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LE CALCUL DES PLAQUES OBLIQUES PAR LA METHODE
DES EQUATIONS AUX DIFFERENCES.

DIE BERECHNUNG DER SCHIEFEN PLATTE MIT DER
DIFFERENZENRECHNUNG.

THE CALCULATION OF OBLIQUE SLABS BY THE METHOD
OF DIFFERENCES.

HENRY FAVRE, professeur a I’'Ecole polytechnique fédérale, Zurich.

Dans un mémoire paru récemment, nous avons montré qu’il est commode
d’utiliser un systéme de coordonnées cartésiennes obliques pour I’étude des
plaques dont le contour est un parallélogramme?). Apres avoir €tabli les
équations générales de la théorie dans ce systéme de coordonnées, nous
avons donné des formules approchées pour le calcul de la plaque obllque
encastrée a charge uniformément répartie.

Ces dernieres formules ont été obtenues a l'aide du principe des tra-
vaux virtuels. L’application de ce principe constitue, comme on sait, une des
principales méthodes que les ingénieurs utilisent aujourd’hui dans leurs re-
cherches sur la déformation des solides élastiques.

Nous nous proposons maintenant de montrer que les coordonnées obli-
ques sont également commodes lorsqu’il s’agit d’appliquer la méthode des
équations aux différences a I’étude des plaques dont le contour
est un parallélogramme. Le choix d’un réseau oblique, constitué par
deux systemes de droites paralleles aux cOtés, parait étre en effet 'un des
mieux adaptés a ce contour. En outre, comme un exemple le montrera, les
réseaux obliques permettent d’établir pour le parallélogramme des formules
générales qu’il serait certainement plus difficile d’obtenir a 1’aide d’autres
réseaux 2).

Dans la premiere partie de ce mémoire, nous rappelons les équations
fondamentales de notre étude précédente. Dans la seconde, nous établissons
les équations aux différences relatives aux réseaux obllques Celles-ci sont
ensuite appliquées a I’étude de la déformation de la plaque coblique posée,
a charge uniformément répartie. Enfin, dans un dernier paragraphe, nous
comparons la fleche de la plaque posée a celle de la plaque encastrée.

1) Voir «Contribution a 1’étude des plagues obliques». Schweizerische Bauzeitung
des 25 juillet et ler aofit 1942 et Bulletin technique de la Suisse romande du 3 octobre
1942,

2) On a utilisé jusqu’a présent, pour I’étude des plaques obliques, des réseaux
triangulaires et des réseaux rectangulaires. Pour les premiers, voir H. Voagt,: « Beitrag.
zur Berechnung schiefwinkliger Platten». Diss. der T. H. Hannover, 1939. Pour les
seconds: F.StUssi: «Die neue Eisenbahnbriicke bei der SeestraBen- Unterfuhrung in
Ziirich-Wollishofen». Schweizerische Bauzeitung du 20 décembre 1041,
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§ 1. Rappel des principales équations de la théorie des plaques,
en coordonnées cartésiennes obliques.

Considérons une plaque d’épaisseur /, sollicitée par des forces exté-
rieures perpendiculaires aux faces et posée ou encastrée le long du pour-
tour (fig. 1). Choisissons un systeme cartésien oblique Ouvz dont les axes
u, v sont situés dans le plan équidistant des faces, avant la déformation.
Les axes u, v font un angle « compris entre 0 et zz, ’axe z est perpendicu-
laire aux deux premiers.

ﬁ/z
/Pﬁz ¥0) ) ~r
%‘%&ﬂ e uy
a
)

Soit { = PP’ le déplacement, paralléle a z, d’un point P du plan u, v.
Le lieu des points P" (u, v, {) est la «surface élastique ».
Nous avons démontré, dans notre premier mémoire, que ’équation diffé-
rentielle de cette surface est?3):
o*l  9%¢ ( 0*C
(¥

— f~r'—-4005a
ou* vt

4(.

04 12(1—1/2)sin‘1ap
oul ove — - E h3 ’ (1)

N ot
oudov ouovs

)+2(1+2cos a)

E étant le module d’élasticité de Young, » = P le coefficient de PoissoN,
p(u, v) la surcharge par unité de surface.
Cette équation peut aussi s’écrire:

12(1 - »?)

aar="20-09 ), @

olt opérateur de LapPLACE a I'expression suivante:

2 ~9 n)
A = .1 (02cosa < 4+ ° ) (3)

sine \ du? LoV ov?

Le travail de déformation intérieur est donné par une intégrale double,
¢tendue a la surface F de la plaque:

T 53 ~21\ 9 ~9 3 g g2l o2¢r
A:24(1—bvil)sin3a(g () + (55) + 2(cosras »sinza) S e l “
+ 2[2cos?a + (l—u)sin?a]( aQé) —4c05a(a2( + 62C> il la’u dVJ

ou v ou® ouov)
et le principe des travaux virtuels est exprimé par la relation:
sina [[ pdldudv—0A =0. (5)

(F)
Les «composantes des tensions en coordonnées obliques» sont les sui-
vantes (fig. 2):

3) loc. cit., § 2.
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Ez o2l 02 L 0% C
Op = — l — —2¢ ° > 4 (cos®a+ vsin? a)—~],
¢ 2 c
(1-v?) sin®eléu ou v
Fz ) . 62l 2 021 ]
Oy == — -—-——___|(cos? sin?a) —- --2cosc« g —
v (1=v%) sinve | (COS7 T 7 sina) s ou >v+ av? L (6)

Ez ) ¢:C ¢* ) ]
- °= —2
[cosa (auz + - T + {(1+v)sin®e } T

ey = (129 sinfa

Oy = Tyy; = Tzu = 0.

Ces formules permettent de calculer les tensions dés que 'on connait
¢ (u, v).

Remarque. Si la plaque a la forme d’un parallélogramme et si ¢
est nul le long du contour, ’expression du travail de déformation se sim-

plifie, car?):
2 2 = [ (25 :
ou ove T ) awaw) M (7)
(@) (F)

L’expression (4) s’écrit, en tenant compte de (7):

BRI (e )
A= (1-»?) sin® « j au) T 6?2,) +2(1+2cos*a)\7 1
(F) J (8)

0% ¢\ 6%l
2 ovi/ oud

du dv.

8 2. Equations aux différences relatives aux réseaux obliques.

L’équation différentielle de ia surface élastique

12(1 v2)

peut étre remplacée par les deux suivantes:
121 -»%)p .
dq = TTERS 42 =gq;

olt ¢ désigne, comme £, une fonction inconnue de z et v.
Ces relations s’écrivent, si ’on utilise I’expression (3) de 'opérateur 4:

0%q 2q 0%g _ 12(1-»*)sin®«

PP 2cosa 2mov + F Eps P | )
8% L e*L | o*C .,

W—Zcosa(w&v—{- e = sin« - q. (10)

Nous allons remplacer ces deux équations différentielles du second
ordre par deux systemes d’équations algébriques linéaires. A cet effet,
choisissons dans le plan «, v le réseau indiqué a la figure 3.

Ce réseau est constitué par des droites z = const. et v = const. équidis-
tantes. Les mailles sont des parallélogrammes égaux, de cotés Au et Av.
Les droites u = const. sont numérotées ...m—1, m, m--1,..., les droites
v=const. ...n—1, n, n--1,...

4) loc. cit., § 3.



04 H. Favre

Les sommets des parallélogrammes sont désignés par les numéros des
deux droites qui les définissent. Par exemple, 'intersection des droites m
et n est désignée par m, n. De méme, toute grandeur relative a ce point
sera affectée de l’indice m, n.

AY)
d .
7 >y
. / /
E) / F)
i Fig. 4
0 >y

Fig. 3

Cela posé nous avons, avec une exactitude d’autant plus grande que
Au et Av sont plus petits?):

(f?,g) — §m+1,n ""'Cm-l,n

OU m,n 2 Au ’

(_‘E) _ bmnrt— Lmynot
oV /mn 2 Ay H
LY _ mein—2Lmn + lnoan o
ou)mn Au? ) )

(&2C) . Q'm,n+1 T 2 L,‘m,u -+~ %‘m,n—l
. —_— T T T e ’
ove/)mn A v?

( 0%cC ) Cmatnil *F Smet,n1— Smal,n1— Sm-1,n41
o ov/mn 4 Au Av ’

et des expressions analogues pour

(89).... (€9)... (&4, (&9, « (5
ou/mn’ \ov/mn’ \ou2/mn’ \Qv2/mn ouov/mn’

Introduisons ces valeurs des dérivées secondes dans (9) et (10). On
obtient pour le point, m, n les deux équations aux différences:

I

9mii,n— 2(]m,n + gm-1,n qm+1,rz+1 + Am-1,n-1—"9mit,n-1—Gm_-1,n4+1

—2cos«

A u? 4 AuAv (12)
qm,n+1_2qm,n+qm‘n__1 . 12(1—*1’2) Sin203
+ Ave = Ehd = Pm,n
Cnat,n=2Cmntim-1,n 9 cos @ Cmatyna1+Em 1,01 = Cmyt,n-1—Em_1,n41
Au? 4 AuAv a3)
. . .
tm,n+1_24m,n+4m,n~1 <9
Ave =sin*a - gmn -

5) Ces expressions sont les mémes en coordonnées obliques qu’en coordonnées
rectangulaires. Pour ces derniéres, voir par exemple Napar: «Elastische Platten», Sprin-
ger, Berlin, 1925, p. 216 et suiv.
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Remarquons que l’on passe de la premiére équation a la seconde en
remplacant ¢ par et le second membre par sinZe - .

A chaque point tel que m, n, situé a intérieur du contour de la plaque,
correspondent deux équations analogues. On pourra écrire autant d’équa-
tions (12) et (13) qu’il y a de sommets a 'intérieur du contour de la plaque.
- D’autre part en chaque sommet situé sur le contour, les conditions aux
limites peuvent s’exprimer a 'aide de deux équations aux différences ana-
logues a (12) et (13).

Nous aurons en tout deux systemes d’équations algébriques linéaires,
I'un correspondant aux relations (12), Pautre aux relations (13). La réso-
lution de ces deux systemes par rapport aux grandeurs et ¢ donnera les
valeurs approchées des coordonnées ¢ de la surface élastique pour les som-
mets du réseau.

Les équations (11) permettront ensuite de calculer les dérivées secondes

ol  ¢%*C 0%¢

cu?’ ov:’ Qu dv

qui, substituées dans les formules (6), donneront les valeurs approchées
des tensions.

Les équations (12) et (13) peuvent étre appliquées a la résolution de
problémes particuliers relatifs aux plaques obliques. Mais elles
peuvent étre aussi utilisées dans la recherche de formules générales
permettant I’étude de 'influence de la forme de la plaque sur certaines gran-
deurs, comme nous le montrons au paragraphe suivant.

§ 3. La déformation de la plaque oblique posée, a charge
uniformément répartie.

Nous nous proposons, comme application des formules établies au pa-
ragraphe précédent, d’étudier la fleche de la plaque oblique posée, a charge
uniformément répartie. ’

Soient 2a et 2b les cOtés de la plaque, « un des deux angles, p la sur-
charge constante. Choisissons le systéeme «, v indiqué a la figure 4.

Remarquons que le long du contour on doit avoir { =0 et ¢ =47 =0.
La premiere égalité exprime que les points du contour ne subissent aucun
déplacement, la seconde, que les tensions ¢ relatives aux éléments de sur-
face paralleles au contour y sont nullesé). On sait, depuis les travaux de °
KircHHOFF, qu’il n’est pas nécessaire d’annuler les tensions tangentielles le
long du contour.

a) Formules de premiere approximation pour la fléche.

Choisissons tout d’abord le réseau le plus simple que ’on puisse ima-
giner, défini par les axes «, v et les quatre cotés de la plaque (fig. 4). Ce
réseau ne comprend que quatre parallélogrammes de cotés Adu=a et Av=>5.
Désignons par 0 U'intersection des axes. Les autres sommets n’ont pas besoin
d’étre numérotés, car ils sont tous sur le pourtour, ot { et ¢ sont nuls.

Chacun des systemes (12) et (13) ne comprend qu’une équation, celle
relative au point 0.

¢) 11 est facile de vérifier, a 'aide de (3) et (6) que,si les conditions { =0 et
AL = 0 sont remplies, on a 6,=0 pour u = +a et g,= 0 pour v= + b.
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L’équation (12) s’écrit:

0—2¢,+0 0+0—-0—-0 0—2¢,+0 _12(1-7»*)sin*ap
B B VY T b = E )
c’est a dire: 1 )

1 1 2(1-»?)sin2ap ,

En remplacant, dans cette équation, g, par {, et le second membre par
sin2¢« - ¢, I’équation (13) s’écrit:

La résolution du systeme (12’) (13’) par rapport a ¢, et {, donne pour
la fleche f={,:

(1-»®)p a®b®sintu ‘
f=3 (14)
s

a)

Cette valeur de la fleche peut s’écrire:

(1-»*)F?p (a, ) 1
f="fp lpe) (15)
olt F désigne la surface 4ab sin« de la plaque et
Q’)(a a) sin® « avec n <a>2
7 —_— y = \— . 1
b 16 (14 b | (10)

@ dépend uniquement de la forme de la plaque.

La figure 5 donne une représentation graphique de la fonction @, pour

;<‘; < 3 et 30° << « < 1500 (trait pointillé). Elle montre V'influence

de la forme de la plaque sur la valeur de la fleche.

b) Formules de seconde approximation pour la fleche.

Les formules (14), (15) et (16) ont ’avantage d’étre simples, mais elles
doivent étre peu exactes, étant donné la grandeur des mailles du réseau.

Pour obtenir des formules de seconde approximation, choisissons le
réseau indiqué a la figure 6. Ce réseau comprend seize parallélogrammes

de cotés du = ; et Av :g—. Comme l'origine des axes est un centre de

symétrie, les sommets sont symétriques deux a deux. Il suffit de les nu-
méroter de 0 & 4, comme l’indique la figure. Les sommets situés sur le pour-
tour n’ont pas besoin d’étre numérotés, car { et g y sont nuls.

Chacun des systemes (12) et (13) comprend cinq équations.

Le systeme (12) s’écrit:
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et
e
O B
4 02040, 0+0-0-g, ¢,-2q,+0 _

Tl TE R )

Le systéeme (13) s’obtient en remplacant, dans les cinq derniéres équa-
tions, ¢ par ¢ et les seconds membres par sinZa-¢g; (i=0, 1,...4).
Apres simplifications et en posant

3(1-v?)a%b?sinfap a’b?sina ’
Ehb -~ =, o = e&. (17)
on obtient le systéeme de dix équations linéaires (12”) (13”):

—2(a?+b%)gq, +26%¢q, +2a%q, —abcosagst+abcosaqg, =c¢

b% qy—2(a*+6?) g, +a%q; +a%q, =c

a’ g, -2(a*+6%) g, +b%q, +b2q, =c (127)
—~%abcosagq, +a®q, +6%2q, — 2(a?+6%) g5 —c
+4abcosag, +a?q, +b%q, -2(a®+b6%)¢q, = ¢
-2(a%+b%) L, + 2620, +2a%l, —abcosaly +abcosal, = &gq,

b% Ly —2(a*+6%)(, +a?l, +a*l, = ¢q,

a® - 2(a®+6%) L, + 62, + 620, =¢q, ¢(13")
~tabcosal, +a?i, + 620, —2(a2+b?); = &g,
+4abcosal, +a*l, + b2, ~2(a?+b%)(, = €q,

La résolution du systeme (12”) (13”) par rapport aux dix inconnues
Ggo---qGy Co-.., est longue, mais facile. On obtient pour la fleche f={,:

_ (=) Fp

=% ey, -

'L

ou F désigne la surface 4ab-sina de la plaque et

. ;+49n+159n2+49n3+—Z—n4+(1—12n—14n2——12n3+n4)Z”(ii—s;; .
qi(?’a): 64 1+4n+n? RE sin*e,
2 [(1+n)(1+6n+n2)-mncosza]
avec n = (a)Q.
b

Abhandlungen VII 7

(18)
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g a
¢(b ,aL) Y- /
8 .y 2 _ o074
. A 14 & 5 a7
0045 a3 a
g 18 » 2.ys
2 7 0556
3 a
2 -22 0+ 2045
5 y 0
a P)
2. =26 » L =-0385
R
a a
g <30 & -0333
AR
0030
0075
1 &
0 J0° W 30 60 70 80 90 700 70 20 7130 140 750 180°

Fig. 5. Plaque oblique posée, a charge uniformément répartie. Représentation graphique
de la fonction di(%,-a . — Schiefe freiaufliegende Platte mit gleichmiBig verteilter Be-
lastung. Graphische Darstellung der Funktion @(»Z—, a

formly distributed load. Graph of the function ¢(a )

. — Oblique free slab with uni-

5
d’apres la formule (16) d’aprés la formule proposée (18)
----- nach der Formel (16) —-—-— mnach der vorgeschlagenen Formel (18)
according to formula (16) ' according to the proposed formula (18)

Valeurs données par la solution rigoureuse de Navier (plaque rectangulaire)
o Aus der strengen Losung von Navier stammende Werte (Rechteckige Platte)
Values given by the rigorous solution of Navier (rectangular slab)

La figure 5 donne une représentation graphique de la fonction @ (trait
mixte).
| Z:—const. données par la formule (18)
a celles données par(16) pour les mémes valeurs deﬁ, on voit qu’elles dif-

Si nous comparons les courbes

ferent sensiblement. Ceci n’a rien d’étonnant. Le calcul qui conduit & (16)
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est en effet peu rigoureux, puisqu’un seul sommet du réseau «auscultes
la déformation de toute la plaque (point 0, figure 4). Au contraire, dans
le calcul qui conduit & (18), neuf points auscultent la plaque (0, 1, 1,...4, 4,
voir fig. 0).

0050 "
e N
o —— I\

2035 \\
2030 \

2025 T

Q020

ass | | ][ ;

a0 I ey

aoos

! | a
L % l A
g w0 12 14 16 18 20 22 24 26 28 30 32 3% 36 J8 7/ Y4

Fig. 7. Plaque rectangulaire posée, a charge uniformément répartie. Représentation gra-

phique de la fonction ¢(£, 90"). — Rechteckige freiaufliegende Platte mit gleichmiBig

verteilter Belastung. Graphische Darstellung der Funktion d?(%, 90°}). — Rectangular free
slab with uniformly distributed load. Graph of the function qﬁ(a 90") .

b”:
d’apres la formule (16) d’aprés la formule (18)
----- nach der Formel (16) —-—-— nach der Formel (18)
according to formula (16) according to formula (18)

d’aprés la solution rigoureuse de Navier
———————— nach der strengen Losung von Navier
according to the rigorous solution of Navier
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Pour permettre de se rendre compte de PPapproximation de (18), nous
avons indiqué a la figure 5 les points donnés par la solution rigoureuse
de NAVIER pour la plaque rectangulaire posée, a charge uniformément ré-
partie 7). Ces points sont figurés par des petits cercles dont les centres
sont sur la droite « =909, On voit que les valeurs de @ qu’ils indiquent
sont tres voisines de celles données par la formule (18).

La figure 7 permet également de comparer, pour la plaque rectangulaire,
les courbes @ %,900 données par la formule (16) (trait pointillé), la for-

mule (18) (trait mixte) et la solution rigoureuse de NAViER (trait continu).
Ces deux dernieres courbes sont tres voisines. La formule de seconde appro-
ximation (18) doit donc étre assez exacte.

C’est pourquoi nous proposons les formules (15) et (18)
pour le calcul de la fleche des plaques obliques po-
sées, a charge uniformément répartie. Il faut s’attendre, dans

1
le domaine—g < %< 3, 300" a <" 1509, a ce qu’elles donnent f 4 quelques
pour cent pres. _
Remarque l. La figure 5 montre que, pour des valeurs F, /2, E, v, p
données, c’est la plaque carrée (a=06, =909 qui accuse la plus

grande fleche. Si %eét aussi donné, la fleche est maximum pour la plaque

rectangulaire («=0909). Enfin, si F, /&, E, v, p, « sont donnés, f est
maximum pour la plaque dont le pourtour est un losange (a=20).

Remarque II. Il est facile de déduire de (15) et (18) les formules
relatives aux cas particuliers suivants:

a) Plaque rectangulaire posée, de cotés 2a et 2b, a charge uniformé-
ment répartie (o= 909):

S H40n 15022 1 493+ pnt (1 oy pe
f = n - Fs s avec n =
-3?(1+n)2(1+6n+n‘3)2

) (19)

SHES

La figure 7 permet de comparer les valeurs données par cette formule
(trait mixte) a celles de la solution rigoureuse de NAVIER (trait continu).
L’approximation est trés bonne.

Si Pon remplace F par 4ab, il vient:

-;:+49f§“+159n2+49n3+~;/14 (-

)2) o4 ‘ 2
f="—g— é }g_{i [’,,’ avec n — (») .1 (20)
—3~(1+n)”3(1+6/z+n?)2

b) Plaque posée ayant la forme d’un losange de cété 2a, a charge uni-
formément répartie (n—=1):

) Voir G. Piceaup: «Résistance des matériaux et élasticité», Gauthier-Villars,
Paris, 1920, p. 619 et suiv.
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__9(352-3cos?a)sin?a (1-v2)F2p
I = " 64(32-3 cos? a)® Ehs (21)
( )
et en remplacant F par 4a2sina:
f = 0 (352 -3 cos?a)sinta (1-»%)a*p (22)
~ 4(32-3cos%a)? Eh®

c) Plaque carrée posée, de coté 2a, a charge uniformément répartie
(r=1,2=900):

_ 99 (1-v)atp 23

f= 128 E k3

Remarque Il Le réseau choisi n’a pas assez de mailles pour per-
mettre une évaluation convenable des tensions.

Remarque IV. On sait qu'une plaque rectangulaire simplement
posée, a charge uniformément répartie, n’est pas appuyée tout le long du
contour et que ses quatre angles se levent légérement. Pour empécher ce
phénomene, il est nécessaire d’appliquer une force isolée a chaque sommet
du rectangle. Cette tendance au soulévement des angles doit aussi exister
chez les plaques obliques posées. Notre calcul, qui suppose que I est ri-
goureusement nul le long du contour, n’est donc valable que si les angles
sont empéchés de se déplacer.

§ 4. Comparaison des fleches des plaques obliques posées
et encastrées, a charge uniformément répartie.
Dans notre premier mémoire sur les plaques obliques, nous avons établi

pour le calcul de la fleche d’une plaque encastrée a charge uniformément
répartie la formule suivante 8):

j= =g () (15)

olt ¢ est approximativement:

& (“Z’ a) = 0,03813 sin? «

2t () (0 cowe

(24)

La figure 8 permet de comparer les valeurs de @ relatives aux plaques

- . a N . . .
posées et encastrées. Les courbesZ:const. a trait mixte donnent la varia-

tion de @ en fonction de « pour la plaque posée. Celles a trait continu in-
diquent cette variation pour la plaque encastrée?). Les deux familles de
$) Voir loc. cit. formules (22) et (28).
9) Ces dernieres courbes n’ont été dessinées que pour %<% < 2et 300 <o <1500,
qui est le domaine d’application de la formule (24) (voir loc. cit. § 4).
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Fig. 8. Plaques obliques a charge uniformément répartie. Représentation graphique de
la fonction (l')(%, a) . — Schiefe Platten mit gleichmiBig verteilter Belastung. Graphische
Darstellung der Funktion 95(—‘1—, a). — Oblique slab with uniformly distributed load.

b
Graph of the function di(%,' a).

plaque posée plaque encastrée
—.—.— freiaufliegende Platte ————— eingespannte Platte
free slab fixed slab

courbes ont sensiblement la méme allure. Les premieres (plaques posées)
accusent évidemment des valeurs de @ beaucoup plus grandes que les se-
condes (plaques encastrées).

La figure 8 permet aussi de trouver par interpolation la valeur QD(—Z—, a)

pous une plaque oblique posée oli encastrée, a charge uniformément répartie.

Cette figure peut étre considérée comme l’aboutissement de nos deux
études sur la fleche des plaques obliques.
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Fig. 9. Plaques obliques 2 charge uniformément répartie. Représentation graphique du
‘-ppl. enc.

rapport £ = B . — Schiefe Platten mit gleichmiBig verteilter Belastung. Graphische
vl pos. qj eingesp. Pl.

Darstellung des Verhiltniswertes 2 — B .
freiaufi. Pl.
buted load. Graph of the ratio £ =

— Oblique slab with uniformly distri-
gzsfz'xed slab
d?free slab

- . & a .l
A la figure 9, nous avons dessiné quelques courbes fb——r::const. repré-

@ pl. enc.

sentant, en fonction de l'angle «, le rapport 2= _— des fleches des
@ pl.pos.

plaques encastrées et posées1?). Ces courbes montrent que c’estlaplaque
carrée (¢=0b, «=909) qui accuse la plus grande valeur de 2 (0,315). La
plus faible valeur de ce coefficient (0,200) est donnée pas les plaques dont

un des coOtés est grand par rapport a 'autre (%: 0 et %:oo ainsi que par

. .. . a , .
celles oili a est voisin de 0° ou de 1809, Si B est donné, £ est maximum

pour la plaque rectangulaire («-=909). Enfin, si « est donné, £ est
maximum pour la plaque dont le contour est un losange (a=20).

Résumé.

Cette étude se rapporte aux plaques dont le contour est un parallélo-
gramme, Elle est destinée a montrer que, dans le calcul de ces plaques par
la méthode des équations aux différences, il est commode d’utiliser un ré-
seau oblique. Les équations que ’on obtient peuvent étre appliquées non
seulement & la résolution de problemes particuliers, mais a la recherche de
formules générales, ainsi que le montre ’exemple de la plaque oblique posée
a charge uniformément répartie. L’auteur établit une formule de premiere
approximation trés simple pour calculer leur fleche. Puis une autre de se-
conde approximation plus compliquée. Il compare les résultats des deux
formules. Les valeurs données par la seconde pour le cas particulier de la
plaque rectangulaire sont tres voisines de celles correspondant a la solution

10) Pour 300« a <1509, les courbes & — 1; 1,4 et 1,8 ont été construites a
b

Paide des valeurs de @ données par les équations (18) et (24). Nous avons complété ces
courbes pour 0 <o < 300 et 1500 <o < 180° en remarquant que lorsque a == 0 ou
180° le nombre £ doit étre égal au rapport des fleches des poutres simples encastrées
et posées, c’est a dire a ;g% = 0,200. Pour %: o et ;’—Z: 0, £ doit aussi étre égal
a ce rapport, de sorte que la courbe correspondante se réduit a la droite &= 0,200.
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rigoureuse de NAvier. Ce mémoire donne également un abaque qui permet
de trouver facilement la fleche d’une plaque oblique posée ou encastrée,
a charge uniformément répartie. Un autre abaque montre I'influence de Pen-
castrement sur la fleche.

Zusammenfassung.

Diese Arbeit bezieht sich auf Platten, deren Umfang ein Parallelogramm
ist. Es wird darin gezeigt, daB es zweckmaiBig ist, bei der Lésung dieser
Plattenaufgabe mit Hilfe der Differenzenmethode schiefwinklige Koordina-
ten einzufiihren. Die $o erhaltenen Gleichungen beschrianken sich nicht nur
auf die Losung von Einzelproblemen, sondern fithren auch zu allgemeinen
Formeln, wie das Beispiel der schiefen, freiauﬂiegenden Platte mit gleich-
maBig vertellter Belastung zeigt. Der Verfasser gibt eine erste sehr ein-
fache Niherungsformel zur Berechnung der Durchblegung an; es folgt dann
eine zweite Niherungsformel, deren Struktur weniger einfach ist. Letztere,
.auf den Spezialfall der rechteckigen Platte angewendet, ergibt fiir die Durch-
biegung Werte, die denen der strengen Losung von NAVIER sehr nahe
kommen. Dieser Arbeit ist auch eine Kurventabelle beigegeben, aus welcher
die Durchbiegung einer freiaufliegenden oder eingespannten schiefen Platte
mit gleichmdBig verteilter Belastung leicht entnommen werden kann. Eine
andere Kurventafel veranschaulicht den EinfluB der Einspannung auf die
Durchbiegung.

Summary.

This paper refers to slabs whose periphery forms a parallelogram. It
is intended to show that, when calculating these slabs by the method of
differences, it is convenient to make use of oblique coordinates. The equa-
tions thus obtained can be applied not only to solving particular problems,
but also to the search for general formulae, as is shown by the example of
the oblique slab subjected to a uniformly distributed load. The author gives
a very simple formula of first approximation for calculating the deflection;
then follows a second approximation which is more complicated. The re-
sults obtained with the two formulae are compared. The values given by the
second one for the particular case of a rectangular slab are very much the
same as the corresponding figures given by the exact solution of NAVIER.
This paper is also accompanied by a set of curves from which the deflec-
tion of an oblique slab, with free or fixed sides, can easily be ‘obtained.
Another set of curves shows how the deflection is affected by the fixing
of the sides.
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