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KIPPEN UND QUERSCHWINGUNGEN
VON BOGENTRAGERN.

FLAMBAGE ET OSCILLATIONS LATERALES DES POUTRES EN ARC.
LATERAL BUCKLING AND VIBRATION OF ARCHES.

Prof. Dr. F. STUSSI, Fidg. Techn. Hochschule Ziirich,
Generalsekretar fiir Stahlbau der 1. V. B. H.

1. Allgemeines.

Das Kippen oder seitliche Ausknicken von Bogentrigern ist bis jetzt nur
fiir Kreisbogen mit konstantem Querschnitt und gleichmaBig verteilter ra-
dialer Belastung streng untersucht worden 1); die unter diesen einschrinken-
den Voraussetzungen gefundenen Werte konnen nicht auf die Bemessung
der Haupttrager von Bogenbriicken iibertragen werden.

Eine allgemeinere Untersuchung iiber die Seitensteifigkeit von Bogen-
briicken hat A.OsTENFELD 2) durchgefiihrt. Um zu fertigen Formeln zu ge-
langen, setzt er aber einfache, also willkiirliche Bogenform und Quer-
schnittsinderung voraus, sodaB seine Untersuchung auch keine allgemeine
Giiltigkeit beanspruchen kann. _

Nachstehend wird ein allgemein anwendbares baustatisches Verfahren
zur Bestimmung der kritischen Belastung angegeben. Durch eine Verformung
des Bogentrigers aus seiner urspriinglichen Ebene, d. h. durch die seitlichen
Ausbiegungen z, und die Verdrehungen ¢, entstehen zusitzliche seitliche
Biegungsmomente M, =V und Torsionsmomente 7 = U, die ihrerseits die
Ausbiegungen z, und die Verdrehungen ¢, verursachen. Da unter der
kritischen Belastung, als Grenzfall, gerade noch Gleichgewicht besteht,
miissen wegen der Gleichheit von innern und &uBern Momenten die
anfinglichen Verformungen z;, ¢, gleich grof8 sein, wie die durch sie ver-
ursachten, z;, ;. Im Sinne des Verfahrens, das ENGESSER und VIANELLO zur
Untersuchung des geraden Druckstabes angegeben haben und auf dem auch
die Untersuchung von A.OsTENFELD 2) aufbaut, ist somit die Kipplast eines
Bogens so zu bestimmen, daB wir die urspriinglichen Verformungen z,, ¢,
mehr oder weniger willkiirlich, jedoch unter Beachtung der Randbedingun-
gen, schitzen oder annehmen und die dadurch verursachten Verformungen
z,, ¢, berechnen. Die ,Stabilititsbedingung® z; =z, ¢, = ¢, liefert die
GroBe der kritischen Belastung. Stimmen angenommene und daraus berech-
nete Verformungskurven in ihrem Verlauf nicht miteinander iiberein, so er-
gibt der Vergleich von z;, ¢; mit 2z, @, an einer bestimmten Stelle, z. B.
in Bogenmitte, nur einen Niherungswert der kritischen Belastung, der durch

1) S. TimosHENKO, Theory of Elastic Stability, New York 1936. _
2) A. OsTENFELD, Seitensteifigkeit offener massiver Bogenbriicken. Schweiz. Bauzeitung,
Bd. 77 (1921), Nr. 15, 16.
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Wiederholung der Berechnung, ausgehend von den nun schon eine bessere
Annidherung an die genauen Losungskurven des Problems darstellenden Kur-
ven z; und ¢, oder aber durch eine Energiebetrachtung oder Mittelwert-
bildung
j;zo vz, - ds
A sy
jozo‘-’ - ds’

wobei ds’ die entsprechend der Steifigkeit reduzierte Linge des Bogenele-
mentes bedeutet, zu verbessern ist. In beiden Fillen aber benétigen wir die
berechneten Forminderungen z,, ¢, nicht nur an einer bestimmten Triger-
stelle, sondern in ihrem ganzen Verlauf iiber die Bogenlinge. Um somit
die kritische Belastung zuverlassig und mit beliebig zu steigernder Genauig-
keit berechnen zu konnen, muB} zuerst ein baustatisches Verfahren zur Ermitt-
lung der Ausbiegungs- und Verdrehungskurven z; und ¢, infolge der Bie-
gungs- und Torsionsmomente V und U an beliebig geformten Bogentrigern
aufgestellt werden.

Ganz dhnlich wie die GroBe der kritischen Belastung lassen sich auch
die Figenfrequenzen der seitlichen Schwingungen untersuchen. Die beiden
Aufgaben sind nicht nur formal, sondern auch ursichlich eng miteinander ver-
wandt 3): das Ausknicken kann als Grenzfall einer unendlich langsamen
Schwingung gedeutet werden, bei der der Bogen ausschwingt, um nie mehr
in seine Ruhelage zuriickzukehren. Fiir eine versuchstechnische Untersuchung
ergibt sich aus der gemeinsamen Behandlung von kritischer Belastung und
Eigenschwingungen der Vorteil, daB die kritische Belastung nicht als Einzel-
wert, und zwar gerade unter den auf zufillige duBere Stérungen empfind-
lichsten Verhiltnissen, bestimmt werden muB, sondern daB sie sich aus einer
stetigen Versuchskurve ergibt.

2. Die Biegungs- und Verdrehungsmomente.

Wir denken uns aus dem verformten (z,, ¢,) und durch beliebige Lasten
P,, P,, P, belasteten Bogen der Fig. 1 das Bogenstiick zwischen den Knoten-
punkten m—-1 und m herausgeschnitten. Die Belastungen P denken wir uns
in die Knotenpunkte m reduziert, wobei es fiir die weitere Untersuchung
gleichgiiltig sein soll, ob diese Lasten P in Wirklichkeit Einzellasten oder
Resultierende von verteilten Belastungen sind. Im iibrigen soll iiber die
Lange des Bogenstiickes noch vorausgesetzt werden, daB im Rahmen der
praktisch erforderlichen Rechnungsgenauigkeit mit Riicksicht auf die spa-
tere Untersuchung der Forminderungen die Bogenlinge gleich der Sehnen-
linge gesetzt werden diirfe.

Wir betrachten zunichst im verformten Bogenstiick von m—1 bis m
(Fig. 2) die um die Axen x, y, z drehenden Momente, wobei wir mit Q,,,
Qymy Q:m die Resultierenden aller Krifte P,, P,, P, vom Auflager A bis
und mit dem Knotenpunkt m—1, d. h. die Querkrifte im Feld m, bezeichnen.
Die Momente seien positiv, wenn sie im Uhrzeigersinn um die entsprechen-
den Axen drehen; die Momente werden im Folgenden durch ihre Axen dar-
gestellt und mit X, Y, Z bezeichnet. '

) S.z.B.: F. StUss1, Aktuelle baustatische Probleme der Konstruktionspraxis: Knick-
lri}st llél‘ld Grundschwingungszahl von Bogentrigern. Schweiz. Bauzeitung, Bd. 106 (1935),
r. 12.
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Infolge der Ausbiegungen z verursachen die parallel zur x-Axe wir-
kenden Krifte P, Momente Y und es ergibt sich aus dem Gleichgewicht
des Feldes m

AYp =Y —Yn, = me(zm_zm—l) = Qxm:A2n. (])

Greifen zwischen A und B keine Krifte P, an, so ist Q,,, = konst. gleich dem
Horizontalschub /' des Bogens, der durch die als klein vorausgesetzten
Forminderungen z und ¢ nicht verandert wird.

Az,
, |
(NVAZ m
l Sm { A.ym DAX,,,
01/” — ! 0 >3 /11-171
af”’ AX," ‘Jl “n 0//7'
l l
|
4y,
azm m m AZ,,,
Qum |71 |
Fig. 2

Die lotrechten Lasten P, verursachen Momente X und es ist am Bogen-

stiick s,,:
AXm:Xm_‘Xm_lz'*—"Qym'AzIﬂ° (2)

Infolge der quergerichteten Belastungen P, treten sowohl Momente X
wie Momente Y auf und es ist

Yin — Y1y = Qe+ Axn (3)

und
Xm— Xp_y = — sz 4 A,Vm (4)

Diese quergerichteten Belastungen P, oder auch einzelne &duBere Dreh-
momente 4X und AY, wie die Verformungen z und ¢ bei Belastungen P,
und P,, beeinflussen somit die Momente Z nicht oder das Kriftespiel des
ebenen Bogens wird durch diese Ursachen nicht beeinfluBt. Wir brauchen
uns deshalb hier mit dem ebenen Kriftespiel des Bogens (unter Lasten P,
und P,) nicht zu beschiftigen, sondern diirfen es als gegeben voraussetzen.

Bevor wir aus diesen Differenzen die Momente X, Y selbst bestimmen,
sei ihr Zusammenhang mit den Biegungs- und Torsionsmomenten des Bogens
an der Stelle m untersucht. Wir legen im Punkt m des verformten Bogens
ein rechtwinkliges Koordinatensystem u, v, w, wobei die u-Axe mit der
Bogentangente in 7 und die Axen v und w mit den (um ¢ verdrehten) Quer-
schnittshauptaxen im Normalschnitt zu # zusammenfallen sollen. Dieses
Koordinatensystem geht somit durch die Verschiebungen ¥, y, z und die Ver-

d
drehungen «, C:d—sz , . aus dem System x, y, z hervor. Bei der Betrachtung

der Momente spielen die Verschiebungen keine Rolle und wir kénnen uns
auf die Untersuchung der Verdrehungen beschrinken. Wir fiithren diese
Drehungen stufenweise ein.
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Bei einer Drehung um den Winkel o mit der Drehaxe z (Fig.3) er-
gibt sich

U = X-cosa+ Y. sina
} @)

y
Vi = Y-cose— X-sine
e . W, = Z.

- m(z) x Fig.3

I

Drehen wir nun das System «,, v;, w; um den Winkel C:d‘—is‘i mit der Dreh-

axe vy, so folgt aus Fig. 4

Ve, = V4
m(v,) 4 Fig. 4 W, = W,.-cosl{ —U, -sint.

U, — U; -cosi + W, sin{ ]

Durch Drehung um den Winkel ¢ mit der Drehaxe u, (Fig. 5) ergibt sich
endlich

v % U — UZ
V = V,-cosp + W; -sing (7)
W, I4 .
m)  Fig. 5 W= Wy-cosp—V, -sing.

Setzen wir die Werte der Gleichungen (5) und (6) in Gleichung (7) ein, so
erhalten wir den gesuchten Zusammenhang zwischen den Momenten U, V,
W mit den Momenten X, Y, Z. Da die Verformungen {, ¢ voraussetzungs-
gemiB klein sein sollen, so erhalten wir mit

cosp = cost =1
singp = ¢; sinl =<
und unter Vernachlassigung kleiner Glieder hoherer Ordnung
U=X-cosa+ Y. .sine+Z.¢
V=Y -cose—X-sina+2Z-¢ (8)
W="Z7.

Die letzte dieser Gleichungen, W = Z, bestitigt die bereits festgestellte Tat-
sache, daBB die im ebenen Bogen ermittelten Momente Z durch kleine Ver-
formungen z, ¢ oder durch Querbelastungen P, und Drehmomente 4X, 4Y
abgesehen von Einfliissen hoéherer Kleinheit, nicht beeinfluit werden.

Um nun aus den Differenzen der Gleichungen (1) bis (4) die Momente
X, Y selbst zu bestimmen, miissen wir die Auflagerreaktionen bei 4 und B-
kennen. Im allgemeinen Fall des beidseitig eingespannten und deshalb 6fach
statisch unbestimmten Bogens interessieren uns hier, nach Ausschaltung des
ebenen Problems, noch drei iiberzdhlige GroBen, als welche wir beispiels-
weise, nach Einschaltung entsprechender Gelenke, die beiden Biegungs-
momente V4 und Vp und das Torsionsmoment Up wihlen kénnen. Die Be-
rechnung dieser iiberzihligen Momente fiir einen gegebenen Belastungszu-
stand des Grundsystems ist eine normale Aufgabe der Baustatik und soll
hier im allgemeinen Fall nicht weiter behandelt werden.
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Bei der uns hier besonders interessierenden Aufgabe, der Bestimmung
der kleinsten kritischen Belastung und der kleinsten Eigenfrequenz der Quer-
schwingungen, ist Vollbelastung und symmetrische Verformung des Bogens
maBgebend. Fiir diesen Fall werden aus Symmetriegriinden V4= — Vg und
U, ==Up und das Problem ist noch einfach statisch unbestimmt.

In Fig. 6 ist die Auflagerung des Grundsystems bei A skizziert und
wir erhalten aus Gleichung (8) die Auflagermomente:

Ug = Xg-cosay+ Yg-sinayg + Zs-44 l

0
Va=Ysq-cosay— X4- SmOtA + Z4- PA J ( )
Wegen der freien Drehbarkeit um die Axe V4 ist V=0 oder
— . —z,. T4
Ya = Xyg-tgay Z4 C05 " (10)
und ferner X2
Us = o+ Zala—pa tgu). (1)

Bei momentenfreien Bogen (Drucklinienbelastung, Z = 0) oder bei starr ein-
gespannten Bogen (p4=0, {4=0) vereinfachen sich diese Werte auf

Ya = Xg-tgay. (10a)
Ug= Xg-s€cay. (11a)

X 4 ergibt sich hier aus Symmetriegriinden (Xu = 0) durch Aufsummieren
der Differenzen X,, ;—X,, der Gleichungen (2) und (4) fiir die linke Bogen-
hilfte; darauf kann Y, mit Gleichung (10) bestimmt werden. Damit sind
die Momente X und Y und durch Gleichung (8) auch die Momente U und V
fiir alle Punkte des Grundsystems bekannt.

Fig. 6 Fig. 7

Zur Bestimmung des iiberzihligen Einspannmomentes V 4=V kénnen
wir nun allerdings nicht einfach das Grundsystem mit V=1 und Vz=1
allein belasten (Fig.7a), da zum Gleichgewichtszustand noch Drehmomente
U, und Upg notwendig sind. Die Uberzahligen V4 und Vz ergeben mit ihren
Reaktionen U4 und Ug zusammen resultierende Momente Y, und Yz Wir.
fithren deshalb einfacher als iiberzihlige GroBen direkt die Momente Y 4
und Y ein (Fig.7b) und belasten das Grundsystem mit V4= —Yz=1,
wodurch die Momente

U =1 sina (12
7, =1.cosa | )
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entstehen. Damit sind die in die Elastizititsbedingung Y ,4-a;; 4 a;,=0 ein-
tretenden VerschiebungsgréoBen a,, bestimmbar. Diese hingen nun sowohl
von den Biegungsmomenten V wie von den Torsionsmomenten U, d. h. so-
wohl von der Biegungssteifigkeit B, = EJ, wie von der Verdrehungssteifig-
keit C=G-J; ab. Wenn wir einfachheitshalber und wohl mit praktisch
geniigender Genauigkeit die Steifigkeiten je feldweise konstant annehmen,
so ergibt sich mit der in der Baustatik iiblichen , Trapezformel* die Ver-
schiebungsgrofBe ay, zu

B
— m+1
ay = ZA] Vi - [GB (COS Cp_1 + 2COS &) + 6 Bons: (2 cos ap + €OS a,,,+1)]
Su [ " Smil (o g si ]
+ 2 Ui~ 6C, (sinep_1 + 2sinay) + 6 Cerl(2 sin a,, + Sin am1)

Es kann ohne Schwierigkeit, auch bei stetig verdnderlicher Steifigkeit, der
Wert von a,, genauer bestimmt werden, beispielsweise durch die ,Parabel-
formel*; wesentlich ist aber, mit Riicksicht auf die innere Ubereinstimmung
der ganzen Berechnung, daf diese VerschiebungsgroBen auf den gleichen
Grundlagen berechnet werden, wie die analogen Werte, die in die nun auf-
zustellenden Forminderungsgleichungen eingehen. Bei nicht allzugroBen
Feldweiten geniigt erfahrungsgemafl die Trapezformel in normalen Fillen
allen verniinftigen Anforderungen an die Rechnungsgenauigkeit.

Die wirklichen Bogenmomente ergeben sich nun nach Auflosung der
Elastizitatsbedingung aus der Superposition

Um:U0m+yA‘U1m }

(14)
Vm — VOm + yA‘le'

3. Die Verformungslinien z und ¢.
Um die Ausbiegungen z des Bogenfeldes von m—1 bis m mit der Lange
S zu untersuchen, bringen wir in m—1 die virtuelle Belastung — o in

Richtung der gesuchten Verschiebung z, , an (Fig. 8) und berechnen die bei
dieser Belastung geleisteten virtuellen Arbeiten. Das Bogenstiick s, wird
dadurch im Gleichgewicht gehalten, das am festgehalten gedachten Ende m

die waagrechte Auflagerkraft :91— und die Auflagermomente

m
1
Vi =-——-C0S¢€m Sy =—1-cosep, 2 — 1
Sm
und
Un = L .sine} - sm =1 - sin
Sm
auftreten. Diese duBern Krifte leisten, mit {,, = (gg) , die virtuelle Arbeit
m
1 . 3
Zm1+ —zZm— 1L — 18I0 &y« Q.
Sm Sm

Gleichzeitig wird der Stab s,, auch durch die in Fig. 8 skizzierten Biegungs-
und Torsionsmomente, sowie auch durch Querkrifte, die jedoch hier nicht
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weiter beriicksichtigt sind, beansprucht; die entsprechende innere virtuelle
Arbeit betragt, mit Hilfe der , Trapezformel‘ bestimmt:

infolge Biegung: ’GEBm;“ (Vi1 + 2Va) = vKn

infolge Torsion: sin e, - 6%’” (Un_1+ 2Un) = Kl - sin e, .
m

Setzen wir nun die inneren und AduBeren virtuellen Arbeiten aus Gleich-

gewichtsgriinden einander gleich, so erhalten wir den Zusammenhang

1 1 , y e . .
— ot EImelt o EZm = vKm + vKn + siNém + 1 @n - siney + 10,0 (153)
m m

T_A

l Flexion -Blagung -
. . N ,
j Bending Tcose., =1 [cose f,, .

I Torsion I . (
e w=nznsnnn s A :
I ‘ /'6‘/;76,; W l

Fig. 8

Um ¢, eliminieren zu koénnen, bringen wir am Ende m -}-1 des Feldes s,

an und erhalten analog:

die virtuelle Belastung — S
m+1

1 1 . . ..

Zm— ——  Zmy1 = vKpy — K - Sinep +1-@p-sing,—1.0,. (15b)
Sm+1 Sm41

Die Differenz yKy, - sin &, — yK, - sing,, ist vernachlassigbar klein; wir

erhalten somit mit der Bezeichnung yK, 4+ vK; = vK, durch Addition der
Gleichungen (15a) und (15b) die gesuchte Bestimmungsgleichung der Aus-

biegungen z:

1 1 1 1 . ’ : ”
— Lot (* n —)zm ez = v+ (Sin gl sin ) - g (16)

Sm Smi1 m+l

Dies ist aber nichts anderes als die Gleichung des gewohnlichen Seil-
polygons mit der verdnderlichen Feldweite s unter den Knotenlasten
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vKm + (siné¢, + siney) - ¢n. Die Biegungslinie z des Bogen-
trigers unterscheidet sich also nur dadurch von der
Biegungslinie eines ebenen Stabzuges, daB die Knoten-
last oder das ,elastische Gewicht“ yK, um das ,Zusatz-
gewicht“ ¢, -(sin ¢,-+sin e,) zu vergréBern ist.

Wir bestimmen nun die uns noch fehlenden Drehwinkel ¢. Am Ende
n:—1 des Feldes s,, bringen wir als virtuelle Belastung das Torsionsmoment
U=1 an (Fig. 9), dem im Knotenpunkt m durch das Torsionsmoment
—1-cos B, und das Biegungsmoment —1-sin g, Gleichgewicht gehalten
wird. Gleichzeitig wird das Bogenfeld s,, durch die in Fig. 9 skizzierten
Biegungs- und Torsionsmomente beansprucht. Die Gleichsetzung von in-
nern und duBern virtuellen Forminderungsarbeiten liefert -

—1. ®m-1 + 1.cosBm- Pm — 1.sin BmLm = vKm- I+ vKn + vKn - sin Bm (173)
Eine analoge Betrachtung des Feldes s, liefert

1.cos ﬁm.;-l‘(Pm‘*“l “Pmi1 + 1.sin Bt bm = — uKom — UKr’n+l -+ vKp - sin F?m-i-l (17b)

1
t l i
/ I-cos 3,1
i i
| b
t I /'cosﬁm;,;/’ 7
. Flexion - Blequng - Bending
FﬂmmﬂmmEM /-s,h@m
| l | |
Fig. 9

Multiplizieren wir, um ¢,, zu eliminieren, Gleichung (17a) mit sin 5,4 und
Gleichung (17b) mit sin g, so erhalten wir durch Addition

— SiN Byt Pmot + (SIN 1 COS Bry + SIN B COS Brns1) Pon— SIN B Py

(18)

Wegen sin f,, - cos B, - sin B, - cos f,, = sin (B -+ fmn+q) 14Bt sich
diese Gleichung noch etwas vereinfachen. Bei den Vorzahlen der Unbekann-
ten @, darf in dieser Differenzengleichung zweiter Ordnung, im Gegensatz
zu den Belastungsgliedern, nun nicht etwa cos 8, = cos f,,;1=1 oder
sin (B -+ Bmsy) = sin B, + sin B, , gesetzt werden, weil sich eine hier ein-
gefithrte, wenn auch kleine Ungenauigkeit bei der Auflésung des ganzen
Systems von dreigliedrigen Gleichungen vervielfachen wiirde. Im iibrigen
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bietet die Auflésung des dreigliedrigen Gleichungssystems Gl. (18), etwa
mit dem abgekiirzten Gauss’schen Algorithmus, und unter Beachtung der
Randbedingungen, gewodhnlich ¢4=¢p=0, keine Schwierigkeiten. Sind
damit die Verdrehungen ¢ gefunden, so lassen sich mit Gleichung (16) nun
auch die Ausbiegungen z bestimmen und unsere Aufgabe ist grundséitzlich
gelost.

Vielleicht noch einfacher als die direkte Auflésung des Gleichungs-
systems ist hier die Loésung in der Form eines ,,verallgemeinerten
Seilpolygons“4). Wir schreiben Gleichung (18) als Rekursionsformel:

Sin B, 1 sin Bmi
Pyl — ( S]H'Bm— COSs ﬂm + COS {f}mi—l) Pm — "Sln /;n+ Pm+1
” ’ Sln ﬂm+1 . 19
- (UKm—l + UKm) sin /3’ + (UKm =+ UKm+1) VKm - SN ﬂmq-l ’ ( a)
oder mit den Abkiirzungen

Sin By

U =~ ﬁ; COS fm + €OS Bms1

b, — E]f_)”“rl

"7 sin B

vDm = (UKim1 + vKn) * bm — (UK + vKms1)

in einfacherer Schreibweise:

Pl —= A * P — bm - Pm-1 — UDm — VKm - sin /))m-{-l . (lgb)

Wir berechnen nun zuerst das ,,Seilpolygon‘‘, indem wir auBer dem gege-
benen Wert ¢ 4 noch ¢, willkiirlich, z. B. ¢, = 0, annehmen; von diesem ersten
,Seilstrahl‘‘ aus sind nun die Werte ¢,, @3 usw. bestimmbar. Allerdings
wird dieses Seilpolygon die zweite Randbedingung, z. B. ¢ = 0, nun nicht
erfiillen; wir miissen noch die ,,SchluBllinie‘ einlegen. Diese SchluBlinie,
zunidchst in willkiirlichem MaBstab, finden wir durch die homogene Glei-
chung 19b,

Pmyl — Am —- bm Pm-1,

wobei wir wieder den ersten Sellstrahl annehmen, diesmal mit ¢, = 0 und
etwa ¢, = 1. Diese SchluBllinie, die hier nicht mehr gerade ist, miissen wir
nun, in passendem MaBstab, so in das Seilpolygon einlegen, daB die Rand-
bedingung fiir ¢z erfiillt ist. An Stelle der Randbedingung bei B kann selbst-
verstindlich auch eine Symmetriebedingung treten.

4. AnWendungsbeispiel und Versuche.

Das Rechnungsverfahren zur Bestimmung der kritischen Last und der
Grundschwingungszahl, dessen Grundlagen vorstehend entwickelt wurden,
soll nun noch am Beispiel eines eingespannten Parabelbogens mit konstan-
tem Querschnitt und f= 0,30-/, belastet durch 8 gleiche und gleichmaBig
verteilte, stets lotrecht wirkende Einzellasten P skizziert werden. Die sta-
tische Berechnung des ebenen Bogens lieferte // = 3.361-P und vernach-
lassigbar kleine Momente Z.

4) F. StUssi, Statik der Seile. Abhandlungen I.V. B. H, Band 6, 1940/41.
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a) Kritische Belastung:

Aus den angenommenen Ausbiegungen z, (Fig. 10) wurden iiber die
Momente X und Y die Momente U, und V, im Grundsystem berechnet. Nun
konnte die Elastizititsbedingung fiir ein bestimmtes Verhiltnis von B,: C auf-
gestellt und daraus die Uberzihlige Y 4 bestimmt werden. Entsprechend dem
angenommenen stehenden schmalen Rechteckquerschnitt wurde mit

(h — 0,63 - d) d?
3

das Verhiltnis C = 1.4- B, eingefiihrt. Aus der Superposition Gleichung
(14) ergaben sich nun die wirklichen Momente U und V.

Die Forminderungsgleichung (18) bezw. (19) lieferte nun die Ver-
drehungswinkel ¢, worauf mit Gleichung (16) die gesuchten Ausbiegungen
z, als Seilpolygon zu elastischen Gewichten berechnet werden konnte. Die
Form der Ausbiegungslinie lieferte mit {4, = 0 eine Rechnungskontrolle. In
Fig. 10 sind zur Veranschaulichung der Verhiltnisse die fiinf Kurven z,
U, V, @, z;, fir U und V sowohl fiir das Grundsystem, Y ,= 0, wie auch
fiir den endgiiltigen Zustand, eingetragen.

Fiir die Bogenmitte ergab sich, bei guter Ubereinstimmung der z,- und
der z,-Linie und kontrolliert durch Mittelwertbildung, fiir den untersuch-
ten Fall mit C= 1.4- B, die Ausbiegung

P.r P

C=G-Jg=G-

z1m = 0,197 - Zom oder allgemein z1, = ¢ - - Zom -
B2 32
Die kritische Last ergibt sich nun aus der Stabilitatsbedingung z,,, = z,, zu
1 B, '
Pkr — ?; : F
oder hi Py = 508 . 52 20
er kr — 9 : —lz— ( )
B
Hy, = 17,1 . 1_22

Um den EinfluB der Verdrehungssteifigkeit C gegeniiber der Biegungs-
steifigkeit B, besser zu verfolgen, konnen die Durchbiegungen infolge der
Einzeleinfliisse U, V,, U,, V, je getrennt fiir sich ermittelt und erst zu-
letzt zu z, superponiert werden. Das Ergebnis dieser Untersuchung, die
Verianderlichkeit der Kipplast bei verdnderlichem Verhiltnis B,:C, ist in
Fig. 11 dargestellt. Es zeigt sich, daB der EinfluB der Verdrehungssteifig-
keit C beim eingespannten Bogen offenbar viel kleiner ist als bei Lagerung
nach Fig. 6.

b) Eigenschwingungen:

Waihrend der (harmonischen) Eigenschwingungen des Bogens mit der
Kreisfrequenz p wirken, auBer den durch die Verformungen z, ¢ statisch
oder direkt verursachten Momenten U,, V, (die bei geniigender GroBSe der
Belastung das Kippen verursachen), noch die Trigheitskrafte P, =

P
§-p2-zO und, infolge der Verdrehung ¢, die Verdrehungsmomente AU, =
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2
P-iy, p? - @y, wobei g die Erdbeschleunigung und P - i,% : g das polare Massen-
g

trigheitsmoment beziiglich der #-Axe bedeuten.

T
1

J

\ QI7I5-P-z

“=om

1792-P-z,,

\\S
3
&
o
N
3
t

Z,‘ 0/97 52 Zom
| i
Fig. 10

Da alle diese Kraftwirkungen mit den elastischen Widerstandskriften
des Bogens im Gleichgewicht sein, oder innere und duBere Momente gleich
grofl sein miissen, muB die gesamte aus allen duBlern Kraftwirkungen sich
ergebende Ausblegung z, an allen Stellen des Bogens mit der -angenom-
menen Ausbiegung z, iibereinstimmen 8). Auch wenn fiir die einzelnen Teil-
einfliisse die ,richtige’* Form der z-Kurve nicht genau die gleiche ist, so
empfiehlt es sich doch, die Verformungen fiir jeden TeileinfluB getrennt zu
berechnen; kleine Unterschiede in der Form der z- bezw. @-Kurven sind,
wie eine Energiebetrachtung zeigt, praktisch bedeutungslos. Fiir ein be-
stimmtes Verhiltnis B,:C ergibt sich die Durchbiegung z, nun in der Form

Abhandlungen VII 22
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P.pt- Lt Pitopl P
Setzen wir nun z, — z, (Frequenzgleichung), so kann die Kreisfrequenz p

und die sekundliche Schwingungszahl » = p: 2x bestimmt werden. Beachten
wir, daB3

B,
= Py,
Cp * l? k
so ergibt sich B - -
1 gB, 1 / P
e . N Ve
P=" Vcsl P Co - iy’ l/ Prr (21)
1 + ~“k7
[*
Bei der numerischen Auswertung zeigt sich, daB der Wert
G2
Cs1 [?

gegen eins vernachldssigbar klein ist; der EinfluB der Rotationstrigheit ist
also auch hier bedeutungslos. Fiir das Zahlenbeispiel der Fig. 10 ergab sich

1
€1 = 0,0418 =230 oder
- _ V239 g32 1,~; ijg gB 1~_*_
o 2:/1 271
LA
B
’ ' g
S50
\%\\x‘\
! ‘QC=Z4'52
2
: 10 20 30 40 50 5
¢
Fig. 11

c) Versuche:

Zur Uberpriifung dieser Berechnungen habe ich in meiner Abteilung des
Institutes fiir Baustatik an der E.T.H. Schwingungsversuche an Modell-
bogen durchfithren lassen?®). Die parabelformigen Bogen wurden mit kon-
stanter Hohe von 12 mm aus einer ebenen Aluminiumblechtafel von 2.0 mm
Stdarke herausgeschnitten. Um moglichst reine Versuchsbedingungen zu er-
halten, wurden die Bogen in verhdltnismiBig kriftigen Stahlwinkeln einge-
spannt. Die Schwingungen wurden unter verschiedenen am Bogen direkt
angebrachten Belastungen P durch ein leichtes und weiches, am Bogen be-
festigtes Blattfederchen auf einer mit beruBtem Papier belegten Trommel
aufgezeichnet. Durch Vergleich mit dem ebenfalls aufgezeichneten Zeit-

5) Versuchsdurchfiihrung: Dipl. Ing. H. LUMPERT.
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Fig. 13

malstab konnten die Schwingungszahlen bestimmt werden. Zur Kontrolle
dartiber, daB3 die Reibung des Federchens auf dem Papier die Frequenzen
nicht spiirbar beeinflusse, wurden bei den hoheren Laststufen (wo dies
allein zuverlissig méglich war) die Schwingungen auch direkt mit der Stopp-
uhr abgezihlt. Fig. 12 zeigt die Versuchsanordnung und Fig. 13 drei typische
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Schwingungsdiagramme fiir P = 243 gr (einschl. Klemmvorrichtung und
Bogeneigengewicht) und zwar die Grundschwingung, die erste Oberschwin-
gung und eine aus diesen beiden zusammengesetzte Schwingung. Aus diesen
Diagrammen, wie auch aus der theoretischen Untersuchung zeigt sich, daB
das Verhaltnis der Frequenzen von Grundschwingung und Oberschwingun-
gen mit der Belastung verdnderlich ist.

De: Elastizititsmodul des Materials wurde in einem Durchbiegungs-.
versuch zu E = 700 t/cm? bestimmt. Mit

1,2. 0,28

82:700‘T

= 056 t-cm?, = 14.B,

und fiir /=80 cm, f=0.3-/ ergab sich somit aus der Rechnung

560
Pkr —_ 5,08 & m(—)‘ — 0,445 kg
0,778 /981.560 /1 T 1 1
und "7 780 V 80 'V?J’“pkﬁ“’“ﬁ'l/ﬁ“*ﬁ;-

Der Vergleich zwischen Messung und Rechnung ist in Tabelle 1 zusammen-
gestellt und in Fig. 14 veranschaulicht. Die Ubereinstimmung darf als sehr
gut bezeichnet werden, was sowohl fiir die sorgfiltige Versuchsdurchfiih-
rung wie fiir die Zuverlissigkeit des Rechnungsverfahrens spricht.

v hsec”’

v | I I
\ ¥ Fssar-Versuch -Test

20 — Calcul - Theorie - Theory

20 N

10 \Q\\

g

~04454

IRaX

r

Yol

Qx
ar 02 03 a 25 Phy
Fig. 14
Tabelle 1:
v sec”! v sec!
Pk Bemerk
& berechnet | gemessen eREfEagst
0,008 8,93 9,45 leerer Bogen
0,043 3,69 3,78 + Klemmvorrichtung
0,143 1,76 1,85
0,243 1,10 1,08
0,343 0,66 0,64




Kippen und Querschwingungen von Bogentrigern , 341

5. SchluBbemerkungen.

Der kritische Horizontalschub H,,. eines eingespannten Bogentragers
bei Ausknicken aus der Trigerebene nimmt gegeniiber der Knicklast eines
beidseitig eingespannten Stabes

472 B,
Pkr - /2 —
mit wachsender Pfeilhohe betrichtlich ab. Der EinfluB des Pfeilverhilt-
nisses f:/ auf die Gr6fe des kritischen Horizontalschubes ist in Fig. 15
fiir eingespannte Parabelbogen skizziert und zwar sowohl fiir konstante Quer-
schnittswerte wie auch fiir Bogen mit B, - cos a = Byc =konst., C-cosa =
C.=konst. Dabei gelten die ausgezogenen Linien fiir C = 1.4 B,, die ge-
strichelten fiir C = co.

Wirkt die Belastung wihrend der Verformung nicht mehr lotrecht, son-
dern andert sie ihre Richtung mit z, so dndert sich der angegebene Rech-
nungsgang nur insofern, als in den Momenten U, und V, auch die quer-
gerichteten Belastungskomponenten P, beriicksichtigt werden miissen. Ist
z. B. die Belastung der Fahrbahn an gelenkigen Hiangestangen aufgehingt
(Fig. 16), so vermindern die Krifte

b4
P2=Py-myl

die Momente U, und V, und damit auch die Durchbiegungen z,; die kri-
tische Belastung wird nennenswert gréBer als bei lotrechter Belastung. Um-
gekehrt vermindert sich die kritische Last, wenn bei obenliegender Fahrbahn
durch gelenkige Stiitzen Krifte P, in Richtung einer Vergroferung von z
ausgeiibt werden.

#, 1%
BZC

4| <

N S~ b’z cos a=konsh

™~

20

3

Mz —\\

0

o 02 03 o
Fig. 15 Fig. 16

Auch die Wirkung von -elastischen Querstiitzungen durch Halbrahmen
oder idhnliche Bauelemente 1dBt sich auf diese Weise grundsitzlich leicht
untersuchen, da bei angenommener anfinglicher Ausbiegung z, auch die
Halbrahmenwiderstéinde P, gegeben sind. Allerdings muB3 durch Vergleichs-
rechnung die Zahl der maBgebenden Halbwellen gesucht werden.

Wir haben bis jetzt einen einfachen oder einrippigen Bogentriager unter-
sucht. Bei Bogenbriicken mit zwei Haupttrigern und einem (in der Hohe der
Bogenachse) angeordneten Windverband ist vor allem zu beachten, daB die
Torsionsmomente nun nicht mehr nur durch Torsionsschubspannungen, son-
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dern auch, und zwar hier in der Hauptsache, durch entgegengesetzt gerich-
tete Belastungen des vordern und hintern Haupttrigers (in den lotrechten
Trigerebenen) aufgenommen werden. Dies ist gleichbedeutend wie eine Ver-
groBerung der Verdrehungssteifigkeit C. Da aber, bei seitlich eingespann-
ten Bogen, wie wir erkannt haben, eine Zunahme der Verdrehungssteifig-
keit C etwa iiber den Wert C = 2 B, hinaus (Fig. 11 und Fig. 15) keine be-
trachtliche VergroBerung der kritischen Belastung zur Folge hat, wird man
sich meist mit einer Abschitzung des ,,Flanschbiegungseinflusses‘* begniigen
konnen. Bei zwei Windverbinden wird sich das Verhalten des Bogens noch
mehr dem Fall C = co annahern.

Sind die beiden Bogenrippen nur durch einzelne Querriegel rahmen-
formig miteinander verbunden, so 1aBt sich eine genaue Berechnung ohne
Schwierigkeit dadurch durchfiihren, daf (auBer den iiberzidhligen Einspann-
momenten der Bogenrippen) in der Mitte der aufgeschnitten gedachten
Querriegel je zwei iiberzihlige Gro8en X und Y angebracht und fiir die an-
genommene Verformung berechnet werden. Infolge der resultierenden Mo-
mente V und U lassen sich nun die Forminderungen z;, ¢y der Bogenrippen
bestimmen und aus der Stabilititsbedingung bezw. Frequenzgleichung z; = z,
ergeben sich die gesuchten Werte der kritischen Belastung bezw. der Eigen-
schwingungszahl. Bei einer gréBeren Zahl von Querriegeln 148t sich eine
angendherte Untersuchung dadurch denken, dafB, dhnlich wie bei der verein-
fachten Engesserschen Formel fiir die Knickberechnung von Rahmenstiben,
eine ideelle Steifigkeit By,.

EJ
a2 s
257,
eingefithrt wird. Dabei bedeutet / das Gesamttrigheitsmoment der beiden
Bogenrippen, b:F,
= 5

und F, den Querschnitt, /, das Trigheitsmoment /, einer Rippe, & den
Rlppenabstand As den Querriegelabstand und s die Bogenlanoe

Die vorstehenden Untersuchungen gelten zunichst nur fiir den elasti-
schen Bereich; sie lassen sich aber leicht auf den unelastischen Bereich er-
weitern, indem wir im Wert der Biegungssteifigkeit B, den Elastizitits-
modul E durch den Engesser-Karman’schen Knickmodul T, ersetzen, der
allerdings im allgemeinen iiber die Bogenlinge verinderlich sein wird. Da-
durch wird eine anfingliche Schiatzung des Verlaufs von 7, und deshalb meist
eine Wiederholung der Berechnung notwendig. Eine gewisse Unsicherheit
ergibt sich daraus, daB wir den Zusammenhang zwischen 7, und dem Schub-
modul G im unelastischen Bereich nicht kennen. Da aber der EinfluB von
C auf die kritische Last nicht allzu groB ist, wird es am einfachsten und ge-
niigend sicher sein, wenn wir die Verdrehungssteifigkeit C im gleichen Ver-
haltnis 7,: E abmindern.

Es sei zum SchluB noch darauf hingewiesen, daB bei endlichen Aus-
biegungen z, oder bei endlicher Querbelastung P,, z. B. durch Winddruck,
auch endliche Zusatzmomente U und V entstehen; wir haben .es somit beim
Bogen auch fiir solche Belastungen mit einem Spannungsproblem zweiter
Ordnung zu tun. Die hier gegebenen Grundlagen erlauben auch die Unter-
suchung dieses Problems. Bei voller Windbelastung auf die ganze Bogen-
linge 14Bt sich, aus Analogie mit verwandten Problemen, die GroBe des
Gesamtm»omentes V recht zutreffend abschitzen zu
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1
V="V
1—

Hkr
wobei V, das nach der Theorie erster Ordnung bestimmte Biegungsmoment

infolge Winddruck und H,, den fiir Kippen maBgebenden kritischen Hori-
zontalschub, fiir den elastischen Bereich ermittelt, bedeuten. '

Zusammenfassung.

Zur Bestimmung der kritischen Belastung beim Kippen (seitliches
Knicken) und der Eigenfrequenzen von Querschwingungen bei Bogentragern
wird ein baustatisches Verfahren angegeben. Insbesondere werden die Ver-
drehungen des Bogens durch ein dreigliedriges Gleichungssystem oder ein
,verallgemeinertes‘* Seilpolygon bestimmt, wihrend die seitlichen Ausbie-
gungen durch ein gewdhnliches Seilpolygon gefunden werden. Der Rech-
nungsgang wird an einem eingespannten Parabelbogen mit einfachem Quer-
schnitt skizziert. Zur Uberpriifung der Rechnungsergebnisse wurden Schwin-
gungsversuche an Modellbogen aus Aluminium durchgefiihrt, die eine sehr
gute Ubereinstimmung zwischen Rechnung und Messung zeigen. Allgemei-
nere Fille werden diskutiert, und es wird auf das bei Querbelastung (Wind-
druck) auftretende Spannungsproblem zweiter Ordnung hingewiesen.

Résumé.

La détermination de la charge critique de flambage (flambage latéral)
et des fréquences fondamentales d’oscillations transversales des poutres a
arc est traitée par une méthode numérique s’adaptant au cas le plus général.
En particulier, le calcul de la rotation des sections de 'arc est établie sur la
base d’un systéme d’équations a trois termes ou d’un polygéne funiculaire
«généralisé», tandis que les fléchissements latéraux s’obtiennent par un poly-
gone funiculaire ordinaire. Les grandes lignes du calcul sont esquissées au
moyen d’un arc parabolique encastré de section simple. Des essais d’oscil-
lations sur un arc modele en aluminium conduisent a une vérification des
calculs et prouvent la bonne concordance entre les mesures et la théorie.
Enfin, des cas plus généraux sont discutés, suivis d’indications sur le
probléme du second ordre se rapportant aux contraintes dues aux charges
transversales (action du vent).

Summary.

To determine the critical buckling load (lateral buckling) and the na-
tural frequencies of the transverse oscillations of the arched girders, a
generally applicable numerical method is employed. In particular the
calculation of the rotation of the sections of the arch is established
on the basis of a system of equations of three terms or a ‘“generalised”’
funicular polygon, whilst the lateral deflections are obtained by an ordinary
funicular polygon. The main lines of the calculation are illustrated by means
of an encastré parabolic arch of simple section. To check the calculated re-
sults, tests were carried out on a model arch made of aluminium, and the
measurements obtained were found to agree well with the theoretical values.
In conclusion some more general cases are considered, and then reference
is made to the problem of the second order relating to stresses caused by
transverse loading (wind pressure).
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