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KIPPEN UND QUERSCHWINGUNGEN
VON BOGENTRÄGERN.

FLAMBAGE ET OSCILLATIONS LATERALES DES POUTRES EN ARC.

LATERAL BUCKLING AND VIBRATION OF ARCHES.

Prof. Dr. F. STÜSSI, Eidg. Techn Hochschule Zürich,
Generalsekretär für Stahlbau der I.V. B. H.

1. Allgemeines.
Das Kippen oder seitliche Ausknicken von Bogenträgern ist bis jetzt nur

für Kreisbogen mit konstantem Querschnitt und gleichmäßig verteilter
radialer Belastung streng untersucht worden x); die unter diesen einschränkenden

Voraussetzungen gefundenen Werte können nicht auf die Bemessung
der Hauptträger von Bogenbrücken übertragen werden.

Eine allgemeinere Untersuchung über die Seitensteifigkeit von
Bogenbrücken hat A. Ostenfeld 2) durchgeführt. Um zu fertigen Formeln zu
gelangen, setzt er aber einfache, also willkürliche Bogenform und
Querschnittsänderung voraus, sodaß seine Untersuchung auch keine allgemeine
Gültigkeit beanspruchen kann.

Nachstehend wird ein allgemein anwendbares baustatisches Verfahren
zur Bestimmung der kritischen Belastung angegeben. Durch eine Verformung
des Bogenträgers aus seiner ursprünglichen Ebene, d. h. durch die seitlichen
Ausbiegungen z0 und die Verdrehungen cp0 entstehen zusätzliche seitliche
Biegungsmomente M2 V und Torsionsmomente T U, die ihrerseits die
Ausbiegungen z± und die Verdrehungen cp1 verursachen. Da unter der
kritischen Belastung, als Grenzfall, gerade noch Gleichgewicht besteht,
müssen wegen der Gleichheit von innern und äußern Momenten die
anfänglichen Verformungen z0, cp0 gleich groß sein, wie die durch sie
verursachten, z±, cp±. Im Sinne des Verfahrens, das Engesser und Vianello zur
Untersuchung des geraden Druckstabes angegeben haben und auf dem auch
die Untersuchung von A. Ostenfeld 2) aufbaut, ist somit die Kipplast eines
Bogens so zu bestimmen, daß wir die ursprünglichen Verformungen z0, cp0

mehr oder weniger willkürlich, jedoch unter Beachtung der Randbedingungen,
schätzen oder annehmen und die dadurch verursachten Verformungen

zl9 cp1 berechnen. Die „Stabilitätsbedingung" z1 zQ, cp1 cpQ liefert die
Größe der kritischen Belastung. Stimmen angenommene und daraus berechnete

Verformungskurven in ihrem Verlauf nicht miteinander überein, so
ergibt der Vergleich von z±, cp± mit z0, cp0 an einer bestimmten Stelle, z. B.
in Bogenmitte, nur einen Näherungswert der kritischen Belastung, der durch

1) S. Timoshenko, Theory of Elastic Stability, New York 1936.
2) A. Ostenfeld, Seitensteifigkeit offener massiver Bogenbrücken. Schweiz. Bauzeitung,

Bd. 77 (1921), Nr. 15, 16.
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Wiederholung der Berechnung, ausgehend von den nun schon eine bessere
Annäherung an die genauen Lösungskurven des Problems darstellenden Kurven

zt und cp±, oder aber durch eine Energiebetrachtung oder Mittelwertbildung

f Zc, • zv • ds'
Jo u l

zt — —j • z0
J z02 • ds'

wobei ds' die entsprechend der Steifigkeit reduzierte Länge des Bogenele-
mentes bedeutet, zu verbessern ist. In beiden Fällen aber benötigen wir die
berechneten Formänderungen zv cp± nicht nur an einer bestimmten Trägerstelle,

sondern in ihrem ganzen Verlauf über die Bogenlänge. Um somit
die kritische Belastung zuverlässig und mit beliebig zu steigernder Genauigkeit

berechnen zu können, muß zuerst ein baustatisches Verfahren zur Ermittlung

der Ausbiegungs- und Verdrehungskurven z± und cp± infolge der Bie-
gungs- und Torsionsmomente V und U an beliebig geformten Bogenträgern
aufgestellt werden.

Ganz ähnlich wie die Größe der kritischen Belastung lassen sich auch
die Eigenfrequenzen der seitlichen Schwingungen untersuchen. Die beiden
Aufgaben sind nicht nur formal, sondern auch ursächlich eng miteinander
verwandt 3): das Ausknicken kann als Grenzfall einer unendlich langsamen
Schwingung gedeutet werden, bei der der Bogen ausschwingt, um nie mehr
in seine Ruhelage zurückzukehren. Für eine versuchstechnische Untersuchung
ergibt sich aus der gemeinsamen Behandlung von kritischer Belastung und
Eigenschwingungen der Vorteil, daß die kritische Belastung nicht als Einzelwert,

und zwar gerade unter den auf zufällige äußere Störungen empfindlichsten

Verhältnissen, bestimmt werden muß, sondern daß sie sich aus einer
stetigen Versuchskurve ergibt.

2. Die Biegungs- und Verdrehungsmomente.
Wir denken uns aus dem verformten (z0, cp0) und durch beliebige Lasten

P>, Py, Pz belasteten Bogen der Fig. 1 das Bogenstück zwischen den
Knotenpunkten m-A und m herausgeschnitten. Die Belastungen P denken wir uns
in die Knotenpunkte m reduziert, wobei es für die weitere Untersuchung
gleichgültig sein soll, ob diese Lasten P in Wirklichkeit Einzellasten oder
Resultierende von verteilten Belastungen sind. Im übrigen soll über die
Länge des Bogenstückes noch vorausgesetzt werden, daß im Rahmen der
praktisch erforderlichen Rechnungsgenauigkeit mit Rücksicht auf die spätere

Untersuchung der Formänderungen die Bogenlänge gleich der Sehnenlänge

gesetzt werden dürfe.
Wir betrachten zunächst im verformten Bogenstück von m—1 bis m

(Fig. 2) die um die Axen x, y, z drehenden Momente, wobei wir mit Qxm,
Qym, Qzm die Resultierenden aller Kräfte Px, Pyy Pz vom Auflager A bis
und mit dem Knotenpunkt m—1, d.h. die Querkräfte im Feld m, bezeichnen.
Die Momente seien positiv, wenn sie im Uhrzeigersinn um die entsprechenden

Axen drehen; die Momente werden im Folgenden durch ihre Axen
dargestellt und mit X, Y, Z bezeichnet.

3) S. z. B.: F. Stüssi, Aktuelle baustatische Probleme der Konstruktionspraxis: Knicklast
und Grundschwingungszahl von Bogenträgern. Schweiz. Bauzeitung, Bd. 106 (1935),

Nr. 12.



Kippen und Querschwingungen von Bogenträgern 329

Infolge der Ausbiegungen z verursachen die parallel zur x-Axe
wirkenden Kräfte Px Momente Y und es ergibt sich aus dem Gleichgewicht
des Feldes m

A Ym — Ym Ym_i — Qxm\Zm — zm-i) — Qxm * A Zm 0)
Greifen zwischen A und B keine Kräfte Px an, so ist Qxm konst. gleich dem
Horizontalschub M des Bogens, der durch die als klein vorausgesetzten
Formänderungen z und cp nicht verändert wird.

T
I P*>ß

ifi T i

dz
dx " cosd

KT I>^
Fig. 1

äZn Jak*y„

m-i
Q7m '

Ax

O^ m Uz
m-i

Fig. 2

Die lotrechten Lasten Py verursachen Momente X und es ist am Bogenstück

sm\
A Xm =¦ Xm — Xm_i Q.ym ' A Zm • (2)

Infolge der quergerichteten Belastungen Pz treten sowohl Momente X
wie Momente Y auf und es ist

Y/n-i — Q,z AXn

und
Xm Xm_i — — Qzm ' Ayn

(3)

(4)

Diese quergerichteten Belastungen Pz oder auch einzelne äußere
Drehmomente AX und AY, wie die Verformungen z und cp bei Belastungen Px
und Py, beeinflussen somit die Momente Z nicht oder das Kräftespiel des
ebenen Bogens wird durch diese Ursachen nicht beeinflußt. Wir brauchen
uns deshalb hier mit dem ebenen Kräftespiel des Bogens (unter Lasten Py
und Px) nicht zu beschäftigen, sondern dürfen es als gegeben voraussetzen.

Bevor wir aus diesen Differenzen die Momente X, Y selbst bestimmen,
sei ihr Zusammenhang mit den Biegungs- und Torsionsmomenten des Bogens
an der Stelle m untersucht. Wir legen im Punkt m des verformten Bogens
ein rechtwinkliges Koordinatensystem u, v, w, wobei die u-Axe mit der
Bogentangente in m und die Axen v und w mit den (um cp verdrehten) Quer-
schnittshauptaxen im Normalschnitt zu u zusammenfallen sollen. Dieses
Koordinatensystem geht somit durch die Verschiebungen x, y, z und die Ver-

dz
drehungen <x, £ —, cp aus dem System x, y, z hervor. Bei der Betrachtung

der Momente spielen die Verschiebungen keine Rolle und wir können uns
auf die Untersuchung der Verdrehungen beschränken. Wir führen diese
Drehungen stufenweise ein.
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Bei einer Drehung um den Winkel oc mit der Drehaxe z (Fig. 3)
ergibt sich

m(z) Fig. 3

Ux X • cos a + Y • sin a

V1 Y • cos a — X • sin a

W, Z.
(5)

dz
Drehen wir nun das System u,, v^, wA um den Winkel f — mit der Dreh-

ds
axe v±, so folgt aus Fig. 4

w 4 Fig. 4

f/2 £A • cosc + Wx - sin;
V2 V,

W2 UV cosl— Ui -sine.
(6)

Durch Drehung um den Winkel cp mit der Drehaxe u2 (Fig. 5) ergibt sich
endlich

m(ui) Fig. 5

u u2

V V2 • cos cp + W2 - sin 9?

U^ 1^2. cos 99 — K2 • sin 99.

(7)

Setzen wir die Werte der Gleichungen (5) und (6) in Gleichung (7) ein, so
erhalten wir den gesuchten Zusammenhang zwischen den Momenten U, V,
W mit den Momenten X, Y, Z. Da die Verformungen C, cp voraussetzungsgemäß

klein sein sollen, so erhalten wir mit

cos 99 cosc 1

sin cp — cp ; sin l l
und unter Vernachlässigung kleiner Glieder höherer Ordnung

l7 — X • COS a + Y • sin a + Z • L

V Y • cos cx — X • sin a + Z • cp

W- z.
(8)

Die letzte dieser Gleichungen, W Z, bestätigt die bereits festgestellte
Tatsache, daß die im ebenen Bogen ermittelten Momente Z durch kleine
Verformungen z, cp oder durch Querbelastungen Py und Drehmomente AX, AY
abgesehen von Einflüssen höherer Kleinheit, nicht beeinflußt werden.

Um nun aus den Differenzen der Gleichungen (1) bis (4) die Momente
X, Y selbst zu bestimmen, müssen wir die Auflagerreaktionen bei A und B
kennen. Im allgemeinen Fall des beidseitig eingespannten und deshalb 6fach
statisch unbestimmten Bogens interessieren uns hier, nach Ausschaltung des
ebenen Problems, noch drei überzählige Größen, als welche wir beispielsweise,

nach Einschaltung entsprechender Gelenke, die beiden Biegungsmomente

VA und VB und das Torsionsmoment UB wählen können. Die
Berechnung dieser überzähligen Momente für einen gegebenen Belastungszustand

des Grundsystems ist eine normale Aufgabe der Baustatik und soll
hier im allgemeinen Fall nicht weiter behandelt werden.
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Bei der uns hier besonders interessierenden Aufgabe, der Bestimmung
der kleinsten kritischen Belastung und der kleinsten Eigenfrequenz der
Querschwingungen, ist Vollbelastung und symmetrische Verformung des Bogens
maßgebend. Für diesen Fall werden aus Sjmmetriegründen VA -= — VB und
UA =__ Uß und das Problem ist noch einfach statisch unbestimmt.

In Fig. 6 ist die Auflagerung des Grundsystems bei A skizziert und
wir erhalten aus Gleichung (8) die Auflagermomente:

Ua XA • cos aA + YA • sin aA + ZA • lA |

Va Ya - cos cca — Xa- sin aA + ZA • <pa
1

Wegen der freien Drehbarkeit um die Axe VA ist VA 0 oder

YA XA • tg aA
COS i/A

und ferner
Ua^^a + Za(:a-'Pa tg'M)

(9)

(10)

(11)

Bei momentenfreien Bogen (Drucklinienbelastung, Z==- 0) oder bei starr
eingespannten Bogen (cpA 0, £,4 0) vereinfachen sich diese Werte auf

YA XA • tg aA

Ua Xa • sec aA

(10a)

(IIa)
XA ergibt sich hier aus Symmetriegründen (XM 0) durch Aufsummieren
der Differenzen Xm^1—Xm der Gleichungen (2) und (4) für die linke Bogen-
hälfte; darauf kann YA mit Gleichung (10) bestimmt werden. Damit sind
die Momente X und Y und durch Gleichung (8) auch die Momente U und V
für alle Punkte des Grundsystems bekannt.

Yi

•5\

Fig. 6 Fig. 7

Zur Bestimmung des überzähligen Einspannmomentes VA VB können
wir nun allerdings nicht einfach das Grundsystem mit VA ==¦ 1 und' VB ¦= 1

allein belasten (Fig. 7a), da zum Gleichgewichtszustand noch Drehmomente
UA und UB notwendig sind. Die Überzähligen VA und VB ergeben mit ihren
Reaktionen UA und UB zusammen resultierende Momente YA und YB. Wir
führen deshalb einfacher als überzählige Größen direkt die Momente YA
und YB ein (Fig. 7b) und belasten das Grundsystem mit YA= — YB~\,
wodurch die Momente

1 • sina
1 • cosa

l (12)



(13)

332
%

F. Stüssi

entstehen. Damit sind die in die Elastizitätsbedingung YA • a1± + a10 -= 0
eintretenden Verschiebungsgrößen alk bestimmbar. Diese hängen nun sowohl
von den Biegungsmomenten V wie von den Torsionsmomenten U, d. h.
sowohl von der Biegungssteifigkeit B2 EJy wie von der Verdrehungssteifig-
keit C G • Jd ab. Wenn wir einfachheitshalber und wohl mit praktisch
genügender Genauigkeit die Steifigkeiten je feldweise konstant annehmen,
so ergibt sich mit der in der Baustatik üblichen „Trapezformel" die
Verschiebungsgröße alk zu

dik ^Vkm'\ 7TW— (cos ctm_x + 2 cos am) + ^-^- (2 cos am + cos am+1)
A \-OÖ2m VtS2m+l J

+ ^ UkmA^- (sin am-i + 2sinaOT) + S™+1 (2sina^ + sinc^+i)
A LO Cm O Cw+i J /

Es kann ohne Schwierigkeit, auch bei stetig veränderlicher Steifigkeit, der
Wert von alk genauer bestimmt werden, beispielsweise durch die „Parabelformel";

wesentlich ist aber, mit Rücksicht auf die innere Übereinstimmung
der ganzen Berechnung, daß diese Verschiebungsgrößen auf den gleichen
Grundlagen berechnet werden, wie die analogen Werte, die in die nun
aufzustellenden Formänderungsgleichungen eingehen. Bei nicht allzugroßen
Feldweiten genügt erfahrungsgemäß die Trapezformel in normalen Fällen
allen vernünftigen Anforderungen an die Rechnungsgenauigkeit.

Die wirklichen Bogenmomente ergeben sich nun nach Auflösung der
Elastizitätsbedingung aus der Superposition

Um Uom + YA • Ulm 1

Vm s= Vom + YA-Plm. J '

3. Die Verformungslinien z und cp.

Um die Ausbiegungen z des Bogenfeldes von m—1 bis m mit der Länge

sm zu untersuchen, bringen wir in m—1 die virtuelle Belastung in
$m

Richtung der gesuchten Verschiebung zm_1 an (Fig. 8) und berechnen die bei
dieser Belastung geleisteten virtuellen Arbeiten. Das Bogenstück sm wird
dadurch im Gleichgewicht gehalten, das am festgehalten gedachten Ende m

die waagrechte Auflagerkraft — und die Auflagermomente
$m

und

Vm~~~ - • COS e'm Sm — 1 * COS Bm ^ — 1

Sm

Um — sin e'm • sm 1 • sin e'm
Sm

auftreten. Diese äußern Kräfte leisten, mit Cm \-r-) > die virtuelle Arbeit

Zm-1 ~\ Zm — 1 • Im — 1 • Sin €m • cpm
Sm Sm

Gleichzeitig wird der Stab sm auch durch die in Fig. 8 skizzierten Biegungsund

Torsionsmomente, sowie auch durch Querkräfte, die jedoch hier nicht
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weiter berücksichtigt sind, beansprucht; die entsprechende innere virtuelle
Arbeit beträgt, mit Hilfe der „Trapezformel" bestimmt:

infolge Biegung:
OB,

$m
(Vm-l + 2Vm)= vKm

2 m

infolge Torsion: sin e'm
6C, (Um-l + 2Um) uK'm-sin em

Setzen wir nun die inneren und äußeren virtuellen Arbeiten aus
Gleichgewichtsgründen einander gleich, so erhalten wir den Zusammenhang

— — • zm-i + — • zm vKm + uK'm • sin em + 1 • cpm • sin €m + 1 • tm. (15a)
Sm Sm

5bm0S&<"

m+iT
Sm+l

Htm
1-s«

cT

m-r

sm+r
S/Tt+tcosa.

cpsa.m

m-r

Flexion -Biegung -
ßendwg^rrr

f'C0Sl'„*1*I-C0S6%

Torsion

— 1111 h 111111ITTI t l-sine'm ^
Fig. 8

Um Cm eliminieren zu können, bringen wir am Ende m -\-1 des Feldes sm+1

die virtuelle Belastung — an und erhalten analog:
5m+l

1

Sm+1

l
Sm+1

Zm+i vKm — uK'm • sin €m + 1 • <pm • sin em — 1 lm (15b)

Die Differenz vKm • sin em — uK'm • sin em ist vernachlässigbar klein; wir
erhalten somit mit der Bezeichnung vKm + vKm vKm durch Addition der
Gleichungen (15a) und (15b) die gesuchte Bestimmungsgleichung der
Ausbiegungen z:

1

— — • Zm-l +
^m

-\zM
1

h )zm — ' Zm+1 vKm + (SIH €m + Sl'n Sm) • cpm (16)
\Sm Sm+ll Sm+1

Dies ist aber nichts anderes als die Gleichung des gewöhnlichen Seil-
Polygons mit der veränderlichen Feldweite 5 unter den Knotenlasten
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vKm + (sin tm + sin£^) • <pM. Die Biegungslinie z des Bogen-
trägers unterscheidet sich also nur dadurch von der
Biegungslinie eines ebenen Stabzuges, daß die Knotenlast

oder das „elastische Gewicht" vKm um das „Zusatz-
ge wich t" cpm- (sin £'m-fsin sm) zu vergrößern ist.

Wir bestimmen nun die uns noch fehlenden Drehwinkel cp. Am Ende
m — 1 des Feldes sm bringen wir ak virtuelle Belastung das Torsionsmoment
£/=-! an (Fig. 9), dem im Knotenpunkt m durch das Torsionsmoment
— 1 • cos ßm und das Biegungsmoment — 1 • sin ßm Gleichgewicht gehalten
wird. Gleichzeitig wird das Bogenfeld sm durch die in Fig. 9 skizzierten
Biegungs- und Torsionsmomente beansprucht. Die Gleichsetzung von in-
nern und äußern virtuellen Formänderungsarbeiten liefert

— 1 • cpm-l + 1 • COS ßm -<Pm — l- SJn ßn uKm-1 + uKm + VKm • S1I1 ßm (17a)

Eine analoge Betrachtung des Feldes smrl liefert
1 'COSßm+l-cpm — 1 -<Pm+l + 1 • Sl'ü ßm+l' tm ~ t/Km " uK'm+1 + vKm'Smßm+1 (17b)

An*7
Vsmß,

0sP* \'SinßmrJ^^^ m+1 ä.

cosV

Torsion

1cosßm=1

Hosßmt,=1

¦TITTTTTTTTTTTT^^
I

Flexion -Biegung -ßendmg

Fig. 9

Multiplizieren wir, um Cm zu eliminieren, Gleichung (17a) mit s\nßm+1 und
Gleichung (17b) mit s\nßm, so erhalten wir durch Addition

- sin ßm+i • cpm-i + (sin ßm+1 • cos ßm + sin ßm • cos ßm+i) g>m — sin ßm • cpm+1

(uKm-i + uKm) sin ßm+i - {uKm + uK'm+i) sin ßm + vKm • sin ßm • sin ßm+1
(18)

Wegen sin ßm • cos ßm+1 + sin ßm+1 • cos ßm sin (ßm + ßmA ±) läßt sich
diese Gleichung noch etwas vereinfachen. Bei den Vorzahlen der Unbekannten

cpm darf in dieser Differenzengleichung zweiter Ordnung, im Gegensatz
zu den Belastungsgliedern, nun nicht etwa cos ßm cos ßm+1 1 oder
sin (ßm + ßm+i) sin ßm + sin ßm+1 gesetzt werden, weil sich eine hier
eingeführte, wenn auch kleine Ungenauigkeit bei der Auflösung des ganzen
Systems von dreigliedrigen Gleichungen vervielfachen würde. Im übrigen
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bietet die Auflösung des dreigliedrigen Gleichungssystems Gl. (18), etwa
mit dem abgekürzten Gauss'schen Algorithmus, und unter Beachtung der
Randbedingungen, gewöhnlich cpA cpB=0, keine Schwierigkeiten. Sind
damit die Verdrehungen cp gefunden, so lassen sich mit Gleichung (16) nun
auch die Ausbiegungen z bestimmen und unsere Aufgabe ist grundsätzlich
gelöst.

Vielleicht noch einfacher als die direkte Auflösung des Gleichungssystems

ist hier die Lösung in der Form eines „verallgemeinerten
S ei 1 po 1 y go n s" 4). Wir schreiben Gleichung (18) als Rekursionsformel:

/sin/^_i „ \ sin/^+i
^+1 \~shTß~ ' COS ^ + COSM ' 9U ~ ~^ßin ' ^+1

— (uKL-i + uK'm)- ^^ + {uKm + uKL+i) — vKm • sinßm+1, (19a)
sin [Jm

oder mit den Abkürzungen
sin ßm+i >

am -ttttt,— * cos ßm + cos ßm+i
sin pm

_ sin ßm+i

sin ßm

rjDm (uKm-1 + uKm) ' bm — (uKm + uKm+l)

in einfacherer Schreibweise:

Cpm+l dm ' <Pm bm • <pm_i — VDm — vKm ' SJn ßm+l (^b)
Wir berechnen nun zuerst das „Seilpolygon", indem wir außer dem
gegebenen Wert cpA noch cpt willkürlich, z. B. cp± 0, annehmen; von diesem ersten
„Seilstrahl" aus sind nun die Werte cp2, cp3 usw. bestimmbar. Allerdings
wird dieses Seilpolygon die zweite Randbedingung, z. B. cpB 0, nun nicht
erfüllen; wir müssen noch die „Schlußlinie" einlegen. Diese Schlußlinie,
zunächst in willkürlichem Maßstab, finden wir durch die homogene
Gleichung 19b,

cpm+l Clm • cpm — bm * cpm-1

wobei wir wieder den ersten Seilstrahl annehmen, diesmal mit cpA 0 und
etwa cp^--= 1. Diese Schlußlinie, die hier nicht mehr gerade ist, müssen wir
nun, in passendem Maßstab, so in das Seilpolygon einlegen, daß die
Randbedingung für cpB erfüllt ist. An Stelle der Randbedingung bei B kann
selbstverständlich auch eine Symmetriebedingung treten.

4. Anwendungsbeispiel und Versuche.
Das Rechnungsverfahren zur Bestimmung der kritischen Last und der

Grundschwingungszahl, dessen Grundlagen vorstehend entwickelt wairden,
soll nun noch am Beispiel eines eingespannten Parabelbogens mit konstantem

Querschnitt und / 0,30 • /, belastet durch 8 gleiche und gleichmäßig
verteilte, stets lotrecht wirkende Einzellasten P skizziert werden. Die
statische Berechnung des ebenen Bogens lieferte H 3.361 P und
vernachlässigbar kleine Momente Z.

4) F. Stüssi, Statik der Seile. Abhandlungen I.V. B. H, Band 6, 1940/41.
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a) Kritische Belastung:
Aus den angenommenen Ausbiegungen z0 (Fig. 10) wurden über die

Momente X und Y die Momente U0 und V0 im Grundsystem berechnet. Nun
konnte die Elastizitätsbedingung für ein bestimmtes Verhältnis von B2: C
aufgestellt und daraus die Überzählige YA bestimmt werden. Entsprechend dem

angenommenen stehenden schmalen Rechteckquerschnitt wurde mit

c=o.Jd o.^-°f-^d3
das Verhältnis C =\A-B2 eingeführt. Aus der Superposition Gleichung
(14) ergaben sich nun die wirklichen Momente U und V.

Die Formänderungsgleichung (18) bezw. (19) lieferte nun die
Verdrehungswinkel cp, worauf mit Gleichung (16) die gesuchten Ausbiegungen
z± als Seilpolygon zu elastischen Gewichten berechnet werden konnte. Die
Form der Ausbiegungslinie lieferte mit Ca 0 eine Rechnungskontrolle. In
Fig. 10 sind zur Veranschaulichung der Verhältnisse die fünf Kurven z0,
U, V, cp±, zl9 für U und V sowohl für das Grundsystem, YA 0, wie auch
für den endgültigen Zustand, eingetragen.

Für die Bogenmitte ergab sich, bei guter Übereinstimmung der z0- und
der Zi-Linie und kontrolliert durch Mittelwertbildung, für den untersuchten

Fall mit C=\AB2 die Ausbiegung

P • I2 PI2
zim 0,197 —= zom oder allgemein zlm ck • -=- • z0m.

Die kritische Last ergibt sich nun aus der Stabilitätsbedingung zlm z0m zu

Pkr
Ck

'
l2

oder hier Pkr 5,08 • § (20)

Hkr 17,1
I2

Um den Einfluß der Verdrehungssteifigkeit C gegenüber der Biegungs-
steifigkeit B2 besser zu verfolgen, können die Durchbiegungen infolge der
Einzeleinflüsse U0, V0, Ut, V± je getrennt für sich ermittelt und erst
zuletzt zu z± superponiert werden. Das Ergebnis dieser Untersuchung, die
Veränderlichkeit der Kipplast bei veränderlichem Verhältnis B2: C, ist in
Fig. 11 dargestellt. Es zeigt sich, daß der Einfluß der Verdrehungssteifigkeit

C beim eingespannten Bogen offenbar viel kleiner ist als bei Lagerung
nach Fig. 6.

b) Eigenschwingungen:
Während der (harmonischen) Eigenschwingungen des Bogens mit der

Kreisfrequenz p wirken, außer den durch die Verformungen z, cp statisch
oder direkt verursachten Momenten Uk, Vk (die bei genügender Größe der
Belastung das Kippen verursachen), noch die Trägheitskräfte Pzs

P- • p2 • z0 und, infolge der Verdrehung cp, die Verdrehungsmomente AUS
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P • l 2

——- ' P2 ' ^oj wobei g die Erdbeschleunigung und P • lp : g das polare Massen-
g

trägheitsmoment bezüglich der u-Axe bedeuten.

yk C=IU-B2
ß,= kons!

0301

0Ü15- P z

1792-P>z

om-f^-z

P-l
0197-

Fig. 10

Da alle diese Kraftwirkungen mit den elastischen Widerstandskräften
des Bogens im Gleichgewicht sein, oder innere und äußere Momente gleich
groß sein müssen, muß die gesamte aus allen äußern Kraftwirkungen sich
ergebende Ausbiegung z± an allen Stellen des Bogens mit der ^angenommenen

Ausbiegung z0 übereinstimmen3). Auch wenn für die einzelnen
Teileinflüsse die „richtige" Form der z-Kurve nicht genau die gleiche ist, so
empfiehlt es sich doch, die Verformungen für jeden Teileinfluß getrennt zu
berechnen; kleine Unterschiede in der Form der z- bezw. 99-Kurven sind,
wie eine Energiebetrachtung zeigt, praktisch bedeutungslos. Für ein
bestimmtes Verhältnis B2:C ergibt sich die Durchbiegung z1 nun in der Form

Abhandlungen VII 22
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P-p^-l3 P- ip-p2 ¦ l P ¦ P
Zl Csl ¦ ^D Z0 + Cs2 ¦ ^ • Za + Ck- — Z0gB, gB2 B.

Setzen wir nun z± z0 (Frequenzgleichung), so kann die Kreisfrequenz p
und die sekundliche Schwingungszahl v p:2n bestimmt werden. Beachten
wir, daß

ßä
/>*„<W2

so ergibt sich

p j' 1/ ^1 ci•/p
1

cs2 ¦ 1,; t- p
"Kr (21)

' csl.l*
Bei der numerischen Auswertung zeigt sich, daß der Wert

Cs2
^

lp
Csl /"

gegen eins vernachlässigbar klein ist; der Einfluß der Rotationsträgheit ist
also auch hier bedeutungslos. Für das Zahlenbeispiel der Fig. 10 ergab sich

c51 0,0418= 23g- oder

V2pp_ V^Q JgB, J _P_ 0J78 Jgjl2 J
2n 2JZ-1' f l-P' f Pkr l f l P f

p
Wr

'Kr L

B,
6\l _J08

1

u -ft'B2

JO 20 30

Fig. 11

uo 50

c

c) Versuche:
Zur Überprüfung dieser Berechnungen habe ich in meiner Abteilung des

Institutes für Baustatik ander E. T. H. Schwingungsversuche an Modellbogen

durchführen lassen5). Die parabelförmigen Bogen wurden mit
konstanter Höhe von 12 mm aus einer ebenen Aluminiumblechtafel von 2.0 mm
Stärke herausgeschnitten. Um möglichst reine Versuchsbedingungen zu
erhalten, wurden die Bogen in verhältnismäßig kräftigen Stahlwinkeln
eingespannt. Die Schwingungen wurden unter verschiedenen am Bogen direkt
angebrachten Belastungen P durch ein leichtes und weiches, am Bogen
befestigtes Blattfederchen auf einer mit berußtem Papier belegten Trommel
aufgezeichnet. Durch Vergleich mit dem ebenfalls aufgezeichneten Zeit-

5) Versuchsdurchführung: Dipl. Ing. H. Lumpert.
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Fig. 12
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Fig. 13

maßstab konnten die Schwingungszahlen bestimmt werden. Zur Kontrolle
darüber, daß die Reibung des Federchens auf dem Papier die Frequenzen
nicht spürbar beeinflusse, wurden bei den höheren Laststufen (wo dies
allein zuverlässig möglich war) die Schwingungen auch direkt mit der Stoppuhr

abgezählt. Fig. 12 zeigt die Versuchsanordnung und Fig. 13 drei typische
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Schwingungsdiagramme für P -= 243 gr (einschl. Klemmvorrichtung und
Bogeneigengewicht) und zwar die Grundschwingung, die erste Oberschwingung

und eine aus diesen beiden zusammengesetzte Schwingung. Aus diesen
Diagrammen, wie auch aus der theoretischen Untersuchung zeigt sich, daß
das Verhältnis der Frequenzen von Grundschwingung und Oberschwingungen

mit der Belastung veränderlich ist.
Der Elastizitätsmodul des Materials wurde in einem Durchbiegungsversuch

zu £ 700 t/cm2 bestimmt. Mit

B, 700- 1,2-0,23
12

0,56 t-cm2, C= 1,4 • B2

und für / 80 cm, / 0.3 • / ergab sich somit aus der Rechnung

Pkr 5,08 •
560

6400
0,445 kg

und 0/778
80 i^iV-k^i 1

7V

Der Vergleich zwischen Messung und Rechnung ist in Tabelle 1 zusammengestellt

und in Fig. 14 veranschaulicht. Die Übereinstimmung darf als sehr
gut bezeichnet werden, was sowohl für die sorgfältige Versuchsdurchführung

wie für die Zuverlässigkeit des Rechnungsverfahrens spricht.

sec

*$" Essai - Versuch - Tesl

Calcul- Theorie - Theory

Û

05 Pkg02 OU

Fig. 14

Tabelle 1:

Pkg
v sec-1

berechnet
v sec 1

gemessen
Bemerkungen

0,008
0,043
0,143
0,243
0,343

8,93
3,69
1,76
1,10

0,66

9,45
3,78
1,85
1,08
0,64

leerer Bogen
+ Klemmvorrichtung
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5. Schlußbemerkungen.
Der kritische Horizontalschub Hkr eines eingespannten Bogenträgers

bei Ausknicken aus der Trägerebene nimmt gegenüber der Knicklast eines
beidseitig eingespannten Stabes

4jt2B2
p» -jt±

mit wachsender Pfeilhöhe beträchtlich ab. Der Einfluß des Pfeilverhältnisses

/:/ auf die Größe des kritischen Horizontalschubes ist in Fig. 15
für eingespannte Parabelbogen skizziert und zwar sowohl für konstante
Querschnittswerte wie auch für Bogen mit B2 • cos oc B2C konst., C • cos oc

C\ konst. Dabei gelten die ausgezogenen Linien für C=\AB2, die
gestrichelten für C oo.

Wirkt die Belastung während der Verformung nicht mehr lotrecht,
sondern ändert sie ihre Richtung mit z, so ändert sich der angegebene
Rechnungsgang nur insofern, als in den Momenten U0 und V0 auch die
quergerichteten Belastungskomponenten Pz berücksichtigt werden müssen. Ist
z. B. die Belastung der Fahrbahn an gelenkigen Hängestangen aufgehängt
(Fig. 16), so vermindern die Kräfte

Zo_

y
Pz Py

die Momente U0 und V0 und damit auch die Durchbiegungen z±; die
kritische Belastung wird nennenswert größer als bei lotrechter Belastung.
Umgekehrt vermindert sich die kritische Last, wenn bei obenliegender Fahrbahn
durch gelenkige Stützen Kräfte Pz in Richtung einer Vergrößerung von zx
ausgeübt werden.

fci*
u*z

B,-cosa=konsl^

C-M-Bt

B9=kons,

Vi02

Fig. 15

ZW-1

¦zzzzzzzzzzzzzzzzzm

-1

Fig. 16

Auch die Wirkung von elastischen Querstützungen durch Halbrahmen
oder ähnliche Bauelemente läßt sich auf diese Weise grundsätzlich leicht
untersuchen, da bei angenommener anfänglicher Ausbiegung z0 auch die
Halbrahmenwiderstände Pz gegeben sind. Allerdings muß durch Vergleichsrechnung

die Zahl der maßgebenden Halbwellen gesucht werden.
Wir haben bis jetzt einen einfachen oder einrippigen Bogenträger untersucht.

Bei Bogenbrücken mit zwei Hauptträgern und einem (in der Höhe der
Bogenachse) angeordneten Windverband ist vor allem zu beachten, daß die
Torsionsmomente nun nicht mehr nur durch Torsionsschubspannungen, son-
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dem auch, und zwar hier in der Hauptsache, durch entgegengesetzt gerichtete

Belastungen des vordem und hintern Hauptträgers (in den lotrechten
Trägerebenen) aufgenommen werden. Dies ist gleichbedeutend wie eine
Vergrößerung der Verdrehungssteifigkeit C. Da aber, bei seitlich eingespannten

Bogen, wie wir erkannt haben, eine Zunahme der Verdrehungssteifigkeit
C etwa über den Wert C =2B2 hinaus (Fig. 11 und Fig. 15) keine

beträchtliche Vergrößerung der kritischen Belastung zur Folge hat, wird man
sich meist mit einer Abschätzung des „Flanschbiegungseinflusses" begnügen
können. Bei zwei Windverbänden wird sich das Verhalten des Bogens noch
mehr dem Fall C oo annähern.

Sind die beiden Bogenrippen nur durch einzelne Querriegel rahmen-
förmig miteinander verbunden, so läßt sich eine genaue Berechnung ohne
Schwierigkeit dadurch durchführen, daß (außer den überzähligen Einspann-
momenten der Bogenrippen) in der Mitte der aufgeschnitten gedachten
Querriegel je zwei überzählige Größen X und Y angebracht und für die
angenommene Verformung berechnet werden. Infolge der resultierenden
Momente V und U lassen sich nun die Formänderungen z±, cpt der Bogenrippen
bestimmen und aus der Stabilitätsbedingung bezw. Frequenzgleichung zt z0
ergeben sich die gesuchten Werte der kritischen Belastung bezw. der
Eigenschwingungszahl. Bei einer größeren Zahl von Querriegeln läßt sich eine
angenäherte Untersuchung dadurch denken, daß, ähnlich wie bei der
vereinfachten Engesserschen Formel für die Knickberechnung von Rahmenstäben,
eine ideelle Steifigkeit B2ld

Bztd
x+Asi J

2 s2 Jx

eingeführt wird. Dabei bedeutet / das Gesamtträgheitsmoment der beiden
Bogenrippen,

^ b2 FiJ ~ ~2~
und f\ den Querschnitt, J1 das Trägheitsmoment /;, einer Rippe, b den
Rippenabstand, As den Querriegelabstand und 5 die Bogenlänge.

Die vorstehenden Untersuchungen gelten zunächst nur für den elastischen

Bereich; sie lassen sich aber leicht auf den unelastischen Bereich
erweitern, indem wir im Wert der Biegungssteifigkeit B2 den Elastizitätsmodul

E durch den Engesser-Kärmän'schen Knickmodul Tk ersetzen, der
allerdings im allgemeinen über die Bogenlänge veränderlich sein wird.
Dadurch wird eine anfängliche Schätzung des Verlaufs von Tk und deshalb meist
eine Wiederholung der Berechnung notwendig. Eine gewisse Unsicherheit
ergibt sich daraus, daß wir den Zusammenhang zwischen Tk und dem Schub-
imodul G im unelastischen Bereich nicht kennen. Da aber der Einfluß von
C auf die kritische Last nicht allzu groß ist, wird es am einfachsten und
genügend sicher sein, wenn wir die Verdrehungssteifigkeit C im gleichen
Verhältnis Tk.E abmindern.

Es sei zum Schluß noch darauf hingewiesen, daß bei endlichen
Ausbiegungen z0 oder bei endlicher Querbelastung Pz, z. B. durch Winddruck,
auch endliche Zusatzmomente U und V entstehen; wir haben es somit beim
Bogen auch für solche Belastungen mit einem Spannungsproblem zweiter
Ordnung zu tun. Die hier gegebenen Grundlagen erlauben auch die
Untersuchung dieses Problems. Bei voller Windbelastung auf die ganze Bogenlänge

läßt sich, aus Analogie mit verwandten Problemen, die Größe des
Gesamtmomentes V recht zutreffend abschätzen zu
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v v0 —L^

wobei V0 das nach der Theorie erster Ordnung bestimmte Biegungsmoment
infolge Winddruck und Hkr den für Kippen maßgebenden kritischen
Horizontalschub, für den elastischen Bereich ermittelt, bedeuten.

Zusammenfassung.
Zur Bestimmung der kritischen Belastung beim Kippen (seitliches

Knicken) und der Eigenfrequenzen von Querschwingungen bei Bogenträgern
wird ein baustatisches Verfahren angegeben. Insbesondere werden die
Verdrehungen des Bogens durch ein dreigliedriges Gleichungssystem oder ein
^verallgemeinertes" Seilpolygon bestimmt, während die seitlichen Ausbiegungen

durch ein gewöhnliches Seilpolygon gefunden werden. Der
Rechnungsgang wird an einem eingespannten Parabelbogen mit einfachem
Querschnitt skizziert. Zur Überprüfung der Rechnungsergebnisse wurden
Schwingungsversuche an Modellbogen aus Aluminium durchgeführt, die eine sehr
gute Übereinstimmung zwischen Rechnung und Messung zeigen. Allgemeinere

Fälle werden diskutiert, und es wird auf das bei Querbelastung (Winddruck)

auftretende Spannungsproblem zweiter Ordnung hingewiesen.

Resume.
La determination de la charge critique de flambage (flambage lateral)

et des frequences fondamentales d'oscillations transversales des poutres ä

are est traitee par une methode numerique s'adaptant au cas le plus general.
En particulier, le calcul de la rotation des sections de 1'arc est etablie sur la
base d'un Systeme d'equations ä trois termes ou d'un polygone funiculaire
«generalise», tandis que les flechissements lateraux s'obtiennent par un polygone

funiculaire ordinaire. Les grandes lignes du calcul sont esquissees au
moyen d'un are parabolique encastre de section simple. Des essais d'oscil-
lations sur un are modele en aluminium conduisent ä une verification des
calculs et prouvent la bonne concordance entre les mesures et la theorie.
Enfin, des cas plus generaux sont discutes, suivis d'indications sur le
probleme du second ordre se rapportant aux contraintes dues aux charges
transversales (action du vent).

Summary.
To determine the critical buckling load (lateral buckling) and the

natural frequencies of the transverse oscillations of the arched girders, a

generally applicable numerical method is employed. In particular the
calculation of the rotation of the sections of the arch is established
on the basis of a System of equations of three terms or a "generalised"
funicular polygon, whilst the lateral deflections are obtained by an ordinary
funicular polygon. The main lines of the calculation are illustrated by means
of an encastre parabolic arch of simple section. To check the calculated
results, tests were carried out on a model arch made of aluminium, and the
measurements obtained were found to agree well with the theoretical values.
In conclusion some more general cases are considered, and then reference
is made to the problem of the second order relating to stresses caused by
transverse loading (wind pressure).
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