Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen
Band: 7 (1943-1944)

Artikel: Hohltrager als Faltwerke
Autor: Gruber, Ernst
DOI: https://doi.org/10.5169/seals-7998

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-7998
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

HOHLTRAGER ALS FALTWERKE.
POUTRES CREUSES TRAITEES EN «TOITS PLISSES>.
HOLLOW BEAMS OF A SHED-TYPE SYSTEM.

Dr. Ing. ERNST GRUBER, Deutschland.

A. Allgemeines.

Fiir Tragwerke, wie sie in Fig. 1, 2 und 7 dargestellt sind, wurden
bisher, auBer einigen Modellversuchen, noch keine eingehenden Untersuchun-
gen angestellt. Es ist naheliegend, solche Hohltriger als Faltwerke aufzu-
fassen. Man kommt dadurch dem wirklichen Verhalten des Tragwerks auflerst
nahe und erhilt, wie die folgenden Untersuchungen zeigen werden, sehr
tibersichtliche und treffende Ergebnisse.
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Fig. 1

Bei Faltwerksberechnungen werden in der Regel die senkrecht zu den
Lingsachsen der Scheiben wirkenden Spannungen o (siehe Fig.3a,b) nicht
beriicksichtigt. Bei Systemen, die im Querschnitt ein rahmenartiges Grund-
netz aufweisen (Fig. 1), trifft diese Annahme immer sehr gut zu. In solchen
Tragwerken tritt infolge der Knotensteifigkeit und der Plattensteifigkeit der
Scheiben im Gesamtquerschnitt des Faltwerkes eine rahmenartige Wirkung
auf, durch welche die zusitzlichen Querbelastungen p, und p; entstehen,
welche wieder die o: erzeugen (Fig. 3a). Da die p, und p; bei dem fast

immer schlanken Verhiltnis sehr gering sind, werden die dazu gehorigen

2h
o: ebenfalls sehr klein. Betrachtet man ein solches Faltwerk, wie dies
meistens mit geniigender Genauigkeit geschehen kann, als ,gelenkig*, d. h.
die einzelnen Scheiben sind lings der Kanten nur durch scharnierartige Ge-
lenke miteinander verbunden, so wird die oben erwidhnte Rahmenwirkuag
unterbunden und die o verschwinden bis auf den weiter unten beschriebenen
direkten EinfluB der Lasten ganz. .
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Bei Faltwerken, welche nach Fig. 2a und 7a im Querschnitt die Figur
eines stabilen Fachwerkes als Grundnetz aufweisen, die also in der Quer-
richtung auch ohne Mitwirkung der oben erwihnten Platten- und Knoten-
steifigkeit einen etwa eben so grof8en Biegewiderstand besitzen wie in der
Hauptrichtung L, erreichen die p, und p, und daher auch die o mitunter
besonders fiir bestimmte Belastungen betrichtliche Werte und miissen meist
im gesamten Verformungsspiel beriicksichtigt werden. Der von einer stetigen
Belastung herriihrende direkte Einfluf auf die Querbelastungen p und die
Querspannungen o¢ ist in Anbetracht der geringen bezogenen Pressungen,
die die iiblichen Belastungen auf ihre Unterlagen ausiiben, immer gering.
Da man ortlich engkonzentrierte Lasten durch Entwicklung in Funktions-
reihen, z. B. Fourier’sche Reihen in eine Folge der iiblichen, stetig verteilten
Belastungen iiberfithren kann, gelten diese Betrachtungen auch fiir die soge-
nannten ,,Einzellasten‘. Die in diesen Entwicklungen an den Angriffsorten
der Einzellasten auftretenden groBeren Pressungen erstrecken sich nur iiber
ortlich eng begrenzte Raume und sind fiir das Gesamtergebnis ohne nennens-
werte Bedeutung. Es ist jedoch immer notwendig, die Spannungen und zwar
besonders die Schubspannungen in der unmittelbaren Umgebung der Ein-
zellasten groBenmiBig zu verfolgen.

B. Spannungs- und Verformungszustand einer Scheibe.

Wir nehmen in der Folge an, daB die einzelnen Scheiben lings der
Kanten 7 nur durch scharnierartige Gelenke verbunden sind, so daBB von einer
Scheibe auf die andere nur in diesen Kanten wirkende Schubspannungen z
itbertragen werden konnen (Fig.7a,b). Fiir Tragwerke, welche im Quer-
schnitt die Figur eines stabilen Fachwerkes als Grundnetz aufweisen, trifft
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diese Annahme fast vollstindig zu. Eine, in einem beliebigen Knoten, z. B. 2
der Fig. 7a, angreifende Kraft G, zerlegt sich in die stetig verteilten Be-
lastungen p, z. B. pyy, psg, pos und pyy/, deren Wirkungsebenen mit den Mit-
telebenen der von diesem Knoten ausgehenden Scheiben zusammenfallen
(Fig.7a). Laufen im letzteren mehr als 2 solcher Tragwinde zusammen, so
ist diese Kraftaufteilung statisch unbestimmt.

Lost man eine beliebige Scheibe n- 7, # durch die knapp neben
den Knoten n-+1 und n gefithrten Schnitte r—r, s—s vom Tragwerk
los, so werden die oben festgelegten inneren Krifte ¢ und p frei und
erscheinen als &duBere Belastung der Scheibe n--1, n (Fig. 2a). In
Fig. 3a ist dieser Zustand zur Darstellung gebracht. Alle darin ange-
gebenen Richtungssinne gelten in der Folge als positiv. Entsprechend
den allgemeinen Erliuterungen des Abschnittes A sollen auch die senkrecht
zur Scheibenachse wirkenden Spannungen o: beriicksichtigt werden, so daf
ein 2achsiger Spannungszustand vorliegt. Die beiden Gleichgewichtsbedin-
gungen an einem infinitesimalen Element mit den Seitenlingen dx und dé&
ergeben sich unter Beriicksichtigung der Massenkrifte g, und g, zu

(?O'x___dr 1 (/()§
5;"‘"()5 bg/l’ 05 ax+ bgU) (])

woraus durch Elimination von ¢

0%0, _ 0%0s 1 (ogz 6gh)
— i 2
0 x? 0&2 0¢& * (2)

folgt (Fig. 3b). Ist das Verhiltnis % kleiner als etwa —é bis ~,17~, so ist mit

geniigender Genauigkeit die Normalspannung o, eine lineare Funktion der
Querschnittsordinate &, so daB

1 (3M
= g5l £ ) .
wird, woraus sich nach Gl. (2) die Bestimmungsgleichung
0o 1 (3 M’ ) 1 (agv ogh>
orr = “aen\ar TNV T GE T ok “)

fiir g, ergibt, worin M und N reine Funktionen von x sind. Es sei nun g,
konstant und g, von & linear abhingig, etwa wie

..._L(n _ 3¢ )
gh—zbh rs hglrs

Integriert man dann diese Differentialgleichung (4) zwei mal partiell nach &,
so erhalt man

_ ¢ (M” ) £? mys )
% = —gpa\pr ¢ TN H LG+ RO+ 5 (’zrs SeEl )

Hiebei sind f,(x) und f,(x) reine Funktionen von x, die sich aus den funk-
tionellen Randbedingungen

§ = h; bog = ps
E=—h; bog=p, zu
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M my

1 AN" h
fa(x) = 2 (/Js+/1r)—fb*—ﬂ‘ﬂrs (6b)

ergeben. Setzt man dies in Gl. (5) ein, so folgt
b0 Ema-wean]onfo-§)on 5

Schneidet man durch zwei um dx voneinander entfernte, senkrecht zur
x-Achse stehende Schnitte das in Fig.3a durch Schraffen hervorgehobene
Element aus seiner Scheibe, so werden die weiteren inneren Kraftwirkungen
M, N und Q frei, die sich mit den z,, 7, p,, ps, g und g, am Element das
Gleichgewicht halten miissen. Man erhilt somit

M = —bh(t,+ 15) + Q — mys (8a)
N = —b(t,—T5) — nys (8b)
Q = —p+ps—2g:h. (8C)

Nach Differentiation der Gl. (8a) und (8b) nach x folgt unter Bedacht-
nahme auf Gl. (8c)
M' = —bh(t) + ©3) — pr+ ps — mys — 28:h (9a)
N" = —b(z) —35) — nys. (9b)
Die bezogenen Dehnungen &, und & der beiden Scheibenrinder n» 1 und »
ergeben sich unter Beriicksichtigung der Querdehnungszahl m zu

Pr Pr
L (23N e L (10a,b)

= 2bhE\T h mbE ~ E  mbE’
woraus durch Subtraktion und Addition
_ 1 ) h?
MM?b/z E(e,—as)+§-7,i(/1,——ps) (11a)
h
N = bhE(s + es)+ﬁ(p,+ps) (11b)

folgt, wobei die Verkiirzung als positiv gerechnet wird. Differenzieren wir
Gl. (11a) und (11b) zwei mal nach x und setzen diese Ausdriicke in die
Gl. (9a) und (9b) ein, so erhalten wir zwei lineare Gleichungen, deren
Losungen

, ” " 1 1 (m)s &
o= = PE @) @Y P =g (e p) =y (T ) - (120)

ro__ éé 1 mrs I) gv
Ts == 3 (r+2£s)+3 b(pr+2ps) 2hb(pr ps) Zb(/l — My ‘“7 (12b)

lauten. Eliminiert man aus den Gl. (7), (9a), (9b) und (12a), (12b) M”, N”,
7,/ und 7z,/, so wird

1) Diese Beziehungen stimmen sehr gut mit den genauen elastizititstheoretischen
Losungen iiberein, die man mit Hilfe der Airy’schen Spannungsfunktion findet.
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h? £
o=t (12

_é) - /’r> 2¢
; 4 )[(1 37 ( rEx ) et

(e 2 Al el o

womit alle inneren Krafte durch ¢, ¢, p, und ps ausgedriickt sind.

Fiir die Untersuchungen der folgenden Abschnitte ist das vorherige
Studium der Forminderungen einer Scheibe notwendig. In Fig. 4 seien
1, 2, 3, 4 die Ecken und m—m sei die Achse eines Elementes in seiner
urspriinglichen, unverformten Lage. Durch die eintretende Verzerrung riicken
die Ecken von 1, 2, 3, 4 nach 1/, 2/, 3, 4, die Achse hingegen bewegt sich
von m—m nach m’—m’. Riicken wir das Element 1, 2, 3, 4 soweit nach
abwirts, bis m nach m”, d.h. in gleicher H6he mit m’ zu liegen kommt, so
erkennen wir in der Strecke mm” die lotrechte Durchbiegung £ AuBerdem
werden sich infolge der o die Lingen der Strecken m 1 bezw. m 3 um 4,
bezw. 4, indern, wobei eine Verkiirzung wieder positiv in Rechnung ge-
stellt wird. Da die bezogene Dehnung in Richtung der &-Achse

— % _ %

%= F " mE | (14)
ist, folgt durch bestimmte Integration die Verkiirzung der unteren bezw.
oberen Scheibenhilfte in der Form

h 0
1 Oy 1 Oy
ASZ_E_H__ + o) as; A,:—E-j(~— +a§>d§ (152, b)

—h
Substituiert man hlerm die o: und die o, durch Gl. (13) und Gl. (3), ersetzt
weiters in letzterer M und N durch GI. (11a) und (11b) und fiihrt die beiden
langwierigen, jedoch nicht schwierigen Integrationen aus, so wird

A= — " Bege)— Qe+ Tel) 4 (1- —1-)(3 ) —
ryr - _4 "+ s) — 48 r N + 4—b—E~ - mg pr+ ps -
#e i ‘ 16
—486mE OP TP + g p e _ (162)
A= — " (6, + 3 Tel+9el)+ ( )( 3
s = dm r+ s) 8( & s +4bE m pr+ ps)—
i 4 i | 16b
T A8b1 E( pr 4+ 9ps) — QTEg@. ( )
Analog Gl. (14) lautet die bezogene Dehnung in Richtung der x-Achse
Oy ()'5-:7
&y = E -——}nfE. (17)

Es ergibt sich bei Anwendung des Prinzips der virtuellen Verschiebungen
fiir die lotrechte Durchbiegung & im Punkte (cd)

x=L E=-+h x=L §=+h
. = b O A b | .
E=CE4E& = — EJ J[(U”’n)d +( —f;;)og]dxdEJr—aJ Jz_rdxdé‘,‘ (18)
. x=0 $=—4h x=0 §=—nh

wobei die gestrichenen Spannungen von einer im Achspunkt (cd) angreifen-
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den Hilfskraft P =1 herrithren (Fig.3a). Das erste Integral stellt den An-
teil der Normalspannungen und das zweite Integral denjenigen der Schub-
spannungen dar. Fiir den Hilfsangriff erreichen die 6. in den engsten Nach-
barbereichen der beiden Auflagerdriicke und der Last P =1 Werte in der
ungefihren GroBenordnung der p. Da aber einerseits diese drei Bereiche
im Vergleich zur ganzen Scheibenfliche sehr klein sind und andererseits

Q Compression }
— . Druck =+
‘d_x* # (7 Compression
TITTIIL z | 4
rETHCLTY LA} n+1
f M M+dM 8F fai 7
h .
. g) Axe du disque
*——" 7 N‘z Nealy E‘ (64— Scheibenachse — =
h Trs \ } ‘ o’é{ Axis of plate
} @ 2o AN s ~ —-Tif‘—s L
et :
i B I
AB) 4 | p
X
*€ L
i O = Disque de fermeture-Endscheibe-End plate
Fig. 3a
% (%)
_ l o
z )
L7 Parsbole
FParabel
z i A o6 T B\ Persbols
B G5 h BT\ 4
< n=E 35E
- l £ Vi -7
e T+ 5¢ df ¥ )
%54 & £ g
It 5 — 75,' (¢-%)
T+ I ax 7
Fig. 3b Fig. 3¢

die achsnormalen Spannungen in den Gebieten zwischen den obigen Einzel-
lasten praktisch vollkommen verschwinden, kann man die vom Hilfsangriff
b

herrﬁﬁr'én_den%g ganz unterdriicken, so da man im ersten Integral 6x=@ 3
und o =0 setzen kann. Fithrt man unter Bedachtnahme auf Gl. (3) und
Gl. (13) die innere Integration der Gl. (18) aus, so wird mit @ = 2bh3

» ] ﬂ p—sjﬂr_'__ }lE ” ” h ” ” gU ]s
[@ +2m/zb *——30’” Es—er)”gomg-g(p _pr)—smb M dx. (19)

4
Beriicksichtigt man, daB die w und die 4 klein von der Gré8enordnung %

sind, so ergibt sich aus einer aus der Fig. 4 leicht abzulesenden geome-

trischen Betrachtung bei Unterdriickung von wunendlich kleinen GroBen
zweiter Ordnung
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Ps &%
l T 'z‘,;ﬁ;b] TR

Faft man in der GI. (19) E 7 als elastisches (Gewicht y auf, so folgt

£= jy?ﬁa’x das heifit die Biegelinie ist die Momentenline der y oder es wird

” " h ” ! ==
£ = +2k( 8r+es)+m(‘“5r+5s)+*3'6m—2b’E(—Pr+Ps)+5mbE, (20)

was den Anteil der Normalspannungen an der Durchbiegung darstellt. Fiir
die Auswertung des zweiten Integrals der Gl. (18) mufl die Verteilung der
Schubspannungen z bekannt sein. Diese ergibt sich fiir den vorhandenen
rechteckigen Querschnitt fiir die zur 4uBeren Last gehorigen Querkraft Q zu

32— :
= R0 St (1) (Fig30 (1)
mit Q=Q—bh(r,+ ). (21)

Da beim Hilfsangriff keine Randschubspannungen vorhanden sind, erhalten
wir fiir diesen die Verteilung zu

3 k2=
=2 Tpps M (22)
wenn L. die Querkraft fiirr P =1 ist.
Mit Gl. (21) und (22) folgt nun
x=L
= 1
:= Lo, (23)
s .
wobei
3 Q T, + 75 . ,
Q. = S e ist. (23")
Setzt man I — ¢ .
"Dlirzks = —L"‘ und Qrechts = = ‘[’

so ergibt sich

f@ dx — j @.as|,
0

0
woraus mit Gl. (23’) und Gl. (21’) nach zweimaliger Differentiation nach ¢

:”_Q;__l[?» , 1, ,,]
Y =6 T alEar? ) 24)

folgt. Mit Gl. (8c) und Gl. (12a) und (12b) erhalt man nun

r/;__;l 1 _h__E_. o "y h m}’S gl;J
&= (}‘[2‘@“”’”5) 30 ") 30,5 CPIP) Y105, b b (2D)

womit wir den Anteil der Schubspannungen an der Durchbiegung gefunden
haben. Addiert man GIl. (20) und Gl. (25), so erhdlt man mit G = iﬁ%
die gesamte Verformung in der Gestalt

Abhandlungen VII 10
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"o 1 . 2(1+m) - h7 ’l_t_z_’_n[ 74 ” 1 ” ” ]
o= gl Corers g Cortnd|-gg |G e Caiem) |y
g & My
tSm6E 5G 1064G" (20)

In dieser Gleichung ist der EinfluB des zweiten Klammerausdruckes be-

sonders bei Scheiben mit kleinem \/'erhlailtnis—zz}f auBerordentlich klein und

kann meistens unberiicksichtigt bleiben. Man erhilt dann fiir & die ver-
einfachte Form

., 1] 2/1&} l+_ﬂ}_[ 1 ,] ,

in welcher der erste Teil von den Normalspannungen o und der zweite Teil

von den Schubspannungen t herrithrt. Will man also nur den Einfluf der

o beriicksichtigen, so ergibt sich die noch weiter vereinfachte Form der
Gl. (206)

1 2h g ”

= galet o+ 50l 2

Wie man aus der Fig. 4 erkennt, ergeben sich die Verformungen des
oberen bezw. unteren Scheibenrandes, indem man zu & die Werte der 4,
addiert, bezw. der 4, subtrahiert.

dx
\ ar s

ox w+‘y’}’ dx—]
" 7\:\’L\ /'f/.f.l‘v_" d
t V" ax ) 9%

Sll

w .
m Disques l
m Scheiben s wieedl .
m Plates Aopn= ZL o= %7:,“)

Fig. 5

Diese Ergebnisse stimmen mit den genauen mit Hilfe der Airy’schen
Spannungsfunktion gewonnenen Werten gut iiberein.
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C. Die Kontinuititsbedingungen.

Fiithrt man um einen beliebigen Knoten, z. B. um 2’ der Fig. 7a einen
Ringschnitt # mit unendlich kleinem Durchmesser, so wird fiir jede Scheibe
eine Schubspannung 7z und eine Querbelastung p frei, welche sich am iibrig-
bleibenden Knotenfragment das Gleichgewicht halten miissen. Da die inner-
halb des Ringschnittes liegende Fliche f unendlich klein von 2. Ordnung
ist, wird die Kraft f-o, ebenfalls von derselben Ordnung unendlich klein,
so daB die Gleichgewichtsbedingung gegen Verschiebung parallel zur
Knotenlinie in differentierter Form

S rint = @)

lautet, wenn in dem betreffenden Knoten m Scheiben mit den Breiten &,
(6 =1, 2, 3,...m) zusammenstoBen. Wir wihlen nun fiir jede Scheibe des
Faltwerkes eine bestimmte Richtung, nach welcher in Hinkunft fiir die ein-
zelnen Scheiben die positiven Werte der & in Gl. (26) gezdhlt werden sollen
(Fig. 5). Die mit der dazugehdrigen Breite b, multiplizierte 1. Ableitung
der Schubspannung der Scheibe nw bei n ergibt sich nach Gl. (12a) zu

’ h(o b(OE() 14 ” 1
bm Theo — — (2 n + 8(0) 3 (2 Pro +pwn) - iﬁ: (pfl(o - /)(.m) -
L[,  m,
-ifﬁuw+ o) g, | (28)

Hierbei muBte in Ubereinstimmung mit Fig. 3a die obere der beiden GI. (12)
benutzt werden, da die in Frage kommende Schubspannung z,., ebenso wie
in Fig.3a das 7, auf der, der Pfeilspitze abgewendeten Seite der positiven
Durchbiegungsrichtung liegt. Handelt es sich hingegen um eine Scheibe 7v,
deren positive Durchbiegungsrichtung &,, zum Sammelknoten » gerichtet ist,
so ergibt sich jetzt das an » grenzende, mit &, vervielfachte 7’,, nach
Gl. (12b) zu

, _ h,b,E,
byt = =5 (e 2.s,,)+ (p +2pn) + 2a(pm'_/’vﬂ)—
1 (., mp ,
-wz@m~mj—4x (29)

Klappt man nun alle im Knoten » zusammenlaufenden Scheiben so in eine
Ebene, daB sodann alle Pfeilspitzen der positiven &Vektoren nach ein und
derselben Richtung weisen, so werden die durch den Ringschnitt freige-
machten, an den Scheibenelementen angreifenden z,, der Scheiben nw mit
vom Knoten weisenden positiven &-Richtungen nach der einen und die 7,
der Scheiben mit zum Knoten weisenden positiven &-Richtungen nach der
anderen Seite gerichtet sein (Fig.5). Bei der nun folgenden Substitution
der ., der Gl. (28) und Gl. (29) in die Bedingung (27) muB also bei einer

von den beiden letzteren das Vorzeichen verkehrt werden, so dafl zwischen
den Indices » und w nicht mehr unterschieden zu werden braucht. Wir er-
halten demnach
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G=m o=m

260 D hobsEs + D hobsEssl =
o=1 =
[ ” ” 3 ‘< 1
(ano -+ pmz) — Z I (Pm; - prm) + (30)
=1 4

=1
o=m
h
— _;1 -
+ 32 —;—(n;a—l-”;—"’q) +3D89,
=1 o o=1

wobei ¢, die bezogene Dehnung am Knoten n des Faltwerkes und p,; bezw.
pon die Querbelastung der Scheibe 7o an deren Rand n bezw. o bedeutet.
Ersetzt man die Belastungen m, und 7, einer jeden Scheibe durch zwei
in deren Riandern r und s wirkenden Krifte z,, und x,,, so stellen die ein-
zelnen Summanden des dritten Gliedes der rechten Seite von Gl. (30) die
jenigen dieser Ersatzkriafte z dar, die in den dem Sammelknoten # anliegen-
den Scheibenkanten angreifen (Fig. 5). Die g, sind dann positiv, wenn sie

+U

Fig. 6

mit der &-Achse gleichgerichtet sind. Man kann aber die Massenkrifte g,
niherungsweise auch so erfassen, da man sie, dhnlich wie bei einem Fach-
werk das Eigengewicht der einzelnen Stibe, auf die Knoten verhiltnis-
gleich aufteilt. Der im Verlauf dieser Entwicklung notwendig gewesene Un-
terschied zwischen Scheiben mit zum und mit vom Sammelknoten » wei-
sender positiver &-Richtung fillt also bei der Gl. (30) wieder weg. Da die
bezogene Dehnung ¢, des gemeinsamen Knotens ~ auch jeder von n aus-
gehenden Scheibe angehort, driickt die Gl. (30) den beziiglich der Langs-
dehnung ¢, vorhandenen punktweisen Zusammenhang lings der Knoten-
linie n aus. Wir wollen sie daher Kontinuitdtsbedingung 1. Art
nennen. Fiir jedes Faltwerk besteht fiir jede Knotenlinie eine solche Differen-
tialgleichung.

Fiithrt man lings jeder Knotenlinie unendlich enge rohrenférmige Ring-
schnitte (Fig.7a), so zerfiallt das Faltwerk in seine einzelnen Scheiben, die
sich dann auf Grund der auf sie einwirkenden Belastungen und Spannungen
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Pry Psy m, 12, g, und 7 in ihren Ebenen entsprechend den Gl. (16a), (16b) und
(26) frei verformen konnen (Fig.3a). So werden sich z.B. die riickwir-
tigen, d. h. die den Pfeilspitzen der positiven &-Vektoren abgewendeten
Rinder der vom Knoten » ausgehenden Scheiben rg, ru, »v usw. von r nach
Too Tuy 1y USW. um Sy + dpg; &, + sy & + 4,5, usw. verschieben, so daf
der Knoten r auseinanderklafft (Fig.6). Da infolge der grofien Schlankheit
der beiden Verhiltnisse Qb-h und % der Widerstand, den eine im obigen
Sinne freigelegten Scheibe gegen senkrecht zu ihrer Ebene gerichtete Krifte
entgegengesetzt, duBerst gering ist, konnen die Rander r,, r, und r, senk-
recht zu ihren zugehdrigen Scheibenebenen lings der Normalen 7,7, r,7,
r, r bewegt werden, ohne dal dadurch neue Zwinge entstehen. Zufolge
der Kontinuititsbedingung 1. Art liegen die Randpunkte #,, 7,, , und daher
auch die Bewegungsnormalen 7,7, 7,7, r, 7 in einer zur Knotenlinie senkrecht
stehenden Ebene. Verhalten sich nun die Verschiebungen &, + 4,,, &, + 4,4
&, + 4,, zueinander so, dafl diese Normalen alle durch ein und denselben
Punkt  gehen, so ist das Klaffen des Knotens wieder aufgehoben und der
Tragwerkszusammenhang auch in der zur Lingsachse senkrechten Richtung
punktweise wieder hergestellt, wobei 7 diejenige Stelle ist, an welcher sich
der Knoten r nach erfolgter Verformung befindet. Damit haben wir die
Kontinuitatsbedingung 2. Art formuliert. Legt man nun durch r
ein Koordinatensystem u, v und projiziert die auf dieses bezogenen Koordi-
naten u,, v, des Punktes 7 senkrecht auf 3 von » ausgehende Scheiben, so
erhalten wir die 3 Gleichungen

1y COS 0y 4 v, SiN 0y = &, + 4,, (31a)
Uy COS 0y + 0,510 @y = &4 + 44y (31b)
u,CoSs ¢y, + v,siN a,, = &, + 4,, (Abb. 6). (31¢)

Bestimmt man aus zwei von diesen #, und », und setzt diese Werte in die
dritte der obigen Gleichungen ein, so ergibt sich

(Erg + Arg) SiN &) + (& + dyy) Sin ) + (E + 4p) sin e = 0, (32)

worin die Indices g, u und » zyklisch gruppiert sind. Fiir jeden Knoten, in
welchem m Scheiben zusammenstoBen, bestehen m —2 solcher Gleichungen.
Dabei werden die Winkel ) von positivem &-Vektor zu positivem &-Vektor
gezihlt. Das Vorzeichen ist durch die Reihenfolge der unteren Indices fest-
gelegt. Damit ist die Kontinuitidtsbedingung 2. Art in ihre analytsche Form
gebracht. '

D. Die Elastizititsgleichungen.

Wir betrachten ein Faltwerk mit » Knoten und s Scheiben. Ein solches
hat » unbekannte Funktionen ¢ und 2s unbekannte Querbelastungsfunk-
tionen p. Differentiert man die Gl. (32) zwei mal nach x und setzt in die
so erhaltene Beziehung die Gl. (26) und die gleichfalls zwei mal differen-
tierte Gl. (16a) und (16b) ein, so folgt

4 6 4 4 4 6 6 6
21:08+‘14:](/3‘{‘41‘:58"‘{‘1258”‘4"21:(88"”4‘Ellip"“{"lzi/]"‘{‘lep""‘l‘

3 3 3
+;rg5+127g@+41‘35’”;s:07 (33)
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wobei die oberen Summengrenzen die Anzahl der in diesen Summen vor-
handenen Summanden angeben. Fiir jeden Knoten, in welchem m Scheiben
zusammenstoBen, bestehen m—2 Kontinuititsbedingungen 2. Art. Es er-
geben sich daher auch 2s— 27 GL. (33). In diesen haben diejenigen Glieder
des homogenen Teiles, welche die hoheren Ableitungen der & und p enthalten,
auf die gesamte Rechnung einen bedeutend geringeren EinfluB als die an-
deren, so daB man sie in manchen Fillen auch vernachldssigen kann. Fiir
die etwas spiter folgenden Betrachtungen erwihnen wir, daff die Summen
mit iiberstrichenen Beiwerten die Querdehnungszahl 7 nur im Nenner ent-
halten. Beniitzt man fiir £&” statt der ausfiihrlichen Gl. (26) nur die verein-
fachte Gl. (26’), so werden die ersten, zweiten, zehnten und elften Glieder
nur durch die & gebildet, wihrend die durch die Gl. (16a) und (16b) dar-
gestellten 4 die iibrigen Bestandteile der Gl. (33) erzeugen. Unterdriickt
man die 4, so ist die Benutzung der genauen Gl. (26) sinnlos, da die darin
enthaltenen Zusatzglieder die Rechnung weniger beeinflussen als die 4 selbst.

Stellt man nun durch Auflésen der Gl. (30) nach den ¢” diese als Funk-
tionen der p explizit dar, so wird

3 2s 2s s S
=5 Stp+ Sy + Da(v + ) + Die (34)
2 1 1 1 h 1

Differentiert man die Gl. (33) zweimal nach x und setzt in diese Beziehun-
gen die Gl. (34) und die aus diesen folgenden vierten und sechsten Ablei-
tungen der ¢ ein, so erhalten wir weiter die linearen Differentialgleichungen

2s 25 2s
Z op+2itp"+ 2 tp'+ 2 gp""+ 2 gp"+ Zyp”+ 2 zfs+ 25 2m)s +

2s

+ng’”’+2rg”+ Zsm;;”r Zzgc =0, (35)

in welchen nur mehr die Querbelastungsfunktionen p als Unbekannte vor-
kommen. Solcher Gleichungen gibt es so viele wie es Gl. (33) gibt, nam-
lich 2s—2r. Aus den zu Beginn des Abschnittes C dargelegten Gleichge-
wichtsbetrachtungen geht hervor, und zwar wieder aus der unendlicher
Kleinheit des innerhalb des Ringschnittes liegenden Teiles j der Faltwerks-
fliche, daB in jeder Knotenlinie fiir die duBere Belastung und die angren-
zenden Querbelastungen p Gleichgewicht gegen Verschieben nach zwei Rich-
tungen punktweise bestehen muB. Es wird also

m

S psine = G, (36a)
1

DI pcosa = Gy. (36b)
1

Solche Beziehungen gibt es je Knotenlinie zwei, im ganzen also 2r, so daB} zu-
sammen mit den Gl. (35) fiir die Bestimmung der 2s unbekannten Funk-
tionen p 2s—2r-4 2r=2s lineare simultane Differentialgieichungen
sechster Ordnung zur Verfiigung stehen. Da die Gl. (36) nur die reinen p
enthalten, konnen aus den Gl. (35) und (36) 27 von den Funktionen p sehr
leicht eliminiert werden, so daB nur mehr 2s — 27 Unbekannte mit ebenso
vielen Beziehungen iibrig bleiben, in welchen wir die Elastizttatsgleichun-
gen des Problems gefunden haben. Die Auflosung dieses Systems erfolgt
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in fast allen Fiallen am zweckmiBigsten mit Hilfe von Fourier’schen Reihen.
Aus den GI. (30) folgt nun, daB nur der erste Teil der rechten Seite
derselben von den Querdehnungen herrithrt. Unterdriickt man diesen Ein-

fluB, so verschwindet in Gl (34) das Glied D zp" und es wird

Z Ip + 2 (n,s h;s) + é}ﬁgl,. (37)

L4aBt man die Langenanderungen A auBer Acht und nimmt entsprechend der
Darlegungen auf Seite 150 an Stelle der ausfiihrlichen Gl. (26) die verein-
fachte Gl. (26"), so degenerieren die homogenen Teile der Gl. (33) auf
ihre beiden ersten Glieder > a¢+ 2 fp2). Differentiert man diesen Rest
zwei mal nach x und setzt die Gl. (37) ein, so ergibt sich die entsprechende
zusammengeschrumpfte Gl. (35) in der Form

DIOPHIY D2 n A D B M+ D E Gt D v 8y + D T+ D smyy = 0. (37a)
Bekanntlich gibt die Annahme /m = co bei Elastizititsproblemen bei groBen
Vereinfachungen sehr gute Niherungslosungen. Wie wir schon auf Seite 150
erwihnt haben, enthalten in den Gl. (33) die Summen mit den iiberstrichenen
Koeffizienten die Querdehnungszahfen nur im Nenner, was von der Tatsache
herriihrt, daB in den GIl. (16a) und (16b) die m ebenfalls nur im Nenner
vorkommen Es verschwinden also fiir m = co in Gl. (33) die vierten, siebten,

achten und zehnten Glieder. Da unter diesen Umstanden auch die zweiten
Glieder der Gl. (34) Null werden, degenerieren die Gl. (35) zu

DIOpE I D2 P+ Dy E Rt D B D E G+ D v + 2 7 8h + 2, s mys = 038)(37D)

wodurch die Ziffernberechnung bedeutend ermiBigt wird.

Bei diesen Betrachtungen wurden die Beiwerte der Gl. (33), (34) und
(35) nur mit einfachen Buchstaben dargestellt. Die Entwicklung in all-
gemeinen Zahlen gelingt in einer tibersichtlichen Form nur bei einfachen
Faltwerkssystemen. In den meisten Fillen ist es zweckméafBig, die verschie-
denen oben geschilderten Eliminationen und Substitutionen, die zu den Elasti-
zititsgleichungen fiithren, jeweils mit den speziellen Zahlen durchzufiihren.

Wir betrachten nun drei von einem Knoten r ausgehende Scheiben
(Fig. 6). Vernachlissigt man die Lingeninderungen 4 und den Einfluf} der
Schubspannungen auf die Durchbiegungen &, so erhdlt man nach dem vorhin
beschriebenen Rechnungsgang die dazugehorlge Gl. (33) in der Form

o /-‘ —_
Dace 57; sin «) +5 i sin a) + 5 hv sin a) = 0, (38)
wobei &, = —e¢ + & & = —& +¢,; & — —¢ + ¢, bedeutet.

Errichtet man in den Punkten o, u, » und » zur Zeichenebene Ilotrecht
stehende Gerade und tragt auf diesen von deren FuBpunkten o, u, » und ~
ausgehend ¢,, ¢,, ¢ und & auf, so erhalten wir im Raume vier Punkte
€, €., €, ¢, mit den Koordinaten

2h,COS 0y, 2h,SiNat,,, &

2h,cOS ,, 2h,sina,, ¢, (39)
2h,c08 ¢,,, 2h,sing,,, ¢,
0 0 & .

) Die A konnen nur dann verschwinden, wenn gleichzeitig m = co wird.
3) Das zweite Glied rithrt nur vom Schubmodul G her.
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Driickt man die Winkel der Sinuse der Gl. (38) als Differenzen der Winkel
Croy Qruy O aus, so laBt sich Gl. (38) in der Form

1 2 h, sin a,, 2h, COS ay, Z,
Sh ik 2h, sin ay, 2h, cos a, g =0 (40)
erHTY 1 24, sin ap, 2h, COS «,, €, |

schreiben, die besagt, daB die vier Punkte ¢,, ¢,, ¢,, ¢, in einer Ebene
liegen. Da die 4 nur dann verschwinden kénnen, wenn m = oo wird, so
sind nach den Gl. (10) die o, proportional den ¢. Es ergibt sich also fol-
gender Satz:

,Die Verteilung der Lingsspannungen o, iiber drei von einem Knoten
ausgehenden Scheiben ist eine ebene, wenn die Lingeninderungen 4,
der EinfluB der Querdehnungszahlen m und der EinfluBl der Querklafte
auf die Durchbiegungen vernachliassigt werden.‘

So ist z. B. in Fig. 2a die Verteilung der o, iiber die Knoten 3, », 2, 1 und 3,
n—-1, n, 2 je eine ebene. Da sich diese beiden Gruppen in #z, 3, 2 iiber-
decken folgt daB die ebene Spannungsverteilung auch iiber n—}—l n, 3,
2 und 1 reicht. Fiihrt man diese Bctrachtung systematisch zu Ende, so er-
gibt sich, daB fiir alle Faltwerksteile, die im Querschnitt die Figur eines
stabilen Fachwerkes als Grundnetz aufweisen, die Verteilung der Langs-
spannung eine ebene ist. Fiir Faltwerksteile mit rahmenartigem Querschnitt
trifft dies jedoch nicht mehr zu. So ist z. B. in Fig.1 die Verteilung iiber
1, 2, 2, 1 und iber 3, 4, 4/, 3’ je fiir sich linear, woraus jedoch noch nicht
folgt, daB dies iiber den ganzen Querschnitt der Fall sein muBl. Die Ver-
teilung nimmt vielmehr die Form einer Regelfliche an, fiir welche die Ober-
und Untergurtslinie die Leitgeraden sind. Werden die Lingeninderungen 4
und der EinfluB der @ auf die & nicht unterdriickt, so ist die Verteilung der
Lingsspannung nur in einzelnen besonderen Fillen eine ebene.

Haben wir eine im Sinne des vorigen Lehrsatzes ebene Verteilung vor
uns, so kann man die Langsspannungen in der Form o,= oey + fe&, 1+ yeg
darstellen, wobei «, f, y Funktionen der QuerschnittsgroBen und ey, ¢,, &
drei von den unbekannten bezogeunen Verkiirzungen der Knotenlinien sind.
Die Produkte o, - df bilden ein raumliches System paralleler Krifte, die sich
mit dem am Tragwerksabschnitt angreifenden Lasten und Auflagerreaktionen
das Gleichgewicht halten miissen. Daraus folgen drei Bedingungen, die fiir
die Bestimmung der ¢, &,, ¢ hinreichen. Man kann also in diesem Falle
die Langsspannungen und Lingsdehnungen und wegen der Gl. (26”) auch
die Achsendurchbiegungen £ aus reinen Gleichgewichtsbetrachtungen ohne
Hinzuziehung der Elastizititsgleichungen (35) bestimmen.

Wegen Gl. (26”) lassen sich nun auch alle £ in der Form

E, = ae + Pey, + 7

ausdriicken, d.h. die Verformung eines jeden Querschnittes ist, so wie die
infinitesimale Bewegung einer undeformierbaren Scheibe durch drei allge-
meine Koordinaten bestimmt. Dies trifft nur zu, wenn jeder Querschnitt fiir
sich starr bleibt. Da alle 4 gleich Null sind, ist das nur méglich, wenn
das Grundnetz des Faltwerkes die Figur eines unverschieblichen Fachwerkes
aufweist. In Verbindfing mit den obigen’ Erlauterungen ergibt sich nun dar-
aus, daBl dies die notwendige und hinreichende Bedingung fiir das Eintreten
einer ebenen Verteilung der Lingsspannungen und Lingsdehnungen bei den
oben festgelegten Vernachlidssigungen ist.
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Sind alle 4 = 0 und verschwindet auBerdem der Einflul der Q auf die
Durchbiegungen &, so degenerieren, wie dies bereits auf Seite 151 gezeigt
wurde, die Gl. (33) nicht nur zu 2ae -I- Zfp *), sondern zu den in ¢ homo-
genen Gleichungen Xae = 0%). Da sich dann alle ¢ eines Querschnittes durch
3 von ihnen darstellen lassen, sind von diesen 2s— 27 Gleichungen
2ae = 01*) auch nur 3 voneinander abhingig. Infolge des in den Gl. (30)
(m = oco) enthaltenen Zusammenhanges zwischen den ¢ und den p, sind auch
die zu den Zae=04%) gehorigen 2s—2r Gleichungen Zop = 0%) ebenfalls
nicht alle voneinander unabhingig, so daB diese fiir die Bestimmung der
2s —2r unbekannten Querbelastungen nicht mehr ausreichen. In solchen
Féllen ist ein Teil der p nicht nur statisch unbestimmt, sondern iiberhaupt
unbestimmt. Diese Erscheinung erklart sich aus der Vernachlassigung der 4
und des Einflusses der Q auf die £. Man entzieht eben dadurch der gesam-
ten Deduktion die elastizitdtstheoretische Unterlage, welche bekanntlich erst
die Ermittlung aller p ermdglicht. Es bleiben nur die rein statischen Bedin-
gungen iibrig, die allein nicht hinreichen. Da die ¢ durch die Gl. (12a) und
(12b) mit den p und den & zusammenhidngen, sind dann auch die z in der-
selben Weise unbestimmt. Setzt man die im obigen Sinne auf rein statische
Weise bestimmten ¢ in die Gl. (30) ein, so erhidlt man die bestimmbaren p
meist bequemer als aus den, durch Grenziibergang entstandenen Gleichun-
gen 2op=0%). Die so erhaltenen Bedingungen sind aber dann auch nicht
alle voneinander unabhidngig, so daBl aus ihnen ebenfalls nicht alle p be-
stimmt werden konnen.
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Da die p nur untergeordnete Spannungen erzeugen, fiallt der Umstand,
daB man sie in manchen Fillen nicht alle bestimmen kann, nicht sehr schwer
ins Gewicht. Die damit zusammenhingende Unbestimmtheit der = wirkt sich
aber sehr unangenehm aus, da dadurch die gesamte Schubspannungsvertei-
lung auf den Querschnitt ebenfalls nicht bestimmbar ist. Diese kann man auf
Grund der vorangegangenen Betrachtungen vielmehr nur dann ermitteln,

4) Die Belastungsglieder sind der Einfachheit halber nicht mit angeschrieben.
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wenn die Langenianderungen 4 oder der EinfluB der Q auf die Durchbie-
gungen & oder aber beide Umstinde nicht unterdriickt.

Kann man die Langsspannungen o, auf einen von der Auffassung als
Faltwerk unabhingigen Weg bestimmen, wie dies z. B. bei einer ebenen
Spannungsverteilung zutrifft, so lassen sich die von der Torsion und der
Querkraftbiegung herrithrenden Schubspannungen mit Hilfe der Bredt’schen
Formeln auf bekannte Weise ermitteln, indem man die Hohltrager als mehr-
 zellige Querschnitte auffafSit. Bei diesen Berechnungen wird aber die Un-
veranderlichkeit der Querschnitte vorausgesetzt. Ebenso bleibt die Art und
Weise, wie die Torsions- und Biegemomente und die Querkrifte in die ein-
zelnen Querschnitte eingetragen werden, unberiicksichtigt. Dieser Umstand
sowie die Verformung der Querschnitte spielt aber bei den Querschnitten

Coupe~Schnitt—Section A—A

Eﬁ Garne - Schiifz —S/o//‘ S ic
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o5 T} ] !
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‘ 205 7 — —
;5 42 C
Fig. 7b

mit groBer Breite und geringer Hohe schon eine Rolle. Nachdem man auf
diese Weise die Schubspannungen ermittelt hat, ergeben sich aus den GI.
(8c) und (36a,b) die p. Dabei ist zu beriicksichtigen, daB die Querkrafte
der einzelnen Scheiben in einem Querschnitt mit der in diesem wirkenden
gesamten Querkraft des Gesamtsystems ein Gleichgewichtssystem bilden
miissen. Nachdem bekanntlich ein solches drei Bedingungen erfiillen muB8,
sind drei von den Gl. (8c) voneinander abhingig und diirfen bei der Aus-
zahlung nicht beriicksichtigt werden. So stehen z. B. bei dem Tragwerk der
Fig. 7a zunidchst 11 Gleichungen (8c) und 14 Gl. (36a,b), insgesamt also
25 Gleichungen den 22 unbekannten p gegeniiber. Da von den GIl. (8c)
jedoch 3 voneinander abhingig sind, sind von den 25 Bedingungen 3 zu
streichen, so daB 22 Unbekannten 22 Gleichungen gegeniiber stehen 5).

" E. Anwendung.
a) /. Beispiel.

Wir werden fiir den in Fig. (7a) und (7b) mit seinen MaBen und Elasti-
~zitdtskonstanten dargestellten Hohltriger die Berechnung fiir eine lings der
Knotenlinie 2 angreifende, zur Symmentrieachse C—C symmetrischen Linien-
last durchfithren. Die Beteiligung der beiden Kragarme an der Faltwerks-
wirkung wird durch Anordnung der Schlitze s unterbunden. Die querlaufen-
den Rippen der oberen Platte, welche ‘diese knicksteif machen uad in an-
nihernd quadratische Felder unterteilen, haben nur auf die zu den Scheiben-
achsen senkrecht laufenden Dehnungen 4 einen geringen Einfluf}, den wir

5) Beziiglich der Auszidhlung der Unbekannten siehe auch Abschnitt E.
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ohne weiteres vernachlidssigen konnen. Die Anzahl der unbekannten p be-
traigt 22. Diese lassen sich aber mit Hilfe der Gl. (36) auf 2s —2r=
22—-14 = 8 verringern. Um die Rechnung zu vereinfachen, machen wir von
der Symmetrie des Tragwerkes um dessen Achse A—A Gebrauch und zer-

legen die Belastung 2P V; entsprechend der Fig. (8b) und (8c) in einen
symmetrischen Teil +-Py3, --P}3 und in einen antisymmetrischen Teil

—PV3, + P\/3 Da das Kraftespiel fiir den ersten Fall um /—/ spiegel-
gleich und im zweiten Fall um die Achse /’—/’ gegenspiegelgleich ist, treten
fiir jeden der beiden Lastfille nur mehr 11 unbekannte Funktionen p auf.
Benutzen wir hier die Gl. (36a) und (36b), so kann man von diesen Quer-
belastungen je Belastungsfall 7 weitere eliminieren, so dal nur mehr die
in Fig. (8b) und (8c) stark ausgezogenen p als unbekannte Funktionen je
Lastfall iibrig bleiben, d.h. die 8 Elastizititsgleichungen zerfallen in zwei
je viergliedrige Gruppen.

Die stark ausgezogenen p stellen die Richtung der Wirkung dar, die
die Scheiben auf die Knoten ausiiben. Die positiven &-Richtungen sind in
Fig. (7a) angegeben.

Wir behandeln zuerst den symmetrischen Lastfall. Da fiir diesen auch
die ¢ um /—/ symmetrisch sind, lauten hiefiir die nach Gl. (30) gebildeten
Kontinuititsbedingungen 1. Art mit

gy = -m—})—E und s = Z_h%ﬁf
def + & + &8 = — Pr(ps1 + pas) — B2 (—p2 — Pas) (41a)
el + 9¢& + & + &f = — p1(4P" 4+ 2pa + 3 per— p3s) —
— B2(2P + pa1 + paa) (41Db)
o + & + 685 + &f = — p1(P"—ph + piy + 2pii + pis) —
— Bo(— P + par—pozr + psa— Pa3) (41¢)
ez + &3 + def = — 1 (P" 4 p21 —paz + p3s + 2 piz) —

—— B2 (—P—pa1 + por—pau +pi3).  (41d)

auf, so wird

”

Lost man diese nach ¢

4.186 & = — B1(204 psy — 105 pso + 168 psy — 6pis — 99 Py —
4.186¢5 = — By (144 p3) + 276 psar — 144 p3y — 48 piy + 324 P”) —

— B2(120 pa1 — 12 paor + 120 p34 — 12 pgg + 204 P) (42D)
4.186 &5 = — B1(— 216 p51 + 144 psor + 216 p3s + T2 pis + T2 P") —

— B2(192p2g — 168 pazr + 192 p3y — 168 py3 — 120P)  (42c¢)
4-186¢f = — pB1(204 p3) — 291 p3a + 168 p3y + 366 pis + 87 P") —

—_ {)’2 (—- 264/]21 + 231 pP2or — 264[)34 + 231 P43 — 207 p) 8 (42 d)

Da alle Winkel gleich 60 ¢ sind und auBerdem &,;, = — &y und 4,, =4, ist,
lauten die nach Gl. (32) gebildeten Kontinuitatsgleichungen 2. Art

E13 + E34 + E32 — Azt — Ay + A2 = 0 Knoten 3 (43a)
Eoy + Eog — Aoar + Aoy — Agz + &390 = O Knoten 2 (342/) (43b)
Sou+ &2+ Gy + Ao + A — Ay =0 Knoten 2 (134) (43¢)

&u + 443 = 0, Knoten 4 (43d)
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worin £,,"= 0 zu setzen ist. Wir wollen nun zunidchst wohl die Lingenin-
derungen 4, nicht aber den EinfluBl der Querkrifte Q auf die Durchbiegun-
gen ¢ beriicksichtigen. Auflerdem nehmen wir fiir die Achsverformung &
die vereinfachte Gl. (26”) ¢). Leitet man Gl. (43a), b, ¢, d) vier mal nach
x ab und setzt in sie die vier mal differentierten Gl. (16a,b) und die zwei
mal differentierten GI. (26”) ein, so wird

(e e+ el —el) + Ba (e —e) + 3 &) +6y") + By (Tl =T Y10 11 T k) +

+ B35 (D) — Py + O P+ pia = P") + B6 (T Y =T p¥l + 2T p¥T + T p¥I-TPY) = 0 (44a)
(—eg+ey +2REL) + 83 (3e) " +eg" — &) +&)) + 4 (e T+ T ekT-TelT+Teb) +

+ By (=6 pyy 4O pl— iy + pi— pi) + B (— 18K+ 2T p¥ Tyl ~Tpl—Tpll = 0 (44b)
(6] &y —e5—&)) + Pz (—e]" =3 &) +&)" —&]") + Ba (- TV 1-Q T+ T 1T V) +
+B5 (=9 Py +65— Py~ pi) + B (= 2T py{+ 18 pi, = T phi=Tpl5) = 0 (44¢)
(e5 - )+/§(~ " =3 &)") + Pa(-TeS-9 &) +
B Py —3p) + s (- TAYI-0pY) = 0, (440)
wenn /ﬁ:ﬁg—; [y = h4, Bs = ﬁ(] = ,.L>; Bs = LA

2m 24 20E m? 24mbFE
und Eoyr = 05 & = &; /922r = paz; pa2 =0 st

Bildet man durch Differentiation der Gl. (42) die ¢ und "/, setzt diese und
die ¢” in die Gl (44) ein und addiert die erste zur dritten und die zweite
zur vierten Gleichung, so ergeben sich die folgenden vier simultanen, linearen,
nicht homogenen Differentialgleichungen sechster Ordnung

— 108" gy A I I
423 p22,+( 1002 kg, + 2145 " oy
+1322 % (- L) gy + 18025 ™
— 2 o Vepg 310 B pr—
= — 486" P (— 348125—99) Py 245 0 pr (452)
516 "y p21 +( o0 hipy — 250 X pp
345 = p22, ( , 34’7‘29) *pha + 338 fz~p;’2’,
— 626 ~—p34 (180 — 20 Vi — 113 L
364 2+ 679—%‘:3 Jaspy — 152 g =
V(30550 2T ) pep g 10 i sh)
%) Da Massenkrifte nicht vorhanden sind, lautet diese einfach & — - (e, +e).

2h
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630 pu — 375 i+ (155025 — 2P} napyy 3005 2 py
6
— 342 pys, + 561 fwg, + (102225 + D) nipgy 4252 L
}l 264 e k6
630 pss — 267"y, + ( O gy — 118 L
h? mr h® VI
342 pyy — 15*,)43 (o ms w4 33
= 24P 303" pr g (3375 P2 )pepr ags Mpv s
99\} ur VI
342 py — 15—p21 +(—3225 + D) napy 4 675 oy
20025 pun — 20625 iy, + (2821875 — 1022 ity — 335625 1 pyy
h2 124 6 ne /Z
— 342 p— 200" gn y (153,75 — )y 455 put (45d)
6
20025 py + 343 875 L p43 + ( 2?”5 S ) B — 60,375 1 pv ap

hﬁ
)h"P”” 26, 8125 — PV

= 6525P + 270,375 fl_ pr +( ’ 83,25
i m?

welche fiir jede in den Knotenlinien 2 und 2’ angreifende, zur Achse /—/
symmetrischen Linienlast +P V3, + P{3 gelten.

Fiir die antisymmetrische Belastung ist das Querbelastungsschema bis
auf den Wert von p,,, welcher jetzt statt Null gleich — 2 p,3 wird, das gleiche
wie bei der symmetrischen Belastung, wie dies in den Fig. (Sb) und (8&c)
dargestellt ist. Da auBerdem &, = 0 wird, ergeben sich fiir diesen Belastungs-
fall die Kontinuititsbedingungen 1. Art zu

def + & + & = — pi(pyy + pyy) — Bo(— par — p34) (46a)
& + Tey + & = — B1(2p4 + Phy, — Py — 2P + 4 P") —
— Ba(p2r + 2po2 + pau + 2ps3 + 2P) (46b)
ke o 6 = — (g + Py 200+ ) —
- — Bapn — p2v + pu— pz — P), (46¢)
deren Auflésungen nach den &”
153 67 = — 1 (37l — 11, + 347, -+ 470, — 26 P") —
— Bo(— 52pm — 4 pa — 52y — Apys — 4 P) (472)
153 6] = — 1 (44 p5, + 20l — 34}, — 49l + 89 P") —
— B2(25 p21 + 49 pa2r + 25 p3s + 49 pa3 + 49 P) (47b)
153 &5 = — B1(— 39 py, + 24 p4, + 51 py, + 33py, + 15 P")
— B2(30 pa1 — 33 p22r + 30 p3s — 33 psg — 33 P) 47¢)

lauten. Infolge der oben festgelegten Ubereinstimmung der Querbelastungs-
schemata ist die erste, zweite und dritte Kontinuitatsbedingung 2. Art gleich-
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lautend mit den entsprechenden Bedingungen Gl. (43a, b, ¢) der symme-
trischen Belastung, nur ist jetzt £, 4= 0. Infolge der Gegensymmetrie wird

Eos = &, &2 = — &2, poor — — pps und A, = —A4,,,. Es ergibt sich also
die noch fehlende vierte Kontinuititsbedingung 2. Art in der Form
284 + &4 — 244 + 43 = 0 (Knoten 4). (43d)
28 ~
Da nach Gl. (26) == 5 (44')
und nach der zum Knoten 4 gehorigen Gl. (36a)
P2 = — 2 pag (44"

wird, folgen aus der Ubereinstimmung der drei ersten Kontinuititsbedingun-
gen mit Gl. (43a, b, c) die den Gl. (44a, b, c) entsprechenden Gl. (442, b, ¢’),
indem man in Gl (44a b, d) die GI. (44’) und (44”) einfiihrt und 84——0
£g == — €91y Pagr = — P22 setzt. In analoger Weise wie beim symmetrischen
Lastfall ergibt sich aus Gl. 43d’) die der Gl. (44d) korrespondierende Be-
ziehung zu

(__ 2 8" + 8") + /))3 (2 gun - 8””) _l_ /))4 (14 6.!2/[_ 7 EKI) +

+ /qo (2 pnu _ 2/)’2'!, _pérhl! 15/7"” + 2 plli!) +
+ B (14 p¥T — 14 p¥T — T p¥T — 45 p¥! 4 14 PV7)., (44 d’)

Bildet man aus den Gl. (47) die ¢ und &/, setzt diese und die &” in die
Gl. (44a’, b’, ¢/, d’) ein, addiert wieder die erste zur dritten und die zweite
zur vierten Gleichung, so folgen auch fiir diesen Belastungsfall die vier simul-
tanen Differentialgleichungen sechster Ordnung

‘) . 223 nee
15 p21+( 3035 — ) htpy — 36,083 py1
187,25\, .. :
123 2 1 (215025 4+ 00 ey 4 33,72016 7y
2 144 221 e h
75 gy (3085 + 200 )t gy + 35416y
2 6
123 % 4 (7375 + 3235)% '+ 30,60416 7 pyi —
= 123" pry (L1005 — PP) 235016 pv s
b 107\, . B
— 315 W 4 (1405 — DY wt gy 21416 ™ oy
he 2005\ ., ..
— 135 gt ( 254 4 7{2‘) I g+ 12,4583 " oy
h2 4275 nn
— 315" +( 64 — >h4 — 33,2016 pu1
: 44825\ .
— 135 0 gy 4 a7275 1) e 82470167
B 125 Vi
B35 P (101 + P — 140583 pv (48b)
m m? m
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2
80,25 21 — 18,625 15 P}, (333 34375 397:35) 7t py - 66,72016 " pg{

235, 75

15 poor + 93,5 p22, ~200,375 + R4y +56,02083 ng,

8025/734411125 p,;4 (2734375— 68 )lz pait — 31, 16—r 241

m2 3t

15 pss + 50 +( 56,375 32’25 )h4 v 431 2083 12— pit
) 56,5 A
-15P-111 925 P -20,125 e h*t P —10,7083 o PV (48c)
: 6
15 p21 456 ° -p21+( 80,875 + 42?) h* pir + 26, 104162 pY!
80, 5 .
08,25 pos —41,125 /- p,p, +| 47,84375 - h* pi 46, 0583 - p
’ )5 ree .
15 pos — 67 p34+( 33,875 = )h g 4,958377 pY!
541 h®
98,25 py3-114, 625 p43 +1545,00375 - ——| 4* p,; - 124, 3 —- p
35,75
=-08,25 P — 32,375 —”; P" + o h* P20, 85416 — PV’ (48d)

welche fiir jede in den Knoten 2 und 2’ angreifende, zur Achse I'—I' anti-
symmetrischen Linienlast --P V3 gelten.

Die nichste Aufgabe besteht in der Integration des Systems der Gl. (45).
Hiezu entwickeln wir die Linienbelastung P in die Fourier’sche Reihe

k:oo

P=
k=1

7t
7" (49)

Belasten wir nun das Tragwerk nur mit dem k-ten Glied Pksinkf«x dieser

Entwicklung, so erhalten wir die dazugehorigen Stérungsglieder der linearen
leferentlalglelchungen (45), indem wir in deren rechten Seiten dieses Glied
mit seinen Ableitungen

p(gﬂ) — ( 1)/1 pk (kﬁ)ﬂ sin k[i{x; (fi = 1, 2, 3)

einsetzen. Nehmen wir nun als zugehorige Losungen der unbekannten Funk-
tionen pyy, pasr, pyy und p,, die Glieder

. ko ki .kt . ks
Apsin—x: Bpsin—x: Cpsin— x:;: Dpsin->-x
RSN PRSI MRS FRSTE

an, d.h. wir substituieren diese Ansitze mit ihren Ableitungen
" ka\%" | ko . p ( 7[)3” .k )
-1 Ak(—f) sin =~ x; (-1)* B ;) sinxs

n 1275) . k7w ; n (k?"E)Q” . ki
( 1) Ck (ﬁv* sin —z—-x’ (“1) Dk f[‘* Sln z”x
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in die linken Seiten der Gl. (45), so ergeben sich nach Kiirzung durch
sin ELﬁx vier lineare Gleichungen fiir die Beiwerte A, B, C,, D,. Fiihrt

man diesen Vorgang fiir alle Glieder von Gl. (49) durch, so erhalten wir
nach dem Superpositionsgesetz die vollstindigen Integrale der Gl. (45) in
der Form i

- . k > ok
pmzZAksmi”x; ﬁ22r228k51n—75x;
1 L 1 L
— . ki g ki
p34 — 2 Ck Sin f x; p43 . Z Dk Sin ,l:. X. (50)
1 1

Die Losung der GIl. (48) geschieht auf dieselbe Weise.

Beriicksichtigt man, daB fiir jede zur Achse C —C symmetrische Be-
lastung die Glieder mit geradem % Null werden, so ergibt sich auf diese
Weise fiir £==1, 3, 5 die Losung der Gl. (45) zu

s = 3,605190 Py sin " x — 0,006506 Py sin > x — 0,302048 P sin %’1 x

L L
pe— 4469606 , , -+ 0106536 , , — 0162651 ,
pu = 4257498 , , — 0522686 , , — 0,193059 ,
pis =-5003027 , , —0603425 , , —0,187633 , , (51)
und entsprechend die der GI. (48) zu
po1 = — 0,3512300 P, sin %‘ x — 0,34093050 P; sin §Lﬁ x — 0,33050826 P; sin éLf x
pe = —0,82506059 , , -080828801 , , -0,73478157 ,
pau = +0,35210622 , , +0,33802644 , , +0,28038403 ,
pis =—0,17300484 , , -0,16766555 , , -0,12830188 , . (52)

Setzt man die Gl. (51) mit ihren zweiten Ableitungen in die Gl. (42) ein
und integriert diese unter Verwendung von

Jor

zwei mal nach x, so ergeben sich die ¢ fiir die symmetrische Belastung,

2
sinlili—ﬂxdx :_(—I;) sin{z-gx + Cix+ Co

7T

Da fiir x =0 und x= L, ¢ = 0 und sin L x = 0 wird, verschwinden alle dabei

L
auftretenden Integrationskonstanten C, und C,. Es folgt also
Ee¢ = 257,8506P1 sin % x+ 27,4812 P sin %f—z x + 8,0659 P; sin %—T X
, 2= 2585340 , , '+29,1968 , , +11,2586 ,
» &8=-310,1536 , , -34,0841 , | -127698 ,
» & =-310,4471 , , -34,7353 , | 125847 , . (53)

In gleicher Weise erhalten wir aus den Gl. (52) und (47)

E & =-0,2383262 P, sin % x+0,3073124 P3 sin STﬂ x + 1,0835316 P; sin _5L£ x

, & =-00363547 , , +04905634 , , +14057950 ,
, €3 =-03219318 | , -12223782 | | -2,6271881 , ,.(54)



Hohltriger als Faltwerke 161

Mit diesen Ergebnissen kann man nach Gl. (7) die Spannungen o: senkrecht
und nach den Gl. (10a,b) die Spannungen o, parallel zu den Scheiben-
achsen ermitteln.

Weiters erhilt man aus \ ¢dx die Liangsverschiebungen der Punkte der
0

Knotenlinien im Abstand x vom Auflager x= 0.

Setzt man die GL (51) und (53) mit ihren zweiten Ableitungen in die
Gl. (16a,b) und (26”) ein, so folgen fiir die symmetrische Belastung der
Fig.8b die Verformungen quer zu den Scheibenachsen. Es wird

E Ay — — 17,9069 P sin {f x — 3,8088 P, sin QL" x — 2,8013 P sin 5Li’ x

, Ay = 22015 , _ + 31300 , ., +52798 .

, A= 337625 , . 4+ 54811 , ., 447108 ,

, Aoz = 04378 , , + 73631 , , -+ 78063 ,

, dp = 685467 , . +104223 . . 452084 ,

, A= 146651 , , + 06580 , , —03753 , .

oAy = 183120 , ., 4+ 06531 , , 03848 .,

y Ay = 27918 , , - 01770 , , —02014 ,

, A3 =-333714 , , 236477 , , —1,1363 ,

, Ay =-248408 , , — 55983 . —34790 _

, Ay =-420787 , ., — 49601 , ., —17495 , . (55)
E &= 0 5

, £ = 28434,3 P; sin g x + 355,18 P; singLiT x + 47,69 P;sin Tﬂ x

, Gy =-284348 , , —35480 . , —4806 ,

» §i3 = 28401,2 ” » + 345,36 ” » T+ 41,67 » "

, fa=-14641 , , — 06578, , -+ 03702 ,

»$2= 34170 , , + 95312, , + 6384 , . (56)

Substituiert man dagegen die Gl. (52) und (54) mit ihren zweiten Ableitun-
gen in die Gl. (16a,b) und (26”), so erhialt man die Verformungen quer zu
den Scheibenachsen fiir die antisymmetrische Belastung der Fig.8c. Es
ergibt sich

E dp = ~3,9617 Py sin » x — 3,0280 Pysin > x — 3,6682 P; sin ;" x

L L
, Ay = 114600 , , +113627 , . +107307 ,
, A= 60393 , . 4+ 59677 , ., + 53252 .
, A= 20609 , . + 30126; , , -+ 35420 .
,dm=-12240 _ 0782 , ., — 03200 , .,
, Ay =-03852 , . — 03476 , , — 02060 .,
Ay = 21682 , . 4+ 22011 , ., + 10087 ,
,dy = 25534 4+ 25966 , , -+ 23013 ,
,ds= 0870 , ., + 08243 ., , 4+ 06190 ,
, Ay =-25132 , ., — 25420 , ., — 25703 ,
, 4 =-08060 , , - 08746 , , — 09481 , (57)

Abhandlungen VII 11
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Eép = 36355 P sin %‘ x — 54507 P sin 3%’ x — 5,6232 P; sin %71 x
L E—- 18177 , , +27254 , , —28116 , .
, B =-142780 , , —05163 , , —80660 ,
, &= 41803 ., ., +84983 _ . 4+ 74214 ,
, &= 160066 , , +67910 , . +52544 ,
, &p = 100086 , , 410181 , , +06445 , (58)

Um die Loésungen zu vervollstandigen, haben wir noch die Schubspannun-
gen zu ermitteln. Man erhilt sie mit Benutzung von
km L ko

Jsmi—x:~k—ncos—l~x + C

durch einmalige Integration der Gl. (12a) und (12b). Die dabei auftretenden
Konstanten werden wegen ooséﬁx: 0 und =0 fiir x= »g wieder alle

L
Null. Man erhilt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>