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FLIESSGRENZE BEI ORTLICHER BELASTUNG DES
HALBRAUMES.

LIMITE DE PLASTICITE PAR SUITE DE CHARGES LOCALES
DU DEMI-ESPACE.

YIELD POINT IN THE SEMI-INFINITE SOLID IN CASE
OF LOCAL LOADING.

Prof. Ing. Dr. K. HRUBAN, Briinn.

1. Andauernde Setzungen von Bauwerken.

Di2 systematische Beobachtung monumentaler Bauten hat gezeigt, daB
es Bauwerke gibt, welche sich auch nach erfolgtem Ausgleich der hydrodyna-
mischen Spannungen im Baugrund allmihlich weiter senken. Diese Setzung
erfolgt zwar mit einer geringen Geschwindigkeit, dauert jedoch auch Jahr-
hunderte nach der Frrichtung des Bauwerkes an, solange ihr nicht durch
geeignete MaBnahmen Einhalt geboten wird (wenn dies iiberhaupt mog-
lich ist).

Das bekannteste Beispiel solcher Senkungen stellt der schiefe Turm
von Pisa dar, der abschnittsweise in den Jahren 1174 bis 1350 erbaut wurde,
bis zum ]ahre 1865 um etwa 2,40 m eingesunken ist und vor Verfestlgung
des Baugrundes im Jahre 1934 sich immer noch in Bew egung befand, deren
Geschwindigkeit rund 1 mm jahrlich betrug?!). Die Un\gleichméBigkeit der
Baugrundverhiltnisse hatte hier die Schiefstellung des Turmes infolge der
Setzungen zur Folge. Andauernde Sackungen wies auch der Dom zu Konigs-
berg auf?), mit dessen Bau in der ersten Hilfte des vierzehnten Jahrhun-
derts begonnen wurde. Noch 500 Jahre spiater wurde eine Setzung um etwa
2 mm jihrlich im Mittel festgestellt.

Derartige Erscheinungen konnen nicht durch einfache Konsolidierung
bindiger Bodenschichten erklirt werden. Die Zeitsetzungskurve solcher
Bauten ndhert sich nicht asymptotisch einem endlichen Festwert, sondern
sie endet mit einer schiefen Geraden, deren Neigung die Geschwindigkeit
der andauernden Abwirtsbewegung des Bauwerkes darstellt. -

[ch hatte in den letzten Jahren Gelegenheit, zwei dhnliche Félle naher
zu beobachten. Es handelte sich um ernste Bauschidden, welche in einem
SchloB und in einem Konvent entstanden sind. Beide Bauwerke stammen
aus der ersten Hailfte des achtzehnten Jahrhunderts, und in beiden Fillen
war die Ursache der Schiden dieselbe: eine Mittelmauer senkte sich an-
dauernd weiter, wihrend die Setzung der benachbarten Tragmauern, die den
Baugrund mit einer etwas kleineren Mittelpressung beanspruchen, schon zum
Stillstand gekommen war. Im ersten Falle hatte dies zur Folge, daB die
Pflasterung des 2,05 m breiten Ganges, der im erwidhnten SchloB zwischen

1) TF_RZAGHI hat aus historischen Dokumenten die Zeitsetzungskurve des Turmes
zusammengestellt (Der Bauingenieur 1934, S. 1).

2) KOGLER-ScHEIDIG, Baugrund und Bauwerk, Berlin 1939, S. 130.
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den Mittelmauern verlauft, im Jahre 1937 schon eine Neigung von 17 cm
aufwies, welche sich alljahrlich langsam vergroBerte. Auch im zweiten Falle
wurde dhnliches beobachtet, auBerdem konnte dabei in einem anliegenden
Kellerraum eine bedeutende Aufwolbung des KellerfuBbodens um etwa
30 cm festgestellt werden, welche durch einen Schnitt in Fig.1 wiederge-
geben ist. Die Setzung dieser Mauer ging in den Jahren 1939 bis 1942 um
etwa 0,5 mm jihrlich weiter.

Die Untersuchung der Griindungsverhiltnisse wies in beiden Fillen un-
terhalb der betreffenden Mauer einen etwas groBeren Sohlendruck auf als
unter den iibrigen Hauptmauern, jedoch blieb dieser weit unter der nach
Caquor 3) oder nach RITTER %) berechneten Bruchbelastung. Tatsachlich er-
gab sich z. B. im ersten Falle die Bruchpressung nach CaqQuor zu 9,4 kg/cm?
und nach RiTTer zu 7,4 kg/cm2, wihrend die beschriebene andauernde
Sackung schon bei einem Sohlendruck von 3,2 kg/cm? auftrat. Die Lage und
Form des durch den emporgedriickten Boden gebildeten Walles (Fig. 1)
bestitigt ebenso, dafl diese Sackung vom Bruch zu unterscheiden ist.

Man hat es bei diesen Erscheinungen mit einer Art Storung des Gleich-
gewichtes in der Erdmasse zu tun, welche durch eine bedeutend kleinere Be-
anspruchung hervorgerufen wird als der Bruch selbst, welche jedoch mit der
Zeit schwere Schiadigungen der Bauwerke verursachen kann. Im folgenden

NSNS

Fig. 1

wird dieser Zustand der Gleichgewichtsstorung zuerst in einem elastisch-
isotropen Material untersucht, worauf die Anwendbarkeit der gewonnenen
Ergebnisse bei der Ermittlung zulidssiger Bodenpressungen gepriift wird.
Die Grenzbelastung an der FlieSgrenze wird mit jener Bruchlast verglichen,
welche sich aus den bisherigen Annahmen tiber den Grenzzustand des Gleich-
gewichtes in den Erdmassen ergibt.

2. Der Spannungszustand des ortlich belasteten Halbraumes.

Wird die Last auf die Oberfliche des Halbraumes durch einen Korper
iibertragen, so hiangt die Druckverteilung in der Kontaktfliche von der Durch-
biegung dieses Korpers ab. Diesbeziigliche Zusammenhidnge hat Borowicka
untersucht®). Aus den Ergebnissen seiner Berechnungen ist zu schlieBen, daf}

8) A. Caquot, Equilibre des massifs a frottement interne, Paris 1934, S. 33 u. 59.

4) M. Ritter, Grenzzustinde des Gleichgewichtes in Erd- und Schiittmassen, II.
Congr. A. L P.C., Publication préliminaire, S. 1585.

3) H. Borowicka: Influence of rigidity of a circular foundation slab on the distri-
bution of pressures over the contact surface. (Proceedings of the intern. conference on
soil mechanics, 1936, vol. Il, S. 144). Derselbe: Druckverteilung unter einem gleich-
énéigi%)belasteten, elastischen Plattenstreifen ... (A.L P.C., II. Congreés, Rapport final,
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eine merkliche Abweichung von der einer vollkommenen Starrheit der Platte
entsprechenden Druckverteilung erst dann erscheint, wenn die Verhaltniszahl

K—Fa(ﬂ
unter den Wert gwl sinkt. (Hierin bedeutet £, bzw. Ep den Elastizitits-

modul der Platte bzw. des Halbraumes, # die Hohe der Platte, ¢ die halbe
Breite der Platte.) Bei Baustoffpriiffungen und bei Flachgriindungen ist
jedoch diese Verhdltniszahl gewdhnlich viel gréBer. So ergibt sich z. B. fiir
einen kreisformigen Betongriindungskoérper auf sandigem Boden (A=a=
100 cm, E,=210 t/cm2, Eg=1 t/cm?) der Wert von K zu etwa 35. Dies
trifft auch bei Griindungen auf breiten Eisenbetonplatten zu, denn hier hat
man statt der Biegungssteifigkeit der Platte diejenige des ganzen Bauwerks
in Rechnung zu ziehen. Es ist daher fiir die uns interessierenden Fille im
allgemeinen mit jener Druckverteilung in der Lastfliche zu rechnen, die sich
fiir starre Platten oder Stempel ergibt. ,

Um den Gleichgewichtszustand in der Masse beurteilen zu koénnen,
haben wir von dem Spannungszustand des Halbraumes auszugehen, der durch
diese Art Belastung hervorgerufen wird. Wir untersuchen zuerst das ebene
Problem.

Der elastisch isotrope Halbraum z > 0 sei durch die Ebene XY begrenzt
(Fig.2), wobei die Achse Y durch den Koordinatenursprung O senkrecht
zur Bildebene verlauft.

Die Verschiebungskomponenten in der positiven x- bzw. y- und z-Rich-
tung werden mit & bzw. # und { bezeichnet. Der ebene Deformationszu-
stand sei dadurch gekennzeichnet, daB die Dehnung 7 in der y-Richtung
iiberall Null ist, so daB die Spannung in der y-Richtung

Oy + 02
Uy —_ m
betragt; (m bedeutet die Querdehnungszahl A;). Die kubische Dilatation
I
oX CZ

miissen den Gleichungen geniigen 6):

14,‘, (9‘6—__77377 (S’(U o O
m—2 ox m-—1 0z ’ ]

R "
m—2d6z m—1 ox
Die GroBen — - und — — . sind daher konjugierte harmonische

m-—2 m-—1
Funktionen in z und x.

6) S. z. B. S. TimosHenko, Theory of Elasticity, 1934, S. 163.
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Fiir den Fall einer zur Oberfliache senkrechten Linienlast ¢ gemaB Fig. 2
liefert die bekannte Losung folgende Spannungskomponenten:

29 xz 29 z 29 xz2

Ux—— - R47 z — ﬂ.kT, er:_—n.R4' (2)

Es herrscht jedoch eine Unklarheit in der Frage der Formanderung des
Halbraumes. Die von den bezogenen Dehnungen ausgehende Integration er-

gibt mit G= Z(mf 0 (E = Elastizititsmodul des Halbraumes):
e 9 ( m—2 X, *E
b——2910( m arctgz+R2), l
r 49 ([ _om—1, R Zg,) &
’“‘230( m “an TR

Dazu kommen noch die zu bestimmenden Konstanten C, fiir & C, fiir {.

Die Verschiebungskomponenten (3) liefern die GroB8en
m—2 ¢qg z _m—1 q x

m G R?’ = T m ZG RY’
welche die Gleichungen (1) erfiillen. Es ist jedoch unmoglich, fiir ein be-
liebiges m die Integrationskonstanten C,, C, so zu bestimmen, da8 die For-
derung nach dem Verschwinden der Verschiebungskomponenten bei R — co
befriedigt wird, da der Symmetrie wegen auch in der Ebene YZ keine &-Ver-
schiebung moglich ist. Es wurde schon die Meinung ausgesprochen 7), daf}
der Spannungszustand (2) nur fiir den Wert m = 2 eine strenge Losung dar-
stellt. Bevor wir die Beziehungen (3) weiter verwerten, miissen wir sie daher
niher untersuchen.

Der Spannungszustand eines mit zwei entgegenwirkenden Kriften ¢ be-
anspruchten Zylinders (Fig.3) ist bekannt8). In dem gewahlten Koordi-
natensystem lauten die Spannungskomponenten

e —

5. — 291.,/(% 2h — z 1
x**?L@H‘m ) =24
g, = _ 242 L RE—2)P L] ; (2a)
7 _R4 R} 2/1
2qg 1 z* 2h — z)*
rxz~—“‘—ﬂ‘—k“z—(—“R% )]x

Ist der Zylinder in der y-Richtung (senkrecht zur Bildebene) unbegrenzt,
ist weiter =0 und werden die Verschiebungskomponenten so bestimmt,
daB ¢ in der horizontalen Symmetrieebene und & in der Symmetrieebene OC
verschwindet, so erhialt man

E= ™2 (arctg * 4 arclg Z  2hozy, mo2 x
2710[ m ( g” £ 3n-z )”(R" R? ) m /z]’

q m-1 R 2z (2h-2)? m-2 z
£= Mo[27rmﬁ*ﬁ“ﬁ@—“i70“‘ﬂ'

7) J. OupEg, Der Bauingenieur 1939, S. 451.
8) S. TimosHENKO, Theory of Elasticity, 1934, S. 104.

(32)



FlieBgrenze bei Ortlicher Belastung des Halbraumes 183

In der Oberfliche des Zylinders ist

X X 7 z 2h—z 1 R z
= — = 4 = S = = e = s
arctg - + arctg 5 —— = & R R 3h R, %]
und die Verschiebungen ergeben sich zu (das obere Vorzeichen fiir x > 0)
e 9 [pr—1lx _m—22
b"“2::0[2 m kT m 2]’
o g B—1yz g 2
T %G m (h lnjxl 1)'

In den Angriffspunkten der Krifte ¢ werden alle Komponenten unend-
lich, da die Krafte als in einem Punkt konzentriert angenommen wurden.
Sonst entsteht keine Singularitit. Die Oberflichenverschiebung &, ist in
xm-2
4 m-1
reicht ihren GroBtwert im Punkte A. Im Punkte O miissen wir uns einen
kleinen Teil des Kogpers ausgeschnitten denken, da hier eine Verschiebung
beider Seiten gegen O erscheint. Diese Schwierigkeit verschwindet jedoch
sofort, wenn die Verteilung der Last auf eine endliche Breite in Rechnung
gezogen wird.

der Nihe des Punktes O negativ, fiir x> h wird sie positiv und er-

"——fz—""l

bty :

{
o (17| X

*—z—-.“i/-t z 9~
& Res

n
- ———x———

Fig. 2 Fig. 3 Fig. 4

Der Spannungszustand (3a) entspricht also allen Forderungen, welche
die Elastizititstheorie an eine strenge Losung stellt. Lassen wir jetzt den
Halbmesser 4 unbeschrinkt wachsen, so geht der Zylinder in einen unend-
lich groBen Korper iiber, der nur durch die XY-Ebene begrenzt ist, und wir
bekommen den untersuchten elementaren Fall. Die richtigen Verschiebungs-
komponenten fiir den mit einer Linienlast beanspruchten Halbraum sind also

durch die Gleichungen (3a) als lim &, lim{ gegeben. Fiir endliche Werte
hy»co > oo

der Entfernung R sind das die Beziehungen (3), wobei die beiden Integra-
tionskonstanten Null sind, C, = C,=0. Ebenso gehen die Ausdriicke (2a) in
(2) iiber. Die Gleichungen (2) und (3) stellen daher die strenge Lésung des
Halbraumproblems fiir einen beliebigen Wert von m dar, sie gelten jedoch
nur fiir endliche Entfernungen vom Angriffspunkte der Kraft. Im Unend-
lichen muB man auf die Beziehungen (3a) zuriickgreifen.

Aus (3) und (3a) folgt, daB sich die Oberfliche des Korpers in der Um-
geburtllg der Last beiderseits gegen den Mittelpunkt der belasteten Fliche
verschiebt.



184 K. Hruban

Wenn sich die Last auf eine gewisse Breite kontinuierlich verteilt
(Fig. 4), so daB dg=p(¢)dt ist, kann man die Verschiebungskomponenten
durch Integration von d¢, d{ bestimmen; diese gelingt jedoch in manchen
Fillen nicht. Die Aufgabe kann weitgehend vereinfacht werden, wenn man
ein zu den angreifenden Kriaften konjugiertes imaginires System hinzufiigt,
so daB sich die resultierenden Verschiebungen durch Funktionen der kom-
plexen Verinderlichen o=z ix ausdriicken lassen.

Die Kraft ig, die in der negativen x-Richtung (Fig.2) angreift, be-
dingt, wenn jetzt die Konstanten auBler acht gelassen werden, die Deformation

. . 2
b=t (2" MR+ )

1 = 9.G R?

. (3b)
O o= — ﬂ_ /{ILT-_? arct x, + _x__zv\
Sy g, + )

Wir erganzen sie durch eine weitere imaginire Belastung der Oberflache,
welche die Formanderung hervorruft

e 19 o= — M aree ¥
und iiberlagern alle drei Gleichgewichtssysteme (3), (3b) und (3c). Das
Ergebnis zeigt, daB jede harmonische Funktion, die in (3) vorkommt, durch
ihre konjugierte erginzt erscheint; so wird z. B. das erste Glied in { zu

m — 1 m—2 X m— 1
— 2 — InR—i (717[’1*_ 1) arctg . = 2 - p In e, usw.
Die resultierenden komplexen Verschiebungskomponenten &, ¢ ergeben sich zu
:_ 9 (m—2 z
5= ZnGl( m e + a)’ ] 4
P PV Rk S ] B9
T 2aG ( mn “ a ) ’

Der reelle Teil dieser GroBen sowie deren Ableitungen stellen die Ein-
wirkung der reellen Kraft dar.

Bei der Ermittlung des Einflusses der Kraft dg = p(¢)d¢ gemiB Fig. 4
hat man in (3) statt x die Differenz x—¢ einzusetzen; fiir das zugehorige
komplexe Kraftesystem heifit das, den Wert o =z ix in den Beziehungen
(3c) durch z -+ i(x—¢) =a—if zu ersetzen.

2
Somit ergibt sich die zur Belastung [ p(#)d¢ gehorige komplexe Ver-
7
schiebung zu
ty

|m—2 P& ]dl‘.

5 i
£ = 520 Jlmmp(t) In (¢ —if) + =
Daraus folgt mit der Bezeichnung
Z;

— 1 2 p(¢) dt
=L @)

7T
4
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£ =

i (m— 2
- 2
1
2G
Setzt man die Ableitungen von (5) in die bekannten Ausdriicke fiir die
Spannungskomponenten ein, so findet man:
G, + 0, Gy — U, dJ Tz dJ

2 ) T Taw oz lda (©)

Es bedeutet hier wieder ¢ bzw. eine komplexe Funktion, deren Real-
teil die durch die reelle Belastung gemiB Fig. 4 hervorgerufene Spannungs-
komponente o bzw. v darstellt. Die kubische Dilatation ergibt sich zu

m—2
mQG

Die GroBe J ist also eine Funktion der komplexen Verianderlichen « — z+ix,
welche wir in der Form schreiben kénnen:

J=@& + iV
Des weiteren besagen die Beziehungen (6), daB die Realteile von

j/da—}-zl)—l— Cs, ] 5

= (2 ﬁ:_lj'./da——z./) + C,. J

n

? =

ixz
und =
2z z

konjugierte harmonische Funktionen sind, welche in der komplexen Funktion

O —— 0z

da 0z dx
erscheinen. Es ist daher:

O+ 0, ox— 0, 09D . oD
2 ?, T2 T Ay o = Ay (7)
Dadurch sind auch die Hauptspannungen o,, o5 und ihre Richtungen ge-

geben 9) : od
ot 0y _ 91— 0 _ (“p)? (éf‘f)g tg2s = % 8
P e, B (00 (0)) w2 o ®)

4

Die Aufgabe beschrankt sich somit auf die Berechnung des Integrals /
(Gl 4) und seines Realteiles &, wodurch alle SpannungsgréBen bestimmt sind.

Bevor wir zu weiteren Ausfithrungen schreiten, wollen wir diese Me-
thode auf einen bekannten Fall anwenden, da wir die hier vorkommenden
Beziehungen spiter auch brauchen werden.

3. Die Isochromen bei der Beanspruchung durch eine Gruppe
von gleichmiaBig verteilten Lasten.
Die Linienlast ¢ = 2ap greift so an, daB die Formanderung der Ober-

fliche des Halbraumes in keiner Weise gehindert wird. Der Streifen zwi-
schen x = — a und x =g wird gleichmiBig belastet mit konstantem Druck p

(Fig. 5).
%) Die mittlere Hauptspannung o, wirkt in der y-Richtung und ist gleich 1:;—62 .
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Die Gleichung (4) wird zu

a di P t=a
___r A r
J = n_[a——it_ - [zln(a lt)]_
—a t=—a
Der Realteil dieser komplexen Funktion ist
t=a
_outoe Pl X __p
b = Ty = - [ arctg . ] == '—'}{d’ 9)
t=—a

bleibt also konstant auf dem ganzen Kreise K, der durch die Randpunkte
A, B des Streifens geht. Die Gleichung dieses Kreises ist

x? + (z —-rcos0)? = r?, singd = ‘i X
Daraus folgt
0P afe*—x*+2) db P ax dd
oz 2r%z? déo’ éx  rizdd’

Durch Einsetzen in die Gleichung (8) folgt

=% P 2 _P g
5 = r_nsmd. (9a)

Die Isochromen (Hauptschubgleichen) o, —o; = konst. sind daher Kreise
K. Der absolut groBte Wert der Schubspannung wird bei minimalem Wert
von r erreicht, d.h. bei r =a, und betrigt

max ¢ = max ﬂ%& = ?,Z : (10)

Die Hauptspannungen ergeben sich aus (9) und (9a) zu
Gry = — "Z* (0 F sind) (11)

und wirken in den in der Fig. 5 angedeuteten Richtungen.

4. Belastung durch einen starren Plattenstreifen.

Die Senkung {, der Oberfliche muB in den Grenzen [x|< a konstant
bleiben. Aus (5) folgt, daB fiir z=0 '

Gy _m—1,
x = mG i/ st
Die komplexe Funktion i/ darf daher bei z= 0 in dem Bereich (x{<a,

jedoch nur in diesen Grenzen, keinen Realteil haben. Diese Bedingung wird
von dem Ansatz

Fe=__ 2 _ (12)
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Nur wenn |[x|>a ist, besitzt diese Funktion einen Realteil, und zwar

¢y m—1 A ;
= — C x| . 13
6x mG ‘/x‘z.__.a?, x>a ( )
Aus (7) folgt, daB die Lastverteilung iiber den belasteten Streifen durch
den Realteil von J bestimmt ist, so daB, wenn wir jetzt statt x wieder ¢

a
schreiben und mit ¢ = [ p(¢)d¢ die LastgroBe bezeichnen,
—-a

q
t = e, 14
p () I e (14)
Falls der Ansatz (12) richtig ist, mufl gemaB (4) sein
PR N T
n_anvaz_t2 a—it
Dies ist tatsdchlich der Fall mit 4 = — f]; , denn es ist
j’ dt - 1_[ noiic]
_a(a——it)\/a2—~t2 \/a2+a2_a :

Fig. 5 Fig. 6

Somit ist auch bewiesen, daB die Lastverteilung nach (14) die vorge-
schriebene Deformation hervorruft19). Die Senkungslinie der Oberfliche
kann in der Umgebung der Lastfliche aus (13) bestimmt werden (Fig. 6)

X X
Aﬁom—“-céodx—mml f]_J' e _ =1 g—-lnfizf_“:_‘f, x>a.

- dx 7 mG wlyx_—g2 mG =« a
a a

(Da sich die Belastung nach der Annahme senkrecht zur Bildflache
ins Unendliche erstreckt, wird diese Differenz bei wachsendem x-— co auch
unendlich.)

Um die Spannungskomponenten angeben zu koénnen, haben wir noch
den Realteil @ der Funktion

10) Diese wurde auf einem anderen Wege zuerst von Sapowsky gefunden, Zeitschr.
f. angew. Math. u. Mech., Bd. 8, 1928, S. 107.
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q -
J=———— =D+ [V
7 Vaz + a?
zu bestimmen. Durch das Gleichstellen der reellen und imaginiren Glieder
der Beziehung ,

,_q,g 1 —_— @ . 2
(n) a2+(z+ix)‘2_( + &%)

ergeben sich zwei Gleichungen, deren Auflésung die beiden Unbekannten
@, ¥ liefert. Das Ergebnis lautet

9 @t —x? + z2° + V(@ + x? +22)° —4a’x?
ay2 (@® + x4 22)2 — 4 a’x®

® =— (15)

Fithrt man wieder einen Kreis durch die Randpunkte des belasteten
Streifens (Fig. 6), so ist sein Halbmesser
. V(at + x* + z2)2 —45'2;5
o 2z

und die von seinem Mittelpunkt gemessene Ordinate des Punktes M(x, z)
betragt

7

21 = Z"‘"ZL-

(z; und z, sind positiv, wenn sie die Richtung der positiven Z-Achse haben).
Mit diesen Bezeichnungen lautet (15)

d—_ 7 ‘/’“LZI, (15a)

2ar z

Die Spannungen.

Durch Ausfiihren der in den Gleichungen (7) vorgeschriebenen Opera-
tionen erhalt man nach einigen Umformungen:

oo = — 7 U/r+?£_ x?(r—z+2zl>+zzi(r+z‘)]
Lot 272+ )
w =gl R ¢ 2zt 2l banbha)] 1 g
2ar z 9 r2 \/Z(r +z,)
gx r*+4+(z—z)(r+2z)
Txz = — 3 LY S .
anr \/Z(i‘—f—zl)

a) Waichst die Entfernung R des betrachteten Punktes von der Mitte
des belasteten Streifens, so verschmelzen schlieBlich die Randpunkte A und B
mit O und es gilt

_ R
2z
und die Ausdriicke (16) gehen fiir R — oo in (2) iiber, wie es sein muB.
b) In der YZ-Ebene ist

zZ,=r, 2rz =8> =a?> 4+ z

r+z;, =z, r

2

und es ergibt sich fiir x =0:
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a? g s? 4 z2
Oy = — ‘Z‘ 58’ z = . (17)

Die Differenz der Werte dieser beiden in den Punkten der Z-Achse wir-

kenden Hauptspannungen erreicht ihren GréBtwert bei z—=« Y2, also um
0,414 a tiefer als bei der gleichmiBigen Lastverteilung. Die groBte in der
Z-Achse vorkommende Schubspannung betrigt

max 0o 29 g5 9 9

ist also um rund 23 9o kleiner als gemif (10).

c¢) In der XVY-Ebene, welche die Oberfliche des Halbraumes bildet,
ist z=10, r=o0. Die Gleichung (15) ergibt fiir die Oberflachenebene

Die iibrigen Glieder der Ausdriicke (16) fallen wegen der gréoBeren Po-
tenzen von r im Nenner weg, so daB unter der Lastfliache

und in der ganzen Oberfliche z,, = 0 ist.

d) Die Hauptspannungen werden durch Einsetzen in die Gleichun-
gen (8) bestimmt. Sie betragen

N 1)
was auch geschrieben werden kann (Fig. 06):
LY )
ry2rz

Es sind also iiberall Druckspannungen. lhre Richtungen sind durch
die Beziehung bestimmt (f nach Fig.4 gemessen)
(r+ 2z)(z—2z) + r*
g — _ , r4+2z) 2
tg2, x(r—|-221)(x9—|-zzl)——r‘~’z’ (20)
wodurch auch die isostatischen Kurven gegeben sind. Die Hauptdrucklinien
haben die Form von Hyperbeln héheren Grades, deren Asymptoten durch

den Punkt O gehen.
Die Gleichung der Isochromen (o, —o; = konst.) ist

——'R::: =k, oder x*+4z2—kriz=0. (21)
ryrz

Ihre Gestalt ist aus Fig. 10 und der photoelastischen Aufnahme Fig. 11
ersichtlich 11).

e) Auf dem Halbkreis mit dem Halbmesser a ist R=r=a, zy = z und
man erhalt

1) G. MEesMER, Spannungsoptik, 1939, S. 197.
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q a”—'l—'z 3¢ {/a+z q z
Ox i y Oz == — 7/~ Tz — — 5 =
daa z 4a7a z dma \/Z(a-l—z)
_ i, 9 ( a+z E) (22)
o1 Zﬂa 22 ‘;— 2na V z +1/22 ’ f
x
20 =—n

Die Richtungen der Hauptspannungen halbieren auf diesem Halbkreise
die Winkel, die der Strahl MD mit der z-Richtung bildet.

f) Auch fiir die Punkte N, die auf der Hyperbel a2 — x2 -+ 22 = 0 liegen,
ergeben sich sehr einfache Ausdrucke fiir die Spannungen; dle Abszisse x,
des Punktes N ist gleich dem Halbmesser »; des durch A, B, N gehenden
Kreises (Fig. 6), und die Ordinate z, verschwindet. Es folgt

q rl+z _ q 3]’1_“‘..2 — ‘7 r1+Z (23)

Op = g e G = == = iz

= 6z
x ulby
T i ’
'Y
i =
=
Fig. 7

Der nach den Formeln (16), (17), (22) und (23) berechnete Verlauf
einiger Spannungskomponenten ist in Fig.7 wiedergegeben. Fiir praktische
Berechnungen lassen sich Gl. (16) auf die Form bringen

. _‘L[l N (z——zl)(r—ZZ,)] ‘/E__z_:_

~

dnr rZ z
0, = —— q [3_(2—21)("*221)]‘/ﬁ—2.
dnr r? z

Der antimetrische Fall.
- Die Streifenlast ist durch die Funktion
p(t) = tf(a?)
gegeben. Das resultierende Drehmoment sei mit M bezeichnet. Die Be-
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dingung, daB die Verformungslinie der Oberfliche innerhalb des Streifens
linear verlaufen mufB}, wird durch den Ansatz befriedigt .

¥ e l-(_*iﬁ_,\_ + B) .
Va2 + o2 /
Dieser ergibt die Sohlenkrifte
2M¢t

Die Deformation des Halbraumes ist antimetrisch. Die Verschiebungen
der Oberfliche betragen im Bereiche der positiven x:

N m—2 Ma—7Va:—x* . m—1 M x
fir x<<a: & = — nG g ; 20—2————”10 P
; e m—2M . om—1 Mi—Yx—a
lel' x>a. S0 — mG na} =0 ’_"2 mG 7T a2

Der Realteil der komplexen GroBe J ergibt sich zu
Mx(r—z+4 z;) oy + 0,
D = — =
matryz(r+ z) 2
Somit ist der Spannungszustand bestimmt, die Spannungen kénnen ge-

mafB (7) ermittelt werden.
Durch Uberlagerung dieses antimetrischen und des durch (15a) gege-

benen symmetrischen Zustandes erhidlt man die Losung fiir auBermittige
Streifenbelastung (bei reibungsloser Kraftiibertragung).

' 5. Reibung in der Sohlenfliche.
Aus (5) und (12) ergibt sich der Zuwachs der £-Verschiebung in der

Oberflache (z=0) zu

o0& m—2 __ m—=2 g
dx  2mG~  2mQ ayg e’
Der Realteil dieser Funktion ist
. 5 0 & m—2 q
f | : v o - — —
ir [x <a Ty 2mG o yat —xt’
9% _ g,

fir x > a: v
Der Mittelpunkt der Lastfliche darf keine Verschiebung in der x-Rich-

tung erleiden; es ist daher

filr | x| <a: Es :l'é-%dx:-——!;’;g;iarcsm ,
0
ox e be=—

Die Oberfliache verschiebt sich also unter der Sohle der Lastplatte von
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beiden Seiten gegen die Mitte, die GroéBe der Verschiebung wichst von Null
(im Punkte 0) zum GroBtwert £oo (unter dem Rande).

Falls dadurch eine Reibung entsteht, so wirken die Reibungskrifte,
die den Halbraum beanspruchen nach auﬁen hin. Elastische Deformationen
werden jedoch kleiner sein als plastische Verschiebungen, welche das Ma-
terial unter den Riandern der Lastflache erleidet und welche ein Ausweichen
des Materials nach auBen hin zur Folge haben. Die durch das FlieBen her-
vorgerufenen Reibungskrifte sind also den ersteren entgegengerichtet. Die
resultierende Schubbeanspruchung der Oberfliche wird von dem Verhiltnis
der elastischen und der plastischen Verschiebungen abhingig sein, daher
auch von den Materialeigenschaften des Halbraumes und des Lastk('irpers,
sowie auch von der GroBe der Last selbst. Die weiter folgenden Ausfithrun-
gen zeigen, dafl der EinfluB der plastischen Erscheinungen nicht dem Last-
zuwachs proportional ist. Es ist zu erwarten, daB bedeutende Reibungskrifte
in der Sohlenfliche erst bei Belastungen auftreten werden, welche sich der
Bruchlast nahern. Ihr EinfluB beschriankt sich nach dem de St. Venant’schen
Prinzip auf kleine Entfernungen von dem Laststreifen. Alle diese Griinde
fithren dazu, daB Sohlenreibung bei den Gleichgewichtsuntersuchungen nicht
in Betracht gezogen wird. Dieses Vorgehen scheint gerechtfertigt zu sein,
solange die plastischen Forménderungen in begrenzten Gebieten unterhalb
der Riander, nicht jedoch in voller Breite der Lastflaiche zum Vorschein
kommen. Da wir in den weiteren Ausfithrungen lediglich den vorwiegend
elastischen Zustand behandeln, werden wir die durch Sohlenreibung her-
vorgerufenen Schubkrifte auBer acht lassen und beschrinken uns auf die
Untersuchung einer reibungslosen Lastiibertragung.

Es sei noch bemerkt, daB durch Versuchsmessungen entweder keine oder
gauz unbedeutende Reibungskriafte zwischen Betonkorper und Sandschiittung
festgestellt wurden 12), welche die Sandschichten in der Richtung gegen die
Plattenmitte beanspruchten. Sie traten erst bei groBeren Belastungen auf
(iiber 4 kg/cm?) und betrugen hochstens 6 o des lotrechten Sohlendruckes.
Die obigen Erwidgungen finden sich durch diese Messungen bestitigt.

6. EinfluB der Oberflachenbelastung.

Wirken an der Oberfliche auBer dem starren Plattenstreifen auch noch
andere Lasten, so wird die Sohlendruckverteilung von der bisher behandelten
verschieden sein, da die Verformungslinie der Oberfliche des Halbraumes
innerhalb der Rander des Streifens nunmehr unter der Einwirkung der ge-
samten aufgebrachten Lasten linear verlaufen muB. Fiir weitere Ausfithrun-
gen ist der folgende Fall zu untersuchen: der Halbraum tragt beiderseits
des Streifens eine gleichmiBig verteilte Belastung p, (Fig.13).

Waire die Oberflache iiberall nur mit p, belastet, so wiirden die Spannun-
gen bei verhinderter Querdehnung betragen

Gx:(ry:—#f{——i, 0 = — Po - (24)

Die Senkung der Oberfliche wire dabei iiberall gleich. Falls man die
Belastung p, von dem Streifen AB entfernt, so entsteht hier eine Aufwol-

D ad

bung, deren Neigung — i:l nach Ziff. 3 angegeben werden kann.

12) F. SiEmONseN, Die Lastaufnahmekrifte im Baugrund. Bautechnik 1942, S. 319.
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Wird jetzt die Streifenlast ¢ hinzugefiigt, welche die Oberflachensenkung
¢, verursacht, so lautet die Bedingung fiir das Ebenbleiben der Sohlen-
fliche AB:

Diese wird offenbar erfiillt, falls von der Last q der Teil 2ap, gleichmaBig
und der Rest ¢ —2ap, nach dem Gesetz (14) verteilt wird. Der erste Teil

ruft dann eine Neigung + -1, der Rest eine Nullneigung hervor, so daB die

obere Bedingung befrledl_gt w1rd Somit ist die Druckverteilung unter einer
starren Platte in diesem Falle durch die Funktion gegeben

2a

PO =pt+ L (25)
Es ist demnach moglich, daB auch ein starrer Korper die Last gleich-
miBig verteilt. Das konnte jedoch lediglich in dem Falle vorkommen, wenn
die gleichmiBige Oberflichenbelastung beiderseits des starren Platten-
streifens dem mittleren Sohlendruck gleich wire. Der Spannungszustand,
der durch das gleichzeitige Einwirken beider Belastungen p, und ¢ entsteht,
wird durch die Summen der Komponenten gemaB (24) und (16) dargestellt;

in die Formeln (16) ist jedoch statt ¢ nur der Teil g —2ap, einzusetzen.

Um zu iiberpriifen, wie weit die Verteilungsgesetze (14) und (25) mit
der in den Baukonstruktionen tatsiachlich vorkommenden Spannungsvertei-
lung im Einklang sind, unternahmen wir im Jahre 1936 in der Forschungs-
anstalt fiir das Bauwesen in Prag Versuchsmessungen, iiber welche ich dem
Ii. KongreB der IVBH im Jahre 1936 teilweise berichtete13). Es wurden Span-
nungen zwischen Lastplatten aus Messing und einer elastischen Gummischicht
oder einer Sandschicht gemessen. Mit Riicksicht darauf, daB durch plastische
Forminderungen in den Plattenridndern und im belasteten Material unterhalb
der Rinder die ins Unendliche reichenden Spannungsspitzen abgestumpft
werden, ergaben sich Linien, welche im sonstigen Bereich der Lastfliache
mit den nach (14) und (25) berechneten Kurven gut iibereinstimmen.

Seitdem wurden Berichte iiber weitere Versuche veroffentlicht, von denen
besonders jene von Dr. Ing. SIEMONSEN 14) besondere Beachtung verdienen.
Es wurden u. a. Spannungen in der Griindungssohle eines quadratischen
Betonkérpers von 3,5 X 3,5 m Sohlenfliche gemessen. Die Ergebnisse be-
statigten eindeutig den hohlparabolischen Verlauf der Drucklinie im mitt-
leren Teile der Lastfliche, wie es der vorangefiihrten Theorie des elasti-
schen Halbraumes entspricht.

Alle Messungen weisen weiter darauf hin, daB bei steigender Belastung
das Material unter den Randgebieten mehr and mehr ausweicht, was eine
Wanderung der Pressungen gegen die Mitte der Lastfliche verursacht. Wenn
wir jetzt die Grenzbelastung bestimmen wollen, bei welcher dieses Aus-
weichen permanent zu werden beginnt, haben wir den unter Ziff. 4 und 6
beschriebenen Spannungszustand des Halbraumes auf Grund der FlieBbedin-
gung des Materials zu untersuchen.

13) HrusaN und Hacar, SchiuBbericht des II. Kongresses der I.V.B. H., Bericht
VIII 2, Berlin 1938.
14) Die Bautechnik, 1941, S. 159 und 1942, S. 319.

Abhandlungen VII 13
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7. Die FlieBbedingung.

Wir wissen bisher sehr wenig tiber das Verhalten verschiedener Stoffe
an der FlieBgrenze bei dreiachsigem Druck mit Hauptspannungen verschie-
dener GroBe. Die meisten bisherigen Zusammendriickungsgerite sind so
eingerichtet, daB lediglich entweder ein ebener Deformationszustand oder
ein achsial-symmetrischer Spannungszustand untersucht werden kann. Die
Forschungen der letzten Jahre iiber die Mechanik des bildsamen Verhal-
teus von FluBstahl 1%) beweisen jedoch das Nichtzutreffen der MoHR’schen
Hypothese, nach welcher die mittlere Hauptspannung keinen EinfluB3 auf
die FlieBbedingung ausiibt. Dieselbe Schluf3folgerung ergeben Versuche,
welche KJeLLmaN 16) in einem besonders konstruierten Kompressionsapparat
mit Sand durchgefiihrt hat.

Wenn man die bisherigen Arbeiten iiberblickt, gelangt man zu der An-
schauung, die zuerst von HuBer ausgesprochen und spiter von mehreren
anderen Forschern genauer formuliert wurde, daB die Fahigkeit des Ma-
terials, sich elastisch zu verhalten, dadurch beschrinkt ist, da die bezo-
gene Qestaltinderungsarbeit einen Grenzwert nicht iiberschreiten kann.
Dieser Grenzwert scheint von der durch die Vorgeschichte des Materials in
ihm akkumulierten Energie abhingig zu sein. Die bezogene Gestaltinde-
rungsarbeit ist der Summe der Quadrate der Hauptschubspannungen pro-
portional, die akkumulierte Energie ist eine Funktion der Hauptnormalspan-
nungen, wobei jedoch in die Komponenten die gesamten in der Festsubstanz
der Massc wirkenden Spannungen einzubeziehen sind (also auch Innendruck
und Nebenspannungen). Wenn wir mit ¢, 6,,, 0,,, diese totalen Hauptspan-
nungen bezeichnen, wobei wieder o, die kleinste und o, die groBte Druck-
spannung bedeutet, so 148t sich die FlieBbedingung im allgemeinen in der
Form anschreiben

(or— on)® + (61— om)? + (on — om)® = f(o1, oy, om) . (20)

Fiir praktische Berechnungen wird eine einfache Form der Funktion f
gewahlt und die darin vorkommenden Konstanten werden so bestimmt, daB
sie im gewdihlten Spannungsbereich den Erfahrungen moglichst gut ent-
sprechen.

Wir werden uns hier mit der einfachsten Form dieser Funktion begnii-
gen, welche bei ebenem Deformationszustand zu linearen Bedingungsglei-
chungen fiithrt. Wir nehmen an, daBl in dem belasteten Material auBer den
Spannungen gemaB Abschnitt 4 bzw. 6 nur noch ein hydrostatischer Span-
nungszustand mit allseitiger Pressung o, herrscht, welcher durch Molekular-
krifte, Vorbelastung, Eigenspannungen und Nebeneinwirkungen hervorge-
rufen ist. Die Hauptspannungen des durch die Belastung bedingten elastischen
Zustandes seien wieder oy, 0,, 05. Dann betragen die totalen Hauptspannun-
nungen im belasteten Material

0] = 0y + 04, O = 0y + 0y, Oy = 0y + 0;.
Die Differenzen auf der linken Seite der Gleichung (26) sind

15) P. Biyraarp, Theory of local plastic deformations. A.I. P.C., Mémoires, vol.
6, S. 27. — HOHENEMSER u. PrAGER, Zeitschr. f. angew. Math. u. Mech., 1931, S. 1. In
diesen beiden Abhandlungen ist weiteres Schrifttum angefiihrt.

16) J. HvorsLEv, Uber die Festigkeitseigenschaften gestorter bindiger Béden, Koben-
havn 1937, S. 100. — W. KjeLLmaN, Proceedings of the intern. conference on soil
mechanics, 1936, vol. II, S. 16. :
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und die rechte Seite wird zu einer Funktion von g, o4, 0,, 0;. Wir nehmen an,
daB sich die Wurzel dieser Funktion in eine Potenzreihe nach der durch-
schnittlichen Hauptspannung M—(gw entwickeln 1a8t, von welcher wir
nur die ersten zwei Glieder behalten. Das Ergebnis kann wie folgt ange-

schrieben werden:

01— 0g)\? 0;— 03\* 09— 0y 2__/@2/‘ o, + 0, + 05)\*
(") () (B) = Gl TS e

Dies ist eine einfache Form der FlieBbedingung fiir isotrope Stoffe, welche
mit dem Prinzip der begrenzten Gestaltinderungsarbeit im FEinklang steht.
Der Beiwert £ und die Spannung o bedeuten hierin Stoffkonstanten; % ist
durch die innere Reibung und o durch Innenspannungen bedingt. Je nach-
dem, welcher von diesen beiden Werten die Beschaffenheit des Materials
mehr beeinfluBt, kénnen drei Gruppen von Stoffen unterschieden werden.

I. Gruppe. Stoffe ohne innere Reibung, bei welchen ¢ gegeniiber oy,
0y, 05 sehr groB und % sehr klein ist, wie z. B. Metalle. (Fiir FluBstahl wird
z. B. 6 =320000 kg/cm? angegeben, /% ist dann ~ 0,0075). Hierher ge-
horen auch wassergesattigte Tone bei schneller Lastaufbringung. Die rechte
Seite der Beziehung (27) kann somit als konstant angenommen werden, und
diese verwandelt sich in die HuBer-v. Mises-HENcky’sche FlieBbedingung fiir

<
Stahl (0, — 03)% + (0,——03)% + (0, — 0,)% = 2(k0)? = 20,2, (28)
a) Beim einachsigen Zug ist 0, =0;=0 und es folgt
01 == 0,,, y (283)

o, bedeutet also die FlieBgrenze in dem vereinfachten Spannungsdehnungs-
diagramm (Fig. 8) bei reiner Zugbeanspruchung. Derselbe zahlenmiaBige
Wert ergibt sich aus (28) fiir einachsige Druckbeanspruchung.

572

|
G,

|
‘ &
Fig. 8
b) Im Falle ebener Deformation ist
gy = LT 08
m

Im Anfangsstadium des FlieBvorganges ist jedoch bei den meisten
Stoffen m =2 und die GIl. (28) liefert damit die FlieBbedingung

01_03:%%. (28b)

Der Spannungsunterschied konnte daher im Verhiltnis 2:V¥3 = 1,15 hoher sein
als bei reiner Zugbeanspruchung. Es gibt also eine obere und eine untere
Streckgrenze, was auch mit den Beobachtungen iibereinstimmt 17),

17) 1. c. unter 1%), S. 41,
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c¢) Wir betrachten noch den folgenden achsial-symmetrischen Span-
nungszustand, der bei der Belastung des Halbraumes durch einen starren
Zylinderstempel vorkommt: in der Richtung der Z-Achse wirkt die groBte
Pressung o;, die beiden anderen Hauptspannungen sind gleiche Pressungen
6, = 65. Die Gleichung (28) liefert fiir diesen Fall

01—03 = 0,, : (28C)

der Spannungsunterschied ist also derselbe wie bei einachsiger Bean-
spruchung.

, I'l. Gruppe. Schiittmassen mit 0 = 0. In der FlieBbedingung (27) ver-

bleibt nur die Konstante 2. Da hier nur Druckspannungen (mit negativem
Vorzeichen) vorkommen konnen, schreiben wir jetzt die FlieBbedingung (27)
wie folgt an

03 —0y)\* (02—“01)2 (0'3_‘02)2 _ R (01 + 0 +VU‘3)2
(2)+2+2“2 3 - @)
a) Im einachsigen Spannungszustand ergibt sich
o3 = 0, (30a)

diese Stoffe besitzen keine Druckfestigkeit.
b) Fiir den Fall der ebenen Deformation lautet die FlieBbedingung
(mit m = 2)
al B S 30b
0y + 03 V3 (300)

Dies ist die bekannte Gleichung der klassischen Erddrucklehre, wenn der
Reibungswinkel mit

@, = arcsin——
1 V3
c) Fiir die achsial-symmetrische Beanspruchung miissen hier zwei Fille
unterschieden werden.

«) Der Achsialdruck o, ist groBer als der Manteldruck o; = 0,. Beachtet
man, daB

bezeichnet wird.

20, +0; o+ 03'__03—-01
3 2 0
ist, so bekommt man die FlieBbedingung in der Form

03 - 01 . 3k
o+ 05 04k (30¢)
Es erscheint in diesem Falle ein anderer Reibungswinkel

gg = arc Slnm .
f) Der Achsialdruck o, ist kleiner als der Manteldruck o, = 63. Das Ein-
setzen in (30) fithrt zu der FlieBbedingung

o;—o0, 3k
o, +05 O6—F (0
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und der Reibungswinkel erreicht den Wert

Q3 = arcsin6 x
Falls die angenommene allgemeine FlieBbedingung (27) dem tatsiachlichen
Verhalten des Materials entspricht, miissen also bei verschiedenen Span-
nungszustinden verschieden groBe Reibungswinkel zum Vorschein kommen.
Es ergeben sich z. B. fiir £ =1 die Werte ¢, = 25020, ¢; = 370; der Rei-
bungswinkel bei ebener Forménderung ¢, = 35020’ liegt dazwischen.

Die erwdhnten Messungen von KJELLMAN haben tatsiachlich bei seinem
Versuchssand fiir den Fall ca) einen kleineren Reibungswinkel ergeben als
fiir den Fall b) und zwar 3590 gegen 430; der Unterschied ist jedoch nicht
so groB, wie die Gleichungen (30c) und (30d) angeben.

Den FlieBbedingungen (30b) und (30c) sind weiter die Ergebnisse ver-
schiedener Versuchsmessungen 18) gegeniiberzustellen, welche beweisen, daB
der Zusammenhang beider Werte (o5 — 0y) und (oy + o5) nicht linear ist,
sondern durch eine leicht gekriimmte Linie dargestellt werden kann. Wir
miissen daher die Brauchbarkeit der vereinfachten FlieBbedingung (27) auf
einen Spannungsbereich begrenzen, in welchem die Umhiillungskurve der
Monr’schen Hauptkreise durch eine gerade Linie nach CouLomB ersetzt
werden kann (Fig.9). Dies ist bei den praktischen Aufgaben der Boden-
mechanik zuldssig, da hier nur verhiltnismaBig kleine Unterschiede von
Druckspannungen vorkommen.

Jedenfalls kann durch die Annahme des- Satzes von der begrenzten Ge-
staltinderungsarbeit die Tatsache erklirt werden, daB mit Beniitzung ver-
schiedener MeBeinrichtungen verschieden groBe Reibungswinkel bei dem-
selben Material festgestellt werden; der Winkel der inneren Reibung diirfte
darnach einen verdnderlichen, von der GroBe der mittleren Hauptspannung
abhiangigen Wert haben, und es wire besonders zwischen den Werten ¢, .
(bei ebenem Formidnderungszustand) und ¢, (im Falle |o5|>|0;!=0,]) zu
unterscheiden.

[II. Gruppe. Stoffe mit Kohédsion und innerer Reibung. Die FlieB-
bedingung (27) bleibt mit beiden Konstanten %4 und ¢ in Kraft. Es folgt
daraus fiir den einachsigen Spannungszustand, daB die FlieBgrenze bei reinem
Druck hoher liegt als bei reinem Zug. Fiir dreiachsige Druckbeanspruchung
1aBt sich die FlieBbedingung fiir alle drei bei der vorigen Stoffgruppe be-
handelten Fille auf die Form bringen

e (;3 R Gl
0y + 05+ 20
Der Reibungswinkel ¢ hat wieder in einem jeden dieser Fille einen ver-
schiedenen Wert ¢y, @,, @3 und zwar denselben, wie in den Gleichungen
(30b), (30c), (30d). Sonst ist die FlieBbedingung (31) identisch mit der

bekannten CouLomp’schen Gleichgewichtsbedingung fiir kohédrente Stoffe;
die Kohésion im CouLomB’schen Sinne ist durch

— sing. (31)

OM=c=—otgg (32)

gegeben. Wie bei der vorigen Stoffgruppe muB man die Giiltigkeit der
Bedingung (31) wieder nur auf einen bestimmten Bereich, z. B. MV (Fig. 9),

18) Z. B. W. BernaTZIK, Versuche iiber Festigkeitseigenschaften von Sand im drei-
achsigen Spannungszustand, Wasserwirtschaft und Technik, Wien, 1935, S. 184.
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beschrinken, in welchem die krumme Umhiillungslinie der Spannungshaupt-
kreise durch eine Gerade ersetzt werden kann. Die GroBe o ist von der
Wahl dieses Bereiches abhingig, sie bedeutet eine Druckspannung und ist
in die Gl. (31) mit negativem Vorzeichen einzusetzen, ebenso wie die Druck-
spannungen oy, o3. Der Wert g, bedeutet hier ]edoch nicht die FlieBgrenze
bei reiner einachsiger Druckbeanspruchung; wenn o; = 0 ist, richtet sich die
Grofle von

6, =t g (32a)

offenbar nach dem Werte des Reibungswinkels ¢ und damit auch nach der
GroBe der mittleren Hauptspannung o,. Die Druckfestigkeit wird also bei
einseitig behinderter Querdehnung groéBer sein als bei reiner Druckbean-
spruchung.

e ————G3 - ————
Fig. 9

8. Die Belastung an der Grenze des elastischen Zustandes.

Wir wollen jetzt mit Hilfe der im vorigen Abschnitt gewonnenen Be-
ziehungen versuchen, diejenige Intensitit der Streifenlast zu ermitteln, welche
an der Grenze zwischen vorwiegend elastischem und vorwiegend plastischem
Verhalten des beanspruchten Halbraumes liegt. Um zu einer eindeutigen De-
finition dieser Grenzbelastung zu gelangen, betrachten wir zuerst den fol-
genden einfachen Fall: das Material des Halbraumes ist elastisch-isotrop
und gehort zu den Stoffen der I. Gruppe des vorigen Abschnittes. Die FlieB-
bedingung ist daher fiir den behandelten ebenen Forméinderungszustand
durch Gl. (28b) gegeben. Diese besagt, daBl der Unterschied der Hauptspan-

a,
3
FlieBgrenze bei reiner einachsiger Zugbeanspruchung. Die Oberflache des
Halbraumes beiderseits des starren Plattenstreifens sei unbelastet, das Eigen-
gewicht des Materials wird nicht in Betracht gezogen.

Dann sind die Hauptspannungen durch die Formel (19) bestimmt und
ihre Differenz ist

nungen eine konstante Grofle nicht iiberschreiten soll; o, ist hierin die

01 - (,73 = o

Tragt man den beziiglichen Wert von ¢;,—o3 in jedem Punkte der XZ-
Ebene senkrecht zur Bildebene (Fig.10) auf, so erhdlt man eine Flaiche,
deren Schichtlinien in der Projektion durch Isochromen dargestellt sind.
Diese Fliche schneidet die Bildebene in der X-Achse, steigt lings der Z-

Achse bis iiber den Punkt C, der in der Entfernung a ‘/5 von der Lastflache
liegt, und senkt sich wieder allmihlich mit der wachsenden z-Ordinate des
betrachteten Punktes. Vom Punkte C formt sie zwei gegen die Riander der
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Lastflache steigende Riicken, welche in infinitesimaler Entfernung von den
Réandern unendlich hoch werden. Es muB daher schon bei der kleinsten Be-
lastung zu plastischen Forméanderungen in den Randgebieten, und zwar nicht
nur im beanspruchten Halbraum, sondern auch in dem die Last iibertragenden
Korper kommen. In der Fig. 10 ist durch Schraffierung jener Bereich ge-

kennzeichnet, in welchem die Hauptspannungsdifferenz den Grenzwert g’f
itberschreitet, wenn die Durchschnittsbelastung 7 - —«2—:@ betrdgt. Da-
" 2a  0,70Y3

durch wird eine Anderung des Spannungszustandes hervorgerufen. Die
Analyse dieses Zustandes gehért zu der statisch unbestimmten Aufgabe der
Plastizititsmechanik; denn sie ist von den plastischen Verschiebungen im

a49

Fig. 10

Korperrand und im Halbraum abhingig und entzieht sich vorlaufig einer
strengeren theoretischen Behandlung. Man kann jedoch einen Naherungs-
wert des Randdruckes 64, gewinnen, indem man den Verlauf der isostatischen
Kurven (und damit der Gleitlinien) in unmittelbarer Nihe des Randpunktes
als bekannt annimmt.

a) der RANKINE’sche Gleichgewichtszustand. Die Richtungen der Haupt-
spannungen sind mit den Achsen X, Z paraliel, rechts vom Randpunkte A
herrscht der FlieBzustand mit o,= 0, links davon der FlieBzustand mit der
groBten Druckspannung o,4. Das Gleichgewicht dicht unterhalb des Rand-
punktes erfordert, dal beiderseits dasselbe ¢, vorkommt; die FlieBbedingung

(28b) erglbt o — o 3@7{ . —0 201’
4 =— Ux V?}i ’ x — ‘/? ’
4
o4 = — V'i’; o, = — 231g0,. (33a)

b) Der BoussiNnesQ-REsaL’sche Gleichgewichtszustand. Es wird ange-
nommen, daB eine Schar Gleitlinien durch Strahlen gebildet wird, welche
von dem Randpunkte ausgehen. Diese Voraussetzung ergibt1?) mit der
FlieBbedingung (28b)
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gpg = — 2,571 %f‘
V3

= —2970,. (33b)

Die tatsichliche Randspannung wird wahrscheinlich naher dem Werte
(33a) liegen und die resultierende Anderung der Druckverteilung in der Last-
fliche kann etwa durch die schraffierte Linie in Fig. 9 dargestellt werden.

Fig. 11

Die Spannungsspitze wird abgestumpft und gegen die Mitte der Lastflache
verschoben. Dadurch verindert sich der Spannungszustand des Halbraumes
und somit auch die Abgrenzung des plastischen Bereiches, was auch durch
Vergleich der spannungsoptischen Aufnahme (Fig. 11) mit dem theoretischen
Verlauf der Isochromen im Randgebiet ersichtlich ist. Diese Spannungsum-
lagerung bleibt jedoch nach dem Saint Venant’schen Prinzip auf die unmit-
telbare Umgebung des Storungsherdes beschrinkt. Im plastischen Bereich
sinkt die Querdehnungszahl auf den Wert m — 2 und die bezogene kubische
Zusammendriickung wird Null. Es muB daher ein entsprechender Teil des
plastisch gewordenen Materials seitlich des Randes herausgequetscht werden.
Der Rand des Lastkorpers schneidet sich in den Halbraum ein, falls das
Material dieses Korpers hirter ist als dasjenige des Halbraumes. Dies kann
man z. B. bei Probebelastungen bindiger Boden deutlich beobachten.

Die Verschiebung des starren Lastkorpers ist jedoch in diesem Stadium
des Belastungsvorganges durch die elastische Zusammendriickung in der Z-
Achse gegeben; andauernde Senkungen kénnen daher nicht auftreten, solange
die FlieBbereiche auf Randgebiete begrenzt bleiben.

Wird nun die Last gesteigert, so vergroBern sich die beiden Bereiche,
in welchen die kritische Spannungsdifferenz im elastischen Zustand iiber-
schritten wird, bis sie endlich bei dem durch (18) gegebenen Werte der
Hauptschubspannung die Z-Achse im Punkte C erreichen. Die mittlere Be-
lastung betragt in diesem Augenblick

g 20,373

S S 2,356 , . (34)
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Der Verlauf der durch C gehenden Isochrome ¢, — 045 =10,490 zﬁé ist in

Fig.10. darstellt. Bei elastischem Zustand wire die kritische Schubspan-
nung im ganzen zwischen den beiden Asten dieser Kurve eingeschlossenen
Bereich uiberschritten. Die dadurch verursachte Bildung plastischer Gebiete,
deren Tiefe jetzt schon die GroBenordnung der halben Lastflichenbreite er-
reicht, ruft eine weiterreichende Umlagerung der Druckverteilung hervor.

L

N IM //

7
v

Fig. 12

Waichst die Belastung noch weiter an, so diirfte sich zuerst eine zusam-
menhangende plastische Zone etwa nach Fig. 12 bilden, welche den elastisch
bleibenden Kern unter der Lastfliche umschlieBt und vom duBeren elastisch
bleibenden Materiale des Halbraumes abtrennt. In diesem Stadium des Be-
lastungsvorganges kann jedoch das Material noch nicht ins Gleiten geraten,
da sich die Gleitlinien G nicht ausbilden kénnen. Das plastisch gewordene
Material mit der Querdehnungszahl 7 = 2 muB jedoch infolge seiner Volu-
menbestindigkeit neben den Plattenrindern ausgequetscht werden, und der
Lastkorper sinkt samt dem elastischen Kern ein, wodurch die Entfernung ON
kleiner wird. Infolgedessen vergrdoBert sich die Spannung in N, eine weitere
diinne Schicht des Materials wird durch den FlieBvorgang ergriffen und die
Senkung schreitet mit geringer Geschwindigkeit fort. Das andauernde Ein-
sinken konnte erst dann aufhoren, wenn das Gewicht des hinaufgedriickten
Materials den elastischen Zustand unter der Plattenmitte wieder herstellen
wiirde.

Auf Grund dieser Erwigungen kann die gesuchte Grenzbelastung als
diejenige LastgroBe definiert werden, bei welcher das kritische
Spannungsverhédltnis in irgend einem Punkte der Wir-
kungslinie der angreifenden Kraft erreicht wird. Unter
dem kritischen Verhiltnis wird die durch die FlieBbedingung bedingte Funk-
tion der Hauptspannungen verstanden.

9. Die Grenzbelastung bei ebenem Forminderungszustand.

Wir betrachten jetzt den allgemeinen Fall, daB die Oberfliche des Halb-
raumes beiderseits des Plattenstreifens eine gleichmiBig verteilte Belastung
p, tragt (Fig.13). Das Material sei durch den Reibungswinkel ¢, und die
Konstante ¢ = — ¢, cotg ¢; gemaB (32) gekennzeichnet.

Das Eigengewicht des Halbraumes ziehen wir vorliufig nicht in Be-
tracht. Die Druckverteilung unter dem starren Plattenstreifen ist durch (25)
gegeben und die Hauptspannungen unter Plattenmitte betragen gemif (24)

u.nd (17): .o Do —-q__zapga—»_)_
! m—1 n s3’ a5
g—2ap, s*+ z* (35)

03 = — py — £
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Wir bezeichnen das Verhiltnis, das die linke Seite der FlieBbedingung (31)

bildet, mit v. Setzt man die Werte (35) und & = arcsin Z ein, so erhilt man

m--2 — 2ap,
m—1P Po + 2 7a

‘m
——po + 2 pE =2

n —

sin Y cos?Y
v(I) =

54 pe (36)

n lq
I S

4 0 8
T

sin Y + 2¢, cotg ¢, '

Dieses Verhiltnis erreicht sein Maximum beim Werte 9, des Winkels 4,
der durch die Gleichung bedingt ist

m g-2ap, . ) g-2ap,
(E‘—_IPO"LZT SinY,+2¢ cotgg, |- 2 o a % COS I m(COS* I —25iN%Y,,) —
—2 g——~2-a—p—9 CcOoS I (m_z Po + 2 =28 9-<2bo sin 4, cos? 3-,,,)’ =0. (37)
na m—1 Ta

Der GroBitwert von v muB die FlieBbedingung (31) befriedigen:
v (Im) = sin ¢y . (38)

Durch Elimination von ¢, aus den Gleichungen (37) und (38) erhilt
man die Grenzbelastung ¢ als Funktion der gegebenen GroBen. Mit der
Bezeichnung

ky = __3a¥3 (39)
4Y(1 — singy)?
ergibt sich
q9 __ . 2—(1—singy)m ]
2a—k1C05<P1 Cl+[1+ 2(m—1) kil po - (40)

Die Beiwerte %, sind in der Zahlentafel 1 fiir verschiedene Werte des

Reibungswinkels angegeben.
Aus (37) und (38) folgt weiter

sin 9, — Vlj%‘“_%_

Die Ordinate z,, des Punktes C, in welchem das Verhiltnis sein Maximum
erreicht, betriagt
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2 + sin g,
m = et 41
z ¢ Vl — sin ¢, (41)

Der kleinstmogliche Wert dieser GréBe (bei ¢, =0) ist
min z, = a 2. (41a)

Beispiel 1. Die Last wird durch eine schmale Schiene auf einen
breiten Betonblock weit von seinem Rande iibertragen. Ersetzt man die Um-
hiilllungskurve nach Fig. 9, welche fiir den Beton des Blocks bei ebenem
Formanderungszustand bestimmt wurde, im Druckbereich durch eine Gerade,
so ist diese durch die Werte ¢; = 26 kg/cm?, ¢, =410 bestimmt.

Die Grenzbelastung unter der Stahlschiene ergibt sich, wobei der Block
sonst unbelastet ist, gemaB (40):

g _ 373 cosg,

2a¢  4y(1—sing,)®

Die Druckfestigkeit dieses Betons betriagt rund 110 kg/cm2, die Bruch-
last, nach CaqQuort berechnet, 1770 kg/cm2, nach RiTTER 660 kg/cm2. Bei einer

Belastung von 400 kg/cm? kann jedoch schon ein andauerndes allmihliches
Eindriicken der Schiene in den Beton erfolgen.

¢, = 397 kg/cm?2.

10. Die Grenzbelastung bei achsial-symmetrischem
Spannungszustand.

Die Druckverteilung unter einem starren Kreisstempel, welcher auf der
sonst unbelasteten Oberfliche des Halbraumes liegt, wurde schon von
‘BoussinesQ im Jahre 1885 bestimmt. Ist rings um den Stempel noch eine
gleichméBige Belastung p, aufgebracht (Fig.14), so ergibt sich mit Be-

niitzung seiner Losung und mit Riicksicht auf die bei der Ableitung der Gl. (25)

gemachten Erwigungen die Funktion fiir die Druckverteilung in der Sohlen-

fuge mit P— na?

p(r) = po + TER =yt b (42)
2na)a®—r?

(Bezeichnungen nach Fig. 14)

Die Druckverteilungslinie hat einen dhnlichen Verlauf wie bei ebenem Form-
anderungszustand (s. Fig. 10).
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Auf Grund der angenommenen Definition der Grenzbelastung geniigt
uns jetzt die Kenntnis der Hauptspannungen in der Symmetrieachse. Wir
fithren die Zylinderkoordinaten #, z ein. Die aus der Elastizititstheorie be-
kannten Beziehungen liefern folgende Beitrige der Belastung pdr des ganzen
Kreises vom Halbmesser r zu den Hauptspannungen im Punkte M(0, z):

_ 3 —
dOI" - — p na pO Z( §_rf*fv —_— {7—1 2 d )dr
dra R5V02~‘f2 m R3va2__rz 3)
—na?
d(iZ:—:sP ZLZ—P'QZS y/—if—i:f_——:—__.
4na R*YVa?—r?

(Bezeichnungen nach Fig. 14, m bedeutet die Querdehnungszahl.)

Nunmehr haben wir die Integration nach » in den Grenzen 0 bis « durch-
zufithren. Auf elementarem Wege findet man

[ rdr __M\/zz—ﬂ(l__kz?__Zz?)
JROVai—r R s? 3R 3s%)’
c rdr Var—r

Jioyar=n =" Re

' r dr Vat—r( 1 2
[evms=""5rs (e t+ o)

Das Einsetzen der Grenzen und der Integrationsergebnisse in Gl. (43)
liefert die Spannungskomponenten

P—na?p, ( m——2) _ P—aatpy s*+22°

27 r T T T, s 4d)
Um die Hauptspannungen oy, o; von der vollen Belastung nach Fig. 4 zu
erhalten, hat man noch die Komponenten nach GIl. (24) hinzuzufiigen. Be-
zeichnet man wieder den halben Offnungswinkel mit & und die linke Seite
der FlieBbedingung (31) mit v, so findet man

st 2 ms?

Oy — —-

( Bgﬂi;‘_:& sin29< ~~~~~ 2 '3 cos? J) —:vfp
v = p—mam s 3m+2 .. = (43)
o g sin? .}( 5y T COS ))+—-—~~p0—2o

Dieses Verhiltnis erreicht seinen GrofStwert, wenn der Nenner des Aus-
druckes (45) gleich ist dem mit

S-S 4 2c0s?2Y — 2sin2 Y

2 (@—ﬂ?— + 3 cos? 9-) —6sin?2Y

multiplizierten Zahler.
Der dadurch bedingte Wert des Offnungswinkels sei 9,. Dann lautet
die FlieBbedingung (31)

ﬂ_;_% + 3(cos? G, —sin? 9,)

3m+2
m

= sing, . (45a)
+ 2(cos? 3, -—sin%Y,)
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(Hierin weist der Zeiger des Reibungswinkels darauf hin, daB dieser Winkel
von demjenigen bei ebenem Problem zu unterscheiden 1st)

Aus (45a) folgt

COS2 Yy = —

(46)

und die Ordinate des Punktes der Z-Achse, in welchem die FlieBgrenze er-
reicht wird,

, _a‘/4(m+1)+(m+2)sin<p2
"V 4@m—1)— (5m+2)sing,

Setzt man in (45) statt ¥ den Winkel 9, gemidB (46) ein, so erhilt man
den GroBtwert v(9,,) = sin ¢, als Funktion der Belastung und des Reibungs-
winkels ¢,. Daraus 148t sich die Grenzbelastung ermitteln. Mit der Be-
zeichnung

(464a)

. 4 (3 —sin ¢,)
ke = (m=T _EmE2g, y (47
m T 4m P2
und nach Einsetzen von ¢ = — ¢, cotg ¢, lautet das Ergebnis
P —(1-—sing,)m
— = ky COS g - €5 + [ + T 2m—1) : kz] Po - (48)

In der Baugrundlehre wird gewdhnlich mit der Querdehnungszahl m = 2
gerechnet. Dann ist

_ 16(3—sing,) . 3+ sing,
ks T 90 —singy)?’ " V3(1 — sing,) 49)

Diese Ordinate ist bei jedem Werte von ¢, gréBer als a.

Beispiel 2. Ein Kreisstempel wird in einen Metallkérpér bedeutend
groBeren AusmaBes eingedriickt; die FlieBgrenze des Materials bei reiner
Zugbeanspruchung ist o, und die Querdehnungszahl betragt m———l—BQ. Die
Blockoberfliche ist sonst unbelastet, p, = 0.

Da ¢, = 0 ist, folgt aus (47)
10

by = 12(17) — 4,16.

Die Durchschnittsbelastung, bei deren Uberschreitung das andauernde Ein-
dringen des Stempels in den Block beginnt, ergibt sich gemiB (48) mit

Cy=:
2= 5 ¢
P 208,
na
Mit dem Wert m = 2 erhidlt man gemiB (49) und (48)
16 P .
kz ———"§‘, 7‘;?-——2,67 g,

gegen 2,30 o, bei Streifenlast gemiaB (34).
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11. Anwendung bei Baugrunduntersuchungen.

Wenn wir die Ergebnisse der bisherigen Erwagungen bei Grﬁndungs-
aufgaben verwerten wollen, dann miissen wir zuerst untersuchen, wie weit
und in welcher Richtung der Spannungszustand der pseudosoliden Erdmassen
von demjenigen des elastisch-isotropen Halbraumes mit konstantem Elastizi-
tatsmodul abweicht. Wir zielen wieder dahin, die Belastung an der Grenze
des quasi-elastischen Verhaltens der belasteten Bodenschicht zu finden, d. h.
diejenige Hochstlast, bei welcher die Setzung nach dem Ausgleich hydro-
dynamischer Spannungen noch auf einem konstanten endlichen Wert ver-
bleibt. Diese Grenzbelastung ist wieder von der Bruchlast zu unterscheiden,
welche bedeutend hoéher sein wird, weil vor dem Bruch ein ausgedehntes
Gebiet rings um die Lastfliche in plastischen Zustand geraten muB. Die
unter Ziff. 1 angefithrten Erfahrungen beweisen jedoch, daBi bei Bauwerk-
grundungen die zu1a551ge Sohlenpressung die gesuchte Grenzbelastung nicht
iiberschreiten darf; andauernde Setzungen, welche nach Ablauf lingerer Zeit
zur Zerstorung von Bauwerkteilen fithren, konnen auch dann auftreten, wenn
die Sicherheit gegen Grundbruch genﬁgend grofB ist. Zur Abkiirzung werden
wir jenen Zustand der Erdmasse, bei welchem FlieBgebiete die Wirkungslinie
der Resultierenden der angreifenden Sohlenpressungen noch nicht erreichen,
auch als elastisch bezeichnen, obzwar sich der Baugrund nicht elastisch (im
wahren Sinne des Wortes) verhalten mag. Bei der Untersuchung des Gleich-
gewichtszustandes in bindigen Bodenarten hat man weiter den Umstand zu
beriicksichtigen, dafB dafiir lediglich die in der Festsubstanz wirkenden Span-
nungen maBgebend sind; jener Anteil der Beanspruchung, welcher durch das
Porenwasser iibernommen wird, ist also auBer Betracht zu lassen.

Fine Bodenschicht, welche lediglich durch ihr Eigengewicht und eine
gleichmiBig iiber ihre ganze Oberfliche verteilte Belastung p, beansprucht
wird, befindet sich im Gleichgewichtszustand, der durch die lotrechten und
waagerechten Hauptspannungen gekennzeichnet ist:

0y = — Py — V2, Oy = 0y = ¥ 0;. (50)
Hierin wird unter y das Raumgewicht, unter z die Tiefe unter der Oberfliche

und unter y die Ruhedruckziffer verstanden, die hier den Wert %—lv der

elastischen Stoffe vertritt. Die Querdehnungszahl m ist namlich bei Erd-
massen verdanderlich, sie ist allem Anschein nach eine Funktion des Span-
nungsverhaltnisses v, der die linke Seite der FlieBbedingung (31) bildet.
Nihert sich v dem Werte sin ¢, so sinkt m auf 2; im FlieBzustand kommt
es bei dichtgelagerten Bodenarten sogar zu einer VolumenvergréB8erung, d. h.
es ist dabei m < 2.

Die Ruhedruckziffer y diirfte vom Werte des Reibungswinkels abhiangig
sein. Dies folgt aus der Erwégung, daB eine unendlich ausgedehnte horizon-
tale Bodenschicht nicht ins Gleiten geraten kann, wenn sie nur durch ihr
Eigengewicht beansprucht wird. In diesem Falle mufl daher bei einem ko-
hiasionslosen Material gelten

¢ 1——sm<p
0z + % 0z 1+ sing

Die bisher durch Messungen festgestellten Werte von y lassen sich gut mit
der Beziehung erfassen

< sing, 7=

x=1-—sin ¢.
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Sie liefert z. B. fiir Sand mit ¢ = 350 die Ruhedruckziffer 0,43, fiir fetten
Ton mit ¢ = 169 die Ruhedruckziffer 0,72, was den Erfahrungen entspricht.
Somit lautet Gl. (50)

0r = —(po +72)(1—sing), 0. =—(po+72). (50a)

Nunmehr haben wir noch den EinfluB der Sohlendruckkrifte zu bestim-
men. Dabei ist es unerldBlich, vom Zusammenhang der Spannung und der
Forminderung eines Elementes der Masse auszugehen. Mit dieser Frage
befaBte sich schon BoussiNesQ20). Unter der Annahme einer vollkommen
losen pulverartigen Masse gelangte er zu Beziehungen der Form

o, — F’xi%yj 9 (1 —2ux¢). (51)

Hierin bedeutet ¢, die bezogene Dehnung und » einen Stoffwert. Die Bous-
sSINESQ’sche Masse ist volumenbestandig, daher erscheint in dem Forménde-
rungsgesetz nur eine Konstante.

Das tatsdchliche Verhalten der Bodenarten entspricht jedoch keineswegs
den Eigenschaften dieser ideellen Masse, wie neuzeitliche Messungen klar
beweisen. Die Fig. 15 gibt das Spannungsdehnungsbild eines Sandzylinders
74
+

-0025 N _ M 0 &z
¥ T T +
| } ;
l — / %
1
C?, !I 14 26,
I i
l[ /( % 30—0
e b,

)

Fig. 15

wieder, welcher unter konstant gehaltener Mantelpressung o, in der Achsen-
richtung Z auf Druck beansprucht wurde. Wire das Gesetz (51) giiltig, so
miifte die Linie K eine entgegengesetzte Kriimmung aufweisen. Tonproben
haben im dreiachsigen Kompressionsapparat dhnliche Spannungsdehnungs-
bilder ergeben, und zwar sowohl zentral entwéisserte Zylinder wie auch
Proben mit behindertem Wasseraustritt21). Auch fiir Betons und natiirliche
Steine gelten Linien desselben Charakters, wenn auch verschiedener Kriim-
mungsverhiltnisse. Auf Grund der Ergebnisse der Formanderungsmessun-
gen im dreiachsigen Druck kann die Vermutung ausgesprochen werden, daB
alle Baustoffe einem &dhnlichen Gesetze folgen, wobei die Kurve K von der
gebrochenen Linie O BC mehr oder weniger abweicht, sodaB der Zusammen-
driickungsmodul mehr oder weniger veranderlich ist. Unter o, und o, wiren
dabei die totalen in der Festmasse wirkenden Hauptspannungen (samt Ko-
hision, Innenspannungen usw.) verstanden.

Solange das Verhiltnis %2 etwa die Hilfte des kritischen Spannungs-

0y,

20) Essai théorique sur Péquilibre des massifs pulvérulents, Bruxelles 1876, S. 27.

21) L. Renpuric, Der Bauing. 1936, S. 559 und 1937, S. 459. Es sei hier bemerkt,
daB aus gewohnlichen Oedometerversuchen nicht auf Forminderungsgesetze der Boden-
arten im Baugrund geschlossen werden kann, da bei behinderter Querdehnung die kleinere
Hauptspannung nicht gemessen wird.
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verhiltnisses g-”— nicht iiberschreitet, kann auch bei Erdmassen die Kurve K

0
in diesem Bereich durch eine Gerade O A ersetzt werden. Bei ortlicher Be-
lastung des Halbraumes haben wir jedoch gerade in dem fiir das Verhalten
der Masse entscheidenden Gebiet mit Spannungen zu tun, welche dem
Kurvensektor AD entsprechen. (Dieses Gebiet nimmt ungefahr die Flache
ein, welche in der Fig.11 unten durch die Isochrome 2 und oben durch
den dicht unter der Lastfliche verlaufenden Bogen.der Isochrome 3 begrenzt
ist.) In diesem Gebiet wiirde der fiir einen konstanten Elastizititsmodul

giiltige Spannungszustand weit grofere Deformationen (z. B. ON statt OM)
hervorrufen, als es die Kontinuitit des Massivs zuldBt; in diesem Gebiet tritt
namlich eine Querdehnung i1 nahezu horizontaler Richtung auf, welche durch
die umhiillende Masse behindert wird und der Zusammendriickung der
auBlen liegenden Teile des Halbraumes gleich sein muB.

Es folgt daraus, daB die Druckverteilung in der belasteten Erdmasse
von derjenigen im elastischen Material verschieden sein muB. Sie wird dem
Spannungszustand einer belasteten Schicht dhnlich sein, welche liangs der
Z-Achse erwarmt wird.

Wir werden hier auf die Berechnung dieser Druckverteilung nicht naher
eingehen 22). Die theoretische Behandlung wird m. E. erst dann imstande
sein, die wirklichen Spannungen in der Erdmasse zu erfassen, wenn die
Forschung iiber die Formidnderung im dreiachsigen Spannungszustand wei-
tere Erfahrungen gesammelt haben wird. Dennoch liefert sie Anhaltspunkte,
aus welchen folgende Forderungen gezogen werden kénnen:

a) Im erwidhnten Gebiet groBer Spannungsunterschiede treten in der
Erdmasse stirkere Pressungen als im elastischen Material auf; die vorwie-
gend horizontale Hauptdruckspannung o, weist jedoch eine verhiltnismaBig
grofere Steigerung auf als die vorwiegend lotrechte Hauptspannung o;.

b) Dadurch wird das Hauptspannungsverhaltnis in diesem Gebiet giin-
stiger als im elastischen Halbraum.

c) Mit wachsenden Entfernungen von diesem Gebiet ndhert sich die
Druckverteilung in der Erdmasse dem Spannungszustand des elastischen
Halbraumes.

Diese theoretischen Ergebnisse finden sich durch folgende Erfahrungen
bestatigt: Bei zahlreichen Versuchen wurde die lotrechte Spannung im Sand
und Lehm gemessen 23) und tatsiachlich gréBer befunden als die Theorie
elastischer Stoffe angibt. Linien, welche die Senkung als Funktion der Be-
lastung darstellen, verlaufen im Bereich der im Griindungswesen zulissigen
LastgroBen entweder linear (als wenn die Masse dem Hooke’schen Gesetz
folgte) 24) oder sind viel weniger gekriimmt als die Spannungsdehnungs-
kurve (Fig.15). Bei oOrtlicher Belastung eines Tonblocks wurde eine etwa
zweimal kleinere Senkung festgestellt, als den Druckproben desselben Ma-
terials und den parallelen Versuchen mit elastischer Masse entsprechen

22) Die Grundlagen dazu sind in der Abhandlung enthalten: K. HrusaN, Der Span-
nungszustand des im Innern beanspruchten Halbraumes, Ingenieurarchiv 1943, H. 1, S. 9.
23) H. Press unternahm solche Messungen in der Baugrube, so daB der EinfluB
einer starren Unterlage ausgeschlossen wurde, welche die Laboratoriumsversuche be-
emﬂussen kann. S. Die Bautechnik 1934, S. 569.
: 24) AufschluBreiche Messungen fithrten z. B. RingeLING und Biemonp durch. Pro-
ceedings of the intern. conference on soil mechanics 1936, vol. I, S. 106 u. 111.
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wiirde 25). Alle diese Erscheinungen koénnen auf das Forminderungsgesetz
zuriickgefithrt werden, dhnlich wie bekanntlich der Unterschied zwischen der
Biegungs- und der Zugfestigkeit des Betons zu erklaren ist.

AbschlieBend kommen wir also zu der Ansicht, daB es bei dem heutigen
Stand der Forschung nicht moglich ist, die Spannungen in der Erdmasse mit
der gleichen VerliBlichkeit anzugeben wie in einem elastischen Material,
wenn man allen durch beweiskraftige Erfahrungen nicht gestiitzten Voraus-
setzungen ausweichen will. Wir sind daher nicht imstande, die Grenzbe-
lastung an der FlieBgrenze ohne &hnliche Annahmen zu ermitteln. Nichts-
destoweniger kénnen wir mit Beniitzung des Spannungszustandes des elasti-
schen Halbraumes eine Hochstbelastung bestimmen, welche etwas niedriger
sein wird und von welcher behauptet werden kann, daB sie keine andauernden
FlieBerscheinungen hervorruft. Diese Hochstbelastung bleibt somit auf der
Seite der Sicherheit, und wir werden sie als die zulissige Boden-
pressung bezeichnen; zuldssig, mit Riicksicht auf den Gleichgewichtszu-
stand in der Erdmasse; bei der Wahl der Sohlendruckgrenze ist daneben na-
tiirlich auch die GréBe der zu erwartenden Setzungen infolge Konsolidierung
der bindigen Bodenschichten in Betracht zu ziehen.

12. ZuliaBige Bodenpressung beim Laststreifen.

Auf Grund obiger Erwigungen haben wir die Gl. (40) mit Riicksicht
auf (50a) umzuformen. Bei der Ableitung wurde der Spannungsstoffwert o
als konstant angesehen, der EinfluB des Eigengewichtes hingt jedoch gemiB
(50a) von der Tiefe z ab. Wir nehmen daher an, daB auch die Spannungen
(50a) in der kritischen Tiefe konstant bleiben und setzen in (50a) den kleinst-

moglichen Wert von z, — a2 gemiB (41a) ein. Somit lauten die Haupt-
spannungen im kritischen Bereich:

. v — —2a a?
0 = —(1—sing,)(po + yay2) — L2000 2
= — 2 s 4 z2
03 = —(p +yay2) =T 22P0 S H

7 s3

(Bezeichnungen nach Fig. 13)

Fiir das Gleichgewicht der Schicht I ist wieder das Spannungsverhilt-
nis im Punkte C maBgebend, dessen Ordinate durch (41) gegeben ist. Die
zuldssige Bodenpressung ergibt sich hiermit zu

q 372Y3 l 1-sing, . *]
ol — = ——F————— {4y COS — SIN +va 2 + . 52
p 4 2a 4‘((1_Sin(pl)3 1 (7)1"‘ 2 (pl(pO 7 v ) po ( )
Dies kann in der Form angeschrieben werden

Pt = Arc+ Bipy + Cyya, (52a)

wodurch die Beitrige der Kohision ¢, der Oberflichenbelastung p, und der
halben Plattenbreite « voneinander getrennt erscheinen. Hierin bedeutet y
das spezifische Gewicht des Bodens unterhalb der Sohlenfuge. Die Beiwerte
A,, By, C; sind fiir verschiedene GroBen des Reibungswinkels ¢, in Tafel 1
angegeben.

25) A. B. Mason, Corvelation of surface loading tests with unconfined compression
tests for cohesive soils. Proceedings int. conf. on soil mech. 1936, vol. II, S. 169.

Abhandlungen VII M
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Tafel 1. Zuldssige Bodenpressung beim Laststreifen.
Beiwerte der Gl. (40) und (52a).

P k, A, ’ B 1 C,
0o 4,081 4,08 1 0
10°¢ 5,435 5,35 1,39 0,55
20° 7,646 7,18 1,86 1,22
30° 11,543 10,00 I 2,44 2,04
40° 19,125 14,65 | 3,20 3,10
500 36,054 23,18 | 4,23 4,57

Beispiel 3. Fiur einen vollig kohiasionslosen Sand mit ¢, = 409,
» = 1800 kg/m3 ergeben sich aus Tafel 1 bei 2 m Griindungstiefe folgende
Werte der zuldssigen Bodenpressung:

a) kein Grundwasser vorhanden; p,=2 X 0,18 = 0,36 kg/cm?2

Plattenbreite 2 m. p, = 3,20 - 0,36 + 3,10- 0,18 - 1,0 = 1,7 kg/cm?,
» 10 m. p,w = 3,20.0,36 + 3,10-0,18-50 =39

b) Sohlenfuge 1 m unter Grundwasserspiegel; p,=1-0,18--1-0,112 =
0,29 kg/cm? (Porenvolumen 320/o, Raumgewicht unter Auftrieb 1120 kg/m?3).

Plattenbreite 2 m. p,, = 3,20- 0,29 + 3,100,112 - 1,0 = 1,3 kg/cm?
” 10 m. puu = 3,20-0,20 4- 3,10 0,112 .50 =25

Beispiel 4. Der Boden unter einem Teile der Mittelmauer des in
Ziff. 1 erwahnten Barockschlosses erwies bei der Priiffung im Scherapparat
eine wahre Kohision ¢; = 0,10 kg/cm2 und einen Reibungswinkel ¢, = 229;
die Breite des Fundamentes betrug 1,20 m, das Raumgewicht des Bodens unter
der Sohlenfuge y =2000kg/m3, die Griindungstiefe ergab p,= 1,04 kg/cm2.

Gl. (52) liefert

pa = 1,04 4+ 8,45 [0,10 - 0,927 4 0,117 (1,04 + 0,20 - 0,60 - Y2)] = 3,0 kgfcm?
Dagegen betrigt die Bruchbelastung (mit ¢, cotg ¢, = 0,25 kg/cm?)

nach Caquor: 1,04 - 75 4+ 0,25 . 6,5 = 9,4 kg/cm?,
nach Ritter: 1,04-56 4+ 0,25-4,6 + 0,2-0,6 - 3,6 = 7,4 kg/cm?.

Andauernde Setzungen, welche eine Rekonstruktion der Griindungen un-
erliBlich machten, traten bei mittiger Belastung von 3,2 kg/cm? auf, d.h.
bei einer mehr als zweifachen Sicherheit gegen Bruch.

Geschichteter Baugrund.

Die zulassige Bodenpressung gemifB (52) wurde unter der Voraussetzung
abgeleitet, daf die Griindung auf einer machtigen Bodenschicht erfolgt, deren
Stoffwerte y, ¢y, ¢, als konstant angenommen werden koénnen. Es kommt
jedoch vor, daB der Baugrund aus Schichten verschiedener Beschaffenheit
besteht; ist dabei eine der tiefer liegenden Schichten weniger tragfahig als
das Material unmittelbar unter der Fundamentsohle, so ist auch der Gleich-
gewichtszustand dieser Schicht zu priifen. Es kann sich dabei eine kleinere

’

zuldssige Bodenpressung g& ergeben als diejenige, welche der Beschaffen-

heit der oberen Schicht entspricht.
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Wir betrachten irgend einen Punkt M(0, z) der Z-Achse (Fig.13) und
bezeichnen mit p,; die vertikale Druckspannung, welche in diesem Punkte
in der Festsubstanz des Bodens durch das Gewicht der dariiberliegenden
Bodensdule von der Hohe z entsteht. (Dieser Druck ist mit Riicksicht auf
eventuellen Wasserauftrieb festzustellen.) Die FlieBbedingung (31) fiir den
betrachteten Punkt M lautet, falls ¢’;, ¢’; die in M vorhandenen Stoffwerte
sind:

sin ¢' 9'—2ap, 2*
(po + p1) ) >+ = : 53 — sing’
i 7 2 /s 1 -
(7o + pl) "*"anl** L IT28R 4 o ocotg g

as

Sie liefert die Bodenpressung, welche in der Fundamentsohle mit Riick-
sicht auf die FlieBgrenze im Punkte M zuldssig ist:

' n 1 —sing'y .,

Tt evcosen + TS kgt (o 4 )| 4 pu- 59)

a a(z S F 2 .
2?(52—5“’1([)1

Beispiel 5. a) Unterhalb des in Beispiel 3 sub a) angefiihrten 2 m
breiten Griindungskoérpers befindet sich eine Tonschicht II, welche nach
ertolgtem Ausgleich der hydrodynamischen Spannungen d1e Stoffwerte
¢, = 0,10 kg/cm @, = 120 aufweist (Fig. 13). Die Oberfliche dieser
Schicht liegt in der Tlefe h=2,5 m, der Grundwasserspiegel in der Tiefe
1,75 m unter der Fundamentsohle

Da %4>z, gemifl (41) ist, haben wir das Spannungsverhiltnis fiir die
Tonschicht im Punkte N (Fig.13) zu priifen. Nach Beispiel 3 ist p,=
0,36 kg/cm?2, das Raumgewicht der Sandschicht I ist y = 1800 kg/cm?2, so daB
py=2,5-0,18—0,75- 0,068 (Auftrieb) = 0,40 kg/cm? betragt.

Gl. (53) liefert

’

q . : Jt , . - 2
2a= 50 (2 5o 208) [0,10 - 0,978 + 0,082 (0,36 + 0,40)] + 0,36 = 1,4 kglcm
\/7 25\7,25

gegen p,,, = 1,7 kg/cm? laut Beispiel 3.

b) Plattenbreite 10 m. Die Tiefe z,, gemaB (41) ist groBer als /4, d.h.
der Punkt, in dem das kritische Spannungsverhiltnis auftritt, liegt in der

Tonschicht II, und zwar in der Nihe des Punktes mit z~a]/2 laut (41a).
Die Ausrechnung mit Hilfe von (53) erglbt = ~1 ,5 kg/em? gegen p,,, =

3,9 kg/cm? in Beispiel 3. Andauernde Setzungen konnten hier also durch
einen Sohlendruck auf die Sandschicht 1 herbeigefiihrt werden, welcher nur
die Hilfte der zulédssigen Beampruchung dieser Schicht betragt. Ahnliche
Fille sind bekannt 26).

Anmerkung. Wihrend des Ausgleiches der hydrodynamischen Span-
nungen itbernimmt einen Teil der durch die Belastung hervorgerufenen Pres-
sungen das Porenwasser; infolgedessen diirften die in der Festsubstanz wir-
kenden Druckspannungen in allen Richtungen um dieselbe GroBe kleiner sein
als nach Ablauf dieser Ubergangszeit. Der Gleichgewichtszustand in der
Masse wird dadurch wihrend der Ausgleichsperiode ungiinstig beeinflu8t.

26) K&GLER-ScHEIDIG, Baugrund und Bauwerk, Berlin 1939, S. 126.
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Unsere Ausfithrungen bleiben jedoch in Kraft, da wir uns lediglich die Be-
dingung gestellt haben, dafl die Setzungen erst nachher konstant bleiben
sollen. :

13. ZuldBige Bodenpressung bei kreisférmiger Lastfliche.

Durch den im vorigen Abschnitt geschilderten Vorgang erhidlt man mit
der Annahme y = 1—sin g, fiir die Gl. (50a) und m = 2 fiir die Gl. (44)
folgende Hauptspannungen im kritischen Bereich:

. P—naip, a
0, = — (1 —singy) (py + ya) — — fo

- 2m st
P—ana?p, s? 4+ 222
03 = — (py + ya) — 27 Po st s

(Bezeichnungen nach Fig. 14.)
Die umgeformte Gl. (48) liefert die zuldssige Bodenpressung

P ___16(3—sin992)[ 1-sing,
qul—;’&;—m €2 COS g + — 5

sin s (po + Va)] +po- (54)

Man kann wieder die Beitrige der Kohision c¢,, der Oberflichenbelastung
p, und des Plattenhalbmessers a getrennt ausweisen:

Pt = As s + By py + Cy ya. {54a)

Die Beiwerte sind in der Zahlentafel 2 fiir einige Werte von ¢, angegeben;
@, bedeutet hierin den Winkel der inneren Reibung bei achsial-symmetri-
schem Spannungszustand mit iiberwiegend achsialer Druckbeanspruchung
(Ziff. 7).

Tafel 2. Zulidssige Bodenpressung bei kreisformiger Lastfliche.
Beiwerte der Gl. (54) und (54a).

16 (3 - sin @s)
P2 9(1 —~sin (}72)2 A2 BZ l C2
|
L 5,333 5,33 1 0
10° 7,358 7,25 1,53 | 053
20° 10,914 10,26 2,23 1,23
300 17,778 15,40 3,22 t 222
40° 32,844 25,16 4,77 | 3,11

Beispiel 6. Fiir einen kohésionslosen Sand mit ¢, =300, y= 1800
kg/m3, Griindungstiefe 2 m, erhdlt man mit Beniitzung der Tafel 2:

Plattendurchmesser 2 m. p,,; = 0,18(3,22- 2,0 + 2,22 . 1,0) = 1,6 kg/cm?
» 10m. p.y =0,18(3,22-20 + 222.50) =32

Geschichteter Baugrund.

Betrachtet man wieder irgend einen Punkt M(0, z) an der Wirkungs-
linie der angreifenden Kraft und bezeichnet mit p, das Gewicht der dariiber-
liegenden Bodensiule von der H6he z und Durchschnittsfliche 1, so lautet
die FlieBbedingung (31) fiir den Punkt M (Fig. 14)
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(po+/?1)5m‘{02+ 5 st )
= Ssing’,.

, — T2
(po +P1)(2“5m‘7)2)+ 21‘1 Po 7 z + 2c,cotg ¢y

Hierin sind unter ¢/, ¢, die Stoffwerte der im Punkte M vorhandenen Boden-
art verstanden. Die Bodenpressung, die in der Fundamentsohle mit Riick-
sicht auf die FlieBgrenze im Punkte M zuldssig ist, ergibt sich zu
b o 4 , , 1
= 5753 — — [CQCOS(pz—}-—z P2
~32[E2~(3—8m(pg)~281n¢p2]

sin g (po+p:) | + 7o (55)

T a?

Diec Anwendung dieser Beziehung erfolgt in derselben Weise, wie im
Beispiel 5 gezeigt wurde.

Die Gleichungen (53) und (55) ergeben fiir kleine Entfernungen von
der Lastfliche negative Werte. Dieses Gebiet bleibt demnach bei beliebig
grofem Sohlendruck elastisch. Nur eine negative Belastung (Beanspruchung
durch Zugkrafte) konnte hier den FlieBzustand herbeifiihren.

Zusammenfassung.

Es gibt Bauwerke, welche durch Jahrhunderte andauernd in den Bau-
grund einsinken. Diese Erscheinung kana nicht lediglich auf die Konsolidie-
rung bindiger Bodenschichten zuriickgefithrt werden ; es handelt sich vielmehr
um eine Gleichgewichtsstorung in der untenliegenden Erdmasse, welche
jedoch vom Bruch zu unterscheiden ist. Zur Untersuchung dieser FlieB-
erscheinungen wird der Spannungszustand im elastisch-isotropen Halbraum
ermittelt, dessen Oberfliche durch einen starren Korper belastet wird.
Strenge Losungen lassen sich beim ebenen Problem sowohl fiir eine mittige
wie auch fiir eine auBermittige Kraftiibertragung angeben. Auf Grund einer
einfachen Form der FlieBbedingung fiir begrenzte Gestaltinderungsarbeit
ergibt sich die LastgroBe bei Beginn permanenter plastischer Verschiebungen
unter streifenférmiger (GI. 40) und kreisformiger Lastfliche (Gl. 48). Diese
Grenzbelastung erweist sich als bedeutend kleiner als die nach bisherigen
Annahmen berechnete Bruchlast. Das Forminderungsgesetz der Erdmassen
1aBt zwar eine unmittelbare Anwendung der Elastizitidtstheorie auf Baugrund-
schichten nicht zu, doch lassen sich aus den Vertriaglichkeitsbedingungen Fol-
gerungen entw1cke1n welche eine Beurteilung des Gleichgewichtszustandes
in ortlich belasteten Bodenschichten ermoglichen. Daraus ergeben sich
Grenzwerte der Bodenpressung bei Streifenlast (Gl. 52, 53) und bei kon-
zentrierter Last (Gl. 54, 55), bei welchen die Bedingung erfiillt ist, daB keine
andauernden Senkungen auftreten sollen. Die Einfliisse der Griindungstiefe,
Plattenbreite und Kohéasion werden durch einige Beispiele und Zahlentafeln
veranschaulicht.

Résumaé.

1 existe des batiments qui, pendant des siecles, ne cessent de s’en-
foncer peu a peu dans le terrain. Ce phenOmene ne peut simplement s’ex-
pliquer par la consolidation de couches a cohésion, il s’agit 1a bien plutot
d’une perturbation de I’équilibre des couches terrestres inférieures, pertur-
bation qu’il ne faut cependant pas confondre avec la rupture. Afin d’étudier
ce phénomene plastique, on détermine I’état de tension du demi-espace iso-
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trope élastique, dont la surface est chargée d’un corps rigide. Il est pos-
sible d’indiquer des solutions rigoureuses en ce qui concerne le probléeme
a 2 dimensions aussi bien pour une charge centrée que pour une charge ex-
centrique. Le fait de pouvoir exprimer sous une forme simple la condition
de plasticité, en limitant la valeur du travail de déformation, permet de de-
terminer la grandeur de la charge dont dépendent les déplacements plas-
tiques permanents aussi bien pour une surface de charge en forme de bande
que circulaire (Eq. 48, 40). Cette charge limite est essentiellement plus petite
que la charge a la rupture considérée jusqu’ici. La loi de déformation des
masses terrestres ne permet pas Papplication immédiate de la théorie de
I’élasticité aux couches de fondations; cependant les conditions de compa-
tibilité conduisent a des conclusions donnant la possibilité de juger 1’état
d’équilibre d’une couche sollicitée par une charge locale. On peut en tirer
les valeurs limites des pressions sur le sol pour une charge en forme de
bande (Eq. 52, 53) et pour une charge concentrée (Eq. 54, 55); ces charges
vérifient la condition stipulant qu’il ne doit pas exister de tassements per-
manents. Les influences dues a la profondeur de fondation, a la largeur de
la dalle et a la cohésion sont illustrées par quelques exemples et tables
numeériques.

Summary.

There are buildings which, in the course of centuries, are continually
sinking more and more into the soil. This phenomenon cannot be attributed
solely to the consolidating of cohesive layers; it arises rather from a distur-
bance of equilibrium in the mass of earth underneath the building, a distur-
bance which must not be confused with rupture. In order to investigate this
phenomenon of plastic deformation the stress conditions are determined in
the elastic-isotropic semi-infinite solid whose surface is loaded with a rigid
body. Rigorous solutions can be obtained for the two-dimensional problem
with central and also eccentric transmission of force. Based on a simple form
of the yield condition of the limited shearing energy, the magnitude of the
load is found at the start of permanent plastic displacements for loading
on a strip (eq. 40) and on a circular area (eq. 48). This limited loading is
found to be much smaller than the rupturing load as calculated in accordance
with the assumptions hitherto made. The law of deformation of the earth
masses does not allow the theory of elasticity to be applied directly to foun-
dation layers; nevertheless the conditions of compatibility lead to conclusions
which make it possible to form a judgement of the equilibrium in locally
loaded layers of earth. From that, limiting values of the pressure on the soil
can be found in case of a loaded trip (eq. 52, 53) and a loaded circle (eq.
54, 55), where the condition is fulfilled that no continual settlement shall
occur. The influences of the depth of the foundation, of the width of slabs,
and of the cohesion are illustrated by some examples and numerical tables.
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