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FLIESSGRENZE BEI ORTLICHER BELASTUNG DES
HALBRAUMES.

LIMITE DE PLASTICITE PAR SUITE DE CHARGES LOCALES
DU DEMI-ESPACE.

YIELD POINT IN THE SEMI-INFINITE SOLID IN CASE
OF LOCAL LOADING.

Prof. Ing. Dr. K. HRUBAN, Brunn.

1. Andauernde Setzungen von Bauwerken.

Dk systematische Beobachtung monumentaler Bauten hat gezeigt, daß
es Bauwerke gibt, welche sich auch nach erfolgtem Ausgleich der hydrodynamischen

Spannungen im Baugrund allmählich weiter senken. Diese Setzung
erfolgt zwar mit einer geringen Geschwindigkeit, dauert jedoch auch
Jahrhunderte nach der Errichtung des Bauwerkes an, solange ihr nicht durch
geeignete Maßnahmen Einhalt geboten wird (wenn dies überhaupt möglich

ist).
Das bekannteste Beispiel solcher Senkungen stellt der schiefe Turm

von Pisa dar, der abschnittsweise in den Jahren 1174 bis 1350 erbaut wurde,
bis zum Jahre 1865 um etwa 2,40 m eingesunken ist und vor Verfestigung
des Baugrundes im Jahre 1934 sich immer noch in Bewegung befand, deren
Geschwindigkeit rund 1 mm jährlich betrug1). Die Ungleichmäßigkeit der
Baugrundverhältnisse hatte hier die Schiefstellung des Turmes infolge der
Setzungen zur Folge. Andauernde Sackungen wies auch der Dom zu Königsberg

auf2), mit dessen Bau in der ersten Hälfte des vierzehnten Jahrhunderts

begonnen wurde. Noch 500 Jahre später wurde eine Setzung um etwa
2 mm jährlich im Mittel festgestellt.

Derartige Erscheinungen können nicht durch einfache Konsolidierung
bindiger Bodenschichten erklärt werden. Die Zeitsetzungskurve solcher
Bauten nähert sich nicht asymptotisch einem endlichen Festwert, sondern
sie endet mit einer schiefen Geraden, deren Neigung die Geschwindigkeit
der andauernden Abwärtsbewegung des Bauwerkes darstellt.

Ich hatte in den letzten Jahren Gelegenheit, zwei ähnliche Fälle näher
zu beobachten. Es handelte sich um ernste Bauschäden, welche in einem
Schloß und in einem Konvent entstanden sind. Beide Bauwerke stammen
aus der ersten Hälfte des achtzehnten Jahrhunderts, und in beiden Fällen
war die Ursache der Schäden dieselbe: eine Mittelmauer senkte sich
andauernd weiter, während die Setzung der benachbarten Tragmauern, die den
Baugrund mit einer etwas kleineren Mittelpressung beanspruchen, schon zum
Stillstand gekommen war. Im ersten Falle hatte dies zur Folge, daß die
Pflasterung des 2,05 m breiten Ganges, der im erwähnten Schloß zwischen

') Terzäohi hat aus historischen Dokumenten die Zeitsetzungskurve des Turmes
zusammengestellt (Der Bauingenieur 1934, S. 1).

2) Kooler-Scheidig, Baugrund und Bauwerk, Berlin 1939, S. 130.
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den Mittelmauern verläuft, im Jahre 1937 schon eine Neigung von 17 cm
aufwies, welche sich alljährlich langsam vergrößerte. Auch im zweiten Falle
wurde ähnliches beobachtet, außerdem konnte dabei in einem anliegenden
Kellerraum eine bedeutende Aufwölbung des Kellerfußbodens um etwa
30 cm festgestellt werden, welche durch einen Schnitt in Fig. 1 wiedergegeben

ist. Die Setzung dieser Mauer ging in den Jahren 1939 bis 1942 um
etwa 0,5 mm jährlich weiter.

Die Untersuchung der Gründungsverhältnisse wies in beiden Fällen
unterhalb der betreffenden Mauer einen etwas größeren Sohlendruck auf als
unter den übrigen Hauptmauern, jedoch blieb dieser weit unter der nach
Caquot 3) oder nach Ritter 4) berechneten Bruchbelastung. Tatsächlich
ergab sich z. B. im ersten Falle die Bruchpi essung nach Caquot zu 9,4 kg/cm2
und nach Ritter zu 7,4 kg/cm2, während die beschriebene andauernde
Sackung schon bei einem Sohlendruck von 3,2 kg/cm2 auftrat. Die Lage und
Form des durch den emporgedrückten Boden gebildeten Walles (Fig. 1)
bestätigt ebenso, daß diese Sackung vom Bruch zu unterscheiden ist.

Man hat es bei diesen Erscheinungen mit einer Art Störung des
Gleichgewichtes in der Erdmasse zu tun, welche durch eine bedeutend kleinere
Beanspruchung hervorgerufen wird als der Bruch selbst, welche jedoch mit der
Zeit schwere Schädigungen der Bauwerke verursachen kann. Im folgenden

120
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Fig. 1

wird dieser Zustand der Gleichgewichtsstörung zuerst in einem
elastischisotropen Material untersucht, worauf die Anwendbarkeit der gewonnenen
Ergebnisse bei der Ermittlung zulässiger Bodenpressungen geprüft wird.
Die Grenzbelastung an der Fließgrenze wird mit jener Bruchlast verglichen,
welche sich aus den bisherigen Annahmen über den Grenzzustand des
Gleichgewichtes in den Erdmassen ergibt.

2. Der Spannungszustand des örtlich belasteten Halbraumes.
Wird die Last auf die Oberfläche des Halbraumes durch einen Körper

übertragen, so hängt die Druckverteilung in der Kontaktfläche von der
Durchbiegung dieses Körpers ab. Diesbezügliche Zusammenhänge hat Borowicka
untersucht5). Aus den Ergebnissen seiner Berechnungen ist zu schließen, daß

6) A. Caquot, Equilibre des massifs ä frottement interne, Paris 1934, S. 33 u. 59.
4) M. Ritter, Grenzzustände des Gleichgewichtes in Erd- und Schüttmassen, II.

Congr. A. I. P. C, Publication preliminaire, S. 1585.
5) H. Borowicka: Influence of rigidity of a circular foundation slab on the

distribution of pressures over the contact surface. (Proceedings of the intern. Conference on
soil mechanics, 1936, vol. II, S. 144). Derselbe: Druckverteilung unter einem gleichmäßig

belasteten, elastischen Plattenstreifen (A. I. P. C, II. Congres, Rapport final,
S. 840).
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eine merkliche Abweichung von der einer vollkommenen Starrheit der Platte
entsprechenden Druckverteilung erst dann erscheint, wenn die Verhältniszahl

6 EB ®
71

unter den Wert^^l sinkt. (Hierin bedeutet Ep bzw. EB den Elastizitätsmodul

der Platte bzw. des Halbraumes, h die Höhe der Platte, a die halbe
Breite der Platte.) Bei Baustoffprüfungen und bei Flachgründungen ist
jedoch diese Verhältniszahl gewöhnlich viel größer. So ergibt sich z. B. für
einen kreisförmigen Betongründungskörper auf sandigem Boden (h a^=
100 cm, ED 2\0 t/cm2, EB=\ t/cm2) der Wert von K zu etwa 35. Dies
trifft auch bei Gründungen auf breiten Eisenbetonplatten zu, denn hier hat
man statt der Biegungssteifigkeit der Platte diejenige des ganzen Bauwerks
in Rechnung zu ziehen. Es ist daher für die uns interessierenden Fälle im
allgemeinen mit jener Druckverteilung in der Lastfläche zu rechnen, die sich
für starre Platten oder Stempel ergibt.

Um den Gleichgewichtszustand in der Masse beurteilen zu können,
haben wir von dem Spannungszustand des Halbraumes auszugehen, der durch
diese Art Belastung hervorgerufen wird. Wir untersuchen zuerst das ebene
Problem.

Der elastisch isotrope Halbraum z>0 sei durch die Ebene XY begrenzt
(Fig.2), wobei die Achse Y durch den Koordinatenursprung O senkrecht
zur Bildebene verläuft.

Die Verschiebungskomponenten in der positiven x- bzw. y- und z-Rich-
tung werden mit £ bzw. ?] und £ bezeichnet. Der ebene Deformationszustand

sei dadurch gekennzeichnet, daß die Dehnung rj in der y-Richtung
überall Null ist, so daß die Spannung in der y-Richtung

<?x + Gz

m

beträgt; (tn bedeutet die Querdehnungszahl —). Die kubische Dilatation

dx CZ

und die Rotation eines Elementes

2 \dx2 \Sx dz

müssen den Gleichungen genügen 6):
1 de 1 0(0

0,
m — 2 dx tn — 1 dz

1 de 1 <5(';_n (i)
m — 2 dz tn — 1 dx

€ CO

Die Größen und sind daher konjugierte harmonische
m — 2 m —\ J fe

Funktionen in z und x.

6) S. z.B. S. Timoshenko, Theory of Elasticity, 1934, S. 163.
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Für den Fall einer zur Oberfläche senkrechten Linienlast q gemäß Fig. 2

liefert die bekannte Lösung folgende Spannungskomponenten:

2q x'z 2q 1q
R*

xz*
~R* (2)

Es herrscht jedoch eine Unklarheit in der Frage der Formänderung des
Halbraumes. Die von den bezogenen Dehnungen ausgehende Integration er-

jfi £
gibt mit G (E Elastizitätsmodul des Halbraumes):2(m+ 1)

£
m

2jtG

2jiG

m

2 x
— are tg — + —\

m 1

tn
In

2h +
z*

(3)

Dazu kommen noch die zu bestimmenden Konstanten Ct für £, C2 für £.
Die Verschiebungskomponenten (3) liefern die Größen

e
m

m

2 q z
~~7j~öWy

m 1

m
9 _*_

jtG R2

welche die Gleichungen (1) erfüllen. Es ist jedoch unmöglich, für ein
beliebiges m die Integrationskonstanten Cx, C2 so zu bestimmen, daß die
Forderung nach dem Verschwinden der Verschiebungskomponenten bei R—+oo
befriedigt wird, da der Symmetrie wegen auch in der Ebene YZ keine f-Ver-
schiebung möglich ist. Es wurde schon die Meinung ausgesprochen7), daß
der Spannungszustand (2) nur für den Wert m==2 eine strenge Lösung
darstellt. Bevor wir die Beziehungen (3) weiter verwerten, müssen wir sie daher
näher untersuchen.

Der Spannungszustand eines mit zwei entgegenwirkenden Kräften q
beanspruchten Zylinders (Fig. 3) ist bekannt8). In dem gewählten
Koordinatensystem lauten die Spannungskomponenten

2q \ 9 I z 2h — z^
ff* -irr(/w + R\

2q \z3 (2k — z)8

ihy
Iq \zö~ ~^[r* + R\

(2 h — zy
R\

-Li
2h\

(2 a)

Ist der Zylinder in der y-Richtung (senkrecht zur Bildebene) unbegrenzt,
ist weiter r\ 0 und werden die Verschiebungskomponenten so bestimmt,
daß C in der horizontalen Symmetrieebene und f in der Symmetrieebene OC
verschwindet, so erhält man

1= 2nG

2nQ

b
m^-(arctg^+arctg2Ä

l-ZJ
i-x

z 2h~z\ m-2
/^ + ^f")+ tn

z\ m - 2 x 1

tn \. R z* (2h-z)2 tn-2
RI m (¦-*)]¦

(3 a)

7) J. Ohde, Der Bauingenieur 1939, S. 451.
8) S. Timoshenko, Theory of Elasticity, 1934, S. 104.
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arctg—- + arctg^4

In der Oberfläche des Zylinders ist

ji z 2h — z 1 R z
~z~~±2> W~~~K{ ~~~2h* /?7~7^

und die Verschiebungen ergeben sich zu (das obere Vorzeichen für x> 0)

-°- 2nG Y
m 1

m
-f-

tn

m \\
q m — 1

n Q m
In ->)

In den Angriffspunkten der Kräfte q werden alle Komponenten unendlich,

da die Kräfte als in einem Punkt konzentriert angenommen wurden.
Sonst entsteht keine Singularität. Die Oberflächenverschiebung |0 ist in

der Nähe des Punktes O negativ, für *>x \h wird sie positiv und

erreicht ihren Größtwert im Punkte A. Im Punkte O müssen wir uns einen
kleinen Teil des Körpers ausgeschnitten denken, da hier eine Verschiebung
beider Seiten gegen O erscheint. Diese Schwierigkeit verschwindet jedoch
sofort, wenn die Verteilung der Last auf eine endliche Breite in Rechnung
gezogen wird.

o\

IQ
_ 0

z\ Ä »

Fig. 2

y IX. z\/ h \ X/M \/ 1

c\ 1 \

*—tt-

o£J
Ut VeZ^_/—*l£

<5* ^erx ' \ÜJ

Fig. 3 Fig. 4

Der Spannungszustand (3a) entspricht also allen Forderungen, welche
die Elastizitätstheorie an eine strenge Lösung stellt. Lassen wir jetzt den
Halbmesser h unbeschränkt wachsen, so geht der Zylinder in einen unendlich

großen Körper über, der nur durch die AY-Ebene begrenzt ist, und wir
bekommen den untersuchten elementaren Fall. Die richtigen Verschiebungskomponenten

für den mit einer Linienlast beanspruchten Halbraum sind also
durch die Gleichungen (3a) als lim f, lim l gegeben. Für endliche Werte

h -> oo A->°o
der Entfernung R sind das die Beziehungen (3), wobei die beiden
Integrationskonstanten Null sind, C± C2 0. Ebenso gehen die Ausdrücke (2a) in
(2) über. Die Gleichungen (2) und (3) stellen daher die strenge Lösung des
Halbraumproblems für einen beliebigen Wert von m dar, sie gelten jedoch
nur für endliche Entfernungen vom Angriffspunkte der Kraft. Im Unendlichen

muß man auf die Beziehungen (3a) zurückgreifen.
Aus (3) und (3a) folgt, daß sich die Oberfläche des Körpers in der

Umgebung der Last beiderseits gegen den Mittelpunkt der belasteten Fläche
verschiebt.
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Wenn sich die Last auf eine gewisse Breite kontinuierlich verteilt
(Fig. 4), so daß dq p(t)dt ist, kann man die Verschiebungskomponenten
durch Integration von d£, d£ bestimmen; diese gelingt jedoch in manchen
Fällen nicht. Die Aufgabe kann weitgehend vereinfacht werden, wenn man
ein zu den angreifenden Kräften konjugiertes imaginäres System hinzufügt,
so daß sich die resultierenden Verschiebungen durch Funktionen der
komplexen Veränderlichen a z + /* ausdrücken lassen.

Die Kraft: Iq, die in der negativen x-Richtung (Fig. 2) angreift,
bedingt, wenn jetzt die Konstanten außer acht gelassen werden, die Deformation

2jzG \ m Rz)
iq im — 2

x x xz\
(3 b)

Wir ergänzen sie durch eine weitere imaginäre Belastung der Oberfläche,
welche die Formänderung hervorruft

lq In R, l2 - 4^ arct£ - (3c)2nG ' * 2nG fe z

und überlagern alle drei Gleichgewichtssysteme (3), (3b) und (3c). Das
Ergebnis zeigt, daß jede harmonische Funktion, die in (3) vorkommt, durch
ihre konjugierte ergänzt erscheint; so wird z.B. das erste Glied in £ zu

_ m — 1 .im — 2 \ x m — 1

— 2 \nR — / h 1 arctR =r — 2 Ina, usw.
m \ m z m

Die resultierenden komplexen Verschiebungskomponenten f, Q ergeben sich zu

(3d)

q I m — 2 z
2ji u \ m a

Q ^ ni — 1 z \
2jiG \ m et

Der reelle Teil dieser Größen sowie deren Ableitungen stellen die
Einwirkung der reellen Kraft dar.

Bei der Ermittlung des Einflusses der Kraft dq p(t)dt gemäß Fig. 4
hat man in (3) statt x die Differenz x—t einzusetzen; für das zugehörige
komplexe Kräftesystem heißt das, den Wert x zJrlx in den Beziehungen
(3c) durch z-f/(x—t)==oi — it zu ersetzen.

H
Somit ergibt sich die zur Belastung J p(t)dt gehörige komplexe Ver-

Schiebung zu

£
ZJl u

Daraus folgt mit der Bezeichnung

J _±fpwrf_< (4)
n J a — It v ;
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/ im —
2 Gf~ InI - öi-P-^prf« + zJ\ + c„

f=2io(2VLlyrfo-*y) + C-.
(5)

Setzt man die Ableitungen von (5) in die bekannten Ausdrücke für die
Spannungskomponenten ein, so findet man:

vx + <yg _ f vx — üz __d^i ^xz
__ _ dJ

2 ' 2z " da' z ~ l da' {D)

Es bedeutet hier wieder o bzw. eine komplexe Funktion, deren Realteil

die durch die reelle Belastung gemäß Fig. 4 hervorgerufene
Spannungskomponente o bzw. r darstellt. Die kubische Dilatation ergibt sich zu

m — 2,e 7^J-mG
Die Größe / ist also eine Funktion der komplexen Veränderlichen a z-\-ix,
welche wir in der Form schreiben können:

J= 0 + IW.

Des weiteren besagen die Beziehungen (6), daß die Realteile von

ITx"a' und fxz

2z z

konjugierte harmonische Funktionen sind, welche in der komplexen Funktion
dJ _ d<P d@

da dz dx
erscheinen. Es ist daher:

Ox + oz ax— az d& d&
~ &, ^=z-^—, txz= —z —-. (7)2 2 dz dx

Dadurch sind auch die Hauptspannungen o±, os und ihre Richtungen
gegeben 9): c0

dz

Die Aufgabe beschränkt sich somit auf die Berechnung des Integrals /
(Gl. 4) und seines Realteiles ^, wodurch alle Spannungsgrößen bestimmt sind.

Bevor wir zu weiteren Ausführungen schreiten, wollen wir diese
Methode auf einen bekannten Fall anwenden, da wir die hier vorkommenden
Beziehungen später auch brauchen werden.

3. Die Isochromen bei der Beanspruchung durch eine Gruppe
von gleichmäßig verteilten Lasten.

Die Linienlast q 2ap greift so an, daß die Formänderung der Oberfläche

des Halbraumes in keiner Weise gehindert wird. Der Streifen
zwischen x= — a und x a wird gleichmäßig belastet mit konstantem Druck p
(Fig. 5).

9) Die mittlere Hauptspannung a2 wirkt in der y-Richtung und ist gleich °±~-°^



186 K. Hruban

Die Gleichung (4) wird zu

n J a — it 7t i v 'J'
t=-a

Der Realteil dieser komplexen Funktion ist

t=-a
bleibt also konstant auf dem ganzen Kreise K, der durch die Randpunkte
A, B des Streifens geht. Die Gleichung dieses Kreises ist

x2 + (z-- rcosd)2 r2, sin d —
a

Daraus folgt
d$> _ a(a2 — x2 + z2) d<P c^_ ax d<&

Tz ~~ 2r2z2
' rfä ' JJ ~~~ ~~ r^zU'

Durch Einsetzen in die Gleichung (8) folgt

-^-tt—- r — -sinl (Qa)
2 7t r 7t

v '

Die Isochromen (Hauptschubgleichen) o±—as konst. sind daher Kreise
K. Der absolut größte Wert der Schubspannung wird bei minimalem Wert
von r erreicht, d. h. bei r a, und beträgt

max r max -±——l — '- (10)
2 71

Die Hauptspannungen ergeben sich aus (9) und (9a) zu

<?i,3 — -(d + sin^) (11)
71

und wirken in den in der Fig. 5 angedeuteten Richtungen.

4. Belastung durch einen starren Plattenstreifen.
Die Senkung Co der Oberfläche muß in den Grenzen [x[<a konstant

bleiben. Aus (5) folgt, daß für 2=0
d Co tn — 1

-—-^ -pr- ü ist.
dx mG

Die komplexe Funktion // darf daher bei 2 0 in dem Bereich [x[<a,
jedoch nur in diesen Grenzen, keinen Realteil haben. Diese Bedingung wird
von dem Ansatz

J= — -- (12>
ia2 + a2

erfüllt, denn es ist bei 2 0:
c Co tn — 1 iA

er — x% dx mG ia*
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Nur wenn [x\>a ist, besitzt diese Funktion einen Realteil, und zwar
6 Co m — 1 ^

mCT '
TO

d x
x > a (13)

ix2 — a2

Aus (7) folgt, daß die Lastverteilung über den belasteten Streifen durch
den Realteil von / bestimmt ist, so daß, wenn wir jetzt statt x wieder t

a
schreiben und mit q J p{t)dt die Lastgröße bezeichnen,

— a

Falls der Ansatz (12) richtig ist, muß gemäß (4) sein

dt
J

71 J 7i]la .j2 a — it
Dies ist tatsächlich der Fall mit A — _- denn es ist

a

f dt

\a(a — it)ia2 — t2 ia2 + a2\
1 1 at—ia2l 7i

arcsin-, — -. ^
fl2 a2 L a(a — it)\ t/V a2

(14)

\~-3- T

SZ\

Fig. 5

r*—3 a— +

J^_
o\\

O ^
[AI{

__y_^/f
-X,

Fig. 6

Somit ist auch bewiesen, daß die Lastverteilung nach (14) die
vorgeschriebene Deformation hervorruft10). Die Senkungslinie der Oberfläche
kann in der Umgebung der Lastfläche aus (13) bestimmt werden (Fig. 6)

Au
J ox mG 7i J

dx

a '

m — 1 q v±i/v2 a2
—^- - In x^ V * t., x> a.mG 7t a

(Da sich die Belastung nach der Annahme senkrecht zur Bildfläche
ins Unendliche erstreckt, wird diese Differenz bei wachsendem x—>oo auch
unendlich.)

Um die Spannungskomponenten angeben zu können, haben wir noch
den Realteil <P der Funktion

10) Diese wurde auf einem anderen Wege zuerst von Sadowsky gefunden, Zeitschr.
f. angew. Math. u. Mech., Bd. 8, 1928, S. 107.



188

J

K. Hruban

9 <P + / V

zu bestimmen. Durch das Gleichstellen der reellen und imaginären Glieder
der Beziehung

KV
W a2

1

-T-Tg =(<P+*50S+ (z + /*)*
ergeben sich zwei Gleichungen, deren Auflösung die beiden Unbekannten
0, !P liefert. Das Ergebnis lautet

0 —
<7

71 \ 2

a> — xi + z*- + V(a2 + jc2+zä)2 — 4a2xi
(a2 4 x2 + z2)2 — 4 fl2^2 (15)

Führt man wieder einen Kreis durch die Randpunkte des belasteten
Streifens (Fig. 6), so ist sein Halbmesser

r
)/{a2 + x2 + z2)2 — Aa2x2

2 z

und die von seinem Mittelpunkt gemessene Ordinate des Punktes M(x,z)
beträgt

21 2-

(z1 und zc sind positiv, wenn sie die Richtung der positiven Z-Achse haben).
Mit diesen Bezeichnungen lautet (15)

0 — 2tt/- ^
(15a)

Die Spannungen.
Durch Ausführen der in den Gleichungen (7) vorgeschriebenen Operationen

erhält man nach einigen Umformungen:

q \^/r+ zl x2(r — z + 2z1) + zzx(r+zx)
2nr 2r2iz(r+Zl)

]•

0 q_ [lAl+ii x-(r—z+ 2zx) + zzx(r + zM
27irl\ z 2r2V7(747z1) J'

qx r2 + (z — zl)(rA-2z1)
2jir2 1z(r+zt)

(16)

a) Wächst die Entfernung R des betrachteten Punktes von der Mitte
des belasteten Streifens, so verschmelzen schließlich die Randjpunkte A und B
mit O und es gilt

R2
r 4- zx z, r —2z

und die Ausdrücke (16) gehen für R—>cx> in (2) über, wie es sein muß.

b) In der FZ-Ebene ist

z1 r, 2rz s2 a2 + z'1

und es ergibt sich für x== 0:
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q a2 q s2 + z2 .,_,

Die Differenz der Werte dieser beiden in den Punkten der Z-Achse
wirkenden Hauptspannungen erreicht ihren Größtwert bei 2 0 y'2, also um
0,414 a tiefer als bei der gleichmäßigen Lastverteilung. Die größte in der
Z-Achse vorkommende Schubspannung beträgt

max * * 2_ 1 Q245 * (18)2 3jiV3 ö 2ß

ist also um rund 23 o/0 kleiner als gemäß (10).

c) In der XY-Ebene, welche die Oberfläche des Halbraumes bildet,
ist 2 0, / oo. Die Gleichung (15) ergibt für die Oberflächenebene

7t}/a2 — x2

Die übrigen Glieder der Ausdrücke (16) fallen wegen der größeren
Potenzen von r im Nenner weg, so daß unter der Lastfläche

q
Ox — Gz T=^=,7ifa2 — x2

und in der ganzen Oberfläche %xz 0 ist.

d) Die Hauptspannungen werden durch Einsetzen in die Gleichungen

(8) bestimmt. Sie betragen

was auch geschrieben werden kann (Fig. 6):

— _-$- MD T- MÖ
°UZ ~~2™ ~7f2~rz

Es sind also überall Druckspannungen. Ihre Richtungen sind durch
die Beziehung bestimmt (ß nach Fig. 4 gemessen)

tff 2 » --x Jfj+ZzQCz-zJ + r»
(20)ig^, _ x(r+2zl)(x2 + zzl)-r2z' K }

wodurch auch die isostatischen Kurven gegeben sind. Die Hauptdrucklinien
haben die Form von Hyperbeln höheren Grades, deren Asymptoten durch
den Punkt O gehen.

Die Gleichung der Isochromen (o1—a3 konst.) ist

-* =*, oder x2 + z2 --kr*z 0. (21)
ryrz

Ihre Gestalt ist aus Fig. 10 und der photoelastischen Aufnahme Fig. 11

ersichtlich n).
e) Auf dem Halbkreis mit dem Halbmesser a ist R r-^ a, z± z und

man erhält

n) G. Mesmer, Spannungsoptik, 1939, S. 197.
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q 1/äT* „ 3<? Ja+ z q z
ax —

Ol —

Ana) z ' z Ana) z ,T" 47ta|/z(a + 2)'

s ' a 4 z

(22)

Die Richtungen der Hauptspannungen halbieren auf diesem Halbkreise
die Winkel, die der Strahl MD mit der 2-Richtung bildet.

f) Auch für die Punkte N, die auf der Hyperbel a2 — x2 + z2 0 liegen,
ergeben sich sehr einfache Ausdrücke für die Spannungen; die Abszisse xx
des Punktes /V ist gleich dem Halbmesser rt des durch A, B, N gehenden
Kreises (Fig. 6), und die Ordinate zt verschwindet. Es folgt

3^-2 ^ _ q r1 + z
(23)<Jx-

Q rx + z

4nrx V>V
Gz —

47tr, \rlZ 4nx ^riZ

f-+.——a

WM06b

Ff

81

Sfr
JL

Fig. 7

Der nach den Formeln (16), (17), (22) und (23) berechnete Verlauf
einiger Spannungskomponenten ist in Fig. 7 wiedergegeben. Für praktische
Berechnungen lassen sich Gl. (16) auf die Form bringen

fr+zx

(z — z,)(/--2z,)1 i/r + ii4ttt l
Der antimetrische Fall.

Die Streifenlast ist durch die Funktion

p(t) tf(a,t)
gegeben. Das resultierende Drehmoment sei mit M bezeichnet. Die Be-
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dingung, daß die Verformungslinie der Oberfläche innerhalb des Streifens
linear verlaufen muß, wird durch den Ansatz befriedigt

Aa +b).ŵa2 4 «ä

Dieser ergibt die Sohlenkräfte

P(t)
71 a2)/a2 — t2

Die Deformation des Halbraumes ist antimetrisch. Die Verschiebungen
der Oberfläche betragen im Bereiche der positiven x:

für x <C a: £0 —

für x > a: £0 — ~ > ro ~mG na mG n a1

Der Realteil der komplexen Größe / ergibt sich zu

Mx(r — z+z1)_ox+ az

m — 2 M a-
mG 7t

-)/a2—x2 r __nm — \ M x
a* mG 7t ad

m — 2 M m—1 Mx — V x2 — a2

0 —
na2 r^z(r -f zt)

Somit ist der Spannungszustand bestimmt, die Spannungen können
gemäß (7) ermittelt werden.

Durch Überlagerung dieses antimetrischen und des durch (15a)
gegebenen symmetrischen Zustandes erhält man die Lösung für außermittige
Streifenbelastung (bei reibungsloser Kraftübertragung).

5. Reibung in der Sohlenfläche.
Aus (5) und (12) ergibt sich der Zuwachs der ^-Verschiebung in der

Oberfläche (2 0) zu

d SQ
__

m — 2 m — 2 q
dx 2mG 2mG n^fa2 -\- a2

Der Realteil dieser Funktion ist

x» 1

- ^ d£o m — 2 qfür \x\<Ca: —^ v
dx 2mG n^a2 _x2 '

für x >a: ^ 0.
ox

Der Mittelpunkt der Lastfläche darf keine Verschiebung in der Ar-Richtung

erleiden; es ist daher

m — 2 q xdx — ———- — are sin -2mG n a
für \x\<a: & [^j ä x

0

r.. ^ ^ m — 2
für x > a: £oa — -——q.4mG

Die Oberfläche verschiebt sich also unter der Sohle der Lastplatte von
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beiden Seiten gegen die Mitte, die Größe der Verschiebung wächst von Null
(im Punkte 0) zuoi Größtwert f0fl (unter dem Rande).

Falls dadurch eine Reibung entsteht, so wirken die Reibungskräfte,
die den Halbraum beanspruchen, nach außen hin. Elastische Deformationen
werden jedoch kleiner sein als plastische Verschiebungen, welche das
Material unter den Rändern der Lastfläche erleidet und welche ein Ausweichen
des Materials nach außen hin zur Folge haben. Die durch das Fließen
hervorgerufenen Reibungskräfte sind also den ersteren entgegengerichtet. Die
resultierende Schubbeanspruchung der Oberfläche wird von dem Verhältnis
der elastischen und der plastischen Verschiebungen abhängig sein, daher
auch von den Materialeigenschaften des Halbraumes und des Lastkörpers,
sowie auch von der Größe der Last selbst. Die weiter folgenden Ausführungen

zeigen, daß der Einfluß der plastischen Erscheinungen nicht dem
Lastzuwachs proportional ist. Es ist zu erwarten, daß bedeutende Reibungskräfte
in der Sohlenfläche erst bei Belastungen auftreten werden, welche sich der
Bruchlast nähern. Ihr Einfluß beschränkt sich nach dem de St. Venanf sehen

Prinzip auf kleine Entfernungen von dem Laststreifen. Alle diese Gründe
führen dazu, daß Sohlenreibung bei den Gleichgewichtsuntersuchungen nicht
in Betracht gezogen wird. Dieses Vorgehen scheint gerechtfertigt zu sein,
solange die plastischen Formänderungen in begrenzten Gebieten unterhalb
der Ränder, nicht jedoch in voller Breite der Lastfläche zum Vorschein
kommen. Da wir in den weiteren Ausführungen lediglich den vorwiegend
elastischen Zustand behandeln, werden wir die durch Sohlenreibung
hervorgerufenen Schubkräfte außer acht lassen und beschränken uns auf die
Untersuchung einer reibungslosen Lastübertragung.

Es sei noch bemerkt, daß durch Versuchsmessungen entweder keine oder
ganz unbedeutende Reibungskräfte zwischen Betonkörper und Sandschüttung
festgestellt wurden12), welche die Sandschichten in der Richtung gegen die
Plattenmitte beanspruchten. Sie traten erst bei größeren Belastungen auf
(über 4 kg/cm2) und betrugen höchstens 6% des lotrechten Sohlendruckes.
Die obigen Erwägungen finden sich durch diese Messungen bestätigt.

6. Einfluß der Oberflächenbelastung.
Wirken an der Oberfläche außer dem starren Plattenstreifen auch noch

andere Lasten, so wird die Sohlendruckverteilung von der bisher behandelten
verschieden sein, da die Verformungslinie der Oberfläche des Halbraumes
innerhalb der Ränder des Streifens nunmehr unter der Einwirkung der
gesamten aufgebrachten Lasten linear verlaufen muß. Für weitere Ausführungen

ist der folgende Fall zu untersuchen: der Halbraum trägt beiderseits
des Streifens eine gleichmäßig verteilte Belastung p0 (Fig. 13).

Wäre die Oberfläche überall nur mit p0 belastet, so würden die Spannungen
bei verhinderter Querdehnung betragen

o*=—Po. (24)
m — 1

Die Senkung der Oberfläche wäre dabei überall gleich. Falls man die
Belastung p0 von dem Streifen AB entfernt, so entsteht hier eine Aufwölbung,

deren Neigung ^ nach Ziff. 3 angegeben werden kann.
G X

12) F. Siemonsen, Die Lastaufnahmekräfte im Baugrund. Bautechnik 1942, S. 319.
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Wird jetzt die Streifenlast q hinzugefügt, welche die Oberflächensenkung
Co' verursacht, so lautet die Bedingung für das Ebenbleiben der Sohlenfläche

AB:

d X d X

Diese wird offenbar erfüllt, falls von der Last q der Teil 2ap0 gleichmäßig
und der Rest q~2ap0 nach dem Gesetz (14) verteilt wird. Der erste Teil

d lruft dann eine Neigung + -^-, der Rest eine Nullneigung hervor, so daß die
c x

obere Bedingung befriedigt wird. Somit ist die Druckverteilung unter einer
starren Platte in diesem Falle durch die Funktion gegeben

,W=,0+^* (25)
7t y al — tl

Es ist demnach möglich, daß auch ein starrer Körper die Last gleichmäßig

verteilt. Das könnte jedoch lediglich in dem Falle vorkommen, wenn
die gleichmäßige Oberflächenbelastung beiderseits des starren
Plattenstreifens dem mittleren Sohlendruck gleich wäre. Der Spannungszustandx
der durch das gleichzeitige Einwirken beider Belastungen p0 und q entsteht,
wird durch die Summen der Komponenten gemäß (24) und (16) dargestellt;
in die Formeln (16) ist jedoch statt q nur der Teil q — 2ap0 einzusetzen.

Um zu überprüfen, wie weit die Verteilungsgesetze (14) und (25) mit
der in den Baukonstruktionen tatsächlich vorkommenden Spannungsverteilung

im Einklang sind, unternahmen wir im Jahre 1936 in der Forschungsanstalt

für das Bauwesen in Prag Versuchsmessungen, über welche ich dem
II. Kongreß der IVBH im Jahre 1936 teilweise berichtete13). Es wurden
Spannungen zwischen Lastplatten aus Messing und einer elastischen Gummischicht
oder einer Sandschicht gemessen. Mit Rücksicht darauf, daß durch plastische
Formänderungen in den Plattenrändern und im belasteten Material unterhalb
der Ränder die ins Unendliche reichenden Spannungsspitzen abgestumpft
werden, ergaben sich Linien, welche im sonstigen Bereich der Lastfläche
mit den nach (14) und (25) berechneten Kurven gut übereinstimmen.

Seitdem wurden Berichte über weitere Versuche veröffentlicht, von denen
besonders jene von Dr. Ing. Siemonsen14) besondere Beachtung verdienen.
Es wurden u. a. Spannungen in der Gründungssohle eines quadratischen
Betonkörpers von 3,5 X 3,5 m Sohlenfläche gemessen. Die Ergebnisse
bestätigten eindeutig den hohlparabolischen Verlauf der Drucklinie im mittleren

Teile der Lastfläche, wie es der vorangeführten Theorie des elastischen

Halbraumes entspricht.
Alle Messungen weisen weiter darauf hin, daß bei steigender Belastung

das Material unter den Randgebieten mehr und mehr ausweicht, was eine
Wanderung der Pressungen gegen die Mitte der Lastfläche verursacht. Wenn
wir jetzt die Grenzbelastung bestimmen wollen, bei welcher dieses
Ausweichen permanent zu werden beginnt, haben wir den unter Ziff. 4 und 6
beschriebenen Spannungszustand des Halbraumes auf Grund der Fließbedingung

des Materials zu untersuchen.

13) Hruban und Hacar, Schlußbericht des II. Kongresses der I. V. B. H., Bericht
VIII 2, Berlin 1938.

14) Die Bautechnik, 1941, S. 159 und 1942, S. 319.

Abhandlungen VII 13
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7. Die Fließbedingung.
Wir wissen bisher sehr wenig über das Verhalten verschiedener Stoffe

an der Fließgrenze bei dreiachsigem Druck mit Hauptspannungen verschiedener

Größe. Die meisten bisherigen Zusammendrückungsgeräte sind so
eingerichtet, daß lediglich entweder ein ebener Deformationszustand oder
ein achsial-symmetrischer Spannungszustand untersucht werden kann. Die
Forschungen der letzten Jahre über die Mechanik des bildsamen Verhaltens

von Flußstahl15) beweisen jedoch das Nichtzutreffen der MoHR'schen
Hypothese, nach welcher die mittlere Hauptspannung keinen Einfluß auf
die Fließbedingung ausübt. Dieselbe Schlußfolgerung ergeben Versuche,
welche Kjellman 16) in einem besonders konstruierten Kompressionsapparat
mit Sand durchgeführt hat.

Wenn man die bisherigen Arbeiten überblickt, gelangt man zu der
Anschauung, die zuerst von Huber ausgesprochen und später von mehreren
anderen Forschern genauer formuliert wurde, daß die Fähigkeit des
Materials, sich elastisch zu verhalten, dadurch beschränkt ist, daß die bezogene

Gestaltänderungsarbeit einen Grenzwert nicht überschreiten kann.
Dieser Grenzwert scheint von der durch die Vorgeschichte des Materials in
ihm akkumulierten Energie abhängig zu sein. Die bezogene Gestaltänderungsarbeit

ist der Summe der Quadrate der Hauptschubspannungen
proportional, die akkumulierte Energie ist eine Funktion der Hauptnormalspannungen,

wobei jedoch in die Komponenten die gesamten in der Festsubstanz
der Masse wirkenden Spannungen einzubeziehen sind (also auch Innendruck
und Nebenspannungen). Wenn wir mit oj o/h ani diese totalen Hauptspannungen

bezeichnen, wobei wieder o/ die kleinste und om die größte
Druckspannung bedeutet, so läßt sich die Fließbedingung im allgemeinen in der
Form anschreiben

(oi— on)2 + (oi — Gin)2 + (an — gw)2 f(ah oIh am). (26)

Für praktische Berechnungen wird eine einfache Form der Funktion /
gewählt und die darin vorkommenden Konstanten werden so bestimmt, daß
sie im gewählten Spannungsbereich den Erfahrungen möglichst gut
entsprechen.

Wir werden uns hier mit der einfachsten Form dieser Funktion begnügen,

welche bei ebenem Deformationszustand zu linearen Bedingungsgleichungen
führt. Wir nehmen an, daß in dem belasteten Material außer den

Spannungen gemäß Abschnitt 4 bzw. 6 nur noch ein hydrostatischer
Spannungszustand mit allseitiger Pressung o0 herrscht, welcher durch Molekularkräfte,

Vorbelastung, Eigenspannungen und Nebeneinwirkungen hervorgerufen
ist. Die Hauptspannungen des durch die Belastung bedingten elastischen

Zustandes seien wieder o1, o2, a3. Dann betragen die totalen Hauptspannun-
nungen im belasteten Material

oi o0 + ax, gu o0 + g2, Gm — o0 + a3.
Die Differenzen auf der linken Seite der Gleichung (26) sind

Gf — Off Gt G2 USW.

15) P. Bijlaard, Theory of local plastic deformations. A. I. P. C, Memoires, vol.
6, S. 27. — Hohenemser u. Präger, Zeitschr. f. angew. Math. u. Mech., 1931, S. 1. In
diesen beiden Abhandlungen ist weiteres Schrifttum angeführt.

16) J. Hvorslev, Über die Festigkeitseigenschaften gestörter bindiger Böden, Keben-
havn 1937, S. 100. — W. Kjellman, Proceedings of the intern. Conference on soil
mechanics, 1936, vol. II, S. 16.
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und die rechte Seite wird zu einer Funktion von p0, ot, o2, o3. Wir nehmen an,
daß sich die Wurzel dieser Funktion in eine Potenzreihe nach der

durchschnittlichen Hauptspannung — ^ entwickeln läßt, von welcher wir
nur die ersten zwei Glieder behalten. Das Ergebnis kann wie folgt
angeschrieben werden:

(^fff+(^)2+ (^py =k;[o+?±±°i±j>»y. (27)

Dies ist eine einfache Form der Fließbedingung für isotrope Stoffe, welche
mit dem Prinzip der begrenzten Gestaltänderungsarbeit im Einklang steht.
Der Beiwert k und die Spannung o bedeuten hierin Stoffkonstanten; k ist
durch die innere Reibung und a durch Innenspannungen bedingt. Je nachdem,

w elcher von diesen beiden Werten die Beschaffenheit des Materials
mehr^beeinflußt, können drei Gruppen von Stoffen unterschieden werden.

I. Gruppe. Stoffe ohne innere Reibung, bei welchen o gegenüber o1,
o2, tf3 sehr groß und k sehr klein ist, wie z. B. Metalle. (Für Flußstahl wird
z.B. a= 320 000 kg/cm2 angegeben, k ist dann ^ 0,0075). Hierher
gehören auch wassergesättigte Tone bei schneller Lastaufbringung. Die rechte
Seite der Beziehung (27) kann somit als konstant angenommen werden, und
diese verwandelt sich in die Huber-v. MiSES-HENCKY'sche Fließbedingung für
StaW

(oi — o*)* + (Oi — os)2 + (o2-o,)2 - 2(kG)2 2o2, (28)

a) Beim einachsigen Zug ist a2 a3 0 und es folgt
ox gv (28 a)

ov bedeutet also die Fließgrenze in dem vereinfachten Spannungsdehnungs-
diagramm (Fig. 8) bei reiner Zugbeanspruchung. Derselbe zahlenmäßige
Wert ergibt sich aus (28) für einachsige Druckbeanspruchung.

Fig. 8

b) Im Falle ebener Deformation ist
Oi + os

m

Im Anfangsstadium des Fließvorganges ist jedoch bei den meisten
Stoffen m ¦=- 2 und die Gl. (28) liefert damit die Fließbedingung

2
Oi — g3 ~^gv. (28b)

Der Spannungsunterschied könnte daher im Verhältnis 2:V3 =-1,15 höher sein
als bei reiner Zugbeanspruchung. Es gibt also eine obere und eine untere
Streckgrenze, was auch mit den Beobachtungen übereinstimmt17).

17) I.e. unter ^), S. 41.
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c) Wir betrachten noch den folgenden achsial-symmetrischen
Spannungszustand, der bei der Belastung des Halbraumes durch einen starren
Zylinderstempel vorkommt: in der Richtung der Z-Achse wirkt die größte
Pressung o3, die beiden anderen Hauptspannungen sind gleiche Pressungen
ot ==- g2. Die Gleichung (28) liefert für diesen Fall

Oi — oz gv> (28c)

der Spannungsunterschied ist also derselbe wie bei einachsiger
Beanspruchung.

II. Gruppe. Schüttmassen mit o 0. In der Fließbedingung (27)
verbleibt nur die Konstante k. Da hier nur Druckspannungen (mit negativem
Vorzeichen) vorkommen können, schreiben wir jetzt die Fließbedingung (27)
wie folgt an

a) Im einachsigen Spannungszustand ergibt sich

a3 0, (30a)
diese Stoffe besitzen keine Druckfestigkeit.

b) Für den Fall der ebenen Deformation lautet die Fließbedingung
(mit m 2)

%t* W (30b)

Dies ist die bekannte Gleichung der klassischen Erddrucklehre, wenn der
Reibungswinkel mit

k
w, are sin -=V3

bezeichnet wird.

c) Für die achsial-symmetrische Beanspruchung müssen hier zwei Fälle
unterschieden werden.

<x) Der Achsialdruck o* ist größer als der Manteldruck o1 o2. Beachtet
man, daß

2Qi + o3 _ Qi + <t3 Ob— Ol
3 " 2 6

ist, so bekommt man die Fließbedingung in der Form

(30 c)
ax 3 k

Oi + a3
"~ 6 + k "

Es erscheint in diesem Falle ein anderer Reibungswinkel
3k

ß) Der Achsialdruck a± ist kleiner als der Manteldruck o2 as. Das
Einsetzen in (30) führt zu der Fließbedingung

G3 Gx 3 k
Gx + G3 6 — k

(30 d)
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und der Reibungswinkel erreicht den Wert
3k

wo are sin ^^6 ö — k

Falls die angenommene allgemeine Fließbedingung (27) dem tatsächlichen
Verhalten des Materials entspricht, müssen also bei verschiedenen Span-
nungszuständen verschieden große Reibungswinkel zum Vorschein kommen.
Es ergeben sich z. B. für k 1 die Werte w2 25 ° 20', cps 37 °; der Rei-
bungswinkel bei ebener Formänderung wi 35 ° 20' liegt dazwischen.

Die erwähnten Messungen von Kjellman haben tatsächlich bei seinem
Versuchssand für den Fall coc) einen kleineren Reibungswinkel ergeben als
für den Fall b) und zwar 35° gegen 43°; der Unterschied ist jedoch nicht
so groß, wie die Gleichungen (30c) und (30d) angeben.

Den Fließbedingungen (30b) und (30c) sind weiter die Ergebnisse
verschiedener Versuchsmessungen 18) gegenüberzustellen, welche beweisen, daß
der Zusammenhang beider Werte (ö3 — r^) und (o1 -f- a3) nicht linear ist,
sondern durch eine leicht gekrümmte Linie dargestellt werden kann. Wir
müssen daher die Brauchbarkeit der vereinfachten Fließbedingung (27) auf
einen Spannungsbereich begrenzen, in welchem die Umhüllungskurve der
MoiiR'schen Hauptkreise durch eine gerade Linie nach Coulomb ersetzt
werden kann (Fig. 9). Dies ist bei den praktischen Aufgaben der
Bodenmechanik zulässig, da hier nur verhältnismäßig kleine Unterschiede von
Druckspannungen vorkommen.

Jedenfalls kann durch die Annahme des Satzes von der begrenzten
Gestaltänderungsarbeit die Tatsache erklärt werden, daß mit Benützung
verschiedener Meßeinrichtungen verschieden große Reibungswinkel bei
demselben Material festgestellt werden; der Winkel der inneren Reibung dürfte
darnach einen veränderlichen, von der Größe der mittleren Hauptspannung
abhängigen Wert haben, und es wäre besonders zwischen den Werten q>x

(bei ebenem Formänderungszustand) und cp2 (im Falle [o3[>\o1\ \o2\) zu
unterscheiden.

III. Gruppe. Stoffe mit Kohäsion und innerer Reibung. Die
Fließbedingung (27) bleibt mit beiden Konstanten k und o in Kraft. Es folgt
daraus für den einachsigen Spannungszustand, daß die Fließgrenze bei reinem
Druck höher liegt als bei reinem Zug. Für dreiachsige Druckbeanspruchung
läßt sich die Fließbedingung für alle drei bei der vorigen Stoffgruppe
behandelten Fälle auf die Form bringen

13~!\ - siny. (31)
GX + G3 + 2 G ^ V '

Der Reibungswinkel w hat wieder in einem jeden dieser Fälle einen
verschiedenen Wert wt, cp2, ws und zwar denselben, wie in den Gleichungen
(30b), (30c), (30d). Sonst ist die Fließbedingung (31) identisch mit der
bekannten Coulomb'sehen Gleichgewichtsbedingung für kohärente Stoffe;
die Kohäsion im CouLOMß'schen Sinne ist durch

O'M — c — — Gtgw (32)

gegeben. Wie bei der vorigen Stoffgruppe muß man die Gültigkeit der
Bedingung (31) wieder nur auf einen bestimmten Bereich, z. B.MN (Fig. 9),

18) Z. B. W. Bernatzik, Versuche über Festigkeitseigenschaften von Sand im
dreiachsigen Spannungszustand, Wasserwirtschaft und Technik, Wien, 1935, S. 184.
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beschränken, in welchem die krumme Umhüllungslinie der Spannungshauptkreise
durch eine Gerade ersetzt werden kann. Die Größe o ist von der

Wahl dieses Bereiches abhängig, sie bedeutet eine Druckspannung und ist
in die Gl. (31) mit negativem Vorzeichen einzusetzen, ebenso wie die
Druckspannungen a±, a3. Der Wert ov bedeutet hier jedoch nicht die Fließgrenze
bei reiner einachsiger Druckbeanspruchung; wenn ^ 0 ist, richtet sich die
Größe von

2 sin <p
gv .—- g (32 a)

1 — sin 9?
v '

offenbar nach dem Werte des Reibungswinkels cp und damit auch nach der
Größe der mittleren Hauptspannung o2. Die Druckfestigkeit wird also bei
einseitig behinderter Querdehnung größer sein als bei reiner Druckbeanspruchung.

Fig. 9

8. Die Belastung an der Grenze des elastischen Zustandes.
Wir wollen jetzt mit Hilfe der im vorigen Abschnitt gewonnenen

Beziehungen versuchen, diejenige Intensität der Streifenlast zu ermitteln, welche
an der Grenze zwischen vorwiegend elastischem und vorwiegend plastischem
Verhalten des beanspruchten Halbraumes liegt. Um zu einer eindeutigen
Definition dieser Grenzbelastung zu gelangen, betrachten wir zuerst den
folgenden einfachen Fall: das Material des Halbraumes ist elastisch-isotrop
und gehört zu den Stoffen der I. Gruppe des vorigen Abschnittes. Die
Fließbedingung ist daher für den behandelten ebenen Formänderungszustand
durch Gl. (28b) gegeben. Diese besagt, daß der Unterschied der Hauptspan-

2 G
nungen eine konstante Größe -~^~ nicht überschreiten soll; ox ist hierin die

Fließgrenze bei reiner einachsiger Zugbeanspruchung. Die Oberfläche des
Halbraumes beiderseits des starren Plattenstreifens sei unbelastet, das
Eigengewicht des Materials wird nicht in Betracht gezogen.

Dann sind die Hauptspannungen durch die Formel (19) bestimmt und
ihre Differenz ist

qR
Gx — Gs —

7tr\ 2rz
Trägt man den bezüglichen Wert von o1—os in jedem Punkte der XZ-

Ebene senkrecht zur Bildebene (Fig. 10) auf, so erhält man eine Fläche,
deren Schichtlinien in der Projektion durch Isochromen dargestellt sind.
Diese Fläche schneidet die Bildebene in der X-Achse,^steigt längs der Z-
Achse bis über den Punkt C, der in der Entfernung a \J2 von der Lastfläche
liegt, und senkt sich wieder allmählich mit der wachsenden z-Ordinate des
betrachteten Punktes. Vom Punkte C formt sie zwei gegen die Ränder der
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Lastfläche steigende Rücken, welche in infinitesimaler Entfernung von den
Rändern unendlich hoch werden. Es muß daher schon bei der kleinsten
Belastung zu plastischen Formänderungen in den Randgebieten, und zwar nicht
nur im beanspruchten Halbraum, sondern auch in dem die Last übertragenden
Körper kommen. In der Fig. 10 ist durch Schraffierung jener Bereich

gekennzeichnet, in welchem die Hauptspannungsdifferenz den Grenzwert —^
o ^

überschreitet, wenn die Durchschnittsbelastung j~ — — a„ beträgt. Da-
2a 0,70p

durch wird eine Änderung des Spannungszustandes hervorgerufen. Die
Analyse dieses Zustandes gehört zu der statisch unbestimmten Aufgabe der
Plastizitätsmechanik; denn sie ist von den plastischen Verschiebungen im

<H3

049

Fig. 10

Korperrand und im Halbraum abhängig und entzieht sich vorläufig einer
strengeren theoretischen Behandlung. Man kann jedoch einen Näherungswert

des Randdruckes oA gewinnen, indem man den Verlauf der isostatischen
Kurven (und damit der Gleitlinien) in unmittelbarer Nähe des Randpunktes
als bekannt annimmt.

a) der RANKiNE'sche Gleichgewichtszustand. Die Richtungen der
Hauptspannungen sind mit den Achsen X, Z parallel, rechts vom Randpunkte A
herrscht der Fließzustand mit o2 0, links davon der Fließzustand mit der
größten Druckspannung oA. Das Gleichgewicht dicht unterhalb des
Randpunktes erfordert, daß beiderseits dasselbe ax vorkommt; die Fließbedingung
(28b) ergibt

oa
2gv

V3
0 2gv

W
oA

V3
— ov — — 2,31 Gv (33a)

b) Der BoussiNESQ-RESAL'sche Gleichgewichtszustand. Es wird
angenommen, daß eine Schar Gleitlinien durch Strahlen gebildet wird, welche
von dem Randpunkte ausgehen. Diese Voraussetzung ergibt19) mit der
Fließbedingung (28b)

y) S.A. Caquot, Equilibre des massifs ä frottement interne, Paris 1934, S. 59.
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cm =—2,571 2-1" --2,97 a,,.
13

(33b)

Die tatsächliche Randspannung wird wahrscheinlich näher dem Werte
(33a) liegen und die resultierende Änderung der Druckverteilung in der
Lastfläche kann etwa durch die schraffierte Linie in Fig. 9 dargestellt werden.

e**sj

•

Fig. 11

Die Spannungsspitze wird abgestumpft und gegen die Mitte der Lastfläche
verschoben. Dadurch verändert sich der Spannungszustand des Halbraumes
und somit auch die Abgrenzung des plastischen Bereiches, was auch durch
Vergleich der spannungsoptischen Aufnahme (Fig. 11) mit dem theoretischen
Verlauf der Isochromen im Randgebiet ersichtlich ist. Diese Spannungsum-
lagerung bleibt jedoch nach dem Saint Venant'schen Prinzip auf die
unmittelbare Umgebung des Störungsherdes beschränkt. Im plastischen Bereich
sinkt die Querdehnungszahl auf den Wert m 2 und die bezogene kubische
Zusammendrückung wird Null. Es muß daher ein entsprechender Teil des

plastisch gewordenen Materials seitlich des Randes herausgequetscht werden.
Der Rand des Lastkörpers schneidet sich in den Halbraum ein, falls das
Material dieses Körpers härter ist als dasjenige des Halbraumes. Dies kann
man z. B. bei Probebelastungen bindiger Böden deutlich beobachten.

Die Verschiebung des starren Lastkörpers ist jedoch in diesem Stadium
des Belastungsvorganges durch die elastische Zusammendrückung in der Z-
Achse gegeben; andauernde Senkungen können daher nicht auftreten, solange
die Fließbereiche auf Randgebiete begrenzt bleiben.

Wird nun die Last gesteigert, so vergrößern sich die beiden Bereiche,
in welchen die kritische Spannungsdifferenz im elastischen Zustand
überschritten wird, bis sie endlich bei dem durch (18) gegebenen Werte der
Hauptschubspannung die Z-Achse im Punkte C erreichen. Die mittlere
Belastung beträgt in diesem Augenblick

q
2a

2o-„ 3.t V3

vT 8
2,356fr„, (34)
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Der Verlauf der durch C gehenden Isochrome o± oo 0,490 ^- ist in6 2a
Fig. 10. darstellt. Bei elastischem Zustand wäre die kritische Schubspannung

im ganzen zwischen den beiden Ästen dieser Kurve eingeschlossenen
Bereich überschritten. Die dadurch verursachte Bildung plastischer Gebiete,
deren Tiefe jetzt schon die Größenordnung der halben Lastflächenbreite
erreicht, ruft eine weiterreichende Umlagerung der Druckverteilung hervor.

9

w

0

^ V\ N

Fig. 12

Wächst die Belastung noch weiter aa, so dürfte sich zuerst eine
zusammenhängende plastische Zone etwa nach Fig. 12 bilden, welche den elastisch
bleibenden Kern unter der Lastfläche umschließt und vom äußeren elastisch
bleibenden Materiale des Halbraumes abtrennt. In diesem Stadium des
Belastungsvorganges kann jedoch das Material noch nicht ins Gleiten geraten,
da sich die Gleitlinien G nicht ausbilden können. Das plastisch gewordene
Material mit der Querdehnungszahl tn 2 muß jedoch infolge seiner
Volumenbeständigkeit neben den Plattenrändern ausgequetscht werden, und der
Lastkörper sinkt samt dem elastischen Kern ein, wodurch die Entfernung ON
kleiner wird. Infolgedessen vergrößert sich die Spannung inA7, eine weitere
dünne Schicht des Materials wird durch den Fließvorgang ergriffen und die
Senkung schreitet mit geringer Geschwindigkeit fort. Das andauernde
Einsinken könnte erst dann aufhören, wenn das Gewicht des hinaufgedrückten
Materials den elastischen Zustand unter der Plattenmitte wieder herstellen
würde.

Auf Grund dieser Erwägungen kann die gesuchte Grenzbelastung als
diejenige Lastgröße definiert werden, bei welcher das kritische
Sp annung s ver hä 1 tn i s in irgend einem Punkte der
Wirkungslinie der angreifenden Kraft erreicht wird. Unter
dem kritischen Verhältnis wird die durch die Fließbedingung bedingte Funktion

der Hauptspannungen verstanden.

9. Die Grenzbelastung bei ebenem Formänderungszustand.
Wir betrachten jetzt den allgemeinen Fall, daß die Oberfläche des

Halbraumes beiderseits des Plattenstreifens eine gleichmäßig verteilte Belastung
p0 trägt (Fig. 13). Das Material sei durch den Reibungswinkel wt und die
Konstante o ¦- clcotgcp1 gemäß (32) gekennzeichnet.

Das Eigengewicht des Halbraumes ziehen wir vorläufig nicht in
Betracht. Die Druckverteilung unter dem starren Plattenstreifen ist durch (25)
gegeben und die Hauptspannungen unter Plattenmitte betragen gemäß (24)
und (17):

Po

m — 1

q — 2ap0 o2

— Po
q — 2ap0 s2 + z2

(35)
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Wir bezeichnen das Verhältnis, das die linke Seite der Fließbedingung (31)

bildet, mit v. Setzt man die Werte (35) und ft are sin ein, so erhält man

*(*) -;-
ll=*po + 2«^™sin&cos**

¦2 a p0
'^1Po + 2« T-^sin^ + 2cx cotg^

(36)

— B
/'O

$?/ N

A

z\
Hg. 13

Dieses Verhältnis erreicht sein Maximum beim Werte #m des Winkels #,
der durch die Gleichung bedingt ist

(^A> + 2^^s^na na
„q-2apq ,k lm-2 ^q~2ap0 ,k « ,* \ ^ /o^— 2^ ^cos#J tPo + %- — sin#w cos2#J =0. (37)

Tta \m-\ na /

Der Größtwert von v muß die Fließbedingung (31) befriedigen:
v(»m) sin 9^. (38)

Durch Elimination von d>m aus den Gleichungen (37) und (38) erhält
man die Grenzbelastung q als Funktion der gegebenen Größen. Mit der
Bezeichnung

*' ZV7f^== <*»
4y(l — sin^j)3

ergibt sich

q [\ 2 — (1 — sin wAm ,1
Po (40)

Die Beiwerte k± sind in der Zahlentafel 1 für verschiedene Werte des
Reibungswinkels angegeben.

Aus (37) und (38) folgt weiter

sin &n f- sin^!

Die Ordinate zm des Punktes C, in welchem das Verhältnis sein Maximum
erreicht, beträgt
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] 1 — SV

sin 9^
sin cpx

(41)

Der kleinstmögliche Wert dieser Größe (bei ^=0) ist

min zm a )J2 (41a)

Beispiel 1. Die Last wird durch eine schmale Schiene auf einen
breiten Betonblock weit von seinem Rande übertragen. Ersetzt man die
Umhüllungskurve nach Fig. 9, welche für den Beton des Blocks bei ebenem
Formänderungszustand bestimmt wurde, im Druckbereich durch eine Gerade,
so ist diese durch die Werte cx 26 kg/cm2, ^ 41° bestimmt.

Die Grenzbelastung unter der Stahlschiene ergibt sich, wobei der Block
sonst unbelastet ist, gemäß (40):

q 37t y3 cos 9^
2ö~ 4V(1 —sin^J3

397 kg/cm2.

Die Druckfestigkeit dieses Betons beträgt rund 110 kg/cm2, die Bruchlast,

nach Caquot berechnet, 1770 kg/cm2, nach Ritter 660 kg/cm2. Bei einer
Belastung von 400 kg/cm2 kann jedoch schon ein andauerndes allmähliches
Eindrücken der Schiene in den Beton erfolgen.

10. Die Grenzbelastung bei achsial-symmetrischem
Spannungszustand.

Die Druckverteilung unter einem starren Kreisstempel, welcher auf der
sonst unbelasteten Oberfläche des Halbraumes liegt, wurde schon von
Boussinesq im Jahre 1885 bestimmt. Ist rings um den Stempel noch eine
gleichmäßige Belastung p0 aufgebracht (Fig. 14), so ergibt sich mit Be~

a—»u a— ^

*Ö

4
Fig. 14

nützung seiner Lösung und mit Rücksicht auf die bei der Ableitung der Ol. (25)
gemachten Erwägungen die Funktion für die Druckverteilung in der Sohlenfuge

mit P — na2D,
p(d=Po + ^-^= Po+ß- (42)

2na] a2 — r2

(Bezeichnungen nach Fig. 14)

Die Druckverteilungslinie hat einen ähnlichen Verlauf wie bei ebenem
Formänderungszustand (s. Fig. 10).
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Auf Grund der angenommenen Definition der Grenzbelastung genügt
uns jetzt die Kenntnis der Hauptspannungen in der Symmetrieachse. Wir
führen die Zylinderkoordinaten r, z ein. Die aus der Elastizitätstheorie
bekannten Beziehungen liefern folgende Beiträge der Belastung pdr des ganzen
Kreises vom Halbmesser r zu den Hauptspannungen im Punkte M(0, z):

P — 7ta2p0 3r3 m—2 r \ ^ \dGr -. — z\ —r^-^ dr
4na \Rb^a2 — r2 m Rs^a2 — r2J

doM -3?-"a*P°z* "^ (43)

\na R5\a2 — r2

(Bezeichnungen nach Fig. 14, m bedeutet die Querdehnungszahl.)
Nunmehr haben wir die Integration nach r in den Grenzen 0 bis a

durchzuführen. Auf elementarem Wege findet man

r*dr _ fa2 — r2 z2 2 z2

R*y^*=7* Rs2 \ 3R2 3 s2

r dr y a2— r2
J

_C r dr _ Va2 — r2 t \
J Wfa^^T2 ~ ~ ~3Rs^ KR2 +

^3|/fl2__r2 Rs2

Das Einsetzen der Grenzen und der Integrationsergebnisse in Gl. t(43)
liefert die Spannungskomponenten

P—7ta2p0(a2 m — 2\ P — 7ta2p0 s2 + 2z2
°r "" " ' 2n W ~ 2nT7)' °z~ 2n 7 ' (44)

Um die Hauptspannungen ot, a3 von der vollen Belastung nach Fig. 14 zu
erhalten, hat man noch die Komponenten nach Gl. (24) hinzuzufügen.
Bezeichnet man wieder den halben Öffnungswinkel mit # und die linke Seite
der Fließbedingung (31) mit v, so findet man

,„ _ gjSft *"»(==-'+'3 «»¦«)+s^i»
£^**-»e-^+«—)+=^*-2"«'

Dieses Verhältnis erreicht seinen Größtwert, wenn der Nenner des
Ausdruckes (45) gleich ist dem mit

3-™±* + 2 cos2» — 2sin2^>

2{~nT + 3 COs2 d)~~~ 6Si"2&

multiplizierten Zähler.
Der dadurch bedingte Wert des Öffnungswinkels sei &m. Dann lautet

die Fließbedingung (3t)

^? + 3(cos2^m — sin2#m)
2 3FP2 sin ** ¦ <45a>

^-tf + 2 (cos2 0m -- sin2 »„)
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(Hierin weist der Zeiger des Reibungswinkels darauf hin, daß dieser Winkel
von demjenigen bei ebenem Problem zu unterscheiden ist.)

Aus (45a) folgt
cos2*m 4(g +!) + (* +2) sing,

4 m (3 — sin*^) v '
und die Ordinate des Punktes der Z-Achse, in welchem die Fließgrenze
erreicht wird,

4(m + \) + (/7z + 2)sin<p2~
,46av«)/!

4(2m—1) — (5m-\-2)sinw2i '

Setzt man in (45) statt # den Winkel &m gemäß (46) ein, so erhält man
den Größtwert v($m) sin cp2 als Funktion der Belastung und des Reibungswinkels

cp2. Daraus läßt sich die Grenzbelastung ermitteln. Mit der
Bezeichnung

u - 4(3-sin<?2) _"2 ~ (2 m — 1 5 m + 2 \2 ^''
-—— sin Wo\ m Am ^zj

und nach Einsetzen von a= — c2 cotg cp2 lautet das Ergebnis

p u Ti 2 —(l —sin<pa)/rc 1
/ylQX

—% k, cos ^ ¦ c2 + [l + ^=xfL- *,] Po ¦ (48)

In der Baugrundlehre wird gewöhnlich mit der Querdehnungszahl m 2

gerechnet. Dann ist

_ 16(3 — sinw2) i/ 3 + sinya
*2 - Q(i_sin<p2)2' **-* |/3(1- sin<p2)' (4^'

Diese Ordinate ist bei jedem Werte von cp2 größer als a.

Beispiel 2. Ein Kreisstempel wird in einen Metallkörper bedeutend
größeren Ausmaßes eingedrückt; die Fließgrenze des Materials bei reiner

Zugbeanspruchung ist ov und die Querdehnungszahl beträgt m -=-. Die

Blockoberfläche ist sonst unbelastet, p0 0.

Da cp2 0 ist, folgt aus (47)

*2=12(^)2=4,16

Die Durchschnittsbelastung, bei deren Überschreitung das andauernde
Eindringen des Stempels in den Block beginnt, ergibt sich gemäß (48) mit

Z P
—2 2,08gv.
7t al

Mit dem Wert m 2 erhält man gemäß (49) und (48)

*2 -ö-, —^ 2,67 gv
3 7ta~

gegen 2,36 ov bei Streifenlast gemäß (34).
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11. Anwendung bei Baugrunduntersuchungen.
Wenn wir die Ergebnisse der bisherigen Erwägungen bei Gründungsaufgaben

verwerten wollen, dann müssen wir zuerst untersuchen, wie weit
und in welcher Richtung der Spannungszustand der pseudosoliden Erdmassen
von demjenigen des elastisch-isotropen Halbraumes mit konstantem
Elastizitätsmodul abweicht. Wir zielen wieder dahin, die Belastung an der Grenze
des quasi-elastischen Verhaltens der belasteten Bodenschicht zu finden, d. h.

diejenige Höchstlast, bei welcher die Setzung nach dem Ausgleich
hydrodynamischer Spannungen noch auf einem konstanten endlichen Wert
verbleibt. Diese Grenzbelastung ist wieder von der Bruchlast zu unterscheiden,
welche bedeutend höher sein wird, weil vor dem Bruch ein ausgedehntes
Gebiet rings um die Lastfläche in plastischen Zustand geraten muß. Die
unter Ziff. 1 angeführten Erfahrungen beweisen jedoch, daß bei
Bauwerkgründungen die zulässige Sohlenpressung die gesuchte Grenzbelastung nicht
überschreiten darf; andauernde Setzungen, welche nach Ablauf längerer Zeit
zur Zerstörung von Bauwerkteilen führen, können auch dann auftreten, wenn
die Sicherheit gegen Grundbruch genügend groß ist. Zur Abkürzung werden
wir jenen Zustand der Erdmasse, bei welchem Fließgebiete die Wirkungslinie
der Resultierenden der angreifenden Sohlenpressungen noch nicht erreichen,
auch als elastisch bezeichnen, obzwar sich der Baugrund nicht elastisch (im
wahren Sinne des Wortes) verhalten mag. Bei der Untersuchung des
Gleichgewichtszustandes in bindigen Bodenarten hat man weiter den Umstand zu
berücksichtigen, daß dafür lediglich die in der Festsubstanz wirkenden
Spannungen maßgebend sind; jener Anteil der Beanspruchung, welcher durch das
Porenwasser übernommen wird, ist also außer Betracht zu lassen.

Eine Bodenschicht, welche lediglich durch ihr Eigengewicht und eine
gleichmäßig über ihre ganze Oberfläche verteilte Belastung p0 beansprucht
wird, befindet sich im Gleichgewichtszustand, der durch die lotrechten und
waagerechten Hauptspannungen gekennzeichnet ist:

Oz — — Po — 7 z, ox Gy x oz (50)

Hierin wird unter y das Raumgewicht, unter z die Tiefe unter der Oberfläche

und unter y die Ruhedruckziffer verstanden, die hier den Wert T der
m — 1

elastischen Stoffe vertritt. Die Querdehnungszahl m ist nämlich bei
Erdmassen veränderlich, sie ist allem Anschein nach eine Funktion des
Spannungsverhältnisses v, der die linke Seite der Fließbedingung (31) bildet.
Nähert sich v dem Werte sin w, so sinkt m auf 2; im Fließzustand kommt
es bei dichtgelagerten Bodenarten sogar zu einer Volumenvergrößerung, d.h.
es ist dabei w < 2.

Die Ruhedruckziffer % dürfte vom Werte des Reibungswinkels abhängig
sein. Dies folgt aus der Erwägung, daß eine unendlich ausgedehnte horizontale

Bodenschicht nicht ins Gleiten geraten kann, wenn sie nur durch ihr
Eigengewicht beansprucht wird. In diesem Falle muß daher bei einem ko-
häsionslosen Material gelten

oz — %oz ^ ^ 1 — sin w——*— < sin w, x > ——r—^
oz + loz T 1 + sin cp

Die bisher durch Messungen festgestellten Werte von % lassen sich gut mit
der Beziehung erfassen

X 1 — sin qp.
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Sie liefert z. B. für Sand mit cp 35 ° die Ruhedruckziffer 0,43, für fetten
Ton mit w=16° die Ruhedruckziffer 0,72, was den Erfahrungen entspricht.

Somit lautet Gl. (50)
<*x — (Po + yz) 0 — sin99), gz — (p0 + yz). (50a)

Nunmehr haben wir noch den Einfluß der Sohlendruckkräfte zu bestimmen.

Dabei ist es unerläßlich, vom Zusammenhang der Spannung und der
Formänderung eines Elementes der Masse auszugehen. Mit dieser Frage
befaßte sich schon Boussinesq 20). Unter der Annahme einer vollkommen
losen pulverartigen Masse gelangte er zu Beziehungen der Form

ox + oy + gz (1-2*6,). (51)

Hierin bedeutet sx die bezogene Dehnung und x einen Stoffwert. Die Bous-
siNESQ'sche Masse ist volumenbeständig, daher erscheint in dem
Formänderungsgesetz nur eine Konstante.

Das tatsächliche Verhalten der Bodenarten entspricht jedoch keineswegs
den Eigenschaften dieser ideellen Masse, wie neuzeitliche Messungen klar
beweisen. Die Fig. 15 gibt das Spannungsdehnungsbild eines Sandzylinders

-0025 N
+

M 9 «*
\

1

1

\

<**

2Q'a

l /(_
1

1 ji 3<50

4GU
D-\-~ jS^- Jb

Fig. 15

wieder, welcher unter konstant gehaltener Mantelpressung o0 in der
Achsenrichtung Z auf Druck beansprucht wurde. Wäre das Gesetz (51) gültig, so
müßte die Linie K eine entgegengesetzte Krümmung aufweisen. Tonproben
haben im dreiachsigen Kompressionsapparat ähnliche Spannungsdehnungs-
bilder ergeben, und zwar sowohl zentral entwässerte Zylinder wie auch
Proben mit behindertem Wasseraustritt21). Auch für Betons und natürliche
Steine gelten Linien desselben Charakters, wenn auch verschiedener
Krümmungsverhältnisse. Auf Grund der Ergebnisse der Formänderungsmessun-
gen im dreiachsigen Druck kann die Vermutung ausgesprochen werden, daß
alle Baustoffe einem ähnlichen Gesetze folgen, wobei die Kurve K von der
gebrochenen Linie OBC mehr oder weniger abweicht, sodaß der Zusammen-
drückungsmodul mehr oder weniger veränderlich ist. Unter a0 und az wären
dabei die totalen in der Festmasse wirkenden Hauptspannungen (samt
Kohäsion, Innenspannungen usw.) verstanden.

Solange das Verhältnis — etwa die Hälfte des kritischen Spannungs-

20) Essai theorique sur Pequilibre des rnassifs pulverulents, Bruxelles 1876, S. 27.
21) L. Rendulic, Der Bauing. 1936, S. 559 und 1937, S. 459. Es sei hier bemerkt,

daß aus gewöhnlichen Oedometerversuchen nicht auf Formänderungsgesetze der Bodenarten

im Baugrund geschlossen werden kann, da bei behinderter Querdehnung die kleinere
Hauptspannung nicht gemessen wird.
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Verhältnisses — nicht überschreitet, kann auch bei Erdmassen die Kurve K
o0

in diesem Bereich durch eine Gerade OA ersetzt werden. Bei örtlicher
Belastung des Halbraumes haben wir jedoch gerade in dem für das Verhalten
der Masse entscheidenden Gebiet mit Spannungen zu tun, welche dem
Kurvensektor AD entsprechen. (Dieses Gebiet nimmt ungefähr die Fläche
ein, welche in der Fig. 11 unten durch die Isochrome 2 und oben durch
den dicht unter der Lastfläche verlaufenden Bogen der Isochrome 3 begrenzt
ist.) In diesem Gebiet würde der für einen konstanten Elastizitätsmodul
gültige Spannungszustand weit größere Deformationen (z. B. ON statt OM)
hervorrufen, als es die Kontinuität des Massivs zuläßt; in diesem Gebiet tritt
nämlich eine Querdehnung in nahezu horizontaler Richtung auf, welche durch
die umhüllende Masse behindert wird und der Zusammendrückung der
außen liegenden Teile des Halbraumes gleich sein muß.

Es folgt daraus, daß die Druckverteilung in der belasteten Erdmasse
von derjenigen im elastischen Material verschieden sein muß. Sie wird dem
Spannungszustand einer belasteten Schicht ähnlich sein, welche längs der
Z-Achse erwärmt wird.

Wir werden hier auf die Berechnung dieser Druckverteilung nicht näher
eingehen22). Die theoretische Behandlung wird m. E. erst dann imstande
sein, die wirklichen Spannungen in der Erdmasse zu erfassen, wenn die
Forschung über die Formänderung im dreiachsigen Spannungszustand v/eitere

Erfahrungen gesammelt haben wird. Dennoch liefert sie Anhaltspunkte,
aus welchen folgende Forderungen gezogen werden können:

a) Im erwähnten Gebiet großer Spannungsunterschiede treten in der
Erdmasse stärkere Pressungen als im elastischen Material auf; die vorwiegend

horizontale Hauptdruckspannung ot weist jedoch eine verhältnismäßig
größere Steigerung auf als die vorwiegend lotrechte Hauptspannung a3.

b) Dadurch wird das Hauptspannungsverhältnis in diesem Gebiet
günstiger als im elastischen Halbraum.

c) Mit wachsenden Entfernungen von diesem Gebiet nähert sich die
Druckverteilung in der Erdmasse dem Spannungszustand des elastischen
Halbraumes.

Diese theoretischen Ergebnisse finden sich durch folgende Erfahrungen
bestätigt: Bei zahlreichen Versuchen wurde die lotrechte Spannung im Sand
und Lehm gemessen23) und tatsächlich größer befunden als die Theorie
elastischer Stoffe angibt. Linien, welche die Senkung als Funktion der
Belastung darstellen, verlaufen im Bereich der im Gründungswesen zulässigen
Lastgrößen entweder linear (als wenn die Masse dem HooKE'schen Gesetz
folgte) 24) oder sind viel weniger gekrümmt als die Spannungsdehnungs-
kurve (Fig. 15). Bei örtlicher Belastung eines Tonblocks wurde eine etwa
zweimal kleinere Senkung festgestellt, als den Druckproben desselben
Materials und den parallelen Versuchen mit elastischer Masse entsprechen

22) Die Grundlagen dazu sind in der Abhandlung enthalten: K. Hruban, Der
Spannungszustand des im Innern beanspruchten Halbraumes, Ingenieurarchiv 1943, H. 1, S. 9.

23) H. Press unternahm solche Messungen in der Baugrube, so daß der Einfluß
einer starren Unterlage ausgeschlossen wurde, welche die Laboratoriumsversuche
beeinflussen kann. S. Die Bautechnik 1934, S. 569.

24) Aufschlußreiche Messungen führten z. B. Ringelino und Biemond durch. Pro-
ceedings of the intern. Conference on soil mechanics 1936, vol. I, S. 106 u. 111.
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würde25). Alle diese Erscheinungen können auf das Formänderungsgesetz
zurückgeführt werden, ähnlich wie bekanntlich der Unterschied zwischen der
Biegungs- und der Zugfestigkeit des Betons zu erklären ist.

Abschließend kommen wir also zu der Ansicht, daß es bei dem heutigen
Stand der Forschung nicht möglich ist, die Spannungen in der Erdmasse mit
der gleichen Verläßlichkeit anzugeben wie in einem elastischen Material,
wenn man allen durch beweiskräftige Erfahrungen nicht gestützten
Voraussetzungen ausweichen will. Wir sind daher nicht imstande, die Grenzbelastung

an der Fließgrenze ohne ähnliche Annahmen zu ermitteln.
Nichtsdestoweniger können wir mit Benützung des Spannungszustandes des elastischen

Halbraumes eine Höchstbelastung bestimmen, welche etwas niedriger
sein wird und von welcher behauptet werden kann, daß sie keine andauernden
Fließerscheinungen hervorruft. Diese Höchstbelastung bleibt somit auf der
Seite der Sicherheit, und wir werden sie als die zulässige
Bodenpressung bezeichnen; zulässig, mit Rücksicht auf den Gleichgewichtszustand

in der Erdmasse; bei der Wahl der Sohlendruckgrenze ist daneben
natürlich auch die Größe der zu erwartenden Setzungen infolge Konsolidierung
der bindigen Bodenschichten in Betracht zu ziehen.

12. Zuläßige Bodenpressung beim Laststreifen.
Auf Grund obiger Erwägungen haben wir die Gl. (40) mit Rücksicht

auf (50a) umzuformen. Bei der Ableitung wurde der Spannungsstoffwert o
als konstant angesehen, der Einfluß des Eigengewichtes hängt jedoch gemäß
(50a) von der Tiefe z ab. Wir nehmen daher an, daß auch die Spannungen
(50a) in der kritischen Tiefe konstant bleiben und setzen in (50a) den kleinst-
möglichen Wert von zm a)/2 gemäß (41a) ein. Somit lauten die
Hauptspannungen im kritischen Bereich:

gx - (1 - sin ^) (A> + ra f2) - «=*££* ^7t S°

/ <rnT\ q — 2ap0s2+z2
7t Sö

(Bezeichnungen nach Fig. 13)
Für das Gleichgewicht der Schicht I ist wieder das Spannungsverhältnis

im Punkte C maßgebend, dessen Ordinate durch (41) gegeben ist. Die
zulässige Bodenpressung ergibt sich hiermit zu

q 3tzV3 I l-sin^ ,—vl ,^vPzul 2a AiJi-sin^r C1 C0Syi + 2~ sin^fo + ya V2 )] +p0. (52)

Dies kann in der Form angeschrieben werden

Pzui Ax cx + Bx p0 + Cxya, (52a)
wodurch die Beiträge der Kohäsion cl9 der Oberflächenbelastung p0 und der
halben Plattenbreite a voneinander getrennt erscheinen. Hierin bedeutet y
das spezifische Gewicht des Bodens unterhalb der Sohlenfuge. Die Beiwerte
Av Bv Ct sind für verschiedene Größen des Reibungswinkels q>± in Tafel 1

angegeben.

25) A. B. Mason, Correlation of surface loading tests with unconfined compression
tests for cohesive soils. Proceedings int. conf. on soil mech. 1936, vol. II, S. 169.

Abhandlungen VII M
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Tafel 1. Zulässige Bodenpressung beim Laststreifen.
Beiwerte der Gl. (40) und (52a).

<pl K Ai Bi Ci

0° 4,081 4,08 1 0
10° 5,435 5,35 1,39 0,55
20° 7,646 7,18 1,86 1,22
30° 11,543 10,00 2,44 2,04
40° 19,125 14,65 3,20 3,10
50° 36,054 23,18 4,23 4,57

Beispiel 3. Für einen völlig kohäsionslosen Sand mit ^ 40°,
y= 1800 kg/m3 ergeben sich aus Tafel 1 bei 2 m Gründungstiefe folgende
Werte der zulässigen Bodenpressung:

a) kein Grundwasser vorhanden; p0 2 X 0,18 0,36 kg/cm2

Plattenbreite 2 m. pzui 3,20 • 0,36 + 3,10 0,18 • 1,0 1,7 kg/cm2,
10 m. pzul 3,20 • 0,36 + 3,10 • 0,18 • 5,0 3,9 „

b) Sohlenfuge 1 m unter Grundwasserspiegel; pQ 1 -0,18-j- 1 0,112
0,29 kg/cm2 (Porenvolumen 32o/0, Raumgewicht unter Auftrieb 1120 kg/m3).

Plattenbreite 2 m. pzul 3,20 • 0,29 + 3,10 0,112 1,0 1,3 kg/cm2
10 m. pzui 3,20 • 0,29 + 3,10 • 0,112 5,0 2,5 „

Beispiel 4. Der Boden unter einem Teile der Mittelmauer des in
Ziff. 1 erwähnten Barockschlosses erwies bei der Prüfung im Scherapparat
eine wahre Kohäsion ^ 0,10 kg/cm2 und einen Reibungswinkel cpx 22°;
die Breite des Fundamentes betrug 1,20 m, das Raumgewicht des Bodens unter
der Sohlenfuge y 2000 kg/m3, die Gründungstiefe ergab pQ= 1,04 kg/cm2.

Gl. (52) liefert

Pzui 1,04 + 8,45 [0,10 0,927 + 0,117 (1,04 + 0,20 • 0,60 • ^2)] 3,0 kg/cm2

Dagegen beträgt die Bruchbelastung (mit c± cotg cpx 0,25 kg/cm2)
nach Caquot: 1,04 • 7,5 + 0,25 • 6,5 9,4 kg/cm2,
nach Ritter: 1,04 • 5,6 + 0,25 4,6 + 0,2 0,6 3,6 7,4 kg/cm2.

Andauernde Setzungen, welche eine Rekonstruktion der Gründungen
unerläßlich machten, traten bei mittiger Belastung von 3,2 kg/cm2 auf, d. h.
bei einer mehr als zweifachen Sicherheit gegen Bruch.

Geschichteter Baugrund.
Die zulässige Bodenpressung gemäß (52) wurde unter der Voraussetzung

abgeleitet, daß die Gründung auf einer mächtigen Bodenschicht erfolgt, deren
Stoffwerte y, cl9 cpx als konstant angenommen werden können. Es kommt
jedoch vor, daß der Baugrund aus Schichten verschiedener Beschaffenheit
besteht; ist dabei eine der tiefer liegenden Schichten weniger tragfähig als
das Material unmittelbar unter der Fundamentsohle, so ist auch der
Gleichgewichtszustand dieser Schicht zu prüfen. Es kann sich dabei eine kleinere

zulässige Bodenpressung ~- ergeben als diejenige, welche der Beschaffen-
/L a

heit der oberen Schicht entspricht.
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Wir betrachten irgend einen Punkt M(0, z) der Z-Achse (Fig. 13) und
bezeichnen mit p± die vertikale Druckspannung, welche in diesem Punkte
in der Festsubstanz des Bodens durch das Gewicht der darüberliegenden
Bodensäule von der Höhe z entsteht. (Dieser Druck ist mit Rücksicht auf
eventuellen Wasserauftrieb festzustellen.) Die Fließbedingung (31) für den
betrachteten Punkt M lautet, falls c\, cp\ die in M vorhandenen Stoffwerte
sind:

n _L n \ Si" ^ i q' — laPo Z2

(Po-1rPi)—2~^ n s3 •sin^.
(Po + Pi) 2^f-^ + q~~^ + c\ coig^

Sie liefert die Bodenpressung, welche in der Fundamentsohle mit Rücksicht

auf die Fließgrenze im Punkte M zulässig ist:

9/i -7i/2t- - Tkicos^-f- f * sm<f'APo+Pi)\ + Po- (53)

B e i s p i e 1 5. a) Unterhalb des in Beispiel 3 sub a) angeführten 2 m
breiten Gründungskörpers befindet sich eine Tonschicht II, welche nach
erfolgtem Ausgleich der hydrodynamischen Spannungen die Stoffwerte
cx 0,10 kg/cm2, q>x =12° aufweist (Fig. 13). Die Oberfläche dieser
Schicht liegt in der Tiefe h 2,5 m, der Grundwasserspiegel in der Tiefe
1,75 m unter der Fundamentsohle.

Da h>zm gemäß (41) ist, haben wir das Spannungsverhältnis für die
Tonschicht im Punkte N (Fig. 13) zu prüfen. Nach Beispiel 3 ist p0
0,36 kg/cm2, das Raumgewicht der Sandschicht I ist y= 1800 kg/cm2, so daß
pL-= 2,5-0,18 — 0,75 0,068 (Auftrieb) 0,40 kg/cm2 beträgt.

Gl. (53) liefert

%- —tt, /2J
x
[0,10- 0,978 + 0,082 (0,36 + 0,40)] + 0,36 1,4 kg/cm2

2tV= (H* -0,208
\/7,25 \7>25 /

gegen pzui=--- 1,7 kg/cm2 laut Beispiel 3.

b) Plattenbreite 10 m. Die Tiefe zm gemäß (41) ist größer als h, d.h.
der Punkt, in dem das kritische Spannungsverhältnis auftritt, Hegt in der
Tonschicht II, und zwar in der Nähe des Punktes mit z a ^2 laut (41a).
Die Ausrechnung mit Hilfe von (53) ergibt—-=1,5 kg/cm2 gegen pzui

3,9 kg/cm2 in Beispiel 3. Andauernde Setzungen könnten hier also durch
einen Sohlendruck auf die Sandschicht I herbeigeführt werden, welcher nur
die Hälfte der zulässigen Beanspruchung dieser Schicht beträgt. Ähnliche
Fälle sind bekannt26).

A n m e r k u n g. Während des Ausgleiches der hydrodynamischen
Spannungen übernimmt einen Teil der durch die Belastung hervorgerufenen
Pressungen das Porenwasser; infolgedessen dürften die in der Festsubstanz
wirkenden Druckspannungen in allen Richtungen um dieselbe Größe kleiner sein
als nach Ablauf dieser Übergangszeit. Der Gleichgewichtszustand in der
Masse wird dadurch während der Ausgleichsperiode ungünstig beeinflußt.

26) Kogler-Scheidig, Baugrund und Bauwerk, Berlin 1939, S. 126.
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Unsere Ausführungen bleiben jedoch in Kraft, da wir uns lediglich die
Bedingung gestellt haben, daß die Setzungen erst nachher konstant bleiben
sollen.

13. Zuläßige Bodenpressung bei kreisförmiger Lastfläche.
Durch den im vorigen Abschnitt geschilderten Vorgang erhält man mit

der Annahme %= 1 —sin <p2 für die Gl. (50a) und m 2 für die Gl. (44)
folgende Hauptspannungen im kritischen Bereich:

(1— sin<p2)(/;0 + ya) — Tta^pQ a^

— (Po + Ya)

2 7t s

P—7ta2p0 s2 + 2z2

4 >

2 7t s4

(Bezeichnungen nach Fig. 14.)

Die umgeformte Gl. (48) liefert die zulässige Bodenpressung

Pzui — —ö ~ 16^smw)|^cos^+ll^
7t a2 9(l-sin<p2)2l sin<p2(/?0 + y a)\ +Po- (54)

Man kann wieder die Beiträge der Kohäsion c2, der Oberflächenbelastung
p0 und des Plattenhalbmessers a getrennt ausweisen:

Pzui — A2c2 +- B2p0 + C2 ya. (54 a)

Die Beiwerte sind in der Zahlentafel 2 für einige Werte von tp0 angegeben;
<p0 bedeutet hierin den Winkel der inneren Reibung bei achsial-symmetri-
schem Spannungszustand mit überwiegend achsialer Druckbeanspruchung
(Ziff. 7).

Tafel 2. Zulässige Bodenpressung bei kreisförmiger Lastfläche.
Beiwerte der Gl. (54) und (54a).

9?2
16(3-sin<p2)
9(l-sin<p2)2

A2 B2 c2

0° 5,333 5,33 1 0
10° 7,358 7,25 1,53 0,53
20° 10,914 10,26 2,23 1,23
30° 17,778 15,40 3,22 2,22
40° 32,844 25,16 4,77 3,77

Beispiel 6. Für einen kohäsionslosen Sand mit <p2 30°, y= 1800
kg/m3, Gründungstiefe 2 m, erhält man mit Benützung der Tafel 2:

Plattendurchmesser 2 m. pmt 0,18(3,22 2,0 + 2,22 • 1,0) 1,6 kg/cm2
10 m. pzul 0,18(3,22 • 2,0 + 2,22 5,0) 3,2 „

Geschichteter Baugrund.
Betrachtet man wieder irgend einen Punkt M(0, z) an der Wirkungslinie
der angreifenden Kraft und bezeichnet mit p± das Gewicht der darüber-

liegenden Bodensäule von der Höhe z und Durchschnittsfläche 1, so lautet
die Fließbedingung (31) für den Punkt M (Fig. 14)
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/ x • P' — na2p0 3 z2
(Po + Pi) Sin cp\ + —£5 ~r sin cp'2.

U+^i)(2-sin^2) + ^^^^^ + 2^2cotg^2

Hierin sind unter c2, cp2 die Stoffwerte der im Punkte M vorhandenen Bodenart
verstanden. Die Bodenpressung, die in der Fundamentsohle mit Rücksicht

auf die Fließgrenze im Punkte M zulässig ist, ergibt sich zu

P' 4 [,
1 -sino92 / ^1 /tnc2 cos(p2 + 2^— sin <p2 (p0 +Pi)\+Po • (55)"^ 3|(3-sin^)-2sin^2]

Die Anwendung dieser Beziehung erfolgt in derselben Weise, wie im
Beispiel 5 gezeigt wurde.

Die Gleichungen (53) und (55) ergeben für kleine Entfernungen von
der Lastfläche negative Werte. Dieses Gebiet bleibt demnach bei beliebig
großem Sohlendruck elastisch. Nur eine negative Belastung (Beanspruchung
durch Zugkräfte) könnte hier den Fließzustand herbeiführen.

Zusammenfassung.
Es gibt Bauwerke, welche durch Jahrhunderte andauernd in den

Baugrund einsinken. Diese Erscheinung kann nicht lediglich auf die Konsolidierung

bindiger Bodenschichten zurückgeführt werden; es handelt sich vielmehr
um eine Gleichgewichtsstörung in der untenliegenden Erdmasse, welche
jedoch vom Bruch zu unterscheiden ist. Zur Untersuchung dieser
Fließerscheinungen wird der Spannungszustand im elastisch-isotropen Halbraum
ermittelt, dessen Oberfläche durch einen starren Körper belastet wird.
Strenge Lösungen lassen sich beim ebenen Problem sowohl für eine mittige
wie auch für eine außermittige Kraftübertragung angeben. Auf Grund einer
einfachen Form der Fließbedingung für begrenzte Gestaltänderungsarbeit
ergibt sich die Lastgröße bei Beginn permanenter plastischer Verschiebungen
unter streifenförmiger (Gl. 40) und kreisförmiger Lastfläche (Gl. 48). Diese
Grenzbelastung erweist sich als bedeutend kleiner als die nach bisherigen
Annahmen berechnete Bruchlast. Das Formänderungsgesetz der Erdmassen
läßt zwar eine unmittelbare Anwendung der Elastizitätstheorie auf Baugrundschichten

nicht zu, doch lassen sich aus den Verträglichkeitsbedingungen
Folgerungen entwickeln, welche eine Beurteilung des Gleichgewichtszustandes
in örtlich belasteten Bodenschichten ermöglichen. Daraus ergeben sich
Grenzwerte der Bodenpressung bei Streifenlast (Gl. 52, 53) und bei
konzentrierter Last (Gl. 54, 55), bei welchen die Bedingung erfüllt ist, daß keine
andauernden Senkungen auftreten sollen. Die Einflüsse der Gründungstiefe,
Plattenbreite und Kohäsion werden durch einige Beispiele und Zahlentafeln
veranschaulicht.

Resume.

II existe des bätiments qui, pendant des siecles, ne cessent de s'en-
foncer peu ä peu dans le terrain. Ce phenomene ne peut simplement s'ex-
pliquer par la consolidation de couches ä cohesion, il s'agit lä bien plutöt
d'une perturbation de Fequilibre des couches terrestres inferieures, pertur-
bation qu'il ne faut cependant pas confondre avec la rupture. Afin cFetudier
ce phenomene plastique, on determine Fetat de tension du demi-espace iso-
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trope elastique, dont la surface est chargee d'un corps rigide. II est
possible d'indiquer des Solutions rigoureuses en ce qui concerne le probleme
ä 2 dimensions aussi bien pour une charge centree que pour une charge ex-
centrique. Le fait de pouvoir exprimer sous une forme simple la condition
de plasticite, en limitant la valeur du travail de deformation, permet de
determiner la grandeur de la charge dont dependent les deplacements
plastiques permanents aussi bien pour une surface de charge en forme de bände
que circulaire (Eq. 48, 40). Cette charge limite est essentiellement plus petite
que la charge ä la rupture consideree jusqu'ici. La loi de deformation des
masses terrestres ne permet pas Fapplication immediate de la theorie de
Felasticite aux couches de fondations; cependant les conditions de compa-
tibilite conduisent ä des conclusions donnant la possibilite de juger Fetat
d'equilibre d'une couche sollicitee par une charge locale. On peut en tirer
les valeurs limites des pressions sur le sol pour une charge en forme de
bände (Eq. 52, 53) et pour une charge concentree (Eq. 54, 55); ces charges
veritient la condition stipulant qu'il ne doit pas exister de tassements
permanents. Les influences dues ä la profondeur de fondation, ä la largeur de
la dalle et ä la cohesion sont illustrees par quelques exemples et tables
numeriques.

Summary.
There are buildings which, in the course of centuries, are continually

sinking more and more into the soil. This phenomenon cannot be attributed
solely to the consolidating of cohesive layers; it arises rather from a distur-
bance of equilibrium in the mass of earth underneath the building, a distur-
bance which must not be confused with rupture. In order to investigate this
phenomenon of plastic deformation the stress conditions are determined in
the elastic-isotropic semi-infinite solid whose surface is loaded with a rigid
body. Rigorous Solutions can be obtained for the two-dimensional problem
with central and also eccentric transmission of force. Based on a simple form
of the yield condition of the limited shearing energy, the magnitude of the
load is found at the start of permanent plastic displacements for loading
on a strip (eq. 40) and on a circular area (eq. 48). This limited loading is
found to be much smaller than the rupturing load as calculated in accordance
with the assumptions hitherto made. The law of deformation of the earth
masses does not allow the theory of elasticity to be applied directly to foun-
dation layers; nevertheless the conditions of compatibility lead to conclusions
which make it possible to form a judgement of the equilibrium in locally
loaded layers of earth. From that, limiting values of the pressure on the soil
can be found in case of a loaded trip (eq. 52, 53) and a loaded circle (eq.
54, 55), where the condition is fulfilled that no continual settlement shall
occur. The influences of the depth of the foundation, of the width of slabs,
and of the cohesion are illustrated by some examples and numerical tables.
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