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INFLUENCE DE LA DEFORMABILITE AUX EFFORTS

TRANCHANTS SUR LA RESISTANCE AU FLAMBAGE
DES POUTRES A ÄME PLEINE OU EN TREILLIS.

EINFLUSS DER FORMÄNDERUNG INFOLGE DER QUERKRÄFTE
AUF DEN KNICKWIDfRSTAND DER VOLLWAND- UND FACH¬

WERKTRÄGER.

CHANGE OF SHAPE DUE TO SHEARING FORCES AND ITS
INFLUENCE ON THE RESISTANCE TO BUCKLING OF PLATE

AND LATTICE GIRDERS.

ALB. DE MARNEFFE, Professeur ä PUniversite de Liege.

L?on admet frequemrnent que la part de deformation des poutres due
aux efforts tranchants est negligeable devant celle due aux moments flechis-
sants. Si cela est souvent exact pour les poutres ä äme pleine, il peut etre
dangereux de Petendre aux poutres en treillis et surtout aux poutres ä etre-
sillons (poutre Vierendeel), oü la part de deformation due aux efforts
tranchants peut au contraire devenir preponderante.

Dans ces conditions, on peut se demander si la charge critique de
flambage qui est determinee en fonetion de la seule deformabilite de la
poutre ä la flexion, n'est pas ä modifier si Pon tient compte en meme temps
de la deformabilite aux efforts tranchants.

C'est la question que nous nous proposons de resoudre dans cette etude.
Nous constaterons que le coefficient de securite au flambage des poutres
en treillis ou ä etresillons n'atteint pas la valeur que Pon pense et nous
etablirons une methode rationnelle pour le calcul des proportions du treillis
de ces poutres.

I. Fleches des poutres droites dues aux moments flechissants
et aux efforts tranchants.

a) Poutre ä äme pleine.

La deformee se deduit des formules bien connues de Navier-Bresse

f1 M f1 T
Vt — V0 — CO0(X! — *0) — J jpy(*i— f)rff — 1 ~Q^d^

oü Sr est la section reduite de resistance ä Peffort tranchant (äme des poutres
double T).
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Pour le but que nous poursuivons, il nous suffira d'envisager une poutre
de section uniforme (EI Cte) et symetriquement chargee. Nous placerons
donc Porigine 0 des axes au milieu de la portee L (fig. 1).

t-u-
t-x

r-72
an, hv**

Fig. 1

En cette section mediane: x0 0, a>0 0 par symetrie — v0 f fleche ä

determiner. A Pextremite A: xx \L, vt 0 et on obtient:
1 f1 L

w! -— Md£ 7^r-TaM0 s\M0= moment maximum en 0
EIJq 2tl

aMo ordonnee moyenne du diagramme des M

dM1 (\JL ,\^, 1 [xdM .t _ dM f1 .,„f =Ei)0M[Y-Vd"-os,\QWd" ™r=w«]dM -MQ

1
AM

L ftL Mo h. (aßL* 1 \ ccßL2 4ESq2 \

I Sq2 et posant

/ Mo^]aß(\ + d)

>xtr emite A du centre de

4 E S <?a

~ aß G Sr V-

0)

aM0L
~2~

(2)

(5 etant precisement le rapport de la deformabilite due aux efforts tranchants
ä la deformabilite due aux moments flechissants.

b) Poutre en treillis.
Les formules de Navier-Bresse appliquees aux poutres en treillis de-

viennent

Ml
o Esd*

srt Ml %

v1~v0-co0(x1~xo) 2j e .2 (*i~£) ou

M moment au sommet oppose
ä une barre

/ longueur de la barre
5 section de la barre
d distance du sommet oppose

ä la barre
£ ~ abscisse du sommet oppose.
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Si nous envisageons (fig. 2) une poutre de hauteur constante h, on
doit distinguer les barres des membrures et les barres du treillis comprises
entre les membrures. Pour les barres des membrures, les sommets
opposes sont aux noeuds n de celles-ci et par consequent 1 X, d h, s se
section supposee uniforme.

iLiL
SR 1/' /?-/ n

n-7

\d

^
Alors

/

Fig. 2

devient constant pour les membrures et pour Pensemble
Esd2

de celles-ci on a, en plagant encore Porigine 0 au milieu de la poutre:
-1 Ml 2 — i

2. Zfs d2 Es,pS> tÄ^
avec / Seh2

moment d'inertie de la poutre du aux membrures,

car f JSo XM olM0 ^ surface du diagramme de M; ceci n'est qu'approxi-

matif mais d'autant plus exact que le nombre m des panneaux est eleve. De
meme le terme

est approximativement le moment de la surface du diagramme des M par
rapport ä1 Pextremite A.

On peut donc egalement poser
2 LA4 „ L aß L2

Eseh2 «M»Y'ß~2 =Tf7Afo (3)

Pour les barres du treillis, dans ce cas special des membrures
paralleles, les sommets opposes sont ä Pinfini et Pon obtient pour les termes

c'est-ä-dire Pindetermination. Pour la lever, rempla^ons tout d'abordqo
oo
M

par N effort longitudinal dans les barres que Pon peut facilement ex-

~
cos 0 n h 'primer en fonetion de T, car Nn —

On obtient donc:
Ml Nl Nl

Esd2 Esd Es "0 car d oc



266 A. de Marneffe

donc les barres des treillis n'interviennent pas dans Pexpression de co et Pon a:
a L
2 EI Mo.

Pour les termes —2, J9
ds deviennent _

V2 —^.Zfsdf2 Esdcos Od

Or <:/ =- (x—|) cos 0, si a: est Pabscisse du point oü la barre recoupe Paxe 0 X,
donc

d

On obtient donc

et n S

\L — S

(x — |) cos 0

Nh

if 1
1 1

(f--) COS0

r„/

COS0 pour | —>- oo.

Esd cos2 0 EsaCos^O Esdh2

Sl

fsa?2

4>

s„^« Af«
Esjhn ^o '" Esdh2X

sa est uniforme, car ^ ^Tn —Mo parce que IT„ M„ — Mn_\

(4)

Pour les montants 0 0, cos 0=1, / A et il vient _ ^ avec X--
EsnX

L
m

Si les diagonales alternent d'inclinaison (treillis en V), alors pour 0 ^0 on a

toujours cos 0>O et le signe ne change pas.
Finalement on obtiendra pour la fleche totale

a) cas d'u n treillis en V

t
aß 2Z.2

4 Es.h'-
M» + lSslM« M«&iaHX+Ö)

avec d
2 ml3 se

aß L3 Sa

(5)

(6)

ß) cas d'un treillis en N
II y a alors deux barres par panneaux dont les deformations s'ajoutent,

la diagonale sd et le montant sn

n\Esdh? ^ EsJ E U3s* sj (7)

donc f MAf-E^ + Mi+7^)hM^ia^ + ^ <8>

(9)avec 2^ Se_(!*tP\~~
aß

'
L3 \sn + sj

c) Poutre ä etresillons (Type Vierendeel).
Soit une poutre type Vierendeel de hauteur constante et ä membrures

symetriques uniformes dont les notations sont definies sur la fig. 3.
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Chaque trongon de membrure est caracterise par sa masse elastique
eX X2

ae — et son coefficient d'inertie v defini par v ~r~D2 °^ ^ es* *e ray°nLlle 4 t\
d'inertie de toute la masse elastique ae par rapport ä Paxe vertical median.

eh
Chaque montant a une masse elastique on -=-r- et, supposons-nous, le

Ein
meme coefficient d'inertie v.

/' /?-1 n' n'+f m

Ä \
/ (Tn\

n-1 m' n m* n+1 m
rfn-l

Mn

TnTUn
n+1

— X

Fig. 3

Autour d'un noeud n les moments de flexion dans les diverses branches
sont donnes par les formules dela theorie des rotations1) qui
deviennent ici

1

M' [2 v dn - (v- 1) w„_i - (v+ 1) (on\

1
OU

+ Mn — [2 v dn+l - (v+ 1) con - (v- 1) ton+1]

M'n — [2 V dnnf - (v+ 1) con - (v- \)ton]

ön inclinaison de la barre

ion rotation du noeud n

2 v con
(10)

car par symetrie con conf et dnn' 0.
Par raison de symetrie, Peffort tranchant Tn du panneau n se repartit

par moitie entre les deux membrures et il s'exprime dans chacune l) par:

-7rTn =- (w^i + tön —2 <fn) d'oÜ

Or d'apres (10)

3„ -ael T co„_! + w„
- 8v J" '

2 (11)

les Nn etant les efforts longitudinaux dans les membrures qui en

premiere approximation peuvent s'obtenir par hNn MN —n n~1

Alors
önl t

<°n ~(MN-MN+1)=-^(Mn + Mn_1-Mn+1-Mn) —JL-Pn+Tm)

x) Voir par exemple: A. de Marnefte: Les constructions hyperstatiques. Ed.
Thone, Liege, 1937, page 158, formules 85 et 87.
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donc ^ ~ — Y€v^ n + "+1 + ^ + ^ ~~ 17

si on admet tres approximativement que 2Tn Tn_x + Tn+1, ce qui est fre-
quemment exact en cas de charges symetriques.

Alors

8*>
x <fnl Tnl Tnls (l 2ti\

Si Pon rapporte les deformations ä la direction du montant milieu de
la poutre en 0, que nous numeroterons /, et qui en cas de mises en charge
symetriques ne varie pas, on obtient pour la denivellation du noeud extreme
m en A, c'est ä dire pour la fleche ft\

(Oe-
__ _/^-<^2^ (13)' Sv *-** Sv Smv

car L mX.

Cette fleche a ete etablie en negligeant les deformations longitudinales
des membrures, eile est donc due uniquement ä Peffet des efforts
tranchants dans la poutre consideree comme poutre en treillis.

Pour obtenir la fleche fm due aux moments flechissants, nous devons
envisager les deformations longitudinales des membrures et pour cela nous
pouvons utiliser la meme expression que celle obtenue pour les membrures
de la poutre en treillis (3).

La fleche totale sera donc

/ /m + /-^[f.^ + ^^J ^«,(l + (14)

(15)avec _ ESeh*

Aaß mv

II. Importance relative de la fleche due aux efforts tranchants
par rapport ä la fleche due aux moments flechissants.

Les expressions que nous venons d'etablir pour / donnent celle-ci en
fonetion de la fleche due aux moments flechissants multipliee par le terme
de correction (1 +^)> oü le rapport ö exprime le rapport entre ft et fm.

La valeur de d est donc interessante ä discuter. On peut Pexprimer pour
les divers types de poutre en utilisant la disposition suivante qui fait ressortir
les analogies.

On constate d'abord que le rapport d depend pour toutes les poutres
de oeß, c'est-ä-dire de la mise en charge de la poutre, car le mode de mise
en charge influence le rapport entre les M et les T.
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Type de

poutre

Expression de d
ler 2eme 3eme zjeme

facteur

Valeurs moyennes de d
ler 2eme ßeme 4eme produit

facteur 20 100

äme pleines

treillis en V

treillis en /V

ä etresillons
(Vierendeel)

_1

aß

J^
aß

aß

aß

_1_

aß

1

E_
G

l
l

x

Ä
x

sh2

aß 4vgn*

sd

sd

2s.

4^
L2

L2

L2

L2

i2.
U

L2

2,5 • 2,5 • 3 • *jj= 75^

2,5 • 2 • 5 • 5
Z.2

2,5 2 • 5 • 5j^ 125:

2,5 • 1,25 • 6 • 4jj= 75 j

2,5 • 16 • 1 • 4 160

2,5 • 16 • 2 • 4^ 320

125

200

L2

L2

480

0,1875 0,0075

0,3125

0,5

1,2

0,0125

0,02

0,048

Mise en charge

Charge unique P concentree au milieu

Charge uniforme repartie pL P

Moment de flexion sinusoidal (flambage)

Moment de flexion constant

1

a ß «/?
~^ß

1 2 1
3

2 3 3

2 5 5
2,4

3 8 12

2 2 4
2,4674

71 ji JTJ

1 1
1 2

2 2

1-«
l-72/?
2

_5_

3

1,69

1

On constate par le tableau ci-dessus que —- est compris generalement

entre 2 et 3 et a comme valeur moyenne 2,5.
E

Le rapport— =2,5 pour les poutres en acier ä äme pleine. Pour les

poutres en treillis, le terme correspondant depend des proportions des pan-
neaux. II depasse rarement la valeur 2. Pour les poutres ä etresillons, il
depend de la flexibilite transversale des membrures et montants. Souvent

la proportion — est voisine de 16 et v 4. Ce terme a donc une valeur
Q

proche de 16 (ß< 1).
5

Le rapport — varie entre 2 et 3 pour les poutres ä äme pleine, pre-
r s

nons 3. On peut estimer — ä 2,5 en moyenne dans les poutres en treillis et
$d

ä 1 dans les poutres ä etresillons.
Enfin le 4me terme depend de Pelancement de la poutre et nous Pexpri-

mons eu fonetion du coefficient d'elancement habituel —. On deduit de cela
Q
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les valeurs moyennes de d pour diverses poutres. Pour un elancement reduit

I— 20) tel que celui des poutres flechies, on constate que ö 0,2 environ

pour les poutres ä äme pleine, est double pour les poutres en treillis et atteint
1,2 pour les poutres Vierendeel. La deformee due ä Peffort tranchant est
donc preponderante dans les poutres Vierendeel.

Pour les poutres soumises au flambage, Pelancement est souvent plus

eleve f —>>100] et le coefficient 6 est moindre. II est negligeable pour les

poutres ä äme pleine «1%), atteint 2<y0 dans les poutres en treillis mais
peut s'elever ä 5o/0 et d'avantage dans les poutres ä etresillons.

En consequence, il y a lieu de verifier les calculs de
stabilite qui dependent de la deformabilite des poutres
et en tout premier lieu la stabilite au flambage quin'est
generalement etablie qu'en fonetion de la deformabilite
ä la flexion.

III. Influence sur la charge critique de flambage.
On peut assimiler la sollicitation par flambage ä une sollicitation par

flexion dont le diagramme des moments le long de la poutre est une fonetion

sinusoidale: M Pf cos kx, oü P est Peffort de compression axiale
et / la fleche.

Reprenons la figure 1 et soit pour x 0 M0 Pf, pour x \L M 0
kL TZ 7t

c'est-ä-dire cos -=- 0 cos -=- d?oü k —- Alors il vient

°^Pf [2Pfcosk£d£ ^t Pf— donc a —
JL J q K TZ TZ

aß~Pf ^Pfcoskt(~-z)d£ Pf~ donc^ ^ donc ß -^ 2)

^0^ ^'--" -"Donc d'apres (1) / Pf~vwi 0 + d) pf~^~ car p°

P0 etant la charge critique habituelle donnee par la formule d' Euler. Donc
pour que la fleche critique ne soit pas atteinte, il faut que

(16)

On constate que la charge critique de flambage est re-
duite du fait de la deformabilite ä Pef f or t vtra nchan t

dans la proportion de ^ -r. Le coefficient de securite au flam-

2) Pour ce qui precede, nous n'avons verifie Pequilibre qu'au milieu pour la
section dangereuse; en realite, il faudrait le verifier tout le long de la deformee. Mais
cela n'entrainerait qu'une faible modification du diagramme des M et les coefficients
x et ß ne seraient modifies que dans une mesure bien inferieure aux tolerances pra-
tiques adoptees.
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bage generalement admis jusqu'ä present3) pour les poutres en treillis sans
tenir compte de la deformabilite due ä T est donc reduit en realite dans la
rneme proportion.

Soit par exemple ö 0,1, le coefficient de securite suppose k n'est

plus que zr^r k 0,91 k et de 3 il est descendu ä 2,73 environ.

Pour les poutres prismatiques ä äme pleine, la reduction de securite est
le plus souvent negligeable. Mais pour les poutres en treillis et specialement
pour les poutres ä etresillons, il y a lieu de les calculer en tenant oompte
de la reduction de la charge critique due ä la deformabilite du treillis. L'on
pourra cependant alors se contenter d'un coefficient de securite
reduit (de 10 ä 20o/0 par exemple) pour ne pas renforcer une construction
qui s'est montree süffisante jusqu'ä present, — ce serait un progres ä

rebours, — mais on aura Tavantage de limiter la tolerance dont on use.
Les formules ci-dessus ont ete etablies pour le flambage, c'est-ä-dire

pour le cas oü la formule d'Euler est applicable et qui demande —> 105.
L &

Dans le cas d'elancement moindre (30 <—<105) oü Pon applique gene-
Q

ralement la formule de Tetmayer, Pon pourrait se contenter de verifier que

la reduction de securite z.—;—^ reste dans une limite raisonhable.
\ + o

II ne faut pas confondre cette reduction de resistance au flambage due
ä la deformabilite du treillis avec celle qui provient de la possibilite du flambage

local des trongons de membrure entre noeuds et qtPa exposee M. G. L.
Gerard dans sa «Theorie physique de la resistance des pieces
comprimees ä treillis»4). Ces reductions ne s'ajoutent pas, mais
agissent parallelement et c'est la plus forte qui Pemporte, car elles pro-
viennent d'elements differents.

IV. Calcul des dimensions du treillis ou des etresillons.
La deformabilite aux efforts tranchants des poutres diminue leur

resistance au flambage. II ne sera donc pas possible de proportionner Päme
ou le treillis des poutres pour que cette reduction soit nulle. On devra se
contenter de les etablir pour qu'elle ne depasse pas une certaine limite que
Pon peut s'imposer selon les circonstances (10 ä 20 o/o par exemple).

Soit 7]K le coefficient de securite reduit adopte (/y<l), nous poserons
1 1 - vdonc v < -z s ce qui revient ä realiser d < '. L'on aura lä une condi-

1 + 0 7]

tion que Pon pourra utiliser pour determiner les proportions du treillis oü
des etresillons par rapport aux membrures.

C'est la veritable methode rationnelle de calcul de ce treillis; car la
methode utilisee en adoptant un effort tranchant hypothetique n'est qu'em-
pirique. Cette methode est ä substituer ä celle que nous-meme avons in-
diquee dans un memoire5) publie en 1935 en nous basant sur un effort tran-

3) Signaions cependant que Finfluence des etresillons sur le flambage ä ete etu-
diee assez completement par le Prof. Dr. Ing. Ernst Chwalla de Brunn dans un memoire
intitule: «Das Problem der Stabilität gedruckter Rahmenstäbe» et publie dans le Vol. II
de «Memoires» de PAssoc. intern, des Ponts et Charpentes, Zürich, 1933.

4) Revue universelle des Mines. t. III, aoüt-septembre 1913.
5) L'Ossature metallique n° 2, Fevrier 1935.
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chant hypothetique preconise par M. G. L. Gerard dans le memoire cite plus

hau«, et donne par 7-<0,0,6(|--.y.
Pour la poutre ä äme pleine, on en deduira une limite inferieure

pour Sr

Sr>S rj n2Eq2 V Po
1 — rj GL2 1 — rjG

Pour la poutre ä treillis en V

\sd>s, rj jt2/3
T^~v2JJj

(17)

(18)

Pour la poutre ä etresillons, on pourra choisir ie puis determiner
in ou inversement par:

X 2ä^1 — rj lömvL
4 in *] n2eh2se

ou öe 4- 2 on
1 — r] SmvL

7] }EI (19)

En dehors de la question du flambage, il y a lä une methode pour determiner

les profus des montants et membrures des poutres Vierendeel pour que
leur deformabilite ne depasse pas certaines valeurs imposees par les cir-
constances.

V. Efforts secondaires de flexion dans les membrures des
poutres en treillis ou ä etresillons.

La fleche supplementaire due au treillis ou aux etresillons determine
des efforts secondaires de flexion dans les membrures^ en sorte que le
moment de flexion dans une section transversale d'une poutre ne sera pas uni-
quement equilibre par le couple des efforts longitudinaux dans les
membrures Nnh M'n que fappellerai «Peffet poutre», mais aussi par des
moments flechissants propres ä chacune des membrures. En cas de
membrures identiques, ces moments seront les memes dans chacune de celles-

ci et egaux ä ^ M". On aura donc

M M' + M"
On partagera M en M' et M" en posant Pegalite des fleches:

2 4 EL
Donc

M" 2(1 + (3)4
M'

4<>e2
0 + *)I h

et le rendement de l'effet poutre sera exprime par:
JW _ M' h2

M — - -M' + M" "ä2 + 4^2(1 + (20)
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Ceci n'est qu'une premiere approximation, car la poutre entiere est
libre sur ses appuis, mais il n'en est pas de meme des membrures qui sont
encastrees sur les premiers montants rigides. II faudra alors tenir compte
de la contre-fleche produite dans les membrures par les moments d'encastre-
ment sur les montants d'extremites.

On peut alors etablir que le rendement de Peffet poutre est donne par:
M_
~M

h2

h2 + 4qe2(\ + d)x
(21)

oü x est un facteur correctif qui peut varier de 1 ä 2 selon la mise en charge
(voir 2me tableau page 269).

On peut en deduire M", moments de flexion secondaires dans les
membrures. Je signalerai enfin que Pon peut aussi en deduire une methode
approximative rapide de calcul de la poutre Vierendeel en cas de charge
symetrique.

Table alphabetique des notaüons utilisees.

Rapport ä M0 de l'ordonnee
moyenne du diagramme des M

rapport ä — de la distance de

Pextremite de la poutre au

centre de gravite de

sommet
2 "u~
oppose

ö — rapport des fleches dues ä

de Paxe d'une

distance du
ä une barre

ft
Jm
T et ä M
inclinaison
barre
coefficient d'elasticite longi-
tudinal
reduction de masse elastique
due ä la presence des goussets
rendement du coefficient de
securite
angle de la diagonale sur le
montant
fleche totale au milieu de la
poutre
fleche due aux M
fleche due aux T
coefficient d'elasticite
transversal

h hauteur de la poutre
I Sg2 moment d'inertie d'une

poutre
/ moment d'inertie d'une barre
L portee de la poutre
/ longueur d'une barre (diago¬

nale)

e

f
Jm
ft
G

l largeur d'un panneau de
treillis

M moment flechissant
MQ moment flechissant maximum
m nombre total de panneaux de

la poutre
N effort longitudinal dans une

barre

n numero d'un noeud quel¬
conque

l2
v — 7~n2 (vo*r § 1°) v ~ 3 Pour une

barre uniforme
P charge concentree
P0 charge de flambage d'EuLER
Pcr charge critique reduite
p charge repartie
n rapport 3,1416
g rayon d'inertie
5 section d'une poutre
5^ section reduite de resistance

ä T
s section d'une barre
s„ section d'une membrure

o -p—, masse elastique d'une

barre

T effort tranchant
v deplacement vertical d'une

section
x abscisse d'une section
£ abscisse d'une section cou-

rante
(o angle de rotation d'une section

Abhandlungen VII 18
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Alphabetisches Verzeichnis der verwendeten Bezeichnungen.

a Verhältnis der mittleren Or¬

dinate des jW-Diagramms zu

M0
ß Verhältnis des Abstandes zwi¬

schen dem Balkenende und dem

Schwerpunkt -^ M0L zu -
d Abstand des Drehpoles eines

Stabes

f
d — Verhältnis der Durchbie-

fm
gungen infolge T und M

6n Neigung einer Stabaxe

E Elastizitätsmodul
s Reduktion der elastischen

Masse durch die Knotenbleche

rj Wirkungsgrad des Sicher¬

heitskoeffizienten
0 Winkel zwischen Diagonale

und Pfosten

/ totale Durchbiegung in Bal¬

kenmitte
fm Durchbiegung infolge M

ft Durchbiegung infolge T
G Schubmodul
h Balkenhöhe
1 Sq2 Trägheitsmoment eines

Balkens

i Trägheitsmoment eines Stabes

L Spannweite des Balkens

/ Stablänge (Diagonale)

M
M0
m
N
n

P
Po

Per
P
71

e
S

s

T
V

Feldweite
Biegungsmoment
maximales Biegungsmoment
Anzahl der Felder
Längskraft in einem Stabe
Nummer für einen beliebigen
Knotenpunkt

l2
-r-fr9 (siehe § lc); v 3 für ei-
4 /v
nen gleichförmigen Stab
Einzellast
EuLER'sche Knicklast
reduzierte kritische Last
gleichmäßig verteilte Last
Verhältniszahl 3,1416
Trägheitsradius
Balkenquerschnitt
reduzierter Schubquerschnitt
Stabquerschnitt
Gurtquerschnitt

-=—. elastische Masse einesEi
Stabes
Querkraft
vertikale Verschiebung eines
Querschnittes
Abszisse eines Querschnittes
Abszisse eines variablem
Querschnittes

Drehwinkel eines
Querschnittes

Alphabetical list of Symbols used.

a Ratio to Mq of the mean or-
dinates of the M diagram

ß Ratio to ~ of the distance

between the end of the beam
and the centre of gravity of

~M0L
d Distance from the opposite

vertex to a bar

f
ö -- Ratio of the deflections due

Im
to T and to M

Sn Inclination of the axis of a

bar
E Modulus of elasticity

f Reduction of the elastic mass
due to the gusset plates

t] Efficiency of the factor of
safety

0 Angle between diagonal and

upright
/ Total deflection at middle of

beam

fm Deflection due to M

ft Deflection due to T
G Modulus of shear
h Height of beam

/ Sq2 Moment of inertia of a

beam
/ Moment of inertia of a bar
L Span of the beam
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/ Length of a bar (diagonal)
X Width of one panel
M Bending moment
M0 Maximum bending moment
m Total number of panels
N Longitudinal force in a bar
n Number for any assemblage

point whatever
/2

v ^tfto (see § 1c) '> v 3 for a uni-
AR2
form bar

P Concentrated load
P0 Euler's buckling load
Pcr Reduced critical load
p Uniformly distributed load
TT 3,1416

Q

S

Sr
s

S*

T
v

X
t

Elastic mass of a bar

Radius of gyration
Cross-section of a beam
Reduced section of shear
Cross-section of a bar
Cross-section of a chord

J_
Ei
Shearing force
Vertical displacement of a

cross-section
Abscissae of a cross-section
Abscissae of a variable cross-
section
Angle of rotation of a cross-
section

Resume.

La determination de la fleche des poutres flechies montre que la fleche
totale / comporte une fleche partielle fm due aux moments flechissants et

une fleche ft due aux efforts tranchants. Le rapport ö ~- de ces fleches
Jm

est specialement interessant ä discuter pour chaque type de poutre (Tableau

p. 269). II est assez faible et souvent negligeable pour les poutres ä
äme pleine, mais devient plus important dans les poutres en treillis et meme
preponderant (<$>!) dans les poutres ä etresillons ou du type Vierendeel.

II en resulte comme principale consequence que la charge critique de
flambage qui est determinee en fonetion de la deformabilite de la poutre ä
la flexion doit etre reduite si Pon tient compte egalement de la deformabilite

aux efforts tranchants et cela specialement dans les poutres ä
etresillons. L'on obtient alors la charge critique reelle par la formule (16)

P
Pcr~ ~y v- ^ n'est Pas possible de proportionner Päme ou le treillis des

1 +• o

poutres pour que cette reduction soit nulle. On devra se contenter de les
etablir en utilisant les expressions de ö du tableau (page 269) pour que cette
reduction ne depasse pas une certaine limite que Pon peut s'imposer selon
les circonstances (10 ä 20o/0 par exemple) (17), (18), (19).

Enfin le coefficient d permet egalement de determiner le rendement ä
la flexion des membrures des poutres en treillis ou ä etresillons (20), (21).

Zusammenfassung.
Die Bestimmung der Durchbiegung von auf Biegung beanspruchten

Trägern zeigt, daß die totale Durchbiegung aus zwei Beiträgen zusammengesetzt

ist, nämlich aus dem Anteil fm infolge der Biegungsmomente und
dem Anteil ft infolge der Querkräfte. Es ist von Interesse, das Verhältnis

S= -^-für jede Art Balken zu untersuchen (s. Tabelle S. 269). Für Vollwand-
Jm

träger ist ö ziemlich klein und kann in den meisten Fällen vernachlässigt
werden; für Fachwerkträger jedoch weist ö größere Beträge auf und wird
maßgebend (d>l) für Vierendeelträger.
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Daraus ergibt sich als wichtigste Folgerung, daß die kritische Knicklast,

welche von der Deformation des Trägers infolge Biegung abhängig ist,
vermindert werden muß, sobald man die Deformation infolge der Querkräfte
in Rechnung zieht, was besonders für die Vierendeelträger ins Gewicht fällt.
Man erhält in diesem Falle die tatsächliche kritische Knicklast aus der For-

P
mel (16): Pkr * _^ «¦ Es zeigt sich, daß es unmöglich ist, einen Vollwandoder

Fachwerkträger so zu dimensionieren, daß obige Reduktion verschwindet.

Man muß sich damit begnügen, diese Träger mit Hilfe von d (siehe
Tabelle S. 269) so zu dimensionieren, daß die dadurch bedingte Reduktion eine
bestimmte Grenze, die man den Umständen anpassen kann (z. B. 10 bis 20o/0),
nicht überschreitet (Formeln (17), (18), (19)).

Der Koeffizient d erlaubt schließlich, den Wirkungsgrad bei Biegung
sowohl für die Fachwerk- wie für die Vierendeelträger zu bestimmen.

Summary.
Determining the deflection of beams subjected to bending shows that

the total deflection is made up of two parts, namely one fm due to the
bending moments and the other ft due to shearing forces. It is of particular

interest to investigate the ratio d — for each type of beam (see Table on
fm

page 269). In the case of plate girders d is rather small and can often be
neglected, but in lattice girders it becomes more important and in
Vierendeel girders it is even preponderant (<5> 1).

The principal result following from this is that the critical buckling load,
which is dependent on the deformation of the beam in consequence of
bending, must be reduced when the deformation due to shearing forces is also
taken into account, particularly in Vierendeel girders. In that case the ac-

P
tual critical buckling load is obtained from formula (16): Pkr

1

"
». It is

shown to be impossible to choose the dimensions of a plate or lattice girder
in such a waj that this reduction cornpletely disappears. It is necessary
to be satisfied with dimensioning these girders from the values of d given
in the Table on page 269, so that this reduction does not exceed a certain
limit which may be chosen in accordance with the particular circumstances
(for instance 10 to 20o/0) (formulae (17), (18), (19)).

Finally, the coefficient d also allows the work done in bending to be
determined in lattice girders and also in Vierendeel girders (formulae (20),
(21)).
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