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HOHLTRÄGER ALS FALTWERKE.

POUTRES CREUSES TRAITEES EN «TOITS PLISSES».

HOLLOW BEAMS OF A SHED-TYPE SYSTEM.

Dr. Ing. ERNST GRUBER, Deutschland.

A. Allgemeines.
Für Tragwerke, wie sie in Fig. 1, 2 und 7 dargestellt sind, wurden

bisher, außer einigen Modellversuchen, noch keine eingehenden Untersuchungen

angestellt. Es ist naheliegend, solche Hohlträger als Faltwerke
aufzufassen. Man kommt dadurch dem wirklichen Verhalten des Tragwerks äußerst
nahe und erhält, wie die folgenden Untersuchungen zeigen werden, sehr
übersichtliche und treffende Ergebnisse.
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Bei Faltwerksberechnungen werden in der Regel die senkrecht zu den
Längsachsen der Scheiben wirkenden Spannungen 0$ (siehe Fig. 3a, b) nicht
berücksichtigt. Bei Systemen, die im Querschnitt ein rahmenartiges Grundnetz

aufweisen (Fig. 1), trifft diese Annahme immer sehr gut zu. In solchen
Tragwerken tritt infolge der Knotensteifigkeit und der Plattensteifigkeit der
Scheiben im Gesamtquerschnitt des Faltwerkes eine rahmenartige Wirkung
auf, durch welche die zusätzlichen Querbelastungen pr und ps entstehen,
welche wieder die ö§ erzeugen (Fig. 3a). Da die pr und ßs bei dem fast

immer schlanken Verhältnis wh sehr gering sind, werden die dazu gehörigen

Oc ebenfalls sehr klein. Betrachtet man ein solches Faltwerk, wie dies
meistens mit genügender Genauigkeit geschehen kann, als „gelenkig", d. h.
die einzelnen Scheiben sind längs der Kanten nur durch scharnierartige
Gelenke miteinander verbunden, so wird die oben erwähnte Rahmenwirkung
unterbunden und die ö* verschwinden bis auf den weiter unten beschriebenen
direkten Einfluß der Lasten ganz.
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Bei Faltwerken, welche nach Fig. 2a und 7a im Querschnitt die Figur
eines stabilen Fachwerkes als Grundnetz aufweisen, die also in der
Querrichtung auch ohne Mitwirkung der oben erwähnten Platten- und Knoten-
steifigkeit einen etwa eben so großen Biegewiderstand besitzen wie in der
Hauptrichtung L, erreichen die pr und ps und daher auch die o§ mitunter
besonders für bestimmte Belastungen beträchtliche Werte und müssen meist
im gesamten Verformungsspiel berücksichtigt werden. Der von einer stetigen
Belastung herrührende direkte Einfluß auf die Querbelastungen p und die
Querspannungen o§ ist in Anbetracht der geringen bezogenen Pressungen,
die die üblichen Belastungen auf ihre Unterlagen ausüben, immer gering.
Da man örtlich engkonzentrierte Lasten durch Entwicklung in Funktionsreihen,

z. B. Fourier'sche Reihen in eine Folge der üblichen, stetig verteilten
Belastungen überführen kann, gelten diese Betrachtungen auch für die
sogenannten „Einzellasten". Die in diesen Entwicklungen an den Angriffsorten
der Einzellasten auftretenden größeren Pressungen erstrecken sich nur über
örtlich eng begrenzte Räume und sind für das Gesamtergebnis ohne nennenswerte

Bedeutung. Es ist jedoch immer notwendig, die Spannungen und zwar
besonders die Schubspannungen in der unmittelbaren Umgebung der
Einzellasten größenmäßig zu verfolgen.

B. Spannungs- und Verformungszustand einer Scheibe.
Wir nehmen in der Folge an, daß die einzelnen Scheiben längs der

Kanten n nur durch scharnierartige Gelenke verbunden sind, so daß von einer
Scheibe auf die andere nur in diesen Kanten wirkende Schubspannungen %

übertragen wrerden können (Fig. 7a, b). Für Tragwerke, welche im
Querschnitt die Figur eines stabilen Fachwerkes als Grundnetz aufweisen, trifft
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diese Annahme fast vollständig zu. Eine, in einem beliebigen Knoten, z. B. 2
der Fig. 7a, angreifende Kraft G0 zerlegt sich in die stetig verteilten
Belastungen p, z. B. p21, /723, p2± und p22', deren Wirkungsebenen mit den
Mittelebenen der von diesem Knoten ausgehenden Scheiben zusammenfallen
(Fig. 7a). Laufen im letzteren mehr als 2 solcher Tragwände zusammen, so
ist diese Kraftaufteilung statisch unbestimmt.

Löst man eine beliebige Scheibe n -f- /, n durch die knapp neben
den Knoten n + 1 und n geführten Schnitte r—r, s—s vom Tragwerk
los, so werden die oben festgelegten inneren Kräfte t und p frei und
erscheinen als äußere Belastung der Scheibe nA~\, n (Fig. 2a). In
Fig. 3a ist dieser Zustand zur Darstellung gebracht. Alle darin
angegebenen Richtungssinne gelten in der Folge als positiv. Entsprechend
den allgemeinen Erläuterungen des Abschnittes A sollen auch die senkrecht
zur Scheibenachse wirkenden Spannungen a* berücksichtigt werden, so daß
ein 2achsiger Spannungszustand vorliegt. Die beiden Gleichgewichtsbedingungen

an einem infinitesimalen Element mit den Seitenlängen dx und d£
ergeben sich unter Berücksichtigung der Massenkräfte gv und gh zu

dox dr 1 do* de
t

1 ,_.
57 öf-yft; äf =äi + y&' (1)

woraus durch Elimination von %

d2ox __d2a§ 1 legt
cx2 SP b \di

V + ^ (2)

O U 11folgt (Fig. 3b). Ist das Verhältnis — kleiner als etwa -=- bis -=-, so ist mit

genügender Genauigkeit die Normalspannung ox eine lineare Funktion der
Querschnittsordinate f, so daß

wird, woraus sich nach Gl. (2) die Bestimmungsgleichung

d*oe_ 1 (3M"t \ 1 (8gv dgh\
d£2 \bh\ h2 J^ b \dS + dx) { '

für vg ergibt, worin M und N reine Funktionen von x sind. Es sei nun g0
konstant und gh von | linear abhängig, etwa wie

1 3£ \

Integriert man dann diese Differentialgleichung (4) zwei mal partiell nach f,
so erhält man

o* • un (%' * ~ N")+ ^ <*> + >¦ w + m (n-- tN • <5>

Hiebei sind f±(x) und f2(*) reine Funktionen von x, die sich aus den
funktionellen Randbedingungen

f h; ba§ ps

| — h ; bcj£ pr zu
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1 M" mf
'l(x> =2öh{p*-pr) + AU + ÄFh (6a)

1 hN" h
f*(x) Jb (Ps + Pr) — -4^ — 40

"'>* (6b)

ergeben. Setzt man dies in Gl. (5) ein, so folgt

o^ä{t(i4)[I^''+^-ä^''+^]+^(,4)^(1+1)! 1}
<7>

Schneidet man durch zwei um dx voneinander entfernte, senkrecht zur
.v-Achse stehende Schnitte das in Fig. 3a durch Schraffen hervorgehobene
Element aus seiner Scheibe, so werden die weiteren inneren Kraftwirkungen
M, N und Q frei, die sich mit den %r, rs, pr, ps, gv und gh am Element das
Gleichgewicht halten müssen. Man erhält somit

M' — bh(rr + rs) + Q — mrs (8a)
N' —b(T, — Ts) — nrs (8 b)
Q —Pr + Ps~2gvh. (8C)

Nach Differentiation der Gl. (8a) und (8b) nach x folgt unter Bedacht-
nahme auf Gl. (8c)

M" —bh(rr + r/s) —pr + ps — m'rs - 2gvh (9a)
N» _ b (r; ._ T;) _ nrs. (9b)

Die bezogenen Dehnungen er und es der beiden Scheibenränder n +1 und n
ergeben sich unter Berücksichtigung der Querdehnungszahl m zu

1 / 3Af \ Prs ox Prs

s 2bhE\ h / mbE E mbE '

woraus durch Subtraktion und Addition

M ^b'h*E(er-Bs) + £-(pr-ps) (Ha)

TV bhE[er+ es) + -^(pr + ps) (Hb)

folgt, wobei die Verkürzung als positiv gerechnet wird. Differenzieren wir
Gl. (Ha) und (Hb) zwei mal nach x und setzen diese Ausdrücke in die
Gl. (9a) und (9b) ein, so erhalten wir zwei lineare Gleichungen, deren
Lösungen

,;= _^(2e;+e;)-^-(2^^;)-^^-p.)4(^+^)-f (12.)

,; *£ (£;+2£;)+3^(,;+2,;)-^(„^)-2^(^-«;s)-f (12b)

lauten. Eliminiert man aus den Gl. (7), (9a), (9b) und (12a), (12b) M\ N",
t/ und %s, so wird

l) Diese Beziehungen stimmen sehr gut mit den genauen elastizitätstheoretischen
Lösungen überein, die man mit Hilfe der Airy'schen Spannungsfunktion findet.
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•.=-T('-M('-f^-£>£«-

womit alle inneren Kräfte durch en es, pr und ps ausgedrückt sind.
Für die Untersuchungen der folgenden Abschnitte ist das vorherige

Studium der Formänderungen einer Scheibe notwendig. In Fig. 4 seien
1, 2, 3, 4 die Ecken und m — m sei die Achse eines Elementes in seiner
ursprünglichen, unverformten Lage. Durch die eintretende Verzerrung rücken
die Ecken von 1, 2, 3, 4 nach V, 2', 3', 4', die Achse hingegen bewegt sich
von m — m nach m' — m!'. Rücken wir das Element 1, 2, 3, 4 soweit nach
abwärts, bis m nach m", d. h. in gleicher Höhe mit mf zu liegen kommt, so
erkennen wir in der Strecke mm" die lotrechte Durchbiegung f. Außerdem
werden sich infolge der o§ die Längen der Strecken m 1 bezw. m 3 um A,
bezw. As ändern, wobei eine Verkürzung wieder positiv in Rechnung
gestellt wird. Da die bezogene Dehnung in Richtung der £-Achse

ist, folgt durch bestimmte Integration die Verkürzung der unteren bezw.
oberen Scheibenhälfte in der Form

h 0

0 -h
Substituiert man hierin die a^und die ox durch Gl. (13) und Gl. (3), ersetzt
weiters in letzterer M und N durch Gl. (IIa) und (Hb) und führt die beiden
langwierigen, jedoch nicht schwierigen Integrationen aus, so wird

A,=

As

^(3^+,5)-g(9,;+70 + ^(l--^)(3/;, + ^)^
.(9P;+7P;)+*£-;& (16a)48bmEx /r /s/ ' 8bEl

_h
Am

k& (lp"r+9p's)-^gt. (16b)ABbmE v" ' '" SbE

Analog Ol. (14) lautet die bezogene Dehnung in Richtung der x-Achse

€x~ E mE' { '
Es ergibt sich bei Anwendung des Prinzips der virtuellen Verschiebungen
für die lotrechte Durchbiegung | im Punkte (cd)

e i + e -±l l[{a'-%)5A0'-%Y4*#+üj j"**' (18)

wobei die gestrichenen Spannungen von einer im Achspunkt (cd) angreifen-
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den Hilfskraft P=\ herrühren (Fig. 3a). Das erste Integral stellt den Anteil

der Normalspannungen und das zweite Integral denjenigen der
Schubspannungen dar. Für den Hilfsangriff erreichen die o^ in den engsten
Nachbarbereichen der beiden Auflagerdrücke und der Last P \ Werte in der
ungefähren Größenordnung der p. Da aber einerseits diese drei Bereiche
im Vergleich zur ganzen Scheibenfläche sehr klein sind und andererseits
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die achsnormalen Spannungen in den Gebieten zwischen den obigen Einzellasten

praktisch vollkommen verschwinden, kann man die vom Hilfsangriff
herrührenden tri ganz unterdrücken, so daß man im ersten Integral ox -^ §

und ö§ 0 setzen kann. Führt man unter Bedachtnahme auf Gl. (3) und
Gl. (13) die innere Integration der Gl. (18) aus, so wird mit & %bh?>

Ps-Pr hE
2mhb 30m (es-e!)

h
?><dm2b {P"-Pr)~

gv
5mb~

mdx. (19)

Berücksichtigt man, daß die w und die A klein von der Größenordnung —
sind, so ergibt sich aus einer aus der Fig. 4 leicht abzulesenden
geometrischen Betrachtung bei Unterdrückung von unendlich kleinen Größen
zweiter Ordnung
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LI m
j_ Ps~ Pr~\ — _ 6sjrJr

E 16) + 2mhb\ ~~ 2h

Faßt man in der Gl. (19) p y als elastisches ^Gewicht y auf, so folgt
I — ytyfldx, das heißt die Biegelinie ist die Momentenline der y oder es wird

*"= +2^(-^+^ + ^(-^ + ^ + 30^(^;' + ^ + 5^£' <2°>

was den Anteil der Normalspannungen an der Durchbiegung darstellt. Für
die Auswertung des zweiten Integrals der Gl. (18) muß die Verteilung der
Schubspannungen x bekannt sein. Diese ergibt sich für den vorhandenen
rechteckigen Querschnitt für die zur äußeren Last gehörigen Querkraft Q zu

^ T^T^ö + T(rr + T*)_A(Tr-rÄ) (Fig*3c) (21)

mit Q Q — bh(rr+rs). (21')
Da beim Hilfsangriff keine Randschubspannungen vorhanden sind, erhalten
wir für diesen die Verteilung zu

3 h2 -£2
4 bh'd

wenn O die Querkraft für P 1 ist.
Mit Gl. (21) und (22) folgt nun

x=L

¦Q, (22)

iJ»!cQdx, (23)
o

wobei

Q- TH + ^ht <23'>

Setzt man
L — c c

&links —7 Und Drechts — y~

so ergibt sich
c L

I=^[\Qcdx-l\Qcdx},
0 0

woraus mit Gl. (23') und Gl. (21') nach zweimaliger Differentiation nach c

^ # <y[i^-iV*; + '''>] <24>

folgt. Mit Gl. (8c) und Gl. (12a) und (12b) erhält man nun
1

s hE, „ „, h^h 2bh
hE, „ A „. m'rs gc\ .__.

womit wir den Anteil der Schubspannungen an der Durchbiegung gefunden
m Ehaben. Addiert man Gl. (20) und Gl. (25), so erhält man mit G — tt^, r

2(\~\-m)
die gesamte Verformung in der Gestalt

Abhandlungen VII 10
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r i[(-£'+£s)+

E. Gruber

2(l+m), J h \+2m

gv gv mr
5mbE bG lObhG

(26)

In dieser Gleichung ist der Einfluß des zweiten Klammerausdruckes be-
2h

sonders bei Scheiben mit kleinem Verhältnis — außerordentlich klein und

kann meistens unberücksichtigt bleiben. Man erhält dann für |" die
vereinfachte Form

r=i[<-*+«J+£fe] + ^l<-»+rt-2**4.4 <26'

in welcher der erste Teil von den Normalspannungen o und der zweite Teil
von den Schubspannungen % herrührt. Will man also nur den Einfluß der
a berücksichtigen, so ergibt sich die noch weiter vereinfachte Form der
Gl. (26)

2hlK *r + «s) + 2hgvl
5 mbEl

(26")

Wie man aus der Fig. 4 erkennt, ergeben sich die Verformungen des

oberen bezw. unteren Scheibenrandes, indem man zu $ die Werte der Ar

addiert, bezw. der As subtrahiert.

\ da dx
dx

>%d*-\
r*&w)*r~*

¦r r. <*»,
&„+

\2'AA
V. IV. mn„^ \

<* V\ \V'

<: \
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dw.

-)dx T =J-fn -ELdw.
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r 1 3 I "^J4
- Wr JL J~,

Fig. 4 Fig. 5

Diese Ergebnisse stimmen mit den genauen mit Hilfe der Airy'schen
Spannungsfunktion gewonnenen Werten gut überein.
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C. Die Kontinuitätsbedingungen.
Führt man um einen beliebigen Knoten, z. B. um 2' der Fig. 7a einen

Ringschnitt t mit unendlich kleinem Durchmesser, so wird für jede Scheibe
eine Schubspannung % und eine Querbelastung p frei, welche sich am
übrigbleibenden Knotenfragment das Gleichgewicht halten müssen. Da die innerhalb

des Ringschnittes liegende Fläche / unendlich klein von 2. Ordnung
ist, wird die Kraft / • ox ebenfalls von derselben Ordnung unendlich klein,
so daß die Gleichgewichtsbedingung gegen Verschiebung parallel zur
Knotenlinie in differentierter Form

s <°b°=° <27)

lautet, wenn in dem betreffenden Knoten m Scheiben mit den Breiten bG

(cr=l, 2, 3,...m) zusammenstoßen. Wir wählen nun für jede Scheibe des
Faltwerkes eine bestimmte Richtung, nach welcher in Hinkunft für die
einzelnen Scheiben die positiven Werte der f in Gl. (26) gezählt werden sollen
(Fig. 5). Die mit der dazugehörigen Breite b0i multiplizierte 1. Ableitung
der Schubspannung der Scheibe no bei n ergibt sich nach Gl. (12a) zu

»otih> 2
'2 £" + £<°> ~ JJjj~ (2P"a +P<*») -2fy~(p""~~P(>n' ~

\ m,
~2 ~)-4w). (28)

Hierbei mußte in Übereinstimmung mit Fig. 3a die obere der beiden Gl. (12)
benutzt werden, da die in Frage kommende Schubspannung xncö ebenso wie
in Fig. 3a das xr auf der, der Pfeilspitze abgewendeten Seite der positiven
Durchbiegungsrichtung liegt. Handelt es sich hingegen um eine Scheibe nv,
deren positive Durchbiegungsrichtung £in zum Sammelknoten n gerichtet ist,
so ergibt sich jetzt das an n grenzende, mit bv vervielfachte x nv nach
Gl. (12b) zu

h b F h 1

bv rnv —;j— (ev + 2 e„) +^ (pVn + 2pnv) + ^- (Pnv - Pm) -

+-2(<--t)-^- <29)

Klappt man nun alle im Knoten n zusammenlaufenden Scheiben so in eine
Ebene, daß sodann alle Pfeilspitzen der positiven f-Vektoren nach ein und
derselben Richtung weisen, so werden die durch den Ringschnitt
freigemachten, an den Scheibenelementen angreifenden xno> der Scheiben nco mit
vom Knoten weisenden positiven f-Richtungen nach der einen und die xnv
der Scheiben mit zum Knoten weisenden positiven f-Richtungen nach der
anderen Seite gerichtet sein (Fig. 5). Bei der nun folgenden Substitution
der rnco der Gl. (28) und Gl. (29) in die Bedingung (27) muß also bei einer

V

von den beiden letzteren das Vorzeichen verkehrt werden, so daß zwischen
den Indices v und w nicht mehr unterschieden zu werden braucht. Wir
erhalten demnach
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2tn / j h0 bö Er> -\- / j höbGEG bg —
G=l

G=m

-^ /»ff
(30)

wobei £/z die bezogene Dehnung am Knoten n des Faltwerkes und pno bezw.
pö/* die Querbelastung der Scheibe na an deren Rand n bezw. o bedeutet.
Ersetzt man die Belastungen mrs und nrs einer jeden Scheibe durch zwei
in deren Rändern r und s wirkenden Kräfte nrs und nsn so stellen die
einzelnen Summanden des dritten Gliedes der rechten Seite von Gl. (30) die
jenigen dieser Ersatzkräfte n dar, die in den dem Sammelknoten n anliegenden

Scheibenkanten angreifen (Fig. 5). Die gv sind dann positiv, wenn sie

\+v

Tip
~V

jK/c^^L^
t ^•^A'y V /<?"^V X^ h i* ]'\cu//V*/ v xs \%

*Ä'^ /^V'
\ ^ ^s\^ /(^ / \ \ "*\vt t^A ö> ^v »*, \<yft 5 \ \

^n^y r
fr II!

r +u

ur—

Fig. 6

mit der £-Achse gleichgerichtet sind. Man kann aber die Massenkräfte gv
näherungsweise auch so erfassen, daß man sie, ähnlich wie bei einem Fachwerk

das Eigengewicht der einzelnen Stäbe, auf die Knoten verhältnisgleich

aufteilt. Der im Verlauf dieser Entwicklung notwendig gewesene
Unterschied zwischen Scheiben mit zum und mit vom Sammelknoten n
weisender positiver ^-Richtung fällt also bei der Gl. (30) wieder weg. Da die
bezogene Dehnung en des gemeinsamen Knotens n auch jeder von n
ausgehenden Scheibe angehört, drückt die Gl. (30) den bezüglich der
Längsdehnung en vorhandenen punktweisen Zusammenhang längs der Knotenlinie

n aus. Wir wollen sie daher Kontinuitätsbedingung 1. Art
nennen. Für jedes Faltwerk besteht für jede Knotenlinie eine solche
Differentialgleichung.

Führt man längs jeder Knotenlinie unendlich enge röhrenförmige
Ringschnitte (Fig. 7a), so zerfällt das Faltwerk in seine einzelnen Scheiben, die
sich dann auf Grund der auf sie einwirkenden Belastungen und Spannungen
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pn /?,, m, n, gv und x in ihren Ebenen entsprechend den Gl. (16a), (16b) und
(26) frei verformen können (Fig. 3a). So werden sich z.B. die rückwärtigen,

d. h. die den Pfeilspitzen der positiven f-Vektoren abgewendeten
Ränder der vom Knoten r ausgehenden Scheiben rQ, rp, rv usw. von r nach
rQ. rß, rv usw. um %rQ + Arß; irpi -f Arß; £rv + Arv usw. verschieben, so daß
der Knoten r auseinanderklafft (Fig. 6). Da infolge der großen Schlankheit

h /i
der beiden Verhältnisse y^ und — der Widerstand, den eine im obigen

Sinne freigelegten Scheibe gegen senkrecht zu ihrer Ebene gerichtete Kräfte
entgegengesetzt, äußerst gering ist, können die Ränder rQ, rß und rv senkrecht

zu ihren zugehörigen Scheibenebenen längs der Normalen rQ T, rß 7,
rv Ir bewegt werden, ohne daß dadurch neue Zwänge entstehen. Zufolge
der Kontinuitätsbedingung 1. Art liegen die Randpunkte rQ, rß, rv und daher
auch die Bewegungsnormalen rQ~r, rß?, rv7 in einer zur Knotenlinie senkrecht
stehenden Ebene. Verhalten sich nun die Verschiebungen £rg + ArQ, 'Sra + Arfn
£rv + Arv zueinander so, daß diese Normalen alle durch ein und denselben
Punkt r gehen, so ist das Klaffen des Knotens wieder aufgehoben und der
Tragwerkszusammenhang auch in der zur Längsachse senkrechten Richtung
punktweise wieder hergestellt, wobei T diejenige Stelle ist, an welcher sich
der Knoten r nach erfolgter Verformung befindet. Damit haben wir die
Kontinuitätsbedingung 2. Art formuliert. Legt man nun durch r
ein Koordinatensystem u, v und projiziert die auf dieses bezogenen Koordinaten

un vr des Punktes r senkrecht auf 3 von r ausgehende Scheiben, so
erhalten wir die 3 Gleichungen

ur cos arQ + vr sin arQ grß + ArQ (31 a)

ur cos arfl + vr sin aru £rß + Arpi (31 b)

ureos arv V vr sin arv ^rv + Arv (Abb. 6). (31c)

Bestimmt man aus zwei von diesen ur und vr und setzt diese Werte in die
dritte der obigen Gleichungen ein, so ergibt sich

(Srß + AQ) sin afv + (^ + Arß) sin «(;j + (£„ + ^) sin a£ 0, (32)

worin die Indices @, p und v zyklisch gruppiert sind. Für jeden Knoten, in
welchem m Scheiben zusammenstoßen, bestehen m — 2 solcher Gleichungen.
Dabei werden die Winkel a^ von positivem f-Vektor zu positivem f-Vektor
gezählt. Das Vorzeichen ist durch die Reihenfolge der unteren Indices
festgelegt. Damit ist die Kontinuitätsbedingung 2. Art in ihre analytsche Form
gebracht.

D. Die Elastizitätsgleichungen.
Wir betrachten ein Faltwerk mit r Knoten und 5 Scheiben. Ein solches

hat r unbekannte Funktionen e und 2s unbekannte Querbelastungsfunk-
tionen p. Differentiert man die Gl. (32) zwei mal nach x und setzt in die
so erhaltene Beziehung die Gl. (26) und die gleichfalls zwei mal differen-
tierte Gl. (16a) und (16b) ein, so folgt464 4 4 6 6 6_

S«£ + S//> + Eee" + See" + 2>«"" + 2«>" + S'>" + S/V" +11111 111+ 2>ifc" + S'Ä + £s,B" 0' (33)
1 1 1
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wobei die oberen Summengrenzen die Anzahl der in diesen Summen
vorhandenen Summanden angeben. Für jeden Knoten, in welchem m Scheiben
zusammenstoßen, bestehen m — 2 Kontinuitätsbedingungen 2. Art. Es
ergeben sich daher auch 2s — 2r Gl. (33). In diesen haben diejenigen Glieder
des homogenen Teiles, welche die höheren Ableitungen der e und p enthalten,
auf die gesamte Rechnung einen bedeutend geringeren Einfluß als die
anderen, so daß man sie in manchen Fällen auch vernachlässigen kann. Für
die etwas später folgenden Betrachtungen erwähnen wir, daß die Summen
mit überstrichenen Beiwerten die Querdehnungszahl m nur im Nenner
enthalten. Benützt man für f" statt der ausführlichen Gl. (26) nur die vereinfachte

Gl. (26'), so werden die ersten, zweiten, zehnten und elften Glieder
nur durch die £ gebildet, während die durch die Gl. (16a) und (16b)
dargestellten A die übrigen Bestandteile der Gl. (33) erzeugen. Unterdrückt
man die A, so ist die Benutzung der genauen Gl. (26) sinnlos, da die darin
enthaltenen Zusatzglieder die Rechnung weniger beeinflussen als die A selbst.

Stellt man nun durch Auflösen der Gl. (30) nach den e" diese als
Funktionen der p explizit dar, so wird

2s 2s s s

4' y2^ + 2 */>'' +2 ^(W~) + Zngv. (34)

a 1,2, 3, r.
Differentiert man die Gl. (33) zweimal nach x und setzt in diese Beziehungen

die Gl. (34) und die aus diesen folgenden vierten und sechsten
Ableitungen der e ein, so erhalten wir weiter die linearen Differentialgleichungen

2s 2s 2s 2s 2* 2s 2s 2s

2 op + 2 tp" f 2 *>"+ 2 qp""+ 2 iP""+ 2 ypVI+ 2 zn'n + 2 zm'rs +111111 112s 2s 2s 2s

+ 2 '<"+ 2 ^'+ 2 sm*;*s+ 2 ige 0, (35)
1

v
1

v
1 rs 1

in welchen nur mehr die Querbelastungsfunktionen p als Unbekannte
vorkommen. Solcher Gleichungen gibt es so viele wie es Gl. (33) gibt, nämlich

2s — 2r. Aus den zu Beginn des Abschnittes C dargelegten
Gleichgewichtsbetrachtungen geht hervor, und zwar wieder aus der unendlicher.
Kleinheit des innerhalb des Ringschnittes liegenden Teiles / der Faltwerks-
fläche, daß in jeder Knotenlinie für die äußere Belastung und die angrenzenden

Querbelastungen p Gleichgewicht gegen Verschieben nach zwei
Richtungen punktweise bestehen muß. Es wird also

m

2/? sin« Gr (36a)
i
m

2/? cos« Gh. (36b)
i

Solche Beziehungen gibt es je Knotenlinie zwei, im ganzen also 2r, so daß
zusammen mit den Gl. (35) für die Bestimmung der 2s unbekannten
Funktionen p 2s — 2rA-2r=2s lineare simultane Differentialgleichungen
sechster Ordnung zur Verfügung stehen. Da die Gl. (36) nur die reinen p
enthalten, können aus den Gl. (35) und (36) 2r von den Funktionen p sehr
leicht eliminiert werden, so daß nur mehr 2s — 2r Unbekannte mit ebenso
vielen Beziehungen übrig bleiben, in welchen wir die Elastizttätsgleichun-
gen des Problems gefunden haben. Die Auflösung dieses Systems erfolgt
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in fast allen Fällen am zweckmäßigsten mit Hilfe von Fourier'schen Reihen.
Aus den Gl. (30) folgt nun, daß nur der erste Teil der rechten Seite

derselben von den Querdehnungen herrührt. Unterdrückt man diesen
Einfluß, so verschwindet in Gl. (34) das Glied ^np" und es wird

«.' T?//,+ £*(»"+ "y) +tng*. (37)

Läßt man die Längenänderungen A außer Acht und nimmt entsprechend der
Darlegungen auf Seite 150 an Stelle der ausführlichen Gl. (26) die vereinfachte

Gl. (26'), so degenerieren die homogenen Teile der Gl. (33) auf
ihre beiden ersten Glieder 2ß€ + 2//? 2)- Differentiert man diesen Rest
zwei mal nach x und setzt die Gl. (37) ein, so ergibt sich die entsprechende
zusammengeschrumpfte Gl. (35) in der Form

2^^+2^,+2^/^s+2^^+2^^+2^r'+2^'+25/^ o. (37a)
Bekanntlich gibt die Annahme m =~ oo bei Elastizitätsproblemen bei großen
Vereinfachungen sehr gute Näherungslösungen. Wie wir schon auf Seite 150
erwähnt haben, enthalten in den Gl. (33) die Summen mit den überstrichenen
Koeffizienten die Querdehnungszahlen nur im Nenner, was von der Tatsache
herrührt, daß in den Gl. (16a) und (16b) die m ebenfalls nur im Nenner
vorkommen. Es verschwinden also für m oo in Gl. (33) die vierten, siebten,
achten und zehnten Glieder. Da unter diesen Umständen auch die zweiten
Glieder der Gl. (34) Null werden, degenerieren die Gl. (35) zu

2°P + 24&"+ 2qp""+ 2zn'rs+ Yjjzmrs\2zgv + 2rgv + 2rgv + 25rrlrs 0 3) (37b)

wodurch die Ziffernberechnung bedeutend ermäßigt wird.
Bei diesen Betrachtungen wurden die Beiwerte der Gl. (33), (34) und

(35) nur mit einfachen Buchstaben dargestellt. Die Entwicklung in
allgemeinen Zahlen gelingt in einer übersichtlichen Form nur bei einfachen
Faltwerkssystemen. In den meisten Fällen ist es zweckmäßig, die verschiedenen

oben geschilderten Eliminationen und Substitutionen, die zu den
Elastizitätsgleichungen führen, jeweils mit den speziellen Zahlen durchzuführen.

Wir betrachten nun drei von einem Knoten r ausgehende Scheiben
(Fig. 6). Vernachlässigt man die Längenänderungen A und den Einfluß der
Schubspannungen auf die Durchbiegungen f, so erhält man nach dem vorhin
beschriebenen Rechnungsgang die dazugehörige Gl. (33) in der Form

Yj a e 4i~ sin «(') + ^f- sin «<'> + -^- sin aW 0, (38)^ 2 hQ ßv^ 2 hu vß ^ 2 hv w ' v '
wobei iQ — Er 4- eq ; it* — er + sn ; ev — er + £„ bedeutet.
Errichtet man in den Punkten o, p, v und r zur Zeichenebene lotrecht
stehende Gerade und trägt auf diesen von deren Fußpunkten o, p, v und r
ausgehend eß, eu, cv und er auf, so erhalten wir im Räume vier Punkte

er mit den Koordinaten

2^sinor^0, €0

(39)

2 hß cos arg 2 hg sin arg, S9

2 h„ cos arß 2hß sin ani, eß

2 hv cos arv 2 hv sin arv, £»

0 0 Er

2) Die A können nur dann verschwinden, wenn gleichzeitig m=^co wird.
s) Das zweite Glied rührt nur vom Schubmodul G her.
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Drückt man die Winkel der Sinuse der Gl. (38) als Differenzen der Winkel
am i ar,xrg i rßj arv aus, so 1

1

äßt sich Gl.
2 hg sin arg

2hß sin arß

2hv sin arv

(38) in der Form
2 hg cos arQ lg
2 hß COS arß lß
2hveos arv ~iv

8hghßhv
0 (40)

schreiben, die besagt, daß die vier Punkte eQ, eu, ev, er in einer Ebene
liegen. Da die A nur dann verschwinden können, wenn m oo wird, so
sind nach den Gl. (10) die av proportional den s. Es ergibt sich also
folgender Satz:

„Die Verteilung der Längsspannungen ox über drei von einem Knoten
ausgehenden Scheiben ist eine ebene, wenn die Längenänderungen A,
der Einfluß der Querdehnungszahlen m und der Einfluß der Querkräfte
auf die Durchbiegungen vernachlässigt werden."

So ist z. B. in Fig. 2a die Verteilung der ox über die Knoten 3, n, 2, 1 und 3,

n-\-\, n, 2 je eine ebene. Da sich diese beiden Gruppen in n, 3, 2
überdecken, folgt, daß die ebene Spannungsverteilung auch über nj-\, n, 3,
2 und 1 reicht. Führt man diese Betrachtung systematisch zu Ende, so
ergibt sich, daß für alle Faltwerksteile, die im Querschnitt die Figur eines
stabilen Fachwerkes als Grundnetz aufweisen, die Verteilung der
Längsspannung eine ebene ist. Für Faltwerksteile mit rahmenartigem Querschnitt
trifft dies jedoch nicht mehr zu. So ist z. B. in Fig. 1 die Verteilung über
1, 2, 2', V und über 3, 4, 4', 3' je für sich linear, woraus jedoch noch nicht
folgt, daß dies über den ganzen Querschnitt der Fall sein muß. Die
Verteilung nimmt vielmehr die Form einer Regelfläche an, für welche die Ober-
und Untergurtslinie die Leitgeraden sind. Werden die Längenänderungen A
und der Einfluß der Q auf die f nicht unterdrückt, so ist die Verteilung der
Längsspannung nur in einzelnen besonderen Fällen eine ebene.

Haben wir eine im Sinne des vorigen Lehrsatzes ebene Verteilung vor
uns, so kann man die Längsspannungen in der Form ax =- xe1 -^ße2Jr ye3
darstellen, wobei <x, ß, y Funktionen der Querschnittsgrößen und sl9 e2, e3
drei von den unbekannten bezogenen Verkürzungen der Knotenlinien sind.
Die Produkte ox • df bilden ein räumliches System paralleler Kräfte, die sich
mit dem am Tragwerksabschnitt angreifenden Lasten und Auflagerreaktionen
das Gleichgewicht halten müssen. Daraus folgen drei Bedingungen, die für
die Bestimmung der et, s2, £s hinreichen. Man kann also in diesem Falle
die Längsspannungen und Längsdehnungen und wegen der Gl. (26") auch
die Achsendurchbiegungen £ aus reinen Gleichgewichtsbetrachtungen ohne
Hinzuziehung der Elastizitätsgleichungen (35) bestimmen.

Wegen Gl. (26") lassen sich nun auch alle f in der Form

ausdrücken, d. h. die Verformung eines jeden Querschnittes ist, so wie die
infinitesimale Bewegung einer undeformierbaren Scheibe durch drei
allgemeine Koordinaten bestimmt. Dies trifft nur zu, wenn jeder Querschnitt für
sich starr bleibt. Da alle A gleich Null sind, ist das nur möglich, wenn
das Grundnetz des Faltwerkes die Figur eines unverschieblichen Fachwerkes
aufweist. In Verbindung mit den obigen Erläuterungen ergibt sich nun
daraus, daß dies die notwendige und hinreichende Bedingung für das Eintreten
einer ebenen Verteilung der Längsspannungen und Längsdehnungen bei den
oben festgelegten Vernachlässigungen ist.
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Sind alle A 0 und verschwindet außerdem der Einfluß der Q auf die
Durchbiegungen f, so degenerieren, wie dies bereits auf Seite 151 gezeigt
wurde, die Gl. (33) nicht nur zu Zae + Zfp^), sondern zu den in e homogenen

Gleichungen Zae 04). Da sich dann alle e eines Querschnittes durch
3 von ihnen darstellen lassen, sind von diesen 2s — 2r Gleichungen
Zae=0*) auch nur 3 voneinander abhängig. Infolge des in den Gl. (30)
(m oo) enthaltenen Zusammenhanges zwischen den e und den p, sind auch
die zu den Zae 0^) gehörigen 2s — 2r Gleichungen Zop 0^) ebenfalls
nicht alle voneinander unabhängig, so daß diese für die Bestimmung der
2s — 2r unbekannten Querbelastungen nicht mehr ausreichen. In solchen
Fällen ist ein Teil der p nicht nur statisch unbestimmt, sondern überhaupt
unbestimmt. Diese Erscheinung erklärt sich aus der Vernachlässigung der A
und des Einflusses der Q auf die f. Man entzieht eben dadurch der gesamten

Deduktion die elastizitätstheoretische Unterlage, welche bekanntlich erst
die Ermittlung aller p ermöglicht. Es bleiben nur die rein statischen
Bedingungen übrig, die allein nicht hinreichen. Da die x durch die Gl. (12a) und
(12b) mit den p und den e zusammenhängen, sind dann auch die x in
derselben Weise unbestimmt. Setzt man die im obigen Sinne auf rein statische
Weise bestimmten e in die Gl. (30) ein, so erhält man die bestimmbaren p
meist bequemer als aus den, durch Grenzübergang entstandenen Gleichungen

Zop 04). Die so erhaltenen Bedingungen sind aber dann auch nicht
alle voneinander unabhängig, so daß aus ihnen ebenfalls nicht alle p
bestimmt werden können.
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Da die p nur untergeordnete Spannungen erzeugen, fällt der Umstand,
daß man sie in manchen Fällen nicht alle bestimmen kann, nicht sehr schwer
ins Gewicht. Die damit zusammenhängende Unbestimmtheit der x wirkt sich
aber sehr unangenehm aus, da dadurch die gesamte Schubspannungsverteilung

auf den Querschnitt ebenfalls nicht bestimmbar ist. Diese kann man auf
Grund der vorangegangenen Betrachtungen vielmehr nur dann ermitteln,

4) Die Belastungsglieder sind der Einfachheit halber nicht mit angeschrieben.
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wenn die Längenänderungen A oder der Einfluß der Q auf die Durchbiegungen

f oder aber beide Umstände nicht unterdrückt.
Kann man die Längsspannungen ax auf einen von der Auffassung als

Faltwerk unabhängigen Weg bestimmen, wie dies z. B. bei einer ebenen
Spannungsverteilung zutrifft, so lassen sich die von der Torsion und der
Querkraftbiegung herrührenden Schubspannungen mit Hilfe der Bredt'schen
Formeln auf bekannte Weise ermitteln, indem man die Hohlträger als
mehrzellige Querschnitte auffaßt. Bei diesen Berechnungen wird aber die Un-
veränderlichkeit der Querschnitte vorausgesetzt. Ebenso bleibt die Art und
Weise, wie die Torsions- und Biegemomente und die Querkräfte in die
einzelnen Querschnitte eingetragen werden, unberücksichtigt. Dieser Umstand
sowie die Verformung der Querschnitte spielt aber bei den Querschnitten
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mit großer Breite und geringer Höhe schon eine Rolle. Nachdem man auf
diese Weise die Schubspannungen ermittelt hat, ergeben sich aus den Gl.
(8c) und (36a, b) die p. Dabei ist zu berücksichtigen, daß die Querkräfte
der einzelnen Scheiben in einem Querschnitt mit der in diesem wirkenden
gesamten Querkraft des Gesamtsystems ein Gleichgewichtssystem bilden
müssen. Nachdem bekanntlich ein solches drei Bedingungen erfüllen muß,
sind drei von den Gl. (8c) voneinander abhängig und dürfen bei der
Auszählung nicht berücksichtigt werden. So stehen z. B. bei dem Tragwerk der
Fig. 7a zunächst 11 Gleichungen (8c) und 14 Gl. (36a, b), insgesamt also
25 Gleichungen den 22 unbekannten p gegenüber. Da von den Gl. (8c)
jedoch 3 voneinander abhängig sind, sind von den 25 Bedingungen 3 zu
streichen, so daß 22 Unbekannten 22 Gleichungen gegenüber stehen5).

E. Anwendung.
a) 1. Beispiel.

Wir werden für den in Fig. (7a) und (7b) mit seinen Maßen und
Elastizitätskonstanten dargestellten Hohlträger die Berechnung für eine längs der
Knotenlinie 2 angreifende, zur Symmentrieachse C — C symmetrischen Linienlast

durchführen. Die Beteiligung der beiden Kragarme an der Faltwerks-
wirkung wird durch Anordnung der Schlitze s unterbunden. Die querlaufenden

Rippen der oberen Platte, welche diese knicksteif machen und in
annähernd quadratische Felder unterteilen, haben nur auf die zu den Scheibenachsen

senkrecht laufenden Dehnungen A einen geringen Einfluß, den wir

5) Bezuglich der Auszahlung der Unbekannten siehe auch Abschnitt E.
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ohne weiteres vernachlässigen können. Die Anzahl der unbekannten p
beträgt 22. Diese lassen sich aber mit Hilfe der Gl. (36) auf 2s—2r
22 —14=8 verringern. Um die Rechnung zu vereinfachen, machen wir von
der Symmetrie des Tragwerkes um dessen Achse A — A Gebrauch und
zerlegen die Belastung 2P )^3 entsprechend der Fig. (8b) und (8c) in einen
symmetrischen Teil JrP\3, j-P^3 und in einen antisymmetrischen Teil
— P^3, +P)/3. Da das Kräftespiel für den ersten Fall um /—/ spiegelgleich

und im zweiten Fall um die Achse /'—/' gegenspiegelgleich ist, treten
für jeden der beiden Lastfälle nur mehr 11 unbekannte Funktionen p auf.
Benutzen wir hier die Gl. (36a) und (36b), so kann man von diesen
Querbelastungen je Belastungsfall 7 weitere eliminieren, so daß nur mehr die
in Fig. (8b) und (8c) stark ausgezogenen p als unbekannte Funktionen je
Lastfall übrig bleiben, d. h. die 8 Elastizitätsgleichungen zerfallen in zwei
je viergliedrige Gruppen.

Die stark ausgezogenen p stellen die Richtung der Wirkung dar, die
die Scheiben auf die Knoten ausüben. Die positiven f-Richtungen sind in
Fig. (7a) angegeben.

Wir behandeln zuerst den symmetrischen Lastfall. Da für diesen auch
die e um /—/ symmetrisch sind, lauten hiefür die nach Gl. (30) gebildeten
Kontinuitätsbedingungen 1. Art mit

1
^ ^ 3

mbE l' ~ 2h2bE
4 ei + E'i + £3 — ßi (pk + pk) — $2 (—P2i —Pu) (41 a)

fil + 9£o + €3 + «4 — ßl(4P" + 2pSl+3pS2f— PU)~
— ß2(2P + p21 + pM) (41b)

fil + fi2 + 6fi3* + fi4 — ßl(P"—pk + Pkr + 2/73"4 + pk) —
— ß2 (-P + P21 —P22r+ /?34 — P&) (41 C)

fi2 + €3 + 4 e'1 — — ßx (P" 4- ph —pk' + pk + 2/?43) —
— ß2 (-P— P21 + P22' —PU 4" /*43> • (41 d)

Löst man diese nach e" auf, so wird
4 • 186ci — ßi(204pSi — 105/722. + I68/734 — 6/743 — 99P") —

— ß2 (— 264/?2i + 45/722r — 264/734 + 45/743 - 21 P) (42a)
4 • 186 es — ft (144/i2i + 21^P22r — 144/& — 48/>« + 324 P") —

— ß2 (120/721 — 12/722r + 120/734 — 12/743 + 204 P) (42b)
4 186 63 — ßl(~ 216/721 + 144/7^ + 216/734 4- 72/743 + 72P") —

— #>(192/72l — 168/722. -f 192/734 — 168 /743 — 120 P) (42c)
4 • 186 e'i — ßx (204pk — 291 ph + 168/734 + 366ph + 87 P") —

— ß2 (— 264/721 + 231 /722. — 264/734 + 231 /743 — 207 P). (42 d)
Da alle Winkel gleich 60 ° sind und außerdem |24 — £2.4 und A±2 A,V2, ist,
lauten die nach Gl. (32) gebildeten Kontinuitätsgleichungen 2. Art

63 + f34 + £32 — ^31 — ^34 + ^32 =0 Knoten 3 (43 a)
64 + hs — A22f + ^24 — ^23 + &2> 0 Knoten 2 (342') (43 b)
&4 + fi2 + &3 + A2A + ^21 — ^23 0 Knoten 2 (134) (43 c)
f34 + ^43 0, Knoten 4 (43 d)
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worin £22'=0 zu setzen ist. Wir wollen nun zunächst wohl die Längenänderungen

A, nicht aber den Einfluß der Querkräfte Q auf die Durchbiegungen

| berücksichtigen. Außerdem nehmen wir für die Achsverformung £

die vereinfachte Gl. (26") 6). Leitet man Gl. (43a), b, c, d) vier mal nach
x ab und setzt in sie die vier mal differentierten Gl. (16a, b) und die zwei
mal differentierten Gl. (26") ein, so wird

(-€;'+€2'+4'-€;H/W
+ft(^27-^2>9^+^-^)+ ° (44a)

(- 4' + e'i + 2 h ?") + ßs (3 e™ + e£' - *»" + e%') + ß4 (9 e^+7 e™~-1 e?+ 7 e\j) +

+ /35(-6/7;7 + 9/7^^^ 0 (44b)

W- "2 - h - h) + & (- £'ir - 3 fi£" + C ~ O + ft (- 7.p-9 eV'+1 e^- 7 *") +

+ /M-W+6/£2';-^ ° (44c>

(4' - *;') + ft (- 6-- 3 cH + ßA (- 7 €w-9 6") +

+ ß*(-p'£-3p'£) + ße (-7/7^-9/7^) 0, (44d)

wenn ft-^-; ft ^; ft--^~^ 1- -,); ß<2m' '*~~24> (0~ 2bE\ mV' [*~~24mbE
und f22' 0; £2 £2.; P22' /?2.2; /?42 0 ist.

Bildet man durch Differentiation der Gl. (42) die e"" und evr, setzt diese und
die e" in die Gl. (44) ein und addiert die erste zur dritten und die zweite
zur vierten Gleichung, so ergeben sich die folgenden vier simultanen, linearen,
nicht homogenen Differentialgleichungen sechster Ordnung

- "*£& + 1452-1^)^-190 ^h2 I 1062\ h&
+ 234 -,£,+ (-852 + -J£_) ÄVÄ + 214,5 ^
+ 1322^^ 4- (-1452 + 1^?) h'pg + 189,25 £„«

~ 2341^ + (-108 + -§-) AV- + 310 ^'
ä2 / 66\ h6

— 486~P"+ — 348,125 ---)h±P""+ 24,5 — P™ (45a)
/ra

A2 / 1156 \ h6
576 _^+ 924-±^>X;'-259 ^

/?2 / 34 725\ hQ
345 -^ + (-1738^-^)ä*pS; + 338 ipg

-626 £,i + 180--^-)AV^'-H3 £„&'

364 ^ + 679 _J£_)ÄV~- 1>5£„w

=r616,5^P" + f 305,5+ -**L)h*P'"' + 79 — pw (45b)
m \ ' m2 / m

v '

6) Da Massenkräfte nicht vorhanden sind, lautet diese einfach f" — (- ^ + *)2 A r 5
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630 p21 — 375 —fa + 1550,25 — ^^) h*-?™ — 300,5

- 342p22.+ 561 ^, + (-1022,25 + ^°) AVäl + 252

630/,34-267^^'4 + 62,25—^-)äV£' - 118

-342/743- 15^ +( 93,75+ -^-)aV^'+ 33

ä 2 / 222 \
— 234 P — 393 —P" + — 33,75 — -==-U4P'"' — 48,5 — P" (45 c)

/ft V m2 1 m v '

- 342 /,21 - 15 Lp'k + (_ 32,25 + ^) A*^' + 6,75 -,£
//2 / 18225\ />6

299,25^ - 20,625 -^, + (28,21875 ^-j A*p™- 33,5625 —p%

-342 ^-299^^ + (153,75-^A*^'-45,5^gf (45d)

299,25/743 + 343,875^^3 + (586,21875-^W^' - 60,375^/7™

h6

m
pH

hG

m
DVllJ22>

k6

m
pH

h6

m fil
h6

pVl
m

m *° \ m' / *° m
h2 i 83 25\ h6
— P" + 84,46875— ^p/z4P""- 26,8125 —
m \ m2 m

h2 i 83 25\ h6
65,25 P + 270,375 —P" + 84,46875 ~^p/z4P'''' — 26,8125 — PVI,

m \ m2 m

welche für jede in den Knotenlinien 2 und 2' angreifende, zur Achse /—/
symmetrischen Linienlast -\-P^3, + P^3 gelten.

Für die antisymmetrische Belastung ist das Querbelastungsschema bis
auf den Wert von /7d2, welcher jetzt statt Null gleich — 2/743 wird, das gleiche
wie bei der symmetrischen Belastung, wie dies in den Fig. (8b) und (8c)
dargestellt ist. Da außerdem «4=0 wird, ergeben sich für diesen Belastungsfall

die Kontinuitätsbedingungen 1. Art zu

4 e'i + q +e<; — ßx (pfit + /&) - ß2 (- p21 — pu) (46a)

*i + 7fiJ + fi3f =-ßi (2p'2\ + P22f-Pu ~ 2/>43 + 4/D") -
— ß2 (P21 + 2/722. + PU + 2/743 + 2 P) (46b)

*r + 4f + ß«3 -M-/& +p'^+2p'k + pris+n -
— ß2 (P21 — P22f + PU — /?43 — P) (46C)

deren Auflösungen nach den e"

153 e;' =-ßi (37p'-, - 11 p^2, + 34 p'^ + 4/^ - 26/"') -
— ß2(- 52p21 — 4p22, — 52/>34 — 4/743 — 4P) (47a)

153 % - ßi(44ph + 20ph, - 34p'h - 49p^ + 89/>") -
— ßi (25/721 4- 49/722- + 25/734 + 49/743 + 49 P) (47b)

153 4' =-ßi(— 39^ + 24 p'^, + 51 p'h + 33^ + 15 P")
— ß2 (30/721 — 33/722' + 30/734 — 33/743 — 33 P) (47c)

lauten. Infolge der oben festgelegten Übereinstimmung der Querbelastungs-
schemata ist die erste, zweite und dritte Kontinuitätsbedingung 2. Art gleich-
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lautend mit den entsprechenden Bedingungen Ol. (43a, b, c) der
symmetrischen Belastung, nur ist jetzt £22-^ 0. Infolge der Gegensymmetrie wird
&4 ?2.4, t2 —«2., P22' — P2'2 und A12 —A±v. Es ergibt sich also
die noch fehlende vierte Kontinuitätsbedingung 2. Art in der Form

2&4 + &4 — 2zf42 + ^43 0 (Knoten 4). (43d')

Da nach Gl. (26") f- \lf (44')

und nach der zum Knoten 4 gehörigen Gl. (36a)

p42 —2/743 (44")
wird, folgen aus der Übereinstimmung der drei ersten Kontinuitätsbedingungen

mit Gl. (43a, b, c) die den Gl. (44a, b, c) entsprechenden Gl. (44a', b', c'),
indem man in Gl. (44a, b, q) die Gl. (44') und (44") einführt und % 0,
e2=r—s2t, p22f==z — P2<2 setzt. In analoger Weise wie beim symmetrischen
Lastfall ergibt sich aus Gl. 43d') die der Gl. (44d) korrespondierende
Beziehung zu

(- 2 q + ei) + ß3 (2 e'*" - e><") + ß, (14 eY/ - 7 e") +
+ Ä (2p™ - 2p™, -p>>>i — 15/7- + 2 P"") +
+ ft (14^- 14 pH -lpl[- 45 p\l + 14 py). (44 d')

Bildet man aus den Gl. (47) die <•"" und evi, setzt diese und die e" in die
Gl. (44a', b', c', d') ein, addiert wieder die erste zur dritten und die zweite
zur vierten Gleichung, so folgen auch für diesen Belastungsfall die vier simultanen

Differentialgleichungen sechster Ordnung

- 7-5 £ P'2\ + 303,5 - ^-) A* p'- - 36,083 £ p\[

h2 l 187 25\ • h6
123 >C,+ -150,25 + ^FU4/C + 33,72916—p™,

m — V m2 I ** m -

- 7,5 k^ph + (-308,5 + -^L) AV34' + 35,416 h~
p™

123 £*£ + (-73,75 + 3^)AV;7 +39,60416^/7^

h2 i 35 75\ • h6
-123 —P"+ -79,25 — ^4^ )h*P'"'— 2,35416— PVI (48a)

m \ m2 1 m x '

h2 l 197 \ • hG- 37,5 -p'h + 140,5 - -nj¥-) h* p'- - 27,416^ p\{

h2 200 5\ • A6- 73,5 -ph,+ (-254 + ^Fj AVS: + 12'4583^ />
/ft 22.

-37,5h^ph + 64 -^-JAX'- 33,2916^
h2 448 25\ • h6- 73,5 -m pTa + 472,75 -^) 4*^-82,47916^^

73,5 A- P" + 101 + -^£-W /»"" - 14,9583 - Pv> (48 b)
/« \ m- / in
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A2 / 292 25\ • hG
80,25 /72i - 18,625 ~ p'h + (333,34375- ^F) A4 p'h' - 66,72916

n
p\[

15/722-+93,5 ^,+(-209,375 + 2^) A* p% + 56,02083 ^ ,£/

80,25/734 - 11,125 ^^ +( 27,34375--g-) A*^' - 31,16^ p\{

15/,43 + 56 ^^ + (-56,375 +^-) A^' + 31,2083^ p&'

h2 56 5 \ • //6
-15P-lll,925 P"+ -20,125 --^^ A±P""-10,7083 P"(48c)

m \ m2 m

h2 44 75\ • h6
15/721+56 -^ + (-80,875 +-^-)AVä" + 26,10416^^

98,25/722,-41,125 ^P22,+ 47>84375--™-) h*p™~46,9583 -" p\[,

15 /734 - 67 £^ + 33,875 - -g-) A*„- - 4,9583 £ pV{

98,25/743-114,625 ^^ + (545,09375 - $£-) A* „- - 124,3 ^ p^
h2 35 75\ • h6

-98,25 P - 32,375 — P"+ 105,15625-^— A4P""-20,85416 ^P", (48d)
m \ m2 1 m y '

welche für jede in den Knoten 2 und 2' angreifende, zur Achse /'—/'
antisymmetrischen Linienlast +PV3 gelten.

Die nächste Aufgabe besteht in der Integration des Systems der Gl. (45).
Hiezu entwickeln wir die Linienbelastung P in die Fourier'sche Reihe

P= Eftsin-^jc. (49)

k 71
Belasten wir nun das Tragwerk nur mit dem Ä-ten Glied Pk sin -j-x dieser

Entwicklung, so erhalten wir die dazugehörigen Störungsglieder der linearen
Differentialgleichungen (45), indem wir in deren rechten Seiten dieses Glied
mit seinen Ableitungen

Pfn) (_ X)n Pk (^)S"sin *.- x; (« 1,2, 3)

einsetzen. Nehmen wir nun als zugehörige Lösungen der unbekannten
Funktionen /721, p22r, pS4 und pi3 die Glieder

- k/r _ kn _ kn ^ k?c
Ak sin — je; Bk sin —- x; Ck sm - x; Dk sin — x

an, d. h. wir substituieren diese Ansätze mit ihren Ableitungen

(-l)'M^-j sin —x; (-l)nBk[L) sin-*;
(~ ^ k\TJ sm Z X'y ^ k\LI SmL X
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in die linken Seiten der Gl. (45), so ergeben sich nach Kürzung durch

sin-y-x vier lineare Gleichungen für die Beiwerte Ak, Bk„ Ck> Dk. Führt

man diesen Vorgang für alle Glieder von Gl. (49) durch, so erhalten wir
nach dem Superpositionsgesetz die vollständigen Integrale der Gl. (45) in
der Form

oo oo f
Ak sin -T x; p22f 2j &k sin —- x;l L x L

OO CO i

Pu 2 C* sin — x; pm ^Dk sin -^ x (50)
x L x L

Die Lösung der Gl. (48) geschieht auf dieselbe Weise.
Berücksichtigt man, daß für jede zur Achse C—C symmetrische

Belastung die Glieder mit geradem k Null werden, so ergibt sich auf diese
Weise für £= 1, 3, 5 die Lösung der Gl. (45) zu

o pr

p2X 3,605199 Px sin -^ x — 0,096506 P3 sin ~ x — 0,302948 P5 sin -~ x

p22,= 4,469606 „ „ +0,106536 „ „ —0,162651 „
p3i =-4,257498 „ „ —0,522686 „ „ —0,193059 „
/743 =- 5,003027 „ „ —0,603425 „ „ —0,187633 „ „ (51)

und entsprechend die der Gl. (48) zu

p2l - 0,3512399 Pi sin -^ x - 0,34093950 P3 sin ~ x - 0,33050826 P5 sin ^ x

p22, - 0,82596959 „ „ -0,80828891 „ „ -0,73478157 „ „
/734 =+0,35210622 „ „ +0,33802644 „ „ +0,28038403 „
/743 -0,17309484 „ „ -0,16766555 „ „ -0,12830188 „ „.(52)
Setzt man die Ol. (51) mit ihren zweiten Ableitungen in die Gi. (42) ein
und integriert diese unter Verwendung von

f ^ f • kir J (LV ku\dx sin — x dx — I — I sin — x + G x + C2

zwei mal nach x, so ergeben sich die e für die symmetrische Belastung,
h 7iDa für x 0 und x L, s 0 und sin — x 0 wird, verschwinden alle dabei

auftretenden Integrationskonstanten C1 und C2. Es folgt also

Ee1= 257,8506 /\ sin ~x + 27,4812 P3 sin ~x+ 8,0659 P5 sin ^ x

,«2= 258,5340 „ „ +29,1968 +11,2586 „ „
„£3 =-310,1536 „ „ -34,6841 „ „ -12,7698 „ „
r £4 =-310,4471 „ „ -34,7353 „ „ -12,5847 „ „. (53)

In gleicher Weise erhalten wir aus den Gl. (52) und <47)

£•«! - 0,2383262 Px sin ~x + 0,3073124 P3 sin ~ x + 1,0835316 P5 sin ~ x

„ £2=- 0,0363547 „ „ +0,4905634 „ „ +1,4057950 „
„ £3 =-0,3219318 „ „ -1,2223782 „ „ -2,6271881 „ „.(54)
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Mit diesen Ergebnissen kann man nach Gl. (7) die Spannungen o? senkrecht
und nach den Gl. (10a, b) die Spannungen oK parallel zu den Scheibenachsen

ermitteln.
X

Weiters erhält man aus |* e dx die Längsverschiebungen der Punkte der
ö

Knotenlinien im Abstand x vom Auflager x 0.
Setzt man die Gl. (51) und (53) mit ihren zweiten Ableitungen in die

Gl. (16a, b) und (26") ein, so folgen für die symmetrische Belastung der
Fig. 8b die Verformungen quer zu den Scheibenachsen. Es wird

E A22r - 7,9069 Px sin ^ x — 3,8988 P3 sin 3~ x — 2,8013 P5 sin 5£ x

„ ^24 2,2015 W r> + 3,1300 •n r> + 5,2798

« ^42 33,7625 11 n + 5,4811 V ii + 4,7108

„ ^23 0,4378 11 ii + 7,3631 n ii + 7,8063

„ ^32 68,5467 V V + 10,4223 V V + 5,2984

„ ^43 14,6651 V n + 0,6580 V V — 0,3753
w ^34 18,3120 11 V + 0,6531 ii V — 0,3848

* A3X 2,7918 11 ii 0,1770 ii r> — 0,2014

* ^ia ¦-33,3714 11 ii - 3,6477 ii n - 1,1363
r,A2X ¦-24,8408 11 ii — 5,5983 V ii — 3,4799

„ ^12 '-42,0787 11 r> — 4,9691 ii ii — 1,7495 (55)

£&*= 0

„ & 28434,3 Px sin £ x + 355,18 P3 sin ~ x + 47,69 P5 sin ^ *
„£»=-28434,8 „ „ -354,89 „ „ —48,06 „
„ &, 28401,2 „ „ + 345,36 „ „ + 41,67 „
„Im =-14,641 „ „ — 0,6578., „ + 0,3702 „
„fi2= 34,170 „ „ + 9,5312 „ „ + 6,3854 „ (56)

Substituiert man dagegen die Gl. (52) und (54) mit ihren zweiten Ableitungen
in die Gl. (16a, b) und (26"), so erhält man die Verformungen quer zu

den Scheibenachsen für die antisymmetrische Belastung der Fig. 8c. Es
ergibt sich

EA22, -3,9617 Pt sin ~x- 3,9289 P3 sin ~ * — 3,6682 />5 sin 5£ x

„ zf24 11,4609 ii ii + 11,3627 r> n + 10,7307

„ Ai2 6,0393 V V + 5,9677 r> V + 5,3252

„ A23 2,9609 ii n + 3,01266 ii •j + 3,5429

,4b =-1,2249 ii n — 0,7862 w n — 0,3200

„ zJ43 =-0,3852 ii n — 0,3476 V) n — 0,2069

„ A3i 2,1682 n yi + 2,2011 11 ii + 1,9987

„ A3l 2,5534 V V + 2,5966 11 ii + 2,3013

„ A13 0,8970 V ii + 0,8243 n ii + 0,6190

„ A21 =-2,5132 ii ii — 2,5429 ii ii — 2,5703

„ du =-0,8069 ii ii — 0,8746 ii » — 0,9481

Abhandlungen VII

(57)
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E £22> 3,6355 Pi sin ^x - 5,4507 P3 sin ~ x — 5,6232 P5 sin ^ x

5. f24 - 1,8177 „ „ +2,7254 „ „ -2,8116 „ „
» &3 -14,2789 „ „ -9,5163 „ „ -8,0660 „ „
i) £l3 4,1803 „ „ + 8,4983 „ „ + 7,4214 „ „
» &4 16,0966 „ „ +6,7910 „ „ +5,2544 „
» £l2 10,0986 „ „ + 1,0181 „ „ + 0,6445 „ „ (58)

Um die Lösungen zu vervollständigen, haben wir noch die Schubspannungen
zu ermitteln. Man erhält sie mit Benutzung von

kn
sm-y- x

L k,7t
r— COS ~jr- x + C
RTC L

durch einmalige Integration der Gl. (12a) und (12b). Die dabei auftretenden
kn L

Konstanten werden wegen cos — .v 0 und t=0 für x==-^- wieder alle

Null. Man erhält für den Belastungsfall Fig. 8b

tu - 0,12583 Pt cos ~x+10,59797 P3 cos ^ x + 6,37181 P5 cos ^x
ir42 — - 5,29002 W ii + 9,41463 1 ii + 6,56514

tm =-69,20280 JI n —12,08576 11 ii — 6,49105
r43 - 5,29062 11 ii + 9,41571 11 ii + 6,56689

r22,= 26,75733 11 n + 8,82296 7) n + 5,46661
^23 127,08406 11 ii — 8,38250 11 ii — 7,02325
T32 131,05120 n n — 7,77173 JI ii — 7,60101

t12 206,30812 ii i) + 6,78826 V ii + 1,43462
r2X 153,94859 ji n —10,15723 11 ii — 7,92471

t13 206,30720 w ii + 6,78826 11 V + 1,43461

*»i 200,22535 ii ii + 4,31376 11 ii — 1,11040

und für den Lastfall Fig. 8c

z2i 56,21010 Picosjx +18,11491 P3 COS
3tz

k+ 9,98643

ri2 56,57061 ii n + 19,34360 ii V + 12,35021

tu =-26,24611 •n ii — 8,57101 ii 11 — 4,81842
T43 =-26,24890 ii 71 — 8,30651 ii JI — 3,65692

t22,= 82,54072 n ii +26,83041 ii n +14,68502
t23 =-43,83510 ii ii —14,38995 ii ii — 8,42672
t32 =-43,83394 r> ii —14,28720 ii n — 8,13130
n2 =-17,60221 u ii — 5,64001 ii ii — 2,81981
T2i =-17,50454 n ii — 5,67482 r> n — 3,73395

tu =-17,60223 ii ii — 5,64063 V ii — 2,82060
t31 =-17,58782 ii 71 — 5,71234 ii r> — 3,31213

(59)

Tx

* (60)

Die Vorzeichen dieser Schubspannungen sind dann positiv, wenn sie dem
in Fig. 3a dargestellten Spannungsspiel entsprechen. Dabei ist die Scheibe
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aus dem Faltwerk zu lösen und so in die Zeichenebene zu legen, daß der
Koordinatenanfangspunkt x 0 links liegt und die in Fig. 7a festgelegte
positive f-Richtung nach abwärts weist.

Die bis jetzt entwickelten Resultate dieses Abschnittes gelten für jede
zur Achse C—C symmetrische Belastung. Handelt es sich um einen besonderen

Fall, so sind die dazu gehörigen Beiwerte Pk der Belastungsentwicklung
Gl. (49) zu bestimmen und in die Gl. (51—60) einzusetzen. Diese

Belastungskoeffizienten ergeben sich bei Berücksichtigung der ersten drei
Glieder für eine in Tragwerksmitte angreifende Einzellast G zu

Pi
2Q n 2Q_; p3==--r;

für eine Gleichlast p werden sie hingegen

TO
L

Pk
4 1

p (* 1,3,5). (61)

Wir wollen für die letztere alle Spannungen und Verformungen in
Tragwerksmitte bestimmen, d.h. wir setzen in Gl. (51—60) für die Pi5 P3 und P5

die Pk der Gl. (61) und für x -y. Um ein Bild darüber zu bekommen,

inwieweit die Gleichlast p durch die drei ersten Glieder der Lastentwicklung
ersetzt wird, wurde in Fig. 8a der Wert von

4 ^ 1
• k,7T

p -Tp2j-rs\n-rx (62)

aufgetragen. Für die in dieser Figur stark ausgezogene Belastungskurve sind
also die nachfolgenden Lösungen exakt, für die Gleichlast p hingegen, stellen
sie eine sehr gute Näherung dar, die durch Entwicklung weiterer Glieder
beliebig weit getrieben werden kann. In den Fig. 8b und 8c sind die Werte
für die Querbelastungen, Längsdehnungen und Längsspannungen, in den
Fig. 8d und 8e hingegen die Werte für die gesamten Verformungen A
und £ für den symmetrischen und antisymmetrischen Lastfall in Tragwerksmitte

dargestellt. Die Schubspannungen an den Scheibenrändern ergeben
sich für den symmetrischen Lastfall zu

T22r 24,9097 t/m2;
r23 128,4736 „ :

r32 132,1216 „ ;

%X2 204,3323 „ ;

x24t - 2,3841 t/m2
t42 =- 7,1152 „
m - 66,4724 „
^43 - 7,1158 „

und für den antisymmetrischen Lastfall zu

^4 52,1691 t/m2; t22, 76,5342 t/m
t42 52,5927 „ ; r23 =-40,7237 „
*34 - 24,3528 „ ; t32 -40,6978 „
T43 - 24,2115 „ ; %x2 -16,2862 „

%2x 155,7494 t/m2
x13 204,3314 „
rai 198,5654 „

t21 =-16,3597 t/m2

txs =-16,2861 B

TS1 =-16,3461 9

(63)

(64)

Durch algebraische Addition der beiden in den Fig. 8b und 8c dargestellten
Belastungsfälle ergeben sich die Werte für die längs der Knotenlinie 2

angreifende Linienlast 2Py3. Aus den zur Gl. (62) gehörigen Ergebnissen
4

ist ersichtlich, daß diese noch nicht mit — vervielfältigt sind. Um die end-
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gültigen Resultate für die nach Gl. (62) dargestellten Gleichlasten p zu
erhalten, sind die in den Fig. 8b, c, d, e und den Gl. (63) und (64) angegebe-

4
nen Zahlenwerte noch mit —¦= p zu multiplizieren.

7t)/3

b) 2. Beispiel.

Das folgende Zahlenbeispiel soll beim gleichen Tragwerk für dieselben
Belastungen den Einfluß des Schubmoduls G zeigen. Um diesen Einfluß
besonders deutlich hervortreten zu lassen, werden im Gegensatz zur vorigen
Aufgabe die Längenänderungen A quer zu den Scheibenachsen gleich Null
gesetzt. Außerdem wird durch die Annahme m oo auch der Einfluß der
Querdehnungszahlen m ausgeschaltet, so daß die Auswirkung des
Schubmoduls so ungestört als möglich zu Tage treten kann. Da sich der Einfluß
der A und der | erst bei den Kontinuitätsbedingungen 2. Art geltend macht,
bleibt der Rechnungsgang bis einschließlich der Aufstellung der
Kontinuitätsbedingungen 1. Art unverändert. Die explizite Darstellung der e" erhält
man also für den symmetrischen bezw. für den antisymmetrischen
Belastungsfall, indem man in den Gl. (42a, b, c, d) bezw. (47a, b, c), wegen
m oo, ß± 0 setzt. So wie im vorigen Beispiel bedienen wir uns auch
hier für die f " der vereinfachten Gl. (26'). Wir behandeln so wie früher den
Belastungsfall Fig. 8b zuerst. Die dazugehörigen Kontinuitätsbedingungen
1. Art erhalten wir, indem wir in den Gl. (43a, b, c, d) die A -= 0 setzen
und daran anschließend die Gl. (26') substituieren. Da Massenkräfte nicht
vorhanden sind, wird dabei mfS — nrs gr=0. Es folgt also nach Multiplikation

mit 2h

(-e'I + e'2' + q-E'i) + ß^-p^ + pf2'2f + 3P:k-p'i, + P") 0 (65a)

(- q +E'i+2h £-) + ß7 (-2^ + 3p2'2f + p'i, + p'^-p'l%) 0 (65b)

K- 4' - *3 + <) + ft (~ 3P21 + % + PU f P'D 0 (65 C)

K-«4> +(jAp'k-pflz) °> (65d)

2
worin ß7=~-=; £22f 0; p22, p2f2; p& 0 zu setzen ist. Addiert man

wieder die erste Gleichung zur dritten und die zweite zur vierten, ersetzt
hierauf unter Bedachtnahme auf & 0 die e" durch die Gl. (42a, b, c, d),
so wird nach den Gl. (37a) mit dem der Annahme m oo entsprechenden

Verhältnis ~=2G

- 4 p'h + 3 ph, + 4 p'h - P'l3 - P" (66 a)

- 2p'h + 2p'h, + 2p'h -P'i3 0 (66b)

(— 840 p21 + 456/722- — 840/734 + 456 pi3) —

- 992 (- 3 p'h + 2p'h, + P'3\) 312 P (66 c)

(456 /?2i — 399 p22, + 456/734 — 399 pi3) —

- QQ2(^-^) —87P. (66 d)

Löst man diese Differentialgleichungen zweiter Ordnung wieder mit Hilfe
von Fourier'schen Reihen auf, so erhalten wir für die ersten Glieder der
unbekannten Belastungsfunktionen p
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p21 — 0,02511 P1 sin J- x (67 a)

Pw + 0,23038 „ „ (67 b)

pM =—0,64030 „ „ (67c)
/743 =—0,67962 „ „ (67d)

aus welchen sich nach Gl. (42a, b, c, d) die Längsdehnungen e der Knotenlinien

zu

Eex= 262,90 Px sin ^ x (68 a)

„ e2 263,40 „ „ (68 b)

„ €3-=-316,97 „ „ (68 c)

„ 64 =-314,41 „ „ (68d)

und mit den Gl. (12a) und (12b) die dazugehörigen Schubspannungen %

ergeben. Es wird

t24 + 30,152 Pi cos y x 5 T22' + 26,335 Px cos y x

t42 — + 25,036 „ „ ; T23 - 23,766 „ „
r34=- 38,074 „ „ ; t32 —- 18,414 „ „
t43 +25,064 „ „ ; T!2 +25,049 „

r21 - 27,576 Px cos ^ x ;

Ti3 +25,051 „ „ ;

t31 + 19,654 „ „ (69)

Aus Gl. (26') erhalten wir schließlich die Durchbiegungen der Scheibenachsen
in der Form

£¦•&*= 0; E- f13= 29633,8 Pi sin — * ;

„ &4= 29426,6 Pi sin ^x; „ &* 0;
„ & =-29633,6 „ „ ; „ f12 0. (70)

Andere Verformungen sind nicht vorhanden, da m oo und die A 0 sind.
Da die Belastungsschemata der p für die symmetrische und für die

antimetrische Belastung in derselben Weise übereinstimmen wie beim ersten
Zahlenbeispiel, sind auch bei dieser Aufgabe die ersten drei Kontinuitätsbedingungen

2. Art mit denjenigen der symmetrischen Belastung
gleichlautend. Die noch fehlende vierte Gleichung folgt aus der Gl. (43d'), indem
man darin die A 0 setzt. Setzt man wieder

und p42 — 2/743 (65")

so folgen aus der soeben festgestellten Übereinstimmung der drei ersten
Kontinuitätsbedingungen 2. Art die den Gl. (65a, b, c) entsprechenden Gl.
(65a', b', c'), indem man in den Gl. (65a, b, c) die Gl. (65') und (65")
einsetzt und si=^ 0; e2=-—e2t', p2<2 —p22r setzt. Die der Gl. (65d)
entsprechende Gl. (65d') erhalten wir auf dieselbe Weise wie beim symmetrischen

Lastfall. Es wird
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(-2eS+eS) + ^(- 2/72'i + 2 pn, + p3i — 5 /74'3 — 2 P") 0. (65 d)

Addiert man wieder die Gl. (65a') zur Gl. (65c') und die Gl. (65b') zur
Gl. (65d') und setzt dann mit ßx 0 die Gl. (47a, b, c) in die so erhaltenen
Beziehungen ein, so ergeben sich, und zwar wieder entsprechend den Gl.
(37a) die für den antimetrischen Lastfall geltenden Differentialgleichungen

- 4p'h + 3p'h, + 4p'h - 3p'l% - P"

-4p'h + Sp'h, + *Pu - 1P'k + 2 P"
(107/721 + 20/722, + 107/734 + 20/743) —

+ 204 (- 3ph + 2p'h, + Ph - 2p'lz) -
(20/721 + 131 P22, + 20/734 + 131 pi3) —

+ 204 (- 2p'h + 2ph, + p'h - 5<3) -

20 P

(71a)

(71b)

(71c)

131P + 408P". (71 d)

Löst man diese wieder mit Hilfe von Sinusreihen auf, so ergeben sich die
ersten Glieder der unbekannten Belastungsfunktionen zu

/72i + 0,32051 Pi sin —x
p22, — 0,23223 „ „
pu - —0,32614 „
/743 =—0,76110 „

(72a)

(72b)
(72c)
(72d)

Daraus folgen mit Hilfe der Gl. (47a, b, c) die Längsdehnungen e in der
Form

(73a)

(73b)
(73c)

woraus sich nach Gl. (12a) und (12b) die Schubspannungen t ergeben. Es
wird

E • ex 2,60862 Pt sin j- x

„ e2 1,82432 „ „
„ €S -3,81371 „

^24 +
t42 + 1,4662
^34 — 22,0020
t43 —21,8085
r22, + 23,2839

1,3165 Picosy x r2s — 6,0622 Pi cos j- x

t32 — 5,8622 „ „
^12 + 16,2602 „
^2i + 15,8171 „
Tis + 16,2601 „

r31 + 16,1399 Pi cos ~x. (74)

Die Durchbiegungen | der einzelnen Scheiben erhält man wieder nach
Gl. (26') zu

E ¦ fia, + 282,03 Pi sin ~ x;
„ &« + 121,76 „
„ ha — 403,00 „
„ f„, + 647,27 „
„ S3i — 244,28 „
„ £12 + 281,30 „ „ (75)
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Weitere Glieder werden für dieses Zahlenbeispiel nicht mehr entwickelt,
da einerseits durch diese keine weiteren prinzipiellen Fragen geklärt werden
können und andererseits die Frage der allgemeinen Konvergenz bereits in
der vorhergehenden Aufgabe beantwortet wurde7). Trägt man die
Durchbiegungen |, wie dies in der Fig. 8f geschehen ist, zeichnerisch auf, so
ergibt sich, daß der gesamte Faltwerksquerschnitt in seiner Gestalt unverändert

bleibt, wie dies ja zufolge der Annahmen A 0, m oo sein muß.
Um die endgültigen Resultate für die ersten Glieder einer Gleichlast p zu
erhalten, sind entsprechend dem ersten Zahlenbeispiel die Koeffizienten der
Gl. (67a, b, c, d), (68a, b, c, d), (69), (70), (72a, b, c, d), (73a, b, c, d), (74)

4vund (75) mit —— zu multiplizieren.
ji y 3

Eine im üblichen Sinne durchgeführte schlichte Superposition der
Ergebnisse des 1. und 2. Zahlenbeispiels ist unzulässig.

F. Schlußbelrachlungen.
a) Konvergenz.

Zunächst erkennt man, daß die Konvergenz der Lösungen des ersten
Beispiels eine sehr gute ist. So nehmen die Beiwerte der ^-Entwicklungen

für zwei an den Knoten 2 und 2' in x -^- angreifende gleich große Einzellasten

ungefähr wie die Quadrate und für zwei an denselben Knoten angreifende

Gleichlasten p ungefähr wie die Kuben der reziproken ungeraden
Zahlen ab, so daß bei Berücksichtigung von drei Gliedern in den
Längsspannungen ox im ersten Fall nur ein Fehler von +5 o/o und im zweiten Fall
von nur +1 o/0 verbleibt. Für die zugehörigen antisymmetrischen
Laststellungen konvergieren die Lösungen in der Regel etwas besser wie die
Lastentwicklungen der Gl. (49) selbst. Je geringer der Einfluß der
Querverformungen A gegenüber den Achsdurchbiegungen f ist, umso besser
entspricht die Abnahme der obigen Beiwerte der Abnahme der Quadrate und
Kuben der reziproken ungeraden Zahlen bezw. der der Lastentwicklung
Gl. (49). Wie sich aus den Gl. (55) und (56) ergibt, ist auch die Konvergenz
der Verformungsbeiwerte der symmetrischen Belastung der Fig. 8b eine sehr
gute. Der übrig bleibende Fehler beträgt bei den A für Einzellasten in

x ^y durchschnittlich ±100/0 und für Gleichlasten durchschnittlich +5o/0.

Die Werte für die Achsdurchbiegungen f nehmen noch viel rascher ab. Die
Abweichungen vom wahren Grenzwert betragen für die letzteren bei drei
Gliedern für Einzellasten im Durchschnitt nur ±0,20/0 und für Gleichlasten
im Durchschnitt sogar nur ±0,04o/0. Da die A gegenüber den f klein sind,
ist der Genauigkeitsgrad der letzteren für die Verformungen der Scheibenränder

maßgebend. Für den antisymmetrischen Lastfall der Fig. 8c ist die
Schnelligkeit der Annäherung an die Grenzwerte der A und f so wie bei den e

durchschnittlich dieselbe, wie bei der Lastentwicklung Gl. (49) selbst. Die
Konvergenz der Reihenentwicklung für die Schubspannungen ist ebenfalls
sehr gut. Auch hier betragen bei Berücksichtigung von drei Gliedern die
übrig bleibenden Fehler bei dem symmetrischen Lastfall im Mittel nur
±5o/o bezw. ±lo/o und beim antisymmetrischen Lastfall im Mittel ±10o/0

7) Siehe Abschnitt F.
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bezw. +2o/o, wobei die ersten Zahlen für Einzellasten in x¦=- 9 und die

zweiten Zahlen für Gleichlasten gelten.
Ist die Belastung zur Tragswerksachse C—C gegenspiegelgleich, so

verschwinden im Gegensatz zu vorhin die Glieder mit ungeradem k. Der
Grad der Konvergenz der übrig bleibenden Glieder mit geradem k ist im
wesentlichen genau so groß wie bei Belastungen, welche zur Achse C—C
symmetrisch sind. Nur treten an Stelle der reziproken Werte der ungeraden
Zahlen jetzt die reziproken Werte der geraden Zahlen. Da die Amplituden
für die Glieder mit geradem k kleiner sind als bei den Gliedern mit
ungeradem k, verringern sich auch die im vorigen Absatz angegebenen
Fehlergrenzen entsprechend. Da jede beliebige Linearlast aus der algebraischen
Addition eines zur Achse C — C symmetrischen und eines zur Achse C—C
antisymmetrischen Lastfalles folgt, sind auch die Konvergenzverhältnisse für
jeden Lastfall befriedigend geklärt. Aus Raummangel wird die Berechnung
für die Glieder mit geradem k hier nicht wiedergegeben. Durch eine
notwendig werdende Berücksichtigung des Einflusses der Q auf die | wird
diese gute Konvergenz nicht beeinträchtigt.

b) /. Beispiel.
Die Empfindlichkeit der Rechnung ist umso größer, je geringer der

Einfluß der Querverformungen A ist. Sie ist bei dem symmetrischen Lastfall

kleiner als bei dem antisymmetrischen, weshalb auch bei letzterem mehr
Dezimalstellen berücksichtigt werden mußten.

IP
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V> § §^g
E> S

18^»^
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/>" "TT
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±
JTK*5

L/2 15708

Fig. 8 a

Der Einfluß der Querverformungen A ist beim symmetrischen Lastfall
gegenüber den Achsendurchbiegungen f sehr klein und könnte vernachlässigt

werden. Für die antisymmetrische Belastung ist er jedoch sehr groß
und darf unter keinen Umständen außer Acht gelassen werden.
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Betrachtet man die Fig. 8b, so findet man, daß für die spiegelgleiche
Belastung die Verteilung der bezogenen Längsdehnungen e und der
Längsspannungen ox mit einer nahezu vollständigeen Genauigkeit eben ist, was
bei der in Fig. 8c dargestellten gegenspiegelgleichen Belastung durchaus
nicht der Fall ist. Da jedoch die at der Fig. 8b ungefähr 100—300 mal so
groß sind als die entsprechenden ox der Fig. 8c, folgt, daß die Spannungs*
Verteilung für eine allein im Knoten 2 angreifende Linienlast ±2P^3 ebenfalls

eine nahezu vollkommen ebene ist, d. h .der in Fig. 7a und 7b dargestellte

Hohlträger verteilt die Lasten in der Querrichtung fast vollkommen
gleichmäßig, ganz gleichgültig, in welchem Knoten die Kräfte angreifen.

+pys+PV3
fcl' ^R•^L^,^--

uu£f
LUJ

P/z

+P*3

p2r+35768
pz2,~+itW16

P-P2l^22' *
-+18233

p»

„1LL___

in

...Jii....

p»
P«3

-t+1219

-4.83M

1 —01767

Axe de symetrie — Symmetrieachse —Axis of symmetry

Fig. 8 b

In den Fig. 8d und 8e ist die Verformung des Querschnittes in x y für
den symmetrischen und für den antisymmetrischen Lastfall dargestellt. Wie
aus diesen Figuren ersichtlich ist, senkt sich dieser Querschnitt zufolge der
ersten Belastung parallel zu sich selbst. Zufolge der zweiten Belastung
tordiert der Querschnitt leicht im entgegengesetzten Sinne des Uhrzeigers,
verschiebt sich etwas nach links und verkrümmt seinen Obergurt s-förmig.
Charakteristisch ist die Quetschung der linken und die Zerrung der rechten
Trägerhälfte. Da die in der Fig. 8d angegebenen Durchbiegungen ungefähr
1000 mal so groß sind als die der Fig. 8e, senkt sich auch für eine im
Knoten 2 allein angreifende Last der Querschnitt nahezu parallel zu sich
selbst, tordiert nur leicht im entgegengesetzten Sinne des Uhrzeigers und
verschiebt sich nur etwas nach links, was der gleichmäßigen Längsspanr
nungsverteilung für denselben Belastungsfall entspricht. Damit ist klar
erwiesen, daß es sich hier um ein Tragwerk mit wirklich idealen Querver-
teilungseigenschaften handelt.

Während für den antisymmetrischen Lastfall die zuletzt behandelten
statischen Wirkungsgrößen bedeutend kleiner sind als für den symmetrischen
Lastfall, trifft dies für die an den Scheibenrändern angreifenden Schubspan-
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nungen durchaus nicht zu. Im Gegenteil, es sind, wie aus den Gl. (59) und
(60) hervorgeht, die Schubspannungen in beiden Fällen von nahezu gleicher
Größenordnung. Man kann also bei der Berechnung der Schubspannungen
solcher Tragwerke den Einfluß der durch die antisymmetrische Belastung
hervorgerufenen Torsion nicht vernachlässigen. Die hervorragenden
querverteilenden Eigenschaften werden eben gerade durch das Auftreten der
großen Schubspannungen beim antisymmetrischen Lastfall bedingt. Dieses
Verhalten ist durchaus verständlich. Die Natur gibt nichts umsonst. Die
überaus günstige Querverteilung wird eben durch eine gründliche Mobilisation

der Schubwiderstände erkauft. Setzt man m =- oo, so reduzieren sich
die Gl. (45) und (48) auf Differentialgleichungen vierter Ordnung, in welchen

+-22

P-P2,+P22>

-+0600U

-PV3

/+PVJ
'S

^

M

03037

Hnn^^
E-e

p„- +02955

P„-oim
p+p?rP22> -

"^Lmill^ —13996

^Axe danhsymetrie -AnhSymmetrieachse

j* Axis oF anhsymmetry

Fig. 8c

entsprechend der Fußnote der Gl. (37b) die Glieder der zweiten Ableitungen

fehlen. Vernachlässigt man auch noch den Einfluß der A, so degenerieren,
da die pVI mit den A verschwinden, die Gl. (45) und (48) auf je zwei
lineare Gleichungen mit vier Unbekannten. Aus diesen sind aber die p nicht
bestimmbar. Wählt man ein zweites mal den im Abschnitt D gezeigten, über
die Kontinuitätsbedingungen 1. Art führenden Weg und setzt in den Gl. (41)
m oo, so werden die rechten Seiten der ersten plus zweiten und ,der
dritten plus vierten Gleichung gleich —ß2^^ bezw. gleich -\-ß2-2P, d.h.
es sind für m-=oo nur zwei von den Gl. (41) voneinander unabhängig. Diese
beiden reichen aber für die Bestimmung der vier unbekannten p ebenfalls
nicht aus. Führt man innerhalb der Gl. (41) die eben angegebenen
Additionen durch und setzt entsprechend der nach dem Lehrsatz Seite 152
vorhandenen ebenen Verteilung e± e2 a und e3 ek b, so folgt 15« A 3b

¦2ß2P; 3a+\2b==2ß?)P, woraus sich : — -£¦ ergibt, was mit derl1 — _?? _ _€3
—

e4 ~ 6
Schwerpunktslage des Querschnittes genau und mit den in der Fig. 8b an-
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gegebenen Ergebnissen hervorragend übereinstimmt. Setzt man in Gl. (46)
m oo und addiert die doppelte dritte zur einfachen zweiten Gleichung,
so ist die rechte Seite dieser Kombination gleich der dreifachen negativen
rechten Seite der ersten Gleichung, d. h. es sind hier für m oo von den
Gl. (46) nur zwei voneinander unabhängig, was für die Bestimmung der
vier unbekannten p wieder nicht hinreicht. Addiert man zur Summe der
ersten und zweiten Gleichung die doppelte Summe der ersten und dritten,
so folgt 15«1 -f- 12f2 -}- 16^ 0, woraus sich et e2 es 0 ergibt, ein
Ergebnis, welches mit der Gleichgewichtsbetrachtung am Tragwerksabschnitt
übereinstimmt, da die ox infolge der Antimetrie alle um eine lotrechte
Achse drehen, die parallel zu den Lasten und Auflagerreaktionen verläuft,

les deplacements hortzontaux ä gauche ne sont pas ctessme's a lechelle
Wagerechte Verschiebungen links nicht masstabnchttg gezeichnet
The horizontal displacements to the leFt are not drawn to scate

*\PVJ +\P1tJ

\
I I

32U9Q V599

-v?TfT9f" rfl-

\ i/i \ /
tt -*

Tous les deplacements doivent etre divises par £
Alle Verschiebungen sind durch E zu dividieren
All displacements are to be dmded by E

Fig. 8 d

das heißt die ox müssen verschwinden. Die in einem Querschnitt liegenden
Q gehorchen drei ebenen Gleichgewichtsbedingungen, welche jedoch infolge
der Gl. (8c) schon in den allgemeinen Gl. (36a) und (36b) enthalten sind.
Sie liefern also keine neuen Bedingungsgleichungen für die p. Man sieht also,
daß sich die im Abschnitt D allgemein aufgestellte Behauptung, die p und t
seien bei Unterdrückung der A und des Einflusses der Querkräfte Q auf
die Durchbiegungen £ nicht eindeutig bestimmbar, bei dem in diesem
Abschnitt behandelten Beispiel voll bestätigt.

In den Gl. (59) sind die t23 bis r31 und t34 gegenüber den anderen t
sehr groß. Diese Erscheinung findet ihre Erklärung in der Bildung einer sich
über 3 2 2' 3' erstreckenden Sprengwerkswirkung. Alle innerhalb dieses
Trapezes liegenden r sind klein, die am Rande und außerhalb liegenden
sehr groß. Beim antimetrischen Lastfall verteilen sich die r, wrie aus den
Gl. (60) ersichtlich ist, so, daß die den Lastangriffspunkten am nächstliegenden

die größten Werte erhalten.
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Wir machen noch darauf aufmerksam, daß bei den Verformungen quer
zur Tragswerksachse der Einfluß der Poisson'schen Zahl oft größer ist,
als der Einfluß der Querbelastungen p selbst, sodaß, wie dies aus der Fig. 8d
ersichtlich ist, die Obergurtsknoten 1, 2, 2', T von der Mitte nach außen
rücken, obwohl die Querbelastungen p21 und p2V in den Scheiben 12 und 22'
Druck erzeugen. Die umgekehrte Erscheinung kann beim Untergurt
festgestellt werden.

c) 2. Beispiel.
Zunächst erkennen wir, daß für beide Belastungsfälle die

Elastizitätsgleichungen die Gestalt von linearen Differentialgleichungen 2. Ordnung,
so wie wir es auf Seite 151 allgemein bewiesen haben, annehmen. Im
Gegensatz zur vorigen Aufgabe ist für beide Belastungsfälle die Empfindlichkeit

der Rechnung gleich gering. Aus den Gl. (68a, b, c, d) ergibt sich,

t"PVS rPYJ

M08 ^\^ 10.593

770810593 i'' / -vk^
7.656.

\vJ£\'3>^^>
ft.573

13.050

Tous /es deplacements doivent etre divises par E
Alle Verschiebungen sind durch E zu dividieren
All displacements are to be divided by E

Fig. 8 e

daß auch hier für die symmetrische Last die Verteilung der Längsspannungen
und der Längsdehnungen eine fast ebene ist. Weiters folgt aus den Gl. (70),
daß infolge der Berücksichtigung des Einflusses der Querkräfte Q auf die
Durchbiegungen f diese gegenüber dem 1. Beispiel um etwa 3o/0 größer
werden. Dasselbe gilt von den Längsdehnungen e. Für diese beiden
Wirkungsgrößen ist also der Einfluß des Schubmoduls sehr gering. Ganz anders
verhält es sich jedoch damit bei den Schubspannungen t, deren Größe und
Verteilung eine vollständig andere wird. Die vorhin dargelegte sprengwerk -
artige Wirkung entfällt. Die Gesamtquerkraft des Faltwerksquerschnittes
wird von den aufrechtstehenden Scheiben übernommen, wobei die mittleren,
das sind die dem Lastangriff naheliegenden, Elemente etwas mehr abbekommen

als die seitlichen.
Betrachten wir nun den antimetrischen Lastfall, so ersehen wir aus

den Gl. (73a, b, c), daß bei Berücksichtigung des Einflusses des
Schubmoduls G auf die £, selbst bei Vernachlässigung der A und der Einwirkung
der Poisson'schen Zahlen, die Faltwerksquerschnitte nicht eben bleiben, son-
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dem sich in geringem Maße verwölben. Setzt man in den Gl. (65a' b', c', d')
die e=0, so erhalten wir vier lineare algebraische Gleichungen mit den vier
Unbekannten p12, p22,, pM und pVd. Löst man diese nach den p auf, so
ergeben sich Werte, welche die Gl. (47a, b, c) nicht befriedigen, wenn man
in den letzteren ß1 und e Null setzt. Da die Gl. (47a, b, c) letzten Endes
der Ausdruck für die Gleichgewichtsbedingungen Gl. (27) sind, ergibt sich,
daß es selbst für den Fall der reinen Torsion ohne Längsdehnungen keine
allen Bedingungen genügende Lösung gibt. Ein Ebenbleiben der Faltwerks-
querschnitte ist eben, wie wir es bereits auf Seite 152 allgemein gezeigt
haben, nur dann möglich, wenn (außer der notwendigen und hinreichenden
Bedingung, daß das Faltwerk im Querschnitt die Figur eines stabilen
Fachwerkes aufweisen muß) der Einfluß der Querkräfte Q und der Poiss3n?schen
Zahl auf die Durchbiegungen f verschwindet und die A 0 werden.
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Aus den Gl. (75) ersehen wir, daß die zum antimetrischen Lastfall
gehörigen Durchbiegungen ungefähr 40 bis 50 mal so groß sind als beim
gleichen Lastfall des 1. Beispiels. Da sie aber gegenüber den Durchbiegun-
des symmetrischen Lastfalls nur ungefähr 1 o/0 betragen, wird sich auch bei
diesem Beispiel der Mittelquerschnitt des Faltwerkes nahezu vollkommen
parallel zu sich selbst nach abwärts verschieben, so daß bei diesem
Hohlträger auch bei Berücksichtigung des Einflusses der Q auf die Durchbiegungen

£ praktisch eine vollkommene Querverteilung der Lasten eintritt.
Aus den Gl. (74) erkennt man, daß sich auch für den antimetrischen
Lastfall die Größe und Verteilung der Schubspannungen x gegenüber
dem 1. Beispiel vollständig ändert. Während im 1. Beispiel hauptsächlich

die dem Kräftepaar benachbarten Scheiben die größten
Schubspannungen erhielten, wird bei dieser Aufgabe das Torsionsmoment
hauptsächlich von den äußeren Scheiben aufgenommen, während die
Füllungsscheiben nur geringe Scherspannungen erleiden. Abschließend können
wir also sagen, daß die Berücksichtigung des Einflusses des Schubmoduls G
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die Längsspannungen, Längsdehnungen und Durchbiegung nur sehr wenig
beeinflußt. Diese Wirkungsgrößen vermehren sich z. B. in dieser Aufgabe
um nur ungefähr lo/0. Bei der Berechnung der Schubspannungen ist aber
die Einschaltung des Moduls G unbedingt erforderlich. Weiters bemerken
wir, daß, wie sich aus den Gl. (67a, b, c, d) und (72a, b, c) ergibt, bei
Berücksichtigung des Einflusses von G die Querbelastungen p beim
symmetrischen Lastangriff auf ungefähr 1/10 sinken, beim antimetrischen Fall jedoch
in der gleichen Größenordnung verbleiben.

d) Wahl der Rechnungsart.
Das erste Zahlenbeispiel sollte den Einfluß der Dehnungen A quer zu

den Scheibenachsen und der Poisson'schen Querdehnungszahlen m
demonstrieren. Man erkennt sehr leicht, daß dieser in dem vorliegenden Beispiel so
klein ist, daß man ihn hätte ruhig vernachlässigen können. Dies trifft aber
nur für Hohlträger zu, deren Querschnittsbreite im Vergleich zur
Querschnittshöhe nicht allzu groß ist, wie dies bei dem in Fig. 7a dargestellten
Tragwerk zutrifft. Der geringe Einfluß der A und der m stimmt mit der
geringen Verformbarkeit des Querschnittes vollständig überein (Fig. 8d
und 8e). Bei Hohlträgern, deren Querschnittsbreite im Vergleich zur
Querschnittshöhe sehr groß ist, ist die Verformbarkeit in der Querrichtung jedoch
schon so groß, daß der Einfluß der A und der m nicht mehr vernachlässigt
werden darf. Erinnern wir uns noch der großen Bedeutung des
Schubmoduls G für die Berechnung der Schubspannungen t, so können wir
folgendes aussagen:

1. Hohlträger mit wenig verformbaren Querschnitten können nach dem
in Beispiel 2 eingeschlagenen Weg berechnet werden.

2. Die Berechnung von Hohlträgern mit stark verformbaren Querschnitten
muß jedoch unter Berücksichtigung der Längenänderungen 4 quer zu
den Scheibenachsen, der Querdehnungszahlen m und der Schubmodule G
durchgeführt werden.

Ist das Verhältnis — der einzelnen Scheiben gedrungen, so ist es manchmal

ratsam, für die Durchbiegungen f die genaue Form Gl. (26) zu benutzen.
Wir erwähnen noch, daß, wie sich aus Beispiel 2 ergibt, bei

Berücksichtigung des Schubmoduls G die Querbelastungen p bestimmbar sind,
auch dann, wenn die A und m unterdrückt werden.

e) Allgemeines.
Hohlträger mit rahmenartigem Querschnitt (Fig. 1) haben bei weitem

keine so günstige Querverteilung als Faltwerke, welche im Querschnitt die
Figur eines stabilen Fachwerkes aufweisen. Man muß bei diesem die
günstige Querverteilung durch Einbau von steifen Querrahmen erzwingen.

Durch diese Studie ist auch die Torsions- und Schubtheorie der
dünnwandigen, offenen und geschlossenen Querschnitte und zwar mit und ohne
Querschnittsverwölbung einer vollständigen Behandlung zugeführt. Es ist
hier im Gegensatz zu den bisherigen diesbezüglichen Untersuchungen der
Einfluß der Querschnittsverformung und die Art und Weise, wie die
Torsionsmomente bezw. Querkräfte in die Querschnitte eingeführt werden,
berücksichtigt. Außerdem sind die quer zu den Scheibenachsen verlaufenden
Spannungen berechenbar.
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In dieser Abhandlung ist die Verteilung der Längsspannungen ax innerhalb

der einzelnen Scheiben als geradlinig angenommen. Handelt es sich

um Faltwerke, die aus Scheiben mit gedrungenem Verhältnis — zusammengesetzt

sind, so ist die Verteilung der Längaspannungen mit Hilfe von
Airy'schen Spannungsfunktionen genau zu erfassen. Die daraus resultierende

exakte Membranentheorie der Faltwerke wird der Gegenstand einer
meiner weiteren Abhandlungen sein.

Zusammenfassung.
In dieser Arbeit werden die Hohlträger als Faltwerke aufgefaßt. Man

kommt dadurch dem tatsächlichen Verhalten solcher Tragwerke am nächsten.
Zuerst wird die allgemeine Theorie der gelenkigen, mehrteiligen Faltwerke,
das sind solche, bei welchen in einem Knoten mehr als zwei Scheiben
zusammenstoßen, in einer neuen Form unter Zugrundelegung zweier
Kontinuitätsbedingungen wiedergegeben. Dabei wird der Einfluß der Poisson-
schen Zahl m, der Einfluß der achsnormalen Normalspannung ay, und der
der Schubspannungen x berücksichtigt. Entsprechend der NAViER'schen Biegelehre

wird der Verlauf der achsparallelen Normalspannungen ox von Falt-
werksknoten zu Faltwerksknoten geradlinig angenommen. Es ergeben sich
die dazugehörigen Elastizitätsgleichungen als simultane, lineare Differentialgleichungen

sechster Ordnung, welche durch gut konvergierende FouRiER'sche
Reihen integriert werden. Bei der Durchführung der beiden Rechenbeispiele
wurde vom Belastungsumordnungsverfahren mit Erfolg Gebrauch gemacht.
Die Frage, wann bei einem Hohlträger die Verteilung der achsparallelen
Spannungen ax über den gesamten Faltwerksquerschnitt eine ebene ist, wird
eingehend behandelt. Sie tritt mit Ausnahme von speziellen Belastungsfällen
nur dann ein, wenn der Faltwerksquerschnitt die Figur eines unverschieblichen

Fachwerkes aufweist und wenn der Einfluß der achsnormalen
Dehnungen A, sowie der Einfluß der Querdehnungszahl m und der der Querkräfte

Q auf die Durchbiegungen f vernachlässigt wird. Alle Punkte eines
Querschnittes solcher Hohlträger senken sich nahezu um das gleiche Maß,
ganz gleichgültig, wie die Lasten in der Querrichtung verteilt sind. Es
handelt sich somit hier um ein Tragsystem, welches die Lasten in achsnormaler

Richtung praktisch vollkommen gleichmäßig verteilt. In dem
durchgeführten Rechenbeispiel ist die Abweichung nicht einmal lo/0. Bei
Torsionsproblemen darf der Einfluß der Querkräfte nicht unterdrückt werden,
da man sonst zu ganz falschen Ergebnissen bezüglich der Schubspannungen
kommt. Durch diese Studie ist auch die Torsions- und Schubtheorie der
dünnwandigen, offenen und geschlossenen Querschnitte und zwar mit und ohne
Querschnittsverwölbung einer vollständigen Behandlung zugeführt. Es ist
hier, im Gegensatz zu den bisherigen diesbezüglichen Untersuchungen, der
Einfluß der Querschnittsverformung und die Art und Weise, wie die
Torsionsmomente bezw. Querkräfte in das Tragwerk eingeführt werden,
berücksichtigt. Außerdem sind die quer zu den Scheibenachsen verlaufenden
Spannungen berechenbar.

Resume.
Ce travail contient une theorie des poutres creuses traitees en «toits

plisses». Cette interpretation s'adapte particulierement bien ä Petude du
comportement effectif de tels systemes. En premier Heu figure la theorie



176 E. Gruber

generale des «toits plisses» multiples articules; ils sont caracterises par
le fait que le nombre de disques qui se coupent en une arete depasse deux.
La theorie elle-meme est nouvelle et repose sur deux conditions de conti-
nuite; en plus, eile tient compte de Finfluence du nombre m de Poisson,
des contraintes oy normales ä Faxe et des contraintes en cisaillement %.

D'apres la theorie de la flexion de Navier, la Variation des contraintes ox
paralleles ä Faxe peut etre supposee lineaire entre chaque arete des «toits
plisses». II en resulte les equations d'elasticite correspondantes sous forme
d'equations differentielles lineaires simultanees du 6eme ordre; celles-ci sont
integrees au moyen de series de Fourier qui convergent rapidement. Les
deux exemples numeriques qui suivent mettent en evidence le procede avan-
tageux de la «superposition des etats de charge». La question, ä savoir dans
quel cas on peut admettre, pour une poutre creuse une repartition plane
des contraintes ox paralleles ä Faxe sur la section totale d'un «toit plisse»,
est etudiee avec beaucoup de soin. Ceci n'a Heu, exception faite pour quelques

cas de charges particuliers, que quand la section du «toit plisse > a la
forme d'une poutre reticulee non-deplagable et ä condition que Fon neglige
Finfluence des extensions A normales ä Faxe, du nombre de Poisson m et
des efforts tranchants Q sur les flexions £. Ces conditions remplies, tous
les points d'une section s'abaissent approximativement dans la meme mesure
independamment de la repartition en travers des charges. II s'agit par con-
sequent ici d'un Systeme qui repartit les charges pratiquement de
maniere egale en direction perpendiculaire ä Faxe. L'exemple numerique traite
montre un ecart de moins de lo/0. S'il s'agit de problemes de torsion,
Finfluence des efforts tranchants ne peut etre neglige, car cela fausserait com-
pletement les contraintes de cisaillement. Ce memoire permet de traiter
de maniere complete la theorie de la torsion et du cisaillement des sections
minces, fermees et ouvertes, en tenant compte ou non du bombement de la
section. Contrairement aux recherches habituelles, il est tenu compte ici
de la deformation de la section et de la maniere dont les moments de
torsion et les efforts tranchants sont introduits dans le Systeme. De plus, les
contraintes transversales aux axes des disques sont accessibles au calcul.

Summary.
In this paper hollow beams are conceived as being made up of a

shed-type System. This gives results which approximate most closely to
the actual behaviour of such supporting structures. First of all the general
theory of a multiple articulated shed-type System, — that is to say of
one in which more than two plates meet together at an assemblage
point, — is given in a new form based on two conditions of continuity.
Consideration is also taken of the effect of the Poisson number m,
of the stresses oy normal to the axis, and of the shear stresses t. According

to the Navier theory of bending, the Variation in the normal stresses
ax parallel to the axis, from one assemblage point to another of the shed-
type System, is assumed to be rectilinear. From this are obtained the
respective elasticity equations in the form of simultaneous, linear differential
equations of the 6th order, which are integrated by means of quickly con-
verging Fourier series. In calculating the two numerical examples here given,
successful use is made of the method of superposing the loaded states. A
careful examination is made regarding the question as to when plane
distribution occurs in a hollow beam of the stresses ax parallel to the axis over
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the whole cross-section of the shed-type System. With the exception of
quite special cases of loading, this happens only when the cross-section of
the shed-type system has the form of a non-displaceable lattice-work System
and when the influence of the extensions A normal to the axis, as
well as the influence of the coefficient m of transverse extensions and
the influence of the transverse forces Q on the deflections £ are neglected.
Every point in a cross-section of such hollow beams is lowered by appro-
ximately the same amount, no matter how the loads are distributed in the
transverse direction. Here, consequently, we have a supporting System which
distributes the loads practically quite uniformly in a direction normal to
the axis. The deviation from this uniformity is less than 1 o'0 in the given
numerical example. In the case of torsional problems the influence of the
transverse forces may not be neglected, otherwise quite erroneous conclusions

would be drawn with respect to the shearing stresses. By means of
this investigation the theory of torsion and shear in thin-walled open and
closed cross-sections can be fully dealt with, account being taken, or not,
of the hogging of the cross-section. Here, in contrast to the manner of
research hithero usual, consideration is paid to the influence of deformation

of the cross-section and the way in which the twisting moments or
transverse forces are introduced into the supporting System. In addition,
it is possible to calculate the stresses running transverse to the axes of
the plates.
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