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ENCASTREMENT ELASTIQUE ET FLAMBAGE
DES COLONNES.

UBER DIE KNICKUNG VON ELASTISCH EINGESPANNTEN SAULEN.
ELASTIC FIXING AND THE BUCKLING OF COLUMNS.

A. PARIS, Ingénieur civil, Professeur a I’"Université de Lausanne.

Vrais cadres multiples, étagés suivant les deux directions du plan, les
magasins et les entrep6ts en béton armé appuient leurs planchers sur des
colonnes, dont les fiits se superposent des sous-sols aux toits ou terrasses,
qui les recouvrent. Ces ouvrages peuvent étre isolés et ajourés au point que
le raidissement par les cages d’escaliers ou des murs de refend éventuels
en devient problématique. La charge de sécurité des colonnes diminue en
fonction de D'élasticité des insertions des fiits dans les dalles, soit que se
produisent des rotations aux noeuds, soit que la fixité horizontale des plan-
chers fasse défaut.

Le professeur TiMmosHENKO a étudié quelques cas de ce genre. Son
ouvrage « Strength of Materials» donne le calcul d’un cadre rectangulaire
symétrique dans sa construction et dans sa charge, et qu’il considére par
conséquent comme inapte a tout déplacement horizontal dans
ses noeuds ainsi balancés. L’absence de solidarité extérieure et de mobilité
linéaire conduit & une formule fermée de la charge critique, généralisation de
celles d’EULER, qui en constituent les deux cas limites.

Le méme auteur a traité, dans « Theory of elastic Stability», le cadre
simple a deux jambes de force articulées a leurs pieds et chargées de forces
¢gales aux noeuds supérieurs. Il retrouve ainsi des conditions de symétrie
propres a I’établissement d’une solution explicite.

Le professeur K. Kriso, de Brunn, a abordé, dans le volume VI des Mé-
moires de I’association internationale des Ponts et Charpentes, sous « Knick-
berechnung mehrfeldriger beliebig gestiitzter Stibe », le probléeme trés com-
plexe du flambage des barres d’une poutre treillisée a noeuds mobiles en
toutes directions. La recherche des multiples inconnues se fait par voie
algébrique.

M. NATER, ingénieur, a publié dans la Schweiz. Bauzeitung, en 1918
déja, ’étude d’un poteau inséré dans un cadre multiple symétrique. Ici I’in-
terdépendance conduit a une équation transcendante, dont la solution donne
le facteur K2, proportionnel a la charge critique P,,, considérée comme limite
du probléeme. L’équation ainsi obtenue, et qu’on peut écrire

[+ 2 + K2h(la+ I5)] cOS Kh + K[+ h— (g + Is) — L4 lg hK?] sinKh — 2 = 0

permet comme le montre 'exemple numérique ci-dessous, une résolution
rapide du probleme du béton armé ot 'on admet I"immobilité des noeuds.
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Les symboles
n=7v/M (indice de flexibilité d’'un noeud), et

la = E-J-na Ilp = E.J.mp (longueurs représentatives des insertions
inférieure et supérieure)

y introduisent des constantes connues des ouvrages sous-]acents et super-
posés.

>’r< i >F;~*1_—/2£m
[ ‘ b
L _JOm ! 30m |
I | . —25cm —: !50/” Fi 1
| u | g.
e b L b L,
i BY | Plancher champignon formant cadre
/?ei |\k—sgem | | 60m étagé sur sol rigide.
i All | Pilzdecke als Stockwerkrahmen iiber
|5 T 1——36cm
1 r 17 starrem Boden.
| |
30,,!5-50/ e ppem | 1 50m Mushroom ceiling forming floor frame
| H b on rigid ground.
| ; Y
I r/'g}(l'e
|

Supposons donc, a titre d’exemple de ce cas de charge, un plancher
champignon appuyé sur des colonnes superposées, le tout formant un cadre
spatial symétrique dans sa construction et dans sa charge (Fig.1). Les co-
lonnes du rez, de 600 cm de hauteur, égales et également chargées, s’en-
castrent dans les planchers inférieur et supérieur que caractérisent les indices
de flexibilité suivants:

plancher inférieur: / = 1170- 103 colonne J = 1020- 103 cm*

indice de la dalle unilatérale déformée par deux couples extrémes égaux et
inverses

. 600 ,
E-64=57 =5 170708 — *2°7 10
indice de la colonne en cave
500 _3
Foa= 5510000100 = %1210

indice de flexibilité résultant du noeud sous colonne AB (colonne cave et
deux dalles contigues)

—1- 1 1 —1-103 (;42 ﬁl_w) — —3
EnA_l.(ZE@A+E—(;;)__1.IO 02~5—7+0123 = 0,0626 - 102 .
On trouve pareillement, au noeud superleur (plancher J == 4902. 103) auquel

se superpose une colonne mince censée articulée dans la terrasse, I’indice
de flexibilité

1 1 9 ) i
=13 == 8 = 0,204 - 1073,
Ens =1 (2E@B)+563 1:10 (0609+ 701/ = 029410

La colonne du rez (moment d’inertie 130-103 cm#*) jouit ainsi des en-
castrements (longueurs représentatives)
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lh = E-na><J =000626-102>=<139-10"3 = 8,7 cm
Ilp=FE-np><J=0204 .10%>< idem = 416 ,

i+ g = 50,3 cm
L’équation transcendante

(+ 2 4+ K2-600 - 50,3) cos K + K(600-50,3-K2.600- 8,7 - 41,6) sin Kk = + 2
admet la solution
' K- h = 333° = 5,81
c’est-a-dire
K =581:600 =969 103 cm™!
K? =940 .10 cm™2
qui conduit a la charge critique

P, =K2 . E-J=0904-10"°% cm~2 > 200000 kg/cm? >< 139000 cm* =
— 2605000 kg = 2605 tonnes.

Le probleme plus général, celui de la charge critique d’un poteau in-
séré dans une poutre continue dépourvue de force d’arrét,
fonctionnant donc comme cadre simple ou multiple, conduit a des solutions
naturellement plus compliquées, que nous allons examiner en utilisant les
ellipses d’élasticité des noeuds d’insertion. Nous obtiendrons ainsi des €qua-
tions transcendantes suivant le type NATER, et dont le cas d’immobilité des
noeuds formera la condition limite. Nous introduirons cette recherche par
I’examen des ellipses d’élasticité des noeuds d’insertion des poteaux.

I. Ellipse d’élasticité d'une téte de poteau.

Comme le professeur W.RITTER ’a montré dans ses « Anwendungen
der graph. Statik », les déplacements d’un point quelconque d’un corps élas-
tique s’expriment grace a ’ellipse d’élasticité de ce point, courbe centrale
du systéme antipolaire des directions de forces et des centres de rotation
conjugués.

On connaitra donc la nature des déplacements de la téte d’un poteau,
solidaire des planchers qui le limitent haut et bas, des qu’on aura défini
I’ellipse de cette téte en fonction de 1’élasticité de la base d’encastrement
du poteau et de la résistance du plancher, qui s’appuie sur son sommet.
Les déplacements des noeuds étant uniquement horizontaux, on ne connait
que les demi-axes verticaux de leurs ellipses.

Le plancher supporté résiste a la rotation de la téte et assure, en outre,
I’égalité des déplacements horizontaux des sommets de tous les poteaux, qui
s’y insérent. La base du poteau se maintient plus fermement, en ce sens
que la double action, rotation et déplacement, est tempérée par une résis-
tance élastique, résistance qui peut devenir absolue si la base est un sol
de fondation, non un plancher élastiquement déformable.

Considérons d’abord le premier poteau A4;A,, et soient

m, = hy:E-J; i = hy >< Y1/12

sa masse adjointe et le demi axe vertical de son ellipse d’élasticité.

Soit aussi 54 = 14: M4 la rotation spécifique de la base d’appui A4;, quo-
tient de la rotation z divisée par le moment M4, qui la produit, son indice de
flexibilité donc. Et soit en outre d,4 indice de flexibilité de la téte A, dans
le pied de la colonne de I’étage supérieur.
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Ces facteurs suffisent a définir comme suit ellipse d’élasticité du noeud
A,, au haut du poteau (Fig. 2). Une force horizontale passant par le centre
cherché provoque un déplacement sans rotation du noeud, déplacement qui,
transmis au plancher complet, ne provoque aucun effort dans les poteaux
de I’étage supérieur. Les rotations dues a m; et a », devant étre égales et
de signes contraires, on a "ordonnée du centre

hy my
ng = = ———
2 g+ m

Un couple M agissant sur le noeud complexe A le fait tourner autour du
centre C4 de son ellipse; ’angle de rotation égal des deux levres du noeud
A, olt le couple se répartit entre fiits inférieur et supérieur, demande que

M- mus = M;(m, +77A):MSOA
M:Mi+Ms

ce qui donne a la masse adjointe du noeud l’expression

BN
s = 7 my+ na - 04/ "
Le demi axe z,4 vertical résulte du calcul d’un déplacement horizontal pa-

rallele du noeud A, sous ’effet de la force // (Fig. 2), qui s’exprime par

h N
mAs°Zfls =m (71—7214)12,4 + na-na- hy

si n} désigne ordonnée de 'antipdle du centre C 4 relatif a I’ellipse propre
du poteau, de centre C, donc.

7—~-‘|\ .
A G\ Fig. 2
\
A \ Ellipse d’élasticité de la téte d’un poteau inséré
by \ # élastiquement A ses extrémités.
gl 2 3 Y]
A gf b ¢ Elastizititsellipse fiir die Kante eines an beiden
' ,C//" H Enden elastisch eingespannten Pfeilers.
As
M Ellipse of elasticity for the head of a column fixed
___Nim____ elastically at its ends.

Insérée sur ce noeud As, la travée AB de longueur 4, que nous supposons
en outre librement appuyée sur le poteau B, possede une ellipse finale,
qui caractérise les déformations elasthues de son point terminal B’, muni
de Paccent simple parce.qu’il initie la série de gauche. Les deplacements
de B’ sont tous horizontaux, ce pourquoi le centre Cp, se place sur la ver-
ticale par B; d’une rotation sans déplacement vertical du point B’ nous tirons

a

masse adjointe mg = mq +m, = o0 my = Fy. Mma = mas
a

et d’'un déplacement parallele

c 2m
ordonnée du centre ep' = - 4

4m,4+ma><g
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le demi axe vertical étant alors donné par

o2, 2 2ma>< mg
mp' zg' — mAZA*‘z
my + mq

e g e — eg'.

L’ellipse d'un noeud intermédiaire, B par exemple, sym-
bolise I’élasticité du point de soudure d’une travée et du poteau, qui aboutit
a son extrémité; ’ellipse du noeud réagit sous une force résultante identique-
ment comme le ferait chacune des deux ellipses primitives sous la compo-
sante qui la concerne. On trouve donc le centre de ’ellipse cherchée en
faisant agir séparément deux forces horizontales, qui provoquent le méme
déplacement parallele dans les systéemes primitifs; leur résultante divise
Pintervalle Cp,— Cp' des centres dans le rapport

. —g— 2- ' 2,
al.az ——-mBS'ZBs-”lB 'Z_B .

Cs A Fig. 3

4
]

%3 25_\*1_//,/{' Ellipse finale d’un noeud intermédiaire, formant
\ soudure d’un poteau et d’'une travée.

A ;;\\ )7 Endgiiltige Ellipse eines Knotens zwischen Pfeiler
3 Y * und Unterzug.
By
s 24, % Final ellipse for an intermediate joint, where a
T column and a beam are welded together.
8

Un demi cercle, centré sur la verticale B et passant par les extrémités des
deux demi-axes primitifs préalablement rabattus, selon construction du pro-
fesseur W.RITTER, intercepte le demi-axe zp sur la normale par le centre
Cp. La masse adjointe résulte ensuite de l’egal deplacement utilisé pour
fixer le centre et de I’équilibre des forces, grice a la condition

o mpszhs><mg 2y
mpzp = —— > ; (Figure 3)

2
mps zgs + mMp' zZg'

2 o
Zer é-{i‘/ o - e — A =HH"
a\ R Fig. 4
1é Ellipse totale d’une téte de poteau.
Totale Ellipse eines Pfeilerkopfes.
Total ellipse for the head of a column.
: o i
C

Progressant ainsi de noeud en noeud deés Dextrémité gauche de la
poutre continue, nous déterminons la série de gauche des ellipses finales
et des ellipses de noeuds. Nous ferons de méme en partant de 'extrémité
droite de la poutre, établissant les ellipses de droite. Ces deux groupes se-
raient identiques, mais de sens inverses, en cas de symétrie de la poutre
continue.
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La connaissance des deux séries d’ellipses finales, de gauche et de droite
nous permet d’établir les ellipses totales, une pour chaque noeud,
et ceci donc en vue de déplacements dépourvus de composantes verticales
(Fig. 4). Les centres de deux ellipses finales, affrontées au noeud considéré,
se placant dans 'axe du poteau, on trouve le centre de 'ellipse totale grace
a la proportion issue de déplacements simples égaux de I’extrémité commune

2 2
a :.a’ = mgzc : me" ze"

déplacements imposés par deux forces A’ et H”. Un demi-cercle de RITTER,
passant par les extrémités de z.r et zq» rabattus, intercepte le demi-axe
z¢ a hauteur du centre qui vient d’étre déterminé. La masse adjointe résulte
ensuite de I'égalité des déplacements

2 2
mCI ZCI >< mcll ZCH

2
mcezce = 3 5
mc' zc' + mc" z¢'"

II. Charge critique d'un poteau a téte retenue élastiquement.

Considérons le cas général d’une distribution arbitraire des résistances
des colonnes et des planchers, ainsi que des charges imposées. L’élasticité
des insertions de poteaux, haut et bas des planchers limites des colonnes
calculées, s’exprime conformément aux indices de flexibilité, tels que le pro-
fesseur E. MoERscH les définit dans son ouvrage « Durchgehender Triager ».

A Ve /. :
e ,Mc:f/if (S t l:‘]g 5
R @f P Q\V\C: ) e
Hs /mzcs G Charge critique d’un poteau retenu élas-
\ b ((,40’,’%”6} :’” et tiquement par planchers déformables
S i (rotations et déplacements horizontaux).
] leyop . . . :
2 \¢= 9 5 e =% (9%= Kritische Last eines in deformierbaren
__/JL_.[ X / =}+,73-p. 45 Decken elastisch eingespannten Pfeilers
N\ lé’ [ # (Drehungen und horizontale Verschie-
Nz %p N M=\ My ~Hy-e bungen).
3 n : Critical load on a column held elasti-
; 2 G ¢ cally by unstable ceilings (subject to
N, rotations and horizontal displacements).
M

Nous étudierons en premier lieu le cas simplede lacharge d'unseul
poteau. Soit C;C, ce poteau (Fig.5). De hauteur # et de moment d’inertie
J, constant, il supporte une charge P, que la tendance au flambage accom-
pagne de couples d’insertion M, et M, dans les sols inférieur et supérieur;
nous cherchons la grandeur critique P, de cette charge P.

La poussée —H, du sommet déplace le plancher supérieur. Entrainée
par ce déplacement, la charge P ne reste confondue avec 'axe du poteau
qu’en empruntant une composante horizontale P-tg « a I’équilibre général,
laissant une résultante

Hi= H; —P-tga
qui provoque le déplacement du plancher
Ah = — H; - mz?
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ol 'on caractérise ’ellipse totale du noeud par
m = ¢y
Z = Z¢c¢ .

Le déplacement inverse du plancher inférieur ne nous intéresse pas, car il
se transmet sans résistance a toute la superstructure.

On écrit en conséquence la grandeur du moment fléchissant a ’abscisse
verticale x le long du poteau

My = My + Hs(h—x) — P(dh—y)

expression qui conduit a I’équation différentielle

d?y
EJW = — M,
c’est-a-dire a
d¥y . H M, P
av: TEIV =T E 0N tEF AR
Les symboles
2 P —_— ﬁ*? — !!2
KE=F1 AT E B=+Fs
donnent a cette équation la forme
2
Zx_ + K?y =—Ah—x)— B+ K*-4h
qu’on integre par
. A B
—y =0C,cosKx + CysinKx + W(h—x) + ?Z—Ah

équation oilt le déplacement du plancher, fonction de la poussée résultante
H, et par conséquent de

tga = A4
8=
s’exprime par
Ah = — (Hs — P -tga) mz? = —(H —P. éh!—z-)mz2
ce qui donne P'expression définitive du déplacement
mz? mz?
A= Heh g = P A B

Le biaisement de P’axe théorique de la colonne s’accompagne de rotations
des deux tangentes de départ solidaires des noeuds élastiques haut et bas,
rotations dont la grandeur dépend des moments aux extrémités:

base (x = 0, y = 0)
, mz*
h b
:(+M2 s ”m?tz)m:fww—fmmih
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sommet (x=#h,y=A4h) A" =+ My m=(+M;—H;-e)m =

Ah h
=+ (=P G e|m = (4 M+ e ) =
EJAehm
= + E/JBm + EIK mzt —h "
Nous condensons ces expressions en posant
J J
w=K-h K-e—=c¢ K-z=¢ S:%,},i L:%mCt
et pouvons écrire en conséquence les quatre conditions d’extrémités
( h Lhz* 1
+ G+ A+ ﬁ+’1“:“L7;“2>+BR‘2:°
1 Sh? ) .
+ C,cosw + C, sinw + BEIE =0

1 — L2+ Lowe
K*(1—LT?)
Ces quatre équations homogenes lient les quatre constantes d’intégra-

tion A BC{ C,, dont ’élimination conduit & deux valeurs égales de C,; d’ou
résulte 1’équation transcendante

+ C;Ksinw—CyKcosw + A —BLE = 0.

[+2—2cosw —(1—A)w-sinw—~4-w?- coSw + LSw?. sin o] —
—L{?[2—2cosw+ A-w-sinw] +L-w-e[l—cosw + S-w-sinw] =0

ot Pon a fait
L+S =14,

Nous reprendrons, a titre d’exemple numérique, les données de la
figure 1, mais en précisant que le batiment comporte trois colonnes, do-
tées de moments d’inertie différents, a savoir

colonnes extérieures J; — 180 . 103
colonne médiane J, = 139 . 103
et que le plancher porté garde la méme raideur J = 492- 103,

Ces caracteres se traduisent, dans ’ellipse totale du noeud médian, par
les dimensions

masse adjointe mps — 2,28 - 1073
demi-axe vertical zgr = 112 cm
ordonnée du centre e = 138 cm .

On demande a connaitre la charge critique de la colonne médiane, seule
chargée dans ce cas. -
Les coefficients de I’équation transcendante sont, pour E =1 (qui s’éli-
mine dans cette résolution)
1><139.10%

— — . .10-3 — -
S=0 L= 600 220 .10-% = 0,531 i= L
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138

GZK.e:W{UZO’Z?’O(U
" 112
Q—K'Z—W(U——O,ls'?(()

faisant
L-w-e=0531.0>x<0230.0v=0122 w?

L-:* = 0531><0,187202 = 0,019 w?.

Le terme en {? joue pratiquement peu de role; nous le conservons néanmoins
et obtenons 1’équation

+2+0,084 w2 -2 cos w—0,469 o - sinw—0,615 w? - cos w—-0,010 w3 - sinw =0

qui admet la racine
o = 205° = 5,145 .

La charge critique résulte de

P
)2 — K2hH2 — 2 — )
0 = K*h? = £ h* = 5,145
par
2 2 4
P, 5,1452 >< 200000 kg/cm? >< 139000 cm 2050000 kg = 2050 tonnes

600°

chiffre qui représente 780/ du résultat obtenu sans tenir compte de la mo-
bilité des noeuds, modérée du reste ici par la raideur relative des colonnes
extérieures.

III. Charge critique d'un ensemble de poteaux solidarisés
par une poutre.

Nous ne supposerons de symétrie ni dans "ouvrage ni dans les charges
des diverses colonnes.

La charge de chaque colonne conduit & un déplacement du plancher;
le cumul de ces mouvements élastiques et coordonnés représentera le dé-

placement total
Ah = Ahgy + Adhg + .... A;bn .

Chaque téte de poteau de la lignée subit le déplacement complet; le moment
fléchissant dans 'un de ces poteaux, C,C, par exemple, s’exprime alors par

cMy =+ My + Hclhc—x)—Pc-4dh + Pc-y.

Et I’équation de I’élastique

d2
EJc de; = — cM,
c’est-a-dire
d®y ~ Pc ~ Hc cM, Pc
dt T Ele? T T e e T Er T
prend la forme
d2
Y4 Ky =—Ac(hc—x)—Bc+ Kédh

dx?



286 A. Paris

grace aux symboles

2 . PC . HAC, L CMg
KC—+E-7(“? AC——“‘EJC BC—+E.7€
la rotation extréme
wc = Kchc

intervient plus bas. L’intégrale
—y = ¢C, cos Kcx + ¢C, sin Kcx + S (hc—x) + - pu—y
KC Kc

contient quatre constantes, qui doivent satisfaire aux conditions de déplace-
ment et de rotation des deux extrémités, ce qui donne les équations

hc 1
+cCi+Ac—5 +Bc-—5—4h =0
1 Kc Ké
‘1 .
+ Kc cC, —Ac— = + (cMy + Hche — Pc - 4 k) ic
K&
+ cC; - coswe + C, - sin we + B¢ )}2»__ Abh = — Al
. 1
— K¢ - ¢C, sinwe + K¢ - CC2 CoSs we — Ac — =
o
Ah
= — (CMz — Hcec + Pc B 6’0) me .
o
Le déplacement cumulé 44 vaut
' N
Ah =S ( He + Pc Ak)mczé
C=4 /ZC
ce qui donne
_ 2WcLlcAcZd) . X iA)

TSN UeKE) —1 T DK —1

quotient dont le module d’élasticité a disparu puisque la masse adjointe m
le contient en dénominateur. Les conditions aux extrémités deviennent
des lors
he 1 2 (4)
+cC+Ac—5+Be—5—
KT Sw—1

1 2 (A)
+ K¢ cC *-Ac(+5 h +——)—SC/ZCBC+Sc/chc =
’ cre Ké Z(K)”l
+ ¢C; ¢c0s we + cC, sin we + Be *1_2 =0
Kc

. 1
— Kc - cCysinwe + Kc - ¢Ce cOs we — Ac (-I- 7<—2 -+ Lc/lcec) + Lche Be +

o
22 (4)

LK2€——————-————~:
+ L¢ CCZ(K)_—I
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On élimine successivement deux des constantes, puis la troisieme C,
s’exprime par deux valeurs équivalentes en fonction des constantes A4 rela-
tives aux divers poteaux, et qui donnent I’équation homogene

+ Ac [(+ COS we —1— 8¢ (UE‘) (—I—— 1 — coswec + Lc wesin (Uc) +
+ (+Lc wé CoS we + wesinwe —1 + c0s we — Le &c we + Lc &c €OS we) <
>< (1 — cos wc + Sc wesin we)| +
2 (A)
> (K)—1 |
-+ (+ LC KC Ec — LC KC E&c COS e — LC KC e COS e — KC sin U)C) >
> Kg‘ >< (] — COS e -+ Sc e sin mc)] =0
ou K= wlh

On dispose d’autant d’équations homogenes de ce type qu’il y a de
facteurs A, c’est-a-dire A, au poteau A, Ap au B, etc.; hormis la nullité
de tous ces facteurs, il y a une solution indéterminée qui les lie tous par
la nullité du déterminant des coefficients des termes en A

+ |+ Sc we - Ké (+ 1 —coswc + Lc wcsin ’”C) +

a b, - n, ’

D — a, bz ...... Ny { —0
.............. !
I a, by, - 1y '

L’équation D = 0 lie donc les valeurs A de telle maniére que nous pouvons
ou bien en choisir (z—1) dont aucune ne dépasserait la charge cri-
tique du poteau, et déterminer en conséquence la néme, qui ne doit pas
étre négative,
ou bien admettre entre ces charges critiques une proportion, celle des
moments d’inertie par exemple.

Nous choisirons cette seconde porte de sortie.

Supposons, a ‘titre d’exemple, le plancher a trois poteaux étudié au
chapitre précédent, alors dans la supposition de la charge sur celui du milieu
seul. Ces poteaux, dont les extérieurs, égaux, sont plus robustes que le mé-
dian, supportent des charges pareillement distribuées

A=C et B
deux inconnues donc.

L’ellipse du noeud B, formé par la travée AB et le poteau B;B;, a son
centre et son demi-axe définis par les valeurs, calculées par ailleurs selon
les formules données ci-avant selon le schéma:

ellipse de linteau mg = 600:1><492.10° =1,22.10 ?

ellipse finale AB’ eg = 138 cm zg = 112 cm
myg z5 = 56,80
ellipse du sommet B; a = 300 cm i, = 173 cm

my, = 600:1>< 139 - 105 = 4,32 . 103
my if = 4,32 . 1078 >< 1732 = 120,0 .
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Le centre de Dellipse du noeud se place au sommet B lui-méme (g=0),
oit le demi-cercle de RITTER donne

zp = 254 cm.

La masse adjointe résulte du produit

;  1200><568
mpzp — -1‘2*9—’—0—;—?;65 = 39,4

ce qui donne
mp =— 39,4:254% — 0,61 . 103

L’ellipse finale de la travée BC’, insérée en B, a son centre au noeud C
puisque g =0 en B; sa masse adjointe
mc = 1,83 - 1073
conduit au produit
mct + ZZCt = 394 = my; - Zit

égal A my zp.

L’ellipse totale de C’ se confond avec cette ellipse finale du noeud, faute
d’une travée se soudant a C’ au-dessus de la téte C; du poteau.

L’exemple précédent nous avait donné l’ellipse totale du noeud B par

thZ%t = 2874
avec les moments d’inertie
J; =180-10% et J, =139.103

des colonnes de hauteur uniforme 600 cm. Nous pouvons donc écrire les
deux polynomes (out £ =1 puisqu’il s’élimine)

D1 (A) = halaza Aa + hplpzs Ap + hcLlcze Ac =
1 ><(2/, mAzi Ag+J, mBz%;AB) =
= 2><180-103><3904A4,4 + 139.10° <284 Ap =
14200 - 10° A4 + 3940 - 103 Ap

9 9 2JC '/B )

Y (K)=2LaKiza+ LpKazp = 5 mazaKa+ }, mpzp Kg =

180 - 103
e 2 600 394 KA + E%OOIO 284 KB 07066 (()j + 0’018 (Ug

I

I

ce qui conduit au quotient
2 (A 14200-10% A4 + 3940 - 103 As
Z(K)~1 0,066 w3 + 0,018 w3 — 1

L’équation transcendante, appliquée successivement au deux noeuds
A; et B;, donne la paire de conditions
I) + A4[+2000-4000 cosm -+ 2000 cos?w 4 o (+450 sin w - cos o - 450 sin w) +
+ 2% (-168 — 214 cos w + 382 cos?w) + w3 (~ 28,1 sinw +
+ 28,1 sinw - cosw) + w* (- 36,0 + 45,8 cosw -— 9,8 cos?w)] +
+ Ap[w3 (4 182sinw - cosw —182sinw) + w*(-10,0 + 10 cos?w)] = 0
=a-As+ b -Ap
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’

II) + Ap[+ 2000 — 4000 cos « -+ 2000 cos2m 4+ m (+ 469 sinm - cosm —
-— 469 sin w 4+ 653 cos2w) + w2 (- 46 — 439 cosw — 168 cos2w) +
+ w¥(+ 21,2 sinw — 21,2 sinw - cosw — 54,8 cos?m) + w*(+ 51,1 cosmw +
+ 11,9 cos?m —10,2)] + A4 [— 7,96 w2 cosm + w3 (4 65,6 sinw - coOsSw —
— 05,0 sinmw) + w* (+ 7,96 — 42,7 cosw + 42,7 cos?m)] = O
=c¢-Aa+ d-Asp
out nous avons introduit une seule valeur w, que nous considérons comme
moyenne.

Les quatre facteurs a, b, ¢, d du déterminant, ainsi définis, donnent,
si on les calcule pour la racine

w = 225% = 3,03 sinm = — 0,707 cosm = 0,707

les valeurs
a = — 4610 = + 150 c = 4+ 19040 d = — 640
qui résolvent le déterminant par |
D=a-d—b-c=+ 4610.640 — 150 - 19040 =
= 103 (4 2040 — 2850) — + 103 .90

c’est-a-dire avec une erreur de 30o sur les produits partiels. La solution
voisine
w = 2300
donnerait
D = 103 (4 9050 — 410) = + 103 . 8640
donc aussitot une erreur bien plus grande. La solution extrapolée

o 90
8640 + 90

montre que 2250 constitue la réponse plausible.
Si nous admettons maintenant la proportion

Pa_ Ps
Ja  Jp
et la hauteur /# étant constante

= 225°—5 — 224,040

5ok % A 2 2 2
cest-a-dire  Kij = K = Kmoyen

M4 = g = Omepen = 3,93
nous obtenons la charge critique des deux catégories de poteaux par
_ EJiw® 200000 kg/cm* ><180-10° cm

Pa=PFPo=—5 = 600% cm® — >< 3,932 = 1540000 kg
02 . 3
py— E 222“ _ 200 00063&)%.§9J_9 < 3,03* = 1100000 kg .

Le poteau médian admettait une charge critique de 2050 tonnes lors-
qu’il était sollicité seul dans le méme cadre élastique; la déformation cu-
mulée réduit donc ce chiffre a

1190 t = 58 % de 2050 tonnes
et, relativement au poteau a téte immobile, a
1190 t == 45 % de 2605 tonnes.

Abhandlungen VII 19
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Résumeé.

Une colonne isolée subit le phénomene du flambage de maniére in-
dépendante conformément aux équations établies par le prof. TIMOSHENKO,
puis par M. NATER, ingénieur; elle admet ainsi la charge critique maximum
compatible avec ses conditions d’insertion et de mobilité aux extrémités.
Par contre, une lignée de colonnes, de sections arbitrairement choisies et
inégales entre elles, voit la somme de charges critiques des poteaux soli-
darisés tomber bien en dessous du total des charges critiques des colonnes
indépendantes.

L’établissement de formules analytiques, propres a évaluer la somme
critique des charges des colonnes solidaires, se heurte a des complications
et conduit a des expressions peu maniables. Au contraire, I’application de
la méthode de Pellipse d’€lasticité du prof. Dr. W.Ritter (E.P.F.) con-
dense successivement les résultats obtenus des éléments introduits, et con-
duit avec élégance au résultat cherché.

Ce résultat, un total de charges, constitue une limite pour ’ensemble
des colonnes. On pourra admettre, par exemple, sa distribution en propor-
tion des moments d’inertie individuels des poteaux.

La charge totale des poteaux solidarisés par un plancher non contrebuté
peut tomber & moins de la moitié du cumul des charges critiques indi-
viduelles.

Zusammenfassung.

Eine einzelne Siule ist der Knickung unterworfen, gemiB den durch
Prof. TimosHENKO und Ingenieur NATER aufgestellten Gleichungen; dem-
nach tragt sie eine maximale kritische Last, welche von den Einspannverhilt-
nissen und den Bewegungsmoéglichkeiten ihrer beiden Endpunkte abhingig
ist. Im Gegensatz dazu sinkt die kritische Gesamtlast einer. Siulenreihe,
deren Querschnitte willkiirlich und ungleich sind, weit unter den Betrag, der
durch die Summe der kritischen Lasten der einzelnen, unabhingigen Siulen
gegeben ist.

Die analytische Untersuchung zur Abschiatzung der kritischen Gesamt-
last der solidarisch wirkenden Saulen fiihrt zu verwickelten und wenig hand-
lichen Formeln. Dagegen empfiehlt sich die Anwendung der Methode der
Elastizititsellipse von Prof. W. RitTer (E.T. H.), welche, die Einzelergeb-
nisse zusammenfassend, in eleganter Weise das Ziel erreicht.

Das Endergebnis, d. h. die kritische Gesamtlast, hat die Bedeutung einer
oberen Grenzbelastung fiir die Gesamtheit der Siulen. Deren Aufteilung auf
die Einzelsdulen kann z. B. im Verhiltnis der Trigheitsmomente vorgenom-
men werden.

Die Gesamtlast einer Sdulenreihe, bei welcher die Siulen durch eine
seitlich nicht versteifte Decke miteinander in Verbundwirkung stehen, kann
kleiner als die Halfte der Summe der kritischen Einzellasten ausfallen.

Summary.

An isolated column is subject to buckling according to the equations
established by Prof. TimosHENKO and Mr. NATER: it withstands a maximum
critical load which depends on the conditions of fixing and the possibility
of moving at the extremities. In contrast to that, the critical total load on
a line of columns, whose cross-sections are arbitrarily chosen and unequal,
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falls far below the sum of the critical loads which the columns could carry
if they were isolated.

The analytical investigation to evaluate the critical total load on co-
lumns acting together, leads to formulae which are complicated and not
very easy to manage. On the other hand, application of the method of the
elasticity ellipse of Prof. W. RiTter (E.T.H.) summarises successively the
results obtained from the elements introduced and leads elegantly .to the
solution.

This result, a total of loads, gives a limit for the whole set of co-
lumns. The load could, for example, be distributed among the columns in
proportion to their moments of inertia.

The total load which can be supported by a row of columns connected
together by a ceiling which is not laterally stiffened, may fall to less than
half the sum of the critical loads which the columns could carry indepen-
dently.



Leere Seite
Blank page
Page vide



	Encastrement élastique et flambage des colonnes

