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INFLUENCE DE LA DEFORMABILITE AUX EFFORTS
TRANCHANTS SUR LA RESISTANCE AU FLAMBAGE
DES POUTRES A AME PLEINE OU EN TREILLIS.

EINFLUSS DER FORMANDERUNG INFOLGE DER QUERKRAFTE
AUF DEN KNICKWIDERSTAND DER VOLLWAND- UND FACH-
WERKTRAGER.

CHANGE OF SHAPE DUE TO SHEARING FORCES AND ITS
INFLUENCE ON THE RESISTANCE TO BUCKLING OF PLATE
AND LATTICE GIRDERS.

ALB. DE MARNEFFE, Professeur a "Université de Liége.

L’on admet fréquemment que la part de déformation des poutres due
aux efforts tranchants est négligeable devant celle due aux moments fléchis-
sants. Si cela est souvent exact pour les poutres a dme pleine, il peut étre
dangereux de I’étendre aux poutres en treillis et surtout aux poutres a étré-
sillons (poutre VIERENDEEL), ol la part de déformation due aux efforts tran-
chants peut au contraire devenir prépondérante.

Dans ces conditions, on peut se demander si la charge critique de
flambage qui est déterminée en fonction de la seule déformabilité de la
poutre a la flexion, n’est pas a modifier si ’on tient compte en méme temps
de la déformabilité aux efforts tranchants.

C’est la question que nous nous proposons de résoudre dans cette étude.
Nous constaterons que le coefficient de sécurité au flambage des poutres
en treillis ou a étrésillons n’atteint pas la valeur que I'on pense et nous
établirons une méthode rationnelle pour le calcul des proportions du treillis
de ces poutres.

I. Fleches des poutres droites dues aux moments fléchissants
et aux efforts tranchants.

a) Poutre a dme pleine.
La déformée se déduit des formules bien connues de NAvVIER-BRESSE
. 'y
W — Wy = j E7 d&
1M 17
v1*~~.vo——wo(x1——xo) :j El( E)dé-——j ES:dE

ou S, est la section réduite de résistance a 1’effort tranchant (ame des poutres
double T).
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Pour le but que nous poursuivons, il nous suffira d’envisager une poutre
de section uniforme (EIl = C?%) et symétriquement chargée. Nous placerons
donc 'origine 0 des axes au milieu de la portée L (fig. 1).

En cette section médiane: x,= 0, w,= 0 par symétrie — v, = f fleche a
déterminer. A Vextrémité A: x;, =1L, vy =0 et on obtient:

"t 1
W = —1— ‘ Md& = —2—%—](1/140 si My = moment maximum en 0
a My = ordonnée moyenne du diagramme des M
1 [t (L > 1 J’M’M _am J‘l
f E]LM 5 —&)déE— Gs, ) e & v et OdM M,
1 L pL, M (@L ) a()’L2( 4ESo? )
=g My 5 tgs, =M\gErt 03 ET \! «fGS,L?
L‘)
si ;5’—; est la distance a I'extrémité A du centre de gravité de la surface a/;IOL
4 E S p*
S 2 _—
I = So? et posant 0 = wp G S, L? (2)

o étant précisément le rapport de la déformabilité due aux efforts tranchants
a la déformabilité due aux moments fléchissants.

b) Poutre en treillis.

Les formules de NAvIER-BRESSE appliquées aux poutres en treillis dé-
viennent:
_ M = moment au sommet opposé
@1 = Zo Es d2 a une barre

T ) [ = longueur de la barre
V1 —Vp— wp (X1~ Xg) = Z Esd® (x1—&) ol { s = section de la barre
’ d = distance du sommet opposé
a la barre

& = abscisse du sommet opposé.
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Si nous envisageons (fig. 2) une poutre de hauteur constante 7%, on
doit distinguer les barres des membrures et les barres du treillis comprises
entre les membrures. Pour les barres des membrures, les sommets
opposés sont aux noeuds n de celles-ci et par conséquent /=1, d=4h, s=s,
section supposée uniforme.

2 7l——
! Se 7 nl_n im
A b S
N s, \d 8 16
B / 4 x
N g' n-7 n m
\o\’ b—x |
~ r

-

Xff

Fig. 2

/ .
Alors Fed? devient constant pour les membrures et pour [l’ensemble

de celles-ci on a, en placant encore P'origine 0 au milieu de la poutre:

1 Ml
Eoﬁd"' Es/z’Z A = 2 EIM

car & 3g M — “Mog: surface du diagramme de M; ceci n’est qu’approxi-

matif mais d’autant plus exact que le nombre m des panneaux est élevé. De

méme le terme ) . ;
Ml
Esa® M8 = Eop Zo AM (2‘ - 5)

est approximativement le moment de la surface du diagramme des M par
rapport a extrémité A.
- On peut donc également poser
2 ‘ L L af L*
fn=Fop Mo Py =g g™ )
Pour les barres du treillis, dans ce cas spécial des membrures pa-
ralléles, les sommets opposés sont a l'infini et 'on obtient pour les termes

0 C’est-a-dire 'indétermination. Pour la lever, remplacons tout d’abord
— par N == effort longitudinal dans les barres que ’on peut facilement ex-

d Tn [
primer en fonction de 7, car N, = — cos O = T, 7

On obtient donc:
Ml NI NI/

1
Esd*  Esd —E}';_O car d = o<,
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donc les barres des treillis n’interviennent pas dans I’expression de o et on a:

L
Wg = %‘ EJ My .
Mi(x1—E&) . . Nh(3L—§)
Pour les termes —Fsg ils deviennent “Es,cos0d

Or d = (x—¢&) cos 60, si x est Pabscisse du point ol la barre recoupe ’axe 0 X,
donc

L
$L—¢_  jL—& %% 1 1
2 —_— . —
d ~ (x—&cosb <_x___1) cos0  cos pour &> oco.
&

: Nh =Tyl —T,0

On obtient done Esgjcos20 Eszcos?f  Esgh?
CONVMIGL—E A B
et fe = Zo Esd® = Esgh?l <~ Mo = Esqh?d Mo )
A

si sz est uniforme, car ZO AT, = — M, parce que A7, = M, — M,_1.

Pour les montants =0, cos =1, [=#h et il vient el avec A= ;nL~

Es,2
Si les diagonales alternent d’inclinaison (treillis en V), alors pour 6 § Oon a

toujours cos 6> 0 et le signe ne change pas.
Finalement on obtiendra pour la fléche totale

«) cas d’un treillis en V

o 2L® 3 L2 X
F=% EspMt gope M= Mogg; o801 +9) )
2m I3 s,
avec 6—@-‘25‘;; (6)

p) cas d’un treillis en N

Il y a alors deux barres par panneaux dont les déformations s’ajoutent,
la diagonale s, et le montant s,

B B\ T,,Iz( v
T”(Esdk2+Es,,)— E /Z3Sd+—§,: (7)
[ 2 b (L r )]_ L
donc  f = M°[4 Eort T EINS, T s = Mg ef1+9) (8)
2m Se (}z3 l3>
avec d = - Tt 9)

c) Poutre a étrésillons (Type VIERENDEEL).

Soit une poutre type VIERENDEEL de hauteur constante et & membrures
symétriques uniformes dont les notations sont définies sur la fig. 3.
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Chaque troncon de membrure est caractérisé par sa masse élastique

el . . Py . PN . A2
0, = E—l,;et son coefficient d’inertie » défini par » = iR

d’inertie de toute la masse élastique o, par rapport a ’axe vertical médian.

- ot R est le rayon

Chaque montant a une masse élastique o, = et, supposons-nous, le

€
Ei,

méme coefficient d’inertie ».

Autour d’un noeud z les moments de flexion dans les diverses branches
sont donnés par les formules de la théorie des rotations?!) qui

deviennent ici
, 1
- My = g, [270n = (v=1) 0n1 = (v+ 1) 0] dJ. = inclinaison de la barre

b

ou

+ M,’; — —(_}’ [2v6”+1 _ ('V+ 1) W, — (’}_ 1) (U,,+1] Wy — rOtatiOﬂ du HOCUd n

-2vw,
Opn

M, = BL [2v0nn —(v+ 1) 0w, — (v=1) wp] = (10)
n
car par symétrie w, = w, et 4,/ =0.
Par raison de symétrie, I’effort tranchant 7, du panneau # se répartit
par moitié entre les deux membrures et il s’exprime dans chacune!) par:

1 2 ) . -0, Wn1 + Wy,
~2—T,l__Oel(w,,_1+w,,—26,,) dolt | J, = 3y T, + (11)
Or d’apres (10)
‘ Gll " 174 h
(U’l == — é; Mfl et M’l = —= (Nn - N”+1) ?,
les N, étant les efforts longitudinaux dans les membrures qui en pre-
miere approximation peuvent s’obtenir par AN, = My = M +2M”_1 .
Alors
— 0 (M= Mgt = 22 (Mt My g = M= My) = 22 (T4 T
(-Un—4y N N+1 _—81’( ”,+ n-1— Mpy1— n)—*"—s“v‘( n rz+1)

1) Voir par exemple: A. pE MarNEFFe: Les constructions hyperstatiques. Ed.
Thone, Liége, 1937, page 158, formules 85 et 87.
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Onh

2,

Wy + O Oph
donc *2 = ——1—6—1’(7-”_,_ Tn+1 + Tha +Tn) =

si on admet trés approximativement que 27,=7, - 7T,., ce qui est fré-
quemment exact en cas de charges symétriques.

Alors

Ge&T

h="%, ",

ok . T,k - T,,Le(l 2/1)
Ty = — 8 (e+20”)_—851/ -+ (12)

2 Iy

Si ’on rapporte les déformations a la direction du montant milieu de
la poutre en 0, que nous numéroterons i, et qui en cas de mises en charge
symétriques ne varie pas, on obtient pour la dénivellation du noeud extrémec
m en A, c’est a dire pour la fleche f,:

fo= 2 i,

2 n Z’ " Ge 2 n Av 2 n L
ft: __(_(_)-f:i___r) Z lTn: M ( +8v0—)——— Mo'———(aegm:) (13)

car L = mAi.

Cette fleche a été établie en négligeant les déformations longitudinales
des membrures, elle est donc due uniquement a P'effet des efforts tran-
chants dans la poutre considérée comme poutre en treillis.

Pour obtenir la fleche jf, due aux moments fléchissants, nous devons
envisager les déformations longitudinales des membrures et pour cela nous
pouvons utiliser la méme expression que celle obtenue pour les membrures
de la poutre en treillis (3).

La fleche totale sera donc
ap’ 212 L(o.+ 20n)] M, L2

/—fnz+ft—M0l aB(l+0) (14)

4 Es.h? 8myv "4F]
Es.h® _ s.h%e <l Zh)
avec 4 = 4 a/)’muL(re +20,) = dafmvI\i, ' i, (15)

II. Importance relative de la fléeche due aux efforts tranchants
par rapport a la fleche due aux moments fléchissants.

Les expressions que nous venons d’établir pour f donnent celle-ci en
fonction de la fleche due aux moments fléchissants multipliée par le terme
de correction (1--0), olt le rapport  exprime le rapport entre f; et f,.

La valeur de J est donc intéressante a discuter. On peut l’exprlmer pour
les divers types de poutre en utilisant la disposition suivante qui fait ressortir
les analogies.

On constate d’abord que le rapport 6 dépend pour toutes les poutres
de af, c’est-a-dire de la mise en charge de la poutre, car le mode de mise
en charge influence le rapport entre les A1 et les 7.
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Expression de ¢

Valeurs moyennes de ¢

Type de R . R . N N .
ler 2eme 3éme 4eme ler 92éme 3eme Jeme roduit L L
poutre facteur facteur P '5‘:20 »5:100
: 1
sme plei 1 E S e e _ e !
ame pleines of G S, I 25 -25+ 3 - 4L2 == 75 i 0,1875 | 0,0075
- 1 { 2s, p 0% 0? | .
treillis en V py SRR R 5 C 7 25 - 2 ‘5 5Z5—~ 1257} 0,3125 | 0,0125
1 l 2se 2 o2 .
tu T s, e |25 2 -5 . 5;5=12 L
treillis en N 200 10,5 0,02
! b 2% B, 6 - 42 ¢ |
1 e h? se A2 2
Tuf Gves s LT |25 16 1 - 475 =160
a étrésillons ¢ ¢ 4302 (12 |0,048
(Vierendeel) 1 shl 2s, k2 , 0? Lz |7 ’
o Ave,® s, | LF |25 16 2 - 475=320
. 1 1-a
Mise en charge a p aff o X = =15
Charge unique P concentrée au milieu . —% % —:1,’ 3 2
orme révartic ol — 2 | 5 | 5 5
Charge uniforme répartie pL. = P . 3 3 12 2,4 3
Moment de fléxion sinusoidal (flambage) ;2{ % 7% 2,4674 1,69
Moment de fléxion constant . 1 %— % 2 1
i

On constate par le tableau ci-dessus que —;

ap

entre 2 et 3 et a comme valeur moyenne 2,5.

est compris généralement

Le rapportf—: 2,5 pour les poutres en acier a ame pleine. Pour les

G

poutres en treillis, le terme correspondant dépend des proportions des pan-
neaux. Il dépasse rarement la valeur 2. Pour les poutres a étrésilions, il
dépend de la flexibilité transversale des membrures et montants. Souvent

la proportion L3 est voisine de 16 et »=4. Ce terme a donc une valeur
proche de 16 (¢ <1).

Le rapport g, varie Sentre 2 et 3 pour les poutres a ame pleine, pre-
nons 3. On peut estimer —~ A 2,5 en moyenne dans les poutres en treillis et

Sd
a 1 dans les poutres a étrésillons.

Enfin le 4me terme dépend de I’élancement de la poutre et nous ’expri-

mons en fonction du coefficient d’élancement habituel g On déduit de cela
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les valeurs moyennes de ¢ pour diverses poutres. Pour un élancement reduit

(% = 20) tel que celui des poutres fléchies, on constate que é = 0,2 environ
pour les poutres a 4me pleine, est doublé pour les poutres en treillis et atteint

1,2 pour les poutres VIERENDEEL. La déformée due a l’effort tranchant est
donc prépondérante dans les poutres VIERENDEEL.
Pour les poutres soumises au flambage, 1’élancement est souvent plus

élevé (§~>100) et le coefficient 4 est moindre. Il est négligeable pour les

poutres a4 dme pleine (< 19), atteint 29/ dans les poutres en treillis mais
peut s’élever a 590 et d’avantage dans les poutres a étrésillons.

En conséquence, il y a lieu de vérifier les calculs de sta-
bilité qui dépendent de la déformabilité des poutres
et en tout premier lieu la stabilité au flambage quin’est
généralement établie qu'en fonction de la déformabilité
ala flexion.

III. Influence sur la charge critique de flambage.

On peut assimiler la sollicitation par flambage a une sollicitation par
flexion dont le diagramme des moments le long de la poutre est une fonc-
tion sinusoidale: M = Pf cos kx, ou P est 'effort de compression axiale
et / la fléche.

Reprenons la figure 1 et soit pour x =0 M;=Pf,pourx=3L M=

c’est-a-dire cos E = 0 = cos 2 doir £="-. Alors il vient

2 2 L
L 3 Pf 2
a 2 L
_Z_Pf—joprOSkEdf—-z’——Pf-; donc a:—;{
L
L. (2 (L ) L of 1 2,
aﬂjpf—jopfcoské: 5 —§|dé = Pf 5 donc~4—__F donc B=— )
’ > . L? . 1-[—6 . aEl
Donc d’aprés (1) f_PfW(l + d) = Pf Py car Py = —zr

P, étant la charge critique habituelle donnée par la formule d’EuLer. Donc
pour que la fleche critique ne soit pas atteinte, il faut que

P, < Py

=713 (16)

On constate que la charge critique de flambage est ré-

duite du fait de la déformabilité a l'effort tranchant

dans la proportion de Le coefficient de sécurité au flam-

1
146
) 2) Pour ce qui précéde, nous n’avons vérifié I’équilibre qu’au milieu pour la sec-
tion dangereuse; en réalité, il faudrait le vérifier tout le long de la déformée. Mais
cela n’entrainerait qu’une faible ‘modification du diagramme des M et les coefficients

« et § ne seraient modifiés que dans une mesure bien inférieure aux tolérances pra-
tiques adoptées.
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bage généralement admis jusqu’a present 8) pour les poutres en treillis sans
tenir compte de la déformabilité due a 7 est donc réduit en réalité dans la
méme proportion.

Soit par exemple § = 0,1, le coefficient de sécurité supposé k£ n’est
plus que ile = 0,91 £ et de 3 il est descendu a 2,73 environ.

’

Pour les poutres prismatiques & dme pleine, la réduction de sécurité est
le plus souvent négligeable. Mais pour les poutres en treillis et spécialement
pour les poutres a étrésillons, il y a lieu de les calculer en tenant compte
de la réduction de la charge critique due a la déformabilité du treillis. L’on
pourra cependant alors se contenter d’un coefficient de sécurité
reduit (de 10 a 209/ par exemple) pour ne pas renforcer une construction
qui s’est montrée suffisante jusqu’a présent, — ce serait un progres a
rebours, — mais on aura 'avantage de limiter la tolérance dont on use.

Les formules ci-dessus ont été établies pour le flambage, c’est-a-dire

pour le cas out la formule d’EuLER est applicable et qui demande L > 105.
Dans le cas d’élancement moindre (30 <%<105) oli on applique géné-
ralement la formule de TETMAYER, I’on pourrait se contenter de vérifier que

la réduction de sécurité reste dans une limite raisonnable.

1

14+ 4

Il ne faut pas confondre cette réduction de résistance au flambage due
a la déformabilité du treillis avec celle qui provient de la possibilité du flam-
bage local des troncons de membrure entre noeuds et qu’a exposée M. G. L.
GERARD dans sa «Théorie physiquedelarésistancedes pi¢ces
comprimées a treillis»%). Ces réductions ne s’ajoutent pas, mais
agissent parallelement et c’est la plus forte qui ’emporte, car elles pro-
viennent d’éléments différents.

IV. Calcul des dimensions du treillis ou des étrésillons.

La déformabilité aux efforts tranchants des poutres diminue leur ré-
sistance au flambage. [l ne sera donc pas possible de proportionner I’Ame
ou le treillis des poutres pour que cette réduction soit nulle. On devra se
contenter de les établir pour qu’elle ne dépasse pas une certaine limite que
Pon peut s’imposer selon les circonstances (10 a 200/ par exemple).

Soit K le coefficient de sécurité réduit adopté (» < 1), nous poserons
T+ Ce qui revient a réaliser‘ 0= I-T]j‘
tion que 'on pourra utiliser pour déterminer les proportions du treillis ol
des étrésillons par rapport aux membrures.

C’est la véritable méthode rationnelle de calcul de ce treillis; car la
méthode utilisée en adoptant un effort tranchant hypothétique n’est qu’em-
pirigue. Cette méthode est a substituer i celle que nous-méme avons in-
diquée dans un mémoire ) publié en 1935 en nous basant sur un effort tran-

L’on aura 1a une condi-

donc y <

3) Signalons cependant que Uinfluence des étrésillons sur le flambage a été étu-
diée assez complétement par le Prof. Dr. Ing. Ernst CHwALLA de Brunn dans un mémoire
intitulé: «Das Problem der Stabilitit gedriickter Rahmenstibe» et publié dans le Vol. Il
de «Mémoires» de P’Assoc. intern. des Ponts et Charpentes, Zurich, 1933.

4) Revue universelle des Mines. t. III, aofit-septembre 1913.

5) L’Ossature métallique n® 2, Fevrier 1935.
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chant hypothétique préconisé par M. G. L. GERARD dans le mémoire cité plus

haut, et donné par 7 < 0,016 (—g— — I)F.
¢

Pour la poutre 2 ame pleine, on en déduira une limite inférieure
pour S,

n n*Ee*  n Py
3’251—17 GL* " 1—y G (17
Pour la poutre a treillis en V
-~ 0 Lk
sdzs"l—n 2112 (18)

Pour la poutre a étrésillons, on pourra choisir /, puis déterminer
i, ou inversement par:

i+g'éél—nJ6mVL

e in n afeh’s,

1—n8mvL
ou o, + 2(7,; =~ T ;z“*ﬁ (19)

En dehors de la question du flambage, il y a 1a une méthode pour déter-
miner les profils des montants et membrures des poutres VIERENDEEL pour que
leur déformabilité ne dépasse pas certaines valeurs imposées par les cir-
constances.

V. Efforts secondaires de flexion dans les membrures des
poutres en treillis ou a étrésillons.

La fleche supplémentaire due au treillis ou aux étrésillons détermine
des efforts secondaires de flexion dans les membrures, en sorte que le mo-
ment de flexion dans une section transversale d’une poutre ne sera pas uni-
quement équilibré par le couple des efforts longitudinaux dans les mem-
brures N,i—= M’, que j’appellerai «’effet poutre» mais aussi par des
moments fléchissants propres a chacune des membrures. En cas de mem-
brures identiques, ces moments seront les mémes dans chacune de celles-

. I N 1
ci et égaux a -5~ M”. On aura donc

2
M=M -+ M
On partagera M en M’ et M” en posant ’égalité des fleches:
1 ., aBfl?  afL®
oM gE, =M yEr 19
Donc
M 2014 d)i,  4o.? \
w1 e U9
et le rendement de I’effet poutre sera exprimé par:
m M h?

M WA T e (1 0) =
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Ceci n’est qu’une premieére approximation, car la poutre entiére est
libre sur ses appuis, mais il n’en est pas de méme des membrures qui sont
encastrées sur les premiers montants rigides. Il faudra alors tenir compte
de la contre-fleche produite dans les membrures par les moments d’encastre-
ment sur les montants d’extrémités.

On peut alors établir que le rendement de 'effet poutre est donné par:

mw_o
M h*+4 4021+ d)x

(21)

out x est un facteur correctif qui peut varier de 1 a 2 selon la mise en charge
(voir 2me tableau page 209).

On peut en déduire M”, moments de flexion secondaires dans les mem-
brures. Je signalerai enfin que ’on peut aussi en déduire une méthode appro-
ximative rapide de calcul de la poutre VIERENDEEL en cas de charge symé-
trique.

Table alphabétique des notations utilisées.

A largeur d’un panneau de
treillis

o  Rapport & M, de "ordonnée
moyenne du diagramme des M

p  rapport a L de la distance de AL momesit lechissant
2 , M, moment fléchissant maximum
Pextrémité de la poutre au | m  nombre total de panneaux de
centre de gravité de 2z MyL i la poutre
2 N effort longitudinal dans une
d  distance du sommet opposé barre
afune batte ‘ n  numéro d’un noeud quel-
0= }—i rapport des fléches dues a } co2nque
Tmet A M ] v = 4lR—2 (voir § Ic) » = 3 pour une
d, inclinaison de laxe d’une barre uniforme ‘
barre P charge concentrée :
- E  coefficient d’élasticité longi- ! P, charge de flambage d’EULER
tudinal P,, charge critique réduite
¢  réduction de masse élastique p  charge répartie
due i la présence des goussets 7 rapport= 3,1416
»  rendement du coefficient de | o  rayon d’inertie
sécurité ‘ S  section d’une poutre
6  angle de la diagonale sur le S, section réduite de résistance
montant arT
f  fleche totale au milieu de la s  section d’une barre
poutre s, section d’'une membrure
;’t” 22222 ((ij?lee ZLL);/?- 6= El—l masse élastique d’une
G coefficient d’élasticité trans- barre
versal T effort tranchant
k  hauteur de la poutre v déplacement vertical d’une
I = Se? moment d’inertie d’une section
poutre x  abscisse d’une section
i moment d’inertie d’une barre &  abscisse d’une section cou-
L  portée de la poutre - rante
) longueur d’une barre (diago- o  angle de rotation d’une section
nale)
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Alphabetisches Verzeichnis der verwendeten Bezeichnungen.

Verhiltnis der mittleren Or-
dinate des M-Diagramms zu
M,

Verhiltnis des Abstandes zwi-
schen dem Balkenende und dem
Schwerpunkt X ML zu L

2 2

Abstand des Drehpoles eines
Stabes

-fi Verhiltnis der Durchbie-
-

gungen infolge 7 und M
Neigung einer Stabaxe
Elastizititsmodul

Reduktion der elastischen
Masse durch die Knotenbleche
Wirkungsgrad des Sicher-
heitskoeffizienten

Winkel zwischen Diagonale
und Pfosten

totale Durchbiegung in Bal-
kenmitte

Durchbiegung infolge M
Durchbiegung infolge T
Schubmodul

Balkenhdhe

So? Trigheitsmoment eines
Balkens

Tragheitsmoment eines Stabes
Spannweite des Balkens
Stablinge (Diagonale)

M
M,
n
N

n

Iy

w

Feldweite

Biegungsmoment

maximales Biegungsmoment
Anzahl der Felder
Liangskraft in einem Stabe
Nummer fiir einen beliebigen
Knotenpunkt

2

ZI—R‘? (siehe § 1¢); » =3 fiir ei-

nen gleichférmigen Stab
Einzellast

Eurer’sche Knicklast
reduzierte kritische Last
gleichmiBig - verteilte Last
Verhiltniszahl = 3,1416
Tréagheitsradius
Balkenquerschnitt
reduzierter Schubquerschnitt
Stabquerschnitt
Gurtquerschnitt

elastische Masse eines

E-i

Stabes

Querkraft

vertikale Verschiebung eines
Querschnittes

Abszisse eines Querschnittes
Abszisse eines variablen Quer-
schnittes

Drehwinkel eines Quer-
schnittes

Alphabetical list of symbols used.

Ratio to M, of the mean or-
dinates of the M diagram

Ratio to ~[2‘~ of the distance

between the end of the beam
and the centre of gravity of

%‘ ML

Distance from the opposite
vertex to a bar

'fi Ratio of the deflections due

fm

to T and to M

Inclination of the axis of a
bar

Modulus of elasticity

|

£

\;-Qbs\ ~

~,

Reduction of the elastic mass
due to the gusset plates
Efficiency of the factor of
safety

Angle between diagonal and
upright

Total deflection at middle of
beam

Deflection due to M
Deflection due to T
Modulus of shear

Height of beam

So? Moment of inertia of a
beam

Moment of inertia of a bar
Span of the beam
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l Length of a bar (diagonal) ¢  Radius of gyration
i Width of one panel S  Cross-section of a beam
M Bending moment S, Reduced section of shear
M, Maximum bending moment s  Cross-section of a bar
m  Total number of panels s, Cross-section of a chord
N Longitudinal force in a bar ) .
n Nurfber for any assemblage T Ei Elastic mass of & ba

point whatever T  Shearing force

& i di cement of a

y = Z%{v“’ (see § 1¢); » = 3 for a uni- Y Zrzrst:-::écti(;;pla

form bar x  Abscissae of a cross-section
P Concentrated load &  Abscissae of a variable cross-
P, EuLer’s buckling load section
P, Reduced critical load o  Angle of rotation of a cross-
p  Uniformly distributed load section
a  3,1416

Résumé.

La détermination de la fleche des poutres fléchies montre que la fleche
totale f comporte une fleche partielle f, due aux moments fléchissants et

une fleche f, due aux efforts tranchants. Le rapport 6 = It de ces fleches

est spécialement intéressant a discuter pour chaque type de poutre (Tab-
leau p. 269). Il est assez faible et souvent négligeable pour les poutres a
ame pleine, mais devient plus important dans les poutres en treillis et méme
préponderant (6 > 1) dans les poutres a étrésillons ou du type VIERENDEEL.

Il en résulte comme principale conséquence que la charge critique de
flambage qui est déterminée en fonction de la déformabilité de la poutre a
la flexion doit étre réduite si Pon tient compte également de la déforma-
bilité aux efforts tranchants et cela spécialement dans les poutres a étré-
sillons. L’on obtient alors la charge critique réelle par la formule (16)
P, = -1-{)55. I n’est pas possible de proportionner ’ame ou le treillis des
poutres pour que cette réduction soit nulle. On devra se contenter de les
établir en utilisant les expressions de § du tableau (page 269) pour que cette
réduction ne dépasse pas une certaine limite que ’on peut s’imposer selon
les circonstances (10 a 200/ par exemple) (17), (18), (19).

Enfin le coefficient 6 permet également de déterminer le rendement a
la flexion des membrures des poutres en treillis ou a étrésillons (20), (21).

Zusammenfassung.

Die Bestimmung der Durchbiegung von auf Biegung beanspruchten
Tragern zeigt, daB die totale Durchbiegung aus zwei Beitrigen zusammen-
gesetzt ist, namlich aus dem Anteil f, infolge der Biegungsmomente und
dem Anteil f; infolge der Querkrifte. Es ist von Interesse, das Verhiltnis

4= %— fiir jede Art Balken zu untersuchen (s. Tabelle S. 269). Fiir Vollwand-

trager ist d ziemlich klein und kann in den meisten Fillen vernachlissigt
werden; fiir Fachwerktriger jedoch weist § groBere Betrige auf und wird
mafBgebend (4> 1) fiir Vierendeeltriger.
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Daraus ergibt sich als wichtigste Folgerung, daBl die kritische Knick-
last, welche von der Deformation des Triagers infolge Biegung abhingig ist,
vermindert werden muB, sobald man die Deformation infolge der Querkrifte
in Rechnung zieht, was besonders fiir die Vierendeeltriger ins Gewicht fallt.
Man erhalt in diesem Falle die tatsdchliche kritische Knicklast aus der For-

mel (16): Py, = 1+ 3

oder Fachwerktrager so zu dimensionieren, daB obige Reduktion verschwin-
det. Man muB sich damit begniigen, diese Trager mit Hilfe von & (siehe
Tabelle S. 269) so zu dimensionieren, daB die dadurch bedingte Reduktion eine
bestimmte Grenze, die man den Umstdnden anpassen kann (z. B. 10 bis 209),
nicht iiberschreitet (Formeln (17), (18), (19)).

Der Koeffizient 6 erlaubt schlieBlich, den Wirkungsgrad bei Biegung
sowohl fiir die Fachwerk- wie fiir die Vierendeeltriger zu bestimmen. .

Es zeigt sich, dal es unmoglich ist, einen Vollwand-

Summary.

Determining the deflection of beams subjected to bending shows that
the total deflection is made up of two parts, namely one f, due to the ben-
ding moments and the other jf; due to shearing forces. It is of particular

interest to investigate the ratio ¢ :fi for each type of beam (see Table on

page 269). In the case of plate girders J is rather small and can often be
neglected, but in lattice girders it becomes more important and in VIE-
RENDEEL girders it is even preponderant (6> 1).

The principal result following from this is that the critical buckling load,
which is dependent on the deformation of the beam in consequence of ben-
ding, must be reduced when the deformation due to shearing forces is also
taken into account, particularly in VIERENDEEL girders. In that case the ac-

tual critical buckling load is obtained from formula (16): P, = s + 5 It is
shown to be impossible to choose the dimensions of a plate or lattice girder
in such a way that this reduction completely disappears. It is necessary
to be satisfied with dimensioning these girders from the values of J given
in the Table on page 269, so that this reduction does not exceed a certain
limit which may be chosen in accordance with the particular circumstances
(for instance 10 to 209/) (formulae (17), (18), (19)).

Finally, the coefficient d also allows the work done in bending to be
determined in lattice girders and also in VIERENDEEL girders (formulae (20),

(21)).
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