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EIN BEITRAG ZUR ERMITTLUNG DER EIGENWERTE
AUS EIGENWERTDETERMINANTEN.

UNE CONTRIBUTION AU CALCUL DES VALEURS FONDAMENTALES
DONNEES PAR LE DETERMINANT CORRESPONDANT.

A CONTRIBUTION TO THE CALCULATION OF FUNDAMENTAL
VALUES OIVEN BY THE CORRESPONDING DETERMINANT.

Prof. Dr. Ing. K. KRISO, Deutsche Technische Hochschule, Brunn.

I. Einleitung.
Wenn man bei einem homogenen Randwertproblem, das nur die

triviale Lösung y 0 besitzt, in den Beiwerten der zugeordneten homogenen
Differentialgleichung linear einen unbestimmten Parameter rj einführt, der
aus den Randbedingungen so bestimmt werden kann, daß die Differentialgleichung

für geeignete Werte ^ nunmehr eine nichttriviale Lösung
y=--f{xy],) besitzt, so nennt man diese so bestimmten Parameter )\t „Eigenwerte

des Randwertproblems", die Lösung y f(xr/t) heißt
„E i g e n 1 ö s u n g" oder auch „Eigenfunktio n", das Randwertproblem
selbst wird „Eigenwertproblem" genannt.

Zu den vordringlichsten Eigenwertproblemen der technischen Praxis
zählen die Schwingungs- und Stabilitätsprobleme, deren Eigenwerten auch
eine sinnvolle technische Bedeutung zukommt. So z. B. bestimmen die Eigenwerte

von Schwingungsproblemen die möglichen Frequenzen der Schwingung,

während beispielsweise der dem Knickproblem eines mehrfeldrigen
elastisch quergestützten Stabes*) zugeordnete kleinste Eigenwert zur
Ermittlung der vorhandenen „Stützensicherheit" dient. Bei diesem Problem
errechnen sich die Eigenwerte rjl aus der Knickbedingung A 0, wobei A
die sogenannte „Knickdeterminante" darstellt und die Form

(i)

besitzt.
Beim Schwingungsproblem eines Systems von n Freiheitsgraden führen

die Lagrange'schen Bewegungsgleichungen zur „Frequenzdeterminante"

ki + r\ /l2 hs • - ' ' hn

ki 42 + >/ k'i • ' • ' kn

kl k2 43 + >/
'

• • ' • kn

4i ifö kz \ • • ¦ ' Inn + >y

l) K. Kriso, Die Knickberechnung mehrfeldriger, in den Feldgrenzen beliebig
gestützter Stäbe, Band VI der Abhandlungen der Internationalen Vereinigung für Brückenbau

und Hochbau, Zürich 1940/41.
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deren Nullsetzung die Ermittlung der Eigenwerte i] gestattet.
Auch bei anderen Eigenwertproblemen ergeben sich die Eigenwerte

letzten Endes aus der Nullsetzung einer Determinante, die, unabhängig vom
jeweilig vorliegenden Sonderfall, die Bezeichnung „Ei gen w er t d e t er-
minanie" führen soll. Die Ausrechnung der Determinante führt zum
„Det erm in an t en p o ly n om", dessen Nullsetzung die
„Determinantengleichung"

A tf + A1r^~1 + A2rr2 + + An-i>j + An 0 (3)

liefert, aus welcher die Eigenwerte rj zu bestimmen sind.
Die obige Determinante (2) stellt die allgemeinste Form der

Eigenwertdeterminanten dar. Auf diese Form führen z. B. auch die in ihrer Anwendung

auf Eigenwertprobleme oft recht praktischen Näherungsverfahren von
Henky und Ritz. Die Form der Eigenwertdeterminante (1) soll weiterhin
als „Normalform" bezeichnet werden.

Die Errechnung der in der Determinantengleichung (3) auftretenden
Koeffizienten At ist bei vielreihigen Determinanten eine mühsame und
langwierige Arbeit, die nur dann mit erträglichem Rechenaufwand geleistet werden

kann, wenn einfache Verfahren zur Ermittlung dieser Koeffizienten
bereitgestellt sind2).

In der vorliegenden Abhandlung wird ein solches Verfahren entwickelt,
das, auf die Normalform von Eigenwertdeterminanten angewandt, in
einfacher Weise und verhältnismäßig rasch zu den Zahlenwerten der
Koeffizienten Ai führt. Determinanten der allgemeinen Form (2) müssen vorerst
mit Hilfe der bekannten Determinantensätze auf die Normalform reduziert
werden. Dies kann in folgender Weise geschehen. Dividiert man in einer
solchen Determinante A die Elemente der ersten bezw. zweiten, dritten...
Zeile durch blt bezw. b21, b31, so besitzen in der neuen Determinante
AL sämtliche ^-Glieder der ersten Spalte den Koeffizienten „1" und
A b1:ib21...bnlA1. Wegen A 0 folgt auch A± 0. Der Wert von A±
bleibt unverändert, wenn man die erste Zeile von allen übrigen subtrahiert,
wodurch A± in eine neue Form A2 übergeführt wird, in der die erste Spalte
bereits ihre „Normalform" besitzt. Die Zahlenwerte der in A2 auftretenden
Elemente sollen nun die Bezeichnung a'rk bezw. b'rk führen. Teilt man nun
die Elemente der zweiten, dritten,... Spalte durch b\2 bezw. durch b'ls,
6']4,..., so besitzen in dieser neu geformten Determinante As sämtliche
^-Glieder der ersten Zeile den Koeffizienten „1". Wegen A2 b'12b'ls

b'lnAs 0 ist auch As 0. Subtrahiert man nun die erste Spalte von allen
übrigen, so besitzen in der hieraus hervorgehenden Determinante AA bereits
die erste Zeile und die erste Spalte ihre „Normalform". In analoger Weise
fortschreitend, lassen sich der Reihe nach auch alle übrigen gleichbenannten

21) K. Hohenemser, Die Methoden zur angenäherten Lösung von Eigenwertproblemen
in der Elastokinetik (S. 44 Auflösung von Frequenzdeterminanten), Springer,

Berlin.
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Spalten und Zeilen auf ihre Normalform bringen, bis schließlich die Normalform

der ganzen Determinante hergestellt ist.

II. Numerische Berechnung einer Determinante.
Sind die Elemente einer Determinante zahlenmäßig gegeben, so reduziert

man die Determinantenmatrix, zwecks Ermittlung des Zahlenwertes der
Determinante, mit Vorteil auf die ihr gleichwertige „Diagonalmatrix". In
der Diagonalmatrix verschwinden sämtliche Elemente unter- und oberhalb
der von links nach rechts fallenden Hauptdiagonale. Der Zahlenwert der
Determinante ist dann durch das Produkt der in der Diagonalmatrix stehenden

Diagonalelemente gegeben.
Diese Reduktion der Determinantenmatrix auf eine Diagonalmatrix

geschieht bekanntlich mit Hilfe eines dem Gauss'schen Eliminationsverfahren
bei linearen Gleichungen nachgebildeten Vorganges. So ist z. B.

A

kl in /13

kl 42 43 z=

kl 42 43

ki in /13

0 a22 023

0 032 033

ki h2 ks

0 022 023 z=

0 0 «33

in 0 0
0 «22 0
0 0 a33

(4)

und
*11 022 #33 >

wenn die a- und a-Elemente in folgender Weise ermittelt werden.
Wie ersichtlich deutet der erste Zeiger eines Determinantenelementes

die horizontale Reihe, der zweite Zeiger hingegen die vertikale Kolonne
an. Das Element i,k ist daher ein Element der r-ten Zeile in der £-ten
Kolonne. Die zweite Determinante in (4) geht aus der ersten dadurch hervor,
daß man die mit

lA_
r ~ kl

multiplizierte erste Zeile der /-Determinante zu ihren übrigen Zeilen (r 2,
bezw. r=3) addiert. Dann ist

• hl •

drk — hk + yr hk — hk ~ hk
lll r 2,Z.

£=1,2,3.
(5)

In analogem Vorgang gewinnt man mit den ^-Elementen die Elemente
0Lrk aus

&rk O-rk
ar2

022 I £ 2,3.

Die Figur 1 zeigt das für eine Zahlenrechnung zweckmäßig angeord-
geordnete Schema, nach welchem die der vorgegebenen dreireihigen
Determinantenmatrix zugeordnete Diagonalmatrix zu errechnen ist.

Nach (4) folgt der Zahlenwert der /-Determinante aus

A kia22a33 (+4)(+5)(+15,l) +302.

Die „#22-Matrize" wurde nach der durch (5) gegebenen Vorschrift aus
der /^-Matrize „abgeleitet", sie soll daher — nur um fernerhin eine kurze
Benennung hiefür zu haben — auch als „Ableitung der /U-Matrize"
bezeichnet werden. Es ist von selbst verständlich, daß dieses hier gebrauchte
Wort „Ableitung" mit dem Begriff der Ableitung im Sinne der Differentialrechnung

nichts zu tun hat. Weil aber auch in den folgenden Erörterungen
durch die gewählte Bezeichnung „Ableitung einer Matrize" keinerlei sinn-
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störende Verwechslungen möglich sind, darf diese Benennung wohl auch
weiterhin bedenkenlos gebraucht werden. In diesem Sinne ist dann die
Einsermatrix <x33 die „Ableitung der tf22-Matrize".

in'** +2 -3
-z

bd-+0.5)
+ 1

+ 6
-1.5

+ 8 + 5
-4

+10
+ 6

&22 =+5 + t.5
+ 1

(x3-0L2)

+16
-0.9

a33 =+15.1

Fig. 1

Developpement en diagonale de la matrice i7/ d'ordre 5 — Diagonalentwicklungen der
5-reihigen Grundmalrize -in —Diagonal deve/opments oF Ihe matrix ~/;/ oF the 5th order

(a-e)

a) Matrice principale - Grundmatrize -i/r — Principal matrix

S0)f)5 ht+l'zz +'J3+'** +'55

b) Premier developpement en diagonale — Erste Diagonalentwicklung •

First diagonal development

Groupe-Gruppe-Group G(in)

2
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'22

'33

1

S&
d22

a33

j£L

JtL

Somme de groupes — Gruppensumme -
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Fig. 2a —b
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c) Deuxieme developpement en diagonale - Zweite Diagonalen!wicklung
Second diagonal development
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d) Troislerne developpement en diagonale - Dritte Diagona/entwicklung —

Third diagonal development
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e) Quatrieme developpement en diagonale — Zierte Diagona/entwicklung
Fourth diagonal development

Groupe-Gruppe-Group 6(a\u)

Somme de groupes z
Gruppensumme Sfa^)2 ¦¦

Sum oF the groups

Fig. 2 c —e

J9* '

<*ss
*S(*ss),

III. Diagonalentwicklungen der Grundmatrize.
In der zeichnerischen Darstellung werden die Matrizen von Determinanten,
wie Figur 2 zeigt, durch die in einem Quadrat eingeschriebenen

Elemente der Hauptdiagonale gekennzeichnet.
Wird eine vorgegebene Matrize, die als „Grundmatrize" bezeichnet

werden soll, wie z. B. die fünfreihige /U-Matrize der Figur 2b in Richtung
der Hauptdiagonale durch Angliederung von weiteren /-Matrizen, die aus
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der vorgegebenen Matrize durch Streichung von gleichnamigen Zeilen und
Spalten hervorgehen, fortgesetzt, so sollen diese angegliederten Matrizen
als „d i a g o n a 1 e Fortsetzung der /u - M a t r i z e" bezeichnet werden.
Die Gesamtheit dieser /-Matrizen bildet die ,,/u-Matrizendiagonale"
oder die „Matrizendiagonal e-/n". Die letzte Matrize einer solchen
Matrizendiagonale ist stets zweireihig.

Die unterhalb der Matrizendiagonale stehenden Matrizen wurden, auf
Grund der im Abschnitt II gegebenen Erläuterungen, durch „Ableitung"
aus den darüber befindlichen /-Matrizen erhalten. Die Gesamtheit der vier
abgeleiteten Matrizen bildet die „Ableitung der Matrizendiagonale-

i1±.
Beide Matrizendiagonalen zusammen bilden eine „Matrizengruppe",

die hier in Fig. 2b mit bezug auf die Ausgangsmatrize -/u die Bezeichnung
G(/11) führen soll. Diese Gruppe G(/u) ist die „erste Diagonalentwicklung

der Grundmatrize -/n".
Die „zweite Diagonalentwicklung" geht, wie Figur 2c

veranschaulicht, aus der ersten Diagonalentwicklung dadurch hervor, daß jede
dort abgeleitete zwei- oder mehrreihige Matrize abermals einer
Diagonalentwicklung unterworfen wird. Hiedurch entstehen die drei Matrizengruppen
G(022), G(633) und G(ci4).

Die „dritte Diagonalentwicklung" geht in sinngemäßer Weise
aus der zweiten ebenso hervor, wie die zweite aus der ersten. Daher ergeben
sich, wie Figur 2d zeigt, die nach den Ausgangsmatrizen benannten drei
Gruppen G(oc'33), G(a"44) und G(/?'44).

Die „vierte Diagonalentwicklung" (Figur 2e) besitzt nur
mehr die einzige Gruppe G(0'M), weil in den Ableitungen der dritten
Diagonalentwicklung nur die einzige zweireihige 3'U-Matrize vorkommt und hierin
keine anderen mehrreihigen Matrizen enthalten sind. Da die vierte
Diagonalentwicklung die letzte Diagonalentwicklung der vorgegebenen fünfreihigen
/11-Matrize darstellt, so kann man hieraus den allgemeinen Schluß ziehen,
daß einer n-reihigen Grundmatrize (n-1) Diagonalentwicklungen zugeordnet

sind.
Bezeichnung der Matrizenelemente. Die Elemente der

vorgegebenen Grundmatrize führen die Bezeichnung irk. In der erstenDiago-
nalentwicklung (Figur 2b) werden die Elemente in den Ableitungen
der /-Matrizen, in der Reihenfolge des Alphabetes mit ark bezw. brk, crk...
bezeichnet. In der zweiten Diagonalentwicklung (Figur 2c) führen
sämtliche Elemente in den abgeleiteten Matrizen der Gruppe G(a22) die
Bezeichnung xrk. Rechts oben erhalten diese Elemente ein Kennzeichen,
z. B. wie hier einen Strich, der in der ersten oc-Matrize einmal, in den folgenden

aber zwei- bezw. dreimal beigesetzt wird. In analogem Vorgang werden
die Elemente in den abgeleiteten Matrizen der Gruppen G(£33) und G{ciA)
mit ßril bezw. yrk bezeichnet und diese Bezeichnungen wieder mit
entsprechenden Kennzeichen versehen.

In der dritten Diagonalentwicklung (Figur 2d) werden aus
den a-Matrizen wiederum ß-Matrizen, aus der ^-Matrize wieder eine £-Ma-
tritze abgeleitet. Die Elemente ark bezw. bfk dieser abgeleiteten Matrizen
sind, wie schon bemerkt, wieder mit entsprechenden Kennzeichen zu versehen.

Bei folgerichtiger Weiterführung dieser Bezeichnung wechseln in viel-
reihigen Determinanten die mit lateinischen bezw. griechischen Buchstaben
bezeichneten Matrizendiagonalen der aufeinander folgenden Diagonalentwicklungen

regelmäßig ab. Aus den a-, bezw. b-, c-,... Matrizen der ersten
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Diagonalentwicklung, deren Elemente mit keinerlei Kennzeichen versehen
sind, stammen letzten Endes alle mit irgend welchen Kennzeichen
versehenen gl-, 0-Matrizen, bezw. ß-, b- bezw. y-, c-Matrizen usw. ab.

Die Zahl der Matrizengruppen, die in den Diagonalentwicklungen
einer /j-reihigen Matrize enthalten sind, sowie ihre Zugehörigkeit zu

einer a-, b-, c-,... bezw. <x-, ß-, y-,... Gruppe kann nach einem einfachen
Schema leicht im vorhinein errechnet werden. Der Beweis für 1die
Richtigkeit dieses Schemas, das in Figur 3 für n 5, in Figur 4 für n 8
angeschrieben ist, möge hier unterbleiben. Aus diesen Sonderfällen läßt sich
das Gesetz für den allgemeinen Aufbau eines solchen Schemas leicht
erkennen. Aus dem Schema der Figuren 3 und 4 ersieht man zunächst, daß
die Diagonalentwicklung I immer nur eine einzige Matrizengruppe -/
aufweist und daß in den weiteren Zeilen die a-, b-, c-.. .Gruppen regelmäßig
mit den a-, ß-, y-... Gruppen wechseln.

n 5
(D <D (D ^n-2

I 11 /
¦8I la +1b +/c 3

M 2<x + 1ß 3
W 7a 7

n=8

® (D ® nn-2

I // /

>6^
I 1a +11 +lc+1d +1e+lF 6
M 5ct+W +3r+25 + h 15

E 10a+6l+3c+1d 20
F IOcc+4ß+7r 15
W 5a + 1b 6
W 1a 1

Fig. 3 Fig. 4

\0=Developpement en diagonale -Diagonal,,
entwicklung - Diagonal development

(2) Nombre des groupes — Zahl der Gruppen
— Number oFgroups

\Q=Somme - Summe — Sum

Die Zahl der Posten in der Diagonalentwicklung II ist stets (n-2), ihre
Koeffizienten sind durchwegs gleich „1". Jede folgende Diagonalentwicklung

enthält je einen Posten weniger als die vorangehende, die Koeffizienten
der letzten Posten sind in allen Reihen gleich „1".

Nach diesen Erläuterungen läßt sich zunächst die Zeile II für jeden
beliebigen Wert von n unmittelbar anschreiben.

Die Koeffizienten der Zeile III werden in der Reihenfolge von rechts
nach links in folgender Weise gewonnen. Der stets bekannte Koeffizient

„1" des letzten Postens wird angeschrieben. Addiert man denselben
zu dem darüberstehenden Koeffizienten der vorhergehenden Zeile II, so
erhält man den Koeffizienten „2" des vorletzten Postens in Zeile III. Nach dieser
Regel sinngemäß fortschreitend ergeben sich im Schema der Figuren 3 und 4
in einfachster Weise die sämtlichen Koeffizienten der Matrizengruppen in
den Diagonalentwicklungen. Die Summen der in einer Diagonalentwicklung
vorkommenden Matrizengruppen weisen, wie die Figuren 3 und 4 zeigen,

Symmetrie zur Mitte auf; sie sind in der rten Zeile durch j^", gegeben, die
Gesamtsumme aller Gruppen überhaupt ist durch 2n~2 bestimmt.
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m

IV. Der Operator S( )r.
Eine aus den Elementen irk gebildete /z-reihige Matrize mit dem ersten

Hauptdiagonalglied ipp soll weiterhin durch die Bezeichnung (ipp)n
gekennzeichnet werden.

Das zur Bezeichnung der „m-ten Summe" einer r-reihigen Matrize ver-
m

wendete Zeichen S( )r ist als ein Operator aufzufassen und demnach ein
Symbol für eine bestimmte noch zu definierende Rechenvorschrift, die auf

tn
die rechts von S angeschriebene Matrize )r anzuwenden ist.

1

So bezeichnet z.B. S(iu)n die „erste Summe" der #-reihigen /-Matrize

mit dem ersten Hauptdiagonalglied /n und sinngemäß wäre z. B.
3

S(a22)± die „dritte Summe" der vierreihigen a-Matrize mit dem ersten
Hauptdiagonalglied a22.

m
In der Bezeichnung 5( )r bestimmt der „Summen index m" den

Typ der Summe, der „Matrizenindex r" den Typ der quadratischen
Matrix. Der Index r bestimmt die Zahl der Horizontal- bezw. Vertikalreihen

und stimmt natürlich auch mit der im graphischen Matrizenschema
allein verzeichneten Zahl der Hauptdiagonalglieder überein.

m
Di» Rechenoperation S(ipp)„ — die Bildung der „m-ten Summe" einer

#-reihigen /-Matrize mit dem ersten Hauptdiagonalelement ipp —, wobei stets
m 5T n ist, wird durch die Definitionsgleichung

m rn — 1 m — 1 m — l
S(lpp)n lppS( )n-l + lp+l,p+lS( )n-2 + + kz S )n-x m-l (6)

definiert, wobei noch die folgenden Sätze zu beachten sind:
m

1. Die m-te Summe S(lpp)n einer n-reihigen /-Matrize mit dem ersten
Hauptdiagonalglied ipp ist eine Summe von x (n~\ 1) — m Summanden von
je zwei Faktoren.

2. Die ersten Faktoren dieser Summanden sind die aufeinander folgenden

Elemente ipp, lp+1, p+1... izz der Hauptdiagonale, wobei

z n-\- p — m.
m — l

3. Die zweiten Faktoren sind Summen vom Typus 5. Die hinter den
Operator zu stellende Matrize ist die Ableitung jener Matrize, die durch

m — l
Einklammerung des ersten, vor dem Operator 5 stehenden Faktors
gekennzeichnet erscheint.

4. Die in der Definitionsgleichung (6) erscheinenden Matrizenindexe
nehmen von links nach rechts hin in der Folge der natürlichen Zahlenreihe
so lange ab, bis im letzten Summanden der Matrizenindex n—x übereinstimmt

mit dem Summenindex m—1.
m

5. Einer #-reihigen Matrize sind nur Summen S( )n vom Typus m<n
n

zugeordnet, die mögliche „höchste Summe" ist S( )„, die „niedrigste
i o

Summe" ist S( )n. Die Summe S( )n hat nur eine formale Bedeutung,
o

ihr Wert wird mit S( )„=! festgesetzt.
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m

6. Alle hinter beliebige Operatoren S zu stellenden Matrizen sind, wie
jeder Sonderfall erweist, in den Diagonalentwicklungen der Grundmatrize

m
enthalten. Den Summenbildungen 5 haben daher die Diagonalentwicklungen
der Grundmatrize vorauszugehen.

m
7. Die möglichen Summen S(ki)n |

m 1,2...« einer /z-reihigen
Grundmatrize -/n bilden, wie im Abschnitt VI noch bewiesen wird, die Koeffizienten

des Determinantenpolynoms der Gleichung (3).
8. Die Definitionsgleichung (6) hat den Charakter einer Rekursions-

m

formet, welche die Ermittlung einer Summe S( gestattet, sobald die auf
m-1

der rechten Gleichungsseite auftretenden Summen S an der Hand der
Diagonalentwicklungen errechnet sind.

9. Da die Definitionsgleichung (6) auch in der Form
m m — l m

S(ipp)n — tppS{ )n-l + S(ip+iiP+i)n 1 (7)

dargestellt werden kann, so folgt umgekehrt, daß auch jede Summe
m m-\-l m\-l

ippS( )n + S(ip+ilP+i)n S(lpp)n+i ist. (8)

Diese Reduktionsformel wird in den Entwicklungen des Abschnittes VI
ihre praktische Verwendung finden.

Beispiel. An Hand der Diagonalentwicklung der Figur 2 sind die
m

Summen S(iil)5 U=i,2....5 zu entwickeln.
1

5(/ii)5 ki + 42 + 43 + 44 + ko (9)21111S(hl)ö kl S (022)4 + /22S (*33)3 + ^33 5(^4)2 + *44S(rföö)l (10)
3 2 2 2

S(/h)ö ki 5(022)4 + 425(633)3 + 435(^4)2 (11)
4 3 3

5 (/ii)5 ki S (022)4 + 42 S (633)3 (12)
5 4

S(/n)ö ki S (022)4 (13)

Die „erste Summe 5(/xl)5" ist nach (9) die Summe der in der
Hauptdiagonale stehenden Matrizenelemente.

2

Zur Bildung der „zweiten Summe S(/u)5" benötigt man, wie aus
(10) und Figur 2b ersichtlich, die Matrizengruppe G(/n) der ersten
Diagonalentwicklung. Die zweite Summe ist also gewissermaßen

einer Matrizengruppe zugeordnet und soll daher gelegentlich
auch als „G r u p p e n s u m m e" bezeichnet werden. Beim Zahlenrechnen
werden die ersten Summen, wie aus Figur 2b ersichtlich, in die vor den
Matrizen befindlichen Vertikalspalten eingetragen. Die „Qruppensum-
m e n" der in den Diagonalentwicklungen vorkommenden Matrizengruppen
werden, wie sich in jedem Sonderfall erweist, für die Berechnung aller
„h ö h e r e n" Summen benötigt, sie bilden die eigentlichen Bausteine und
sind daher für jede in den Diagonalentwicklungen vorkommende Matrizengruppe

zu errechnen.
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Die „dritte Summe 5(/n)5" erfordert die Kenntnis der Gruppensummer

von den in der zweiten Diagonalentwicklung (Figur 2c)
auftretenden Matrizengruppen G(a22), G(633) und G(c44).

4

Die Bildung der „vierten Summe 5(/u)5" nach (12) verlangt zuvor
die Entwicklung 3225(022)4 022 5 (033)3 + 0335(0^4)2

3 2

5(633)3 6335(^4)2

22 2

wobei die Gruppensummen 5(<x'33)3, 5(<x"M)2 und 5(ß'44)2 an Hand der drei
in der dritten Diagonalentwicklung vorkommenden Matrizengruppen

zu errechnen sind.

(14)

Die „fünfte Summe 5(/L1)5"
terentwicklung von (13) aus

errechnet sich schließlich durch Wei-

5(/h)ö ki 022 «33 5 (044)2,

wobei die hierin vorkommende Gruppensumme mit
Diagonalentwicklung aus der
wird. Da

so folgt aus (15)

Hilfe der
Matrizengruppe G (a'i4)

(15)

vierten
ermittelt

5(044)2 0445(0155)1 aU «55,

5

5(/n)o kl 022 «33 044 «55 (16)

und man erkennt — bezugnehmend auf die Erläuterungen des Abschnittes

II -, daß S(hi)s
Determinante | i±1

mit dem Zahlenwert der der Matrize (/n)5 zugeordneten
15 identisch ist. Aus dieser Tatsache folgt die allgemeine

Erkenntnis, daß der Zahlenwert einer vorgegebenen #-reihigen Determinante
n

durch die „höchste Summe 5( )„" ihrer Matrize bestimmt wird. Dies
trifft auch im besonderen Falle der Gleichungen (10) — (13) für die in den
letzten Summanden auftretenden Summen zu.

V. Reduktion von Eigenwertdeterminanten.
Die Normalform einer n-reihigen Eigenwertdeterminante nach (1)

n
soll weiterhin durch das Symbol Al1± gekennzeichnet werden. Die über A
gesetzte Ziffer zeigt den Grad der Determinante an, der Buchstabe hinter dem
A ist das erste Hauptdiagonalelement. Im folgenden soll nun eine die
Normalform besitzende Eigenwertdeterminante vom n-ten Grade auf eine Summe
von zwei gleichgebauten Determinanten vom Grade (n—1) reduziert werden.
Der Herleitung wird die 4-reihige Eigenwertdeterminante

A ki

kl + rj i12

hl
ki
kl

J22 + rj

42

42

'
ks lu
ks 44

43 + i] 44

kd 44 + rt

(17)

zugrundegelegt; die speziellen Ergebnisse lassen sich dann leicht
verallgemeinern.
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Nach bekannten Determinantensatzen ist

4

Aki

hl '12 l\% '14

4l 42 + >/ 43 44

4l 42 '33 + '/ '34

4l 42 43 '44 + *)

+

*j '12 '13 '14

0 l2l + \ '23 '24

0 '32 '33 + Ij '34

0 /42 '43 '44 + ';

(18)

Nach den im Abschnitte II gegebenen Erläuterungen laßt sich die erste
Determinante in (18) umformen in

di

'11 '12 '13 '14

0 022+>? 023 024

0 032 033+?? 034

0 042 043 044

(19)

wobei die Elemente ark nach (5) zu ermitteln sind. Die ö22-Matrize dar
Determinante A± ist die Ableitung der durch (17) vorgegebenen ^-Matrize.
Mit (19) folgt aus (18)

4

Aki in
022 + */ 023 024

032 033 + >, 034

«42 043 044 + *1

+ i?

'*22 + *j '*23 '24

'32 '33 + V] '34

'*42 '43 '44 + ']

(20)

und hieraus mit Verwendung der erläuterten symbolischen Bezeichnung
die Form

(21)
4 3 ^

A ki 'ii A a22 + i]A l22

Dieses spezielle Ergebnis ist auf jede beliebige /z-reihige
Eigenwertdeterminante übertragbar und fuhrt zu der allgemein gültigen Reduktions-
f°rmel n n-l n-1

Ain '11^022 + \Ai22, (22)

wonach jede /z-reihige in der Normalform vorliegende Eigenwertdeterminante
auf die Summe von zwei um einen Grad erniedrigte Determinanten derselben
Bauart zurückgeführt werden kann.

Wie erwähnt, ist die a22-Matrize die Ableitung der ('n),/, die durch die
Einklammerung des vor dem A-Zeichen stehenden Faktors /n gekennzeichnet
erscheint. Die ('22)«-i> is* die „R e s t m a t r i z e", die durch Streichung der
ersten Zeile und ersten Kolonne aus der (i1±)n hervorgeht.

VI. Entwicklung der Eigenwertdeterminante in ein nach
Potenzen der Eigenwerte geordnetes Polynom.

Für die hier durchzuführende Entwicklung des „Determinanten-
polynoms" aus der Eigenwertdeterminante wird vorausgesetzt, daß
dieselbe in ihrer Normalform vorgegeben sei. Ist dies nicht der Fall, so muß
diese Form nach den im Abschnitt I gegebenen Erläuterungen hergestellt
werden.

Die Entwicklung des Determinantenpolynoms wird an Hand von einigen

einfachen Sonderfallen durchgeführt, die erhaltenen Ergebnisse werden
verallgemeinert.
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l
Sonderfall Ailx.

Laut Definition ist 1

A ki ki + *j (23)
2

Sonderfall Ailv
Nach (22) ist

3

Sonderfall Allv
Nach (22) ist"

und nach (24)

2 11A ki ki A 022 + rj A i22

ki (022 + rj) + rj (/22 4- rj)

'11022 + rj(kl + '22) + *j2

Aki S(ki)2 + rjS(ki)2 + ^ (24)

3 2 2

A ki ki Aa22 + yjA i22 (25)22 1

A 022 5(022)2 + r]S(a22)2 + *j2,22 1

zl/22 5(42)2 + rjS(i22)2 + rf,
womit (25) übergeht in

^'11 ki S (022)2 + r, [ki 5(022)2 + 5(42)2] + V* [ki + 5(42)2] + >/3. (26)

Nun ist

und nach (8)

2 3

ki 5 (022)2 5 (ki)s

122'115 (022)2 + 5 ('22)2 5 (/n)3
1 1

'11 + 5(42)2 5 ('11)3

(27)

Mit (27) folgt aus (26)
3 3

Aki 5(/n)3 + rjS(ki)s + i?2S(/ii)3 + rf. (28)

Aus den speziellen Ergebnissen (24) und (28) erkennt man, daß die
Koeffizienten des Determinantenpolynoms durch die im Abschnitt IV er-

m
läuterten Summen 5 (/n)w | m 1,2... n der Grundmatrize-/^ gebildet werden.
Die Summe aus dem Potenzexponenten von rj und dem Summenindex m ist
konstant und immer gleich dem Grad n der vorgegebenen Determinante, wes-

n—x
halb ein beliebiges Glied des Polynoms stets die Form t]*S(in)„ besitzen
muß. Aus diesen Erkenntnissen folgt das allgemeine Ergebnis
n 12 n—m n — 1 n

A ki yn + rf' * 5 {in)n + ^~2 5 (in)n + ¦ • ¦ + rjm ¦ 5 • (ki)n +>-- + rjS (ki)n + 5 (ki)n, (29)

wonach eine /z-reihige Eigenwertdeterminante der Normalform in eine nach
den Potenzen der Eigenwerte geordnete Reihe von (/z-j-1) Summanden zu
entwickeln ist. Hiemit ist das eigentliche Ziel dieser Abhandlung erreicht,
die in (29) auftretenden Summen sind in jedem Sonderfalle nach den im
Abschnitt IV gegebenen Vorschriften leicht zahlenmäßig zu errechnen.

Zum Schlüsse sei noch auf die anschauliche Bedeutung der in IV ent-
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m

wickelten Summen 5 hingewiesen. In der Determinantentheorie 3) wird
gezeigt, daß ein im Determinantenpolynom (29) dem Potenzglied rjm beigeordneter

Koeffizient identisch ist mit der Summe aller p n—m-reihigen
Hauptminoren in der /z-reihigen, aus den Elementen irk gebildeten Determinante.
In dieser Determinante sind (p) p-reihige Hauptminoren enthalten. Daher

6

ist z. B. im Determinantenpolynom der Eigenwertdeterminante Ai1± die
Summe

5(/n)6 e der Summe aller 6 einreihigen Hauptminoren (Diagonalelemente)
2

5(/n)6E „ „ „ (|) 15 zwei „
3

S(hi)6= „ „ „ © 20 drei „
4

5(/n)6E „ „ „ (4)- 15 vier „

5('n)6E „ „ „ (5)= 6 fünf „

5 ('11)6 dem einzigen [(t) - l] sechsreihigen Hauptminor, also der
Determinante selbst.

Eine weitere vergleichende Untersuchung zeigt, daß beispielsweise in
der Summe 43335 ('11)6 ki 5 (022)5 + '225(633)4 + '33 5 (£44)3

der erste Summand die Summe aller 4-reihigen mit ilt beginnenden
Hauptminoren darstellt, der zweite bezw. dritte Summand hingegen jene 4-reihigen
Hauptminoren umfaßt, die /22 bezw. /33 zum ersten Diagonalglied haben.

m

In jeder anderen Summe 5 lassen sich die Summanden in sinngemäßer Weise
deuten.

VII. Praktische Anwendung und Zahlenbeispiel.
Die in Figur 2 dargestellte Form der Diagonalentwicklungen ermöglicht

zwar eine übersichtliche Berechnung der Gruppensummen, doch erkennt man
ohne weiteres, daß hinsichtlich der Anschreibung von Matrizen eine gewisse
Doppelarbeit zu leisten ist, da die in einer Diagonalentwicklung abgeleiteten
Matrizen in der nächstfolgenden Diagonalentwicklung neuerlich anzuschreiben

sind. Diese Doppelarbeit kann vermieden werden, wenn man eine
Matrizenanordnung nach den Figuren 5—8 trifft, wo jede in den Diagonalentwicklungen

vorkommende Matrize nur ein einzigesmal erscheint.
Die Figuren 5—8 zeigen das Rechenschema zur Ermittlung des

Determinantenpolynoms für den Sonderfall einer n 3-, bezw. 4-, 5- und 6-reihigen
Eigenwertdeterminante. Determinanten mit grösserer Reihenzahl wird man
zunächst, um ein allzu weitläufiges Rechenschema zu vermeiden, nach Gl.
(22) auf zwei oder mehrere Determinanten von geringerer Reihenzahl
zurückführen und jede dieser Determinanten für sich behandeln.

In diesen Figuren wurde die Anordnung der Matrizen so getroffen, daß
zunächst alle aus der /41-Matrize abstammenden a- bezw. a-Matrizen ent-

3) G. Kowalewski, Einführung in die Determinantentheorie, Verlag Veit & Co.,
Leipzig 1909, § 53, S. 126.
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wickelt werden, dann sämtliche aus der /22-Matrize entspringenden b- und
ß-Matrizen, hierauf sämtliche c-, ^-Matrizen usw. Wie aus allen diesen
Figuren ersichtlich ist, wird zunächst die aus einer /^-Matrize abgeleitete
Matrize diagonal bis zur letzten zweireihigen Matrize fortgesetzt und sämtliche
Matrizen dieser Diagonale in vertikaler Richtung bis zur letzten „Einsermatrix"

abgeleitet.
An die letzte rechtsgelegene Matrize dieser Gruppe werden nun, wie

z. B. Figur 8 deutlich zu erkennen gibt, jene restlichen Matrizendiagonalen
angereiht, welche den noch nicht fortgesetzten Matrizen in der ersten bezw.
zweiten, dritten vertikalen Matrizenkolonne zugeordnet sind. Diese
Matrizen werden nun, so wie die vorhergehenden, wieder in vertikaler Richtung
bis zur Einsermatrix abgeleitet.
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1

In die in der Figur stark umrahmten Spalten wird die erste Summe 5( )r
der rechtsstehenden Matrize eingeschrieben. Die Gesamtheit dieser ersten
Summen beträgt, wie sich leicht herleiten läßt, in den a- und oc-Gruppen 2"~3,
in den 6- und /^-Gruppen 2';~4, in den c- und ^-Gruppen 2"~5 usw. Die hier
durch Umrahmung erfaßten Matrizen kennzeichnen auch gleichzeitig die
Gesamtheit aller in den Diagonalentwicklungen auftretenden „Matrizen-

2

g r u p p e n"; daher sind auch die ihnen zugeordneten zweiten Summen 5 )r

zu bilden, deren Zahl mit der Zahl der Summen 5( )r übereinstimmt.
Von den in den stark umrahmten Spalten eingeschriebenen Matrizen

m
sind nun auch die höheren Summen 5( )r für m^>3 zu bilden. Allerdings

~
3

ist, da immer r^m, die Bildung der Summen 5( nur von jenen Matrizen
möglich, deren Reihenzahl r^>3 und aus demselben Grunde sind Summen
4 5

S( 5( nur jenen Matrizen zugeordnet, deren Reihenzahl r>4 bezw.
rj>5... ist. Demnach folgt, daß von den in die stark umrahmten Spalten
eingeschriebenen Matrizen eines Schemas, die 2-reihigen Matrizen nur Sum-

12 12 3

men vom Typ 5, 5, die 3-reihigen nur Summen vom Typ 5, 5, 5, daher
12 r

die r-reihigen Matrizen die Summen 5, 5,... 5 als Beitrag zu den
Diagonalentwicklungen liefern. Es läßt sich im übrigen auch noch leicht
zeigen, daß innerhalb der a-, a-Gruppen, bezw. b-, /^-Gruppen usw. die

2 [aller 5 )] J 2 [aller 5 )], 2 [aller 5 )] i 2" [aller 5 )]

m m—l
oder allgemein 2[aller 5( )] \2[aller 5( )]|«58 ist. Die Richtigkeit
dieser allgemeinen Erläuterungen läßt sich, an Hand der den Figuren
5—8 beigegebenen Anschreibungen, leicht überprüfen. Hiebei wurde zur
Vereinfachung der Schreibweise die für die Matrizenbezeichnung im Ab-

m
schnitt IV eingeführte Einklammerung des hinter den Operator 5 zu stel-

m
lenden Buchstabens weggelassen. Die Entwicklung der Rechenoperation 5
durch die Summenbildung der rechten Seite ist dann mit jenem Gliede von

m—l
der allgemeinen Form sxvSoyy beendet, wenn x-\- (m— 1) n, oder was auf
dasselbe hinauskommt, wenn y -f- (in — \)=n-\-\ ist, wobei n den Grad
der Grundmatrize -/n darstellt.

Figur 9 bringt schließlich die zahlenmäßige nach dem Schema der
Figur 6 durchgeführte Ermittlung des Determinantenpolynoms der nach 17

4

gebauten Knickdeterminante Aill9 deren /^-Elemente in der in der Fußnote 1

genannten Abhandlung errechnet wurden. In Figur 9 wurde der Name einer
jeden Matrize durch die Buchstabenanschreibung des ersten Hauptdiagonalgliedes

gekennzeichnet. Die in den ersten Spalten der Matrizen in gesetzten
Zahlen sind die im Abschnitt II genannten Multiplikatoren xr. Sind die

Hauptdiagonalelemente der /-Matrize sehr kleine Zahlen, so nehmen die
Multiplikatoren xr unter Umständen für die Zahlenrechnung unvorteilhaft
große Werte an. In solchen Fällen empfiehlt sich die Umformung ^-}-/„
\r\ — k)-y{irr-\-k)=rf-\-i'rr. Je nach der Wahl von k können die i'rr beliebig

groß gemacht werden, während alle übrigen /^-Elemente ihre Werte
beibehalten. Nun ermittelt man das ?/Determinantenpolynom, berechnet aus der
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Determination du polynome qui appartient au determinant des raleurs fondamentates

Ermittlung des Determinantenpolynoms der Eigenwertdeterminante £/'„
Determining the delerminant polynome of the Fundamental values

16751

(+2.0194)
0.5289

(-0.6376)

+0.8295

+00057

(-0.0069)

-1.6515

+3.8796
-3.3348

-1.4471
+ 1.0530

-0.0399
+0.0114

+1.3037

-23129
2.6326

+0.8852
-0.8313

^0.1473

¦0.0090

+0.0646

-0.3241
+0.1305

+0.1637
-0.0412

-0.3016
-0.000U

Ä,„ 7?u+5.2927r?3-2.0085v2-0.0173i?+0.0220

§an=-0.2511-0.0332=-(L28'f3

5azz -+0.0265

Sb« - +00563

Sommes- Summen-Sums öi„
$iff=2irf\ =+5.2927

!>Jri=+02't6H.9636-0.29lO* -2.0085
3Si„ -0.2358+0.2185- -0.0173
5i„ +0.0220

aZ2

+02967

+0.5448 -0.2803 -0.1936 '22
0.3941

(+0.7234)

^0.0539
-0.2027

+0.1225
0.1400

0.0285

(+0.0523)

+0.1383
0.0147

0.3020
-0.0102

&33

+3.8796 -2.9129
1.4471
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Fig. 9

ß\u -0.2800

+01637
-0.3016
-0.0272

C^ -0.3288

Determinantengleichung entweder direkt rf und hiemit die Werte rj if + k
oder ersetzt schon zuvor im ^'-Polynom den Wert rf durch rj' r]—k. Das
Beispiel der Fig. 9 zeigt das einfache, übersichtliche und leicht kontrollier-

4

bare Verfahren der zahlenmäßigen Ermittlung des der Determinante Ailt
4

zugeordneten r/-Polynoms. Die nun aus der Determinantengleichung Ailt Q

auszurechnenden Eigenwerte y ergeben sich in einfacher Weise mit Hilfe
des Graeffe'schen Näherungsverfahrens4) in beliebiger
Genauigkeit, die, falls notwendig, auch nach dem Horner-Schema4) noch
verschärft werden kann.

Aus dem hier durchgerechneten Sonderfall möge man erkennen, daß das
angestrebte Ziel dieser Abhandlung völlig erreicht wurde.

VIII. Zusammenfassung.
In der technischen Literatur wurde des öfteren eine strenge Berechnung

von Eigenwertproblemen (Stabilitäts- und Schwingungsproblemen), die auf
mehrreihige Eigenwertdeterminanten führen, vielfach deshalb abgelehnt,
weil die Ermittlung der Eigenwertdeterminante einerseits

und die Ermittlungder hieraus fließenden Determinantengleichung
andererseits mit einem, für den praktischen Rechner

untragbar hohen Zeitaufwand verbunden seien. Diese Abhandlung entwickelt
nun ein einfaches, allgemeines und rasch zum Ziele führendes Verfahren für
die zahlenmäßige Ermittlung der Determinantengleichung aus einer vorge-

') H. von Sanden, Praktische Analysis, Leipzig, Verlag B. G. Teubner, Seite 44
und 141.
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gebenen Eigenwertdeterminante von der Form der Gl. (1); sie ist im besonderen

eine Ergänzung der in Fußnote 1 genannten Abhandlung und zwar
in dem Sinne, daß bei dem dort behandelten strengen Knickproblem
nunmehr nicht nur die Knickdeterminante, sondern auch
die Determinantengleichung mit verhältnismäßig geringem
Zeitaufwand zu ermitteln sind. Daher dürfte die strenge Berechnung
dieses besonderen Knickproblems, wohl auch von Seite der Praxis, in
Hinkunft keine Ablehnung mehr erfahren.

Resume.
En parcourant la litterature technique, il est aise de constater Poppo-

sition marquee faite au calcul rigoureusement exact des problemes ä valeurs
fondamentales (problemes de stabilite et problemes d'oscillations) conduisant
ä des determinants d'ordre eleve. Ceci provient du fait que le temps necessaire

ä Petablissement du «determinant des valeurs fondamentales» et de
«l'equation aux valeurs fondamentales» qui en decoule n'est pas ä la portee
de Lingenieur de la pratique. Le but de ce memoire consiste ä developper
une methode generale simple et rapide pour le calcul numerique de Pequation

susmentionnee ä partir d'un determinant du type de Pequation (1). Elle
forme en particulier un complement du memoire rite dans la note explica-
tive 1 au bas de la page 227 et permet de calculer rapidement en ce qui con-
cerne le probleme rigoureux du flambage, non seulement le determinant, mais
aussi l'equation aux valeurs fondamentales correspondante. De ce fait, il
n'y a plus de difficultes ä traiter le probleme du flambage de maniere
rigoureuse.

Summary.
In technical literature it is easy to recognise a decided reluctance to

make a rigorously exact calculation of problems on fundamental values
(problems regarding stability and vibrations) when the use of determinants
of a high order is involved. This is because the time required to establish
the "determinant of the fundamental values" and the "equation of the
fundamental values" which follows from it, is much too long for the prac-
tical engineer. The aim of the present article is to develop a simple and
rapid general method for the numerical calculation of the above-mentioned
equation, starting with a determinant in the form of equation (1). This is
in particulier an amplification of the article quoted in the explanatory note 1

at the foot of page 227 and allows a rapid calculation to be made with regard
to the rigorous problem of buckling, not only to determine the buckling
determinant itself but also the determinant equation. Now there is
consequently no longer any difficulty in handling buckling problems in a rigorous
manner.
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