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HOHLTRAGER ALS FALTWERKE.
POUTRES CREUSES TRAITEES EN «TOITS PLISSES>.
HOLLOW BEAMS OF A SHED-TYPE SYSTEM.

Dr. Ing. ERNST GRUBER, Deutschland.

A. Allgemeines.

Fiir Tragwerke, wie sie in Fig. 1, 2 und 7 dargestellt sind, wurden
bisher, auBer einigen Modellversuchen, noch keine eingehenden Untersuchun-
gen angestellt. Es ist naheliegend, solche Hohltriger als Faltwerke aufzu-
fassen. Man kommt dadurch dem wirklichen Verhalten des Tragwerks auflerst
nahe und erhilt, wie die folgenden Untersuchungen zeigen werden, sehr
tibersichtliche und treffende Ergebnisse.
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Fig. 1

Bei Faltwerksberechnungen werden in der Regel die senkrecht zu den
Lingsachsen der Scheiben wirkenden Spannungen o (siehe Fig.3a,b) nicht
beriicksichtigt. Bei Systemen, die im Querschnitt ein rahmenartiges Grund-
netz aufweisen (Fig. 1), trifft diese Annahme immer sehr gut zu. In solchen
Tragwerken tritt infolge der Knotensteifigkeit und der Plattensteifigkeit der
Scheiben im Gesamtquerschnitt des Faltwerkes eine rahmenartige Wirkung
auf, durch welche die zusitzlichen Querbelastungen p, und p; entstehen,
welche wieder die o: erzeugen (Fig. 3a). Da die p, und p; bei dem fast

immer schlanken Verhiltnis sehr gering sind, werden die dazu gehorigen

2h
o: ebenfalls sehr klein. Betrachtet man ein solches Faltwerk, wie dies
meistens mit geniigender Genauigkeit geschehen kann, als ,gelenkig*, d. h.
die einzelnen Scheiben sind lings der Kanten nur durch scharnierartige Ge-
lenke miteinander verbunden, so wird die oben erwidhnte Rahmenwirkuag
unterbunden und die o verschwinden bis auf den weiter unten beschriebenen
direkten EinfluB der Lasten ganz. .
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Bei Faltwerken, welche nach Fig. 2a und 7a im Querschnitt die Figur
eines stabilen Fachwerkes als Grundnetz aufweisen, die also in der Quer-
richtung auch ohne Mitwirkung der oben erwihnten Platten- und Knoten-
steifigkeit einen etwa eben so grof8en Biegewiderstand besitzen wie in der
Hauptrichtung L, erreichen die p, und p, und daher auch die o mitunter
besonders fiir bestimmte Belastungen betrichtliche Werte und miissen meist
im gesamten Verformungsspiel beriicksichtigt werden. Der von einer stetigen
Belastung herriihrende direkte Einfluf auf die Querbelastungen p und die
Querspannungen o¢ ist in Anbetracht der geringen bezogenen Pressungen,
die die iiblichen Belastungen auf ihre Unterlagen ausiiben, immer gering.
Da man ortlich engkonzentrierte Lasten durch Entwicklung in Funktions-
reihen, z. B. Fourier’sche Reihen in eine Folge der iiblichen, stetig verteilten
Belastungen iiberfithren kann, gelten diese Betrachtungen auch fiir die soge-
nannten ,,Einzellasten‘. Die in diesen Entwicklungen an den Angriffsorten
der Einzellasten auftretenden groBeren Pressungen erstrecken sich nur iiber
ortlich eng begrenzte Raume und sind fiir das Gesamtergebnis ohne nennens-
werte Bedeutung. Es ist jedoch immer notwendig, die Spannungen und zwar
besonders die Schubspannungen in der unmittelbaren Umgebung der Ein-
zellasten groBenmiBig zu verfolgen.

B. Spannungs- und Verformungszustand einer Scheibe.

Wir nehmen in der Folge an, daB die einzelnen Scheiben lings der
Kanten 7 nur durch scharnierartige Gelenke verbunden sind, so daBB von einer
Scheibe auf die andere nur in diesen Kanten wirkende Schubspannungen z
itbertragen werden konnen (Fig.7a,b). Fiir Tragwerke, welche im Quer-
schnitt die Figur eines stabilen Fachwerkes als Grundnetz aufweisen, trifft
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diese Annahme fast vollstindig zu. Eine, in einem beliebigen Knoten, z. B. 2
der Fig. 7a, angreifende Kraft G, zerlegt sich in die stetig verteilten Be-
lastungen p, z. B. pyy, psg, pos und pyy/, deren Wirkungsebenen mit den Mit-
telebenen der von diesem Knoten ausgehenden Scheiben zusammenfallen
(Fig.7a). Laufen im letzteren mehr als 2 solcher Tragwinde zusammen, so
ist diese Kraftaufteilung statisch unbestimmt.

Lost man eine beliebige Scheibe n- 7, # durch die knapp neben
den Knoten n-+1 und n gefithrten Schnitte r—r, s—s vom Tragwerk
los, so werden die oben festgelegten inneren Krifte ¢ und p frei und
erscheinen als &duBere Belastung der Scheibe n--1, n (Fig. 2a). In
Fig. 3a ist dieser Zustand zur Darstellung gebracht. Alle darin ange-
gebenen Richtungssinne gelten in der Folge als positiv. Entsprechend
den allgemeinen Erliuterungen des Abschnittes A sollen auch die senkrecht
zur Scheibenachse wirkenden Spannungen o: beriicksichtigt werden, so daf
ein 2achsiger Spannungszustand vorliegt. Die beiden Gleichgewichtsbedin-
gungen an einem infinitesimalen Element mit den Seitenlingen dx und dé&
ergeben sich unter Beriicksichtigung der Massenkrifte g, und g, zu

(?O'x___dr 1 (/()§
5;"‘"()5 bg/l’ 05 ax+ bgU) (])

woraus durch Elimination von ¢

0%0, _ 0%0s 1 (ogz 6gh)
— i 2
0 x? 0&2 0¢& * (2)

folgt (Fig. 3b). Ist das Verhiltnis % kleiner als etwa —é bis ~,17~, so ist mit

geniigender Genauigkeit die Normalspannung o, eine lineare Funktion der
Querschnittsordinate &, so daB

1 (3M
= g5l £ ) .
wird, woraus sich nach Gl. (2) die Bestimmungsgleichung
0o 1 (3 M’ ) 1 (agv ogh>
orr = “aen\ar TNV T GE T ok “)

fiir g, ergibt, worin M und N reine Funktionen von x sind. Es sei nun g,
konstant und g, von & linear abhingig, etwa wie

..._L(n _ 3¢ )
gh—zbh rs hglrs

Integriert man dann diese Differentialgleichung (4) zwei mal partiell nach &,
so erhalt man

_ ¢ (M” ) £? mys )
% = —gpa\pr ¢ TN H LG+ RO+ 5 (’zrs SeEl )

Hiebei sind f,(x) und f,(x) reine Funktionen von x, die sich aus den funk-
tionellen Randbedingungen

§ = h; bog = ps
E=—h; bog=p, zu
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M my

1 AN" h
fa(x) = 2 (/Js+/1r)—fb*—ﬂ‘ﬂrs (6b)

ergeben. Setzt man dies in Gl. (5) ein, so folgt
b0 Ema-wean]onfo-§)on 5

Schneidet man durch zwei um dx voneinander entfernte, senkrecht zur
x-Achse stehende Schnitte das in Fig.3a durch Schraffen hervorgehobene
Element aus seiner Scheibe, so werden die weiteren inneren Kraftwirkungen
M, N und Q frei, die sich mit den z,, 7, p,, ps, g und g, am Element das
Gleichgewicht halten miissen. Man erhilt somit

M = —bh(t,+ 15) + Q — mys (8a)
N = —b(t,—T5) — nys (8b)
Q = —p+ps—2g:h. (8C)

Nach Differentiation der Gl. (8a) und (8b) nach x folgt unter Bedacht-
nahme auf Gl. (8c)
M' = —bh(t) + ©3) — pr+ ps — mys — 28:h (9a)
N" = —b(z) —35) — nys. (9b)
Die bezogenen Dehnungen &, und & der beiden Scheibenrinder n» 1 und »
ergeben sich unter Beriicksichtigung der Querdehnungszahl m zu

Pr Pr
L (23N e L (10a,b)

= 2bhE\T h mbE ~ E  mbE’
woraus durch Subtraktion und Addition
_ 1 ) h?
MM?b/z E(e,—as)+§-7,i(/1,——ps) (11a)
h
N = bhE(s + es)+ﬁ(p,+ps) (11b)

folgt, wobei die Verkiirzung als positiv gerechnet wird. Differenzieren wir
Gl. (11a) und (11b) zwei mal nach x und setzen diese Ausdriicke in die
Gl. (9a) und (9b) ein, so erhalten wir zwei lineare Gleichungen, deren
Losungen

, ” " 1 1 (m)s &
o= = PE @) @Y P =g (e p) =y (T ) - (120)

ro__ éé 1 mrs I) gv
Ts == 3 (r+2£s)+3 b(pr+2ps) 2hb(pr ps) Zb(/l — My ‘“7 (12b)

lauten. Eliminiert man aus den Gl. (7), (9a), (9b) und (12a), (12b) M”, N”,
7,/ und 7z,/, so wird

1) Diese Beziehungen stimmen sehr gut mit den genauen elastizititstheoretischen
Losungen iiberein, die man mit Hilfe der Airy’schen Spannungsfunktion findet.
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h? £
o=t (12

_é) - /’r> 2¢
; 4 )[(1 37 ( rEx ) et

(e 2 Al el o

womit alle inneren Krafte durch ¢, ¢, p, und ps ausgedriickt sind.

Fiir die Untersuchungen der folgenden Abschnitte ist das vorherige
Studium der Forminderungen einer Scheibe notwendig. In Fig. 4 seien
1, 2, 3, 4 die Ecken und m—m sei die Achse eines Elementes in seiner
urspriinglichen, unverformten Lage. Durch die eintretende Verzerrung riicken
die Ecken von 1, 2, 3, 4 nach 1/, 2/, 3, 4, die Achse hingegen bewegt sich
von m—m nach m’—m’. Riicken wir das Element 1, 2, 3, 4 soweit nach
abwirts, bis m nach m”, d.h. in gleicher H6he mit m’ zu liegen kommt, so
erkennen wir in der Strecke mm” die lotrechte Durchbiegung £ AuBerdem
werden sich infolge der o die Lingen der Strecken m 1 bezw. m 3 um 4,
bezw. 4, indern, wobei eine Verkiirzung wieder positiv in Rechnung ge-
stellt wird. Da die bezogene Dehnung in Richtung der &-Achse

— % _ %

%= F " mE | (14)
ist, folgt durch bestimmte Integration die Verkiirzung der unteren bezw.
oberen Scheibenhilfte in der Form

h 0
1 Oy 1 Oy
ASZ_E_H__ + o) as; A,:—E-j(~— +a§>d§ (152, b)

—h
Substituiert man hlerm die o: und die o, durch Gl. (13) und Gl. (3), ersetzt
weiters in letzterer M und N durch GI. (11a) und (11b) und fiihrt die beiden
langwierigen, jedoch nicht schwierigen Integrationen aus, so wird

A= — " Bege)— Qe+ Tel) 4 (1- —1-)(3 ) —
ryr - _4 "+ s) — 48 r N + 4—b—E~ - mg pr+ ps -
#e i ‘ 16
—486mE OP TP + g p e _ (162)
A= — " (6, + 3 Tel+9el)+ ( )( 3
s = dm r+ s) 8( & s +4bE m pr+ ps)—
i 4 i | 16b
T A8b1 E( pr 4+ 9ps) — QTEg@. ( )
Analog Gl. (14) lautet die bezogene Dehnung in Richtung der x-Achse
Oy ()'5-:7
&y = E -——}nfE. (17)

Es ergibt sich bei Anwendung des Prinzips der virtuellen Verschiebungen
fiir die lotrechte Durchbiegung & im Punkte (cd)

x=L E=-+h x=L §=+h
. = b O A b | .
E=CE4E& = — EJ J[(U”’n)d +( —f;;)og]dxdEJr—aJ Jz_rdxdé‘,‘ (18)
. x=0 $=—4h x=0 §=—nh

wobei die gestrichenen Spannungen von einer im Achspunkt (cd) angreifen-
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den Hilfskraft P =1 herrithren (Fig.3a). Das erste Integral stellt den An-
teil der Normalspannungen und das zweite Integral denjenigen der Schub-
spannungen dar. Fiir den Hilfsangriff erreichen die 6. in den engsten Nach-
barbereichen der beiden Auflagerdriicke und der Last P =1 Werte in der
ungefihren GroBenordnung der p. Da aber einerseits diese drei Bereiche
im Vergleich zur ganzen Scheibenfliche sehr klein sind und andererseits

Q Compression }
— . Druck =+
‘d_x* # (7 Compression
TITTIIL z | 4
rETHCLTY LA} n+1
f M M+dM 8F fai 7
h .
. g) Axe du disque
*——" 7 N‘z Nealy E‘ (64— Scheibenachse — =
h Trs \ } ‘ o’é{ Axis of plate
} @ 2o AN s ~ —-Tif‘—s L
et :
i B I
AB) 4 | p
X
*€ L
i O = Disque de fermeture-Endscheibe-End plate
Fig. 3a
% (%)
_ l o
z )
L7 Parsbole
FParabel
z i A o6 T B\ Persbols
B G5 h BT\ 4
< n=E 35E
- l £ Vi -7
e T+ 5¢ df ¥ )
%54 & £ g
It 5 — 75,' (¢-%)
T+ I ax 7
Fig. 3b Fig. 3¢

die achsnormalen Spannungen in den Gebieten zwischen den obigen Einzel-
lasten praktisch vollkommen verschwinden, kann man die vom Hilfsangriff
b

herrﬁﬁr'én_den%g ganz unterdriicken, so da man im ersten Integral 6x=@ 3
und o =0 setzen kann. Fithrt man unter Bedachtnahme auf Gl. (3) und
Gl. (13) die innere Integration der Gl. (18) aus, so wird mit @ = 2bh3

» ] ﬂ p—sjﬂr_'__ }lE ” ” h ” ” gU ]s
[@ +2m/zb *——30’” Es—er)”gomg-g(p _pr)—smb M dx. (19)

4
Beriicksichtigt man, daB die w und die 4 klein von der Gré8enordnung %

sind, so ergibt sich aus einer aus der Fig. 4 leicht abzulesenden geome-

trischen Betrachtung bei Unterdriickung von wunendlich kleinen GroBen
zweiter Ordnung
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Ps &%
l T 'z‘,;ﬁ;b] TR

Faft man in der GI. (19) E 7 als elastisches (Gewicht y auf, so folgt

£= jy?ﬁa’x das heifit die Biegelinie ist die Momentenline der y oder es wird

” " h ” ! ==
£ = +2k( 8r+es)+m(‘“5r+5s)+*3'6m—2b’E(—Pr+Ps)+5mbE, (20)

was den Anteil der Normalspannungen an der Durchbiegung darstellt. Fiir
die Auswertung des zweiten Integrals der Gl. (18) mufl die Verteilung der
Schubspannungen z bekannt sein. Diese ergibt sich fiir den vorhandenen
rechteckigen Querschnitt fiir die zur 4uBeren Last gehorigen Querkraft Q zu

32— :
= R0 St (1) (Fig30 (1)
mit Q=Q—bh(r,+ ). (21)

Da beim Hilfsangriff keine Randschubspannungen vorhanden sind, erhalten
wir fiir diesen die Verteilung zu

3 k2=
=2 Tpps M (22)
wenn L. die Querkraft fiirr P =1 ist.
Mit Gl. (21) und (22) folgt nun
x=L
= 1
:= Lo, (23)
s .
wobei
3 Q T, + 75 . ,
Q. = S e ist. (23")
Setzt man I — ¢ .
"Dlirzks = —L"‘ und Qrechts = = ‘[’

so ergibt sich

f@ dx — j @.as|,
0

0
woraus mit Gl. (23’) und Gl. (21’) nach zweimaliger Differentiation nach ¢

:”_Q;__l[?» , 1, ,,]
Y =6 T alEar? ) 24)

folgt. Mit Gl. (8c) und Gl. (12a) und (12b) erhalt man nun

r/;__;l 1 _h__E_. o "y h m}’S gl;J
&= (}‘[2‘@“”’”5) 30 ") 30,5 CPIP) Y105, b b (2D)

womit wir den Anteil der Schubspannungen an der Durchbiegung gefunden
haben. Addiert man GIl. (20) und Gl. (25), so erhdlt man mit G = iﬁ%
die gesamte Verformung in der Gestalt

Abhandlungen VII 10
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"o 1 . 2(1+m) - h7 ’l_t_z_’_n[ 74 ” 1 ” ” ]
o= gl Corers g Cortnd|-gg |G e Caiem) |y
g & My
tSm6E 5G 1064G" (20)

In dieser Gleichung ist der EinfluB des zweiten Klammerausdruckes be-

sonders bei Scheiben mit kleinem \/'erhlailtnis—zz}f auBerordentlich klein und

kann meistens unberiicksichtigt bleiben. Man erhilt dann fiir & die ver-
einfachte Form

., 1] 2/1&} l+_ﬂ}_[ 1 ,] ,

in welcher der erste Teil von den Normalspannungen o und der zweite Teil

von den Schubspannungen t herrithrt. Will man also nur den Einfluf der

o beriicksichtigen, so ergibt sich die noch weiter vereinfachte Form der
Gl. (206)

1 2h g ”

= galet o+ 50l 2

Wie man aus der Fig. 4 erkennt, ergeben sich die Verformungen des
oberen bezw. unteren Scheibenrandes, indem man zu & die Werte der 4,
addiert, bezw. der 4, subtrahiert.

dx
\ ar s

ox w+‘y’}’ dx—]
" 7\:\’L\ /'f/.f.l‘v_" d
t V" ax ) 9%

Sll

w .
m Disques l
m Scheiben s wieedl .
m Plates Aopn= ZL o= %7:,“)

Fig. 5

Diese Ergebnisse stimmen mit den genauen mit Hilfe der Airy’schen
Spannungsfunktion gewonnenen Werten gut iiberein.
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C. Die Kontinuititsbedingungen.

Fiithrt man um einen beliebigen Knoten, z. B. um 2’ der Fig. 7a einen
Ringschnitt # mit unendlich kleinem Durchmesser, so wird fiir jede Scheibe
eine Schubspannung 7z und eine Querbelastung p frei, welche sich am iibrig-
bleibenden Knotenfragment das Gleichgewicht halten miissen. Da die inner-
halb des Ringschnittes liegende Fliche f unendlich klein von 2. Ordnung
ist, wird die Kraft f-o, ebenfalls von derselben Ordnung unendlich klein,
so daB die Gleichgewichtsbedingung gegen Verschiebung parallel zur
Knotenlinie in differentierter Form

S rint = @)

lautet, wenn in dem betreffenden Knoten m Scheiben mit den Breiten &,
(6 =1, 2, 3,...m) zusammenstoBen. Wir wihlen nun fiir jede Scheibe des
Faltwerkes eine bestimmte Richtung, nach welcher in Hinkunft fiir die ein-
zelnen Scheiben die positiven Werte der & in Gl. (26) gezdhlt werden sollen
(Fig. 5). Die mit der dazugehdrigen Breite b, multiplizierte 1. Ableitung
der Schubspannung der Scheibe nw bei n ergibt sich nach Gl. (12a) zu

’ h(o b(OE() 14 ” 1
bm Theo — — (2 n + 8(0) 3 (2 Pro +pwn) - iﬁ: (pfl(o - /)(.m) -
L[,  m,
-ifﬁuw+ o) g, | (28)

Hierbei muBte in Ubereinstimmung mit Fig. 3a die obere der beiden GI. (12)
benutzt werden, da die in Frage kommende Schubspannung z,., ebenso wie
in Fig.3a das 7, auf der, der Pfeilspitze abgewendeten Seite der positiven
Durchbiegungsrichtung liegt. Handelt es sich hingegen um eine Scheibe 7v,
deren positive Durchbiegungsrichtung &,, zum Sammelknoten » gerichtet ist,
so ergibt sich jetzt das an » grenzende, mit &, vervielfachte 7’,, nach
Gl. (12b) zu

, _ h,b,E,
byt = =5 (e 2.s,,)+ (p +2pn) + 2a(pm'_/’vﬂ)—
1 (., mp ,
-wz@m~mj—4x (29)

Klappt man nun alle im Knoten » zusammenlaufenden Scheiben so in eine
Ebene, daB sodann alle Pfeilspitzen der positiven &Vektoren nach ein und
derselben Richtung weisen, so werden die durch den Ringschnitt freige-
machten, an den Scheibenelementen angreifenden z,, der Scheiben nw mit
vom Knoten weisenden positiven &-Richtungen nach der einen und die 7,
der Scheiben mit zum Knoten weisenden positiven &-Richtungen nach der
anderen Seite gerichtet sein (Fig.5). Bei der nun folgenden Substitution
der ., der Gl. (28) und Gl. (29) in die Bedingung (27) muB also bei einer

von den beiden letzteren das Vorzeichen verkehrt werden, so dafl zwischen
den Indices » und w nicht mehr unterschieden zu werden braucht. Wir er-
halten demnach
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G=m o=m

260 D hobsEs + D hobsEssl =
o=1 =
[ ” ” 3 ‘< 1
(ano -+ pmz) — Z I (Pm; - prm) + (30)
=1 4

=1
o=m
h
— _;1 -
+ 32 —;—(n;a—l-”;—"’q) +3D89,
=1 o o=1

wobei ¢, die bezogene Dehnung am Knoten n des Faltwerkes und p,; bezw.
pon die Querbelastung der Scheibe 7o an deren Rand n bezw. o bedeutet.
Ersetzt man die Belastungen m, und 7, einer jeden Scheibe durch zwei
in deren Riandern r und s wirkenden Krifte z,, und x,,, so stellen die ein-
zelnen Summanden des dritten Gliedes der rechten Seite von Gl. (30) die
jenigen dieser Ersatzkriafte z dar, die in den dem Sammelknoten # anliegen-
den Scheibenkanten angreifen (Fig. 5). Die g, sind dann positiv, wenn sie

+U

Fig. 6

mit der &-Achse gleichgerichtet sind. Man kann aber die Massenkrifte g,
niherungsweise auch so erfassen, da man sie, dhnlich wie bei einem Fach-
werk das Eigengewicht der einzelnen Stibe, auf die Knoten verhiltnis-
gleich aufteilt. Der im Verlauf dieser Entwicklung notwendig gewesene Un-
terschied zwischen Scheiben mit zum und mit vom Sammelknoten » wei-
sender positiver &-Richtung fillt also bei der Gl. (30) wieder weg. Da die
bezogene Dehnung ¢, des gemeinsamen Knotens ~ auch jeder von n aus-
gehenden Scheibe angehort, driickt die Gl. (30) den beziiglich der Langs-
dehnung ¢, vorhandenen punktweisen Zusammenhang lings der Knoten-
linie n aus. Wir wollen sie daher Kontinuitdtsbedingung 1. Art
nennen. Fiir jedes Faltwerk besteht fiir jede Knotenlinie eine solche Differen-
tialgleichung.

Fiithrt man lings jeder Knotenlinie unendlich enge rohrenférmige Ring-
schnitte (Fig.7a), so zerfiallt das Faltwerk in seine einzelnen Scheiben, die
sich dann auf Grund der auf sie einwirkenden Belastungen und Spannungen
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Pry Psy m, 12, g, und 7 in ihren Ebenen entsprechend den Gl. (16a), (16b) und
(26) frei verformen konnen (Fig.3a). So werden sich z.B. die riickwir-
tigen, d. h. die den Pfeilspitzen der positiven &-Vektoren abgewendeten
Rinder der vom Knoten » ausgehenden Scheiben rg, ru, »v usw. von r nach
Too Tuy 1y USW. um Sy + dpg; &, + sy & + 4,5, usw. verschieben, so daf
der Knoten r auseinanderklafft (Fig.6). Da infolge der grofien Schlankheit
der beiden Verhiltnisse Qb-h und % der Widerstand, den eine im obigen
Sinne freigelegten Scheibe gegen senkrecht zu ihrer Ebene gerichtete Krifte
entgegengesetzt, duBerst gering ist, konnen die Rander r,, r, und r, senk-
recht zu ihren zugehdrigen Scheibenebenen lings der Normalen 7,7, r,7,
r, r bewegt werden, ohne dal dadurch neue Zwinge entstehen. Zufolge
der Kontinuititsbedingung 1. Art liegen die Randpunkte #,, 7,, , und daher
auch die Bewegungsnormalen 7,7, 7,7, r, 7 in einer zur Knotenlinie senkrecht
stehenden Ebene. Verhalten sich nun die Verschiebungen &, + 4,,, &, + 4,4
&, + 4,, zueinander so, dafl diese Normalen alle durch ein und denselben
Punkt  gehen, so ist das Klaffen des Knotens wieder aufgehoben und der
Tragwerkszusammenhang auch in der zur Lingsachse senkrechten Richtung
punktweise wieder hergestellt, wobei 7 diejenige Stelle ist, an welcher sich
der Knoten r nach erfolgter Verformung befindet. Damit haben wir die
Kontinuitatsbedingung 2. Art formuliert. Legt man nun durch r
ein Koordinatensystem u, v und projiziert die auf dieses bezogenen Koordi-
naten u,, v, des Punktes 7 senkrecht auf 3 von » ausgehende Scheiben, so
erhalten wir die 3 Gleichungen

1y COS 0y 4 v, SiN 0y = &, + 4,, (31a)
Uy COS 0y + 0,510 @y = &4 + 44y (31b)
u,CoSs ¢y, + v,siN a,, = &, + 4,, (Abb. 6). (31¢)

Bestimmt man aus zwei von diesen #, und », und setzt diese Werte in die
dritte der obigen Gleichungen ein, so ergibt sich

(Erg + Arg) SiN &) + (& + dyy) Sin ) + (E + 4p) sin e = 0, (32)

worin die Indices g, u und » zyklisch gruppiert sind. Fiir jeden Knoten, in
welchem m Scheiben zusammenstoBen, bestehen m —2 solcher Gleichungen.
Dabei werden die Winkel ) von positivem &-Vektor zu positivem &-Vektor
gezihlt. Das Vorzeichen ist durch die Reihenfolge der unteren Indices fest-
gelegt. Damit ist die Kontinuitidtsbedingung 2. Art in ihre analytsche Form
gebracht. '

D. Die Elastizititsgleichungen.

Wir betrachten ein Faltwerk mit » Knoten und s Scheiben. Ein solches
hat » unbekannte Funktionen ¢ und 2s unbekannte Querbelastungsfunk-
tionen p. Differentiert man die Gl. (32) zwei mal nach x und setzt in die
so erhaltene Beziehung die Gl. (26) und die gleichfalls zwei mal differen-
tierte Gl. (16a) und (16b) ein, so folgt

4 6 4 4 4 6 6 6
21:08+‘14:](/3‘{‘41‘:58"‘{‘1258”‘4"21:(88"”4‘Ellip"“{"lzi/]"‘{‘lep""‘l‘

3 3 3
+;rg5+127g@+41‘35’”;s:07 (33)
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wobei die oberen Summengrenzen die Anzahl der in diesen Summen vor-
handenen Summanden angeben. Fiir jeden Knoten, in welchem m Scheiben
zusammenstoBen, bestehen m—2 Kontinuititsbedingungen 2. Art. Es er-
geben sich daher auch 2s— 27 GL. (33). In diesen haben diejenigen Glieder
des homogenen Teiles, welche die hoheren Ableitungen der & und p enthalten,
auf die gesamte Rechnung einen bedeutend geringeren EinfluB als die an-
deren, so daB man sie in manchen Fillen auch vernachldssigen kann. Fiir
die etwas spiter folgenden Betrachtungen erwihnen wir, daff die Summen
mit iiberstrichenen Beiwerten die Querdehnungszahl 7 nur im Nenner ent-
halten. Beniitzt man fiir £&” statt der ausfiihrlichen Gl. (26) nur die verein-
fachte Gl. (26’), so werden die ersten, zweiten, zehnten und elften Glieder
nur durch die & gebildet, wihrend die durch die Gl. (16a) und (16b) dar-
gestellten 4 die iibrigen Bestandteile der Gl. (33) erzeugen. Unterdriickt
man die 4, so ist die Benutzung der genauen Gl. (26) sinnlos, da die darin
enthaltenen Zusatzglieder die Rechnung weniger beeinflussen als die 4 selbst.

Stellt man nun durch Auflésen der Gl. (30) nach den ¢” diese als Funk-
tionen der p explizit dar, so wird

3 2s 2s s S
=5 Stp+ Sy + Da(v + ) + Die (34)
2 1 1 1 h 1

Differentiert man die Gl. (33) zweimal nach x und setzt in diese Beziehun-
gen die Gl. (34) und die aus diesen folgenden vierten und sechsten Ablei-
tungen der ¢ ein, so erhalten wir weiter die linearen Differentialgleichungen

2s 25 2s
Z op+2itp"+ 2 tp'+ 2 gp""+ 2 gp"+ Zyp”+ 2 zfs+ 25 2m)s +

2s

+ng’”’+2rg”+ Zsm;;”r Zzgc =0, (35)

in welchen nur mehr die Querbelastungsfunktionen p als Unbekannte vor-
kommen. Solcher Gleichungen gibt es so viele wie es Gl. (33) gibt, nam-
lich 2s—2r. Aus den zu Beginn des Abschnittes C dargelegten Gleichge-
wichtsbetrachtungen geht hervor, und zwar wieder aus der unendlicher
Kleinheit des innerhalb des Ringschnittes liegenden Teiles j der Faltwerks-
fliche, daB in jeder Knotenlinie fiir die duBere Belastung und die angren-
zenden Querbelastungen p Gleichgewicht gegen Verschieben nach zwei Rich-
tungen punktweise bestehen muB. Es wird also

m

S psine = G, (36a)
1

DI pcosa = Gy. (36b)
1

Solche Beziehungen gibt es je Knotenlinie zwei, im ganzen also 2r, so daB} zu-
sammen mit den Gl. (35) fiir die Bestimmung der 2s unbekannten Funk-
tionen p 2s—2r-4 2r=2s lineare simultane Differentialgieichungen
sechster Ordnung zur Verfiigung stehen. Da die Gl. (36) nur die reinen p
enthalten, konnen aus den Gl. (35) und (36) 27 von den Funktionen p sehr
leicht eliminiert werden, so daB nur mehr 2s — 27 Unbekannte mit ebenso
vielen Beziehungen iibrig bleiben, in welchen wir die Elastizttatsgleichun-
gen des Problems gefunden haben. Die Auflosung dieses Systems erfolgt
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in fast allen Fiallen am zweckmiBigsten mit Hilfe von Fourier’schen Reihen.
Aus den GI. (30) folgt nun, daB nur der erste Teil der rechten Seite
derselben von den Querdehnungen herrithrt. Unterdriickt man diesen Ein-

fluB, so verschwindet in Gl (34) das Glied D zp" und es wird

Z Ip + 2 (n,s h;s) + é}ﬁgl,. (37)

L4aBt man die Langenanderungen A auBer Acht und nimmt entsprechend der
Darlegungen auf Seite 150 an Stelle der ausfiihrlichen Gl. (26) die verein-
fachte Gl. (26"), so degenerieren die homogenen Teile der Gl. (33) auf
ihre beiden ersten Glieder > a¢+ 2 fp2). Differentiert man diesen Rest
zwei mal nach x und setzt die Gl. (37) ein, so ergibt sich die entsprechende
zusammengeschrumpfte Gl. (35) in der Form

DIOPHIY D2 n A D B M+ D E Gt D v 8y + D T+ D smyy = 0. (37a)
Bekanntlich gibt die Annahme /m = co bei Elastizititsproblemen bei groBen
Vereinfachungen sehr gute Niherungslosungen. Wie wir schon auf Seite 150
erwihnt haben, enthalten in den Gl. (33) die Summen mit den iiberstrichenen
Koeffizienten die Querdehnungszahfen nur im Nenner, was von der Tatsache
herriihrt, daB in den GIl. (16a) und (16b) die m ebenfalls nur im Nenner
vorkommen Es verschwinden also fiir m = co in Gl. (33) die vierten, siebten,

achten und zehnten Glieder. Da unter diesen Umstanden auch die zweiten
Glieder der Gl. (34) Null werden, degenerieren die Gl. (35) zu

DIOpE I D2 P+ Dy E Rt D B D E G+ D v + 2 7 8h + 2, s mys = 038)(37D)

wodurch die Ziffernberechnung bedeutend ermiBigt wird.

Bei diesen Betrachtungen wurden die Beiwerte der Gl. (33), (34) und
(35) nur mit einfachen Buchstaben dargestellt. Die Entwicklung in all-
gemeinen Zahlen gelingt in einer tibersichtlichen Form nur bei einfachen
Faltwerkssystemen. In den meisten Fillen ist es zweckméafBig, die verschie-
denen oben geschilderten Eliminationen und Substitutionen, die zu den Elasti-
zititsgleichungen fiithren, jeweils mit den speziellen Zahlen durchzufiihren.

Wir betrachten nun drei von einem Knoten r ausgehende Scheiben
(Fig. 6). Vernachlissigt man die Lingeninderungen 4 und den Einfluf} der
Schubspannungen auf die Durchbiegungen &, so erhdlt man nach dem vorhin
beschriebenen Rechnungsgang die dazugehorlge Gl. (33) in der Form

o /-‘ —_
Dace 57; sin «) +5 i sin a) + 5 hv sin a) = 0, (38)
wobei &, = —e¢ + & & = —& +¢,; & — —¢ + ¢, bedeutet.

Errichtet man in den Punkten o, u, » und » zur Zeichenebene Ilotrecht
stehende Gerade und tragt auf diesen von deren FuBpunkten o, u, » und ~
ausgehend ¢,, ¢,, ¢ und & auf, so erhalten wir im Raume vier Punkte
€, €., €, ¢, mit den Koordinaten

2h,COS 0y, 2h,SiNat,,, &

2h,cOS ,, 2h,sina,, ¢, (39)
2h,c08 ¢,,, 2h,sing,,, ¢,
0 0 & .

) Die A konnen nur dann verschwinden, wenn gleichzeitig m = co wird.
3) Das zweite Glied rithrt nur vom Schubmodul G her.
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Driickt man die Winkel der Sinuse der Gl. (38) als Differenzen der Winkel
Croy Qruy O aus, so laBt sich Gl. (38) in der Form

1 2 h, sin a,, 2h, COS ay, Z,
Sh ik 2h, sin ay, 2h, cos a, g =0 (40)
erHTY 1 24, sin ap, 2h, COS «,, €, |

schreiben, die besagt, daB die vier Punkte ¢,, ¢,, ¢,, ¢, in einer Ebene
liegen. Da die 4 nur dann verschwinden kénnen, wenn m = oo wird, so
sind nach den Gl. (10) die o, proportional den ¢. Es ergibt sich also fol-
gender Satz:

,Die Verteilung der Lingsspannungen o, iiber drei von einem Knoten
ausgehenden Scheiben ist eine ebene, wenn die Lingeninderungen 4,
der EinfluB der Querdehnungszahlen m und der EinfluBl der Querklafte
auf die Durchbiegungen vernachliassigt werden.‘

So ist z. B. in Fig. 2a die Verteilung der o, iiber die Knoten 3, », 2, 1 und 3,
n—-1, n, 2 je eine ebene. Da sich diese beiden Gruppen in #z, 3, 2 iiber-
decken folgt daB die ebene Spannungsverteilung auch iiber n—}—l n, 3,
2 und 1 reicht. Fiihrt man diese Bctrachtung systematisch zu Ende, so er-
gibt sich, daB fiir alle Faltwerksteile, die im Querschnitt die Figur eines
stabilen Fachwerkes als Grundnetz aufweisen, die Verteilung der Langs-
spannung eine ebene ist. Fiir Faltwerksteile mit rahmenartigem Querschnitt
trifft dies jedoch nicht mehr zu. So ist z. B. in Fig.1 die Verteilung iiber
1, 2, 2, 1 und iber 3, 4, 4/, 3’ je fiir sich linear, woraus jedoch noch nicht
folgt, daB dies iiber den ganzen Querschnitt der Fall sein muBl. Die Ver-
teilung nimmt vielmehr die Form einer Regelfliche an, fiir welche die Ober-
und Untergurtslinie die Leitgeraden sind. Werden die Lingeninderungen 4
und der EinfluB der @ auf die & nicht unterdriickt, so ist die Verteilung der
Lingsspannung nur in einzelnen besonderen Fillen eine ebene.

Haben wir eine im Sinne des vorigen Lehrsatzes ebene Verteilung vor
uns, so kann man die Langsspannungen in der Form o,= oey + fe&, 1+ yeg
darstellen, wobei «, f, y Funktionen der QuerschnittsgroBen und ey, ¢,, &
drei von den unbekannten bezogeunen Verkiirzungen der Knotenlinien sind.
Die Produkte o, - df bilden ein raumliches System paralleler Krifte, die sich
mit dem am Tragwerksabschnitt angreifenden Lasten und Auflagerreaktionen
das Gleichgewicht halten miissen. Daraus folgen drei Bedingungen, die fiir
die Bestimmung der ¢, &,, ¢ hinreichen. Man kann also in diesem Falle
die Langsspannungen und Lingsdehnungen und wegen der Gl. (26”) auch
die Achsendurchbiegungen £ aus reinen Gleichgewichtsbetrachtungen ohne
Hinzuziehung der Elastizititsgleichungen (35) bestimmen.

Wegen Gl. (26”) lassen sich nun auch alle £ in der Form

E, = ae + Pey, + 7

ausdriicken, d.h. die Verformung eines jeden Querschnittes ist, so wie die
infinitesimale Bewegung einer undeformierbaren Scheibe durch drei allge-
meine Koordinaten bestimmt. Dies trifft nur zu, wenn jeder Querschnitt fiir
sich starr bleibt. Da alle 4 gleich Null sind, ist das nur méglich, wenn
das Grundnetz des Faltwerkes die Figur eines unverschieblichen Fachwerkes
aufweist. In Verbindfing mit den obigen’ Erlauterungen ergibt sich nun dar-
aus, daBl dies die notwendige und hinreichende Bedingung fiir das Eintreten
einer ebenen Verteilung der Lingsspannungen und Lingsdehnungen bei den
oben festgelegten Vernachlidssigungen ist.
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Sind alle 4 = 0 und verschwindet auBerdem der Einflul der Q auf die
Durchbiegungen &, so degenerieren, wie dies bereits auf Seite 151 gezeigt
wurde, die Gl. (33) nicht nur zu 2ae -I- Zfp *), sondern zu den in ¢ homo-
genen Gleichungen Xae = 0%). Da sich dann alle ¢ eines Querschnittes durch
3 von ihnen darstellen lassen, sind von diesen 2s— 27 Gleichungen
2ae = 01*) auch nur 3 voneinander abhingig. Infolge des in den Gl. (30)
(m = oco) enthaltenen Zusammenhanges zwischen den ¢ und den p, sind auch
die zu den Zae=04%) gehorigen 2s—2r Gleichungen Zop = 0%) ebenfalls
nicht alle voneinander unabhingig, so daB diese fiir die Bestimmung der
2s —2r unbekannten Querbelastungen nicht mehr ausreichen. In solchen
Féllen ist ein Teil der p nicht nur statisch unbestimmt, sondern iiberhaupt
unbestimmt. Diese Erscheinung erklart sich aus der Vernachlassigung der 4
und des Einflusses der Q auf die £. Man entzieht eben dadurch der gesam-
ten Deduktion die elastizitdtstheoretische Unterlage, welche bekanntlich erst
die Ermittlung aller p ermdglicht. Es bleiben nur die rein statischen Bedin-
gungen iibrig, die allein nicht hinreichen. Da die ¢ durch die Gl. (12a) und
(12b) mit den p und den & zusammenhidngen, sind dann auch die z in der-
selben Weise unbestimmt. Setzt man die im obigen Sinne auf rein statische
Weise bestimmten ¢ in die Gl. (30) ein, so erhidlt man die bestimmbaren p
meist bequemer als aus den, durch Grenziibergang entstandenen Gleichun-
gen 2op=0%). Die so erhaltenen Bedingungen sind aber dann auch nicht
alle voneinander unabhidngig, so daBl aus ihnen ebenfalls nicht alle p be-
stimmt werden konnen.

/Caupe — Schnitt. —— Section,
c'—c¢ 2°vs -, B—8
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Da die p nur untergeordnete Spannungen erzeugen, fiallt der Umstand,
daB man sie in manchen Fillen nicht alle bestimmen kann, nicht sehr schwer
ins Gewicht. Die damit zusammenhingende Unbestimmtheit der = wirkt sich
aber sehr unangenehm aus, da dadurch die gesamte Schubspannungsvertei-
lung auf den Querschnitt ebenfalls nicht bestimmbar ist. Diese kann man auf
Grund der vorangegangenen Betrachtungen vielmehr nur dann ermitteln,

4) Die Belastungsglieder sind der Einfachheit halber nicht mit angeschrieben.



154 E. Gruber

wenn die Langenianderungen 4 oder der EinfluB der Q auf die Durchbie-
gungen & oder aber beide Umstinde nicht unterdriickt.

Kann man die Langsspannungen o, auf einen von der Auffassung als
Faltwerk unabhingigen Weg bestimmen, wie dies z. B. bei einer ebenen
Spannungsverteilung zutrifft, so lassen sich die von der Torsion und der
Querkraftbiegung herrithrenden Schubspannungen mit Hilfe der Bredt’schen
Formeln auf bekannte Weise ermitteln, indem man die Hohltrager als mehr-
 zellige Querschnitte auffafSit. Bei diesen Berechnungen wird aber die Un-
veranderlichkeit der Querschnitte vorausgesetzt. Ebenso bleibt die Art und
Weise, wie die Torsions- und Biegemomente und die Querkrifte in die ein-
zelnen Querschnitte eingetragen werden, unberiicksichtigt. Dieser Umstand
sowie die Verformung der Querschnitte spielt aber bei den Querschnitten

Coupe~Schnitt—Section A—A

Eﬁ Garne - Schiifz —S/o//‘ S ic
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o5 T} ] !
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‘ 205 7 — —
;5 42 C
Fig. 7b

mit groBer Breite und geringer Hohe schon eine Rolle. Nachdem man auf
diese Weise die Schubspannungen ermittelt hat, ergeben sich aus den GI.
(8c) und (36a,b) die p. Dabei ist zu beriicksichtigen, daB die Querkrafte
der einzelnen Scheiben in einem Querschnitt mit der in diesem wirkenden
gesamten Querkraft des Gesamtsystems ein Gleichgewichtssystem bilden
miissen. Nachdem bekanntlich ein solches drei Bedingungen erfiillen muB8,
sind drei von den Gl. (8c) voneinander abhingig und diirfen bei der Aus-
zahlung nicht beriicksichtigt werden. So stehen z. B. bei dem Tragwerk der
Fig. 7a zunidchst 11 Gleichungen (8c) und 14 Gl. (36a,b), insgesamt also
25 Gleichungen den 22 unbekannten p gegeniiber. Da von den GIl. (8c)
jedoch 3 voneinander abhingig sind, sind von den 25 Bedingungen 3 zu
streichen, so daB 22 Unbekannten 22 Gleichungen gegeniiber stehen 5).

" E. Anwendung.
a) /. Beispiel.

Wir werden fiir den in Fig. (7a) und (7b) mit seinen MaBen und Elasti-
~zitdtskonstanten dargestellten Hohltriger die Berechnung fiir eine lings der
Knotenlinie 2 angreifende, zur Symmentrieachse C—C symmetrischen Linien-
last durchfithren. Die Beteiligung der beiden Kragarme an der Faltwerks-
wirkung wird durch Anordnung der Schlitze s unterbunden. Die querlaufen-
den Rippen der oberen Platte, welche ‘diese knicksteif machen uad in an-
nihernd quadratische Felder unterteilen, haben nur auf die zu den Scheiben-
achsen senkrecht laufenden Dehnungen 4 einen geringen Einfluf}, den wir

5) Beziiglich der Auszidhlung der Unbekannten siehe auch Abschnitt E.
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ohne weiteres vernachlidssigen konnen. Die Anzahl der unbekannten p be-
traigt 22. Diese lassen sich aber mit Hilfe der Gl. (36) auf 2s —2r=
22—-14 = 8 verringern. Um die Rechnung zu vereinfachen, machen wir von
der Symmetrie des Tragwerkes um dessen Achse A—A Gebrauch und zer-

legen die Belastung 2P V; entsprechend der Fig. (8b) und (8c) in einen
symmetrischen Teil +-Py3, --P}3 und in einen antisymmetrischen Teil

—PV3, + P\/3 Da das Kraftespiel fiir den ersten Fall um /—/ spiegel-
gleich und im zweiten Fall um die Achse /’—/’ gegenspiegelgleich ist, treten
fiir jeden der beiden Lastfille nur mehr 11 unbekannte Funktionen p auf.
Benutzen wir hier die Gl. (36a) und (36b), so kann man von diesen Quer-
belastungen je Belastungsfall 7 weitere eliminieren, so dal nur mehr die
in Fig. (8b) und (8c) stark ausgezogenen p als unbekannte Funktionen je
Lastfall iibrig bleiben, d.h. die 8 Elastizititsgleichungen zerfallen in zwei
je viergliedrige Gruppen.

Die stark ausgezogenen p stellen die Richtung der Wirkung dar, die
die Scheiben auf die Knoten ausiiben. Die positiven &-Richtungen sind in
Fig. (7a) angegeben.

Wir behandeln zuerst den symmetrischen Lastfall. Da fiir diesen auch
die ¢ um /—/ symmetrisch sind, lauten hiefiir die nach Gl. (30) gebildeten
Kontinuititsbedingungen 1. Art mit

gy = -m—})—E und s = Z_h%ﬁf
def + & + &8 = — Pr(ps1 + pas) — B2 (—p2 — Pas) (41a)
el + 9¢& + & + &f = — p1(4P" 4+ 2pa + 3 per— p3s) —
— B2(2P + pa1 + paa) (41Db)
o + & + 685 + &f = — p1(P"—ph + piy + 2pii + pis) —
— Bo(— P + par—pozr + psa— Pa3) (41¢)
ez + &3 + def = — 1 (P" 4 p21 —paz + p3s + 2 piz) —

—— B2 (—P—pa1 + por—pau +pi3).  (41d)

auf, so wird

”

Lost man diese nach ¢

4.186 & = — B1(204 psy — 105 pso + 168 psy — 6pis — 99 Py —
4.186¢5 = — By (144 p3) + 276 psar — 144 p3y — 48 piy + 324 P”) —

— B2(120 pa1 — 12 paor + 120 p34 — 12 pgg + 204 P) (42D)
4.186 &5 = — B1(— 216 p51 + 144 psor + 216 p3s + T2 pis + T2 P") —

— B2(192p2g — 168 pazr + 192 p3y — 168 py3 — 120P)  (42c¢)
4-186¢f = — pB1(204 p3) — 291 p3a + 168 p3y + 366 pis + 87 P") —

—_ {)’2 (—- 264/]21 + 231 pP2or — 264[)34 + 231 P43 — 207 p) 8 (42 d)

Da alle Winkel gleich 60 ¢ sind und auBerdem &,;, = — &y und 4,, =4, ist,
lauten die nach Gl. (32) gebildeten Kontinuitatsgleichungen 2. Art

E13 + E34 + E32 — Azt — Ay + A2 = 0 Knoten 3 (43a)
Eoy + Eog — Aoar + Aoy — Agz + &390 = O Knoten 2 (342/) (43b)
Sou+ &2+ Gy + Ao + A — Ay =0 Knoten 2 (134) (43¢)

&u + 443 = 0, Knoten 4 (43d)
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worin £,,"= 0 zu setzen ist. Wir wollen nun zunidchst wohl die Lingenin-
derungen 4, nicht aber den EinfluBl der Querkrifte Q auf die Durchbiegun-
gen ¢ beriicksichtigen. Auflerdem nehmen wir fiir die Achsverformung &
die vereinfachte Gl. (26”) ¢). Leitet man Gl. (43a), b, ¢, d) vier mal nach
x ab und setzt in sie die vier mal differentierten Gl. (16a,b) und die zwei
mal differentierten GI. (26”) ein, so wird

(e e+ el —el) + Ba (e —e) + 3 &) +6y") + By (Tl =T Y10 11 T k) +

+ B35 (D) — Py + O P+ pia = P") + B6 (T Y =T p¥l + 2T p¥T + T p¥I-TPY) = 0 (44a)
(—eg+ey +2REL) + 83 (3e) " +eg" — &) +&)) + 4 (e T+ T ekT-TelT+Teb) +

+ By (=6 pyy 4O pl— iy + pi— pi) + B (— 18K+ 2T p¥ Tyl ~Tpl—Tpll = 0 (44b)
(6] &y —e5—&)) + Pz (—e]" =3 &) +&)" —&]") + Ba (- TV 1-Q T+ T 1T V) +
+B5 (=9 Py +65— Py~ pi) + B (= 2T py{+ 18 pi, = T phi=Tpl5) = 0 (44¢)
(e5 - )+/§(~ " =3 &)") + Pa(-TeS-9 &) +
B Py —3p) + s (- TAYI-0pY) = 0, (440)
wenn /ﬁ:ﬁg—; [y = h4, Bs = ﬁ(] = ,.L>; Bs = LA

2m 24 20E m? 24mbFE
und Eoyr = 05 & = &; /922r = paz; pa2 =0 st

Bildet man durch Differentiation der Gl. (42) die ¢ und "/, setzt diese und
die ¢” in die Gl (44) ein und addiert die erste zur dritten und die zweite
zur vierten Gleichung, so ergeben sich die folgenden vier simultanen, linearen,
nicht homogenen Differentialgleichungen sechster Ordnung

— 108" gy A I I
423 p22,+( 1002 kg, + 2145 " oy
+1322 % (- L) gy + 18025 ™
— 2 o Vepg 310 B pr—
= — 486" P (— 348125—99) Py 245 0 pr (452)
516 "y p21 +( o0 hipy — 250 X pp
345 = p22, ( , 34’7‘29) *pha + 338 fz~p;’2’,
— 626 ~—p34 (180 — 20 Vi — 113 L
364 2+ 679—%‘:3 Jaspy — 152 g =
V(30550 2T ) pep g 10 i sh)
%) Da Massenkrifte nicht vorhanden sind, lautet diese einfach & — - (e, +e).

2h
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630 pu — 375 i+ (155025 — 2P} napyy 3005 2 py
6
— 342 pys, + 561 fwg, + (102225 + D) nipgy 4252 L
}l 264 e k6
630 pss — 267"y, + ( O gy — 118 L
h? mr h® VI
342 pyy — 15*,)43 (o ms w4 33
= 24P 303" pr g (3375 P2 )pepr ags Mpv s
99\} ur VI
342 py — 15—p21 +(—3225 + D) napy 4 675 oy
20025 pun — 20625 iy, + (2821875 — 1022 ity — 335625 1 pyy
h2 124 6 ne /Z
— 342 p— 200" gn y (153,75 — )y 455 put (45d)
6
20025 py + 343 875 L p43 + ( 2?”5 S ) B — 60,375 1 pv ap

hﬁ
)h"P”” 26, 8125 — PV

= 6525P + 270,375 fl_ pr +( ’ 83,25
i m?

welche fiir jede in den Knotenlinien 2 und 2’ angreifende, zur Achse /—/
symmetrischen Linienlast +P V3, + P{3 gelten.

Fiir die antisymmetrische Belastung ist das Querbelastungsschema bis
auf den Wert von p,,, welcher jetzt statt Null gleich — 2 p,3 wird, das gleiche
wie bei der symmetrischen Belastung, wie dies in den Fig. (Sb) und (8&c)
dargestellt ist. Da auBerdem &, = 0 wird, ergeben sich fiir diesen Belastungs-
fall die Kontinuititsbedingungen 1. Art zu

def + & + & = — pi(pyy + pyy) — Bo(— par — p34) (46a)
& + Tey + & = — B1(2p4 + Phy, — Py — 2P + 4 P") —
— Ba(p2r + 2po2 + pau + 2ps3 + 2P) (46b)
ke o 6 = — (g + Py 200+ ) —
- — Bapn — p2v + pu— pz — P), (46¢)
deren Auflésungen nach den &”
153 67 = — 1 (37l — 11, + 347, -+ 470, — 26 P") —
— Bo(— 52pm — 4 pa — 52y — Apys — 4 P) (472)
153 6] = — 1 (44 p5, + 20l — 34}, — 49l + 89 P") —
— B2(25 p21 + 49 pa2r + 25 p3s + 49 pa3 + 49 P) (47b)
153 &5 = — B1(— 39 py, + 24 p4, + 51 py, + 33py, + 15 P")
— B2(30 pa1 — 33 p22r + 30 p3s — 33 psg — 33 P) 47¢)

lauten. Infolge der oben festgelegten Ubereinstimmung der Querbelastungs-
schemata ist die erste, zweite und dritte Kontinuitatsbedingung 2. Art gleich-
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lautend mit den entsprechenden Bedingungen Gl. (43a, b, ¢) der symme-
trischen Belastung, nur ist jetzt £, 4= 0. Infolge der Gegensymmetrie wird

Eos = &, &2 = — &2, poor — — pps und A, = —A4,,,. Es ergibt sich also
die noch fehlende vierte Kontinuititsbedingung 2. Art in der Form
284 + &4 — 244 + 43 = 0 (Knoten 4). (43d)
28 ~
Da nach Gl. (26) == 5 (44')
und nach der zum Knoten 4 gehorigen Gl. (36a)
P2 = — 2 pag (44"

wird, folgen aus der Ubereinstimmung der drei ersten Kontinuititsbedingun-
gen mit Gl. (43a, b, c) die den Gl. (44a, b, c) entsprechenden Gl. (442, b, ¢’),
indem man in Gl (44a b, d) die GI. (44’) und (44”) einfiihrt und 84——0
£g == — €91y Pagr = — P22 setzt. In analoger Weise wie beim symmetrischen
Lastfall ergibt sich aus Gl. 43d’) die der Gl. (44d) korrespondierende Be-
ziehung zu

(__ 2 8" + 8") + /))3 (2 gun - 8””) _l_ /))4 (14 6.!2/[_ 7 EKI) +

+ /qo (2 pnu _ 2/)’2'!, _pérhl! 15/7"” + 2 plli!) +
+ B (14 p¥T — 14 p¥T — T p¥T — 45 p¥! 4 14 PV7)., (44 d’)

Bildet man aus den Gl. (47) die ¢ und &/, setzt diese und die &” in die
Gl. (44a’, b’, ¢/, d’) ein, addiert wieder die erste zur dritten und die zweite
zur vierten Gleichung, so folgen auch fiir diesen Belastungsfall die vier simul-
tanen Differentialgleichungen sechster Ordnung

‘) . 223 nee
15 p21+( 3035 — ) htpy — 36,083 py1
187,25\, .. :
123 2 1 (215025 4+ 00 ey 4 33,72016 7y
2 144 221 e h
75 gy (3085 + 200 )t gy + 35416y
2 6
123 % 4 (7375 + 3235)% '+ 30,60416 7 pyi —
= 123" pry (L1005 — PP) 235016 pv s
b 107\, . B
— 315 W 4 (1405 — DY wt gy 21416 ™ oy
he 2005\ ., ..
— 135 gt ( 254 4 7{2‘) I g+ 12,4583 " oy
h2 4275 nn
— 315" +( 64 — >h4 — 33,2016 pu1
: 44825\ .
— 135 0 gy 4 a7275 1) e 82470167
B 125 Vi
B35 P (101 + P — 140583 pv (48b)
m m? m
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2
80,25 21 — 18,625 15 P}, (333 34375 397:35) 7t py - 66,72016 " pg{

235, 75

15 poor + 93,5 p22, ~200,375 + R4y +56,02083 ng,

8025/734411125 p,;4 (2734375— 68 )lz pait — 31, 16—r 241

m2 3t

15 pss + 50 +( 56,375 32’25 )h4 v 431 2083 12— pit
) 56,5 A
-15P-111 925 P -20,125 e h*t P —10,7083 o PV (48c)
: 6
15 p21 456 ° -p21+( 80,875 + 42?) h* pir + 26, 104162 pY!
80, 5 .
08,25 pos —41,125 /- p,p, +| 47,84375 - h* pi 46, 0583 - p
’ )5 ree .
15 pos — 67 p34+( 33,875 = )h g 4,958377 pY!
541 h®
98,25 py3-114, 625 p43 +1545,00375 - ——| 4* p,; - 124, 3 —- p
35,75
=-08,25 P — 32,375 —”; P" + o h* P20, 85416 — PV’ (48d)

welche fiir jede in den Knoten 2 und 2’ angreifende, zur Achse I'—I' anti-
symmetrischen Linienlast --P V3 gelten.

Die nichste Aufgabe besteht in der Integration des Systems der Gl. (45).
Hiezu entwickeln wir die Linienbelastung P in die Fourier’sche Reihe

k:oo

P=
k=1

7t
7" (49)

Belasten wir nun das Tragwerk nur mit dem k-ten Glied Pksinkf«x dieser

Entwicklung, so erhalten wir die dazugehorigen Stérungsglieder der linearen
leferentlalglelchungen (45), indem wir in deren rechten Seiten dieses Glied
mit seinen Ableitungen

p(gﬂ) — ( 1)/1 pk (kﬁ)ﬂ sin k[i{x; (fi = 1, 2, 3)

einsetzen. Nehmen wir nun als zugehorige Losungen der unbekannten Funk-
tionen pyy, pasr, pyy und p,, die Glieder

. ko ki .kt . ks
Apsin—x: Bpsin—x: Cpsin— x:;: Dpsin->-x
RSN PRSI MRS FRSTE

an, d.h. wir substituieren diese Ansitze mit ihren Ableitungen
" ka\%" | ko . p ( 7[)3” .k )
-1 Ak(—f) sin =~ x; (-1)* B ;) sinxs

n 1275) . k7w ; n (k?"E)Q” . ki
( 1) Ck (ﬁv* sin —z—-x’ (“1) Dk f[‘* Sln z”x
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in die linken Seiten der Gl. (45), so ergeben sich nach Kiirzung durch
sin ELﬁx vier lineare Gleichungen fiir die Beiwerte A, B, C,, D,. Fiihrt

man diesen Vorgang fiir alle Glieder von Gl. (49) durch, so erhalten wir
nach dem Superpositionsgesetz die vollstindigen Integrale der Gl. (45) in
der Form i

- . k > ok
pmzZAksmi”x; ﬁ22r228k51n—75x;
1 L 1 L
— . ki g ki
p34 — 2 Ck Sin f x; p43 . Z Dk Sin ,l:. X. (50)
1 1

Die Losung der GIl. (48) geschieht auf dieselbe Weise.

Beriicksichtigt man, daB fiir jede zur Achse C —C symmetrische Be-
lastung die Glieder mit geradem % Null werden, so ergibt sich auf diese
Weise fiir £==1, 3, 5 die Losung der Gl. (45) zu

s = 3,605190 Py sin " x — 0,006506 Py sin > x — 0,302048 P sin %’1 x

L L
pe— 4469606 , , -+ 0106536 , , — 0162651 ,
pu = 4257498 , , — 0522686 , , — 0,193059 ,
pis =-5003027 , , —0603425 , , —0,187633 , , (51)
und entsprechend die der GI. (48) zu
po1 = — 0,3512300 P, sin %‘ x — 0,34093050 P; sin §Lﬁ x — 0,33050826 P; sin éLf x
pe = —0,82506059 , , -080828801 , , -0,73478157 ,
pau = +0,35210622 , , +0,33802644 , , +0,28038403 ,
pis =—0,17300484 , , -0,16766555 , , -0,12830188 , . (52)

Setzt man die Gl. (51) mit ihren zweiten Ableitungen in die Gl. (42) ein
und integriert diese unter Verwendung von

Jor

zwei mal nach x, so ergeben sich die ¢ fiir die symmetrische Belastung,

2
sinlili—ﬂxdx :_(—I;) sin{z-gx + Cix+ Co

7T

Da fiir x =0 und x= L, ¢ = 0 und sin L x = 0 wird, verschwinden alle dabei

L
auftretenden Integrationskonstanten C, und C,. Es folgt also
Ee¢ = 257,8506P1 sin % x+ 27,4812 P sin %f—z x + 8,0659 P; sin %—T X
, 2= 2585340 , , '+29,1968 , , +11,2586 ,
» &8=-310,1536 , , -34,0841 , | -127698 ,
» & =-310,4471 , , -34,7353 , | 125847 , . (53)

In gleicher Weise erhalten wir aus den Gl. (52) und (47)

E & =-0,2383262 P, sin % x+0,3073124 P3 sin STﬂ x + 1,0835316 P; sin _5L£ x

, & =-00363547 , , +04905634 , , +14057950 ,
, €3 =-03219318 | , -12223782 | | -2,6271881 , ,.(54)
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Mit diesen Ergebnissen kann man nach Gl. (7) die Spannungen o: senkrecht
und nach den Gl. (10a,b) die Spannungen o, parallel zu den Scheiben-
achsen ermitteln.

Weiters erhilt man aus \ ¢dx die Liangsverschiebungen der Punkte der
0

Knotenlinien im Abstand x vom Auflager x= 0.

Setzt man die GL (51) und (53) mit ihren zweiten Ableitungen in die
Gl. (16a,b) und (26”) ein, so folgen fiir die symmetrische Belastung der
Fig.8b die Verformungen quer zu den Scheibenachsen. Es wird

E Ay — — 17,9069 P sin {f x — 3,8088 P, sin QL" x — 2,8013 P sin 5Li’ x

, Ay = 22015 , _ + 31300 , ., +52798 .

, A= 337625 , . 4+ 54811 , ., 447108 ,

, Aoz = 04378 , , + 73631 , , -+ 78063 ,

, dp = 685467 , . +104223 . . 452084 ,

, A= 146651 , , + 06580 , , —03753 , .

oAy = 183120 , ., 4+ 06531 , , 03848 .,

y Ay = 27918 , , - 01770 , , —02014 ,

, A3 =-333714 , , 236477 , , —1,1363 ,

, Ay =-248408 , , — 55983 . —34790 _

, Ay =-420787 , ., — 49601 , ., —17495 , . (55)
E &= 0 5

, £ = 28434,3 P; sin g x + 355,18 P; singLiT x + 47,69 P;sin Tﬂ x

, Gy =-284348 , , —35480 . , —4806 ,

» §i3 = 28401,2 ” » + 345,36 ” » T+ 41,67 » "

, fa=-14641 , , — 06578, , -+ 03702 ,

»$2= 34170 , , + 95312, , + 6384 , . (56)

Substituiert man dagegen die Gl. (52) und (54) mit ihren zweiten Ableitun-
gen in die Gl. (16a,b) und (26”), so erhialt man die Verformungen quer zu
den Scheibenachsen fiir die antisymmetrische Belastung der Fig.8c. Es
ergibt sich

E dp = ~3,9617 Py sin » x — 3,0280 Pysin > x — 3,6682 P; sin ;" x

L L
, Ay = 114600 , , +113627 , . +107307 ,
, A= 60393 , . 4+ 59677 , ., + 53252 .
, A= 20609 , . + 30126; , , -+ 35420 .
,dm=-12240 _ 0782 , ., — 03200 , .,
, Ay =-03852 , . — 03476 , , — 02060 .,
Ay = 21682 , . 4+ 22011 , ., + 10087 ,
,dy = 25534 4+ 25966 , , -+ 23013 ,
,ds= 0870 , ., + 08243 ., , 4+ 06190 ,
, Ay =-25132 , ., — 25420 , ., — 25703 ,
, 4 =-08060 , , - 08746 , , — 09481 , (57)

Abhandlungen VII 11
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Eép = 36355 P sin %‘ x — 54507 P sin 3%’ x — 5,6232 P; sin %71 x
L E—- 18177 , , +27254 , , —28116 , .
, B =-142780 , , —05163 , , —80660 ,
, &= 41803 ., ., +84983 _ . 4+ 74214 ,
, &= 160066 , , +67910 , . +52544 ,
, &p = 100086 , , 410181 , , +06445 , (58)

Um die Loésungen zu vervollstandigen, haben wir noch die Schubspannun-
gen zu ermitteln. Man erhilt sie mit Benutzung von
km L ko

Jsmi—x:~k—ncos—l~x + C

durch einmalige Integration der Gl. (12a) und (12b). Die dabei auftretenden
Konstanten werden wegen ooséﬁx: 0 und =0 fiir x= »g wieder alle

L
Null. Man erhilt fiir den Belastungsfall Fig. 8b

124 =~ 0,12583 Py cos%E x +10,59797 P; cos ng x + 6,37181 P; cos —5; X
e = - 5,20002 , , + 9,41463 . + 656514 ,,
T34 =—-09,20280 , , —12,08576 ., — 0640105 ”
43 =—— 520062 , , + 941571 . -+ 656080 "
o= 26,75733 , , + 882206 , -+ 546661 ”
193 =— 127,08406 , , — 838250 . — 1,02325 "
732 = 131,056120 , , — 777173 ., — 1,60101 ”
112 — 206,30812 , , + 6,78826 . -+ 1,43462 v
g1 == 153,04850 , , —10,15723 . — 1,92471 »
713 = 206,30720 , , + 6,78826 , + 1,43461 "
= 200,22535 , , + 431376 . — 1,11040 " (59)

und fiir den Lastfall Fig. 8¢
56,21010 P; cos 7{ x +18,11491 P;cos —3—7—t x + 9,08643 P; cos §En X

124 — L

Ty = 5657061 , , -+1934360 , ., 1235021 ,
t —-2624611 , , — 857101 , , — 481842 ,
T3 =-2624800 , , — 830651 , , — 365692 ,
T = 8254072 , , +2683041 , ., -+14,68502 , .
v =-43,83510 , , —1438995 , ., — 842672 ,
Ty —-4383304 , , —1428720 , ., — 813130 ,
ry =-17,60221 , , — 564001 , , — 281981 ,
Ty =-1750454 , , — 567482 , , — 373395 ,
T3 =-17,60223 , , — 564063 , , — 282060 ,
3 =-1758782 , , — 571234 , . — 331213 , . (60)

Die Vorzeichen dieser Schubspannungen sind dann positiv, wenn sie dem
in Fig. 3a dargestellten Spannungsspiel entsprechen. Dabei ist die Scheibe
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aus dem Faltwerk zu 16sen und so in die Zeichenebene zu legen, daB der
Koordinatenanfangspunkt x =0 links liegt und die in Fig.7a festgelegte
~ positive &-Richtung nach abwirts weist.

Die bis jetzt entwickelten Resultate dieses Abschnittes gelten fiir jede
zur Achse C—C symmetrische Belastung. Handelt es sich um einen beson-
deren Fall, so sind die dazu gehorigen Beiwerte P, der Belastungsentwick-
lung Gl. (49) zu bestimmen und in die Gl. (51—60) einzusetzen. Diese Be-
lastungskoeffizienten ergeben sich bei Beriicksichtigung der ersten drei
Glieder fiir eine in Tragwerksmitte angreifende Einzellast G zu

2G 2G 2G
Bo=s BE—s BET
fiir eine Gleichlast p werden sie hingegen
4 1 :
P, = — P (k=1,3,5). (61)

Wir wollen fiir die letztere alle Spannungen und Verformungen in Trag-
werksmitte bestimmen, d. h. wir setzen in Gl. (51—60) fiir die P,, P, und P,

die P, der Gl. (61) und fiir x——:év. Um ein Bild dariber zu bekommen, in-

wieweit die Gleichlast p durch die drei ersten Glieder der La%’rent\wcklung
ersetzt wird, wurde in Fig. 8a der Wert von

p—:—ApZ—sn——» ~ (62)

aufgetragen. Fiir die in dieser Figur stark ausgezogene Belastungskurve sind
also die nachfolgenden Losungen exakt, fiir die Gleichlast p hingegen, stellen
sie eine sehr gute Niherung dar, die durch Entwicklung weiterer Glieder
beliebig weit getrieben werden kann. In den Fig.8b und 8c sind die Werte
fiir die Querbelastungen, Lingsdehnungen und Lingsspannungen, in den
Fig. 8d und 8e hingegen die Werte fiir die gesamten Verformungen A4
und & fiir den symmetrischen und antisymmetrischen Lastfall in Tragwerks-
mitte dargestellt. Die Schubspannungen an den Scheibenrandern ergeben
sich fiir den symmetrischen Lastfall zu

Ty = — 2,3841 {jm?2; 1 = 24,9007 tm?; 7y = 155,7494 t/m?
Ty =— T1152 5 7 = 1284736 , ; w3 = 2043314
re = — 664724 , : wp = 1321216 ., ; 3 = 1085654
T =— T1158 , ; w12 = 2043323  ; (63)

und fiir den antisymmetrischen Lastfall zu _
Toy = 52,1691 t/mz, To9r — 76,5342 t/m2, Tog = — 16,3597 t/m2

rp = 5250927 , ; 1 =-407237 , ; 73 =-16,2861
T34 — — 24,3528 w 5 T32 = —40,6978 w 3 T3 =—— 16,3461 »
Ty = — 242115 , ; 710 —-16,2862 , . (64)

Durch algebraische Addition der beiden in den Fig. 8b und 8c dargestellten
Belastungsfille ergeben sich die Werte fiir die langs der Knotenlinie 2 an-

greifende Linienlast 2PY3. Aus den zur Gl. (62) gehorigen FErgebnissen

ist ersichtlich, dafl diese noch nicht mit % vervielfaltigt sind. Um die end-
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giiltigen Resultate fiir die nach Gl. (62) dargestellten Gleichlasten p zu er-
halten, sind die in den Fig. 8b, ¢, d, e und den Gl. (63) und (64) angegebe-

4 g
nen Zahlenwerte noch mit 4%/? zu multiplizieren.
e 4

b) 2. Beispiel.

Das folgende Zahlenbeispiel soll beim gleichen Tragwerk fiir dieselben
Belastungen den EinfluB des Schubmoduls G zeigen. Um diesen EinflufB
besonders deutlich hervortreten zu lassen, werden im Gegensatz zur vorigen
Aufgabe die Lingendnderungen 4 quer zu den Scheibenachsen gleich Null
gesetzt. AuBerdem wird durch die Annahme m = oo auch der EinfluB der
Querdehnungszahlen m ausgeschaltet, so daB die Auswirkung des Schub-
moduls so ungestort als moglich zu Tage treten kann. Da sich der EinfluB
der 4 und der £ erst bei den Kontinuititsbedingungen 2. Art geltend macht,
bleibt der Rechnungsgang bis einschlieBlich der Aufstellung der Kontinui-
titsbedingungen 1. Art unverdndert. Die explizite Darstellung der ¢” erhalt
man also fiir den symmetrischen bezw. fiir den antisymmetrischen Be-
lastungsfall, indem man in den GI. (42a, b, ¢, d) bezw. (47a, b, c), wegen
m = oo, ;=0 setzt. So wie im vorigen Beispiel bedienen wir uns auch
hier fiir die £” der vereinfachten Gl. (26’). Wir behandeln so wie frither dea
Belastungsfall Fig.8b zuerst. Die dazugehdrigen Kontinuititsbedingungen
1. Art erhalten wir, indem wir in den GI. (43a, b, ¢, d) die 4=0 setzen
und daran anschlieBend die Gl. (26’) substituieren. Da Massenkrafte nicht
vorhanden sind, wird dabei m,, = n,,=— g, = 0. Es folgt also nach Multipli-
kation mit 24

(& + & + &g — &) + B, (phy + 1o + 305 — P+ P7) =0 (053
0

(—e5 + &y + 20 E5) + B, (=2p5 + 3p5, + Py + Py Pyy) = (65b)

(¢ — &y — ey + &) + B, (=3phy + 2p5, + phy + Pl =0 (65¢)

(e — &) + B, (ryy—ry) = 0, (65d)

worin £, :b—zE—; Eoor = 03 poor = par2; pae = 0 zu setzen ist. Addiert man

wieder die erste Gleichung zur dritten und die zweite zur vierten, ersetzt
hierauf unter Bedachtnahme auf g, =0 die ¢” durch die Gl. (42a, b, ¢, d),
so wird nach den Gl. (37a) mit dem der Annahme m = co entsprechenden

Verhaltnis E =2

G
— AP 4 3P Ay Py =— P (602)
=20+ 2P + 205 — Py =0 (66b)
(-* 840 P2 + 456 Poar — 840 P34 —+ 456 p43) e
— 002(—3pY + 2, +py) = 312P (66 ¢)
(456 po1— 399 P22r + 456 P3s — 390 ]J43).—
— 902 (py, — plpy) = —8TP. (66d)

Lost man diese Differentialgleichungen zweiter Ordnung wieder mit Hilfe
von Fourier’schen Reihen auf, so erhalten wir fiir die ersten Glieder der
unbekannten Belastungsfunktionen p
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pa = — 0,02511 P, sin EL‘_ x ‘ (67 a)
paz = + 0,23038 ) (67b)
pu = — 0,64030 ,, ) (67 c)
pis = — 0,67962 ,, o s (67 d)

aus welchen sich nach Gl. (42a, b, ¢, d) die Lingsdehnungen ¢ der Knoten-
linien zu

Eg = 26200 Py sin x (68 a)
, &2 = 20340 , (68b)
, &g =-31697 , (68 c)
. & =-31441 , (68d)

und mit den Gl. (12a) und (12b) die dazugehorigen Schubspannungen z er-
geben. Es wird

r94 = + 30,152 Py cos :E X3 799, = + 26,335 P; cos % X
12 — + 25,036 w O 793 = — 23,766 »
734 = — 38,074 ,, y rp = - 18414 . 3
733 = + 25,064 ,, - 712 = +25,049 » )
v = - 27,576 Py cos - x
113 = + 25,051 5 3
131 = + 19,654 , . - (69)

Aus Gl (26') erhalten wir schlieBlich die Durchbiegungen der Scheibenachsen
in der Form

E. &9 = 0; E - &3 = 20633,8 P, sin % x
, &4 = 20426,6 P, sin Z , S34=0;
» .523 - “‘29633’6 » b > » .512 = 0. (70)

Andere Verformungen sind nicht vorhanden, da m = co und die 4 = 0 sind.

Da die Belastungsschemata der p fiir die symmetrische und fiir die anti-
metrische Belastung in derselben Weise iibereinstimmen wie beim ersten
Zahlenbeispiel, sind auch bei dieser Aufgabe die ersten drei Kontinuitats-
bedingungen 2. Art mit denjenigen der symmetrischen Belastung gleich-
lautend. Die noch fehlende vierte Gleichung folgt aus der Gl. (43d’), indem
man darin die 4= 0 setzt. Setzt man wieder

2¢&
2h

»und Pr2 = — 2 a3 (65)

so folgen aus der soeben festgestellten Ubereinstimmung der drei ersten
Kontinuitatsbedingungen 2. Art die den Gl. (65a, b, c) entsprechenden GI.
(652’, b’, ¢’), indem man in den Gl. (65a, b, c) die GI. (65’) und (65”) ein-
setzt und &y = 05 &, = —&515 Py = —pyy setzt. Die der GL (65d) ent-
sprechende Gl. (65d) erhalten wir auf dieselbe Weise wie beim symmetri-
schen Lastfall. Es wird

Som = (65)
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” 2 ” ” ” 144
(——26é'+ 83) -]— B—E(_ 2/]21+ 2p22r—{— P34 — 5/]43— 2P ) —-— O (65d)

Addiert man wieder die Gl (65a’) zur Gl (65¢") und die Gl. (65b’) zur
Gl. (65d’) und setzt dann mit 5, = 0 die Gl. (47a, b, c) in die so erhaltenen
Beziehungen ein, so ergeben sich, und zwar wieder entsprechend den Gl.
(37a) die fiir den antimetrischen Lastfall geltenden Differentialgleichungen

—4py + 30, + AP — 3P = — P (71a)

—4py + 0P +2p5 — Tpiy = + 2P (71b)
(107 pa1 + 20 pazr + 107 p3s + 20 pyg) —

+ 204(—3p5 + 2P + gy — 2pp) = —20P (T1c)
(20 pa1 + 131 pa2r + 20 p3s + 131 pyg) —

4204 (— 20, + 29+ Pl —5pl) = — 131 P £ 408 P”.  (T1d)

Lost man diese wieder mit Hilfe von Sinusreihen auf, so ergeben sich die
ersten Glieder der unbekannten Belastungsfunktionen zu

pe1 = + 0,32051 Py sin 7 x; (72a)
poor = — 023223 , , ; (72b)
pu = —032614 , (72¢)
piz = — 076110 , . (72d)

Daraus folgen mit Hilfe der Gl. (47a, b, ¢) die Lingsdehnungen ¢ in der
Form ;

E-e = 260862 P sin - x (73a)
, &= 182432 | (73b)
, & =-381371 , » (73¢)

woraus sich nach GI. (12a) und (12b) die Schubspannungen r ergeben. Es
wird

4

s = + 1,3165 Pycos 7 x; s = — 6,0622 Pycos | x;
T = + 1)4662 ” ” 132 — — 5;8622 ) »
T3 = — 22,0020 , , ; 712 = + 16,2602 ,, ,, ;
T4y — — 21,8085 9 » Ty = + 1578171 ” ”
o2 = + 23,2830 » 713 = + 16,2601 ,, » o
v = + 16,1399 Py cos 7 x. (74)

Die Durchbiegungen ¢ der einzelnen Scheiben erhdlt man wieder nach
Gl. (26”) zu

E - &9 = + 28203 Py sin - x;

L
1 Eag = + 121’76 ”» »
’” 523 == - 403,00 ) ”y
y 13 = 4 647227 »
” E34 = — 244;28 ” ”
» 2= + 281;30 ” » .o (75)



Hohltriger als Faltwerke 167

Weitere Glieder werden fiir dieses Zahlenbeispiel nicht mehr entwickelt,
da einerseits durch diese keine weiteren prinzipiellen Fragen geklart werden
konnen und andererseits die Frage der allgemeinen Konvergenz bereits in
der vorhergehenden Aufgabe beantwortet wurde 7). Triagt man die Durch-
biegungen &, wie dies in der Fig. 8f geschehen ist, zeichnerisch auf, so er-
gibt sich, daB der gesamte Faltwerksquerschnitt in seiner Gestalt unver-
andert bleibt, wie dies ja zufolge der Annahmen A4 =0, m = oo sein muB.
Um die endgiiltigen Resultate fiir die ersten Glieder einer Gleichlast p zu
erhalten, sind entsprechend dem ersten Zahlenbeispiel die Koeffizienten der
Gl. (67a, b, ¢, d), (68a, b, ¢, d), (69), (70),(72a, b, ¢, d), (73a, b, ¢, d), (74)

und (75) mit 4’% zu multiplizieren.
7T
Eine im iiblichen Sinne durchgefiihrte schlichte Superposition der Er-

gebnisse des 1. und 2. Zahlenbeispiels ist unzuldssig.

F. SchluBbetrachtungen.
a) Konvergenz.

Zunichst erkennt man, daB die Konvergenz der Losungen des ersten
Beispiels eine sehr gute ist. So nehmen die Beiwerte der e-Entwicklungen
fiir zwei an den Knoten 2 und 2’ in x = —1‘2— angreifende gleich groBe Einzel-
lasten ungefihr wie die Quadrate und fiir zwei an denselben Knoten angrei-
fende Gleichlasten p ungefahr wie die Kuben der reziproken ungeraden
Zahlen ab, so daB bei Beriicksichtigung von drei Gliedern in den Langs-
spannungen o, im ersten Fall nur ein Fehler von + 5900 und im zweiten Fall
von nur - 10/ verbleibt. Fiir die zugehorigen antisymmetrischen Last-
stellungen konvergieren die Losungen in der Regel etwas besser wie die
Lastentwicklungen der Gl. (49) selbst. Je geringer der EinfluB der Quer-
verformungen 4 gegeniiber den Achsdurchbiegungen & ist, umso besser ent-
spricht die Abnahme der obigen Beiwerte der Abnahme der Quadrate und
Kuben der reziproken ungeraden Zahlen bezw. der der Lastentwicklung
Gl. (49). Wie sich aus den Gl. (55) und (56) ergibt, ist auch die Konvergenz
der Verformungsbeiwerte der symmetrischen Belastung der Fig. 8b eine sehr
gute. Der iibrig bleibende Fehler betriagt bei den 4 fiir Einzellasten ‘in

x:; durchschnittlich 4 100 und fiir Gleichlasten durchschnittlich —+50/.

Die Werte fiir die Achsdurchbiegungen £ nehmen noch viel rascher ab. Die
Abweichungen vom wahren Grenzwert betragen fiir die letzteren bei drei
Gliedern fiir Einzellasten im Durchschnitt nur + 0,20/ und fiir Gleichlasten
im- Durchschnitt sogar nur - 0,049,. Da die 4 gegeniiber den & klein sind,
ist der Genauigkeitsgrad der letzteren fiir die Verformungen der Scheiben-
rander maBgebend. Fiir den antisymmetrischen Lastfall der Fig. 8c ist die
Schnelligkeit der Anndherung an die Grenzwerte der 4 und £ so wie bei den &
durchschnittlich dieselbe, wie bei der Lastentwicklung Gl. (49) selbst. Die
Konvergenz der Reihenentwicklung fiir die Schubspannungen ist ebenfalls
sehr gut. Auch hier betragen bei Beriicksichtigung von drei Gliedern die
iibrig bleibenden Fehler bei dem symmetrischen Lastfall im Mittel nur
-+ 50/ bezw. 196 und beim antisymmetrischen Lastfall im Mittel + 100/

") Siehe Abschnitt F.
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bezw. - 20/, wobei die ersten Zahlen fiir Einzellasten in x = g und die

zweiten Zahlen fiir Gleichlasten gelten.

Ist die Belastung zur Tragswerksachse C—C gegenspiegelgleich, so
verschwinden im Gegensatz zu vorhin die Glieder mit ungeradem k. Der
Grad der Konvergenz der iibrig bleibenden Glieder mit geradem £ ist im
wesentlichen genau so groB wie bei Belastungen, welche zur Achse C—C
symmetrisch sind. Nur treten an Stelle der reziproken Werte der ungeraden
Zahlen jetzt die reziproken Werte der geraden Zahlen. Da die Amplituden
fiir die Glieder mit geradem % kleiner sind als bei den Gliedern mit unge-
radem %, verringern sich auch die im vorigen Absatz angegebenen Fehler-
grenzen entsprechend. Da jede beliebige Linearlast aus der algebraischen
Addition eines zur Achse C—C symmetrischen und eines zur Achse C—C
antisymmetrischen Lastfalles folgt, sind auch die Konvergenzverhiltnisse fiir
jeden Lastfall befriedigend geklart. Aus Raummangel wird die Berechnung
fiir die Glieder mit geradem % hier nicht wiedergegeben. Durch eine not-
wendig werdende Beriicksichtigung des Einflusses der @ auf die £ wird
diese gute Konvergenz nicht beeintrichtigt.

b) 1. Beispiel.

Die Empfindlichkeit der Rechnung ist umso groéBer, je geringer der
EinfluB der Querverformungen A ist. Sie ist bei dem symmetrischen Last-
fall kleiner als bei dem antisymmetrischen, weshalb auch bei letzterem mehr
Dezimalstellen beriicksichtigt werden mubBten.
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Fig. 8a

Der EinfluB der Querverformungen 4 ist beim symmetrischen Lastfall
gegeniiber den Achsendurchbiegungen & sehr klein und koénnte vernachlis-
sigt werden. Fiir die antisymmetrische Belastung ist er jedoch sehr groB
und darf unter keinen Umstinden auBler Acht gelassen werden.
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Betrachtet man die Fig. 8b, so findet man, daB fiir die spiegelgleiche
Belastung die Verteilung der bezogenen Lingsdehnungen ¢ und der Lings-
spannungen o, mit einer nahezu vollstindigeen Genauigkeit eben ist, was
bei der in Fig. 8c dargestellten gegenspiegelgleichen Belastung durchaus
nicht der Fall ist. Da jedoch die o, der Fig.8b ungefiahr 100—360 mal so
groB} sind als die entsprechenden o, der Fig.8c, folgt, daff die Spannungs-
verteilung fiir eine allein im Knoten 2 angreifende Linienlast + 2PV 3 eben-
falls eine nahezu vollkommen ebene ist, d.h .der in Fig.7a und 7b darge-
stellte Hohltrager verteilt die Lasten in der Querrichtung fast vollkommen
gleichmiBig, ganz gleichgiiltig, in welchem Knoten die Krifte angreifen.

5¢4/m?
‘ 2m°
™ 125985 t/m?
<
N

——
25030t/m*

—0

~ Fe=25030t/m*
E
£=25105L/r

71

J" o . ,

~ @4 ~ 4 J

S S i :
By =tIST68 S SRS § B, ==47219
/022'5*44076 g i T §l§ ]H gg P =-48394
P-p,* 5y = % } [ 1 fe Ly, %’ ’ G, g,; Pip, -, =
=+16233 & = S0 L1 v =-01767

’ 7
Axe de syméfrie — Symmefrieachse — Axis of symmefry
Fig. 8b

L ..
In den Fig.8d und 8e ist die Verformung des Querschnittes in x = 5 fiir

den symmetrischen-und fiir den antisymmetrischen Lastfall dargestellt. Wie
aus diesen Figuren ersichtlich ist, senkt sich dieser Querschnitt zufolge der
ersten Belastung parallel zu sich selbst. Zufolge der zweiten Belastung
tordiert der Querschnitt leicht im entgegengesetzten Sinne des Uhrzeigers,
verschiebt sich etwas nach links und verkriimmt seinen Obergurt s-formig.
Charakteristisch ist die Quetschung der linken und die Zerrung der rechten
Tragerhalfte. Da die in der Fig. 8d angegebenen Durchbiegungen ungefihr
1000 mal so groB sind als die der Fig. 8e, senkt sich auch fiir eine im
Knoten 2 allein angreifende Last der Querschnitt nahezu parallel zu sich
selbst, tordiert nur leicht im entgegengesetzten Sinne des Uhrzeigers und
verschiebt sich nur etwas nach links, was der gleichmiBigen Lingsspanr
nungsverteilung fiir denselben Belastungsfall entspricht. Damit ist klar er-
wiesen, daB es sich hier um ein Tragwerk mit wirklich idealen Querver-
teilungseigenschaften handelt.

Wihrend fiir den antisymmetrischen Lastfall die zuletzt behandelten
statischen WirkungsgréBen bedeutend kleiner sind als fiir den symmetrischen
Lastfall, trifft dies fiir die an den Scheibenrindern angreifenden Schubspan-
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nungen durchaus nicht zu. Im Gegenteil, es sind, wie aus den GI. (59) und
(60) hervorgeht, die Schubspannungen in beiden Féllen von nahezu gleicher
GroBenordnung. Man kann also bei der Berechnung der Schubspannungen
solcher Tragwerke den EinfluB der durch die antisymmetrische Belastung
hervorgerufenen Torsion nicht vernachldssigen. Die hervorragenden quer-
verteilenden Eigenschaften werden eben gerade durch das Auftreten der
grofien Schubspannungen beim antisymmetrischen Lastfall bedingt. Dieses
Verhalten ist durchaus verstindlich. Die Natur gibt nichts umsonst. Die
iiberaus giinstige Querverteilung wird eben durch eine griindliche Mobilisa-
tion der Schubwiderstinde erkauft. Setzt man m = oo, so reduzieren sich
die Gl. (45) und (48) auf Differentialgleichungen vierter Ordnung, in welchen

p, ~-03037 1 p,-+02955
Pyt ==07035 X 7 -ONY
p-pzzf'ozz’= N Py Pyy =
-+ 06004 S -~13996

Ee=-043991t/m?

l\Axe dantisymétrie — Antisymmelrieachse
I Axis of antisymmefry

entsprechend der Fufinote der Gl. (37b) die Glieder der zweiten Ableitun-

gen fehlen. Vernachlassigt man auch noch den Einflu3 der 4, so degenerieren,
da die p¥’ mit den 4 verschwinden, die Gl. (45) und (48) auf je zwei
lineare Gleichungen mit vier Unbekannten. Aus diesen sind aber die p nicht
bestimmbar. Wahlt man ein zweites mal den im Abschnitt D gezeigten, iiber
die Kontinuititsbedingungen 1. Art fithrenden Weg und setzt in den Gl. (41)
m = oo, so werden die rechten Seiten der ersten plus zweiten und .der
dritten plus vierten Gleichung gleich —pg,- 2P bezw. gleich - 8,- 2P, d. h.
es sind fiir m = co nur zwei von den Gl. (41) voneinander unabhingig. Diese
beiden reichen aber fiir die Bestimmung der vier unbekannten p ebenfalls
nicht aus. Fiithrt man innerhalb der GI. (41) die eben angegebenen Addi-
tionen durch und setzt entsprechend der nach dem Lehrsatz Seite 152 vor-
handenen ebenen Verteilung ¢, = ¢, =@ und &5 = ¢, = b, so folgt 15a + 36 =

—-2p,P; 3a-+12b = 24,P, woraus sich ? = ? =y % ergibt, was mit der
3 4

Schwerpunktslage des Querschnittes genau und mit den in der Fig.8b an-
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gegebenen Ergebnissen hervorragend iibereinstimmt. Setzt man in Gl. (46)
m = oo und addiert die doppelte dritte zur einfachen zweiten Gleichung,
so ist die rechte Seite dieser Kombination gleich der dreifachen negativen
rechten Seite der ersten Gleichung, d.h. es sind hier fiir m = oo von den
Gl. (46) nur zwei voneinander unabhingig, was fiir die Bestimmung der
vier unbekannten p wieder nicht hinreicht. Addiert man zur Summe der
ersten und zweiten Gleichung die doppelte Summe der ersten und dritten,
so folgt 15& + 12¢, 4 1663 =0, woraus sich & = ¢, =¢3 =10 ergibt, ein
Ergebnis, welches mit der Gleichgewichtsbetrachtung am Tragwerksabschnitt
iibereinstimmt, da die o, infolge der Antimetrie alle um eine lotrechte
Achse drehen, die parallel zu den Lasten und Auflagerreaktionen verlauft,

Les deplacements horizonlaux & gauche ne sont pas dessines & léchelle
Wagerechte Verschiebungen hinks nicht masstabrichtig gezerchnet
The horizontal displacements lo the left are not drawn tfo scale

APIT %

iz
Tous les deplacements doivent éfre divises par £
Alle Verschiebungen sind durch £ zu dindieren
All displacements are to be divided by £

Fig. 8d

das heiBt die o, miissen verschwinden. Die in einem Querschnitt liegenden
@ gehorchen drei ebenen Gleichgewichtsbedingungen, welche jedoch infolge
der GI. (8c) schon in den allgemeinen GIl. (36a) und (36b) enthalten sind.
Sie liefern also keine neuen Bedingungsgleichungen fiir die p. Man sieht also,
daB sich die im Abschnitt D allgemein aufgestellte Behauptung, die p und
seien bei Unterdriickung der 4 und des Einflusses der Querkriafte @ auf
die Durchbiegungen & nicht eindeutig bestimmbar, bei dem in diesemn Ab-
schnitt behandelten Beispiel voll bestitigt.

In den GI. (59) sind die 5,3 bis 7z3; und 73, gegeniiber den anderen =
sehr groB. Diese Erscheinung findet ihre Erkldrung in der Bildung einer sich
itber 3 2 2 3’ erstreckenden Sprengwerkswirkung. Alle innerhalb dieses
Trapezes liegenden 7 sind klein, die am Rande und auBerhalb liegenden
sehr groB. Beim antimetrischen Lastfall verteilen sich die z, wie aus den
Gl. (60) ersichtlich ist, so, daB die den Lastangriffspunkten am nichstliegen-
den die groBten Werte erhalten.
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Wir machen noch darauf aufmerksam, daB bei den Verformungen quer
zur Tragswerksachse der EinfluB der Poisson’schen Zahl oft groBer ist,
als der EinfluB der Querbelastungen p selbst, sodaBl, wie dies aus der Fig. 8d
ersichtlich ist, die Obergurtsknoten 1, 2, 2’, I’ von der Mitte nach auBen
riicken, obwohl die Querbelastungen p,; und p,, in den Scheiben 12 und 22’
Druck erzeugen. Die umgekehrte Erscheinung kann beim Untergurt fest-
gestellt werden.

c) 2. Beispiel.

Zunichst erkennen wir, daB fiir beide Belastungsfille die Elastizitats-
gleichungen die Gestalt von linearen Differentialgleichungen 2.Ordnung,
so wie wir es auf Seite 151 allgemein bewiesen haben, annehmen. Im Ge-
gensatz zur vorigen Aufgabe ist fiir beide Belastungsfille die Empfindlich-
keit der Rechnung gleich gering. Aus den Gl. (68a, b, ¢, d) ergibt sich,

|78 73

Tous les déplacements dorvent éfre divises par F
Alle Verschiebungen sind durch F zu dividieren
All displacement's are fo be divided by £

Fig. 8 e

daB auch hier fiir die symmetrische Last die Verteilung der Lingsspannungen
und der Liangsdehnungen eine fast ebene ist. Weiters folgt aus den GI. (70),
daB infolge der Beriicksichtigung des Einflusses der Querkrifte Q auf die
Durchbiegungen & diese gegeniiber dem 1. Beispiel um etwa 30o groBer
werden. Dasselbe gilt von den Lingsdehnungen e. Fiir diese beiden Wir-
kungsgréBen ist also der EinfluB des Schubmoduls sehr gering. Ganz anders
verhilt es sich jedoch damit bei den Schubspannungen z, deren Gro8e und
Verteilung eine vollstindig andere wird. Die vorhin dargelegte sprengwerk-
artige Wirkung entfillt. Die Gesamtquerkraft des Faltwerksquerschnittes
wird von den aufrechtstehenden Scheiben iibernommen, wobei die mittleren,
das sind die dem Lastangriff naheliegenden, Elemente etwas mehr abbekom-
men als die seitlichen.

Betrachten wir nun den antimetrischen Lastfall, so ersehen wir aus
den GI. (73a, b, ¢), daB bei Beriicksichtigung des Einflusses des Schub-
moduls G auf die &, selbst bei Vernachldssigung der 4 und der Einwirkung
der Poisson’schen Zahlen, die Faltwerksquerschnitte nicht eben bleiben, son-
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dern sich in geringem Mafle verwdlben. Setzt man in den Gl. (652’ b/, ¢, d)
die e=0, so erhalten wir vier lineare algebraische Gleichungen mit den vier
Unbekannten p,y, pyor, psy und py. Lost man diese nach den p auf, so er-
geben sich Werte, welche die GI. (47a, b, ¢) nicht befriedigen, wenn man
in den letzteren f; und ¢ Null setzt. Da die Gl. (47a, b, c¢) letzten Endes
der Ausdruck fiir die Gleichgewichtsbedingungen Gl. (27) sind, ergibt sich,
daBl es selbst fiir den Fall der reinen Torsion ohne Lingsdehnungen keine
allen Bedingungen geniigende Losung gibt. Ein Ebenbleiben der Faltwerks-
querschnitte ist eben, wie wir es bereits auf Seite 152 allgemein gezeigt
haben, nur dann moglich, wenn (auBer der notwendigen und hinreichenden
Bedingung, daB das Faltwerk im Querschnitt die Figur eines stabilen Fach-
werkes aufweisen muB) der EinfiuB der Querkrifte Q und der Poisson’schen
Zahl auf die Durchbiegungen & verschwindet und die 4 — 0 werden.
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Fig. 8 f

Aus den GI. (75) ersehen wir, daB die zum antimetrischen Lastfall ge-
hérigen Durchbiegungen ungefihr 40 bis 50 mal so groB sind als beim
gleichen Lastfall des 1. Beispiels. Da sie aber gegeniiber den Durchbiegun-
des symmetrischen Lastfalls nur ungefihr 105 betragen, wird sich auch bei
diesem Beispiel der Mittelquerschnitt- des Faltwerkes nahezu vollkommen
parallel zu sich selbst nach abwirts verschieben, so daB bei diesem Hohl-
trager auch bei Beriicksichtigung des Einflusses der Q auf die Durchbie-
gungen £ praktisch eine vollkommene Querverteilung der Lasten eintritt.
Aus den Gl. (74) erkennt man, daB sich auch fiir den antimetrischen
Lastfall die GroBe und Verteilung der Schubspannungen z gegeniiber
dem 1. Beispiel vollstindig andert. Wihrend im 1. Beispiel hauptsiich-
lich die dem Kriftepaar benachbarten Scheiben die gréBten Schub-
spannungen erhielten, wird bei dieser Aufgabe das Torsionsmomeant
hauptsiachlich von den auBeren Scheiben aufgenommen, wihrend die Fiil-
lungsscheiben nur geringe Scherspannungen erleiden. AbschlieBend kénnen
wir also sagen, daB die Beriicksichtigung des Einflusses des Schubmoduls G
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die Liangsspannungen, Lingsdehnungen und Durchbiegung nur sehr wenig
beeinfluBt. Diese WirkungsgréBen vermehren sich z. B. in dieser Aufgabe
um nur ungefihr 10p. Bei der Berechnung der Schubspannungen ist aber
die Einschaltung des Moduls G unbedingt erforderlich. Weiters bemerken
wir, dafB3, wie sich aus den Gl. (67a, b, ¢, d) und (72a, b, c) ergibt, bei Be-
riicksichtigung des Einflusses von G die Querbelastungen p beim symme-
trischen Lastangriff auf ungefihr 1/,, sinken, beim antimetrischen Fall jedoch
in der gleichen GroBenordnung verbleiben.

d) Wahl der Rechnungsart.

Das erste Zahlenbeispiel sollte den EinfluB der Dehnungen 4 quer zu
den Scheibenachsen und der Poisson’schen Querdehnungszahlen m demon-
strieren. Man erkennt sehr leicht, daB dieser in dem vorliegenden Beispiel so
klein ist, daB man ihn hitte ruhig vernachliassigen konnen. Dies trifft aber
nur fiir Hohltriger zu, deren Querschnittsbreite im Vergleich zur Quer-
schnittsh6he nicht allzu groB ist, wie dies bei dem in Fig. 7a dargestellten
Tragwerk zutrifft. Der geringe EinfluB der 4 und der m stimmt mit der
geringen Verformbarkeit des Querschnittes vollstindig iiberein (Fig. 8d
und 8e). Bei Hohltrigern, deren Querschnittsbreite im Vergleich zur Quer-
schnittshohe sehr groB ist, ist die Verformbarkeit in der Querrichtung jedoch
schon so groB, daB der Einflu8 der 4 und der m nicht mehr vernachlassigt
werden darf. Erinnern wir uns noch der groBen Bedeutung des Schub-
moduls G fiir die Berechnung der Schubspannungen 7, so kénnen wir fol-
gendes aussagen:

1. Hohltriger mit wenig verformbaren Querschnitten kénnen nach dem
in Beispiel 2 eingeschlagenen Weg berechnet werden.

2. Die Berechnung von Hohltrigern mit stark verformbaren Querschnitten
muB jedoch unter Beriicksichtigung der Liangeninderungen 4 quer zu
den Scheibenachsen, der Querdehnungszahlen m und der Schubmodule G
durchgefiihrt werden.

Ist das Verhiltnis %—? der einzelnen Scheiben gedrungen, so ist es manch-

mal ratsam, fiir die Durchbiegungen & die genaue Form Gl. (26) zu benutzen.

Wir erwihnen noch, daB, wie sich aus Beispiel 2 ergibt, bei Beriick-
sichtigung des Schubmoduls G die Querbelastungen p bestimmbar sind,
auch dann, wenn die 4 und m unterdriickt werden.

e) Allgemeines.

Hohltrager mit rahmenartigem Querschnitt (Fig.1) haben bei weitem
keine so giinstige Querverteilung als Faltwerke, welche im Querschnitt die
Figur eines stabilen Fachwerkes aufweisen. Man muB bei diesem die giin-
stige Querverteilung durch Einbau von steifen Querrahmen erzwingen.

Durch diese Studie ist auch die Torsions- und Schubtheorie der diinn-
wandigen, offenen und geschlossenen Querschnitte und zwar mit und ohne
Querschnittsverwolbung einer vollstindigen Behandlung zugefithrt. Es ist
hier im Gegensatz zu den bisherigen diesbeziiglichen Untersuchungen der
EinfluB der Querschnittsverformung und die Art und Weise, wie die Tor-
sionsmomente bezw. Querkrifte in die Querschnitte eingefiithrt werden, be-
riicksichtigt. AuBerdem sind die quer zu den Scheibenachsen verlaufenden
Spannungen berechenbar.
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In dieser Abhandlung ist die Verteilung der Lingsspannungen o, inner-

halb der einzelnen Scheiben als geradlinig angenommen. Handelt es sich
. 2h

um Faltwerke, die aus Scheiben mit gedrungenem Verhaltnis ;- zusammen-
gesetzt sind, so ist die Verteilung der Lingsspannungen mit Hilfe von
Airy’schen . Spannungsfunktionen genau zu erfassen. Die daraus resultie-
rende exakte Membranentheorie der Faltwerke wird der Gegenstand einer
meiner weiteren Abhandlungen sein.

Zusammenfassung.

In dieser Arbeit werden die Hohltrager als Faltwerke aufgefaft. Man
kommt dadurch dem tatsidchlichen Verhalten solcher Tragwerke am nichsten.
Zuerst wird die allgemeine Theorie der gelenkigen, mehrteiligen Faltwerke,
das sind solche, bei welchen in einem Knoten mehr als zwei Scheiben zu-
sammenstoBen, in einer neuen Form unter Zugrundelegung zweier Konti-
nuititsbedingungen wiedergegeben. Dabei wird der EinfluB der Poisson-
schen Zahl m, der EinfluB der achsnormalen Normalspannung o,, und der
der Schubspannungen t beriicksichtigt. Entsprechend der Navier’schen Biege-
lehre wird der Verlauf der achsparallelen Normalspannungen o, von Falt-
werksknoten zu Faltwerksknoten geradlinig angenommen. Es ergeben sich
die dazugehoérigen Elastizititsgleichungen als simultane, lineare Differential-
gleichungen sechster Ordnung, welche durch gut konvergierende Fourier’sche
Reihen integriert werden. Bei der Durchfithrung der beiden Rechenbeispiele
wurde vom Belastungsumordnungsverfahren mit Erfolg Gebrauch gemacht.
Die Frage, wann bei einem Hohltriger die Verteilung der achsparallelen
Spannungen o, iiber den gesamten Faltwerksquerschnitt eine ebene ist, wird
eingehend behandelt. Sie tritt mit Ausnahme von speziellen Belastungsfillen
nur dann ein, wenn der Faltwerksquerschnitt die Figur eines unverschieb-
lichen Fachwerkes aufweist und wenn der EinfluB der achsnormalen Deh-
nungen A4, sowie der EinfluB der Querdehnungszahl 7 und der der Quer-
krafte Q auf die Durchbiegungen & vernachlassigt wird. Alle Punkte eines
Querschnittes solcher Hohltriger senken sich nahezu um das gleiche MaB,
ganz. gleichgiiltig, wie die Lasten in der Querrichtung verteilt sind. Es
handelt sich somit hier um ein Tragsystem, welches die Lasten in achsnor-
maler Richtung praktisch vollkommen gleichmiBig verteilt. In dem durch-
gefithrten Rechenbeispiel ist die Abweichung nicht einmal 10/p. Bei Tor-
sionsproblemen darf der EinfluB der Querkréafte nicht unterdriickt werden,
da man sonst zu ganz falschen Ergebnissen beziiglich der Schubspannungen
kommt. Durch diese Studie ist auch die Torsions- und Schubtheorie der diinn-
wandigen, offenen und geschlossenen Querschnitte und zwar mit und ohne
Querschnittsverwolbung einer vollstindigen Behandlung zugefiihrt. Es ist
hier, im Gegensatz zu den bisherigen diesbeziiglichen Untersuchungen, der
EinfluB der Querschnittsverformung und die Art und Weise, wie die Tor-
sionsmomente bezw. Querkrifte in das Tragwerk eingefithrt werden, be-
riicksichtigt. AuBerdem sind die quer zu den Scheibenachsen verlaufenden
Spannungen berechenbar.

Résumé.

Ce travail contient une théorie des poutres creuses traitées en «toits
plissés». Cette interprétation s’adapte particuliecrement bien a 1’étude du
comportement effectif de tels systémes. En premier lieu figure la théorie



176 E. Gruber

générale des «toits plissés» multiples articulés; ils sont caractérisés par
le fait que le nombre de disques qui se coupent en une aréte dépasse deux.
La théorie elle-méme est nouvelle et repose sur deux conditions de conti-
nuité; en plus, elle tient compte de l'influence du nombre m de PoissoN,
des contraintes o, normales a l’axe et des contraintes en cisaillement 7.
D’apres la théorie de la flexion de NAVIER, la variation des contraintes o,
paralleles a I'axe peut étre supposée linéaire entre chaque aréte des «toits
plissés». Il en résulte les équations d’élasticité correspondantes sous forme
d’équations différentielles linéaires simultanées du 6eme ordre; celles-ci sont
intégrées au moyen de séries de FOURIER qui convergent rapidement. Les
deux exemples numériques qui suivent mettent en évidence le procédé avan-
tageux de la «superposition des états de charge». La question, a savoir dans
quel cas on peut admettre, pour une poutre creuse une répartition plane
des contraintes o, paralleles a I'axe sur la section totale d’un «toit plissé»,
est étudiée avec beaucoup de soin. Ceci n’a lieu, exception faite pour quel-
ques cas de charges particuliers, que quand la section du «toit plissé» a la
forme d’une poutre réticulée non-déplacable et a condition que ’on néglige
Vinfluence des extensions 4 normales a ’axe, du nombre de PoissoN m et
des efforts tranchants Q sur les flexions £ Ces conditions remplies, tous
les points d’une section s’abaissent approximativement dans la méme mesure
indépendamment de la répartition en travers des charges. Il s’agit par con-
séquent ici d’un systéme qui répartit les charges pratiquement de ma-
niere égale en direction perpendiculaire a 1’axe. L’exemple numérique traité
montre un écart de moins de 10/. S’il s’agit de problémes de torsion, I'in-
fluence des efforts tranchants ne peut étre négligé, car cela fausserait com-
pléetement les contraintes de cisaillement. Ce mémoire permet de traiter
de maniere complete la théorie de la torsion et du cisaillement des sections
minces, fermées et ouvertes, en tenant compte ou non du bombement de la
section. Contrairement aux recherches habituelles, il est tenu compte ici
de la déformation de la section et de la maniére dont les moments de tor-
sion et les efforts tranchants sont introduits dans le systeme. De plus, les
contraintes transversales aux axes des disques sont accessibles au calcul.

Summary.

In this paper hollow beams are conceived as being made up of a
shed-type system. This gives results which approximate most closely to
the actual behaviour of such supporting structures. First of all the general

theory of a multiple articulated shed-type system, — that is to say of
one in which more than two plates meet together at an assemblage
point, — is given in a new form based on two conditions of continuity.

Consideration is also taken of the effect of the Poisson number m,
of the stresses o, normal to the axis, and of the shear stresses z. Accor-
ding to the Navier theory of bending, the variation in the normal stresses
o, parallel to the axis, from one assemblage point to another of the shed-
type system, is assumed to be rectilinear. From this are obtained the res-
pective elasticity equations in the form of simultaneous, linear differential
equations of the 6th order, which are integrated by means of quickly con-
verging FOURIER series. In calculating the two numerical examples here given,
successful use is made of the method of superposing the loaded states. A
careful examination is made regarding the question as to when plane distri-
bution occurs in a hollow beam of the stresses o, parallel to the axis over
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the whole cross-section of the shed-type system. With the exception of
quite special cases of loading, this happens only when the cross-section of
the shed-type system has the form of a non-displaceable lattice-work system
and when the influence of the extensions 4 normal to the axis, as
well as the influence of the coefficient m of transverse extensions and
the influence of the transverse forces Q on the deflections £ are neglected.
Every point in a cross-section of such hollow beams is lowered by appro-
ximately the same amount, no matter how the loads are distributed in the
transverse direction. Here, consequently, we have a supporting system which
distributes the loads practically quite uniformly in a direction normal to
the axis. The deviation from this uniformity is less than 104 in the given
numerical example. In the case of torsional problems the influence of the
transverse forces may not be neglected, otherwise quite erroneous conclu-
sions would be drawn with respect to the shearing stresses. By means of
this investigation the theory of torsion and shear in thin-walled open and
closed cross-sections can be fully dealt with, account being taken, or not,
of the hogging of the cross-section. Here, in contrast to the manner of
research hithero usual, consideration is paid to the influence of deforma-
tion of the cross-section and the way in which the twisting moments or
transverse forces are introduced into the supporting system. In addition,
it is possible to calculate the stresses running transverse to the axes of
the plates.
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