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TEMPERATURVERLAUF
UND WÄRMESPANNUNGEN IN MAUERN BEI
OSCILLIERENDEN AUSSENTEMPERATUREN.

OSCILLATION DE LA TEMPERATURE ET CONTRAINTES
THERMIQUES DANS LES MURS SOUS L'EFFET DE TEMPERATURES

EXTERIEURES PERIODIQUEMENT VARIABLES.

TEMPERATURE VARIATION AND HEAT STRESSES IN WALLS
SUBJECTED TO PERIODICALLY CHANGING OUTSIDE TEMPERATURE.

Prof. Dr. M. RITTER, Eidg. Techn. Hochschule, Zürich, Generalsekretär für
Eisenbetonbau der I. V. B. H.

Anläßlich der Ausarbeitung von Berechnungsgrundlagen zur Bemessung
bogenförmiger Staumauern wurde die Aufgabe behandelt, die Temperaturverteilung

und die davon herrührenden Spannungen und Formänderungen
in einer homogenen Mauer konstanter Stärke anzugeben, wenn sich die
Temperaturen an den Oberflächen nach periodischen Gesetzen ändern. Die
Lösung, die nachstehend vorgeführt wird, ergibt sich mit Hilfe der klassischen
Theorie der Wärmeleitung nach Fourier; sie gelangt zu relativ einfachen,
geschlossenen Formeln, die sich leicht zahlenmäßig auswerten lassen. Wenn
die Amplituden der Temperaturschwingung an den beiden Oberflächen
ungleich sind, so erleidet die Mauer eine Krümmung; der entstehende
Formänderungswinkel wird u.a. benötigt bei der Berechnung der sogenannten
Wärmespannungen in Brücken- oder Talsperrengewölben.

1. Grundlagen.
Es wird angenommen, daß die Temperaturen &1 und $2 an den beiden

Oberflächen mit der Zeit t ohne Phasendifferenz, aber mit verschiedenen
Amplituden #10 und #20 schwingen, entsprechend den Gesetzen

n ci ^7lt a n 2ut
#1 ^10 • COS-y-, #2 #20 • COS -y- (1)

Darin bezeichnet T die Periode der Schwingung, in den Zahlenrechnungen
zweckmäßig in Stunden auszudrücken. Für den jährlichen Ablauf der
Lufttemperatur ist T=\ Jahr =8760 Stunden zu setzen.

Die Mauer besitzt die konstante Stärke d und wird als seitlich
unbegrenzt vorausgesetzt (vergl. Fig. 1). Die Temperatur $ im Innern der Mauer
ist dann aus Symmetriegründen nur eine Funktion des Abstandes x von der
einen Oberfläche, nicht aber der andern Koordinaten (linearer Wärmefluß).
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Somit gilt die klassische Differentialgleichung der Wärmeleitung1) eines
Stabes, der längs der Mantelfläche keine Wärme abgibt:

77 — a
öx*

(2)

I— -I
Fig. 1

Darin bezeichnet a die sogenannte Temperaturleitzahl, die sich
aus der Wärmeleitzahl l, der spezifischen Wärme c und dem Raumgewicht
y berechnen läßt. Es ist

cy
Dim. mz

Std/

2. Temperaturverlauf.
Die Temperatur # im Abstände x von der Oberfläche, zur Zeit t, berechnet

sich durch Integration der Differentialgleichung (2) und
Anpassung der Integrationskonstanten an die Randbedingungen (1). Man
erkennt zunächst leicht, daß die allgemeine Lösung von Gl. (2) sowohl Glie-

9 / 9 4

der mit cos als auch solche mit sin -y— enthalten muß, da nur dann

Gl. (2) identisch erfüllt wird. Somit kann man schreiben

2/r/ 2rct
fr cos -=r- • / + sin -=- <P: (3)

worin / und cp Funktionen von x allein darstellen. Setzt man diese Lösung
in Gl. (2) ein, so erhält man die Beziehung

2rttsm— / +T
OL

2kh) cos
27tt

cp- r
2k2

worin zur Abkürzung

(4)

(5)

gesetzt ist. Damit Gl. (4) identisch, d. h. für jeden Wert t erfüllt ist, müssen
die Klammerausdrücke in Gl. (4) verschwinden; daher ist

/
<P

2 k2
und cp IL

2k2
(6)

Für die Ableitung und die Definitionen der verschiedenen Koeffizienten vergl.
die Lehrbücher der Physik, Abschnitt Wärmeleitung. Für den Bauingenieur besonders
geeignet ist das ausführliche Spezialwerk von Grober-Erk, Grundgesetze der Wärmeübertragung,

Verlag Springer 1933.
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woraus /"" + 4k^ / 0. (7)

Die allgemeine Lösung dieser totalen Differentialgleichung
setzt sich aus sogenannten Produktfunktionen zusammen, das sind

Produkte aus trigonometrischen und hyperbolischen Funktionen; die Lösung
lautet 2)

f A cos kx Cos kx + B cos kxS\n kx + Csin kx Cos kx + D sin kx Sin kx, (8a)

worin A, B, C, D die vier Integrationskonstanten darstellen, die mit Hilfe
der Randbedingungen (1) auszuwerten sind. Gl. (6) ermöglicht die
Berechnung der Funktion cp aus /; man findet

cp -ylsin^ArSin^x-ßsinÄJc Cos£x-f Ccos^JtSin^x-f Dcoskx Cos^x (8b)

Für x= 0 und x d muß Gl. (3) in Gl. (1) übergehen, woraus sich die
Integrationskonstanten wie folgt ergeben:

x — 0, f Oio, tp — 0.

Mit sin^jc 0, Sin^x 0, cos^x 1, Cos^x 1 liefern die Gl. (8)
f A d10f D 0.

X — d, f ^20 cp 0.

Die Gl. (8) gehen für x d über in

#20 D10 cos kdCos kd + B coskd^Ankd + CsxnkdCoskd,
0 —^io sin kdSin kd — B sin kdCos kd + C cos ^Sin kd-y

die Auflösung ergibt
#20 cos kd Sin kd — #i0 Cos kd Sin £d

C

Cos2 kd— cos2kd

x>2o Cos kd sin £d? — #i0 cos kd sin M
Cos2 kd — eos2 kd

Zur Vereinfachung der Berechnung führt man zweckmäßig die
Verhältniszahl

ein, sowie die neuen Konstanten

B0 — und Co —^10 t/lO

Man erhält aus B und C

c- t.neoskd—Cos kd
ßo - SU1 *rf -Co^kcT=^^M '

„ nCoskd—coskd
Cö S,nMCos47-^W' <9)

Für die Funktionen / und cp ergeben sich jetzt aus (8) die Beziehungen

2) E. Kamke, Differentialgleichungen, 1939.
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/ — fr10 (cos kx Cos kx + B0 cos kx Sin kx + C0 sin kx Cos kx),
cp fr10 (— sin kx Sin kx — B0 sin kx Cos kx + Co cos kx Sin kx).

(10)

Nach Auswertung dieser Funktionswerte findet man den Temperatur-
ausschlag# zur Zeit t an irgend einer Stelle der Mauer gemäß Gl. (3) zu

2rd e 2ut
cos —=- - f + sin —— cp.

3. Amplitudenkurve.
Der Ausschlag & erreicht sein Maximum (Amplitude) im Zeitpunkte tQ.

Aus

ergibt sich

6Ü n 2/r/ 27ct0 2tt/0 \
77=0 -(-s,n^^./ + coS-^.(pj

tg
2/r 4

f ' Ol)

Wird dieser Wert in Gl. (3) eingesetzt, so erhält man

271 ta 2ilt{$
cos —r=r- • / + sin -—- • cp

7+tg-y- -<p

»n ir- + <p2 (12)

Damit läßt sich die Amplitudenkurve aus den Kurven / und cp leicht
konstruieren; man überträgt am Fußpunkte der Ordinate / die Strecke cp auf
die Horizontale und zieht die Diagonale, vergl. Fig. 2.

*!

Fig. 2

Zu der Amplitudenformel (12) gelangt man auch unmittelbar mit Hilfe
der Gl. (3), da sich diese leicht auf die Form bringen läßt:

fr \jf2 + cp2 • cos
2 7lt

are tg (12a)

Man erkennt, daß die Temperatur im Innern der Mauer mit der Periode T
schwingt; jedoch ist gegenüber der Schwingung an der Oberfläche eine
Phasendifferenz vorhanden, die von x abhängt.
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4. Graphische Darstellungen.
Man gewinnt die erwünschte Übersicht über den Temperaturverlauf in

einer Mauer durch die zahlenmäßige Ausrechnung und vergleichende
Darstellung der Amplitudenkurven ftmax für verschiedene Mauerstärken d,
Perioden T und Randbedingungen #2o:^io- Zu den Zahlenrechnungen benützt
man vorteilhaft die vorhandenen Tabellen der Kreis- und Hyperbelfunktionen

mit den natürlichen Zahlen als Argument3).
In den Figuren 3 und 4 sind die Ergebnisse der Berechnung solcher

Amplitudenkurven dargestellt für die Mauerstärken d=\, 2, 5, 10
und 20 m und die Perioden T 720 Stunden 1 Monat) und T -= 8760
Stunden 1 Jahr). Die Berechnungen beziehen sich auf homogenen
Beton unter Annahme folgender Materialkonstanten:

Wärmeleitzahl l 1,0
kcaL

Spezifische Wärme c 0,21

m Std. Grad'
kcal.

Raumgewicht y 2400 ~\.
kg Grad'

m3

Die Temperaturleitzahl a hat somit den Wert

- - * - 1'°
0,00198

m2

c y ~ 0,21 • 2400 ' Std. '

und der Parameter k beträgt

für T 720 Std. * }/ö£öl£7720 ^ ^'
für T 8760 Std. * ^^^ 0,43 m-.

Man erkennt aus den graphischen Darstellungen, daß bei einer Mauer
von 2 m Stärke und darunter im Falle einer Jahresperiode die Temperatur
nahezu linear verteilt ist. Die Temperaturschwankung in der Axe sinkt aber
mit zunehmender Mauerstärke wesentlich und beträgt bei einer Mauer von
20 m Stärke nur noch einen kleinen Bruchteil der Oberflächenamplitude. In
den Fig. 5 und 6 sind die maximalen Amplituden in der Maueraxe in Funktion

der Mauerstärke dargestellt. Im Falle der Periode T =\ Monat macht
sich die Temperaturschwankung in der Mitte einer Mauer von mehr als
5 m Stärke praktisch nicht mehr geltend.

5. Wärmespannungen in der freistehenden Mauer.
Der Temperaturverlauf nach Gl. (3) erzeugt in der Mauer Formänderungen,

die die sogenannten Wärmespannungen zur Folge haben.
Wir berechnen diese zunächst für eine freistehende Mauer, das heißt
für eine Mauer, die nicht durch äußere Auflagerbedingungen in ihrer
Formänderung behindert ist. Jeder Normalschnitt (Querschnitt) ist hier ein Sym-

3) K. Hayashi, Fünfstellige Tafeln der Kreis- und Hyperbelfunktionen, Leipzig 1921.
Hütte I, 27. Auflage 1941, Tafel Nr. 8.
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Fig. 3. Amplitudenkurven T l Monat 720 Stunden

Courbes des amplitudes T=l mois 720 heures
Curves of amplitudes T l month 720 hours
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0.2 0.3 O.U 0.5 0.6 07 0.8 0.9

m n-0.5

d-lm
d=2m

=5m
0.5
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d=20m
Wd0 ^ 0.1 0.2 0.3 O.U 0.5 0.6 0.7 0.8 0.9
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Fig. 4. Amplitudenkurven T l Jahr 8760 Stunden
Courbes des amplitudes T l annee 8760 heures
Courves of amplitudes T l year 8760 hours
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metrieschnitt, bleibt also bei der Formänderung eben und wird durch
Normalspannungen, nicht aber durch Schubspannungen beansprucht. Die
Wärmespannungen bilden in jedem Schnitte ein Gleichgewichtssystem
(Eigenspannungen).

ty

075

025

Periode - Periode -Penod T= 7 annee - Jahr -year

n-05

20 d
in m

Fig. 5. Maximale Amplituden in der Maueraxe — Amplitudes maximales dans Taxe du mur
Maximum amplitudes in axis of wall

w max

Periode-Penode-Penod 7"= 1mois -Monar-monm

n-1

075

n-05

050

n=0

025

mm

Fig. 6. Maximale Amplituden in der Maueraxe
Amplitudes maximales dans Taxe du mur
Maximum amplitudes in axis of wall

r -s

Fig. 7

Durch zwei benachbarte Querschnitte im Abstände ds wird ein
Mauerelement abgegrenzt, dessen Gestalt sich mit dem Temperaturverlauf ändert
und definiert ist durch den Formänderungswinkel dcp und die Längenänderung

Ads0 eQds der Schwerlinie, wobei e0 die Dehnung in der Axe be-
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zeichnet. Aus Fig. 7 ergibt sich die Längenänderung einer Faser im
Abstände z von der Axe zu

A ds — £o ds + z dcp

In spannungslosem Zustande würde diese Faser ihre Länge um a> & ds
ändern, unter cd den Wärmeausdehnungskoeffizienten verstanden (für Beton
w =- 0,00001). Die wirkliche Längenänderung ist davon verschieden, weil
sie der Forderung, daß die Querschnitte bei der Deformation eben bleiben,
genügen muß. Diese Bedingung wird erfüllt durch die Wärmespannungen a
(positiv gerechnet als Druckspannungen). Die Faser im Abstände z
verlängert sich daher infolge der Temperaturerhöhung # und der Spannung o um

A ds tod ds — ds.
E

Aus den beiden Beziehungen für Ads berechnet sich jetzt die Spannung o zu

a £^tofr — e0 — z^). (13)

Die Formänderungen e0 und dcp lassen sich nun leicht aus den
Gleichgewichtsbedingungen für die Spannungen o im Querschnitt berechnen. Sie
lauten für die Breite b, (dF b -dz)

\adF Eb\(tofr — e0 - z ^\ dz 0,

\ozdF Eb Utofr — eo — z^-Jzdz 0.

Die Integrale sind über den ganzen Querschnitt auszudehnen. Da z den
Abstand der Faser von der Schwerlinie bezeichnet, so ist $zdz=0.

Aus der obern Gleichgewichtsbedingung gewinnt man die Axdehnun^g
f to fr dz to t

eo
J ^ - -j • J »dz co • 0m (14)

Darin bezeichnet $m den Mittelwert des Temperaturausschlages
# zur Zeit t\ es ist

1 f r, f
1 / 2 7Ü t 2 7t t P \ y< _.Üm — fr dz ^rlcos—— • J fdx + sin——- • }cpdxj. (15)

Die untere Gleichgewichtsbedingung liefert den Formänderungswinkel

dcp f to dz dz to-i -Wd*-=:T-^zdz' <16>

worin / das Trägheitsmoment des Querschnittes für die Breite 1 bedeutet

(1 -rf3/12).
Gl. (16) läßt sich wie folgt auf eine für die Anwendung geeignetere Form

bringen. Die Temperaturkurve # bildet mit der Abszisse eine Fläche, deren
Schwerlinie von der Axe die Entfernung e besitzt, vergl. Fig. 8. Es ist also

\frzdz - e- \fr dz e* d> &m (17)
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somit
dcp wed 12 toe

Für die Spannung ac im Abstand c z ergibt jetzt Gl. (13)

(18)

(19)

Der erste Summand dieser Formel bedeutet eine der Temperatur proportionale

Spannung. Die andern Glieder lassen sich ansprechen als Navier-
sche Spannungsformel für eine gedachte Normalkraft von
der Größe

N= Etod- &m, (20)

die im Abstände e vom Schwerpunkte 5 auf den Querschnitt von der
Breite 1 wirkt. Diese ideelle Kraft erzeugt nach der NAViER'schen
Biegungslehre ein geradliniges Spannungsdiagramm, das dem Spannungsdiagramm

mit den Ordinaten o0 Eco& zu überlagern ist, vergl. Fig. 9.

I s

-Hfi rr~z—-1

TT

«*äM*T3 *
kj 10

j c -iTU w kj1_ELJ

Fig. 8 Fig. 9

Es gelingt leicht, den Größtwert der Spannung ac an der Stelle c z zu
bestimmen, der im Zeitpunkte tx auftritt. Setzt man in Gl. (IQ) die
Ausdrücke (3), (15) und (17) ein, so erhält man

_ / 27d 2nt \
ac Eco ^cos -y- /1 + sin —— qpij,

worin Ufdx-

Der Ausdruck wird ein Maximum für

2/c t\dac 2

it=Ea

h / — "JJ fdx—j-jfzdz,

<pi= y — \ q>dx j-
I cpzdz

27t t\

(21)

/1-/ :

T\-sm T h + cos:
T VI 0,

woraus tg
2jct\

h
(22)
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Gl. (19) liefert damit für die größte Spannung oc im Schnitte c

Etoffrmax ac + yv

303

(23)

Zur Auswertung der Ausdrücke (21) benötigt man die Funktionen /
und cp nach Gl. (10), sowie die aus ihnen gebildeten, bestimmten Integrale,
die sich leicht durch geschlossene Formeln darstellen lassen. Man erhält

J fdx #io (J cos^x Coskxdx + B0^ cos kxSin kxdx + C0J sin kx Cos kxdx)
#10

2 k-f—- [cos kd Sin kd + sin kd Cos kd

+ B0 (coskd Coskd + sinkd Sinkd — 1)

+ Co (sinkd Sinkd— coskd Coskd + 1)].

Nach Einsetzen der Konstanten B0 und C0 aus Gl. (9) folgt
\ + n Sin kd + sin kd

fdx #io

Analoge Rechnungen liefern

\cpdx= #io

fzdz #io
1

2 k Coskd + cos kd'

\ + n Sin kd — sin kd
2k Cos kd + coskd'

-n Sinkd— sin kd

(24)

,4k Coskd—coskd'\
f n 1—n t (Sinkd + sinkd
^zdZ=*10^n-d(^kd— cos kd

2^

Jd)•
(25)

Bei symmetrischer Temperaturverteilung (n=\) verschwinden die
Ausdrücke (25), und man erhält für die größte Wärmespannung oc im Schnitte c

max gc E to ^-IMM^-tM'- (26)

Die Spannung oc erreicht ihr Maximum in einem Zeitpunkte t, der von
c abhängig und durch Gl. (22) definiert ist. Die absolut größten
Wärmespannungen sind die Randspannungen (f d10 bezw. #20, cp 0).

6, Formänderungen.
Der Formänderungszustand der freistehenden Mauer, herrührend vom

Temperaturverlauf, ist eindeutig definiert durch die Axdehnung e0 und
den Fonnänderungswinkel dcp. Die Maxima dieser beiden Größen treten
nicht im gleichen Zeitpunkte auf.

Die Axdehnung e0 zur Zeit t beträgt nach Gl. (14)

£o
™- »dx ~ (cos ~p- fdx + sin —^- cpdx

Der Ausdruck wird ein Maximum zur Zeit t9, für
deQ co 2tc 27it[., 2nt{ ,\
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woraus

Man erhält damit

tg

M. Ritter

2/r4 J cp dx
(27)

max «o
CO $fdx + tg^$<pdx

J/l + tg 92nt.2

i(Udx)2 + {\cpdxY (28)

Wenn für die Integrale noch die Ausdrücke (24) eingesetzt werden, so
ergibt sich

(29)max «o w #io
1 + n 1 /2 (Cos kd — cos kd)12kd \ CosM+cos^

Mit negativem Vorzeichen liefert die Formel den entgegengesetzt gleichen
Minimalwert der Axdehnung (Axverkürzung).

max

ho

075
\/7-/

\/?=05\
050

^\^7-<7 \.
025

-

0
1 '

5
j r —t r —r™

10
—r r - r - r " r

15
1 1 *¦»

20 d
in m

Fig. 10. Maxima der Mittelwerte der Temperatur T l Jahr — Valeurs maximales des
moyennes de la temperature T l annee — Maxima of the mean temperatures T l year

Wert
Der Formänderungswinkel dcp zur Zeit t hat nach Gl. (16) den

dcp

ds -^- frzdz -y-(cos -^r- fzdz + sin —=- tpzdz).

Der Ausdruck erreicht sein Maximum zur Zeit t3, für
6 Idcp\ to 27i 2nt [ 27t t { \ n
Ji (w)= t -t l~sm T- Jfzdz +cos -r J<pzdz)= °'

woraus

tg
2711% \ tpzdz
~~T ~~\jz~ite

(30)
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Dieser Wert, oben eingesetzt, liefert

maX^s=(J i(U^z)2 + (^zdz)2.

Setzt man hier für die Integrale die Ausdrücke (25) ein, so folgt

-o #10 (1
max

dtp
ds J 4k

n)d <\i Sin/
PVCos;

kd-sxnkdSX2 l$\nkd+s\nkd 2 \2
kd-coskd) \CosM-cosM kd)

305

(31)

(32)

In den Fig. 10 und 11 sind die maximalen Werte des Temperaturmitteis
(Axdehnung -= cd • $m) und des Formänderungswinkels in Funktion der
Mauerstärke dargestellt (T 1 Jahr). Man erkennt den starken Einfluß der
Mauerstärke auf die Formänderung. Bei unsymmetrischer Temperaturverteilung

deformiert sich die Mittelfläche der Mauer ohne Randbedingungen
zu einer Kugelfläche, deren Radius aus Gl. (32) leicht berechnet werden
kann.

100

075

050

025

kfdnW4 ¦

n 0

05

in m

Fig. 11. Maxima des Formänderungswinkels bei unsymmetrischer Temperaturverteüung
(T l Jahr) — Valeurs maximales de l'angled e deformation sous l'effet d'une repartition
asymetrique de la temperature T 1 annee — Maxima of the angle of distortion with

unsymmetrical distribution of temperature T —1 year

7. Dünnwandige Mauer.
Besitzt die Mauer eine geringe Stärke d, so kann man angenähert

schreiben
(kd)2Coskd 1 + ^

Sin kd kd +
(kd)2

coskd 1

sinkd kd —

2 '

(kdy

und analoge Formeln für (kx). Man erhält jetzt für die Konstanten (9) unter
Vernachlässigung der Glieder höherer Ordnung

Abhandlungen VII 20
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r -r -n~lBo-Co- 2kd
und für die Funktionen / und cp nach (10)

/ #10(l_ *) + #2o
*

<r 0. (33)

Die Temperaturverteilung ist somit geradlinig. Es ist ferner

f #io + #20 f x „ ^ ^io — #20 .*j/r/x— —2— rf, \fzdz y2 -rf-,

und die Ausdrücke (21) ergeben

* « (* x\±u x '^ + ^ 12(2~~X) #io-#2h~ Jl0V- d)+J™d 2 rf3 T2"

/i^O, ri 0.

Gl. (23) liefert für jeden Punkt die Wärmespannung oc gleich Null; die
dünnwandige Mauer ohne Randbedingungen deformiert sich spannungslos. Die
Axdehnung beträgt nach (28)

(0 fr* #io + #20 /0 „ v

max €o - fdx co (34)

und der Formänderungswinkel nach (31)

dtp w f #io— #20 /QKvmax —r- —- fzdz to (35)
ds J y d '

8. Dickwandige Mauer.
Die hyperbolischen Funktionen Cos kd und Sin kd sind hier große Werte

im Vergleich zu den Kreisfunktionen. Werden diese vernachlässigt und setzt
man Tg kd=- 1, so erhält man für die Integrale (24) und (25)

J fdx —
I cpdx #io 2k

\fzdz frj^d, \cpzdz frj^d{\~^).
Damit ergibt die Spannungsformel (23) für die Randspannungen o
folgende Näherungswerte:

cTLinker Rand {f=#10j c

max ci\

Rechter Rand (/ <">2o n #10 c 2")

(36)

X L + kd I + [ kd (kdV- J



Temperaturverlauf und Wärmespannungen in Mauern 307

Für n 1 und kd^> 4 ist mit genügender Genauigkeit

max öi, 2 Ecofr10 (37)

Die Axdehnung berechnet sich nach Gl. (29) zu

#10 + #20 /QQXmax eo co —— (Jo)
kd-^2

und der Formänderungswinkel nach Gl. (32)

dcp 3 co #io- #20 A\ 7 2~V /on\max-^ -d—jä-p + (l-jä) ¦ <39)

9. Mauer mit Auflagerbedingungen.
Die abgeleiteten Beziehungen gelten nur für die „freistehende Mauer",

deren Formänderung nicht durch äußere Auflagerkräfte behindert ist. Bei
einem äußerlich statisch unbestimmten Tragwerk, z. B. einem Gewölbe,
dient der Fall der freistehenden Mauer als Grundsystem, an dem an den Rändern

die „überzähligen Größen" so anzubringen sind, daß die
Elastizitätsbedingungen oder Randbedingungen erfüllt werden.

Die wichtigste Anwendung der vorstehenden Berechnungen bezieht sich
auf die bogenförmigen Staumauern von Wasserkraftanlagen.

An Stelle einer rohen und unzuverlässigen Schätzung des
Temperaturverlaufes im Innern der Mauer empfiehlt sich dessen Berechnung nach
der Theorie der Wärmeleitung, wobei die Jahresamplitude der Oberflächentemperatur

an der Wasserseite kleiner als an der Luftseite eingesetzt werden
darf, um dem günstigen Einflüsse des Speicherwassers Rechnung zu tragen.

10. Wärmeübergang.
Die abgeleiteten Beziehungen ermöglichen die Berechnung der

Temperaturverteilung, der Formänderungen und der Spannungen, wenn die
Oberflächentemperaturen bekannt sind. Bei den praktischen Aufgaben ist indessen
nicht der Temperaturverlauf an den Oberflächen gegeben, sondern der Verlauf

der Temperatur $u der Umgebung. Grenzt die Mauer an Luft, so besteht
zwischen den beiden Medien ein Temperatursprung, der in erster Linie
vom Temperaturgefälle an der Oberfläche abhängt. Die physikalisch
verwickelten Verhältnisse werden in der Fourier'schen Wärmetheorie
in vereinfachter Weise durch die Beziehung

*-*¦=-¦£($. <4°>

ausgedrückt, worin a die sogenannte Wärmeübergangszahl bezeichnet,

die für leicht bewegte Luft ungefähr zu

__ 10
kcal

a m2- Std- Grad



308 M. Ritter

angesetzt werden kann. Grenzt die Mauer an Wasser, so ergibt sich oc nach
den Versuchen > 200, sodaß praktisch ein Temperatursprung nicht
vorhanden ist.

Das Temperaturgefälle berechnet sich nun aus den Gl. (10) und (11)
für jc=0 zu

dfr\ 2ntldf\ 2ntldcp>4 cosTl4 + sinyU
d10 k [cos ^(B0 + C0) - sin ^(B0 - C0)]

Damit ergibt Gl. (40) unter Berücksichtigung von Gl. (1) die
Umgebungstemperatur

dB *I0cos^[l-^(ß„ + Co)]+510sin^.^(ß0-C0).

Diese Beziehung läßt sich durch einfache Umformung auf die Gestalt
bringen

Hu &l0 ¦ |/[l-^(ßo + C0)]2+ [-(Bo-Co)]* ¦

hat ^r(Bo~Co)

a

(41)

Man erkennt, daß die Temperatur &u der an die Mauer angrenzenden Luft
ebenfalls mit der Periode T schwingt und daß diese Schwingung im
Vergleich zu (1) eine Phasenverschiebung aufweist.

Die Amplitude der Schwingung von &u beträgt nach (41)

max #u vl0^\-*M (ßo + c0) + 2-^ (ß02- C02) (42)

Bei den Zahlenrechnungen ergeben sich die Konstanten B0 und C0 nach (9)
als kleine Größen und zwar ist B0 -f-C0 stets negativ. Für kd> 1 ergibt sich
mit genügender Genauigkeit B0 — 1 und C0 =- 0. Man kann daher in obiger

Formel die quadratischen Glieder vernachlässigen und mit X=\ und
a= 10 schreiben

max #„ #101/1 + y no #10(l +

Somit hat man bei größerer Mauerstärke von der gegebenen Amplitude der
Lufttemperatur einfach 4<y0 (für T= 1 Jahr) bezw. 12o/0 (für T 1 Monat)
zu subtrahieren, um die Oberflächenamplitude #10 zu gewinnen, mit der
alsdann die Berechnung des Temperaturverlaufes im Innern der Mauer
durchzuführen ist. Bei der Jahresperiode begeht man sogar nur einen geringen

Fehler, wenn man den Temperatursprung an der Oberfläche ganz
vernachlässigt.
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Zusammenfassung.
Der Temperaturverlauf im Innern einer homogenen Mauer wird nach

der Fourier'schen Theorie der Wärmeleitung für den Fall oscillierender
Außentemperaturen berechnet und graphisch dargestellt. Die Theorie liefert
geschlossene Ausdrücke für die Temperaturausschläge, die Formänderungen
und die Wärmespannungen. Die Ergebnisse finden Anwendung bei der
statischen Berechnung von gelenklosen Brückengewölben, bogenförmigen
Staumauern und andern massiven Bauwerken, die dem Einflüsse der
Jahresschwankung der Lufttemperatur unterworfen sind.

Resume.

La Variation de la temperature ä Pinterieur d'un mur homogene est
etudiee au moyen de la theorie de la chaleur de Fourier pour le cas de
temperatures exterieures periodiquement variables et illustree par des re-
presentations graphiques. La theorie fournit des valeurs explicites pour les
ecarts de la temperature, les deformations et les contraintes thermiques. Les
resultats peuvent etre appliques au calcul statique de voütes encastrees,
des barrages arques et d'autres constructions massives qui sont exposees
aux fluctuations annuelles de la temperature de Fair.

Summary.
The course of the temperature in the interior of a homogeneous wall

is calculated by the Fourier theory of heat conductivity for the case of pe-
riodically varying outside temperatures and represented graphically. The
theory furnishes closed expressions for the temperature amplitudes,
deformations and heat stresses. The results find application in the static calculations

of jointless bridge arches, arch-shaped dams and other solid struc-
tures which are subjected to the annual periodic Variation of the air
temperature.
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