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ENCASTREMENT ELASTIQUE ET FLAMBAGE
DES COLONNES.

ÜBER DIE KNICKUNG VON ELASTISCH EINGESPANNTEN SÄULEN.

ELASTIC FIXING AND THE BUCKLING OF COLUMNS.

A. PARIS, Ingenieur civil, Professeur ä FUniversite de Lausanne.

Vrais cadres multiples, etages suivant les deux directions du plan, les
magasins et les entrepots en beton arme appuient leurs planchers sur des
colonnes, dont les füts se superposent des sous-sols aux toits ou terrasses,
qui les recouvrent. Ces ouvrages peuvent etre isoles et ajoures au point que
le raidissement par les cages d'escaliers ou des murs de refend eventuels
en devient problematique. La charge de securite des colonnes diminue en
fonetion de Pelasticite des insertions des füts dans les dalles, soit que se
produisent des rotations aux noeuds, soit que la fixite horizontale des planchers

fasse defaut.
Le professeur Timoshenko a etudie quelques cas de ce genre. Son

ouvrage « Strength of Materials» donne le calcul d'un cadre rectangulaire
symetrique dans sa construction et dans sa charge, et qu'il considere par
consequent comme inapte ä tout deplacement horizontal dans
ses noeuds ainsi balances. L'absence de solidarite exterieure et de mobilite
lineaire conduit ä une formule fermee de la charge critique, generalisation de
Celles d'EuLER, qui en constituent les deux cas limites.

Le meme auteur a traite, dans «Theory of elastic Stability», le cadre
simple ä deux jambes de force articulees ä leurs pieds et chargees de forces
egales aux noeuds superieurs. II retrouve ainsi des conditions de symetrie
propres ä Petablissement d'une Solution explicite.

Le professeur K. Kriso, de Brunn, a aborde, dans le volume VI des
Memoires de Passociation internationale des Ponts et Charpentes, sous «

Knickberechnung mehrfeldriger beliebig gestützter Stäbe », le probleme tres com-
plexe du flambage des barres d'une poutre treillisee ä noeuds mobiles en
toutes directions. La recherche des multiples inconnues se fait par voie
algebrique.

M. Nater, ingenieur, a publie dans la Schweiz. Bauzeitung, en 1918
dejä, Petude d'un poteau insere dans un cadre multiple symetrique. Ici Pin-
terdependance conduit ä une equation transcendante, dont la Solution donne
le facteur K2, proportionnel ä la charge critique Pcr, consideree comme limite
du probleme. L'equation ainsi obtenue, et qu'on peut ecrire

\+2 + K2h(lA + Ib)] cos Kh + K[+h — (lA + lB) — lA lBhK2] sin Kh — 2=0
permet comme le montre Pexemple numerique ci-dessous, une resolution
rapide du probleme du beton arme oü Pon admet Pimmobilite des noeuds.
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Les symboles

rj %\M (indice de flexibilite d'un noeud), et

lA — E-J- 7]a Ib E-J- rjB (longueurs repräsentatives des insertions
inferieure et superieure)

y introduisent des constantes connues des ouvrages sous-jacents et super-
poses.
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Fig. 1

Plancher Champignon formant cadre
etage sur sol rigide.

Pilzdecke als Stockwerkrahmen über
starrem Boden.

Mushroom ceiling forming floor frame
on rigid groutid.

Supposons donc, ä titre d'exemple de ce cas de charge, un plancher
Champignon appuye sur des colonnes superposees, le tout formant un cadre
spatial symetrique dans sa construction et dans sa charge (Fig. 1). Les
colonnes du rez, de 600 cm de hauteur, egales et egalement chargees, s'en-
castrent dans les planchers inferieur et superieur que caracterisent les indices
de flexibilite suivants:

plancher inferieur: / 1170- 103 colonne / 1020-103 cm4

indice de la dalle unilaterale deformee par deux couples extremes egaux et
inverses

f. 0A ^T ö i^ffi in, °>257 ' 10~3
2/ — 2xll70103

indice de la colonne en cave

EdA
500

5X1020-103 0,123 • 10-

indice de flexibilite resultant du noeud sous colonne AB (colonne cave et
deux dalles contigues)

^=i:(2fk+fy=,:,o,(ö^7+äiy=<wL0626 • 10"

On trouve pareillement, au noeud superieur (plancher /-=492 103) auquel
se superpose une colonne mince censee articulee dans la terrasse, Findice
de flexibilite

E"- =«: (2 gk) + rr.=': 10' (oJ® + ih) °'2M •,0" •

La colonne du rez (moment d'inertie 130-103 cm4) jouit ainsi des en-
castrements (longueurs representatives)
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U E- rjAxJ 0,0626 • 10~3 x 139 • 10~3 8,7 cm
lB E. tjB x J 0,294 103 x idem 41,6 „

lA + lß — 50,3 cm
L'equation transcendante

(+ 2 + K2 • 600 • 50,3) cos Kh + K(600-50,3-K2 • 600 8,7 41,6) sinKh + 2

admet la Solution
K-h 333° 5,81

c'est-ä-dire
K 5,81 : 600 9,69 • 10~3 cm"1

K2 94,0 • 10~6 cm~2

qui conduit ä la charge critique
Pcr K2 • E • / 94 • 10"6 cm"2 x 200000 kg/cm2 x 139000 cm4

2 605000 kg 2605 tonnes.

Le probleme plus general, celui de la charge critique d'un poteau in-
sere dans une poutre continue depourvue de force d'arret,
fonetionnant donc comme cadre simple ou multiple, conduit ä des Solutions
naturellement plus compliquees, que nous allons examiner en utilisant les
ellipses d'elasticite des noeuds d'insertion. Nous obtiendrons ainsi des equations

transcendantes suivant le type Nater, et dont le cas d'immobilite des
noeuds formera la condition limite. Nous introduirons cette recherche par
Pexamen des ellipses d'elasticite des noeuds d'insertion des poteaux.

I. Ellipse d'elasticite d'une tete de poteau.
Comme le professeur W. Ritter Pa montre dans ses «Anwendungen

der graph. Statik », les deplacements d'un point quelconque d'un corps
elastique s'expriment gräce ä Pellipse d'elasticite de ce point, courbe centrale
du Systeme antipolaire des directions de forces et des centres de rotation
conjugues.

On connaitra donc la nature des deplacements de la tete d'un poteau,
solidaire des planchers qui le limitent haut et bas, des qu'on aura defini
Pellipse de cette tete en fonetion de Pelasticite de la base d'encastrement
du poteau et de la resistance du plancher, qui s'appuie sur son sommet.
Les deplacements des noeuds etant uniquement horizontaux, on ne connait
que les demi-axes verticaux de leurs ellipses.

Le plancher supporte resiste ä la rotation de la tete et assure, en outre,
Pegalite des deplacements horizontaux des sommets de tous les poteaux, qui
s'y inserent. La base du poteau se maintient plus fermement, en ce sens
que la double action, rotation et deplacement, est temperee par une resistance

elastique, resistance qui peut devenir absolue si la base est un sol
de fondation, non un plancher elastiquement deformable.

Considerons d'abord le premier poteau AtAs, et soient

mx h^.E- A ix hx X VT/T2

sa masse adjointe et le demi axe vertical de son ellipse d'elasticite.
Soit aussi r\A xA\ MA la rotation speeifique de la base d'appui An quo-

tient de la rotation % divisee par le moment MA, qui la produit, son indice de
flexibilite donc. Et soit en outre öA Pindice de flexibilite de la tete As dans
le pied de la colonne de Petage superieur.
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Ces facteurs suffisent ä definir comme suit Pellipse d'elasticite du noeud
As, au haut du poteau (Fig. 2). Une force horizontale passant par le centre
cherche provoque un deplacement sans rotation du noeud, deplacement qui,
transmis au plancher complet, ne provoque aucun effort dans les poteaux
de Petage superieur. Les rotations dues ä m± et ä rjA devant etre egales et
de signes contraires, on a Pordonnee du centre

nA 2
mt

+ mx

Un couple M agissant sur le noeud complexe As le fait tourner autour du
centre CAs de son ellipse; Pangle de rotation egal des deux levres du noeud
As, oü le couple se repartit entre füts inferieur et superieur, demande que

M • mAs Mt (mx + t]A)

M Mt + Ms
MsdA

ce qui donne ä la masse adjointe du noeud Pexpression
1

niAs l:( l +1)\ml+ tjA <W

Le demi axe zAs vertical resulte du calcul d'un deplacement horizontal
parallele du noeud As sous Peffet de la force H (Fig. 2), qui s'exprime par

mAs
2

ZAs ^(t-^) nA + t]A ' nA • Aj.

si nA designe Pordonnee de l'antipöle du centre CAs relatif ä Pellipse propre
du poteau, de centre C± donc.

!i!_N

^
Fig. 2

Ellipse d'elasticite de la tete d'un poteau insere
elastiquement ä ses extremites.

Elastizitatsellipse für die Kante eines an beiden
Enden elastisch eingespannten Pfeilers.

Ellipse of elasticity for the head of a column fixed
elastically at its ends.

Inseree sur ce noeud As, la travee Aß de longueur a, que nous supposons
en outre librement appuyee sur le poteau B, possede une ellipse finale,
qui caracterise les deformations elastiques de son point terminal B', muni
de Paccent simple parce qu'il initie la serie de gauche. Les deplacements
de B' sont tous horizontaux, ce pourquoi le centre CB, se place sur la ver-
ticale par B\ d'une rotation sans deplacement vertical du point B' nous tirons

masse adjointe mB' mA + ma

et d'un deplacement parallele

ordonnee du centre es'
2 mA

4mA mc

ou ma

xg

a
ETa mA mAs
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le demi axe vertical etant alors donne par

2 2 2mAXma
mB' zBr mAzA — ^ X e «

2 mA + ma
g eB'-

L'ellipse d'un noeud intermediaire, Bs par exemple, sym-
bolise Pelasticite du point de soudure d'une travee et du poteau, qui aboutit
ä son extremite; Pellipse du noeud reagit sous une force resultante identique-
ment comme le ferait chacune des deux ellipses primitives sous la compo-
sante qui la concerne. On trouve donc le centre de l'ellipse cherchee en
faisant agir separement deux forces horizontales, qui provoquent le meme
deplacement parallele dans les systemes primitifs; leur resultante divise
Pintervalle CBs — CB, des centres dans le rapport

a1\ a2 mBs
2

Zßs mBf zl>

31 zJ\
&L—ZB

\ /

Vis
^\\\\\W 7/

-H+H'

Fig. 3

Ellipse finale d'un noeud intermediaire, formant
soudure d'un poteau et d'une travee.

Endgültige Ellipse eines Knotens zwischen Pfeiler
* und Unterzug.

Final ellipse for an intermediate Joint, where a
column and a beam are welded together.

Un demi cercle, centre sur la verticale B et passant par les extremites des
deux demi-axes primitifs prealablement rabattus, selon construction du
professeur W. Ritter, intercepte le demi-axe zB sur la normale par le centre
Cß. La masse adjointe resulte ensuite de Pegal deplacement utilise pour
fixer le centre et de Pequilibre des forces, gräce ä la condition

mBzB
mBs Zßs X mB' Zß'

tnßs zB, + mB' zBf
(Figure 3)

fc I JL
Fig. 4

Ellipse totale d'une tete de poteau.
Totale Ellipse eines Pfeilerkopfes.
Total ellipse for the head of a column.

Progressant ainsi de noeud en noeud des Pextremite gauche de la
poutre continue, nous determinons la serie de gauche des ellipses finales
et des ellipses de noeuds. Nous ferons de meme en partant de Pextremite
droite de la poutre, etablissant les ellipses de droite. Ces deux groupes se-
raient identiques, mais de sens inverses, en cas de symetrie de la poutre
continue.
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La connaissance des deux series d'ellipses finales, de gauche et de droite
nous permet d'etablir les ellipses totales, une pour chaque noeud,
et ceci donc en vue de deplacements depourvus de composantes verticales
(Fig. 4). Les centres de deux ellipses finales, affrontees au noeud considere,
se plagant dans Paxe du poteau, on trouve le centre de l'ellipse totale gräce
ä la proportion issue de deplacements simples egaux de Pextremite commune

a' : a" md z2c' mc" zc"

deplacements imposes par deux forces ü' et H". Un demi-cercle de Ritter,
passant par les extremites de zCt et zc„ rabattus, intercepte le demi-axe
zc ä hauteur du centre qui vient d'etre determine. La masse adjointe resulte
ensuite de Pegalite des deplacements

mct zCt
m>d zcr X mg" zc"
mc' zc' + mc" zc"

II. Charge critique d'un poteau ä tete retenue elastiquement.
Considerons le cas general d'une distribution arbitraire des resistances

des colonnes et des planchers, ainsi que des charges imposees. L'elasticite
des insertions de poteaux, haut et bas des planchers limites des colonnes
calculees, s'exprime conformement aux indices de flexibilite, tels que le
professeur E. Moersch les definit dans son ouvrage «Durchgehender Träger».

AfJ
fflcjt/kv^r\

^T(77? Z m m

AS

M
C-*

H, £

Fig 5

Charge critique d'un poteau retenu
elastiquement par planchers deformables
(rotations et deplacements horizontaux).

5 ^ 3cC~ Kritische Last eines in deformierbaren
+Hs-p ^A Decken elastisch eingespannten Pfeilers

(Drehungen und horizontale Verschie¬
bungen).

Critical load on a column held elasti-
cally by unstable ceilings (subject to
rotations and horizontal displacements).

Nous etudierons en premier lieu le cas simple de la c h a r g e d'u n s e u 1

poteau. Soit Ct Cs ce poteau (Fig. 5). De hauteur h et de moment d'inertie
/, constant, il Supporte une charge P, que la tendance au flambage accom-
pagne de couples d'insertion Mt et M2 dans les sols inferieur et superieur;
nous cherchons la grandeur critique Pcr de cette charge P.

La poussee —Hs du sommet deplace le plancher superieur. Entrainee
par ce deplacement, la charge P ne reste confondue avec Paxe du poteau
qu'en empruntant une composante horizontale Ptg <x ä Pequilibre general,
laissant une resultante

Ht= Hs — Ptga
qui provoque le deplacement du plancher

Ah — Hf mz2
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oü Pon caracterise l'ellipse totale du noeud par
m mct
z zct

Le deplacement inverse du plancher inferieur ne nous interesse pas, car il
se transmet sans resistance ä toute la superstructure.

On ecrit en consequence la grandeur du moment flechissant ä Pabscisse
verticale x le long du poteau

Mx M2 + Hs(h — x) — P(Ah—y)

expression qui conduit ä l'equation differentielle

c'est-ä-dire ä

Les symboles

K2

EJd4 ~M*

d*y P
dx2 + EJy ¦ -£•(*-*>- El+EJAh-

P
~ El A- EJ B- + El

donnent ä cette equation la forme

d2y
dx2 + K2y - A(h — x)-B + K2 • Ah

qu'on integre par
A B

— y Cl cosKx + C2 sin Kx + -=^ (h — x) + —^ — A h

equation oü le deplacement du plancher, fonetion de la poussee resultante
Ht, et par consequent de

Ah

s'exprime par
A h — (Ms — P • tga) mz2 — (hs — P ^~j mz2

ce qui donne Pexpression definitive du deplacement

Ah + Hsh- t^^2 7 +EJAh
mz2

Pmz2 — h EJK2mz2 — h'
Le biaisement de Paxe theorique de la colonne s'aecompagne de rotations
des deux tangentes de depart solidaires des noeuds elastiques haut et bas,
rotations dont la grandeur depend des moments aux extremites:
base (x =0, y 0)

A* (+M% + H..k-P.H,-kJr£^vl
[+Mt-H,-hpl^-^Vt=EjBvt_EjAp^_h
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sommet {x — h ,y Ah) Ad" + Mf m --(+M2 — Hie) tn

[+ M2--(»->¦&} m — + M2 + Hs-e
ll

Pmz2 -h)m

— + EJBm EJAeh
+ EJK2mz2

m

— h '

Nous condensons ces expressions en posant

10 K- h K-e e K ¦z f 5
EJ

L
EJ

et pouvons ecrire en consequence les quatre conditions d'extremites

l 1 SÄ2 \
+ C2K-A[+^ + Y_-L^)~BSh 0

+ Cx cos to + C2 sin io + ß~ 0
K2

+ C, Ksm to— C2K cos to + A
l „J:f +rLl°* — BLh 0.
a (1 — L(?£)

Ces quatre equations homogenes lient les quatre constantes d'integra-
tion ABCiC2, dont Pelimination conduit ä deux valeurs egales de C2; d'oü
resulte l'equation transcendante

[+2 — 2 cos co — (1 — X) to - sin to — l • to2 • cos to + LSto'6 • sin to] —
— L l2 [2 — 2 cos to + l • to • sin w] + L- to> e[\ — cos to + S • to • sin co] 0

oü Pon a fait
L + S l.

Nous reprendrons, ä titre d'exemple numerique, les donnees de la
figure 1, mais en precisant que le bätiment comporte trois colonnes, do-
tees de moments d'inertie differents, ä savoir

colonnes exterieures Jx 180 • 103

colonne mediane J2 139 • 103

et que le plancher porte garde la meme raideur / 492- 103.
Ces caracteres se traduisent, dans Pellipse totale du noeud median, par

les dimensions
masse adjointe mBt 2,28 • 10~3

demi-axe vertical zBt 112 cm
ordonnee du centre e 138 cm

On demande ä connaitre la charge critique de la colonne mediane, seule
chargee dans ce cas.

Les coefficients de Pequation transcendante sont, pour E=\ (qui s'eli-
mine dans cette resolution)

1 ^*r nQ 103S-0 L -^Vl* • 2,29 • IO"3 0,531 A L600
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s K • e ^7T w 0,230 to

112
L K- z -^^r tO 0,187 to

600

L ß>. e — 0,531 • w X 0,230 • to 0,122 w2

L • ?2 0,531 X 0,1872 w* 0,019 w*.

Le terme en f2 joue pratiquement peu de role; nous le conservons neanmoins
et obtenons Pequation

+ 2 + 0,084 to2 - 2 cos to - 0,469 w sin to - 0,615 w2 • cos w - 0,010 ws • sin w 0

qui admet la racine
to 295° 5,145

La charge critique resulte de

to2 K2h2 ^h2 5,145*
zry

par
5,1452 x 200000 kg/cm2 x 139000 cm4 OAF,nnnn onKn +/V — ^L 2050000 kg 2050 tonnes

6002

chiffre qui represente 78 o/o du resultat obtenu sans tenir compte de la
mobilite des noeuds, moderee du reste ici par la raideur relative des colonnes
exterieures.

III. Charge critique d'un ensemble de poteaux solidarises
par une poutre.

Nous ne supposerons de symetrie ni dans Pouvrage ni dans les charges
des diverses colonnes.

La charge de chaque colonne conduit ä un deplacement du plancher;
le cumul de ces mouvements elastiques et coordonnes representera le
deplacement total

Ah — AhA + AhB+ AhN

Chaque tete de poteau de la lignee subit le deplacement complet; le moment
flechissant dans Pun de ces poteaux, CLCS par exemple, s'exprime alors par

cMx + CM2 + Hc(hc — x) — Pc-Ah + Pc • y
Et l'equation de Pelastique

Ah

d^l + Kly^-Ac(hc-x)-Bc+KlAh

fi d'y
EJcdx~2 -cMx

c'est-ä-dire

ä2y
+

Pc
ydx2 ^ EJC y EJc{hc- X)

EJC
'

EJC

prend la forme
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gräce aux symboles

Kc - + ~EJC Ac~+ EJc Bc~ + E^
la rotation extreme

coc Kc hc

intervient plus bas. L'integrale
A P

—y cd cos Kcx + CC2 sin Kcx -\ ^(hc — x)-\ c2 — A h
Kc Kc

contient quatre constantes, qui doivent satisfaire aux conditions de deplacement

et de rotation des deux extremites, ce qui donne les equations

+ c& +AC^2 + Bc^-Ah 0
Kc Kc

+ KccC2—Ac^2 + (cM2 + Hchc- PC'Ah)tiC
Kc

+ cCi • cos coc + CC2 • sin coc + Bc ^ — A h — Ak

— Kc • cCx sin coc + Kc • cC2 cos coc — Ac —jKc

— _ / CM2 — Hc ec+ Pc~y~ ecj mc

Le deplacement cumule Ah vaut

Ah= ^(-Hc+Pc^mczh
c=a\ hc>

ce qui donne

Ah- ^"{hcLcAczl) _ SM)

quotient dont le module d'elasticite a disparu puisque la masse adjointe m
le contient en denominateur. Les conditions aux extremites deviennent
des lors

j^ + « _L__2jfiL
kV ckI SW-i

SM)

+ cd + Ac ~ + Bc ~ - -^^-r 0

+ Kc ¦ cC2 — Ac (+ Schi 4 -L) — ScAcßc + ScficKc
^ AT"'^ —c -SW_ 1

+ CQ cos wc + cC2 sin wc + Bc —$ — 0
Kc

— Kc • cA sin coc + Kc • cC2 cos coc — Ac[-] % + Lc hc ecj + Lc hc Bc +
Kc

+ LcKtecJ:{A) =0
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On elirnine successivement deux des constantes, puis la troisieme C2
s'exprime par deux valeurs äquivalentes en fonetion des constantes A relatives

aux divers poteaux, et qui donnent l'equation homogene

+ Ac [(+ cos coc — l — Sc wc)(+ 1 ~ cos toc + Lc *>c sin wc) +
+ + Lc coc cos coc + coc sin toc — 14- cos toc — Lc ec toc + Lc £c cos toc) X
x (1 — cos toc + Sc wc sin toc)] +

SM)+ 1+ Sc coc • Kc (4 1 — cos toc + Lc coc sin wc) +

+ (+ LcKc^c — Lc Kc «c cos toc — Lc Kc «>c cos <»c — Kc sin wc) x
x Kc X (1 — cos (oc + Sc e>c sin ioc)] — 0

oü K ™\h

On dispose d'autant d'equations homogenes de ce type qu'il y a de
facteurs A, c'est-ä-dire AA au poteau A, AB au B, etc.; hormis la nullite
de tous ces facteurs, il y a une Solution indeterminee qui les lie tous par
la nullite du determinant des coefficients des termes en A

D

ax bx

a2 b2 n2

ein bn

L'equation D 0 lie donc les valeurs A de teile maniere que nous pouvons
ou bien en choisir (n— 1) dont aueune ne depasserait la charge

critique du poteau, et determiner en consequence la neme, qui ne doit pas
etre negative,

ou bien admettre entre ces charges critiques une proportion, celle des
moments d'inertie par exemple.

Nous choisirons cette seconde porte de sortie.
Supposons, ä titre d'exemple, le plancher ä trois poteaux etudie au

chapitre precedent, alors dans la supposition de la charge sur celui du milieu
seul. Ces poteaux, dont les exterieurs, egaux, sont plus robustes que le
median, supportent des charges pareillement distribuees

A C et B
deux inconnues donc.

L'ellipse du noeud B, forme par la travee AB et le poteau Bßs, a son
centre et son demi-axe definis par les valeurs, calculees par ailleurs selon
les formules donnees ci-avant selon le Schema:

ellipse de linteau

ellipse finale AB' eBr 138 cm

mB' zB' 56,80

ellipse du sommet Bs a — 300 cm

m2 600:1 x 139 • 103

ma 600 :1 x 4,92 103 1,22 • 10 3

zB' 112 cm

/2 =r 173 cm

4,32 10~3

m2 il 4,32 • lO"3 x 1732 129,0
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Le centre de l'ellipse du noeud se place au sommet B lui-meme (g=0),
oü le demi-cercle de Ritter donne

zB 254 cm

La masse adjointe resulte du produit
2 129,0x56,8M 129^56^ 39'4

ce qui donne
mB 39,4:2542 0,61 • 103

L'ellipse finale de la travee BO, inseree en B, a son centre au noeud C
puisque ^ 0 en 5; sa masse adjointe

md 1,83- 10-»

conduit au produit
mCt • z2a 39,4 mAt • zAt

egal ä mB z%.

L'ellipse totale de C se confond avec cette ellipse finale du noeud, faute
d'une travee se soudant ä C au-dessus de la tete Cs dn poteau.

L'exemple precedent nous avait donne l'ellipse totale du noeud B par

mßtZßt 28,4
avec les moments d'inertie

A 180- 103 et J2 139- 103

des colonnes de hauteur uniforme 600 cm. Nous pouvons donc ecrire les
deux polynomes (oü E=\ puisqu'il s'elimine)

2 (A) hALAzAAA + hßLßZßAß + hcLcz2cAc
1 x (2Jl mAz2AAA +J2 mßZßAß) —
2 x 180 • 103 X 39,4 AA + 139 • 103 x 28,44*
14200 • 103 AA + 3940 • 103 AB

Yj{K) — 2 LA Ka za + LßKBz2B j^ mA zA Ka + YB mB z^ ^1

180- 103
2 139- 103 2 2 2

2 ~~ 6ÖÖ~" 39'4 Ka + -^ÖÖ^ 28'4 Kb °'066 C°A + °'018 i0B

ce qui conduit au quotient

SM) __
14 200 ¦ 103 AA + 3940 IQ3 AB

S (K) — 1 _ 0,066 wj + 0,018 toi — 1

L'equation transcendante, appliquee successivement au deux noeuds
As et Bs, donne la paire de conditions

I) + AA [+ 2000-4000 cos to + 2000 cos2 to + to (+450 sin to. cos to - 450 sin to) +

+ n>2 (-168-214 cos to + 382 cos2 to) + w3 (- 28,1 sin to +
+ 28,1 sin to • cos to) + «>*> (- 36,0 + 45,8 cos to — 9,8 cos2 ta)] +
+ AB [w3(+ 18,2 sin to cos w — 18,2 sin to) + w4(-10,0 + 10 cos2 to)] 0

a > AA + b - AB
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II) + AB\+ 2000 — 4000 cos to + 2000 cos2 to + to (+ 469 sin to cos co —
— 469 sin to + 653 cos2 to) + to2(- 46 — 439 cos to — 168 cos2 to) +
+ w3(+ 21,2 sin to — 21,2 sin to cos to — 54,8 cos2 to) + w4( + 51,1 cosw +
+ 11,9 cos2 to —10,2)] + AA [— 7,96 to2 cos w + w3 (+ 65,6 sin w • cos to —
— 65,6 sinw) + w4 (+ 7,96 — 42,7 cos to + 42,7 cos2™)] 0

c • AA + d • AB

oü nous avons introduit une seule valeur cv, que nous considerons comme
moyenne.

Les quatre facteurs a, b, c, d du determinant, ainsi definis, donnent, '

si on les calcule pour la racine

to 225° 3,93 sin™ — 0,707 cos to 0,707

les valeurs

a — 4610 * + 150 £=+19040 ^ — 640

qui resolvent le determinant par
D a-d—b'C= + 4610 • 640 — 150 • 19040

103 (+ 2940 — 2850) + 103 • 90

c'est-ä-dire avec une erreur de 3o/0 sur les produits partiels. La Solution
voisine

cü 230°
donnerait

D 103(+ 9050 — 410) + 103 • 8640

donc aussitöt une erreur bien plus grande. La Solution extrapolee
90

— 9950 ko y — 224 04°~ ZZ* b
8640 4- 90 ~ 224'M

montre que 225° constitue la reponse plausible.
Si nous admettons maintenant la proportion

^r PfB c'est-ä-dire Kl Kl KLyen
Ja Jb

et la hauteur h etant constante

(r)A — (,}ß tomoyen — 3,93

nous obtenons la charge critique des deux categories de poteaux par

PA=Pc= ihf 250MOJa^^|MJOW ^ 3jM1 M0000 kg

Pb EJ^ 200000^139^» x 3>M, 19))000 kg

Le poteau median admettait une charge critique de 2050 tonnes lors-
qu'il etait sollicite seul dans le meme cadre elastique; la deformation cu-
mulee reduit donc ce chiffre ä

1190t 58% de 2050 tonnes

et, relativement au poteau ä tete immobile, ä

1190 t 45 % de 2605 tonnes.

Abhandlungen VII 19
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Resume.

Une colonne isolee subit le phenomene du flambage de maniere in-
dependante conformement aux equations etablies par le prof. Timoshenko,
puis par M. Nater, ingenieur; eile admet ainsi la charge critique maximum
compatible avec ses conditions d'insertion et de mobilite aux extremites.
Par contre, une lignee de colonnes, de sections arbitrairement choisies et
inegales entre elles, voit la somme de charges critiques des poteaux soli-
darises tomber bien en dessous du total des charges critiques des colonnes
independantes.

L'etablissement de formules analytiques, propres ä evaluer la somme
critique des charges des colonnes solidaires, se heurte ä des oomplications
et conduit ä des expressions peu maniables. Au contraire, Papplication de
la methode de l'ellipse d'elasticite du prof. Dr. W.Ritter (E. P. F.) con-
dense successivement les resultats obtenus des elements introduits, et conduit

avec elegance au resultat cherche.
Ce resultat, un total de charges, constitue une limite pour Pensemble

des colonnes. On pourra admettre, par exemple, sa distribution en Proportion
des moments d'inertie individuels des poteaux.
La charge totale des poteaux solidarisch par un plancher non contrebute

peut tomber ä moins de la moitie du cumul des charges critiques
individuelles.

Zusammenfassung.
Eine einzelne Säule ist der Knickung unterworfen, gemäß den durch

Prof. Timoshenko und Ingenieur Nater aufgestellten Gleichungen; demnach

trägt sie eine maximale kritische Last, welche von den Einspannverhältnissen
und den Bewegungsmöglichkeiten ihrer beiden Endpunkte abhängig

ist. Im Gegensatz dazu sinkt die kritische Gesamtlast einer Säulenreihe,
deren Querschnitte willkürlich und ungleich sind, weit unter den Betrag, der
durch die Summe der kritischen Lasten der einzelnen, unabhängigen Säulen
gegeben ist.

Die analytische Untersuchung zur Abschätzung der kritischen Gesamtlast
der solidarisch wirkenden Säulen führt zu verwickelten und wenig

handlichen Formeln. Dagegen empfiehlt sich die Anwendung der Methode der
Elastizitätsellipse von Prof. W.Ritter (E. T. H.), welche, die Einzelergebnisse

zusammenfassend, in eleganter Weise das Ziel erreicht.
Das Endergebnis, d.h. die kritische Gesamtlast, hat die Bedeutung einer

oberen Grenzbelastung für die Gesamtheit der Säulen. Deren Aufteilung auf
die Einzelsäulen kann z. B. im Verhältnis der Trägheitsmomente vorgenommen

werden.
Die Gesamtlast einer Säulenreihe, bei welcher die Säulen durch eine

seitlich nicht versteifte Decke miteinander in Verbundwirkung stehen, kann
kleiner als die Hälfte der Summe der kritischen Einzellasten ausfallen.

Summary.
An isolated column is subject to buckling according to the equations

established by Prof. Timoshenko and Mr. Nater: it withstands a maximum
critical load which depends on the conditions of fixing and the possibility
of moving at the extremities. In contrast to that, the critical total load on
a line of columns, whose cross-sections are arbitrarily chosen and unequal,
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falls far belowr the sum of the critical loads which the columns could carry
if they were isolated.

The analytical investigation to evaluate the critical total load on
columns acting together, leads to formulae which are complicated and not
very easy to manage. On the other hand, application of the method of the
elasticity ellipse of Prof. W. Ritter (E. T. H.) summarises successively the
results obtained from the elements introduced and leads elegantly to the
Solution.

This result, a total of loads, gives a limit for the whole set of
columns. The load could, for example, be distributed among the columns in
Proportion to their moments of inertia.

The total load which can be supported by a row of columns connected
together by a ceiling which is not laterally stiffened, may fall to less than
half the sum of the critical loads which the columns could carry indepen-
dently.
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