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TEMPERATURVERLAUF
UND WARMESPANNUNGEN IN MAUERN BEI
OSCILLIERENDEN AUSSENTEMPERATUREN.

OSCILLATION DE LA TEMPERATURE ET CONTRAINTES
THERMIQUES DANS LES MURS SOUS LEFFET DE TEMPERATURES
EXTERIEURES PERIODIQUEMENT VARIABLES.

TEMPERATURE VARIATION AND HEAT STRESSES IN WALLS SUB-
JECTED TO PERIODICALLY CHANGING OUTSIDE TEMPERATURE.

Prof. Dr. M. RITTER, Eidg. Techn. Hochschule, Ziirich, Generalsekretar fiir
Eisenbetonbau der I. V. B. H.

AnldBlich der Ausarbeitung von Berechnungsgrundlagen zur Bemessung
bogenférmiger Staumauern wurde die Aufgabe behandelt, die Temperatur-
verteilung und die davon herrithrenden Spannungen und Formanderungen
in einer homogenen Mauer konstanter Stirke anzugeben, wenn sich die Tem-
peraturen an den Oberflichen nach periodischen Gesetzen dndern. Die Lo-
sung, die nachstehend vorgefiihrt wird, ergibt sich mit Hilfe der klassischen
Theorie der Warmeleitung nach Fourier; sie gelangt zu relativ einfachen,
geschlossenen Formeln, die sich leicht zahlenmiBig auswerten lassen. Wenn
die Amplituden der Temperaturschwingung an den beiden Oberfldchen un-
gleich sind, so erleidet die Mauer eine Kriimmung; der entstehende Form-
anderungswinkel wird u.a. benétigt bei der Berechnung der sogenannten
Wirmespannungen in Briicken- oder Talsperrengewolben.-

1. Grundlagen.

Es wird angenommen, daff die Temperaturen &, und ¢, an den beiden
Oberflichen mit der Zeit ¢ ohne Phasendifferenz, aber mit verschiedenen
Amplituden &,, und ¥,, schwingen, entsprechend den Gesetzen

2t 2
H = 19‘10' COoS *1;:», 92 == 320- COS ;E,t. (1)

Darin bezeichnet 7 die Periode der Schwingung, in den Zahlenrechnungen
zweckmiBig in Stunden auszudriicken. Fiir den jahrlichen Ablauf der Luft-
temperatur ist 7 == 1 Jahr = 8760 Stunden zu setzen.

Die Mauer besitzt die konstante Stirke d und wird als seitlich unbe-
grenzt vorausgesetzt (vergl. Fig.1). Die Temperatur ¢ im Innern der Mauer
ist dann aus Symmetriegriinden nur eine Funktion des Abstandes x von der
einen Oberfldche, nicht aber der andern Koordinaten (linearer WirmefluB).
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Somit gilt die klassische Differentialgleichung der Wirmeleitung 1) eines
Stabes, der lings der Mantelfliche keine Wirme abgibt:
09 _ %9
et oxt’

(2)

Fig. 1

Darin bezeichnet 4 die sogenannte Temperaturleitzahl, die sich
aus der Wairmeleitzahl 4, der spezifischen Wirme ¢ und dem Raumgewicht
y berechnen 14Bt. Es ist

2

A .
a:—{;, Dlm.—-—‘gd*j.

2. Temperaturverlauf.

Die Temperatur ¢ im Abstande x von der Oberflache, zur Zeit ¢, berech-
net sich durch Integration der Differentialgleichung (2) und
Anpassung der Integrationskonstanten an die Randbedingungen (1). Man
erkennt zunichst leicht, daf§ die allgemeine Lésung von Gl. (2) sowohl Glie-

der mit cos ;ﬂ als auch solche mit sin T enthalten muBl, da nur dann
Gl. (2) identisch erfiillt wird. Somit kann man schreiben

o 27t . 2t

J_cos—T—-f—{—sm P (3)

worin f und ¢ Funktionen von x allein darstellen. Setzt man diese Ldsung
in Gl. (2) ein, so erhdlt man die Beziehung

144

: 27:71‘( @ )_ 2751‘( f”)
S ==\ + o) = COS (9 —95) ()

worin zur Abkiirzung

. /_ 7r 5

k= vﬁ )

gesetzt ist. Damit Gl. (4) identisch, d. h. fiir jeden Wert ¢ erfiillt ist, miissen
die Klammerausdriicke in Gl. (4) verschwinden; daher ist

f:——é% und ¢;0:2fk2, (6)

1) Fiir die Ableitung und die Definitionen der verschiedenen Koeffizienten vergl.
die Lehrbiicher der Physik, Abschnitt Wiarmeleitung. Fiir den Bauingenieur besonders
geeignet ist das ausfiihrliche Spezialwerk von GroBer-Erk, Grundgesetze der Wirmeiiber-
tragung, Verlag Springer 1933,
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woraus f" 4+ 4k% f=0. (7)

Die allgemeine Losung dieser totalen Differentialglei-
chung setzt sich aus sogenannten Produktfunktionen zusammen, das sind
Produkte aus trigonometrischen und hyperbolischen Funktionen; die Losung
lautet 2) :

f = AcoskxCoskx+BcoskxSinkx+ CsinkxCos kx+ D sinkxSinkx, (8a)

worin A, B, C, D die vier Integrationskonstanten darstellen, die mit Hilfe
der Randbedingungen (1) auszuwerten sind. Gl. (6) ermdglicht die
Berechnung der Funktion ¢ aus f; man findet

@ = — Asinkx Sinkx — Bsinkx Coskx + C coskx Sinkx + D coskx Coskx (8b)

Fiir x =0 und x=d muB Gl. (3) in Gl. (1) iibergehen, woraus sich die
Integrationskonstanten wie folgt ergeben:

x=0, f = Y, p=0.

Mit sinkx = 0, Sinkx = 0, coskx = 1, Cos kx = 1 liefern die Gl. (8)
f=A =39, D=0.

x =d, f= Y2, p = 0.

Die Gl. (8) gehen fiir x =d iiber in

G99 = J10 c0s kd Cos kd + B cos kd Sin kd 4+ Csinkd Coskd,
0 = — Yy sin kd Sin kd — B sin kd Cos kd + C cos £d Sin kd ;
die Auflosung ergibt
a9 cOS kd Sin kd — 919 Cos kd Sin kd

B = Cos?kd — cos?kd ’

Y20 Cos kd sin kd — I49 cos kd sin kd
Cos2kd — cos?kd o

C =

Zur Vereinfachung der Berechnung fithrt man zweckmiBig die Ver-
hiltniszahl

J
n — (20
J10
ein, sowie die neuen Konstanten
C
By = - und Co = —.
J10 J10

Man erhalt aus B und C

) ncos kd — Cos kd
By = S kd Cos2kd — cos?kd ’

. n Cos kd — cos kd
Co = siNkd o2 hd — costhd ©

Fiir die Funktionen f und ¢ ergeben sich jetzt aus (8) die Beziehungen

2) E. Kamkg, Differentialgleichungen, 1939,
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f = 910 (cos kx Cos kx + By cos kx Sin kx + Cy sin kx Cos kx),

. . ) 10
@ = 99(—sinkx Sinkx — Bysin kx Cos kx + Cycos kx Sin kx). (10)

Nach Auswertung dieser Funktionswerte findet man den Temperatur-
ausschlag @ zur Zeit ¢ an irgend einer Stelle der Mauer gemifi Gl. (3) zu

2wt . 2t

G = — n— .
) €os — f 4+ st TP

3. Amplitudenkurve.
Der Ausschlag 9 erreicht sein Maximum (Amplitude) im Zeitpunkte #,.

Aus
od 5 27[( 27ty 27ty >
gr = 0= F\=sin g fhcosT g
ergibt sich
20ty @
tg~7—~—7. (11)
Wird dieser Wert in Gl. (3) eingesetzt, so erhalt man
2nt,
: 27ty 27ty f+tg T
Ymaxy = COS ——— * f T = s — ——
T T 1 t 222”9
+ g T/
\(}max:‘/fﬁ“l"(pz- (]2)

Damit 1aBt sich die Amplitudenkurve aus den Kurven f und ¢ leicht kon-
struieren; man fiibertrigt am FuBpunkte der Ordinate f die Strecke ¢ auf
die Horizontale und zieht die Diagonale, vergl. Fig. 2.

Fig. 2

Zu der Amplitudenformel (12) gelangt man auch unmittelbar mit Hilfe
der Gl. (3), da sich diese leicht auf die Form bringen liBt:

27t (p)
- —-arc tg? . (12a)

Man erkennt, daB die Temperatur im Innern der Mauer mit der Periode 7
schwingt; jedoch ist gegeniiber der Schwingung an der Oberfliche eine
Phasendifferenz vorhanden, die von x abhingt.

9 =V + - cos(
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4. Graphische Darstellungen.

Man gewinnt die erwiinschte Ubersicht iiber den Temperaturverlauf in
einer Mauer durch die zahlenmaBige Ausrechnung und vergleichende Dar-
stellung der Amplitudenkurven #,,, fiir verschiedene Mauerstirken «, Pe-
rioder: 77 und Randbedingungen &,,:9,,. Zu den Zahlenrechnungen beniitzt
man vorteilhaft die vorhandenen Tabellen der Kreis- und Hyperbelfunk-
tionen mit den natiirlichen Zahlen als Argument3).

In den Figuren 3 und 4 sind die Ergebnisse der Berechnung solcher
Amplitudenkurven dargestellt fiir die Mauerstirken d =1, 2, 5, 10
und 20 m und die Perioden 7 = 720 Stunden (=1 Monat) und 7 — 8760
Stunden (= 1 Jahr). Die Berechnungen beziehen sich auf homogenen
Beton unter Annahme folgender Materialkonstanten:

" . . kcal.
Wirmeleitzahl L=10 m Std. Grad’
. , k cal.
Spezifische Wirme ¢ = 0,21 kg Grad’
: kg
Raumgewicht y = 2400 -
Die Temperaturleitzahl « hat somit den Wert
A 1,0 m?
@ = = 5212400 — V0198 5

und der Parameter % betriagt

fiir 7= 720 Std. = 1,49 m~!,

k= 1/000198 720

fiir 7 —= 8760 Std. 0,43 mt.

, V - _
~ ¥ 0,00198.8760
Man erkennt aus den graphischen Darstellungen, daB bei einer Mauer
von 2 m Stirke und darunter im Falle einer Jahresperiode die Temperatur
nahezu linear verteilt ist. Die Temperaturschwankung in der Axe sinkt aber
mit zunehmender Mauerstirke wesentlich und betrigt bei einer Mauer von
20 m Stiarke nur noch einen kleinen Bruchteil der Oberflichenamplitude. In
dea Fig. 5 und 6 sind die maximalen Amplituden in der Maueraxe in Funk-
tion der Mauerstirke dargestellt. Im Falle der Periode 7 = 1 Monat macht
sich die Temperaturschwankung in der Mitte einer Mauer von mehr als
5 m Stirke praktisch nicht mehr geltend.

5. Warmespannungen in der freistehenden Mauer.

Der Temperaturverlauf nach Gl. (3) erzeugt in der Mauer Forminde-
rungen, die die sogenannten Wirmespannungen zur Folge haben.
Wir berechnen diese zunichst fiir eine freistehende Mauer, das heiBt
fiir eine Mauer, die nicht durch duBere Auflagerbedingungen in ihrer Form-
anderung behindert ist. Jeder Normalschnitt (Querschnitt) ist hier ein Sym-

3) K. Havasni, Funfstellige Tafeln der Kreis- und Hyperbelfunktionen, Leipzig 1921.
Horte I, 27. Auflage 1941, Tafel Nr. 8.
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Fig. 3. Amplitudenkurvén T =1 Monat=720 Stunden
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Curves of amplitudes T =1 month
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metrieschnitt, bleibt also bei der Formanderung eben und wird durch Nor-
malspannungen, nicht aber durch Schubspannungen beansprucht. Die Wirme-
spannungen bilden in jedem Schnitte ecin Gleichgewichtssystem (Eigen-
spannungen).

#(% )‘ \max Periode - Periode - Period T = 7 année - Jahr ~ year
0

n=7
a75

n=05\

a50
n=0
225
0 — T T T ‘é T T T T ]b T T T T 7‘75 - T T T 215 d

mnm

Fig. 5. Maximale Amplituden in der Maueraxe — Amplitudes maximales dans 'axe du mur
Maximum amplitudes in axis of wall

A
7}(!?7 ) max
" Periode-Periode-Period T=1mois -Monal ~month

0
075

\x<n=05
250
025

0 T ‘15 T T T T 7]0 ] 7
mim
Fig. 6. Maximale Amplituden in der Maueraxe Fig. 7

Amplitudes maximales dans 'axe du mur
Maximum amplitudes in axis of wall

Durch zwei benachbarte Querschnitte im Abstande ds wird ein Mauer-
element abgegrenzt, dessen Gestalt sich mit dem Temperaturverlauf dndert
und definiert ist durch den Forminderungswinkel de und die Langenénde-
rung Ads,=eyds der Schwerlinie, wobei ¢, die Dehnung in der Axe be-
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zeichnet. Aus Fig. 7 ergibt sich die Lingeninderung einer Faser im Ab-
stande z von der Axe zu

Ads = ¢yds + zdp

In spannungslosem Zustande wiirde diese Faser ihre Linge um w9 ds an-
dern, unter w den Wirmeausdehnungskoeffizienten verstanden (fiir Beton
w~000001) Die wirkliche Lingendnderung ist davon verschieden, weil
sie der Forderung, daf3 die Querschnitte bei der Deformation eben blelben
geniigen muB. Diese Bedingung wird erfiillt durch die Warmespannungen o
(positiv gerechnet als Druckspannungen). Die Faser im Abstande z ver-
langert sich daher infolge der Temperaturerh6hung ¢ und der Spannung ¢ um

Ads = wﬁds—%ds.
Aus den beiden Beziehungen fiir Ads berechnet sich jetzt die Spannung o zu

d.
O':E(')J—-—SQ——Z%> (13)

Die Formidnderungen ¢, und d¢ lassen sich nun leicht aus den Gleich-
gewichtsbedingungen fiir die Spannungen o im Querschnitt berechnen. Sie
lauten fiir die Breite &, (dF =0-dz)

jodF = E’b'(<w{}—£0 -—z—@?—)dz =0,
as

(oza’F: Ebj(w&-—sg——ziig)zdz =0.
. ds
Die Integrale sind iiber den ganzen Querschnitt auszudehnen. Da z den
Abstand der Faser von der Schwerlinie bezeichnet, so ist {zdz=0.
Aus der obern Gleichgewichtsbedingung gewinnt man die Axdehnung

! ;;;Zdz = (9 [9dz = w- 9. (14)

&) = -
Darin bezeichnet 9, den Mittelwert des Temperaturausschla-
ges ¥ zur Zeit ¢; es ist

€0). — 1 C — 1
Py = d~ju‘dz = 7<c0

Die untere Gleichgewichtsbedingung liefert den Formidnderungs-
winkel ]
dp [wdzdz o
as = Jerd — g 19 L

2t

ffdx—{—smz— f(pdx) (15)

worin / das Tragheitsmoment des Querschnittes fiir die Breite — 1 bedeu-
tet (1-d3/12).

Gl. (16) 1aBt sich wie folgt auf eine fiir die Anwendung geeignetere Form
bringen. Die Temperaturkurve 9 bildet mit der Abszisse eine Fliche, deren
Schwerlinie von der Axe die Entfernung e besitzt, vergl. Fig. 8. Es ist also

[9zdz =¢-[9dz=¢-d- In, (17)
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. do wed 12we |
somit 'E; = **j"* . 1}'171 == —6‘12—“ . Jm . (18)
Fiir die Spannung o, im Abstand ¢ =z ergibt jetzt Gl. (13)
6, — Fuw [3 R c)] (19)

Der erste Summand dieser Formel bedeutet eine der Temperatur propor-
tionale Spannung. Die andern Glieder lassen sich ansprechen als NAVIER-
sche Spannungsformel fiir eine gedachte Normalkraft von
der Grofie

N = FEowd: 9,, (20)

die im Abstande ¢ vom Schwerpunkte s auf den Querschnitt von der
Breite = 1 wirkt. Diese ideelle Kraft erzeugt nach der Navier’schen Bie-
gungslehre ein geradliniges Spannungsdiagramm, das dem Spannungs-
diagramm mit den Ordinaten o,= Ew?d zu iiberlagern ist, vergl. Fig. 9.

f-Gapy e G2
l‘-f-w-z/"z—'l

Fig. 8 Fig. 9

Es gelingt leicht, den GroBtwert der Spannung o, an der Stelle ¢ =z zu
bestimmen, der im Zeitpunkte #, auftritt. Setzt man in Gl. (19) die Aus-
driicke (3), (15) und (17) ein, so erhélt man

2t . 2nt
ac::Ew(cos——T——h—[-sm T <;01),

f—%[;ﬂ-%ffzdz,

worin f1

I

(21)
1 ¢
1= (p——/-g—j‘(pdx—— 7j¢zdz.
Der Ausdruck wird ein Maximum fiir
605_ 27'6( . 27Cf1 27Ef1 )___
5 =FEo-Sp|—sin=% i+ cos == g1 ) = 0,
woraus tg 2k B (22)
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Gl. (19) liefert damit fiir die groBte Spannung o, im Schnitte ¢ ==z
max 0, = E o ‘/ f12 +?12,. (23)

Zur Auswertung der Ausdriicke (21) bendtigt man die Funktionen f
und ¢ nach Gl. (10), sowie die aus ihnen gebildeten, bestimmten Integrale,
die sich leicht durch geschlossene Formeln darstellen lassen. Man erhilt

[fdx = 910 (] cos kx Cos kxdx + By [ cos kx Sin kx dx + C, [ sin kx Cos kx dx)
= }2)*113 [cos &2d Sin kd + sin kd Cos kd
+ By (cos kd Cos kd + sin kd Sin kd — 1)

+ Co(sin £d Sin kd — cos kd Cos kd + 1)].
Nach Einsetzen der Konstanten B, und C, aus Gl. (9) folgt

[ o 14 n Sinkd + sin kd
J 1% =9 57 Coskd + cos k'
Analoge Rechnungen liefern (24)
[ o 14+ n Sinkd —sin kd
J pdx = J 2k Cos kd + cos kd’
o 1—n , Sinkd—sinkd
jdez = 90 4 4 Cos kd— cos kd’

(25)

1— Sin kd + sin kd 2)

(¢ ’z =
j‘pz‘iz_ o 77 d(Coskd——-coskd hd

Bei symmetrischer Temperaturverteilung (2= 1) verschwinden die Aus-
driicke (25), und man erhilt fiir die gréBte Wirmespannung o, im Schnitte ¢

max 6, = Ew V(; ._% J'fdx>2+ ( —;i_[qodxy. (26)

Die Spannung o, erreicht ihr Maximum in einem Zeitpunkte #, der von
¢ abhingig und durch Gl. (22) definiert ist. Die absolut groBten Wiarme-
spannungen sind die Randspannungen (f= 9, bezw. 3y, ¢ = 0).

6. Formanderungen.

Der Forminderungszustand der freistehenden Mauer, herrithrend vom
Temperaturverlauf, ist eindeutig definiert durch die Axdehnung e, und
den Forminderungswinkel dg. Die Maxima dieser beiden GroBen treten
nicht im gleichen Zeitpunkte auf.

Die Axdehnung ¢, zur Zeit ¢ betridgt nach Gl. (14)

o[, o 27t . 271;1‘[ )
& = dj‘)d"—“_j(ms“f‘jf‘lx‘*‘S‘"*‘T“ pdx .

Der Ausdruck wird ein Maximum zur Zeit ¢, fiir

0% _ © 275(_ . 275t{ 2751‘[ )__
T .fdx-{—cos T«‘wdx =0,

ot d T
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2ty Jedx

d

Wenn fiir die Integrale noch die Ausdriicke (24) eingesetzt werden, so er-
gibt sich

‘ o — 2
woraus tg 7 [fdx - (27)
Man erhalt damit

. PERA
o Jidx +1g 222 [pdx
max & = v e
V 14 tg? ==
C S S
= 2 V(i + (Jedn)®. (28)

1+ n.-]/ 2(Cos kd — cos kd) (29)

2kd

Mit negativem Vorzeichen liefert die Formel den entgegengesetzt gleichen
Minimalwert der Axdehnung (Axverkiirzung).

max & = 0% 5, Coskd + coskd

max

075 \
\oj

050

025

ol 7 T T s T T e s w4
mnm
Fig. 10. Maxima der Mittelwerte der Temperatur T=1 Jahr — Valeurs maximales des

moyennes de la température T—=1 année — Maxima of the mean temperatures T=1 year

Der Formanderungswinkel do zur Zeit ¢ hat nach Gl. (16) den

Wert : '
dy w “( e
E——j*' \deZ—T.COS

Der Ausdruck erreicht sein Maximum zur Zeit #;, fiir

K2 @)_i&)Zn (»~ . Zﬂ:tj' 27rtj‘ )_
at(ds =7 “—f‘ S"‘IT deZ_{_COST (pZdZ -—-O,

0 27[1‘“ . 2751“‘~ >
( T‘deZ"i—Sln? (PZdZ .

woraus
2nty  [@zdz A
tg T [fzdz’ (30)
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Dieser Wert, oben eingesetzt, liefert

max O = Y ([fzdey + (Jgzda)*. 31)

Setzt man hier fiir die Integrale die Ausdriicke (25) ein, so folgt

dp o M‘/(SW&——sinkd;r (_Sinkd+sinkd‘*‘2\f (32)

maxas — 7 4k Coskd—coskd  kd

In den Fig. 10 und 11 sind die maximalen Werte des Temperaturmittels
(Axdehnung = w - 9,,) und des Forminderungswinkels in Funktion der
Mauerstirke dargestellt (7 =1 Jahr). Man erkennt den starken EinfluB der
Mauerstarke auf die Formianderung. Bei unsymmetrischer Temperaturver-
teilung deformiert sich die Mittelfliche der Mauer ohne Randbedingungen
zu einer Kugelfliche, deren Radius aus Gl. (32) leicht berechnet werden

kann.

700

ars\—\ \

a50
\&0

025

0 LI T T ‘g T T T T flo T T T T 7 3 T T T T 2‘0

/—’

L —
o

d

nm
Fig. 11. Maxima des Forminderungswinkels bei unsymmetrischer Temperaturverteilung
(T=1 Jahr) — Valeurs maximales de Pangled e déformation sous l'effet d’une répartition

asymétrique de la température T = 1 année — Maxima of the angle of distortion with
unsymmetrical distribution of temperature T =1 year

7. Diinnwandige Mauer.

Besitzt die Mauer eine geringe Stirke d, so kann man angenihert
schreiben

2 2
Coskd =1+ (£2) , coskd = 1—(kd) ,
2 2
2 3
Sinkd = kd + ngl, sinkd = kd — (kg’) ,

und analoge Formeln fiir (£x). Man erhilt jetzt fiir die Konstanten (9) unter
Vernachliassigung der Glieder hoherer Ordnung

Abhandlungen VII 20
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n—1

Bo=Co= 5%

und fiir die Funktionen f und ¢ nach (10)
f:ffm(l )+Jzod, p =0. (33)

Die Temperaturverteilung ist somit geradlinig. Es ist ferner

N —

{fdx JIO; I 4 szdz _ Yo ].21190 2,

und die Ausdriicke (21) ergeben

X 10 + 20 12(3 ——x) Mo — J20

f1 = Y10 (1"“ - )+ Ja0- d T o - "*‘ag — 12 az

fl;_oy g1 —

Gl. (23) liefert fir ]eden Punkt die Warmespannung o, gleich Null; die diinn-
wandige Mauer ohne Randbedingungen deformiert sich spannungslos Die
Axdehnung betrigt nach (28)

S0 + 9
max & = i{; J fdx = o “2° 5 = (34}
und der Forminderungswinkel nach (31)
d(} w j‘ . 1)10 — J20
max - - = fzdz = w — v (35)

8. Dickwandige Mauer.

Diec hyperbolischen Funktionen Cos 2d und Sin £d sind hier groBe Werte
im Vergleich zu den Kreisfunktionen. Werden diese vernachlassigt und setzt
man Tg k£d = 1, so erhdlt man fiir die Integrale (24) und (25)

. 14+n
‘[fdx—JQOdX— Jl() 5% 3

1— 1— 2
.[f“'z = N0y “pz‘lz = Y0y " a (1”ﬁ>‘
Damit ergibt die Spannungsformel (23) fiir die Randspannungen o fol-
gende Niherungswerte:

: d
Linker Rand. (f_ Y0, c’_f)
max o1 —= Ew '()10 [ ] lnwz SKEW-,
; kd (kd)?
., (36)
Rechter Rand (f::)m:,zs)m, c_—___z_)

max o6y = F 0 9y ‘/l”"— 1— 2/1] n [1 ;—d2/z 3((;3?!—?/2)] .
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Fiir n =1 und k£d > 4 ist mit geniigender Genauigkeit
kd

max 01,2 == Fuow 1‘)10 1 ¥ k;i v (37)
Die Axdehnung berechnet sich nach Gl. (29) zu
max & = w I+ I (38)

kd V2
und der Formidnderungswinkel nach GIl. (32)

d ¥y . 3w J19— 3.20 \___“__2__72
max e = d Ed ‘1/1 + (1_._‘) ) (39)

9. Mauer mit Auflagerbedingungen.

Die abgeleiteten Beziehungen gelten nur fiir die ,,freistehende Mauer‘,
deren Forminderung nicht durch duBere Auflagerkrifte behindert ist. Bei
einem AuBerlich statisch unbestimmten Tragwerk, z. B. einem Gewoélbe,
dient der Fall der freistehenden Mauer als Grundsystem, an dem an den Ran-
dern die ,iiberzihligen GroBen‘ so anzubringen sind, daB die Elastizitits-
bedingungen oder Randbedingungen erfiillt werden.

Die wichtigste Anwendung der vorstehenden Berechnungen bezieht sich
auf die bogenférmigen Staumauern von Wasserkraftan-
lagen. An Stelle einer rohen und unzuverliassigen Schatzung des Tempera-
turverlaufes im Innern der Mauer empfiehlt sich dessen Berechnung nach
der Theorie der Wirmeleitung, wobei die Jahresamplitude der Oberfliachen-
temperatur an der Wasserseite kleiner als an der Luftseite eingesetzt werden
darf, um dem giinstigen Einflusse des Speicherwassers Rechnung zu tragen.

10. Wiarmeiibergang.

Die abgeleiteten Beziehungen ermoglichen die Berechnung der Tempera-
turverteilung, der Forminderungen und der Spannungen, wenn die Ober-
flichentemperaturen bekannt sind. Bei den praktischen Aufgaben ist indessen
nicht der Temperaturverlauf an den Oberflichen gegeben, sondern der Ver-
lauf der Temperatur 9, der Umgebung. Grenzt die Mauer an Luft, so besteht
zwischen den beiden Medien ein Temperatursprung, der in erster Linie
vom Temperaturgefidlle an der Oberfliche abhingt. Die physikalisch ver-
wickelten Verhiltnisse werden in der Fourier’'schen Wirmetheorie
in vereinfachter Weise durch die Beziehung '

. L (o3
ausgedriickt, worin « die sogenannte Warmeiibergangszahl bezeich-
net, die fiir leicht bewegte Luft ungefihr zu

kcal

« =10 5 Sid - Grad
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angesetzt werden kann. Grenzt die Mauer an Wasser, so ergibt sich « nach
den Versuchen >200, sodafl praktisch ein Temperatursprung mcht vor-
handen ist.

Das Temperaturgefille berechnet sich nun aus den Gl. (10) und (11)
fiir x=20 zu

o9\ 2nt<ﬂ) . 2@(@)
<ax)o“cos 7 \ax), TS 7 U
2nt ]

= 40 k[cos 27 (BO + C,) — sin ——(B —Cy)

Damit ergibt Gl. (40) unter Beriicksichtigung von Gl. (1) die Umge-
bungstemperatur

2at Lk

27zt
T ;(BO—CO)

Diese Beziehung a8t sich durch einfache Umformung auf die Gestalt

bringen
Lk 2 Ak 2
Yu = Yo V[l - (By + CO)] + la* (B ——Co)] "

Lk
2xat “(BO~CO)
$ oS | —— —arctg —— o (41)

T 1— %8, —cy)

Man erkennt, daB die Temperatur ¢, der an die Mauer angrenzenden Luft
ebenfalls mit der Periode 7 schwingt und daB diese Schwingung im Ver-
gleich zu (1) eine Phasenverschiebung aufweist.

Die Amplitude der Schwingung von ¢, betrigt nach (41)

2 b2
max Iy = Fy ]/1 — giﬁ (By + Cy) + *21 k (B2 — Gy?) (42)

Bei den Zahlenrechnungen ergeben sich die Konstanten B, und C, nach (9)
als kleine GréB8en und zwar ist B, -- C, stets negativ. Fiir £d > 4 ergibt sich
mit geniigender Genauigkeit By= — 1 und C,= 0. Man kann daher in obi-
ger Formel die quadratischen Glieder vernachlissigen und mit =1 und
o = 10 schreiben

.k k
max J, = Yy ‘/1 + 5 = N\‘)'u)(l 4+ m) .

Somit hat man bei groBerer Mauerstirke von der gegebenen Amplitude der
Lufttemperatur einfach 40/ (fiir 7=1 Jahr) bezw. 120/ (fiir 7 = 1 Monat)
zu subtrahieren, um die Oberflichenamplitude ¢;, zu gewinnen, mit der
alsdann die Berechnung des Temperaturverlaufes im Innern der Mauer
durchzufithren ist. Bei der Jahresperiode begeht man sogar nur einen gerin-
gen Fehler, wenn man den Temperatursprung an der Oberfliche ganz ver-
nachlassigt. .
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Zusammenfassung.

Der Temperaturverlauf im Innern einer homogenen Mauer wird nach
der Fourier’schen Theorie der Wirmeleitung fiir den Fall oscillierender
AuBientemperaturen berechnet und graphisch dargestellt. Die Theorie liefert
geschlossene Ausdriicke fiir die Temperaturausschlige, die Formdnderungen
und die Wirmespannungen. Die Ergebnisse finden Anwendung bei der stati-
schen Berechnung von gelenklosen Briickengewdlben, bogenformigen Stau-
mattern und andern massiven Bauwerken, die dem Einflusse der Jahres-
schwankung der Lufttemperatur unterworfen sind.

Résumeé.

La variation de la température a lintérieur d’'un mur homogene est
étudiée au moyen de la théorie de la chaleur de Fourier pour le cas de
températures extérieures périodiquement variables et illustrée par des re-
présentations graphiques. La théorie fournit des valeurs explicites pour les
écarts de la température, les déformations et les contraintes thermiques. Les
résultats peuvent étre appliqués au calcul statique de vofites encastrées,
des barrages arqués et d’autres constructions massives qui sont exposées
aux fluctuations annuelles de la température de Dair.

Summary.

The course of the temperature in the interior of a homogeneous wall
is calculated by the Fourier theory of heat conductivity for the case of pe-
riodically varying outside temperatures and represented graphically. The
theory furnishes closed expressions for the temperature amplitudes, defor-
mations and heat stresses. The results find application in the static calcula-
tions of jointless bridge arches, arch-shaped dams and other solid struc-
tures which are subjected to the annual periodic variation of the air tem-
perature.
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