechnet. Bei kleineren Briicken konnen die Versteifungstrager
gleichzeitig als Langstriger zwischen den Aufhdngepunkten dienen und
werden hier als Durchlaufbalken auf starren Stiitzen mit der gesamten Fahr-
bahnbelastung berechnet.

Zum Zweck der Ubersicht iiber die moéglichen Grenzen der Festwerte
A und y sind schlieBlich in Tafel 11 die Abmessungen einiger amerikanischer
und norwegischer Hingebriicken zusammengestellt.

Tafel 11. Abmessungen und Festwerte einiger amerikanischer und
norwegischer Hangebriicken.

.. P e

Briicken { A 1 T J 1 ; H ; H \
I R R R R N 7 L
Tacoma Br.) . . . .| 83| 335 0,083{ 0,059 ’0059f 64 25 | 0,06
Bronx Whitestone Br.2) . | 701 , 224 0,088‘: 0,156 ' 0,1283 36 11 0,035
George Washington Br.?) | 1067 150 10093 20 20 3 6 | 0005
Golden Gate Br. . . .| 1280 | 343 | 0,113 26 ; 167 26 9 | 0018
Mount Hope Br. . . .| 362 152 | 0,10 | 0,255 lo,249? 7 3 | 0,040
Maumee River Br. . .| 237 170 0,123§ 0.156 i 0,132§ 7 2 | 001

Fyksesund Br.¥) . . .| 230 | 0 | 0,127 | 0,001 i 0 ; 36 0 0

Framnes Br.§) . . . . E 150 , 0 0,123 00013 | 0 ; 15 0 0

1) Bei starkem Wind (22 m/s) eingestiirzt.

2) Nachtriglich gegen Schwingungen mit Schrigseilen ausgesteift.

3) Die angegebenen Werte fiir /, 4 und y entsprechen dem endgiiltigen Ausbau.
Im 1. Ausbau fehlt der Versteifungstrager ganz.

1) Einfeldrige Hingebriicken.

TEIL II. HORIZONTALE BELASTUNG.

1. Aufstellen der Differentialgleichung und formale Losung
durch Reihen.

Die horizontale Belastung aus Seitenwind kann als gleichmiBig verteilt
itber die ganze Briickenlinge angesehen werden. Die Windkrafte werden
in Funktion der Steifigkeit £/ des Windverbandes, teilweise durch die Kabel
zum Turmkopf, teilweise durch die Windverbinde zum TurmfuB3 abgeleitet.
Wo die Windaussteifung in der Fahrbahn ganz fehlt, werden alle Windkriafte
durch die Kabel zum Turmkopf iibertragen, und wir erhalten hier das Kosten-
minimum. Selten wird man dies ausniitzen kénnen, da man, um unangenechme
Schwingungen zu vermeiden, eine gewisse Seitensteifigkeit der Fahrbahn
anstreben muB.
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Die Losung des Windproblems fithrt zu zwei gekoppelten linearen
Differentialgleichungen mit variablen Koeffizienten 1) 2) 3); die Integration
muB darum mittels Reihen durchgefithrt werden. Wir werden hier zeigen,
daf man durch geeignete Wahl der Reihen i. A. einfache explizite Formel-
ausdriicke angeben kann, bzw. immer mit zwei Reihengliedern auskommt,
und es wird fiir diesen Fall eine Koeffiziententafel angegeben.

In den AuBenfeldern dreifeldriger Hangebriicken ist die entlastende Wir-
kung der Kabel ohne Bedeutung, und wir kénnen uns darum auf die Unter-
suchung des einfeldrigen frei aufliegenden Windverbandes beschrianken

(Fig. 4).

=
z 4
;% 2, L/

C5ble - Habel - Cable

7
(5ble de suspension

g Z }6‘1’52/6} ’ géngese{(:il rope
sbe H uspens:
S0 Cable z.74 /.
# {4—1 . g Y yral }” Poultre de contrevenfemént 7
4+ Windltrs
Al(R) H indtrager
IE \Poutre’de contrevenlement Wind brace
%zglgigz Belastungen des Kabels und des
Windverbandes aus Wind.
Kabel- und Windverbandverschiebungen. Charges des cables et des contre-
Déplacements des cibles et des poutres de contre- ventements dues au vent.
ventement. Loads on cables and wind-bracing
Displacements of cables and wind-bracing. caused by wind.

Fig. 4 Fig. 5

Das Gleichgewicht in horizontaler Richtung eines Briickenelementes von
der Liange dx =1 ergibt fiir die Kabel

(10a) H! = —w,— T, wo ﬁ — F
dx?®
und fiir die Fahrbahn
(10b) IEnV = w, —T.
Hier ist /4 die Horizontalkraft in beiden Kabeln
+k
H — q8¥fv 2,

g = Gesamtgewicht der Fahrbahn,

k = Gewicht der Kabel, Hingeseile usw.,

T = Horizontale Riickhaltekraft aus der Schiefstellung der Hangeseile,
w, = (leichméBig verteilte Windbelastung auf die Fahrbahn,

w, = QGleichmidBig verteilte Windbelastung auf alle Kabel,

w

= W + Wi,
0 = Kabelverschiebung, 5 == Windverbandverschiebung.

') L. S. Morsseirr og F. LiENHARD: Suspension Bridges under the Action of Lateral
Forces. Trans. Am. Soc. Civ. Eng. 1933, S. 1080.

2) A. SELBERG: Berechnung des Verhaltens von Hingebriicken unter Windbelastung.
Stahlbau 1941, H. 21/22, S. 106.

3) O. F. THEMER: Beitrag zur Theorie der Seitensteifigkeit weitgespannter Hange-
briicken. Bauingenieur 1941, H. 45/46, S. 399.
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Zur Bestimmung von 7T besteht folgende geometrische Bedingung (Fig.5)

(10¢) r=2@u—9.
Aus (10a) und (10b) folgt
[E Vv Hd”*wb—}-wk—w——z ssinnmé, n=135....

und nach zweimaliger Integration folgt:

(10d) ey —Hy + PP S Lsinnag = 0.

713

~ Die Losung dieser Differentialgleichung muB mittels Reihen durch-
gefithrt werden. Um die bestmégliche Konvergenz zu erzielen, wihlen wir
zT als Unbekannte und fithren die Reihe in folgender Form ein

zT
q k+

wo a, die unbekannten Koeffizienten sind. Gl. (10e) wird in Gl. (10c)
eingesetzt:
/

zT . <
(10 1) n:d+~ +E+—2ansmm;.

Diese Gleichung hat konstante Koeffizienten, und es miissen 6 und #» fol-
gende Form haben:

(10e) Dlaysinnaé,

0= ZAnSil‘lran,
n = DIB,sinnné.

Dies in Gl. (10f) und (10d) eingesetzt ergibt
32aw

PR s T an _ HP
"T8H nP4ea “= XIE
Damit wird
: 32aw
11 g Lo e
( a) pam— 8H n21——a*7 SINnn )
32w
b al> «nias T
( ) 7]__8H n2+a——smrzn§,
32
1 . 12 ”3nu;+an
( C) -—-*§ P _‘_—&*’Z S]nll.’f[@,
32w
+a
(114) Q——— — ’”Z”“”s " pscos nmé.

Zur Bestimmung der unbekannten Koefflzxenten a, wird die GIl. (10b)

beniitzt:
2w
Wy — I = — -n*SIMN n .
b g 8 7% + « 7
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Diese Gleichung wird der Reihe nach mit sin n&, sin 3n¢, ... sin mné d&
multipliziert und von 0 bis 1 integriert; wir erhalten damit ebensovxele Glei-

chungen wie unbekannte Koeffizienten a,. Wir fiihren wb:ZMW sin &
nm

ein, und nach Multiplikation mit sin mn& d& konnen die Bestimmungsglei-
chungen in folgender Form geschrieben werden ’
1

(11e) stmmn.f dé = 2 ‘ bsinna&sinmaé dé
0
132w a,
2 28 -3
v jjﬂgi’* “nisinnnésinmaé dE.
8 n® + «a

n 0

2. Angenidherte Lésung durch direkte Summation
der Reihe fiir M.

Wir fithren in Gl. (11c¢) a,= 0 ein und erhalten

32w
I 8
M — n
5 Z” e n?sinnaf.
Diese Reihe konvergiert gut, und wir erhalten als Maximalwert
wl? HPp?

(122a) Mmax—S(]-{—a)’ a”nzlE'

Bei steifen Briicken (a <7 2) tritt das Maximalmoment in Feldmitte auf
und verschiebt sich bei weicheren Briicken gegen die Tiirme hin. Fiir die
Riickhaltekraft 7 bei den Hingeseilen kénnen wir den in Fig. 6 gezeigten
Verlauf annehmen. Zur Bestimmung von 7, verwenden wir folgende Mo-
mentengleichung

wy I? 13 ) wl?
s T1iie It T e+ /7 ”
hA4_ "
o 24( w ) 7
"T\ e ) “_..__iz
. . : . Allure agproximative de T
Die horizontale Auflagerreaktion A des Wind- Angenéterter Verlauf von T
tragers am Turmfull wird Approximate course of T
_ wl (4w, 9 ) Fig. 6
PR
und die Auflagerreaktion R der Kabel am Turmkopf
_wl _ wl wl (4w 0
(12¢) = —a = = +I-|—a)'

In entsprechender Weise wird die maximale Ausbiegung der Fahrbahn nach
Gl. (11b) gefunden

(124d) — wf Lla

g+krk1+a”
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3. Horizontale Verschiebung des Turmkopfes.

Die horizontale Reaktion R des Turmkopfes infolge der Kabel ist durch
Gl. (12c¢) und diejenige A der Fahrbahn durch Gl. (12b) bestimmt. Hierzu
kommt die Windbelastung direkt am Turm und die Einwirkung der senk-
rechten Turmbelastung. Fiir diese Turmbelastungen wird in bekannter Weise
eine relative Verschiebung 0, zwischen Turmkopf und Fahrbahnauflager
berechnet.

Um den Einfluff dieser Verschiebung auf den Windverband zu ermitteln,
wird dieser zuerst von seinem Turmauflager getrennt gedacht. Durch die
Verschiebung des Turmkopfes wird der Windtrager 6, von seinem Auflager
entfernt und zunichst durch eine Belastung 4w zuriick an sein Auflager ge-
bracht. Wird diese Belastung auf Kabel und Fahrbahn im Verhaltnis zu den
senkrechten Belastungen verteilt, so verbleiben Kabe! und Windverband in
einer Ebene und der Windverband ist momentenfrei. Die Bedingung, daf
die Verschiebung des Auflagers des Windverbandes gleich 4, ist, ergibt

Aw = kty do
Z¢
oder fiir Windverband und Kabel
Wb':fqgo—, Wk::—-———kao.
Z: Z¢

Mit dieser Belastung Aw wird der Windverband auf sein Auflager zu-
riickversetzt, in dieser Stellung festgehalten und mit der gegebenen Wind-
belastung belastet. Da die Verschiebungsbelastung 4w nicht vorhanden ist,
mufl die Windlast um diesen Wert erhoht werden. Hierdurch entstehen im
Windverband zusitzliche Momente, Querkrifte und Auflagerreaktionen,
wihrend die Turmkopfreaktionen R vermindert werden

AM = Méi"

w
AA:AQ’

w

Awl Aw Aw
A —_ — —_— = — —
R 9 + R " A ”

wo M und A die ohne Verschiebung des Turmkopfes berechneten Momente
und Auflagerreaktionen sind.

4. Losung mit zwei Reihengliedern.
Mit den zwei ersten Reihengliedern ist nach Gl. (11c) und (11d)

(13a) M= 18: (14931&%—::—‘11 sinzé + 03%~L3;+ 94 sm3n£) ,
(13b) Q= ”8’(1 03121 T4 osami o 0343‘1*;9“* 3 cos 3::5)

(13¢) T = T ifk) (aysinné + ag sin3xé).
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Ahnlich wie bei den frei aufliegenden Balken konvergiert die Reihe fir
@ weniger gut als diejenige fiir M. Da die Auflagerreaktionen A des Wind-
verbandes und R der Kabel fiir die Windmomente in den Tiirmen maBgebend
sind, miissen sie mit derselben Genauigkeit wie die Momente des Windver-
bandes ermittelt werden. Wir berechnen darum A aus den GroBen M,, Q,

und 7, fir &= 41. Nehmen wir an, daB der Verlauf fiir ¢ (Fig.7) symme-
trisch i. B. auf &= ;— sei, so wird

l T,! T
A = Qi+ 5 0 + tmie) — g =L T W
[ 2 T, ?
My : A 4 §*2‘(Wb + Hmittel) — 66 . “% L4
Hieraus ergibt sich die Auflagerreaktion des Zﬁiﬁjﬁﬁ%"ﬁfﬁ?ﬁgiﬁg
Windverbandes zu Restraining force T From € =0 fo £=025
8M T,!
I =t Q. Fig. 7

w, w, und w, sind hier die fiir die Verschiebung des Turmkopfes nach Ab-
schnitt 3 verbesserten Belastungen aus Wind und den Verschiebungs-
kraften Aw.

Zur Bestimmung von «, und «; erhalten wir fiir m = 1 und m = 3 durch
Integration der Gl. (11e)

2
[ Cl al — C2 a3 — %'(’I’ :{_‘*&’)' (OC Wp — Wp — 0,97 al) y
(13e) 9
l - C2 a, + C3 a, — *373((5; d) ((1 Wp — 9 wg — 235,5 a3) .
.. qgf H 2 R . .
Hier ist = o = ; Cy, C, und C; konnen fiir verschiedene

(9+k)zy” " 2?UE’

Werte von ;——ﬁ~ - (vergl. Fig. 4) der Tafel 12 entnommen werden.

1740
Tafel 12.
)

P G G Cs
0,010 0,1275 0,0052 0,09937
0,015 0,1524 0,1075 0,1157
0,020 0,1717 0,1155 0,1281
0,025 0,1876 0,1210 0,1381
0,030 0,2010 0,1248 0.1466
0,035 0,2126 0,1275 0,1541
0,040 0,2229 0,1294 0,1607
0,050 0,2405 0,1315 0,1723
0,060 0,2552 0,1323 0,1823
0,070 0,2678 0,1323 0,1911
0,080 0,2787 0,1316 0,1991
0,090 0,2884 ‘: 0,1307 0,2065
0,100 0,2971 ‘ 0,1294 0,2133
0,110 0,3049 0,1280 0,2197
0,120 0,3120 0,1265 0,2256
0,130 0,3185 0,1249 0,2313
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Beispiel 2.

Als Beispiel untersuchen wir das Mittelfeld einer Hingebriicke mit
folgenden Abmessungen und Belastungen:

[ = 1200 m, f =150 m, z, =3 m, z;, = 153 m,
IE=2.10°tm2, % = 90t/m, g = 3275 t/
wr, = 0,2 tim, w, = 1,8 t/m, w “2t/

Die gesamte Kabelkraft wird
k+gq P 9 + 32,75
8f ~8.150

HE 50000 - 1200°
“=TE T aro2-100 00

Die zwei Reihenglieder «; und «; entnehmen wir der Tafel 12 fiir
z,—z, 153 —3

C1 == 0,1717, C2 = 0,1155, C3 = 0,1281.

H= - 12002 = 50000 t,

= 0,02,

Aus Gl. (13e)
[ 017172, —0,1155 a5 = 0,02225 — 0,00338 ,
| —0,1155 4, + 0,1281 a; = 0,00205 — 0,10066 a,

ergibt sich a; = 0,1994 und «; = 0,1097.
Das Moment im Windverband ist nach Gl. (13a)

2
M = 1290- (0,4857 sinw & + 0,1323 sin3x §).
Der Momentenverlauf ist in Tafel 13 zusammengestellt.

Tafel 13. Momentenverlauf im Windverband.

g

M (nach Gl. 13a) | M (nach Theimer) | Abweichung in %,

tm ‘ tm

0 | 0 ‘ 0 0

0,2 74 000 f 72 600 +19
0,3 78 100 | 77 800 —0,9
04 69 200 70 600 —20

05 | 63 600 | 63 700 —0,2

[

Die Auflagerreaktionen sind nach Gl. (13d)

— 1200( 10,393 - 0,4857 + 1,21 - 01323) — 511t (THEIMER, A = 506 1)

R=2.600—511 =689t (THEIMER, R = 0941).
Die Ausbiegung der Fahrbahn wird nach Gl. (11b)

3,06 - 12002
1= 8 0000 - (04857 sinw & 4+ 0,0147 sin3xn ¢),
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max = 13,18 - 0,471 = 6,21 m (THEIMER, }max = 6,219 m).
Ohne Reihen erhalten wir nach den Gl. (12a—d)

2 . 12002
2.1200 (4 - 1,8 o\ _
a=20 ( T 4 1+3’66)._ 511t (Abw. 1 %),

- 2-150 1,1. 3,66
mar = Zi75 14 366 O M-

Da die Gurtungen des Windverbandes gewohnlich aus den Versteifungs-
trigern gebildet werden, geniigt es oft, die Maximalmomente zu kennen,
und die Gl. (12a—d) konnen auch bei Hiangebriicken mit weichen Wind-
verbinden, bei denen das Maximalmoment nicht in Briickenmitte auftritt,
verwendet werden.

Mit einer Verschiebung des Turmkopfes

0, = 0,725 m
wird nach Gl. (13b) _
(32,75 4+ 9) - 0,725
Aw = 3 1+ 150 — 0,198 t/m.

Die Erhohung der berechneten Momente, Auflagerreaktionen und Schubkrafte
im Windverband werden

1004w _ 100 - 0,198
wo 2,0

—=009% (Abw.0,9%).
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Zusammenfassung.

Fiir die Versteifungstrager der ein- und dreifeldrigen Héngebriicken
werden Tafeln und geschlossene Formelausdriicke fiir die Maximalmomente,
maximalen Querkrifte, maximalen Winkelinderungen des Versteifungstra-
gers und sowohl fiir die maximale Schiefstellung der Quertriger als auch
fiir die maximalen Durchbiegungen mit zugehdrigen Horizontalkriften aus
senkrechter Belastung angegeben. Es werden die Korrekturmomente aus der
Horizontalverschiebung der Kabel und die Verschiebungen des Turmkopfes
mit den zugehorigen Korrekturmomenten im Versteifungstriger angegeben.

Fiir Seitenwind wird gezeigt, daB das Maximalmoment von der ein-

w /2 HUE
facheir Form M = 8(11a) C= S IE

so gut konvergierende Reihen angegeben werden kann, daB zwei Reihen-
glieder immer geniigen. Die zugehorigen Koeffizienten sind in einer Zahlen-
tafel angegeben. Das gezeigte Losungsverfahren 148t sich leicht auf be-
liebige Belastungen und einen durchlaufenden Windverband ausdehnen.

ist und daB der Momentenverlauf durch

Résumé.

Ce mémoire contient des tables et des formules explicites, se rapportant
aux poutres raidisseuses des ponts suspendus a une et trois ouvertures;
elles mettent en évidence les moments de flexion et les efforts tranchants
maximaux, de méme que les déviations angulaires et les forces horizon-
tales correspondantes dues a des charges verticales. Le déplacement hori-
zontal des cibles est également pris en considération. Les corrections a
apporter aux moments de flexion, dues aux déplacements horizontaux des
cables, sont indiquées, de méme que les déplacements du sommet de la
tour et les corrections correspondantes des moments de flexion de la poutre
raidisseuse.

(I est démontré ensuite que sous l'effet latéral du vent, le moment

. . wl? . HU?
maximal prend la forme simple: M = 8§+ a)’ ol a= oo r;
variation du moment peut étre représentée par des séries qui convergent ra-
pidement, ce qui permet d’en considérer uniquement les deux premiers
termes. Les coefficients respectifs sont indiqués dans une table numérique.

en plus, la

Summary.

For the bracing members of suspension bridges with one and three
openings, tables and definite formulae are given for the maximum moments,
maximum transverse forces and alterations in angles, with the respective
horizontal forces caused by the vertical loading. The horizontal displacement
of the cable is also taken into consideration. The correcting moments from
the horizontal displacement of the cables are given, as well as the displace-
ments of the head of the tower with the corresponding correcting moments
in the stiffening girders.

For side winds it is shown that the maximum moment is of the simple

2 2
form M= é_(wl—i;) , o == n[;v;«E-, and that the course of the moments can be
expressed by series which converge so rapidly that two terms of a series
are always sufficient. The respective coefficients are given in a numerical
table.
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