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CALCULATION OF LATERAL TRUSS IN SUSPENSION
BRIDGES.

DIE BERECHNUNG VON WINDVERBÄNDEN BEI HÄNGEBRÜCKEN.

CALCUL DU TREILLIS LATERAL DES PONTS SUSPENDUS.

ARNE SELBERG, Division Engineer, Norwegian State Highways, Oslo.

During the last years several treatises have been published dealing with
the subject of Suspension bridges under lateral loadings. All of these
treatises, with exception of the one written by L. Moisseiff and F. Lienhard 3,
deal only with Suspension spans symmetrical about the center, and simply
supported at the towers. The method presented by L. Moisseiff and F. Lienhard

is not restricted to this special class, but depends on a very laborious
numerical Solution by successive approximation.

In the present paper it is intended to give a method permitting direct
stress computation of Suspension bridges of any form, with the lateral truss
continuous or simply supported over any number of spans, the only
condition being constant stiffness IE of the lateral truss within each span. The
method presents an improvement and extension of a previously published
work 7 dealing with symmetrical Suspension bridges of one span with
symmetrical lateral loads.

Deduction of Fundamental Equations.
The following equations are based on the assumption that the spacing

of the hangers is small compared with the length of the span. A further
assumption is that the deformations are so small that the vertical distance
between cable and roadway may be replaced by the length of the hangers

We indicate wind pressure against truss, lower half of hangers and any
live load by Wt(x), the same against Upper half of hangers and cable by
Wc(x), combined dead and live load per unit length of roadway by q(x),
and the combined cable tension due to dead and live load by H.

Using notations from Figs. 1 and 2 the following equation for the
lateral deflection of the cäbles A(x) is obtained:

Wc(x)dx + q(x) ()S^^L dx - HJ"(x)dx,

or:

H Y'{x) - Wc(x) - q{x) -{x)~(*iX) (1)

For the lateral deflection of the lateral truss:

Wt(x)dx — q(x) dW^-yW dx - dV - - M"{x)dx (IEd" (x))"dx,
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or: (IEÖ"(x))" - M"(x) Wt{x) - q{x)
d{x) 7~ JM.. (2)

/Z (X)

In these equations zf(*) indicates the lateral deflection of the cable and
d(x) the same for the lateral truss.

The wind forces Wr(x) and W6(x) and the corresponding deformations

will produce some change in the cable tension H H^ + Hs to
H Hw + Hs + Hh where Hw + Hs is the cable tension due to dead and
live load and HL is the additional tension due to lateral loads.

The length of the cable element dL under dead and live load is dL2
dx2 + dy2, dx and dy being projections in horizontal and vertical directions
respectively. Due to the lateral forces as for instance wind pressure, the
length of the cable element will change to dL + edL with projections dx + d!~

along the span, dy -f- d)j and dA in vertical and lateral directions respectively.
We have:

(dL + edL)2 (dx + dB)2 + (dy + d >y)2 + dA2.

Assuming di2 to be a small quantity of higher order we obtain the
following equations:

-£^ Ls ^(A'(x))*dx + j/,/**+* j (r/Ydx,

or:

-£L- Ls
-1

J (A> (x)Y dx - /' J h dx + 1 j (>;y- dx. (3)

For the vertical deformation ij the following expression may be
obtained :

//,16/ sinh g sinh |(l- *) „ r^1 ^771 7
L — ~„y> where c iy-—.Hc cosh j- H f UE

It is the moment of inertia of the stiffening girder. Inserting this

expression for )] in equation (3) and neglecting the therm -^ (rj')2dx as a small

quantity of higher order, we obtain:

1 H*(*)Ydx 21H
2

ECAC
16/2 T12 (2 c -'Kil ~32/2»i -T —r '1 " ; : — « vm m*))2^ (4)ji\(A'(x))*dx.

Equation (4) determines Ht and thus H =-Hw + Hs + Hh
\\ may be shown that the additional cable tension Ht is small, usually

less than 1 °/00 of H and thus of no importance in comparison with Hw
and Hs. We get for instance in the calculated example: For lateral truss
hinged at the towers Ht= 42,6 tons or 0,95 %0 of H which is 44700 tons.
For continuous lateral truss we get Ht 13,3 tons or 0,3 %0 of H.

The increase in cable force in this exceptionally long Suspension bridge
is insignificant and as Ht will be comparatively less in smaller bridges we
may always put HL 0 and H HW + HS without making any error noti-
ceable in the results of the computations.
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B) putting Ht 0 and H —Hw + HS constant for a given vertical
loading of the bridge, the principle of superposition will be valid for all
lateral loadings. In other words we may divide the lateral loadings into
symmetrical and asymmetrical parts and treat these independently of each
other. This will in many cases simplify the computations considerably, but
is otherwise of no importance for the deductions.

We return to equations (1) and (2). These can only be solved by labo-
rious numerical computations by successive approximations 3. Especially in
the case of unsymmetrical bridges or complicated distribution of the lateral
forces Wt(x) these computations become very troublesome.

If we can put the stiffness of the lateral truss IE constant within
each span, the equations (1) and (2) may be solved to any degree of accu-
racy. We rewrite the equations:

HA"(x) -Wc(x)-g(x) JW-JW-, (5)

and:

IEd""(x) - M"(x) Wt(x) — q(x

h{x)

A(x) A(x)
k(x)

(6)

We introduce the following Substitution into equations (5) and (6)
d(x) — A(x) _y A?(*)

h{x)
sin 7i r — Btt B, l (7)

By this Substitution equations (5) and (6) become directly integrable
and we have only to take into account the different boundary conditions
at the ends of each span.

Solution for Bridges with Continuous or Discontinuous
Lateral Truss.

From as Suspension bridge with an arbitrary number of spans we cut
out one span, as shown in Figs. 1 and 2, for closer examination.

hM qM

girrt.
JnEUn.t

WWW

Fig. 1

In the investigation we at first consider the moments at the supports
Mn and Mn as known, and indicate their deformations of the simply
supported lateral truss with Mmdm(x) and Mndn(x), where öm(x) and dn(x)
indicate the deformations due to moments Mm 1 and Mn 1 respectively.
For a constant stiffness of the lateral truss we have:
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Mm 6m (x) Mm^ l-JL (l - f-y-)3);

Due to the lateral forces on the span under consideration and on the
neighbour spans, the towers will suffer certain deflections, see Fig. 3. These
deformations of the towers called rj, v and |, must be assumed given or
determined by a preliminary computation.

JnE

m low

fWt(x)
u^iJiLLlilJjikaui ip[dW

WM
J-uujjmLLm ii in [jUEurnn

\Jl

ECAC

h(xj

yf
Jm

Fig. 2 ^ 3

Introducing Substitution (7) into equation (5) and integrating twice
we obtain:

M*) -~\\wc{x)dx + JLj2}£s\nnr± + ±B0x* + JLß/JC3+Cx + D.

By introducing: —— Wc(x)dx —~- A0(x), which is equal to the lateral

deflection of a free hanging cable under the lateral load We(x), and the
boundary conditions: x=0; A(x) r]0 and x l; A(x) t]h we obtain Z>= r]0;

C 2/T
B,
,,-7/+ -—r—, and with all this introduced in the equation:ÖH l 1

A (x) A0 (x) + 7l2H s
+ Vo

sin nr + 2H (x2 ix>+6%<X' Px)

IT + r* T (8)

By integrating equation (6) twice in the same way as done above, and
taking into account the boundary conditions at the supports we get:

M(x) M0(x) + Mm l~T^ + Mn * l*Ar. x B
(x2 — Ix)

dl (xs — l2x), (9)

where M0(x) is the moment on the simply supported truss under the load
Wt(x). Mm and Mn are the moments at the supports and are temporarily
considered to be known.
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By integrating the equation (9) twice we obtain the following equation:

6(x) d0(x) + Mmöm(x) + Mndn(x) — -^j^ 2 / sinnr ]

+ 2pki{x"-2lx" +[3x) + mrE{3x° ~~10/2*3 + 7/4x)

+ *o~ + v,±, (10)

where d0(x) is the deflection of the simply supported truss under the load
Wc(x), the deflection due to the moments at supports Mmdm(x) and Mndn(x)
and the boundary conditions <5(0) ==- v0; d(l) =vL.

We have thus found the necessary expressions for Computing d(x) and
A(x). It remains to determine the constants Ar\ B0 and Bh The moments
Mn, and Mn are still considered to be known.

To determine the coefficients A„ B0 and BL we produce another set of
equations by demanding the Substitution (7) to be satisfied when we intro-
duce S(x) and A(x) from equations (8) and (10) into equation (7), or:

A / \ a / \ * (X) ^ a ' X k (X) r> k (X) n * K/^

+ Mmdm(x) + M„d„(x) — ~jE £ yf sin^r * + ~°E (x* - 2lx* + Px)

+ mrw(3*6 ~ l0l*x*+ llix) + v° 1~t1 + r'x - A« w
P __ Ar x Bn „ „ B, „ ,„ / — x xhi^>^rl--2%^-^-fkl^'-l2x^
Arranging this yields the following equation:

Vo-T- V

„ (h(x) P P \ x (h(x) x4 — 2lx3+Px
% Aqjxj + ^TEr^ + n*Hl*)*mnr-l M?W + *4TE

t2 — lx\ _ (h(x) x 3xs — \0Pxs + IPx xs — Px\ i/v2H 1 ' ' \q(x) / ' 360/£7 dHl

+ Mmbm(x) + M„dn(x) - A0(x) - f0 l~=[^ ~h ]¦ (11)

As we have r] — v f.
To determine the series ^Ar with k terms we must demand equation

(11) to be satisfied for k-\-2 different values of x. Two of these values
naturally will be for x 0 and x l. For these values we get:

ß°-^oÄ(ö) and B'-^m)~-°wy
The two constants B0 and Z?/ may thus be computed directly when the

deflections of the towers are known.
In equation (11) remains as unknown coefficients only Ar, as Mm and Mn

are considered to be known. To determine the series with k terms the ne-
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cessary equations are produced by demanding equation (11) to be satisfied
foi the values xly x2,...xk. For all other values of x the equation (11) will
be approximately satisfied.

How many terms Av A2, A%,... must enter into a computation depends
on the size of the bridge and the loadings. For smaller bridges 1—2 terms
and for larger ones 3—5 terms will be sufficient.

As mentioned before, we may assume the principle of superposition
valid without restriction. For bridges symmetrical about the centre the
lateral loadings may be divided into a symmetrical and an asymmetrical part
and we may determine the coefficients Ar by a set of equations corresponding

to the symmetrical loading for r odd, and one corresponding to an
asymmetrical loading for r even. Especially for very big bridges where the
series have to be determined by many terms this will mean a considerable
reduction of the computations.

Equation (11) gives an expression for Ar of the form:

Ar ar + ßrMm + yrMn.

The first term &r is the value we get for Ar when the lateral truss is hinged
at the towers.

It now remains to determine the moments at the supports Mm and Mn.
This is obtained by putting d'(l)m d'(0)n at the towers, the index tn and n
refers to the number of the span under consideration. For the slope of the
lateral truss we have:

d'(x) do(x) + Mmd'm(x) + Mnd'n(x)
l3

'IE

+ B0
4x3 — 6lx2 + l3

D
15jc4

h Bi
30/2*2 + 7/4

24 IE ' ' 360IIE

For the ends of the span we get:

r)'(O) <>o(0) + Mmd'm(0) + Mnö'n(0) -

-=- cos ji r

(vo — vl) (13)

/3 Ar /3

IE 2rs + B°24IE

+ Bk
ll3

/3607Z +
*7 — ^o

/

&(l) <«</) + Mmd'm(l) + Mnd'n(l)~

ld „ 8/3
i^IE ^ r3 v \y

— Bt0 24 IE Bi 360 IE + n- Vn

l

(14)

where Mm and Mn also enter into the coefficients Ar.
As we assume the stiffness of the lateral truss to be constant within

each span, we get directly:

ä'm(0)
/

3IEy d;(/)= "67f and d-<0> 67f; d-W - /
3/E'

By putting the slope of the ends of two neighbour spans meeting at
the tower m equal, and arranging the equations in regard to the unknown
quantities Mh Mm and Mn we obtain an equation of the form:

amMt + bmMm + cmMnz= dm. (15)
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For each tower we get an equation of this form, and the moments at
the towers are determined by solving a set of linear equations of the type
of equation (15).

When the moments at the towers have been found, these are introduced
into the formula for the coefficients Ar which are of the form:

Ar cLr -r ßrMm + yrMn,

and thus all data necessary for Computing load transfers, shearing forces,
moments and deformations in a continuous lateral truss have been found.

In order to carry out a complete calculation of the lateral truss and the
towers we have in addition to equations (8), (9) and (10) also to deduce
formulas for the shearing forces V and T in lateral truss and cäbles respectively.

For the shear V we have:

„w ™a M4. M„

— Bi

l
3x2

Mn l Ar xV — cos n rn ^ r l B0
2x — /

6/ (16)

where V0(x) is the shear in the simply supported lateral truss under the
loading Wt(x).

The cäbles will transmit a shearing force to the towers equal to:

-r/ \ wjdA(x) i, \ I xr\Ar x D 2x — /
T(x) H-^T= vc(*) + 7S7 costt/-^ + B0

dx l

+ Bi 3x2- l2

6/ + Ŵ- H

where Vc(x) is the shear due to the loading Wc(x) acting on the cable as
a simply supported beam.

At the towers with x 0 and x-= l respectively, we get the reactions
on the towers:

K(0) K0(0)— Mm~Mn l ~A>> ~ l ¦ ~ lMn l Ar l
^ Zj T + ö° 2 + Ag,

and:

V(l)= V0(l)
M„ -*L._±^_V. Bn

(17)

R l J-T'l~ 'JO Hr(0) Kc(0) + ^S7-~ß«i
and:

T(l) VC{1) + -L%A--(-\Y+B0-L + Bl±+-t^-^H.
(18)

Thus we have determined all the equations required for the computa-
tion of the lateral truss and the towers of a continuous or discontinuous
Suspension bridge under any lateral loading W^(jc) and Wc(x). For a discontinuous

bridge we have only to introduce Mm and Mn as zero.
When we compute bridges where the deflections of the towers may

be expected to be of some importance, a preliminary design must be made
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where the towers are assumed to be undeformable. In this computation
the constants B0 and Bt will equal zero, and it will be sufficient to determine

the series Ar with two or three terms. With the results of this prelimi-
nary computation the lateral forces acting on the towers are determined
from the equations given above. Besides this we have an axial force in the
towers. With all forces acting on the towers given we may calculate the
tower deflections.

Usually the tower deflections obtained from the preliminary and the
exact calculations will differ but little.

If the moment of inertia / of the lateral truss is varying, for instance
as shown in Fig. 4, we may approximately take into account the effect of
this Variation by introducing the actual deflections bm(x) and ön(x) which
the moments Mm 1 and Mn — 1 will produce in the truss acting as a simply
supported beam. This will not be quite correct but it will be a very good
and easy approximation, which will give a sufficient degree of accuracy.

VnE

Fig. 4

The method for the calculation given above may be used on Suspension
bridges of quite an arbitrary form and for any combination of loads. We
may for instance work out the calculation for a moving concentrated load
and use the results to design the influence lines.

Example.
In the following we shall employ the method presented on the bridge

shown in Fig. 58.
As shown in Figs. 5 and 6 the bridge will, due to unsymmetrical live

load, p(x) 9 t/m., have to be considered as an unsymmetrical bridge loaded
with an unsymmetrical live load.

We have the following data:

lx 300 m., l2 1200 m., /3 300 m., IXE I2E I3E =2 X 10 9 tm2.

H 44700 tons. The remaining dimensions may be seen in Fig. 5. Weight
of cable qc 9 t/m. Weight of lateral truss and roadway 17, 23,75 t/m.

MW

U-XOmL-1200m

llllll I III IUI III II

llllllllllllllllll
Ulli IIIIIIHTTTTTT

faSt/m
iiiiiiiiiiiiiminiHiiiiHiiiiiiiiiiiiiiniiiiiiiiHlllllllllliiiiiiiiii iHHE

,qr23.75't/m

iiiiiiiiiiiiiiiiiiiiiiiiiimiHiiiiiiiiiiiiii|iiiiiiiiiiininiiiiiiiini

A,p-9t/m
iiiiiiiiiiifiiiiiiiiiiiiiiiii iiiini jL 0t/m

n 11 in ii ii 1111 ii 11

iiiiiiiiiiniiiiii

Fig. 5
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Live load p 9 t/m. load carried by the hangers, owing to dead load q(x)
qt~= 23,75 t/m., owing to combined dead and live load q(x) =- qt + /?

32,75 tm. We assume the stiffening girder to be too flexible for distribution
of the load on the hangers. At the centre of the bridge we assume

q(x)^qt-r i/? 28,25 t/m. Wind forces on the cäbles: Wc(x) 0,2 t/m.
Wind forces on the unloaded part of bridge: U^(a:) 1,8 t/m., and on the
loaded part: Wt(x) 2,3 t/m.

>*-xVi rccv
\\ KW\

Wc(x)=02t/m
I II I I I I I I I I I I I I 1 MIMI I I ' II I I I I I I I I I

I I I 1 I I II I TD

WtM-23t/m Wt(x) 18t/m

mm LUJ mm

gOWm OM8m 0719 0806 0719 0UU8

H FNa„#)
atOSm &--O00K9 fey-4-^- AsoW'A2o(x)

0082m

m-oms
M ao°M bfio

W)
Mj'W'lm

0222m 0278m
002 3055m
JL i/ tum U500 3555 19Mm

¥
VriM 0005 -001

10sS2I(x)

OOMm

Fig. 6

^*H

275n

Fig. 7

The wind loadings Wc(x) and Wt(x) together with the functions d0(x);
A0(x) and S/(x) are shown in Fig. 6, the slope dD'(x) and ö/(x) at the
supports are also shown. Fig. 7 shows dimensions of the towers. The lateral
stiffness of the towers is: /£= 3,5 X 109 t/m2. As towers with this stiffness
suffer considerable deformations these will have to be taken into consideration.

To distinguish the three spans from each other all coefficients and data
carry a double subscript, for instance A2b is the coefficient Ab in span no. 2.

Preliminary calculations of tower reactions with the series Ar determined

by three terms for main span and by two terms for side spans and
with the towers considered to be nondeformable and the lateral truss to be
hinged, yield loadings on the towers corresponding to the following
deformations :

£, 0,708 m.
hi 0,678 m.

For tower I: rtI 0,807 m; vf 0,101 m and
For tower II: ?/7/ — 0,773 m; vu 0,095 m and

These deformations will enter into the following calculations and will here
be used both for the case of hinged and continuous lateral trusses.
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Determination of the coefficients B0 and B± (Eq. 12):

32 75 32 75
BlQ - 0; fix/= 0,708-j^- =-0,1518t/m; £20 0,708°^ 0,1518t/m;

23 75 23 75
ß2/ 0,678 ^— 0,1518 — 0,0465t/m; £30 0,678 ^^ 0,1054 t/m;

Bu — £30 — 0,1054 t/m.

Thus all external forces required for Computing the coefficient Ar are
given. We determine the series Ar with 2 terms for the side spans and with
5 terms for the main span as this yields sufficientiy accurate results.

For span No. 1 we have at point x=-\ l equation (11):

/42,16 3004 3002 \ n /42,16 3004/42,16 300* 3002 ^ n /42,16
Al1 \32J5 + ^.2-109 + Tr2-44700 ;Sm 3 + Al2 \32J5 +

2300
+ n2- 44700 .2ä,Sin

2n ni^is/42'16 J 3(t) 10(t) +7Tqnn4
T =0,1518 \^ 3 + 36Q.2. 10,

300

- ^44700 3002j + 0,105 + yW/2,22 • 10"6 — 0,044 — 0,708 -L

For span No. 2 we get at point x - 6 / from equation (11):

n A
1 6Q,7 12004

sin-. + ^„ ___- +
/ 69,7 12004 12002 \ *

21 \32775" + ^*2.109+jr244700/S1""6 ' "aä V32,75 ' jt42.1092*

12002 \ n_ / 69,7 12004 12002 \ n+ 7i244700 .22/S'n 3+ 23\32,75 + n*2 ¦ 109 3* + tt244700 • 32/ Sl" 2

/ 69,7 12004 12002 \ 2« / 69,7
+ ^ 132,75 + Ti* 2 ¦ 109 44 + 7t2 44700 • 42/ Sm

3 + ^25 132,75

12004 12002 \ 5n
+ 7r42.109.54+7T244700.52/Sm 6

°'1518V32,75(^L +
(t)-2(t)'+I

12004_ ÜHI). 1200,,i
132,75 + 24 • 2 • 10«

^UU 2 • 44700
12UU j

l)5-10(l)3+7l (|)3-| x
6/ 16/ ^ 6 1200* ^b' 6

12002
^360-2. 109

U
6 • 44700 !*W

5 1

+ 14,152 + Af/3,055 • 10~5 + Af7/1,944 • 10~5--0,448 — 0,708^ —0,678^.

And for span No. 3 equation (11) will become for x=\l:
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/93,16
" \23,75

3004 3002 \ 7i
A" liS + n^'lO» + ^4l700J Si"

3 + A™
/93,16
V23,75 * 7c4

3004

+
3002

n244700 • 22
SU1

3 ~ °'1054
\23,75

42109-24

93,16 (i)4-2(ij +T
+

(l)!
2•44700

1\3 1

300! n,nc,/93,16 1

°'1054l 23775- T +

1\5

24-2-109

360 • 2 • 109

3004

3004

(i)'g^^ 300 2J + 0,082 + Mn 2,78 • 10"« - 0,044 - 0,678 -^

The remaining equations for the three spans are found in just the same
way. The equations are given in the tables below.

Span No 1.

*1 An **¦ 12 M yW710-6

V./i
f/./i

1,329
2,633

1,161
-2,510

-0,091
-0,104

2,22
2,78

Span No. 2.

*s i421 /I22 ^23 ^24 ^25 N2 MjlO-6 Af7/10~5

Uh 8,014 3,126 2,622 2,056 1,136 14,490 3,055 1,944
'/.. 4 12,431 1,786 o, -0,727 -0,643 24,631 4,444 3,556
'/./• 14,006 0 -0,600 0 0,254 28,425 4,500 4,500
a/*4 12,624 -1,980 0 0,921 -0,837 24,098 3,556 4,444
Uh 8,418 -3,825 3,424 -2,755 1,542 14,169 1,944 3,055

Span No 3.

x, ^31 ^32 N5 yW7/10-6

3,610
1,750

3,440
-1,583

-0,089
-0,106

2,78
2,22

In the tables the sign N is used for the terms:

N - R f*M xi-2lxi + l3x
_

x2~lx\ /A(x) x 3xb-WPx3+7Px
°\q(x) + 241E 2ff )+ l\q{x)l + 360lfE
x3-Px\
6ffl + d0 (x) - A0 (x) - |0

l-
l $t-r, see equation 01)

The solving of the above equations for Ar give the following results:
For span No. 1:

0,0546 + 1,38 Mt 10~6.
0,0158 -f 0,34 Mi 10-e.A12 —

Abhandlungen VII 21
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For span No. 2:
A21 1,9812244 + 3,208163 Mx 10-6 + 3,183674 Mu 106.
A22 0,1753247 + 2,245826 Mx 10-6—1,922078 Mu 10-6.
^423= — 0,8877938 — 0,19105 Mx 10-6 — 0,60728 Mu 10-6.
AM=— 0,1217391— 0,70870 Mx 10-6 + 0,64783 Mlx lO"6.
A2b-= 0,5642023 — 0,17445 Mx 10~6 + 0,17575 Af„ 10-6.

For span No. 3:
A61 =- — 0,0431 + 1,02 Mxx \0~Q.
Ad2 0,0194 — 0,264 Mxx 10~6.

Lateral truss hinged at the towers.
For this case we have only to introduce Mx Mn 0 in the calculations

above. All the coefficients Ar are then directly given and thus all necessary
data for determining transfer of forces, shear, moment and deflections have
been found. The results of these calculations are shown in Fig. 8. As may
be seen, the transfer of force from lateral truss to cäbles will reduce the
moment at the centre 4o about 23 o/o of what it would have been in a simply
supported truss.

Checking the deformations of the towers by the final values of the
coefficients we get:

For tower I: i?7 0,835 m; vf — 0,101m; f7 0,734 m.
For tower II; i;/7 0,784 m; vu ^ 0,095 m, f/7 0,689 m.
These values agree so well with those of the preliminary calculation

that any correction is unnecessary.

Continuous lateral truss.
All the coefficients kr are calculated above, it remains now to find the

constraint moments M\ and Mu.
Introducing the calculated coefficients Ar into equations (14) and (15)

and arranging we get the two following equations for the moments at the
supports M\ and M\\\

Continuity at tower No. I gives:
0,15275 M\ 10-6 + 0,01829 Mn 10-6^ — 0,025730.

Continuity at tower No. II gives:
0,01835 Mi 10-6 + 0,15503 M„ 10-6 — 0,024252.

The solving of this equations yields:
iWi —1515860 tm.; Mn — — 138460 tm.

We have now all data required to determine the final coefficients An
force transferred from lateral truss to cäbles, shear, moments, and lateral
deflections of truss and cäbles. The results of these calculations are plotted
in Fig. 9.

Checking the deformations of the towers we get:
For tower I: % 0,558 m; v, 0,083 m; g, 0,475 m.
For tower II: rln 0,506 m; v„ 0,074 m; £7/ 0,432 m.
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In this case the deformations of the towers are considerably less than
given by the preliminary calculation. However, another calculation with
improved tower deflections would only change the results to a slight degree,
and it will not be made here.

V//, Charge prise par le cable—Kabellasl-
nüm/VA * Load laken by cable

\\^\ Charge prise par la poulre —ßalkenfasi-
xXXX Load laken by iiruss%%(*) 5£ZZ

WM

ISOt/m

Force de cisaillernenI
QuerkraFI
Shear

VM

+ -S

Momenl M(x)

Fleche de lapoulre Sfi)
-Durchbiegung des Balkensoft
DeFleclion or iruss S(x)

Fleche du cable A (x)
— Durchbiegung des Kabels A fc)

DeFleclion oFcable Afx)
Fig. 8

We have, however, for shearing force :-^A2b,

As will be seen A2b turns out comparatively large in the calculations.
This indicates that more terms should have been included, for instance A27,
in order to get a more correct representation of the force transferred from
the lateral truss to the cäbles, see Fig. 8 and 9. In an unsymmetrical case
like the present one this would increase the work of calculation very much.

and for the moment: -^ A25,

so that in plotting diagrams for shear and moment the term A2b will yield
a sufficient degree of accuracy, see Figs. 8 and 9.

By comparing the diagrams for moments and deflections in cases of
continuous and hinged lateral trusses it will be seen that the advantage of
making the truss continuous is the reduction of the lateral deflections. The
maximum positive moment will of course be reduced, but on the other hand
large moments will appear at the supports by far surpassing the positive
moments at the middle of the span.
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/, Chargeprise par le cable - Kabellast —
Load laken by cable

\N Charge prise par la poulre ~ßafkenlasl •—

TO!ro\

Load laken by Irusswm
S^S

WJx)

2m/r
Force de cisaillement V(x)
QuerkraFI V(x)
Shear VM

Moment M(x)

Fleche de la poulre S(k)
Durchbiegung des Balkens S(>
DeFleclion oF Iruss SM

Fleche du cable A (x)
Durchbiegung des Kabels Ä (x)
DeFleclion oF cable A (x)

Fig. 9

As the chords of the lateral truss consist of the stiffening girders it
will be easily seen that an increase in the cross sectional area of these,
needed to take account of the large lateral moments at the towers, also
gives an opportunity to increase the moment of inertia of the stiffening
girder, which in turn will take into account the large moments in the stiffening
girder at the towers, owing to vertical loadings. The recently brought-out
constructions with continuous stiffening girders without supports at the
towers (floating truss) should accordingly hardly be justified. In general
we should bear in mind that for larger Suspension bridges it will be the
action as cross section in the lateral truss that gives the lower limit for the
dimensions of the stiffening girder.
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Summary.
The calculation of the lateral truss of Suspension bridges is achieved

by expressing the cäbles relieving of the lateral truss as a Fourier
series. By this Substitution all the equations become directly integrable,
and we may find equations for the calculation of a Suspension bridge of a
completely arbitrary form across an arbitrary number of spans, and with
continuous or hinged lateral truss.

Resume.
Le calcul du treillis lateral des ponts suspendus est etabli de la facon

suivante: on exprime la decharge du treillis lateral due aux cäbles par une
serie de Fourier. Ceci permet d'integrer toutes les equations du probleme.
II est aussi possible d'etablir les equations pour un pont suspendu de forme
arbitraire ä un nombre quelconque d'ouvertures, dont le treillis peut etre
continu ou interrompu.

Zusammenfassung.
Die Berechnung von Windverbänden der Hängebrücken wird so

ausgeführt, daß man die Entlastung des Windverbandes durch die Kabel als
eine Fouriersche Reihe ausdrückt. Durch diesen Ansatz werden alle
Gleichungen direkt integrierbar. Es ist auch möglich, Gleichungen einer Hängebrücke

mit willkürlicher Form und beliebiger Anzahl Felder, mit
durchlaufendem oder unterbrochenem Windverband aufzustellen.
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