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THEORY OF THE PLASTIC STABILITY OF THIN PLATES.

THEORIE DER PLASTISCHEN STABILITÄT DÜNNER PLATTEN.

THEORIE DE LA STABILITE PLASTIQUE DE PLAQUES MINCES.

Prof. Ir. P. P. BIJLAARD, Bandoeng, Java, Netherlands Indies.

According to the conceptions prevailing at present, the equations holding
in the elastic domain would remain valid for centric buckling of plates in
the plastic region, provided the decreased resistance to bending is taken into
account by replacing in it the modulus of elasticity E by the so called
reduced modulus of elasticity T1). The value of T is between that of E and
that of the total deformation modulus Et dojde at the buckling stress. At
the yield stress where Et is zero, T has the value zero too, so that the
resistance to bending of the plate is also zero there.
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As will be explained further on, the resistance to plastic buckling of a

plate is much greater than according to this conception, and while e. g. at
the yield-point the resistance of the plate to further compression is indeed
zero, with the resistance to bending this is not the case. I once casually
mentioned that the Situation is more complicated than in the case of centric
compression, because another state of stress is superposed by
the buckling on the original state of stress2). Now this very
fact appears to cause a rise of the yield stress whenever the amount of
bending is finite, as well as an increase of the resistance whenever amount
of bending is infinitely small.

We consider e. g. a rectangular plate of structural steel, infinitely long
in the Y direction and submitted to compression in the X direction (fig. 1).
The relation between the stress o and the strain e for linear stress is
illustrated by the diagram in fig. 2a.

Chwalla, Report of the 2nd Int. Congress for Bridge and Structural Engineering.
Vienna, p. 321—322 (1928). Bleich, Schleicher, Ros and Eichinqer, Int. Association for
Bridge and Structural Engineering, Ist. Congress Paris. Final Report, p. 120—149
1933). Timoshenko, Theory of elastic stability, p. 386—390 (1936).

2) Bijlaard, De Ingenieur, No. 26 (1934).
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If now the stress ox increases to the yield stress ov, and a further shor-
tening of the plate is opposed by preventing a further strain in the Y
direction, which according to my preceding publication on local plastic
deformations is possible3), then for a certain slenderness ratio of the plate an
approach of the ends AA and BB will still be possible due to buckling.
With continued buckling, an element dxdy dz in the concave side of the wave
(fig. 1) will suffer a considerable shortening in the X direction. Since
hereby no extra strain occurs in the Y direction, the material is then in such
another condition as in a strip of local plastic deformation running in the
Y direction. As has been explained 3) with a plate, locally weakened in the
Y direction and subjected to tension in the X direction, considerable plastic
deformations cannot occur in such a weakened strip until the stress (a, being
in our case the stress ox, has increased up to 2ol/]/3 1,154 ot. The relation
between oK and the strain ex for the concave portion of the wave is
consequently according to eq. (14) of my preceding publication:

___
(m~2)(3Gx2-2Gv2+Gxi4Gv2-3Gx2)-(3Gx+ )/4Gv2 — 3Gx2)mEsy

£x I Jl
2mE^4Gv2— 3gx2

At the start of buckling, whereby ox ov, the strain in Y direction
ey =- —ov/mE and, also according to eq. (1), sx av/E. In this paper
stresses and strains have the positive sign when they indicate compressive
stresses or shortenings. During buckling ey remains equal to —ov/mE. If,
with continued buckling, ox in the concave side of the wave e. g. has increased
to 1,15 ov, that is almost to its maximum (1,154 ov), then, as m 10/3,
according to eq. (1) et 5,43 oJE. For the concave side of the wave we
have consequently to do with the relation between ox and ex defined by eq. (1)
and graphically represented in fig. 2 b. In the case of centric buckling, only
infinitely small bending is taken into consideration, hence also infinitely
small strains will have to be considered. Consequently the yield point is
not raised here, but the angle xp determining the slope of the ox — ex diagram,
which expresses the rigidity with regard to bending, nevertheless has a
considerable value at the yield point. As according to eq. (1) ox 1,01 ov if
ex 1,04 ov/E, this shows that tanyj> E/4. So far it has been admitted
that in this case tan yj was zero.

That in the case considered here, additional stresses in the X direction
will arise, may be understood as follows too. If this should not be the
case, then due to the quasi-isotropic plastic deformation, an additional
shortening e'x, arising at buckling in the concave side of the wave, would ne-
cessarily be accompanied by an additional elongation — e'y e'x/2. To enable
e'y to remain equal to zero, an additional compressive stress &y will be
required in the Y direction. According to the yield condition of Huber-von
Mises-Hencky the following eq. is valid:

GX2 — GXGy+ Gy2 Gy2 (2)

which equation is graphically represented by the ellipse in fig. 3. Hereby
the axes indicated by ox and oy are supposed to represent compressive stresses.
At the moment of buckling: ax av. It may be seen readily, that an additional
compressive stress o'y involves necessarily an additional compressive stress
o'x, since the representative point of the state of stress should remain on the
ellipse.

3) Bijlaard, Theory of local plastic deformations, in this volume.
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In order to find in general the resistance of plates to buckling, we shall
have to determine first the general relations between the additional stresses
g'x, o'y and x'xy arising at buckling and the additional strains e'x, e'y and y'xv
in the plastic region. The state of stress, acting in the plate at the moment
of buckling, is denoted by QtQ2, whereby q1 and q2 act in the X and Y
direction resp. The X and Y axes are to be found in the median plane of the
plate. The Z direction falls perpendicularly to it. The normal stresses ox
and ay, which after buckling are acting on the X and Y planes, generally will
not be, strictly speaking, principal stresses, because with an arbitrary form
of buckling, also twisting stresses xfxy — x'yx will start working. Thus after
buckling we have the stresses ox q± -f- o'x, oy g2 -|- o'y, xxy x'xy and
xyx *'yx. As to these stresses the plasticity condition runs as follows4).

Gx2 GxGy+ Oy2 + 3 Txy2 — Gv2 (3)

By way of introduction we admit q± av and q2 0. The infinitely
small additional stresses which result from buckling, will either cause in
the elements a discharge, leading back to the domain of completely elastic
deformations, or they will not take away the plasticity, the point represen-
tative of the state of stress in that case having to remain always on the
limiting ellipsoid (3). We will be able, for these infinitely small additional
stresses, to replace the limiting surface by the tangent plane in the point A
representative of the state of stress, which existed before buckling: ax ==¦

q± gv, oy q2 0, xxy 0 (fig. 3). From eq. (3) follows that at A:

9* &
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CG
'y_

2 Gx — Gy

and orxy

Gx — 2 Gv

2öv

äGx ÖT*y

(4)

so that the equation of the tangent plane, expressed
in the additional stresses ofx and o'y, which have
their origin in the tangent point A, becomes:

Fig. 3
CJ Gv-*- — 2g'
dGx

(5)

The additional twisting stresses xfxy apparently do not affect the combi
nation of o'x and o'y which may occur at the yield point5).

According to eq. (12) of our preceding publication3) we have:

2gx —
*T~ %xp + 2 Gy Gx

Sy +E mE

If in (6), also in connection with (5), we Substitute

mE E

Gx— ov+ g'x 'y> ex gvJE + e'x and ey ovl mE + e'y

(6)

(7)

then ofx, e'x and e'y will be the only unknown quantities in (6), hence the
extra stress o'x, and consequently also o'y, may be expressed in the extra
strains e'x and e'v. We find:

4) Thiis may be understood readily, since the normal and shearing stresses work
independently of each other. If only shearing stresses xxv were at work, gt — g2
being txv, then eq. (2) would change into 3x2xv ~ o2v. Thus when they act in comßi-
nation with ox and ov, eq. (3) becomes the yield condition.

5) Not the extra vertical shearing stresses x'xz and x'vz, the deformations due to
which are always disregarded with buckling of füll sections.



48 P- P. Bijlaard

For the case illustrated in fig. 1 and fig. 2 b, where e'y was equal to
zero, we find according to (8), with m 10/3: o'x Ee'x/3,S, so that in
fig. 2 b tan yj E/3,8, so for a o — e diagram, holding for a linear stress,
according to fig. 2 a, at the yield point the resistance to bending is only 3,8
times as small as in the elastic domain.

The o' — e' relations will now be derived for the most general case,
whilst the x'xy — y'xy relations will be determined too. Also when the state
of stress g1g2 acting in the plate prior to buckling is not situated at the
yield point, the deformation will take place quasi-isotropically and the
shearing energy will be determinant for the appearance of the plastic
deformations 6) 3). According to our preceding publication3) however the
funetion q±2 — qx q2 + £>22 *n ^e region between the elastic limit and the
yield point, which is of importance only from a practical point of view, will
be determinant for thin plates when q2 < qJ2 only. Just as in the following,
the greatest principal stress is denoted here by gl5 while q2/9i ß- The state
of stress gtg2 is consequently equivalent to a linear stress:

(9)

(10b)

a„ \Qi2—QiQ2 + Q22

as the plastic strains are:

<* T-5F (10a) and ^ %-2%
from which follows:

2
Qi y EP{?xp + 2eyp) (11 a)

2
and q2 -^ Ep (eyp + 2 exp)

Substituting eq. (11 a) and (1

2

[ b) in eq. (9) we find:
0

Gq TförEp \exp2 + £xp £yp + £yp2 ~j= Epeq

where:
eq V£ xp + exp eyp + £ yp

(IIb)

(12)

(13)

Relation (12) has already been found by Ros and Eichinger6).
We assume that for the linear stress oq plastic deformations ep oqjEp

eoqjE (we put Ep E/e) have arisen and that doqjdep tan cp (fig. 4b).
The point B, representative of the state of stress .ox gly oy o2, is

in analogy with (3) now situated on the ellipsoid:
Gx2 —OxOy+ Gy2 + 3 TXy2 V (14)

which intersects the ox axis at the point A representing the equivalent linear
stress oq. In fig. 4 a the section of (14) with the plane xxy 0 is dotted.

The point C representing the state of stress resulting after buckling,
if for the element examined oq increases through buckling, will be situated

6) Ros and Eichinger, Versuche zur Klärung der Frage der Bruchgefahr. E.M.P.A.,
Diskussionsbericht No. 34 (1929).
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on a similar ellipsoid, which intersects the ox axis at a point Ä', for which
0x =^ 0q ^- doq (fig. 4a). The two ellipsoids may in their turn be replaced
by the respective tangent planes R and R in the respective points ox g±,
oy q2 and ox q± + o'x, oy q2 + o'y, which again are parallel to the
xxy axis. Since the distance BC is infinitely small with respect to the distance
OB, however in fig. 4 a represented on a exaggerated scale, the planes R
and R' will moreover be parallel to one another. They form an angle y with
the ox axis, for which according to (14):

6 Gytan y —+-; 6ax
2GX Gy

Gx — 2 Gv

2q! — ß

-2q2 \ — 2ß
(15)

Since the points A and Ä, like B and B', are corresponding points of
the two ellipsoids, we have BB'X g^doqjoq and BB'y Q2doq/oq. The
relation between a'* and o'y in accordance with fig. 4a must be:

o'y BB'y+ (o'x—BB'x)t<iny (q2 — qx tany)dGq\oq + er'* tan/ (16)

—--^
arctgEp h

J=r-e (5g

R R

<5r*

©
ßv ef

A&T^n* d<5t
q vq- uvq

<5q

© frc^Ep^fq
tqfq-^tgf

t^ef

®

Fig. 4 a — d

Hence in eq. (6) we put:

°x= Qi + g'x

Gy= $2 + o'y= Q2 + ff'jctany + ($2 — Qi tan y)doqJGq
ex Q1lE— QfjmE+ eQ1lE—eQ2j2E+ e'x

ey= q2JE—QtjmE + eq2\E—eq1\2E + e'y

(17)

As to the determination of doq, it should be observed first, that the
additional twisting stresses x'xy do not affect the magnitude of doq, since
the point C representing the state of stress remains thereby in the same
tangent plane R' as with absence of the stresses x'xy, for R' is parallel to the
xxy axis. This may be seen from (14) as well, since it follows from it,
because before buckling xxy 0, that:

dOqf 6XXy 3TXylOq= 0 (18)

According to fig. 4 c and eq. (12) we find then, the intermediary trans-
formations being omitted:
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doq= deqtan9?? J= (|^dexp + |i*-deyp) tan<p (Ql dexp + q2 dsyp)^
p\dexp xp ' ße

0-2/>)mftany gl / (/n-2)(l-^) \
(1 — 2ß)mE + (1— /rc/?)2tan<p a,\ *^p ' (\ — 2ß)mE 7 l j

After a number of transformations (6) gives o^ as a funetion of e'x and
8^, and then, with (16) we find o'y:

o'x E(Ae'x + B e'y), <fy E(Ce'x+ D e'y) (20)
in which:

A=<p1\<p4tJ B cp2\cpxz=iC, D cpz\cp± (21)
and:

<Pl m2(\-2ß){(\-2ß)2Ei-(4r]2+3e)t<m<p}
<p2 m(\-2ß){(2-ß)(\-2ß)mE+(4r]2 + 3emß)tan<p}
<p3 m2 \ -2ß){(2-ß)2E+(4 rj2 + 3eß2)ian(p}
<p± m(\-2ß){(5m-4){nß2)+2(5-4m)ßi-3emri2}E+[4(m2-])(\-2ß)r]2

+ 3em{2()-mß)rj2 + (m-2)(l-ß2)}]tan<p
ß Q*lQi and fi*=°q*lQi2=ß2-ß + h

The strains e'x and e'y are infinitely small, hence on buckling, the finite
stresses q± and g2 produce infinitely small plastic deformations. The
infinitely small twisting stresses x'xy consequently produce plastic shearing
strains which are infinitely small of the second order. At the previous plastic
deformation Ep was equal to Ele\ hence the plastic modulus of rigidity
becomes Gp mEp/2(m-\-l) E/3e. Thus:

y'xy T'xy\Q + x'xy\Qp {2(m+ \)\m + 3e)%'xy\E — (2m + 2 -f- 3em)x'xy\mE

or

(22)

mE
" xy - 2m + 2+3em r'xy EF^ <23>

We shall now consider first the case tan cp 0, that is the buckling at
the yield point. It follows from (21) and (22) that then:

B\A D\C=C\A D\B=o'ylG'x (2 — ß)l{\ — 2ß) i2Lr\y (24)

This is to be expected, since the point representing the state of stress must
remain on the tangential plane to the same ellipsoid which forms the angle y
shown in equation (15) with the ox axis. In the elastic domain we know that:

m2 Eo' iiS'* + lne'') and a'= j£^T (i ** + *') (25>
m'

as follows likewise from equation (20), in which now tan cp oo and e 0;
hence:

a'y I G'x (e'x + m e'y) \ (m e'x + e'y) tan ye (26)

If we think of an arbitrary deformation of the plate at buckling, then
the elements, the representative points of which for elastic deformation are
situated to the left of the tangent plane R (fig. 4d) will be deformed elasti-
cally, where as those where this point would be found to the right of R
would be deformed plastically, the representative point in that case re-
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maining on R. As with bending the sections may be assumed to remain
plane, e'x and e'y will vary linearly with z along the entire thickness of the
plate, and so, according to (20) and (25), o'x and o'y for a certain small
element hdxdy, will also vary linearly with z, both in the plastic and the
elastic domain (fig. 5 a). It should be noted, however, that equilibrium is
only possible, if the plate deforms plastically along the entire height7) and
that then in the centre plane of the plate o'x o'y is to be zero. If the strains
here are e'xm and e'ym then, according to (20) and (24), e'ymje'xw — A/B =«=

— (1 — 2ß)l(2 — ß). If the strains resulting from the actual bending are
given by e"x and e"y, so that e. g. e'x e'xw -\~ e"x, then it follows from (20)
that:

o'x =E{A e"x + Be"y) and &y E(Ce"x + De"y) (27)

e\m and e'ym will have to be the same for the entire plate, in order to make
\x'xydh j x'yxdh to be zero, for then y'xy 0 in the centre plane.

The theory of elasticity has taught us that when w represents the de-
flection of the plate, e"x, e"y and y'xy, as far as the top and the bottom of
the plate are concerned, are given by:

e" - k 6*W
e" -- k £2W

and y' -2 * "'""'
8 x— ~ ~^2~> Ey— ö" ~^2" anu /xy— z

2 cV y~ 2 ey2 ' xy 2 dxdy'

Hence, according to equations (27) and (23) :

^h (AS2w { Dd2w\ ^h(ne2w d2w
2 V 6x2

'

dy2!y y 2 \ dx2 dy

and x'xv — x'vx EFhxy — v yx dxdy

(28)

The bending moments Mx and My and the twisting moments txy =• —tvx
per unit of width, result from this by multiplication by W h2/6, as may
be deduced directly from figure 5b. As h3/l2 represents the moment of
inertia / of the plate, we have:

7) The transition between the plastic and the elastic domain would have to be at a
height hp under the top of the plate (fig. 5a), where tan ye tan y (fig. 4d), or where
e'x e'v 0. The equilibrium requires \\o'xdhdy and \\o\dhdx to be 0. As in
the plastic domain o'v/o'x iis constant, we note that, if \\o'xdhdy 0, \\o'ydhdx
can only be 0, if also in the plastic domain o'v/o'x has the same constant ratio, and
tan ye tan y, which as a rule will not be the case. In order to satisfy both conditions,
the section will have to deform either altogether elastically, or altogether plastically.
Entirely elastic deformation is not possible, for if the representative point of an
element under the centre plane were to the left of R (fig. 4d), that of an element above
the centre plane would be to the right of R, and then at that side the deformation
would all the isame have to take place plastically. Hence the deformation is altogether
plastic. If with an uniaxial compression g± ov there is buckling perpendicular to gu
e'v being 0, then, according to (5) and^ likewise (24) (since ß 0), in the plastic
domain o'y would be 2 o'x, and in the elastic domain, according to equation (26) o'y would
be o'Jrn. As is shown by figure 5a, if \o'xdh were 0, J o'vdh would not be 0, but
create a compressive force in the Y direction. In absence of external forces in the Y
direction, this would cause an elongation in the Y direction, naturally accompanied
by a shortening in the X direction, until the section completely reaches the plastic domain
(fig. 5b). Hence at the bottom of the plate, according to equations (24) and (26)
tan ye > tan y, hence as ß 0 here, e'x0 will be > -——rfcV-
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My — Ej{C
dx2 + dy'J

and -tyx=2EJF
e2w (29)

The establishment of the condition of equilibrium leads to the equation 8):
I <94iv diw d*w) d2w c2w

We consider now the general case of tan cp > 0.

tl\ —x \ xm •ym

fes^-H
-&yo---®xo/m

Fig. 5 a Fig. 5 b

When we examine the stresses on an element hdxdy of a plate9), then
on the concave side, where extra shortening takes place, the deformation
generally will be plastic, and (20) will apply; whilst on the convex side,
where extra extension takes place, the deformation will be elastic, and (25)
will consequently apply. With a given shape of the deflection surface of
the plate the stresses on the sides of the small element are fully determined
by the two distances hx and hy — measured from the concave outside — of
the surfaces where e'x and e'y respectively are equal to zero. In the case of
the buckling of plates in the elastic domain three conditions are satisfied,
viz. J o'xdh 0, \o'ydh 0 and J x'xydh J x'yxdh 0, and thus far it had
been assumed that this was also the case in the plastic domain. These three
conditions however, in our case lead to 3 equations with only two unknown
quantities hx and hy, and thus it will generally not be possible to satisfy
them. A shortening with unchanged stresses, such as occurred in the case
tan cp 0, considered in footnote 7, causing the whole plate to enter the
plastic domain, is not possible for tan^?>0.

In order to get an idea of the stress distribution at buckling we
consider again a rectangular plate of structural steel, infinitely long in the Y
direction and submitted to compression in the X direction, as it buckles
just below the yield point ov (fig. 6 a). From the relation between the buckling

stress of bars of structural steel No. 37 and their slenderness ratio
l l/r, as established in the specifications of the Qerman State Railways

8) See also Bijlaard, Proc. Royal Ac. of Sciences, Amsterdam, Vol. 41, No. 5 (1938).
9) For a bar, both the cross dimensions consequently being small with regard to

the length, the new equations naturally show the relations applying to linear stress. With
buckling in the Z direction here o'v 0, as contraction may occur freely; hence it
follows from equation (20) that e'v — Ce'JD. When we insert this value in the
first equation (20), we find, on making use of (21) and (22), and after further trans-
formation:

,,_ £tany ,,_ (do\dee)(do\dep) sr_s,do _ ,,,__,_ da
x £-Man<P * do\dee + do\dea x de

dov dfv
de

This proves that the theory of Engesser-Karman remains valid for bars.
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(Vorschriften für Eisenbauwerke), on account of the relations oB n2Tjl2
and the relation T 4EEt/(\ E -f- y Et)2 holding for rectangular sections,
the magnitude of the total deformation modulus Et do/de may be calculated
for the underlaying o — e diagram, as was done already by others too. We
may now write for tan cp:

do
tan cp ——

dep

do 1 EEt
de—dee \\Et—\\E E—Et

Since ep eoqjE we have:

E E [de E f E
e — ep — -~ do — doltanw -- ÜAoltancp

Gq GqJdG Gq J Gq

(31)

(32)

So for any stress tan cp and e may be computed. Just below the yield point
we find tätig? 0,294 E and e 0,1675. With m 10/3 it follows from
(20) —(23) that:

o'x f(0,421 e'x + 0,426 e'y)yn £"(0,426 e'x + 0,938 e'y)

z'xyz= 0,322 Ey'xy

whilst from (25) it follows that in the elastic
domain:

(33)

u u
a'x= £(1,099 e'* + 0,329 <,,),
o'y E(0,329e'x + 1,099«»
and finally

r'Xy= 0,385 Ey'xy

(34)

w uu UuA

Lj
fßs'dh

n tutUTTU tf t

Fig. 6 a Fig. 6 b

We first suppose e'y 0 (fig. 7 a). If hx is chosen so as to make
]o'xdh =¦ 0, then ] o'ydh would represent a comparatively great compression,

as on the upper side o'yb/o'xb 0,426/0,421 whereas on the lower side
°'yo/°'xo is only 0,329/1,099. The compression \o'ydh would be proportional
to d2w/dx2 (fig. 6a). It will cause an extension —e'yc of the plate in the Y
direction, and as the result of this there will be a shortening e'xc in the X
direction. Since for x +a/2, d2w/dx2 and d2w/8y2 are zero, o'x must in

SS
u 6^ * fxc $'$ & $ 6/ 7<$!yc%

<::,

-l\

Fig. 7 a Fig 7 b

any case be zero there, as with buckling ox does not increase. As in the case
of shortening, the plate behaves plastically over its entire height, o'x in (33)
will have to be zero. If we insert the ratio e'KC/e'yc resulting from this in the
second equation (33), we find that o'yc 0,507 e'yc. The strain e'yc must be
the same for the entire plate. Supposing e'xc likewise to be the same
everywhere, we find o'yc 0,507 e'yc and o'xc 0 for the entire plate. As e'yc is
negative, o'yc represents a tensile stress. The equilibrium now requires that
for all values of x the distance hx (fig. 7b) for the superposed bending is
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chosen in such a way, that if the superposed bending stresses are denoted by
g"x and o"y, j a,x dh j a„x dh 0.
and further that e'yc is chosen in such a way that

l\o'ydhdx aho'yC + jjo"ydkdx
becomes equal toO. As couldbe found graphically, e'^then must be about — 0,05
{p'xb — fi'*o) *f e'xb and e'x0 represent the strains at top and bottom for x ¦= 0,
where d2w/6x2 is maximum. The plate remains plastic in the region where
e'x>(m — 2) e'y/(2m — 1) (see footnote 7), and thus, in connection with
the strains e'xc and e'yc over the entire height, the plate, close to the boun-
daries x fa/2, remains plastic over its entire height (fig. 8). More
towards the centre it behaves elastically at the convex side, as shown like-
wise in fig. 7b. [o'ydh is shown in fig. 6b. Fig. 8 gives a section with a
plane perpendicular to the Y axis (the height h has been drawn on an ex-
aggerated scale). The concave side is supposed to be at the top. The plastic
domain is indicated by cross hatching. The planes Nx and Ny, where o'x and
o'y respectively are zero, also have been shown in fig. 8. Thus the plate is
more rigid in the central strip than at the boundaries # ± aß'-> consequently
it will not buckle according to a plane w w0 cos (nx/a). As the stress
distribution now is known in the various sections, it was possible graphically

to determine the buckling stress oB as a funetion of a, E and h. Inversely
this showed at what ratio a/h the plate will buckle just below the yield stress.

-m

Fig. 8

It is not worth while to determine the stress distribution exactly also
for other boundary conditions. If for an imaginary, entirely elastic or en-
tirely plastic plate the buckling stresses are called oE and oP respectively,
then the actual buckling stress oB in any case is to be found between oE
and oP. With the above case it appears that approximately:

oB= ge\4 + 3oP\4 (35)

This relation may be considered to hold for other cases too10).

10) With buckling at the elastic limit the deformation is wholly elastic, at higher
buckling stresses it becomes partly plastic and partiy elastic. At the yield point itself,
so if tan cp 0, it is entirely plastic. It is obvious to apply for structural steel No. 37
and for buckling stresses below the yield stress, the only case that is of any importance
for technical purposes, the above-mentioned relation for other boundary conditions as
well, the more so when one considers the following. As has been observed by Chwalla11),
a discharge will only occur at buckling of reetangular bars in the plastic region when
the eccentricity is less than about ä/50. The admissable stresses are based on the
assumption that such an eccentricity will always be on hand, so that as a matter of fact
the reduced modulus of elasticity T is not determinant for the admissable stresses but
the total deformation modulus Et and really we should reckon with the buckling stress,
calculated for the bar supposed to be plastic all over, as a basis for the determination
of the admissible stress. Thus we might state that the buckling stresses from which we
start are T/Et times too large. We might therefore in a certain sense contend, that for
plates as well, in order to make the calculated stresses comparable with those of bars,
we should have to reckon with a buckling stress of oB (T/Et) oP. As may be seen
readily in the region below the yield point for structural steel No. 37, (T/E() oP is
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For the determination of the buckling stress oP of plates, compressed
in one direction, according to (30), since q± oP, q2 0 and C B, the
following equation is valid:

f d^w <94u> d*w) d2w
ej\a ä?+2(ß+2F>8*&+^i+*»y=° (36>

For the case dealt with in the preceding (fig. 6) we assume w
w0 • cos (nxja); after insertion in (36) we find hoP n2EJA/a2, from which
we compute aÄ with equation (35).

We now consider the case where the boundaries x zta/2 are simply
supported, whilst the boundaries y + b/2 are elastically built in, which
is the position of the webs of compression members of steel bridges. We
first consider the limit case where the boundaries y ±£/2 are also
simply supported. As in the elastic domain 12) we put

w w0 cos (pjix/a) cos (qny/b),
after inserting which in (36) we find:

hap= {7t2EJ\b2){Apb2\a2 + 2(B + 2E)q2 + Dq±a2jp2b2} (37)

For minimum buckling stress, q must be 1, whilst differentiation shows
that p must be (a/b) (D/A)*. Substitution gives:

haP (2 7t2EJIb2)yTD~+ B + 2E) (38)

When a/b is greater than 3 to 4, and this practically is always the case,

(38) will also apply when (a/b) (D/A)* is not an integer. If we Substitute
in (38) the values for A,B,D and E used in (33), which are valid just below
the yield point, then (38) yields hoP 3,40 n2EJ/b2.

The buckling force hoE is known, but naturally follows also from (38),
when for A,B,D and E are inserted the values prevailing for the elastic
region, where tan cp oo and e 0. These values may be calculated with
the aid of (21), (22) and (23). A,B and D may also be found directly by
comparing (20) with (25) or (34) viz. A D m2j(m2~\) 1,099.
B m/(m2 — 1) 0,329. E is equal to m/(2m + 2) 0,385.

Insertion in (38) shows hoE 4,40 n2EJ/b2, so that according to (35)
hGB (4,4Q\4 + 3 • 3,4014)ix2EJjb2 3,657c2EJfb2 or aB= 3,00E(hjb)2.

As slightly below ov the reduced modulus of elasticity T k2 ov/n2
3600 • 2400/n2 kg/cm2 875 000 kg/cm2, whilst E 2100000 kg/cm2,

according to the existing theory13) we should have:

ho'B= (TjE)hGE= \ß3?z2EJ\b2 or a'B= \,50E(hjb)2.

Many compression members in bridge engineering have a slenderness
ratio 1 < 60, so that according to the German specifications the buckling

always greater than the value oE/\ -{- ?>oP/\ calculated on account of other conside-
rations, so that this latter value is indeed not too high as a basis for the determination
of the admissible stresses. Eq. (35) may therefore be considered to be safe for other
cases as well.

xl) See e. g. Chwalla, Int. Ass. for Bridge and Structural Engineering. Ist.
Congress Paris. Final Report, p. 58.

12) Timoshenko, Theory of elastic stability (1936). Hartmann, Knickung, Kippung,
Beulung (1937).

13) Schleicher, Bauingenieur, p. 505 (1934).
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stress is equal to the yield stress. It is required that the webs will not buckle
before the member buckles as a whole. With webs which may be considered
as simply supported and with ov 2400 kg/cm2, the requirement o'B ov
leads to the condition b/h 3614). According to the theory outlined here,
it is sufficient when oB ov and so b/h 51,2.

That we find oB to be comparatively slightly smaller than oE is the re-
sult of the considerable resistance to twisting in the plastic region, which
expresses itself in the following quantity: E 0,32215). As has been ob-
served in my preceding publication 3) we consider the material as a Hencky-
body, since in that case we are sure that the resistance of the material is
not over-estimated16). When preliminary free deformations or any prelimi-
nary plastic deformations are disregarded, consequently when we consider
the material as a Hohenemser-Prager or Prandtl-Reuss body, then
obviously e must be equated to zero, which for the rest does not make
much difference as e is small. Thus according to (23) E would be just
as great as in the elastic region i. e. E 0,385. The results of tests of
Hohenemser and Prager concerning the plastic deformation of hollow tubes
of structural steel 17), as given in their fig. 5, actually indicate that this is
the case, although as far as we know, nobody has hitherto drawn the con-
clusions of this fact with regard to buckling phenomena18). The experiments

of Chase, made in connection with the design of the bridge across
the Delaware River between Philadelphia and Camden 19) also give results
which are not contradictory to our theory. With his plates ov was 3170
K'G/cM2. Admitting the same values of tan cp and e for this case, the
condition oB ov shows that aB will attain the yield stress at a ratio b/h 45.
In the tests the yield stress is attained at a ratio b/h 46,8. Admitting e to be
zero in our equations, then oB 3,30 E(h/b)2, and thus ov will be reached
at b/h 46,8. The exact agreement with the experiments — the existing
theory, according to condition o'B ov, gives the ratio 31 — is merely acci-
dental, as no experiments were undertaken between b/h 46,8 and b/h --=

56,0, at which latter ratio ov was no more reached. The plates buckled in
4 or 5 waves. According to our theory oB becomes minimum with m -= 4,
according to the existing theory o'B with m 3 (but nearly 4).

For other boundary conditions at y ¦= b/2 we assume in the same way
as in the elastic domain, that w Y cos (pnx/a), when Y is a funetion of
y, upon which (36) transforms in the ordinary differential equation:

Dd±Y\dy4<—2(B 4-2E)l2d2Y\dy2+ (AI2— cp2)l2Y" 0 (39)

in which
l=Lp7ija and cp2 hopjEJ

Assuming in (39) Y eay, we obtain the general Solution:

14) Timoshenko, 1. c, p. 406.
15) Compare equation (33).
16) This question has been discussed in detail in my publication in the proeeedings

of the Royal Netherlands Academy of Sciences, Vol. 41, No. 7 (1938).
17) Hohenemser and Prager, Zeitschrift für angew. Math. u. Mech., No. 1 (1932).
18) e. g. the resistance to twisting of the boundary angles of bridge-members will

near the yield stress not be much less than in the elastic domain and thus also in the
plastic domain give some support to the plate.

lö) Chase, Journal of the Franklin Institute, Vol. 200, p. 417. For the discussion
of the edge conditions and the ratio b/h to be taken into aecount, cf. Schleicher, First
Congress of the Int. Ass. for Bridge and Structural Engineering, Final Report, p. 123.
Schleicher concludes that the edges could practically be considered as simply supported.
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w (Cj cosha1y + C2 sinho^j; + C3cosa2y + C± s'm a2y) cos (prcx ja) (40)
with :

«i,8 =] ±Gl2 + l )/M12+Kt2 (41)
in which:

o B-±^, H fS±l^=AP_ and K=iD (42)

With the values of A,B,D and E introduced in (33), valid just below
the yield point, we find:

G 1,141, H 0,852 and K 1,066 (43)
If both sides y -j- £7 2 are built in, the symmetry with regard to the X

axis requires C2 and CA to be zero. The boundary conditions w 0 and
dw/dy =¦ 0 for y + S/2 lead of course to the same condition as in the
elastic domain, viz. a± tanh (a-^b/2) 4- a2 tan (a2b/2) 0. Combination of
this equation with (41) and (43) allows us to determine the value of hoP
for various values of p. The minimum value is:

hoP 5,41 jx2EJ,b2 with a/p - 0,54 b. As hot -= 1,61 n2 EJ,b2
we find according to (35) hoB 5,97 n2EJ/b2 or oB 4,91 E(h/b)2. The
condition a# a„'yields ö/A 65,5 (according to the existing theory b(h
should be 48).

If one side is simply supported and the other is built in, then the boundary
conditions lead to the equation: a± cotha^—a2 cotha26 0, from which
in connection with (41) und (43) follows: hop 4,38"a2EJ/b2 with a/b -
0,65 b. As hoE 5,94jz2EJ/b2, (35) gives hoB 4,lln2EJ/b2 or
oB 3,92 E (h/b)2. The condition oB ov leads to: b/h 58,6.

For sections as illustrated in Table I the plates are partly built in. The
plates, which, if simply supported on the other plates, would have the lowest
buckling stress, are called the "buckling" plates, with dimensions b and h\
the other ones are called the "resisting" plates, with dimensions b' and h'.
With the sections of Table I b/h > b'jh'. The calculations which have been
in use tili now for those sections 20) are neither exact for the elastic region.
Therefore the exact computation will be given here, which holds for the
elastic region as well.

20) Blfich, Theorie und Berechnung der eisernen Brücken (1924). Bleich, Int. Ass.
for Bridge and Structural Engineering. Ist. Congress. Preliminary Publication p. 107
(1932). Chwalla points out already that Bleich does not consider the varying rotation
of angle: Ingenieur-Archiv, p. 62 (1934). The course pursued by Chwalla with respect
to the calculation of the building as given by edge angles, whereby he assumes these to
be concentrated in the edges of the plate, is however not at once applicable to tubulär
cross sections. Moreover Chwalla neglects in this way the torsional action of the forces
— ho (d2w/tx2) dxdy given by the compressive stresses acting in the angles on an
element hdxdy, in consequence of which the supporting action of the angles is over-estimated
(on the other hand however the resistance to bending of the flanges of the angles is
neglected). Bleich takes approximately the influence of the compressive stresses in the
vertical plates (fig. 9 a) into account afterwards, but assumes that the buckling plate
(fig. 9 a upper plate) may be considered to be simply supported when (h^b')/(h'sb) 1

whereas this as a matter of fact will be almost the case when h/b h'/b', so when
(hb')j(h'b) 1. Consequently the formulas of Bleich, especially those in the second
publication, procure in various cases values for b/h which are relatively considerably
too high. The way in which Bleich reckons in the plastic domain, namely in the direction
of compression with T and perpendicular to it with E, seems to be in better agreement
with our calculations than the conception that it should be reckoned in all directions with
the reduced modulus of elasticity T.

Abhandlungen VI 5
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If for a section as given in fig. 9 a eq. (40) holds for the upper plate,
the "buckling" plate, a similar equation will be valid for the vertical plates,
the "resisting" plates, viz.:

w' (C\ cosha^y'^ C'2 sinha'i/ + C3 cos a'2y' + C\ sin a'2y') cos (pnx\a) (44)

with:

fv
®

+ -JL b'

MJ

:r„©

ß'1)2=|/±öl2+ 1)/Ha2+K<p'2 (45)

Fig. 9

in which 1 pjt/a and cp'2 h'oP/EJ'.
The half-wave length a/p is of

course the same as that of the "buckling"

plate. We assume that the upper
plate, when it buckles, exerts moments

M'} M cos (pzix/a) on the vertical plates. Considering first the vertical
plates, the "resisting" plates, then, since M'y is determined by (29) and
since for y' 0 and y' b (fig. 9b), d2w'ldx2 0, the following boundary
conditions will hold:
w' 0... (I) and d2w'/dy'2 =0... (II) for y' 0;

- 0 (III) and — EJ'D d2 w'/dy'2 M cos (pjrx/a)
The first two conditions yield, after insertion of (44):
The third condition yields:

__ r>t sinh a\ b'
C 4 —

XV (IV) for / b'.

C\ C8 - 0.

C\

and the fourth:

C.=

sin a'2 b'

M
EJ'D(a\2+ a'22)s\n\\a\b'

After Substitution of these values in (44) we find for the angular dis
tortion for y' b':

a\ coth a\ b' — a'2 cot a'2 b'cw
j=Myxpa=M'i (46)

vy '¦- ' EJ'D{a\2+a'.2)
We consider now the upper plate, the "buckling" plate. The bending

moments My as indicated in fig. 9b, i. e. as negative moments, are according
to (29), since d^w/Bx- 0 for y J- b/2: My + EJD&w <?y2-

As at the same time for y £-6/2: /W, M'y and dw'dy ^ dw'/6y',
from equation (46) it follows that for y ±6/2:

dy
± Ua

dy2 - ü

in which, since ///' (h/h')3:

ha EJD ij>„ h'l
1 a\ coth ß'i b' — a\ cot a'2 b'

A2 + «V

(47)

(48)

Further the condition w 0 holds for y ±6/2.
Due to the symmetry C2 C4 0 in eq. (40), applying to the upper

plate. The condition (47) and w 0, holding for y 6/2, lead then after
insertion of (40) to the equations:

Cx{ax sinh (ax b\2) + ©«c^2 cosh (ax bj2)}-C3 {a2 sin (aa bj2)+Qa a22 cos (a2 6/2)} 0

C1cosh(«16/2) +C2cos(a2b/2) =0
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which yield values for C1 and C3 different to zero only when the denomi-
nator determinant is zero. This condition gives the buckling condition:

ax tanh K b 12) + a2 tan (a2 b \ 2) + (et,2 + a22) G 0 (49)

in which a± and a2 are given by (41) and © by &a in (48).
For the elastic region, consequently for tan cp oo and e — 0, in (41)

and (45): G 1, H 0 and K (m2 — \)/m2.
When h'lh is fairly great, a'<> in (45) becomes imaginary. The Solution

of (36) is then:
w' (Ci'cosh«i'j'+ Cfsinhai'y'+C$cosha'iy' + C4sinha$y')cos(prcxja) (50)

with: «{2=|/G12± l)'Hl2 + K<p'2 (51)

In the same way as before we find now:
/ h \3 a'\ coth a", b' — a"2 coth a"2 b'

Wa-tJD iha - ^ -J ^8^^2___- pZ)

which form can also be found directly with (48) by putting there a\ a"1
and a'2 la"2.

So if, as in fig. 9, the uresisting" plate is bent as in fig. 9b or 10a
and the "buckling" plate has boundary conditions as in fig. 9b or IIa, the
buckling condition is given by (49), in which 0 ©a and is given by (48)
or (52). Several other combinations are possible. With section 2 in Table I
the vertical "resisting" plates are bent as in fig. 10b when the two
horizontal plates buckle. Due to symmetry C'2 and CL will be zero now in the
general equation (44) of the "resisting" plates. From the boundary
conditions for y' b'/2, viz.:

w' - 0 and M'y ~ EfDd2w'/dy'2 M cos (pnxja),
the values of C\ and C'3 are found, and from these —dw'/By' M'yipb -=
My\pb and &b —= EJDipb.

We find:
eb EJD V, (IX3A^^m±^^l^L (53)

and if a'2 is imaginary, by putting a'± a'\ and a'2 ia"2:
h\*ax" tanh«' b%)—a2" tanh (a2" b'\%)

In the case of a T- section, as given in fig. 12a, the "resisting" plate,
viz. the horizontal plate, has still other boundary conditions. Let us consider
one half of the horizontal plate, which may have a total breadth of 2 b' and
a thickness h'. It is bent as shown in fig. 10c (rotated 90 degrees). At
y' 0 we have the boundary conditions:

w' 0 (I) and M'y= — EJ'Dd2w'\dy'2 Mcos(pTzxla) (II)

At y' b' the bending moment M'y, given by equation (29), must be
zero. Moreover the shearing forces Q'v and the twisting moments t'yx must
be zero there. The equivalent load p'y, transmitted from the plate to its
support and including the influence of the twisting moments, is at y' b',
if we choose our positive directions in the same way as Timoshenko21) did:

2l) Timoshenko, Theory of elastic stability, p. 295—300.
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dfVX dM'y dt' dt'y
__ nf "l y* — " y i ^ *y v * yxPy~-Uy--j^- ey + ex TT

Introducing the values of A4\, t\} and t'yx of eq. (29), based on the same
positive directions, we find for y' =- bf, as C B:

I d3 w' c
¦* w' I

^ ^^r + (£ + 4^)w) (55)

So the conditions M\ 0 and /?', 0 lead to the following boundary
conditions for y' b':

Introducing the general equation (44) of the "resisting" plate in these
four boundary conditions, we find the values of the constants C\, C'9, C'3
and C\ of (44).

The angular distortion dw'idy' M'y\pc for y' 0 can now be computed
and from this we find:

(*)e=EJDil>c

_ / A V (a\2 r'l-a'22 q'2) sinh a\ 6'sina'2 b'-a\ cx'2(q'2+r'2) cosh a\ b' cos a'2 b'-2a\ a'2 q'r'
\h) (a\2 + a'22) (a\ r'2 cosh a\ b' sin a\ b'- a'2 q'2 sinh a', V COS a'2 b')

* '
in which #' a'2x — ÄA2/D and /-' =¦ a'22 -r £A2 D.

If a'2 becomes imaginary, we have:

&e EJDil>e
(h y (oi 2r"2+a%2q"2) sinh ai 6'sin«2b'-ai a2(q''2+r'n) cosha'{b'COSa2b'-2aia2qf'rf'
h' 1 (ai2 - «22) K r"2 cosh af 6' sin 6*2 6'- «2 ?"2 sinh af 6' cos «2 6')

in which a"lj2 is given by (51), q" a"\ — BX2/D and r" — a"22-|- B/2/D.
If a side of the "buckling" plate is connected with two or more

"resisting" plates of the types given in fig. 10 a, 10 b or 10 c, then Mv will be
equal to 2M'y. As the bending moments, which give the same angular distortion,

are inversely proportional to the angular distortions \p by the unit of
moment, and thus to the coefficients & EJD\p, it can easily be perceived,
that in this case the value 0S, which has to be introduced in the buckling
condition of the "buckling" plate, is given by the following equation:

^ 3^ <*»

In the case of a T- section, the upper side of the "buckling" plate (the
vertical plate) is e. g. connected to two plates of the type of fig. 10c, so that

1 2
7*T ^ /o~ anc* ®s \®c> In accordance with Hartmann22) we neglect the

resistance to angular distortion of the connecting angles.
Also for the "buckling" plates several boundary conditions may occur.

With section 4 in Table I the angular distortion is only resisted at the Upper
side. The plate buckles as shown in fig. IIb (rotated 90 degrees). The
boundary conditions are:

w 0 (I) and d2wjdy2 0 (II) for y 0.

w 0 (III) and dwjdy + Qd2wjdy2 0 (IV) for y b.

22 Hartmann, I.e., p 181.
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Introducing in these the general equation (40) of the "buckling" plate, we
find the buckling condition:

ax coth ax b — a2 cot a2 b + (vtx 2 + a22) 0 0 (59)

We had better consider now the most general case for the boundary
conditions of the "buckling" plate. This is when the plate is supported at both
sides y 0 and y b by "beams" of different flexural rigidities Bt and
B2 and different cross-sectional areas A1 and ,42, whilst also the values of 0
are different, viz. Qx and 02 respectively (fig. 11c).

h'y-l rfm:
f y My-1\ // V/ Je

b r b I- A
© V *® ®

Ltet/Ti-

®

b

©

Fig 10 Fig. 11

At y 0 the difference between the shearing forces working on an
element dx of the beam will have to be in equilibrium with the load py
transmitted by the plate and the resultant force of the compression forces
AtoP working on the element dx, as is given by the equation 23):

n d*w A
d2w

ß> ^r P, - ^ "p-üt
Proceeding in the same way as with the derivation of eq. (55), we find

for y 0:

Py w|D^+(fl + 4n4^ldx2 ey I

sathat our first boundary condition for y =- 0 is:

* jr< + EJ \°
d3 w c

d w
+ Ax oP ^ - 0

cx^

(60)

(I)

If the unit of bending moment gives at y 0 an angular distortion ipv
we know that there dw/dy Mn\pv

The negative moment Mn (fig. 11c) is given by eq. (29) by omitting the
minus sign. As C B and EJD\p1 @{ we obtain in this way our second
boundary condition for y 0, viz.:

0

For y

dw (B d2w d2^
~dy

" 1\D~dx2 +
ey2

b we obtain the third and the fourth boundary conditions:

G>JT

W

3) Comp. Timoshenko,

äy°

c, p. 346.

dx2 dy
A C"W

0
dx'

(")

(III)
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*" e (^ + ^)^o (IV)^7+ °2\Ddx2 + dy2)-0 (,V)

Introducing the general Solution (40) in these four equations, the
following linear homogeneous equations appear:

sx Cx + «i r C2

+ st C3 — «2^Q=0
— QxqCx + «iQ
+ ©iZ-Q + a2C±=0

(s2 cosh ax 6 — ax rsinh ax 6) Cx + (s2 sinh at b — ax rcosh cfx6) C2

+ C52cosa26 — «2^sin«26)C3 + (s2sinor26 + a2qcosa2b)CA 0

(©2^ cosh a< 6 + «i sinh ax b)Cx + (02<7sinh c^* + a.cosh ax b) C2

(&2rcosa2b + a2sin«26)C3 — (02rsina26 — a2cosa26) C4 0

which give only values of the constants different from zero, if the denomi-
natot determinant A of the System is equal to zero.

Thus we get the buckling condition:

[«12{5152-«22/2-(0152+©251)/-2+©i©2r4}
-a22{sx 52-(©! 52+ ©2$i)<72+ ©i ©2<74} + ®i ®2^i s2 ^2] sinh ax bsin a2 6

-«1a2[25152-(©1+02)(51 + 52)^2 + 2(©152+025J)^r+2 0102(72/'2]cosh axb cos a2b

+ a2t[a12{sl + s2-(&x+ ©2)^2}-(^1+ ©2)5^2+©! ©«^(sj-f s2)<72] sinh oleosa, 6

+ M[a22{s1 + s2 -(©i-f-©2)^2} + (©i+©2)5j52-©i 02(51 + 52)r2]cosh«16sinha26
+ 2ala2[sxs2 + (Oxs2+O2sx)qr+Q1G2q2r2] 0 (61)

in which:

q ax2 — Bl2lD, r=a22 + Bl2jD, t q + r ax2 + a22=2l^Hl2 + A>2
X2

and sU2 D (BU2 l2 — AXf2 ap).

In the elastic region, where, as we remarked already, A -= D
m2/(m2 — 1) 1,099, £ m/(m2 - 1) 0,329, T7 -= m/(2m t- 2) 0,385,
G= 1 and H 0, we consequently have:

i..= K±*' +^
and in the formulae for 0:

1/^.+» -̂ q'=a'x2 — -j r ct\2 + —
N m m

For the elastic domain (61) can be shown to be identical with the buckling

condition derived by Chwalla20) for the section given in fig. 12b,
with the difference however that instead of our coefficients 0 in his formulae

N
the coefficients ß appear, which with our notations are equal to j^j~, in

which G is the modulus of rigidity, whilst ID is assumed to be ]2b'h'^. As
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we remarked already 20) the unfavourable influence of the compressive forces
in the angles is neglected in this way.

With symmetrical boundary conditions of the "buckling" plate, where
B2 =-- B±J A2 A± and thus s2 sv whilst 02 0U eq. (61) becomes much
simpler. With the sections in Table I, where this is the case (1, 2, 3 and 6)
the plate will buckle most easily in short half-waves a/p, so that the „beams"
get the same deflections as if they were simply supported with a span of
a p, thus being very rigid. We may suppose then B± B2 oo and sx
s2 oo. As Chwalla 20) showed already with his formulae for the elastic
domain, the buckling condition for symmetrical cases can be factorisized.
Eq. (61) transforms with 02 0L =¦ 0 and s± s2 oo in:

{«1tanh(a1^/2);+«2tan(a2^/2) + ©^}{a1coth(a1^/2)-a2cot(a2^/2)+©/}
cosh (ax b j 2) cos (a2 b \ 2) sinh (a, b / 2) sin (a2 b \ 2) 0

This does not imply that we get now 4 (or 6) buckling conditions by
equating each of these factors to zero. For if e. g. cos (a2b/2) is zero,
tan (a2b/2) in the first factor will be infinite and thus the product will not
be zero. This will only be the case if the first or second factor is zero, so
that we have only two buckling conditions. The first one, which gives the
smallest buckling stresses, coincides of course with eq. (49).

With T-sections (fig. 12a) s2 0 and 02 00 in eq. (61). If &± is
large, the „buckling" plate will buckle in one wave, so that with slender
bars the deflection of the "bearn" (the horizontal "resisting" plate), as a
result of the load transmitted to it by the "buckling" plate, will diminish
the buckling stress rather much. With section 5 in Table I, a Single angle,
the flanges will not influence each other, so that moreover 0± 00, though
in the plastic domain this is not quite true.

2b„

r
®
¦h

2b

il
V

fg
'..-©a'I

^btA>—b'—+-ä£h

IL
b ^®

Fig. 12

The buckling condition for sections 2 and 3 in Table I is e. g. given
by (49) in which 0 0b according to (53) or (54). For section 4 the
condition (59) holds, whilst 0 0b in (53) or (54). As we neglect the angles
eq. (38) determines the buckling stress of section 6. The buckling condition

0 and 02 00,for a ^-section (fig. 12a) is given by eq. (61) with s2
whilst 0± is determined by (58) and (56) or (57), being \0C. I or U-sections
(fig. 12c and d) buckle according to eq. (61) with s2 -= st and 02 ¦= 0t,
whilst 0t is resp. \0C or 0(. For the I or U-sections used in bridge en-
gineering it will be allowed to put s2 - sx ¦= 00, but with the sections
hitherto existing buckling will not be possible below the yield stress according

to my theory.
For a TT-s"ection, if buckling according to fig. 12 e, eq. (61) with s2 0,

02 00, s1 00 and 0X 0b according to eq. (53) or (54) will prevail.
It is possible to allow also for the supporting action of the parts b\ of the

horizontal "resisting" plate, in which case according to (58) ^f ^ + n(yc<9, Ch
whilst (9, follows from (56) or (57) by replacing b' by b\. If the "resisting'
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plates are thin, the number of half waves /; will only be one (or two), in
which case the deflection of the "beams" of the "resisting" plate may di-
minish the buckling stress. We may not then put w' 0 for / ±_ b'/2 (fig.
10b), but 0b must be found by replacing this condition by a similar
condition as eq. (I) following eq. (60). Allowing for the parts b' is more
laborious now. If the vertical plates buckle both in the same direction, in
which case the whole section is twisted, the exact Solution is still more
intricate.
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In order to derive practical formulae, e. g. for section 1 in Table I,
we proceed as follows. Eq. (49) with 0 0„ according to (48) oder (52)
is valid here. With certain values of oP, h, h' and of the half-wavelength
a/p, we calculate a'lt2 or a"L2 from (45) or (51). Assuming also a certain
value of b', 0a can then be determined. As with the assumed values we know
also a1)2 from (41), in eq. (49) b is now the only unknown and can be found
by trial. By Variation of a/p we seek now the most unfavourable value of
b/h. By doing so with other values of b' we can find with the assumed values
of oP and ß h'/h the ratio b/h as a funetion of /u (hb')i(h'b). Now
we put:

b 'i)_-{(iL-(*j!» <*2>
h FF FF SS

and being the values of b h corresponding with oP if both
\ h ff \ h ss
sides are fixed or simply supported respectively. In this way the curves
for yx, given in fig. 13, were determined by my assistent Ir. L. F. Cooke
for different values of ß and a buckling stress in the elastic domain. As
can be shown, the same curves are valid for any other buckling stress in the
elastic domain. It will be sufficiently aecurate to reckon with the same values
of y1 for buckling stresses in the plastic domain too. The curves for y2 in
fig. 14, in which also Ir. P. Th. Wijnhamer cooperated, apply to the sections 2
and 3 in Table I. Approximately y± and y2 can e. g. for values of ^<ß<3
be represented by the equation:

y nn+fsm27t[j. (63)
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in which for yL:
n 0,2ß(\ + 4ß-~0,\5ßs), / 0,l(0,4 + /^for/i<land/ 0,07(3 -/*)for/>'> 1 (64)
whilst for y2:

n 0,\ß(\ + 8ß-0,3ß% /z=0,12/^for^<l and/ 0,06(3-/^) for ^>1 (65)

If we demand that the ratio b/h has at the utmost such a value that the
critical stress for the plates is equal to the critical stress for the entire strut,
then I —I and can be expressed in the slenderness ratio l/r of the\hlss \hJtt /'b\
strut. In the preceding we found that to reach the yield stress, and
(b\ \hJss
—I should be at the utmost 51,2 and 65,5 respectively (tili now 36 and

48). So according to the German Specifications these ratios correspond to

slenderness ratios <; 60. In the elastic domain we have e. g. — 0,6 —.V h ss r
Between the proportional limit, 2073 kg cm2, corresponding with l/r =100
and the yield stress, 2400 kg/cm2, where l/r is a linear funetion of the
buckling stress, the same will be almost the case with b/h, which ratio is

thus also a linear funetion of l/r. Thus we have e. g. I 37 0,23
/ V h Jss r

if 60 < -<100. Insertion of these values in (62) leads to the formulae

given in Table I. The coefficient ys for section 4 is not yet determined, but
it is sufficiently aecurate to put y.d y2.

If we would demand with Timoshenko u) that the buckling stress of
the plates in any case reaches the yield stress, b/h should not exceed the
values given in Table I for //r<60.

The formulae for the Single angle we determined in a recent
publication24), where we allowed for the fact that one flange is only elastically
supported by the other, which was done by a new easy method considering
the equality of inner and outer bending moment, once for one flange and
then for the whole angle. If e. g. a flange is considered as simply
supported, as usual, in the elastic domain b'h wtould have to be < 0,20 l/r2b)
instead of 0,18 l/r.

According to the tests of Kollbrunner 26) with angles of soft steel,
with a yield stress ov ~ 3316—3334 kg/cm2, the angles with b h 16
buckled practically at the yield stress. With our values tan cp 0,294 E
and e 0,1675 we found that according to our theory with these angles
the yield stress should be reached if b h < 15 and with e 0 if b/h < 16 2i).
Although the o — e diagram of the angles is not known and the proportional
limit was rather high, the behaviour of the angles does anyhow not conflict

Twith our theory. The existing theory, supposing oB -= - ot, would require
here b/h < 10.

In some cases it is more easy to use the energy method 12) to compute
the buckling stresses. Since the strain energy of bending dV an element
hdxdy is 27):

-'*) Bijlaard, De Ingenieur in Ned. Indie, No. 3 (1939) (Dutch).
2'5) Bleich, Theorie und Berechnung der eisernen Brücken, p. 238.
2(0 Kollbrunner, Mitt. a. d. Institut für Baustatik, E. T. H. Zürich, No. 4 (1935).
21) Timoshenko, 1. c, p. 306.
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dV= — ^(Mxd2 wjd x2 + My d2 wlcy2 — 2 txy c2 wfdx dy) dx dy;

insertion of (29) gives us the strain energy of the entire plate:

which at the buckling stress has to be equal to the work done by the external
forces. In this way we calculated the buckling stress xB in the plastic domain
of the web of a plate girder subjected to pure shearing (fig. 15) 28). We
must remark that in this case, where the X and Y axes cannot be orientated
in the directions of the principal stresses, eq. (20) —(23) have to be trans-
formed. We can find the necessary relations by applying the well known
transformation equations to (20) —(23) or directly. It follows that in this
case we have to introduce in (20) and (23) and thus in (66):

1) + 3e2m2}

-1)+ 3e2m2} (67)

A —D 4m2(\ + e)j{4(m2 — \)+ 4em(2m-
B C=2m(2 + em)\{4(m2—\) + 4em(2m
F mtan<pl{3mE + 2(m + l)tan<p}

It follows that EF dr/dy, the tangent of the slope angle of the r — y
diagram. To compute the buckling stress rB in the plastic domain for a

plate with infinite length, we used the method of Southwell and Skan29).

bhx

aht
a

Fig. 15

(u i^e

60 80 100 r

Fig. 16

We found for structural steel No. 37, with E= 2100 kg;cm2, a proportional
limit 2073/V 3~kg/cm2 =1197 kg/cm2 and a yield stress 2400/ y 3 kg/cm2
1386 kg/cm2 and with a>b, for the plastic domain:

*B 1197 + 189

b

h

h)v

kg/cm2 (68)

in which: Ort8456 + 6351 and f5667 + 3879 !)'
If we find with (68) rÄ^>1386kg/cm2 we should assume ^=1386 kg/cm2.
With a Square plate the yield stress is still reached if b/h < 98 (according

to the existing theory with b/h < 13).
From the several cases of plates, supported on three or four sides and

subjected to compression or shearing, which we examined tili now, it can

28) Bijlaard, De Ingenieur in Ned. Indie, No. 4 (1939) (Dutch).
2d) Southwell and Skan, Proceedings of the Royal Society of London, Series A.

582 (1924).
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be deduced that we still remain on the safe side if in the plastic domain
we put:

ob g- ge and %B — ^%E (69)

In this equation ot or rL is the buckling stress which is computed on the
supposition of proportionality of stress and strain. TP is the reduced modulus
of elasticity for a bar at a stress oB or a stress oqB xB V 3 according to (14),
however under the supposition that the relation between buckling stress
and slenderness ratio is given by the füll line in fig. 16, which reaches the
yield stress with a slenderness ratio of 80. Thus for other cases of plates
supported on three or four sides it will be possible to find an approximate
value of the buckling stress. It is easy to show that for that purpose, with
the real relation between buckling stress and slenderness ratio (according
to the Oerman Specifications), if the buckling stress is situated in the plastic
domain, we have to put the comparable slenderness ratio 30) equal to:

—) 2 7t]/J1 - 100 (70)

If we find -) <60,then we have to put (- A 7l V— (71)
V r ' c

X r ' c * f OqE

oqt is according to (14) equivalent to the state of stress at buckling, computed
in the supposition of proportionality of stress and strain.

By means of this comparable slenderness ratio we proceed in the same
way as according to the existing theory to determine the real buckling
stresses30). According to the hitherto existing theory

(,') .yx. °)

30) Schleicher, I.e., footnote 1, p. 131. Chwalla, Int. Ass. for Bridge and Struct.
Eng., 2nd Congress Berlin, Vorbericht, p. 980 (1936).
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Table I — Tafel I — Tableau I.

Section Formulae for structural steel No. 37
Querschnitt Bemessungsformeln für Baustahl St. 37

H-

Coup

"Tb_

e Formules pour acier doux No. 37

r
^65(1-0,22/)© ]CiL1""

jr—x-b 1

60<-< 100
r j^ 44+0,36 j- (7+0,13© :\l\~ $>

b_
7T

il -^100 jj-< 0,8(1 -0,25 y)|© •¦

V

1

^60 ~^58(i-0,12r)

© h~n -j- b
60 < < 100 £ ^41+0,29-| -(4+0,06 D'

J Li ^ 100 £-^0,7(1-0,14y)j

1

^60 b^155

®
'-IT4

60 <- <r 100

-^100

J3 ^ 12+0,06-h r

i
-<^60

60 <- <. 100 -^,37+0,23 L
li r© i? - b

l1J
-^100 h r

7X and /2 have to be determined by interpolation by means of figs. 13 and 14 or
approximately with equation (63).

On determine les valeurs de }\ et y2 avec les fig. 13 et 14 ou approximativement
avec Pequation (63).

yx und y2 sind aus den Abb. 13 und 14 zu bestimmen oder angenähert aus
Gleichung (63).

A' ^ A
h' ^ h
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Summary.
Starting from the deformation law of quasi-isotropy and from the plasticity
condition of the limited shearing energy, the relations are derived

between the extra strains and extra stresses which appear in case of buckling.

From these the general differential equation for buckling in the plastic
domain is deduced. Due to the fact that in case of buckling the state of stress
changes, the resistance to buckling is considerably greater than has been
assumed hitherto and is not zero at the yield point. The theory is applied to
cross sections of members used in bridge engineering, for which simple
formulae are given. In this connection an exact theory for the computation
of the buckling stress of such members, valid for the elastic domain as well,
is developed.

Zusammenfassung.
Ausgehend vom quasi-isotropen Deformationsgesetz und von der

Plastizitätsbedingung der begrenzten Gestaltänderungsarbeit werden die
Beziehungen abgeleitet zwischen den bei Beulung auftretenden spezifischen
Zusatzdehnungen und Zusatzspannungen. Hieraus wird die allgemeine
Differentialgleichung für Beulung im plastischen Gebiet abgeleitet. Da sich beim
Ausbeulen der Spannungszustand ändert, ist der Widerstand gegen Beulung
viel größer als bis jetzt angenommen wurde und ist an der Fließgrenze nicht
gleich Null. Die Theorie wird angewandt auf die im Brückenbau üblichen
Stabprofile, für welche einfache Gebrauchsformeln gegeben werden. In
diesem Zusammenhang wird auch eine strenge Theorie für die Berechnung
der Beulspannungen zusammengesetzter Querschnitte entwickelt, die auch
im elastischen Gebiet Gültigkeit hat.

Resume.

Partant de la loi de deformation de la quasi-isotropie et de la condition
de plasticite du travail de transfiguration limite, les relations sont derivees
entre les allongements specifiques et supplementaires et les contraintes
supplementaires qui apparaissent au flambage. De celles-ci est tiree
Pequation differentielle generale pour le flambage dans le domaine plastique.
Du fait que Petat de contraintes se modifie au flambage, la resistance au
flambage est beaucoup plus grande que nous Pavons admis jusqu'ici et n'est
pas nulle aux paliers. Cette theorie est appliquee ä des sections employees
dans la construction des ponts, pour lesquelles sont donnees des formules
simples. Dans cette etude est egalement developpee une methode exacte
pour le calcul de la contrainte de flambage pour sections valables en meme
temps dans le domaine elastique.
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