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SCHWINGUNGEN VON KIRCHTÜRMEN BEI
ELASTISCHER EINSPANNUNG IM BAUGRUNDE.

OSCILLATIONS DES CLOCHERS ENCASTRES ELASTIQUEMENT
DANS LE TERRAIN.

THE OSCILLATIONS IN CHURCH TOWERS FIXED ELASTICALLY
IN THE GROUND.

Ing. Dr. PIERRE LARDY, Zürich.

Die Untersuchung der Transversalschwingungen von Kirchtürmen,
hervorgerufen durch das Läuten der Glocken, bildet ein wichtiges Problem
des Kirchturmbaues. Sie zerfällt in zwei Teile:

1. Ermittlung der Eigenschwingungen (Eigenfrequenzen) des Turmes
zur Abklärung der möglichen Resonanzerscheinungen beim Glockenläuten.

2. Berechnung der durch das Glockenläuten erzwungenen Schwingungen
und der daraus entstehenden Beanspruchungen des Turmes.
Die bisherige Berechnungsweise setzte feste Einspannung des Turmes

im Baugrunde voraus1). Der Zweck dieser Arbeit ist, das Problem, von der
wesentlich allgemeineren Voraussetzung einer elastischen Einspannung im
Baugrunde ausgehend, zu behandeln und für die Integrationskonstanten des
Schwingungszustandes geschlossene, einfache Ausdrücke anzugeben, was
u. W. bisher auch nicht für den einfacheren Spezialfall der festen Einspannung

geschehen ist2). Damit kann ein für allemal die oft mühsame und
langwierige Integration der Differentialgleichung mit den zahlreichen
Randbedingungen umgangen werden, was für den Ingenieur in der Praxis
willkommen sein dürfte.

Es zeigt sich, daß durch die Einführung einer elastischen Einspannung
wesentliche Unterschiede gegenüber früher entstehen. Im besonderen
können die Eigenfrequenzen stark von denjenigen bei fester Einspannung
abweichen, und zwar fallen sie erwartungsgemäß kleiner aus. Dies ist
besonders wichtig, wenn es sich darum handelt, die Gefahr von
Resonanzerscheinungen beim Glockenläuten zu untersuchen. Auch die Beanspruchungen

durch die Biegungsmomemte des Schwingungszustandes können infolge
der elastischen Einspannung stark verschieden sein.

Im ersten Teil dieser Arbeit werden die Eigenschwingungen behandelt.
Sie führen zu einer Frequenzengleichung, welche infolge der elastischen
Einspannung gegenüber früher ein Zusatzglied enthält und an Hand der
beigegebenen graphischen Darstellung (Fig. 2) ohne Mühe gelöst werden kann.
Es folgen dann die analytischen Ausdrücke für die Eigenschwingungsformen.
Für zahlreiche Fälle der praktischen Anwendung, wo der „Frequenzparameter"'

m klein ist, erhalten obige Ausdrücke durch Reihenentwicklung eine
besonders einfache, der numerischen Rechnung zugängliche Gestalt.

*) Timoshenko, Theory of Elasticity. Hort, Technische Schwingungslehre. Ros,
Schweiz. Bauzeitung vom 11. Mai 1940. G.Schneider, Schweiz. Bauzeitung vom 13.

2) Dr. Paul Koenig, Diss. E. T. H. 1930, No. 601.
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Im zweiten Teil werden die durch das Glockenläuten erzwungenen
Schwingungen behandelt (für eine einzige Komponente der periodischen
Lagerkraft einer Glocke) und das Resultat der Integration in geschlossener
Form angegeben. Auch hier können die Ausdrücke für die Integrations-

.konstanten bei kleinen Werten von m in einfache Näherungsausdrücke
umgewandelt werden. Es folgen einige Spezialfälle, die sich auf die feste
Einspannung sowie auf eine spezielle Lage der Glocken beziehen.

Zum Schluß veranschaulicht ein numerisches Beispiel die gewonnenen
Resultate.

Zur allgemeinen Orientierung sei noch auf einige Resultate aufmerksam
gemacht, die aus der in Fußnote 2) zitierten Dissertation von Dr. Paul
Koenig stammen und kurz zusammengefaßt folgendes aussagen: Jeder Glocke
entsprechen zwei sich überlagernde erzwungene Schwingungen, die eine im
Takte der Glocke, die andere in dreimal schnellerem Takte. Daraus folgt,
daß zur Vermeidung der Resonanzgefahr die Grundeigenschwingung des
Turmes weder im Takte der Glocke, noch in dreimal schnellerem Takte
erfolgen darf. Im allgemeinen genügt die Betrachtung der Eigenfrequenz
der Grundschwingung des Turmes (das ist der kleinste Wert der unendlich
vielen Lösungen der Frequenzengleichung), da die übrigen Eigenfrequenzen
außerhalb des Resonanzbereiches liegen. Die Glockenkräfte, d. h. die
horizontalen Komponenten der Lagerkräfte, sind wohl periodisch, jedoch nicht
harmonische Funktionen der Zeit. Ihre beiden ersten harmonischen
Komponenten (mit den Frequenzen 1 : 3, die übrigen können vernachlässigt
werden) gewinnt man aus der harmonischen Analyse, und ihr Größenverhältnis

sowie dasjenige der einzelnen Komponente zum Maximalwert3)
kann für alle Glocken als konstant betrachtet werden4). Das Schlußresultat
entsteht durch Überlagerung sämtlicher Schwingungsformen.

x-£

Xs°mmwhr

Fig. 1

—^y

1. Eigenschwingungen.
Der Turm ist in Fig. 1 unten als elastisch

eingespannter und oben freier Stab von der Länge / dargestellt.

Die Grundgleichung für die Transversalschwingungen
eines biegungsfesten Stabes lautet:

o.F.^+ EL^ 0 0)

Darin sind:

x Abszisse in cm (+ nach oben)

y Ordinate in cm (+ nach rechts)
kg •sec2

Q ¦

F

Dichte des Turmmaterials in

Querschnittsfläche in cm2
cm4

hI z= Trägheitsmoment des Querschnittes in cm
E — Elastizitätsmodul des Turmmaterials in kg/cm2

3) Siehe 2), Seite 37 und 38.
4) Über den Maximalwert der Lagerkomponenten siehe l): G. Schneider, Schweiz.

Bauzeitung.
5) Für / und F werden konstante Mittelwerte eingeführt, was in den meisten

praktischen Fällen ohne weiteres zulässig ist.
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Zur Lösung der partiellen Differentialgleichung (1) dient der Ansatz:

y 0(x) • cosvt (2)

worin 0(x) eine Funktion von x allein ist und v die Frequenz (sec-1)
bedeutet. Durch Einsetzen und Division durch cosvt folgt für 0(x) die totale
Differentialgleichung: rf4 #^ v2QF

Zur Abkürzung setzt man:

'"<"'-"" „der »=/f^ (4)

0(x) O (3)

£7 /4

und erhält nach einigen Umformungen für 0(x) die allgemeine Lösung in
der Form

^W^^l'CÄ (—J + ß.SA^-y-J + C- cos^—) + D.sin(-pj (5)

Darin sind ,4, B, C und D die Integrationskonstanten, welche durch die nun
folgenden Randbedingungen bestimmt werden.

Randbedingungen.
Diese gelten für jeden Wert der variablen t, also auch für t 0, d. h.

die 4 Randbedingungen können durch 0(x) statt durch y ausgedrückt
werden.

1. An der Einspannstelle x — 0 ist auch y 0 oder 0(0) 0, woraus

C--.4 (6)
folgt

2. Für x=0 soll die Einspannung elastisch sein, d.h. es besteht für
den Drehwinkel w die Relation:

w _ €M (7)
Durch Einführung der Bettungsziffer c des Baugrundes und des Trägheitsmomentes

lt der Fundation wird bekanntlich e —— —

Aus - - W
(e w für M — 1)

0 0

und daraus eine Beziehung für die Integrationskonstanten

Mit der Abkürzung

B + D *!äl!LA (8)

sEI _ f/
~T ~ C/Fl (9)



248 P. Lardy

ist B + D 2lmA (10)

3. Für

Dies ergibt

d20
3. Für x l (Stabende) muß das Moment M=—-EI-7-^ 0 sein.

4. Für #-= / muß die Querkraft Q= — EI -j-j- 0 sein; es folgt

A(Chm + cosm) 4- B • Shm — D - smm 0 (11)

d^0
dx3

A(Shm — smm) + B • Chm — D • cosm 0 (12)

Aus den 4 homogenen Gleichungen (6), (10), (11) und (12) sind nur drei
Integrationskonstanten bestimmbar; die 4., z.B. A, ist willkürlich. Indem
mari für die 3 letzten Gleichungen die Verträglichkeitsbedingung formuliert,
erhält man nach verschiedenen Umformungen folgende allgemeine
Frequenzengleichung für m:

1 + cosm • Chm 4- lm(cosm • Shm — smm • Chm) 0 (13)

wo /t -y- ist.

Der Einfluß der elastischen Einspannung kommt darin im Zusatzglied mit
1 zur Geltung. Es ist bemerkenswert und aus Fig. 2 ersichtlich, daß schon
für kleine Werte von l die entsprechenden Frequenzparameter in stark
abnehmen. Für feste Einspannung ist e k=0, und die Gl. (13) geht über
in die bekannte Form:

1 + cosm • Chm 0.

Gleichung (13) hat unendlich viele Lösungen, die man bei gegebenem 1

durch sukzessive Approximation finden kann, oder einfacher noch aus der
graphischen Darstellung der Fig. 2, wo Gleichung (13) in der Form

_ (1 + cosm -Chm) 1
__ f(m)\

(cosm* Shm — smm »Chm) m g(tn) tn

dargestellt wurde. (g(m) ist übrigens die Ableitung von f(m) na,ch m.)
Aus Fig. 2 ist deutlich ersichtlich, daß für / =±- 0 die zugehörigen m-Werte
kleiner sind als bei 1 0', d.h. nach Gleichung (4), daß die entsprechenden
Eigenfrequenzen ebenfalls kleiner sind als diejenigen bei fester Einspannung.

Für jede Lösung m der Gleichung (13) kann nun die zugehörige
analytische Schwingungsform, d. h. die Funktion 0(x) bestimmt werden.

Bevor wir dies tun, führen wir vier Funktionen ein, welche formal und
rechnerisch die weiteren Berechnungen und Resultate bedeutend vereinfachen.
Es sind dies die folgenden:

Cx Ch x + cos x
Cx Chx — cos x
Sx Shx + sin* [

(14)

Sx Shx — sinjc I

welche durch Differentiation zyklisch vertauscht werden. Sie sind in Fig. 3
und 4 dargestellt für die Argumentwerte 0 < X :g 4.
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f/6.

42.

3927

Premiere harmonique superieure
Erste Oberschwingung

First upper harmonic

20

19.

18

17.

16.

15.

14.

13.

12.

11.

10

OS.

08.

07.

06.

05.

OU.

03.

02\
01.

1875

Oscillahon Fondamentale

Grundschwingung
Fundamentat oscillahon

Fig. 2 Courbes des frequences
Frequenzenkurven
Frequency curves

1 + cos m Chm -f A/rc(cos mShm — sin m Chm) — 0

Führt man nun diese Funktionen in 0(x) ein, so folgt, nach einigen Um-
mx

formungen, bei denen statt x das Argument — m£ gesetzt wird,

0(x) A'{Sm-CM§—Cm-SmS + 2lm(s\nm-SmS + S^ • sin//z £)}. (15)6)

Die zugehörigen Biegungsmomente der Schwingungsform ergeben sich aus

M

pJd*0-EI^ ZU:

~-El"^.A'{S„ Cm? — Cm • SmS + 2lm(sm m • Sm§ — Sm • smmt;)} (16)

6) ^r— A' ist eine willkürliche Konstante und kann nur durch eine zusätzliche
om

Bedingung bestimmt werden.
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300

Fonetions
Chx + cos x

Funktionen.
Chx - cosx

Functions
20.0

100- ^x ^x

0 J

Fig. 3

Fonetions:

Funktionen

Functions ¦

Sx - Shx +sinx

S* Shx - sinx.

Sx ^x

3.0

Fig

Näherungsberechnungen.
Bei den praktisch vorkommenden Fällen zeigt es sich im allgemeinen,

daß der Frequenzparameter m1 der Grundschwingung, welcher für die
Resonanzgefahr sozusagen immer ausschlaggebend ist, infolge der
elastischen Einspannung kleine Werte annimmt. (Für feste Einspannung ist
mt ^0,597- n 1,8755.) Dies legt den Gedanken nahe, mittelst
Reihenentwicklungen die gefundenen Ausdrücke für die Schwingungsformen zu
vereinfachen. Aus den bekannten Reihenentwicklungen für die trigonometrischen

und hyperbolischen Funktionen folgt für die neu definierten
Funktionen nach Gleichung (14):
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cx 2[, X4 X8
+ 4! + "8T + " +

X^n

(4 ii)!
- + •

Cx Ai.
v6 v10

4- + +^ 6! ^ 10! ^ " +
x 4 ll + 2

(in+2)1 + •

sx Au v5 v9X X

9 9! + (4«+ 1)! -+ •

251

fx3
JC7 X11

3. + 7I + TTI + - + (4«+ 3)!

(17)

Diese Reihenentwicklungen konvergieren gut und können für die Argumente
m und m£ <= 1,4 nach dem ersten, resp. zweiten Gliede abgebrochen werden,
da der Fehler weniger als 1 o/o ausmacht.

Aus der Frequenzengleichung (13) entsteht auf diese Weise die
einfache Beziehung:

m*
1 + cosm • Chm + Im (cosm • Shm — smm • Chm) ^2 ^- (1 + 4/1) 0

oder: #r
12

1 + 4Ä (18)

Wird darin zur Kontrolle X 0 gesetzt, so folgt: m4^=12 und nf^L 1,864
statt 1,8755, was die Güte der Approximation für Gleichung (18) beweist.
Demnach kann für die Bestimmung von m3 statt der Gl. (13) die viel
einfachere Beziehung aus Gl. (18) benützt werden, da der Maximalfehler für
niS 1,4 (2^0,54) ungefähr 2o/0 beträgt.

Es gelingt auch, für die Schwingungsform 0(x) der Grundeigenschwingung,
sowie für die entsprechenden Biegungsmomente M(x) aus den

Reihenentwicklungen Ausdrücke zu gewinnen, welche die numerische Rechnung
wesentlich vereinfachen und für die praktisch wichtigen Werte von l (oder
tri) einen hohen Genauigkeitsgrad besitzen. Die Ableitung dieser Ausdrücke
verlangt eine sorgfältige Untersuchung, welche Glieder bei den
Reihenentwicklungen vernachlässigt werden dürfen (von Fall zu Fall verschieden)

12
und benützt die Beziehung der Gl. (18), //z4= y. Es sei hier lediglich
das Resultat angegeben:

0(x)^A,f^\2l + § —

1 + 4V

1 + 41
1,1 +4l

£2

2 ]^i4"£[21+ f ii (19)

1FI 9Ff/W(x)^--^--/l"(l-|)2[l + /«C1|+/G^(3-l)]^- ~-A"(\-£)*[\+Ki$] (20)

Darin sind:

/2

x
l

Ki =-„

und 0 <: f <: 1

1,4 + 4*
1,1 + AI K%

1

10(1,1 +41)

Am*(A" willkürlich)

oft ^ 0.

Der hohe Genauigkeitsgrad der Ausdrücke (IQ) und (20) geht aus folgenden
Werten für den Maximalfehler hervor: für m — 1 beträgt er 1 o/0 für (p
und 0,2 o/o für M, für /« 1,4 4o/0 für <P und 0,8 o/0 für M.
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In den Ausdrücken (19) und (20) kommen die 4 Randbedingungen deut-

lieh zum Ausdruck. Für a:=0 ist 0=0 und -j- -—;— =— eyW(ö)

Winkel bei elastischer Einspannung. Ferner besitzt M(x) eine Doppelwurzel
£=_ i5 weil für #== / auch die Querkraft Null ist.

Zusammenfassend kann über die Eigenschwingungen gesagt werden,
daß im Falle der elastischen Einspannung (X 4=0) die Schwingungen
langsamer (Gl. (13) und (18)), deren Amplituden größer (Gl. (19)) und die
Biegungsmomente (Gl. (20)) kleiner werden als bei fester Einspannung.
Wesentlich bleibt für den praktischen Fall vor allem die Verschiebung des
Resonanzbereiches und die möglicherweise dadurch bedingten viel
ungünstigeren Verhältnisse beim Glockenläuten, welche zu einer ernstlichen
Gefährdung des Turmes führen können. Dies kommt im 2. Abschnitt deutlich
zum Ausdruck.

2. Erzwungene Schwingungen beim Glockenläuten.
Wir führen die Berechnung nur für eine Glocke durch; die periodische

Kraft H (siehe Fig. 5) sei bereits eine harmonische Komponente der hori¬
zontalen Glockenkraft (siehe Einleitung) und greife in
der Höhe a an (a + b /) mit der Störfrequenz vc.

Die Ausgangsgleichung für die erzwungenen
Transversalschwingungen ist wieder GL (1):

¦H dt2 dx*
0

WWW//,wmr -/
Fig. 5 folgt analog:

0 l(x) A, «(?)+*, •-(":
0.,(*) A* .«(?)+* .*>&

Dabei ist wiederum

mit derselben Bedeutung der Variablen und Konstanten.
Die Berechnung weist hier infolge der neuen und
zahlreichen Randbedingungen wesentliche Unterschiede auf.
Es sind 2 Lösungszweige für y einzuführen, je nachdem

x<ia oder x^>a ist. Mit den Lösungsansätzen

y± 0X (x) • COS(^)
y<i *2W • cos(^/)

+ C1.cos(^) + D1.sin(^) (21)

+ C2.cos(^) + D2.sin(^) (22)

(Siehe Ol. (4))m ='f^f
Randbedingungen7) (für t=0 ausgedrückt).

1. x 0: 0t 0 ergibt d — — Ax (wie Gl. (6)).
2. x — 0: Elastische Einspannung; wie früher folgt:

Bx + D1 2lmA1 (wie Gl. (10)).
3. x a: Das zu übertragende Biegungsmoment sei Ma= M% • cos^/.

7) Dr. Koeniq, Diss. S. 39 ff.
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/ d2 0A Mn
Es muß II r=^- sein und daraus folgt:

4. * <z: Analog folgt für die zu übertragende Querkraft

(^P) - % und daraus

A \o,(ma\ (maX\ _ ^i(ma\ r^ lma\ QS-l* ,~A^A> lSh (—) ~ Sm IT-) \ + B1-Ch(T)-D1. cos (—) - -Ej^ (24)

Nun folgen die Randbedingungen für den Stab 2 (x> a), der an seinem untern
Ende außer Qa noch die periodische Kraft H ¦ cos vt aufzunehmen hat.

5. x=-a: Stetiger Übergang der Ordinate, d. h.: 02(a) 01(a) und
daraus:

4*(?)-~(?)l+ *¦«(?) + *,-..•»(?)

A, ¦ Ck (^) + B, ¦ SA (^) + C, • cos (i«) + D, ¦ sin (^) (25)

6. x a: Stetiger Übergang der Tangente, d.h.: -r-M — \~77~M

und daraus:

^H") + -»(t)1+ *"(") + *«• (")-
.4, S4 (^) + S, c* {"ii) - c, sin ßi) + D, cos (^) (26)

/ d2 02\ M *
7. x a: Gleiches Biegungsmoment ergibt: 1 2-l =y,

woraus

^CA(-T) + ßISA(-r)-C,cos(-r)-D,8.n(-r)=-^ (27)

8. x a: Schubkraft aus QI und H ergibt (^~) — @"~^ und

folglich

^ 5 A (r) + £2 C Ä (^J + C2 sm (—) - - D2 cos (_) -^^4" (28)

Die 8. Randbedingung zieht ihrerseits, wie man leicht einsieht, noch die
weitere Forderung

v vc

nach sich; d.h. die erzwungene Schwingung des Turmes erfolgt im Takte
der erregenden Kraft. Daraus folgt der Wert des entsprechenden
Frequenzparameters zu
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in mc " l \
FÄF
EI

x=l\ M
d20^
dx2

0 am freien Ende, also

0 A2 Ch in 4- B2 Sh m - Co cosm — ZX smm

10. x /: Q=0 am freien Ende, also

[—j-j-j 0 A2Shm + B2Chm + C2smm D.2 cosm

(29)

(30)

(31)

Es entsteht somit ein System von 10 Gleichungen mit den 10 Unbekannten

At,..., D±, A2,..., Do, M; und Q* wobei die 2 letzten Me* und Q* nicht
von Interesse sind und übrigens sofort eliminiert werden können. Entgegen
der bisherigen Vermutung können die übrigen 8 Gleichungen, allerdings
nach umfangreichen Operationen, allgemein gelöst und für die Integrationskonstanten

einfache, geschlossene Ausdrücke gewonnen werden. Dabei war
das systematische Vorgehen bei der Elimination wesentlich. Zur formalen
und rechnerischen Vereinfachung wurden auch hier die durch die Gleichungen

(14) definierten Funktionen wieder eingeführt. Es zeigt sich, daß die
6 Unbekannten Cv D±, A2, B2, C2 und D2 durch die beiden A± und B±
ausgedrückt und demnach beide letzteren als „Basissystem" aufgefaßt werden
können. Als Resultat der Elimination bekommen wir:

Ax K- y^mfi ' «3/7 ->/7Zyß Cm]

B1=K-^L
y(l, tri)

Sm — Cmß - Cm + 2Im (sin m • Cmfi — cos m Smß)]

C1=-A1
£>! 2lmA1 — Bx

Ax — 2K-Sh

ij)(l, m)
(32)

A2

B,

C,

D,

Bi + 2K- Ch

ma
~T
ma
T

D,

wo: K -.

+ 2K.sin(^

-2*-cos(^
HP

(33)

Cmß — Ch^mß

4EIm*
!mb

T + cos

->//Zy8 SA
mh
T + sin

und mit

m b ^

~T
mb

ß nach (14)

usw.
Für in ist jetzt überall der durch Gl. (29) definierte Wert mc als Funktion
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der Störungsfrequenz vc einzusetzen. Der Nennerausdruck \p(l, m) ist nichts
anderes als die linke Seite der Frequenzengleichung (13) für m-=^mcy
nämlich:

xp (l, m) \ + cos mc • Ch tnc + l mc(cos mc • Sh mc — sin mc • Ch mc).

Dieses Resultat entspricht den Erwartungen und veranschaulicht rein formal
den Zustand der Resonanz, der dann eintritt, wenn m mc eine Wurzel von
y)(l, m) ist, also die Gleichung (13) erfüllt und mit einem der Eigenschwingungswerte

in übereinstimmt; d.h. ip(l, m) 0 und sämtliche Integrationskonstanten

A±,..., D±, A2,..., D2 werden oo groß, wodurch gerade die
Resonanz definiert ist.

Im Gegensatz zu den Eigenschwingungen sind hier alle Integrationskonstanten

durch die Randbedingungen eindeutig bestimmt. Ihre numerische
Auswertung bietet keinerlei Schwierigkeiten und führt mit Hilfe der Kurven
in den Fig. 3 und 4 (oder mit Tabellen) rasch zum Ziel.

Gewöhnlich ist ß=-j klein, sodaß vor allem die Schwingungsform 0±

sowie das zugehörige Biegungsmoment M1 für die Untersuchung wichtiger
sind als 02 und M2. Sie können an Hand der Ausdrücke (32) formal einfach
dargestellt werden:

0X (x) Ax [c„2, + J • Sms + 2im. sin (mg)] (34)

FI m2 \ B 1
M, (x) - -^~ ¦ At [Cms + A* • Sm? + 2lm- sin (mf)| (35)

worin für - - nur das Verhältnis der eckigen Klammern in (32) zu setzen ist.
A\

EIm2
Der Faktor ^—A± in Gl. (35) ergibt ausmultipliziert einfach

l2

H l [Cmß ' Sm — Smß ' Cm\

4 m yj(h, tri)
sodaß

M^*) -irL- lCm^n" k1'^ (c^ + in ' s^ - 2lm •sin (" -)} (35'>
4 m ip(l, m) I ms ' Ail

ist. Auf die allgemeine Diskussion der Ausdrücke (34) und (35) kann hier
nicht eingegangen werden. Die Frage der Resonanzgefahr ist beim Vergleich
der Werte mt und derjenigen m der Eigenfrequenzgleichung (13) abgeklärt.

Oft handelt es sich darum, ein Bild über die durch das Glockenläuten
hervorgerufenen Maximalmomente zu erhalten. Es sind diesbezüglich die

„analytischen" Maxima (- - — O] und die „Randmaxima" (größter Absolutwert

im betrachteten Intervall) zu unterscheiden. Bei letzteren hat das
Moment den größten Absolutwert für x^=0, was obige Formeln wesentlich
vereinfacht. Eine allgemeine Aussage über die analytischen Maxima ist
schwierig wegen der Abhängigkeit des Biegungsmomentes von den 3
Parametern mc, 1 und ß. (Der Ausdruck für das Maximalmoment kann übrigens
auf eine besonders einfache Form gebracht werden.) Das Randmaximum
für x 0 an der Einspannstelle wird, wegen

Cms 2 und Sm* sin (//*£) 0
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besonders einfach: ^ /a\ — _ Hl(c™ß • Sm — Smß • Cm)
,3ß*

1 ^ ' ~~ 2 m • y>(X, m)
* '

Spezialfälle.
1. Extremfall 1=0 der festen Einspannung.
Dann wird \p(l, m) 1 -f- cos mc • Chmc\ bei i5i sowie ^ und Mt

verschwindet das Zusatzglied mit dem Faktor l und sämtliche Formeln werden
einfacher. So ist z. B.

M /c\\ Hl(Cmß • Sm bmß - Cm) .„./WlW" 2//z(l + cos/w-CA/h) (J '

2. Extremfall b 0, wo die erregende Kraft zuoberst am Turm angreift.
I sei 4= 0. Auch hier werden sämtliche Ausdrücke einfacher, z. B.

Mx (0) Hlfm
x (38)'1V ' m-y(L, m)

v ;

3. Kombination der beiden obigen Fälle (1 0, b 0) ergibt für M±(0):

Mx (0) - HlSm-nu
v (39)w w(l 4- cosm • CA/rc) v

Näherungsberechnungen.
Auch hier können ähnlich wie im 1. Abschnitt für kleinere Werte des

Frequenzparameters mc mittelst Reihenentwicklungen gute Näherungswerte
und damit große Vereinfachungen für die praktische Berechnung erzielt
werden Unter Wiederbenützung der Näherung

y)(lj m)^2-m^(\ + 41)

sowie durch die in den Gl. (17) definierten Reihenentwicklungen erhalten
wir, da auch ß i. A. kleine Werte annimmt (ß < 1/2) '•

Cmß • Sm - Smß • Cm ^ 4m(l — ß -^) ^ 4m (l — ß)

und analoge Ausdrücke für die andern Funktionen. Es wird:

Al
2f/m8 1-jyO + 4Ä)] 2Zf//»«[l-£(l + 4A)]

(40)

w
///» 2+^-(l-4/J)-A/»*[2(l-/») + /»*(0-1/s)]

4*/*' l-g(l+4A)
}

Für m mc 0,5 beträgt der Maximalfehler in obigen Formeln ungefähr
V2o/o, für //zc= 1 ungefähr 1,5o/o und für #zc= 1,4 ungefähr 5o/o.

Besonders einfach wird der Ausdruck für M±(o)\ man erhält:

Mx (0) ±£ — V 4! / <£ — M'a (42)

l_g(l + 4A) i_^(l+ 4A)
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Gl. (42) erlaubt eine Kontrolle durch den Grenzübergang /—>oo, was nach
Gl. (29) mc —? 0 nach sich zieht und für das Moment Mt(o) den Wert —H • a
liefert, wie er aus der Statik bekannt ist.

Aus Gl. (42) geht ferner hervor, daß für kleine Werte von m mit
zunehmendem X, d. h. bei zunehmender Lockerung der Einspannung, das
Einspannmoment M±(o) zunimmt und nicht etwa umgekehrt, wie man vermuten
könnte. Das rührt davon her, daß bei der elastischen Einspannung der
Resonanzbereich verschoben wurde im Sinne einer Verkleinerung des
Eigenfrequenzparameters m1 (m1<C 1,8755, siehe 1. Abschnitt). Damit wird aber
der Unterschied zwischen m± und mc kleiner, d. h. die Störungsschwingung
ist näher an die Eigenschwingung herangerückt und das Biegungsmoment
ist größer geworden. Dies zeigt deutlich, daß bei Schwingungsuntersuchungen

von Kirchtürmen die Einführung der elastischen Einspannung im
Baugrunde eine wichtige Rolle spielt und zu ganz anderen Resultaten führen
kann als die Annahme einer festen Einspannung. Dieser Umstand möge hier
noch einmal ganz besonders hervorgehoben werden.

Die entwickelten Gleichungen und Formeln erlauben es, das Problem
der Kirchturmschwingungen unter der allgemeinen Voraussetzung der elastischen

Einspannung ohne Integration und besonders ohne die mühsame, von
Fall zu Fall sich wiederholende Auflösung des Gleichungssystems für die
Integrationskonstanten durchzuführen. Die Näherungsformeln sowie die
beigegebenen graphischen Darstellungen führen jeweils rasch zum Ziele, umso
mehr, als in praktischen Fällen die Wirkung jeder Glocke einzeln behandelt
und das Endergebnis der Untersuchung erst noch durch Überlagerung
gewonnen werden muß.

3. Numerisches Beispiel.
In einem kurzen Beispiel soll für verschiedene Werte der Bettungsziffer

c (und damit für verschiedene X) der Einfluß der elastischen Einspannung

beleuchtet werden. Dazu sei ein Turm aus Natursteinmauerwerk mit
folgenden Daten gewählt:

/=:40m, E= 60000 kg/cm2, /=72m4, IF— 108 m4, r=:24m2
q 2,75 • 10~6 kg-cm-4 sec2.

Es ist ferner nach Gl. (4) die Frequenz

tri1
< PET 2 jc

v -p~ 1/—p und die Schwingungsperiode T — •

Für die erzwungenen Schwingungen sei: H 1000 kg, a-=¦ 30 m, b=\0m,
die Störungsfrequenz )^ 2,3 sec-1, woraus Tc=2,13 sec und mc= 1,2.
Wir untersuchen die 4 Fälle:

1. c — 4 kg/cm3 |

2. c 10 „
I elastische Einspannung

3. c =- 50 „
]

4. c oo : feste Einspannung

Für die Berechnungen genügt die Auswertung der Näherungsformeln, da
hier besonders der Vergleich mit der festen Einspannung (X 0) hervorgehoben

werden soll.

Abhandlungen VII 17
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Eigenschwingungen:
EIAus l „ ,„ sowie aus Fig. 2 oder aus der angenäherten Frequenzen-CUf

gleichung /k4
12

1+4A folgt:

C kg/cm3 X m v sec 1 T sec

4 2,5 1,022 1,68 3,75
10 1 1,248 2,49 2,52
50 0,2 1,61 4,15 1,51
oo 0 1,865 5,56 1,13

Die Unterschiede sind beträchtlich. Die Schwingungsformen 0(x) und M(x)
können aus obigen Werten leicht berechnet werden.

Erzwungene Schwingungen.
Wir untersuchen hier nur die Abhängigkeit des Biegungsmomentes

Mt(0) von X nach der Formel:
»m /^\ Ha
Ml (0) ^ -j1-^(1 + 4*)

Mit mc=\,2 wird:

C kg/cm3 X M,(0) mt

4
10
50
OO

2,5
1

0,2
0

+ 33,3
-220
- 43,5
- 36,3

Der hohe Betrag des Biegungsmomentes ^(0) —220 mt für den Fall
c= 10 kg/cm3 zeigt deutlich die Resonanznähe, da der entsprechende Wert
des Eigenschwingungsparameters m== 1,248 ist und nur wenig von mc= 1,2
differiert. Der Unterschied mit der festen Einspannung ist damit evident.

4. Anhang.
Mehr vom theoretischen als vom Standpunkt der Kirchturmschwingungen
aus bietet die Untersuchung der Eigenfrequenzengleichung (13)

1 + cosm • Chm + lm(cosm • Shm — sinm • Chm) 0 (13)

ein Interesse für große Werte von m, d. h. für die höheren Oberschwingungen.
Auch in diesem Falle gelingt es, ähnlich wie bei der Annahme kleiner

Werte von m, für Gl. (13) eine Näherungsgleichung zu gewinnen.
Für große m kann man

Bm
Chm ^ Shm ^ — setzen.

2Damit wird aus Gl. (13), nach Multiplikation mit —.
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2 2
— + cosm + lm(cosm — smm) 0 oder, da -^ 0 ist:

und schließlich:
cosm + Im (cosm — sinm) 0

l ^ —— — (siehe Fig. 6)
m(igm — 1) v ö '

(Eigenfrequenzengleichung für große m)

(13')

(13")

m i

M. 1372

tot. h«e

IkO.

139. Quatrieme harmomque superieure
m. Werte Oberschwingung
137. Fourth upper härmonie
136.

135.

t335!tT^-i S 1
m. 1

132.

nr

109.

m.
107.

m.
105.

M.
103.

102.

10.1.

100.

Troisieme harmonique superieure
Dritte Oberschwingung
Third upper harmonic

102102

7.9

7.8.

7.7.

7.6.

75.

74.

73.

7.2.

7.1.

70.

Deuxieme harmonique superieure
Zweite Oberschwingung
Second Upper harmonic

7.0686

Fig. 6. Courbes des frequences des harmoniques superieures
Frequenzenkurven der Oberschwingungen
Frequency curves of upper harmonics

X ^
1

m (tg m — 1)

Für m>6 liefert die Näherungsgleichung (13") Lösungen, deren Fehler,
verglichen mit der genauen Gl. (13), kleiner sind als 0,2o/0.

Grenzfall X=0: es muß'tg m oo sein, d.h.: bei fester Einspannung
sind die Eigenfrequenzparameter gegeben durch:
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(2«+ \)^=(,i+ 1)Ä (« 1, 2,...)m

Grenzfall X oo: es muß tg in 1 sein; die Eigenfrequenzenkurve hat eine
horizontale Asjmptote (siehe Fig. 6) für

m ±a (4// + \)-A=(n + ^n (n 1, 2,

Daraus folgt allgemein, daß bei elastischer Einspannung der Eigenfrequenzparameter

m der #-ten Oberschwingung zwischen den beiden angeführten
Grenzwerten liegt:

\n + —J jr <; m <^ (// -f - 7i.

Mit zunehmendem m schmiegen sich die EigenfrequenzenkurverLimmer
mehi an den rechten Winkel zwischen Asymptote und m-Axe an, sodaß schon
für kleine X die entsprechenden m nahezu konstant, nämlich gleich (n + \) tx
sind. Damit ist allgemein gezeigt, daß bei elastischer Einspannung die
Frequenzparameter m der Oberschwingungen gegenüber fester Einspannung um

71^ -j- kleiner sind. Infolgedessen verschieben sich auch die Eigenfrequenzen

v und die Perioden T je um einen nahezu konstanten Betrag.

Zusammenfassung.
Die Untersuchung von Kirchturmschwingungen wird unter der

allgemeinen Voraussetzung einer elastischen Einspannung des Turmes im
Baugrunde durchgeführt. In einem ersten Abschnitt werden die Eigenschwingungen

behandelt und die allgemeine Frequenzengleichung als Funktion der
elastischen Einspannung diskutiert. Es folgen die Schwingungsformen für
die Durchbiegungen und das Biegungsmoment, sowie Näherungsformeln für
die numerische Berechnung, welche durch Reihenentwicklungen gewonnen
wurden.

In einem zweiten Abschnitt werden die durch das Glockenläuten
/erzwungenen Schwingungen untersucht. Das Resultat der Integration für den
allgemeinsten Fall wird in Form von einfachen, geschlossenen Ausdrücken
dargestellt und einige Spezialfälle sowie Näherungswerte für die wichtigsten
Größen angegeben. Zum Schluß beleuchtet ein numerisches Beispiel den
theoretischen Teil, und im Anhang wird die Eigenfrequenzengleichung für
die Oberschwingungen untersucht.

Der Unterschied gegenüber einer festen Einspannung wird auch durch
graphische Darstellungen hervorgehoben, welche zusammen mit den
angegebenen einfachen Näherungsformeln unter Umgehung einer mühsamen
Integration rasch zum Ziel führen.

Resume.
Les oscillations des clochers sont traitees sous Phypothese generale

d'un encastrement elastique de la tour dans le terrain. Un premier chapitre
contient Petude des oscillations fondamentales en dependance de Pencastrement

elastique. Les formes analytiques pour les deformations et les mo-
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ments flechissants ont ete etablies, de meme que des formules approchees
obtenues par developpement en serie, dans le but de simplifier le calcul
numerique.

Le second chapitre a pour objet Petude des oscillations forcees dues ä

la sonnerie des cloches. Le resultat de Pintegration du cas le plus general
conduit ä des expressions simples; suivent quelques cas speciaux et formules
approchees importantes, de meme qu'un exemple numerique qui illustre la
theorie. En fin de travail, Pequation aux frequences fondamentales est etu-
diees pour les harmoniques superieures.

La difference avec le cas de Pencastrement total a egalement ete mise
en evidence par des graphiques, qui, joints aux approximations simples in-
diquees pour le calcul numerique, conduisent rapidement au but tout en
evitant une integration laborieuse.

Summary.
The investigation of the oscillations of church towers is made under

the general assumption of the tower being elastically fixed. In a first section

the natural oscillations are considered and the general equation of fre-
quencies discussed as a funetion of the elastic fixing. Then follow analyti-
cal forms for the deformations and bending moments, and also formulae of
approximation for the numerical calculation, which have been obtained by
the expansion of series.

In a second section the oscillations caused by bell ringing are investi-
gated. The result of the integration for the most general case is represented
in the form of simple, definite expressions; some special cases, and also
approximate values are given for the most important magnitudes. Finally,
a numerical example explains the theoretical part, and in an appendix the
equation of natural frequencies for the upper harmonics is examined.

The difference in comparison with rigid fixing is also shown by gra-
phical illustrations, which, together with the simple formulae of approximation

given by the author, lead quickly to a Solution and avoid a laborious
integration.
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