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SCHWINGUNGEN VON KIRCHTURMEN BEI
ELASTISCHER EINSPANNUNG IM BAUGRUNDE.

OSCILLATIONS DES CLOCHERS ENCASTRES ELASTIQUEMENT
DANS LE TERRAIN.

THE OSCILLATIONS IN CHURCH TOWERS FIXED ELASTICALLY
IN THE GROUND.

Ing. Dr. PIERRE LARDY, Ziirich.

Die Untersuchung der Transversalschwingungen von Kirchtiirmen, her-
vorgerufen durch das Liuten der Glocken, bildet ein wichtiges Problem
des Kirchturmbaues. Sie zerfallt in zwei Teile:

1. Ermittlung der Eigenschwingungen (Eigenfrequenzen) des Turmes
zur Abklirung der moéglichen Resonanzerscheinungen beim Glockenlauten.

2. Berechnung der durch das Glockenlduten erzwungenen Schwingun-
gen und der daraus entstehenden Beanspruchungen des Turmes.

Die bisherige Berechnungsweise setzte feste Einspannung des Turmes
im Baugrunde voraus!). Der Zweck dieser Arbeit ist, das Problem, von der
wesentlich allgemeineren Voraussetzung einer elastischen Einspannung im
Baugrunde ausgehend, zu behandeln und fiir die Integrationskonstanten des
Schwingungszustandes geschlossene, einfache Ausdriicke anzugeben, was
u. W. bisher auch nicht fiir den einfacheren Spezialfall der festen Einspan-
nung geschehen ist2?). Damit kann ein fiir allemal die oft miithsame und
langwierige Integration der Differentialgleichung mit den zahlreichen Rand-
bedingungen umgangen werden, was fiir den Ingenieur in der Praxis will-
kommen sein diirfte.

Es zeigt sich, daB durch die Einfithrung einer elastischen Einspannung
wesentliche Unterschiede gegeniiber frither entstehen. Im besonderen
konnen die Eigenfrequenzen stark von denjenigen bei fester Einspannung
abweichen, und zwar fallen sie erwartungsgemiB kleiner aus. Dies ist be-
sonders wichtig, wenn es sich darum handelt, die Gefahr von Resonanz-
erscheinungen beim Glockenlduten zu untersuchen. Auch die Beanspruchun-
gen durch die Biegungsmomente des Schwingungszustandes konnen infolge
der elastischen Einspannung stark verschieden sein.

Im ersten Teil dieser Arbeit werden die Eigenschwingungen behandelt.
Sie fithren zu einer Frequenzengleichung, welche infolge der elastischen
Einspannung gegeniiber frither ein Zusatzglied enthilt und an Hand der bei-
gegebenen graphischen Darstellung (Fig. 2) ohne Miihe geldst werden kann.
Es folgen dann die analytischen Ausdriicke fiir die Eigenschwingungsformen.
Fiir zahlreiche Fille der praktischen Anwendung, wo der , Frequenzpara-
meter 7 klein ist, erhalten obige Ausdriicke durch Reihenentwicklung eine
besonders einfache, der numerischen Rechnung zugingliche Gestalt.

1) TimosHENKO, Theory of Elasticity. Hort, Technische Schwingungslehre. ROS,
Schweiz. Bauzeitung vom 11. Mai 1940. Q. ScHNEIDER, Schweiz. Bauzeitung vom 13.
2) Dr. PauL Koenig, Diss. E. T. H. 1930, No. 601.
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Im zweiten Teil werden die durch das Glockenlduten erzwungenen
Schwingungen behandelt (fiir eine einzige Komponente der periodischen
Lagerkraft einer Glocke) und das Resultat der Integration in geschlossener
Form angegeben. Auch hier konnen die Ausdriicke fiir die Integrations-
konstanten bei kleinen Werten von m in einfache Niherungsausdriicke um-
gewandelt werden. Es folgen einige Spezialfille, die sich auf die feste Ein-
spannung sowie auf eine spezielle Lage der Glocken beziehen.

Zum Schluf} veranschaulicht ein numerisches Beispiel die gewonnenen
Resultate.

Zur allgemeinen Orientierung sei noch auf einige Resultate aufmerksam
gemacht, die aus der in FuBnote 2) zitierten Dissertation von Dr. PauL
KoeNiG stammen und kurz zusammengefaBt folgendes aussagen: Jeder Glocke
entsprechen zwei sich iiberlagernde erzwungene Schwingungen, die eine im
Takte der Glocke, die andere in dreimal schnellerem Takte. Daraus folgt,
daB zur Vermeidung der Resonanzgefahr die Grundeigenschwingung des
Turmes weder im Takte der Glocke, noch in dreimal schnellerem Takte
erfolgen darf. Im allgemeinen geniigt die Betrachtung der Eigenfrequenz
der Grundschwingung des Turmes (das ist der kleinste Wert der unendlich
vielen Losungen der Frequenzengleichung), da die iibrigen Eigenfrequenzen
auBerhalb des Resonanzbereiches liegen. Die Glockenkrifte, d.h. die hori-
zontalen Komponenten der Lagerkrifte, sind wohl periodisch, jedoch nicht
harmonische Funktionen der Zeit. lhre beiden ersten harmonischen Kom-
ponenten (mit den Frequenzen 1:3, die iibrigen konnen vernachlassigt
werden) gewinnt man aus der harmonischen Analyse, und ihr Gré8enver-
hialtnis sowie dasjenige der einzelnen Komponente zum Maximalwert 3)
kann fiir alle Glocken als konstant betrachtet werden ). Das Schlufresultat
entsteht durch Uberlagerung samtlicher Schwingungsformen.

1. Eigenschwingungen.

Der Turm ist in Fig. 1 unten als elastisch einge-
spannter und oben freier Stab von der Linge / darge-
“ stellt. Die Grundgleichung fiir die Transversalschwin-

gungen eines biegungsfesten Stabes lautet:

X=l 02 y
Darin smd
¢ x = Abszisse in cm (4 nach oben)
y = Ordinate in cm (4 nach rechts)
o = Dichte des Turmmaterials in kg ;jf-ci
l F = Querschnittsfliche in cm? } .
X=0 _ L.«—v%-‘/ . 5
WLW]/ I = Triagheitsmoment des Querschnittes in cm* )

Fig. 1 E = Elastizititsmodul des Turmmaterials in kgjcm?

3) Siehe 2), Seite 37 und 38.
4; Uber den Maximalwert der Lagerkomponenten siehe !): G. SCHNEIDER, Schweiz.
Bauzeitung.
5) Fiir / und F werden konstante Mittelwerte eingefiihrt, was in den meisten prak-
tischen Féllen ohne weiteres zulissig ist.
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Zur Losung der partiellen Differentialgleichung (1) dient der Ansatz:
y = @(x)-cosrt (2)
worin @(x) eine Funktion von x allein ist und » die Frequenz (sec—!) be-
deutet. Durch Einsetzen und Division durch cos»f folgt fiir @(x) die totale
Differentialgleichung: . B(x) 12F
d x* ET
Zur Abkiirzung setzt man:

vioF  mt Lo F
E()]* = oder m=1 1/»?@ (4)

und erhilt nach einigen Umformungen fiir @(x) die allgemeine Losung in
der Form

D(x) = A - Ch(—~)+l3ShQA)+—C um( )-+D mn(zﬂ (5)

- D(x) =0 3)

Darin sind 4, B, C und D die Integrationskonstanten, welche durch die nun
folgenden Randbedmgungen bestimmt werden.

Randbedingungen.

Diese gelten fiir jeden Wert der variablen #, also auch fiir /=0, d.h.
die 4 Randbedingungen koénnen durch P(x) statt durch y ausgedruckt
werden.

1. An der Einspannstelle x—= 0 ist auch y= 0 oder @(0) = 0, woraus
C=—A (6)
folgt ‘ P '
2. Fiir x =0 soll die Einspannung elastisch sein, d.h. es besteht fiir
den Drehwinkel w die Relation: '

w— —eM . (7)
Durch Einfithrung der Bettungsziffer ¢ des Baugrundes und des Triagheits-
momentes /r der Fundation wird bekanntlich ¢ = 611
F
(8 =W fiir M= — 1)
At v= () = (29
, ox/ dx/,
2 2
und M = _51(2_49 :_El(d;di)
ox?/ dx?/
d q5> (cﬂ (D)
folgt (;;; El dxt).
und daraus eine Beziehung fiir die Integrationskonstanten
B+p=22EmA (8)
Mit der Abkiirzung
/ ETl
p= £ 9)

l Clrl
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ist B+D=2\AmA (10)

2
3. Fir x=/ (Stabende) muB das Moment M:-El%§:0 sein.

Dies ergibt

A(Chm + cosm) + B-Shm — D -sinm =0 (11)
3
4. Fiir x =/ muB die Querkraft Q— — E/ %;5 — 0 sein; es folgt
A(Shm — sinm) + B-Chm — D-cosm =0 (12)

Aus den 4 homogenen Gleichungen (6), (10), (11) und (12) sind nur drei
Integrationskonstanten bestimmbar; die 4., z. B. 4, ist willkiirlich. Indem
man fiir die 3 letzten Gleichungen die Vertragllchkeltbbcdmgung formuliert,
erhilt man nach verschiedenen Umformungen folgende allgemeine Frequen-
zengleichung fiir m:

14-cosm-Chm+ Am(cosm-Shm — sinm-Chm) =0 (13)
wo l:“j[ ist.

Der EinfluB der elastischen Einspannung kommt darin im Zusatzglied mit
J zur Geltung. Es ist bemerkenswert und aus Fig. 2 ersichtlich, daB schon
fiilr kleine Werte von 1 die entsprechenden Frequenzparameter m stark
abnehmen. Fiir feste Einspannung ist ¢ = 1= 0, und die Gl. (13) geht iiber
in die bekannte Form:

14+ cosm-Chm=20.

Gleichung (13) hat unendlich viele Losungen, die man bei gegebenem 2
durch sukzessive Approximation finden kann, oder einfacher noch aus der
graphischen Diarstellung der Fig. 2, wo Glelchung (13) in der Form

(1 4+ cosm - Chm) 1 j(m 1

Sl (cosm-Shm —sinm-Chm) m ~ g(m) m

dargestellt wurde. (g(m) ist iibrigens die Ableitung von f(m) nach m.)
Aus Fig. 2 ist deutlich ersichtlich, daB fiir 1+ 0 die zugehorigen m-Werte
kleiner sind als bei 1= 0; d. h. nach Gleichung (4), da8 die entsprechenden
Eigenfrequenzen ebenfalls kleiner sind als diejenigen bei fester Einspannung.

Fiir jede Losung m der Gleichung (13) kann nun die zugehdrige ana-
lytische Schwingungsform, d.h. die Funktion ®(x) bestimmt werden.

Bevor wir dies tun, fithren wir vier Funktionen ein, welche formal und
rechnerisch die weiteren Berechnungen und Resultate bedeutend vereinfachen.
Es sind dies die folgenden:

C,= Chx + cosx

Cy = Chx—coOSx ]

Sy = Shx 4 sinx (14)
S, = Shx —sinx ]

welche durch Differentiation zyklisch vertauscht werden. Sie sind in Fig.3
und 4 dargestellt fiir die Argumentwerte 0< X < 4.
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4714694
46 Premiére harmonique supérieure
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Fig. 2  Courbes des fréquences

Frequenzenkurven } 14+cosmChm+ im(cosmShm—sinmChm) =0
Frequency curves

Fithrt man nun diese Funktionen in ®(x) ein, so folgt, nach einigen Um-

formungen, bei denen statt x das Argument {?}; = mé gesetzt wird,

D(x) = A'{Sp - Cms— Cn + Spe + 2hm(sinm - Spe + Sy - sinmé)}. (15) 6)

Die zugehorigen Biegungsmomente der Schwingungsform ergeben sich aus

dzd
M= —EI e Zu:
2
M= —EI Lln; cA'"{Sm - Cns — Cm » Sme + 2hm(sinm + Sp: — S, - sinm )} (16)

6) :Sl%—n = A’ ist eine willkiirliche Konstante und kann nur durch eine zusitzliche

Bedingung bestimmt werden.
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300

Fonctions :

i Cy = Chx + cos x
Funklionen: .

e Cy = Chx - cosx
Functions :

2001 /

190 - Ce G é
80 -
60
40
201
21 [ | | .
0 10 20 a0 40
Fig. 3
30 /
B Fonctons :
e e
© 8 = Shx - sinx

A Functions :
20 1 . /

0 w 20 20 W
Fig. 4

Niherungsberechnungen.

Bei den praktisch vorkommenden Fillen zeigt es sich im allgemeinen,
daB8 der Frequenzparameter m; der Grundschwingung, welcher fiir die
Resonanzgefahr sozusagen immer ausschlaggebend ist, infolge der ela-
stischen Einspannung kleine Werte annimmt. (Fiir feste Einspannung ist
my; =~ 0,597 -7 = 1,8755.) Dies legt den Gedanken nahe, mittelst Reihen-
entwicklungen die gefundenen Ausdriicke fiir die Schwingungsformen zu
vereinfachen. Aus den bekannten Reihenentwicklungen fiir die trigonometri-
schen und hyperbolischen Funktionen folgt fiir die neu -definierten Funk-
tionen nach Gleichung (14):
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[ x4 x8 x4ll T
Cx——~2V1 +4'+*87++*Tn),“*+
_ "x2 xG xlf) x«1n+2
Co=2lgitertion T T wagyr T

'x x5 xi) x4n+1 T (17)
S=2 i tortort et @y o
- —x3 x7 xll x4n+3 T
S=2g ittt @agyr T

Diese Reihenentwicklungen konvergieren gut und konnen fiir die Argumente
m und mé& = 1,4 nach dem ersten, resp. zweiten Gliede abgebrochen werden,
da der Fehler weniger als 10/ ausmacht.

Aus der Frequenzengleichung (13) entsteht auf diese Weise die ein-
fache Beziehung:

4
14+ cosm-Chm -+ Am(cosm-Shm — sinm-Chm) 2 2 — ’%(1 + 44 =0

12
oder: mt =4 14 (18)

Wird darin zur Kontrolle 1 =0 gesetzt, so folgt: mt =12 und m =~ 1,864
statt 1,8755, was die Giite der Approximation fiir Gleichung (18) beweist.
Demnach kann fiir die Bestimmung von m, statt der Gl. (13) die viel ein-
fachere Beziehung aus Gl. (18) beniitzt werden, da der Maximalfehler fiir
m=14 (1= 0,54) ungefihr 29/ betrigt.

Es gelingt auch, fiir die Schwingungsform @(x) der Grundeigenschwin-
gung, sowie fiir die entsprechenden Biegungsmomente M(x) aus den Reihen-
entwicklungen Ausdriicke zu gewinnen, welche die numerische Rechnung
wesentlich vereinfachen und fiir die praktisch wichtigen Werte von 1 (oder
m) einen hohen Genauigkeitsgrad besitzen. Die Ableitung dieser Ausdriicke
verlangt eine sorgfiltige Untersuchung, welche Glieder bei den Reihen-
entwicklungen vernachlédssigt werden diirfen (von Fall zu Fall verschieden)

und beniitzt die Beziehung der Gl. (18), m¢ =1 _II—Z4 7 Es sei hier lediglich
- das Resultat angegeben:
A 14472 52] A [ s“]
b (x) 2 A 5[2x+§_-1;.»1‘;ﬂ. S learE2iye—5 (19)
2E7 2E7
M (x) 2 — 7 CA"(1- 821+ K E+ K, §2(3-§)]-£~H— A"(1-9)2[1+K:.&] (20)
Darir. sind:
= ;‘ und  0<E<1, A= Am*(A” willkiirlich)
1 144 41 _ 1 =
K=o tiyar T wairay Oot=0

Der hohe Genauigkeitsgrad der Ausdriicke (19) und (20) geht aus folgenden
Werten fiir den Maximalfehler hervor: fiir m =1 betrigt er 10 “Fir @
und 0,20/ fiir M, fiir m = 1,4 49/ fiir @ und 0,8 o0 fiir M.
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In den Ausdriicken (19) und (20) kommen die 4 Randbedingungen deut-

dd 2
lich zum Ausdruck. Fiir x=0 ist #=0 und - _2{1[7}44 = —eM(0) =

Winkel bei elastischer Einspannung. Ferner besltzt M(x) eine Doppelwurzel
= 1, weil fiir x =/ auch die Querkraft Null ist.

Zusammenfassend kann iber die Eigenschwingungen gesagt werden,
daB im Falle der elastischen Einspannung (4 < 0) die Schwingungen lang-
samer (Gl. (13) und (18)), deren Amplituden gréBer (Gl. (19)) und die Bie-
gungsmomente (Gl. (20)) kleiner werden als bei fester Einspannung.
Wesentlich bleibt fiir den praktischen Fall vor allem die Verschiebung des
Resonanzbereiches und die moéglicherweise dadurch bedingten viel ungiin-
stigeren Verhiltnisse beim Glockenlduten, welche zu einer ernstlichen Ge-
fahrdung des Turmes fithren konnen. Dies kommt im 2. Abschnitt deutlich
zum Ausdruck.

2. Erzwungene Schwingungen beim Glockenlduten.

Wir fithren die Berechnung nur fiir eine Glocke durch; die periodische
Kraft H (siehe Fig. 5) sei bereits eine harmonische Komponente der hori-
zontalen Glockenkraft (siehe Einleitung) und greife in
x der Hohe a an (a + b = /) mit der Stérirequenz »,.
‘ Die Ausgangsgleichung fiir die erzwungenen Trans-
versalschwingungen ist wieder Gl. (1):

O"
’7t2

N

oF- :0

mit derselben Bedeutung der Variablen und Konstanten.
Die Berechnung weist hier infolge der neuen und zahl-
reichen Randbedingungen wesentliche Unterschiede auf.
Es sind 2 Losungszweige fiir y einzufithren, je nach-
dem x< a oder x >a ist. Mit den Losungsansitzen

V1 = Dy (x) - cos(vd)
T " ) Yz = Dy (x) - cos (v
Fig. 5 folgt analog:

D, (x) = A, - Ch(”“‘)+3 Sh(%’i)Jrcl cos( )+D sm(7’5) (21)

D, (x) = A, - Ch (*m) + B, - < ) +C,- cos< ) + D, - sin (mlx) (22)

Dabei i . V2QF ;
abei ist wiederum Com= VoF, (Siehe Gl. (4))

Randbedingungen?) (fiir £=0 ausgedriickt).
l.x=0: & =0 ergibt C, = — A, (wie QL. (6)).
2. x = 0: Elastische Einspannung; wie frither folgt:
B, + D, =2imA, (wie QGl. (10)).
3. x = a: Das zu iibertragende Biegungsmoment sei M, = Mj - cos»¢.

") Dr. Koenig, Diss. S. 39 ff.
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Es muB (d;le) = — g]f sein und daraus folgt:

afor(e) s ()]s 37) orsn(n) = B
4. x=a: Analog folgt fiir die zu iiBertra_gen-de Querkraft

(d;xfl) = — %‘; und daraus

Al[Sh(ml )—sm<m >]—|—Bl C/z<~“-) D, - cos ('}lﬁ): g‘j a (24)

Nun folgen die Randbedingungen fiir den Stab 2 (x = «), der an seinem untern
Ende auBer @, noch die periodische Kraft H - cos »# aufzunehmen hat.

5. x=ua: Stetiger Ubergang der Ordinate, d. h.: ®,(«) = ®,(a) und
daraus: ‘

AI[C/Z (mT) — COS (ma)] + B, - (ma) + D, - sin (Eflil) —
. Ch (’”") + B, (”’") 1 C, - cos (5”25’) 4+ D, - sin (ﬁl‘i) (25)

6. x=a: Stetiger Ubergang der Tangente, d. h.: (d&) ([{qf)

dx dx
und daraus:
A lS/z( ) + m( ] )]—l— BIC/z< )—}— chos(Ta)—_—
A, S/z( )+ B, Ch( ) C, sin (——) + Dy cos (Ta) (26)
o . : . dQ@g)__ MG
7. x=a: Gleiches Biegungsmoment ergibt: <de2 = ED
woraus
A, C/z(—‘> + B,Sh (’”") —cC os(”“’> D sm(’”“) _ Ml oy
l [ 2 COS{ 2 )= T Eim @?0
3
8. x=a: Schubkraft aus Q7 und H ergibt (dd ?2> SR (—QaEI H) und
folglich
ma in (%) __ ma) (@i _H)L
ASh(1)+32C’Z(1)+C251“(1) chos(z)‘ Eims ~ (%8

Die 8. Randbedingung zieht ihrerseits, wie man leicht einsieht, noch die

weitere Forderung
Yy = v,

nach sich; d.h. die erzwungene Schwingung des Turmes erfolgt im Takte
der erregenden Kraft. Daraus folgt der Wert des entsprechenden Frequenz-
parameters zu
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n—me=t]/5e" (20
9. x=1[: M=0 am freien Ende, also
<d;ff) =0 =A4,Chm + By, Shm — C,cosm — D,sinm (30)
10. x=1{: ZQ_‘ 0 am freien Ende, also
(%)l: 0 =A,Shm + By,Chm 4 C,sinm — D,cosm (31)

Es entsteht somit ein System von 10 Gleichungen mit den 10 Unbekann-
tea Ay, ..., Dy, Aoy..., Dy, M und Q. wobei die 2 letzten M, und Q,* nicht
von Interesse 'sind und ubrlgens sofort eliminiert werden konnen. Entgegen
der bisherigen Vermutung koénnen die iibrigen 8 Gleichungen, allerdings
nach umfangreichen Operationen, allgemein gelost und fiir die Integrations-
konstanten einfache, geschlossene Ausdriicke gewonnen werden. Dabei war
das systematische Vorgehbn bei der Elimination wesentlich. Zur formalen
und rechnerischen Vereinfachung wurden auch hier die durch die Gleichun-
gen (14) definierten Funktionen wieder eingefiihrt. Es zeigt sich, daB die
6 Unbekannten C,, Dy, 4,, By, C, und D, durch die beiden A4, und B aus-
gedriickt und demnach beide letzteren als ,,Basissystem‘ dufgefaﬁt werden
konnen. Als Resultat der Elimination bekommen wir:

. [Cm/; Sm,b i Cm]_
Ar =K (o m)
Bl _ [S g S ——C mp " C +27b/ﬂ(51ﬂ”l C”i/)ﬁﬁ,COS”Z Sm/g)] (32)
y (4, m)
Ly = — A, :
D, =2imA, — B,
Ay = A, —2K-Sh (%‘f)
B, — B, + 2K-Ch <%~>
(33)
(474
C, = — A, + 2K -sin \A)
D, = D, —2K- cos(’nla)
Hlu . b
e = 1
wo: K = iEIm und mit o} ] nach (14)
‘mb mb>
Cmp = Ch (T’) +cos (7‘)

Slizﬁ —_— Sh (izz[b) -+ sin (zzlb)

usw.
Fiir m ist jetzt iiberall der durch Gl. (29) definierte Wert . als Funktion
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der Storungsfrequenz v, einzusetzen. Der Nennerausdruck « (2, m) ist nichts
anderes als die linke Seite der Frequenzengleichung (13) fiir m — m,,
namlich:

w(A, m)y = 1+ cosm,- Chm, + Amc(cosm,- Shm, — sinm,- Chm,).

Dieses Resultat entspricht den Erwartungen und veranschaulicht rein formal
den Zustand der Resonanz, der dann eintritt, wenn m = m, eine Wurzel von
v (L, m) ist, also die Gleichung (13) erfiillt und mit einem der Eigenschwin-
gungswerte m iibereinstimmt; d. h. (4, m) = 0 und sdmtliche Integrations-
konstanten Ay,..., Dy, A,,..., D, werden co groB}, wodurch gerade die Re-
sonanz definiert ist.

Im Gegensatz zu den Eigenschwingungen sind hier alle Integrations-
konstanten durch die Randbedingungen eindeutig bestimmt. Ihre numerische
Auswertung bietet keinerlei Schwierigkeiten und fithrt mit Hilfe der Kurven
in den Fig. 3 und 4 (oder mit Tabellen) rasch zum Ziel.

Gewohnlich ist g = é klein, sodaBl vor allem die Schwingungsform @,

sowie das zugehorige Blegungsmoment M, fiir die Untersuchung wichtiger
sind als @, und M,. Sie kénnen an Hand der Ausdriicke (32) formal einfach
dargestellt werdea:

D, (x) = A, [Cm; + i‘ - Sps + 24m - sin (m 5)1 (34)
Elm?
M(x) = — 77,’1 - Ay {Cm” + ==« Spms + 24m - sin(m E)] (35)
worin fiir §~ nur das Verhiltnis der eckigen Klammern in (32) zu setzen ist.
1
Der Faktor _*_E‘{l;n - A, in Gl. (35) ergibt ausmultipliziert einfach
Hl [Cm/)’ * Sm i mg * Cm]
T 4m y (A, m) ’
sodaB
HI [Cup Sm — Smp - Cul By ;
= — . e — e —24m - £ !
M@= 2 {Cms 5 Sus— 2im - sin m ,)} (35')

ist. Auf die allgemeine Diskussion der Ausdriicke (34) und (35) kann hier
nicht eingegangen werden. Die Frage der Resonanzgefahr ist beim Vergleich
der Werte m, und derjenigen m der Eigenfrequenzgleichung (13) abgeklirt.

Oft handelt es sich darum, ein Bild iiber die durch das Glockenlauten
hervorgerufenen Maximalmomente zu erhalten. Es sind diesbeziiglich die

sanalytischen‘* Maxima (%24 = 0) und die ,,Randmaxima‘“ (gréof8ter Absolut-

wert im betrachteten Intervall) zu unterscheiden. Bei letzteren hat das
Mcment den gréBten Absolutwert fiir x = 0, was obige Formeln wesentlich
vereinfacht. Eine allgemeine Aussage i{iber die analytischen Maxima ist
schwierig wegen der Abhingigkeit des Biegungsmomentes von den 3 Para-
metern m,, 2 und . (Der Ausdruck fiir das Maximalmoment kann iibrigens
auf eine besonders einfache Form gebracht werden.) Das Randmaximum
fiir x==0 an der Einspannstelle wird, wegen

Cm: =2 und S,:=sin(mé =0
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besonders einfach: N HI(Cup - Sii — Simp - Cim)
MO = ==y, m)

(36)

Spezialfalle.

1. Extremfall 2= 0 der festen Einspannung.

Dann wird (4, m) =1+ cosm,-Chm,.; bei B, sowie @, und M, ver-
schwindet das Zusatzglied mit dem Faktor 2 und sidmtliche Formeln werden
einfacher. So ist z. B.

M (0) = — 2m(1 + cosm- Chm) (37)

2. Extremfall ¥ = 0, wo die erregende Kraft zuoberst am Turm angreift.
4 sei == 0. Auch hier werden siamtliche Ausdriicke einfacher, z. B.

HIS, .
M;(0) = — m (L, m) (38)
3. Kombination der beiden obigen Fille (1= 0, & = 0) ergibt fiir M,(0):
HIS,
M (0) = — (39)

m(1 4 cosm - Chm)

Niaherungsberechnungen.

Auch hier konnen dhnlich wie im 1. Abschnitt fiir kleinere Werte des
Frequenzparameters m, mittelst Reihenentwicklungen gute Niherungswerte
und damit groBe Vereinfachungen fiir die praktische Berechnung erzielt
werden. Unter Wiederbeniitzung der Niherung

y(h, m) 2 2 —%f(l 1 47

sowie durch die in den Gl. (17) definierten Reihenentwicklungen erhalten
wir, da auch g i. A. kleine Werte annimmt (8= 154):

4
Cmp * Sm — Smg * Cn 2 4m(1 — B — %r'ﬂf> v 4m(] . ﬂ)
und analoge Ausdriicke fiir die andern Funktionen. Es wird:
(1= 1= e

s = e o)

2E]m2[1—~—( +4x)] 251m2[1——(1 + 4/1)]

24 ™ (1—aB)— Am2[2(1—pB) + m2(B—
Bw— Hp 2t (4d A At mE =l

Fiir m = m,= 0,5 betrigt der Max1malfeh1er in obigen Formeln ungefihr
1200, fiir m,= 1 ungefihr 1,50 und fiir m.= 1,4 ungefihr 505,
Besonders einfach wird der Ausdruck fiir Ml(o) man erhilt:

mtp
Hl(l_ ") © — H-a ()
1—"(1 4 4) 1—"(1 4 41)

M (0) =« —
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Gl. (42) erlaubt eine Kontrolle durch den Grenziibergang / — oo, was nach
Gl (29) m.— 0 nach sich zieht und fiir das Moment M, (o) den Wert —H -«
liefert, wie er aus der Statik bekannt ist.

Aus GI. (42) geht ferner hervor, daB fiir kleine Werte von m mit zu-
nehmendem 4, d.h. bei zunehmender Lockerung der Einspannung, das Ein-
spannmoment M, (o) zunimmt und nicht etwa umgekehrt, wie man vermuten
konnte. Das rithrt davon her, daB bei der elastischen Einspannung der Re-
sonanzbereich verschoben wurde im Sinne einer Verkleinerung des Eigen-
frequenzparameters m; (m,<C1,8755, siehe 1. Abschnitt). Damit wird aber
der Unterschied zwischen 7, und m, kleiner, d.h. die Stérungsschwingung
ist ndher an die Eigenschwingung herangeriickt und das Biegungsmoment
ist groBer geworden. Dies zeigt deutlich, daB bei Schwingungsuntersuchun-
gen von Kirchtiirmen die Einfithrung der elastischen Einspannung im Bau-
grunde eine wichtige Rolle spielt und zu ganz anderen Resultaten fithren
kann als die Annahme einer festen Einspannung. Dieser Umstand moége hier
noch einmal ganz besonders hervorgehoben werden.

Die entwickelten Gleichungen und Formeln erlauben es, das Problem
der Kirchturmschwingungen unter der aligemeinen Voraussetzung der elasti-
schen Einspannung ohne Integration und besonders ohne die miithsame, von
Fall zu Fall sich wiederholende Auflosung des Gleichungssystems fiir die
Integrationskonstanten durchzufithren. Die Niherungsformeln sowie die bei-
gegebenen graphischen Darstellungen fithren jeweils rasch zum Ziele, umso
mehr, als in praktischen Fillen die Wirkung jeder Glocke einzeln behandelt
und das Endergebnis der Untersuchung erst noch durch Uberlagerung ge-
wonnen werden mubB.

3. Numerisches Beispiel.

In einem kurzen Beispiel soll fiir verschiedene Werte der Bettungs-
ziffer ¢ (und damit fiir verschiedene 1) der EinfluB der elastischen Einspan-
nung beleuchtet werden. Dazu sei ein Turm aus Natursteinmauerwerk mit
folgenden Daten gewéihlt:

/=40m, E = 60000kg/cm?, [=172m% Jr=108m* F = 24m?
0 = 2,75 . 10-%kg-cm~* sec2.
Es ist ferner nach Gl. (4) die Frequenz

% und die Schwingungsperiode 7 = 3:

Vv = 12

Fiir die erzwungenen Schwingungen sei: // = 1000 kg, ¢ = 30 m, b = 10 m,
die Storungsfrequenz ». = 2,3 sec—1, woraus 7, = 2,73 sec und m,=1,2.
Wir untersuchen die 4 Fille:

1. ¢= 4 kg/cm?

2 ¢c=10 ” elastische Einspannung
3. ¢=50 ”

4., ¢ = o0 : feste Einspannung

Fiir die Berechnungen geniigt die Auswertung der Niherungsformeln, da
hier besonders der Vergleich mit der festen Einspannung (1= 0) hervorge-
hoben werden soll.

Abhandiungen VII 17
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Eigenschwingungen:

Aus 1= £l sowie aus Fig. 2 oder aus der angenidherten Frequenzen-

Cllr
1
1 nt = folgt:
gleichung r Y g
C kg/cm?® A m v sec™! | T sec
4 2,5 1,022 168 | 3,75
10 1 1,248 2,49 2,52
50 0,2 1,61 415 1,51
oo 0 1,865 5,56 1,13

Die Unterschiede sind betrachtlich. Die Schwingungsformen @(x) und M(x)
konnen aus obigen Werten leicht berechnet werden.

Erzwungene Schwingungen.

Wir untersuchen hier nur die Abhingigkeit des Biegungsmomentes
M,(0) von A nach der Formel:

Ha
Ml (O) é - m
1—-~(1 + 41) -~
Mit m,= 1,2 wird:
C kg/cm? A M, (0) mt
4 2,5 + 33,3
10 1 -220
50 0,2 ~ 43,5
oo 0 - 36,3
Der hohe Betrag des Biegungsmomentes M,(0) = — 220 mt fiir den Fall

¢ =10 kg/cm? zeigt deutlich die Resonanznihe, da der entsprechende Wert
des Eigenschwingungsparameters m = 1,248 ist und nur wenig von m,= 1,2
differiert. Der Unterschied mit der festen Einspannung ist damit evident.

4. Anhang.

Mehr vom theoretischen als vom Standpunkt der Kirchturmschwingun-
gen aus bietet die Untersuchung der Eigenfrequenzengleichung (13)

14 cosm-Chm + Am(cosm-Shm — sinm-Chm) = 0 (13)

ein Interesse fiir groBe Werte von m, d.h. fiir die hdheren Oberschwingun-
gen. Auch in diesem Falle gelingt es, dhnlich wie bei der Annahme kleiner
Werte von m, fir Gl. (13) eine Niherungsgleichung zu gewinnen.
Fiir groBe m kann man

Chm <2 Shm 2 %— setzen.

Damit wird aus GI. (13), nach Multiplikation mit ;2,;
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;,7: + cosm 4 Am(cosm — sinm) = 0 oder, da %20 ist:

cosm + Am (cosm — sinm) = 0 (13)
und schlieBlich: |
1 . ;
Ao —————— (siehe Fig. 6 13"
nlgm—1 g. 6) (13")
(Eigenfrequenzengleichung fiir grofie m)
m
MN
I#./-'g
40
9 “ lQuatriéme harmonigue supérieure
a8 | Vierte Oberschwingung
a7 Fourth uypper harmonic
ae, ©
15 S S ]
% x
R4 133518 = 8 g
s3] ‘ i 1
574
a7 |
]
i
9 ]
8 ] Troisieme harmonigue supérieure
17 Dritte Oberschwingung
6 | Third upper harmonic

102340
102269
-

w9 F
8™
77 3 . -
Deuxiéme harmonigue supérieure
7 | ; :
z Zweite Oberschwingung
7'4‘ Secand ugper harmonic
]
73 -
= ©
2] g g y
71| 70686 R N
V] ! a2
0 ! 2 3
Fig. 6. Courbes des fréquences des harmoniques supérieures 1
Frequenzenkurven der Oberschwingungen o mem —1
Frequency curves of upper harmonics m (tg m —1)

Fiir m= 6 liefert die Naherungsgleichung (13”) Losungen, deren Fehler,
verglichen mit der genauen Gl. (13), kleiner sind als 0,20p.

Grenzfall 1= 0: es muB'tg m = co sein, d.h.: bei fester Einspannung
sind die Eigenfrequenzparameter gegeben durch:
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/714(2/1-{—1)%:(/1—}—%—):1 =12 ...

Grenzfall A= co: es muBl tg m =1 sein; die Eigenfrequenzenkurve hat eine
horizontale Asymptote (siehe Fig. 6) fiir

m_k{“__(4iz+l)\}—:(n+%~)n (n=1,2..)

Daraus folgt allgemein, daB bei elastischer Einspannung der Eigenfrequenz-
parameter m der n-ten Oberschwingung zwischen den beiden angefiihrten

Grenzwerten liegt:

1) ( 1)
N <L — V.
(12—1—4’_\.:\/72:__: /z+2/v

Mit zunehmendem m schmiegen sich die Eigenfrequenzenkurven immer
meht an den rechten Winkel zwischen Asymptote und m-Axe an, sodaB schon
fiir kleine 1 die entsprechenden m nahezu konstant, namlich glelch (n+31)=
sind. Damit ist allgemein gezeigt, daB bei elastischer Einspannung die Fre-
quenzparameter m der Oberschwingungen gegeniiber fester Einspannung um

~ —4~ kleiner sind. Infolgedessen verschieben sich auch die Eigenfrequenzen

v und die Perioden 7 je um einen nahezu konstanten Betrag.

Zusammenfassung.

Die Untersuchung von Kirchturmschwingungen wird unter der allge-
meinen Voraussetzung einer elastischen Einspannung des Turmes im Bau-
grunde durchgefiihrt. In einem ersten Abschnitt werden die Eigenschwingun-
gen behandelt und die allgemeine Frequenzengleichung als Funktion der
elastischen Einspannung diskutiert. Es folgen die Schwingungsformen fiir
die Durchbiegungen und das Biegungsmoment, sowie Niherungsformeln fiir
die numerische Berechnung, welche durch Reihenentwicklungen gewonnen
wurden.

In einem zweiten Abschnitt werden die durch das Glockenldauten ser-
zwungenen Schwingungen untersucht. Das Resultat der Integration fiir den
allgemeinsten Fall wird in Form von einfachen, geschlossenen Ausdriicken
dargestellt und einige Spezialfille sowie Néherungswerte fiir die wichtigsten
GroBen angegeben. Zum SchluB beleuchtet ein numerisches Beispiel den
theoretischen Teil, und im Anhang wird die Eigenfrequenzengleichung fiir
die Oberschwmgungen untersucht.

Der Unterschied gegeniiber einer festen Einspannung wird auch durch
graphische Darstellungen hervorgehoben, welche zusammen mit den ange-
gebenen einfachen Niherungsformeln unter Umgehung einer mithsamen In-
tegration rasch zum Ziel fithren.

Résumaé.

Les oscillations des clochers sont traitées sous l’hypothése générale
d’un encastrement élastique de la tour dans le terrain. Un premier chapitre
contient I’étude des oscillations fondamentales en dépendance de ’encastre-
ment élastique. Les formes analytiques pour les déformations et les mo-
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ments fléchissants ont été établies, de méme que des formules approchées
obtenues par développement en série, dans le but de simplifier le calcul
numérique.

Le second chapitre a pour objet I’étude des oscillations forcées dues a
la sonnerie des cloches. Le résultat de l'intégration du cas le plus général
conduit a des expressions simples; suivent quelques cas spéciaux et formules
approchées importantes, de méme qu’un exemple numérique qui illustre la
théorie. En fin de travail, I’équation aux fréquences fondamentales est étu-
diées pour les harmoniques supérieures.

La différence avec le cas de P'encastrement total a également été mise
en évidence par des graphiques, qui, joints aux approximations simples in-
diquées pour le calcul numérique, conduisent rapidement au but tout en
évitant une intégration laborieuse.

Summary.

The investigation of the oscillations of church towers is made under
the general assumption of the tower being elastically fixed. In a first sec-
tion the natural oscillations are considered and the general equation of fre-
quencies discussed as a function of the elastic fixing. Then follow analyti-
cal forms for the deformations and bending moments, and also formulae of
approximation for the numerical calculation, which have been obtained by
the expansion of series.

In a second section the oscillations caused by bell ringing are investi-
gated. The result of the integration for the most general case is represented
in the form of simple, definite expressions; some special cases, and also
approximate values are given for the most important magnitudes. Finally,
a numerical example explains the theoretical part, and in an appendix the
equation of natural frequencies for the upper harmonics is examined.

The difference in comparison with rigid fixing is also shown by gra-
phical illustrations, which, together with the simple formulae of approxima-
tion given by the author, lead quickly to a solution and avoid a laborious
integration.
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