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THEORY OF THE PLASTIC STABILITY OF THIN PLATES.

THEORIE DER PLASTISCHEN STABILITAT DUNNER PLATTEN.
THEORIE DE LA STABILITE PLASTIQUE DE PLAQUES MINCES.

Prof. Ir. P. P. BIJLAARD, Bandoeng, Java, Netherlands Indies.

According to the conceptions prevailing at present, the equations holding
in the elastic domain would remain valid for centric buckling of plates in
the plastic region, provided the decreased resistance to bending is taken into
account by replacing in it the modulus of elasticity £ by the so called re-
duced modulus of elasticity 7 1). The value of 7 is between that of £ and
that of the total deformation modulus E; = do/de at the buckling stress. At
the yield stress where E, is zero, T has the value zero too, so that the re-
sistance to bending of the plate is also zero there.
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As will be explained further on, the resistance to plastic buckling of a
plate is much greater than according to this conception, and while e. g. at
the yield-point the resistance of the plate to further compression is indeed
zero, with the resistance to bending this is not the case. I once casually
mentioned that the situation is more complicated than in the case of centric
compression, because another state of stress is superposed by
the buckling on the original state of stress?). Now this very
fact appears to cause a rise of the yield stress whenever the amount of
bending is finite, as well as an increase of the resistance whenever amount
of bending is infinitely small.

We consider e. g. a rectangular plate of structural steel, infinitely long
in the Y direction and submitted to compression in the X direction (fig. 1).
The relation between the stress ¢ and the strain & for linear stress is
illustrated by the diagram in fig. 2a.

1) CuwaLra, Report of the 2nd Int. Congress for Bridge and Structural Engineering.
Vienna, p. 321—322 (1928). BLEIcH, ScHLEICHER, Ro§ and EICHINGER, Int. Association for
Bridge and Structural Engineering, 1st. Congress Paris. Final Report, p. 120—149
1933). TimosHENKO, Theory of elastic stability, p. 386—390 (1936).

2) Biraarp, De Ingenieur, No. 26 (1934).
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If now the stress o, increases to the yield stress o,, and a further shor-
tening of the plate is opposed by preventing a further strain in the Y di-
rection, which according to my preceding publication on local plastic de-
formations is possible 3), then for a certain slenderness ratio of the plate an
approach of the ends AA and BB will still be possible due to buckling.
With continued buckling, an element dx dy dz in the concave side of the wave
(fig. 1) will suffer a considerable shortening in the X direction. Since
hereby no extra strain occurs in the Y direction, the material is then in such
another condition as in a strip of local plastic deformation running in the
Y direction. As has been explained 3) with a plate, locally weakened in the
Y direction and subjected to tension in the X direction, considerable plastic
deformations cannot occur in such a weakened strip until the stress u, being

in our case the stress o,, has increased up to 20,/Y3 = 1,154 ¢,.. The relation
between o, and the strain ¢, for the concave portion of the wave is conse-
quently according to eq. (14) of my preceding publication:

 (m—2)(302—20,2+ 0, V40,2 —30,2) — (30, + V40,2—30.Y)mE¢, 1)
T 2mE\/4ov‘~’—3—ox—2ﬁ

At the start of buckling, whereby o, = o,, the strain in Y direction
¢, = —o,/mE and, also according to eq. (1), & = o,/E. In this paper
stresses and strains have the positive sign when they indicate compressive
stresses or shortenings. During buckling ¢, remains equal to —o,/mE. Ii,
with continued buckling, ¢, in the concave side of the wave e. g. has increased
to 1,15 o,, that is almost to its maximum (1,154 ¢,), then, as m = 10/3,
according to eq. (1) & = 5,43 o,/E. For the concave side of the wave we
have consequently to do with the relation between o, and ¢, defined by eq. (1)
and graphically represented in fig. 2b. In the case of centric buckling, only
infinitely small bending is taken into consideration, hence also infinitely
small strains will have to be considered. Consequently the yield paint is
not raised here, but the angle v determining the slope of the o, —¢, diagram,
which expresses the rigidity with regard to bending, nevertheless has a con-
siderable value at the yield point. As according to eq. (1) o, = 1,01 o, if
e, = 1,04 o0,/E, this shows that tany > E/4. So far it has been admitted
that in this case tany was zero.

That in the case considered here, additional stresses in the X direction
will arise, may be understood as follows too. If this should not be the
case, then due to the quasi-isotropic plastic deformation, an additional shor-
tening ¢, arising at buckling in the concave side of the wave, would ne-
cessarily be accompanied by an additional elongation — ¢, = ¢’,/2. To enable
¢’, to remain equal to zero, an additional compressive stress ¢, will be re-
quired in the Y direction. According to the yield condition of HUBER-vON
Mises-HENcky the following eq. is valid:

0% — 0,0y, + 0,2 = 0,° (2)

which equation is graphically represented by the ellipse in fig. 3. Hereby
the axes indicated by o, and o, are supposed to represent compressive stresses.
At the moment of buckling: o, =o0,. It may be seen readily, that an additional
compressive stress o', involves necessarily an additional compressive stress
o’., since the representative point of the state of stress should remain on the
ellipse.

3) Biyjaarp, Theory of local plastic deformations, in this volume.
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In order to find in general the resistance of plates to buckling, we shall
have to determine first the general relations between the additional stresses
o'y, o/, and 7’,, arising at buckling and the additional strains ¢, ¢, and y’,,
in the plastic region. The state of stress, acting in the plate at the moment
of buckling, is denoted by o,0,, whereby o, and o, act in the X and Y di-
rection resp. The X and Y axes are to be found in the median plane of the
plate. The Z direction falls perpendicularly to it. The normal stresses o,
and o,, which after buckling are acting on the X and Y planes, generally will
not be, strictly speaking, principal stresses, because with an arbitrary form
of buckling, also twisting stresses 7v/,, = — 7/, will start working. Thus after
buckling we have the stresses o, = 0, -+ ¢y, 0, = 94 + oy, 7., = 7’x, and
7, = 7, As to these stresses the plasticity condition runs as follows %).

02— 0.0, + 06,2 + 312 = 0,2 3)

By way of introduction we admit o, = o, and ¢, = 0. The mfmltely
small additional stresses which result from buckling, will either cause in
the elements a discharge, leading back to the domain of completely elastic
deformations, or they will not take away the plasticity, the point represen-
tative of the state of stress in that case having to remain always on the
limiting ellipsoid (3). We will be able, for these infinitely small additional
stresses, to replace the limiting surface by the tangent plane in the point A
representative of the state of stress, which existed before buckling: o, =
0, = 0,, 0, = 0, = 0, 7, = 0 (fig. 3). From eq. (3) follows that at A4:

0 oy _ 20,— 0y 5

& ¢ Oy ox— 20y
AW . 4)
% and Oty _ __ 20e—0y
AN S G, 00, 6 7y,
v so that the equation of the tangent plane, expressed
in the additional stresses o', and ¢’,, which have

their origin in the tangent point A, becomes:

, 00 ,
Fig. 3 o'y =0y L =20, 3)

0 Oy

The additional twisting stresses 7/,, apparently do not affect the combi-
nation of o', and ¢’, which may occur at the yield point ?3).
According to eq. (12) of our preceding publication3) we have:

= _ %9 2%:%( fi_fz)
8x—-—8xe+8xp—~E mE+20y——ox ey-}-mE =) (6)
If in (6), also in connection with (5), we substitute:
Ox=0y+ 0y, Oy=0), &=06lE+¢&, and g=—olmE+ ¢, ()

then ¢’,, ¢, and ¢, will be the only unknown quantities in (6), hence the
extra stress o’,, and consequently also ¢’,, may be expressed in the extra
strains ¢, and ¢,. We find:

4) This may be understood readily, since the normal and shearing stresses work
independently of each other. If only shearing stresses 7,, were at work, o, = — o,
being 7,,, then eq. (2) would change into 372,, = ¢2,. Thus when they act in combi-
nation with o, and o,, eq. (3) becomes the yield cond1t1on

5) Not the extra vertical shearing stresses 7’,, and 7’,,, the deformations due to
which are always disregarded with buckling of full sections.
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mE 4 ’
0e =g (Ext 28y)] ©
o, = _2mE (¢ + 283’)J
5m — 4

For the case illustrated in fig. 1 and fig. 2b, where ¢, was equal to
zero, we find according to (8), with m = 10/3: ¢, = E¢,/3,8, so that in
fig. 2b tany = E/3,8, so for a 0 — ¢ diagram, holding for a linear stress,
according to fig. 2a, at the yield point the resistance to bending is only 3,8
times as small as in the elastic domain.

The o — ¢ relations will now be derived for the most general case,
whilst the 7/, — y’,, relations will be determined too. Also when the state
of stress g0, acting in the plate prior to buckling is not situated at the
yield point, the deformation will take place quasi-isotropically and the
shearing energy will be determinant for the appearance of the plastic de-
formations 6) 3). According to our preceding publication3) however the
function ¢,2 — @, 0, + 0,2 in the region between the elastic limit and the
yield point, which is of importance only from a practical point of view, will
be determinant for thin plates when g, <<0,/2 only. Just as in the following,
the greatest principal stress is denoted here by ¢,, while g,/0, = B. The state
of stress g,0, is consequently equivalent to a linear stress:

0g= Vo’ — @102 + @57 9)
as the plastic strains are:

=& Q2 — % &
Exp = E,  2E, (10a) and Eyp = E, " 2E, (10b)

from which follows:

2 2
Ql — ? Ep (8x,, + Zeyp) (11 a) aI‘ld Qz = ‘3_ Ep(eyp + zaxp) (1 1 b)
Substituting eq. (11a) and (11b) in eq. (9) we find:

2 2
q= EEP Vew® + & &yp + &pp* = V§ Epeq (12)

g,

where:

&g = Vel + ety + % (13)

Relation (12) has already been found by Ros and EICHINGER 6).
We assume that for the linear stress o, plastic deformations ¢, =o0,/E,
= edg,/E (we put E, = E/e) have arisen and that do,/d¢, = tan¢ (fig. 4b).
The point B, representative of the state of stress.s. = 04, 6, = 0y, is
in analogy with (3) now situated on the ellipsoid:

ze_ Ux Gy + Gyz + 3Txy2: 002 (14)

which intersects the o, axis at the point A representing the equivalent linear

stress o,. In fig. 4a the section of (14) with the plane z,, = 0 is dotted.
The point C representing the state of stress resulting after buckling,

if for the element examined ¢, increases through buckling, will be situated

6) Ro§ and EicHINGER, Versuche zur Klarung der Frage der Bruchgefahr. E.M.P. A,
Diskussionsbericht No. 34 (1929).
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on a similar ellipsoid, which intersects the ¢, axis at a point A’, for which
o, = o, + do, (fig. 4a). The two ellipsoids may in their turn be replaced
by the respective tangent planes R and R’ in the respective points o, = 94,
o, = 0, and o, = ¢, + o', 6, = 9, |+ o', Which again are parallel to the
7., axis. Since the distance BC is infinitely small with respect to the distance
OB, however in fig. 4a represented on a exaggerated scale, the planes R
and R’ will moreover be parallel to one another. They form an angle y with
the o, axis, for which according to (14):

_ 0oy _20.—0y, _20,—0 _ 2—f
By = T, T oi—20, 6, —2e  1—28

(15)

Since the points 4 and A’, like B and B’, are corresponding points of
the two ellipsoids, we have BB’, = p,do,/o, and BB’', = o,do,/0,. The re-
lation between o', and o', in accordance with fig. 4a must be:

0'y=BBy 4 (6’x— BB',)tany = (¢, — o, tany)d o,/ 0, + o'y tany (16)
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Fig. 4a — d
Hence in eq. (6) we put:

0= ¢ + 0'x

0y = 0 + 0’y = 0, + o'xtany + (¢ — e, tany)d o,/ g,
&x=0,/E— 03/mE + e0,|E— €0, |2 + &,

& =0y |[E— o [mE+ eg|[E—e0,|2F + &,

(17)

As to the determination of do,, it should be observed first, that the
additional twisting stresses 7’,, do not affect the magnitude of do,, since
the point C representing the state of stress remains thereby in the same
tangent plane R’ as with absence of the stresses v,,, for R’ is parallel to the
17,y axis. This may be seen from (14) as well, since it follows from it, be-
cause before buckling z,, = 0, that:

004/ 0ty = 314[0,= 0 (18)

According to fig. 4c and eq. (12) we find then, the intermediary trans-
formations being omitted:
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o 2 (0g o¢ tang
do;=detan g, = ﬁ(mdﬁx/f‘f" ggjdeyp> tang = (¢, deyy + 0, deyy) o,

— (1—2p)ymEtang o1 (, . (m—2)(1—p?)
_(lﬁzﬁ’)mE—f-(l—m{y)’than(pE;(S"—'—ﬁey% (1—28)mE “x) (19)

After a number of transformations (6) gives o', as a function of ¢, and
¢,, and then, with (16) we find ¢',:

oy=E(A¢x+ B¢e)), oy=E(Cé¢.+ D¢,) (20)

in which:

A:%/‘Pu B:‘P2/<P4:C, D:<P3/<P4 (21)
and:
= m*(1-23){(1-2p)2E+ {4 1*+3e) tan ¢}
g = m(1-28){2-A) (1-28) mE+(4 n*+3em ) tan ¢}
g = m*1-28){(2-B)* E+ (47> +3ep%) tang)
i = m(1-28){(5m—4)(1+8%)+2 (5-4m) B+3emn?} Et[4(m3-1)(1-2p) 2 | (22)

 13em{2(1-m )yt +(m-2) (1-7)}] tan ¢

B =00 and =0 le P =7~ + 1.

The strains ¢, and ¢, are infinitely small, hence on buckling, the finite
stresses o, and g, produce infinitely small plastic deformations. The in-
finitely small twisting stresses 7’,, consequently produce plastic shearing
strains which are infinitely small of the second order. At the previous plastic
deformation E, was equal to E/e; hence the plastic modulus of rigidity be-
comes U, = mEp/2(m-+1) = E/3e. Thus:

Vi =7Tg|G+ 7y|G,={2(m+ 1)[m + 3e}v'y,|[E=(2m + 2+ 3em)v'y,/mE

or
mFE

Y O m L2+ 3em

Vi =EFyy (23)

We shall now consider first the case tang = 0, that is the buckling at
the yield point. It follows from (21) and (22) that then:

BJA=D|C=ClA=D[B=0,|ds=2—f)/(1—28) =tany (24)

This is to be expected, since the point representing the state of stress must

remain on the tangential plane to the same ellipsoid which forms the angle y

shown in equation (15) with the o, axis. In the elastic domain we know that:
2 1 2

O',x — m”E <8’x -+ H E’y) and (T’y = ——’n——ﬁ;— (% e’x + E'y) (25)

m?—1 m?—1

as follows likewise from equation (20), in which now tan ¢ = oo and ¢ = 0;
hence:
0'yl0'y=(ex+ méy)|(me,+ &) =tany, (26)

If we think of an arbitrary deformation of the plate at buckling, then
the elements, the representative points of which for elastic deformation are
situated to the left of the tangent plane R (fig. 4d) will be deformed elasti-
cally, where as those where this point would be found to the right of R
would be deformed plastically, the representative point in that case re-
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maining on R. As with bending the sections may be assumed to remain
plane, ¢, and ¢, will vary linearly with z along the entire thickness of the
plate, and so, according to (20) and (25), ¢/, and ¢, for a certain small
element Adxdy, will also vary linearly with z, both in the plastic and the
elastic domain (fig. 5a). It should be noted, however, that equilibrium is
only possible, if the plate deforms plastically along the entire height7) and
that then in the centre plane of the plate ¢, = o', is to be zero. If the strains
here are ¢',,, and ¢, then, according to (20) and (24), ¢,,/¢'xmw = — A/B =
— (1 —2p8)/(2—p). If the strains resulting from the actual bending are
given by ¢”, and ¢”,, so that e.g. ¢, = ¢, + &”,, then it follows from (20)
that: .

0'y=E(Ae"y+ B¢e", and 0'y=E(Cé&"x + D¢&"y) (27)

¢.n and ¢,, will have to be the same for the entire plate, in order to make
{v.dh = | v,.dh to be zero, for then y’,, = 0 in the centre plane.

. The theory of elasticity has taught us that when w represents the de-
flection of the plate, ¢”,, ¢”, and y’,,, as far as the top and the bottom of
the plate are concerned, are given by:

2 2 2
&g’ — ____h, ,a_lv gl — 127 .a_w and 7’ — 2 _}i 0w
¥ 2 ox?’ 7 2 o ad 2 dxey

Hence, according to equations (27) and (23):

, h w 02w , h ctw 0w
“xZ“E?("“a?*Bayz)’ dy=—E gy (o + D "
| (28)
’ ’ 62W
| and Txy:—Tyx:EF/Z Txay ,
The bending moments M, and M, and the twisting moments Z,, = —¢,,

per unit of width, result from this by multiplication by W = #2/6, as may
be deduced directly from figure 5b. As 7%3/12 represents the moment of
inertia / of the plate, we have:

7) The transition between the plastic and the elastic domain would have to be at a
height %, under the top of the plate (fig. 5a), where tany, = tan y (fig. 4d), or where
&, = ¢, = 0. The equilibrium requires [[ o', dhdy and [[o’',dhdx to be 0. As in
the plastic domain o¢’,/0’, is constant, we note that, if [[o’,dhdy = 0, [[o’,dhdx
can only be 0, if also in the plastic domain o’,/0’, has the same constant ratio, and
tan y, = tan y, which as a rule will not be the case.. In order to satisfy both conditions,
the section will have to deform either altogether elastically, or altogether plastically.
Entirely elastic deformation is not possible, for if the representative point of an ele-
ment under the centre plane were to the left of R (fig. 4 d), that of an element above
the centre plane would be to the right of R, and then at that side the deformation
would all the same have to take place plastically. Hence the deformation is altogether
plastic. If with an uniaxial compression g, = o, there is buckling perpendicular to o,,
¢’, being 0, then, according to (5) and likewise (24) (since f = 0), in the plastic
domain ¢’y would be 2 ¢’,, and in the elastic domain, according to equation (26) ¢’y would
be o’,/m.” As is shown by figure 5a, if | o', dh were 0, | o', d% would not be 0, but
create a compressive force in the Y direction. In absence of external forces in the Y
direction, this would cause an elongation in the Y direction, naturally accompanied
by a shortening in the X direction, until the section completely reaches the plastic domain
(fig. 5b). Hence at the bottom of the plate, according to equations (24) and (26)

tan y, = tany, hence as = 0 here, &, will be = %E_T €.
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. 0%w 0w _ ( *w a2w)
Mx_—EJ(AEﬁ+BW’ My, = EJ Cax2+D6y2
sty (20)
and txy:_tyx: ZE_/Faxay
The establishment of the condition of equilibrium leads to the equation 8) :
(4 04 AL R U
E_]‘A 8x4+ B+ C+ 4F)0x20y2 + D ot + hoy e + hog T 0 (30)

We consider now the general case of tang > 0.

Fig. 5a Fig. 5b

When we examine the stresses on an element Zdxdy of a plate ?), then
on the concave side, where extra shortening takes place, the deformation
generally will be plastic, and (20) will apply; whilst on the convex side,
where extra extension takes place, the deformation will be elastic, and (25)
will consequently apply. With a given shape of the deflection surface of
the plate the stresses on the sides of the small element are fully determined
by the two distances %, and 2, — measured from the concave outside — of
the surfaces where ¢, and ¢, respectively are equal to zero. In the case of
the buckling of plates in the elastic domain three conditions are satisfied,
viz. {o’,dh = 0, [o/,dh = 0 and | v, dh = |1 ,.dh = 0, and thus far it had
been assumed that this was also the case in the plastic domain. These three
conditions however, in our case lead to 3 equations with only two unknown
quantities %, and #,, and thus it will generally not be possible to satisfy
them. A shortening with unchanged stresses, such as occurred in the case
tan ¢ = 0, considered in footnote 7, causing the whole plate to enter the
plastic domain, is not possible for tan¢ > 0.

In order to get an idea of the stress distribution at buckling we con-
sider again a rectangular plate of structural steel, infinitely long in the Y
direction and submitted to compression in the X direction, as it buckles
just below the yield point o, (fig. 6a). From the relation between the buck-
ling stress of bars of structural steel No. 37 and their slenderness ratio
4 = [/r, as established in the specifications of the German State Railways

8) See also BijLaarD, Proc. Royal Ac. of Sciences, Amsterdam, Vol. 41, No. 5 (1938).

9) For a bar, both the cross dimensions consequently being small with regard to

the length, the new equations naturally show the relations applying to linear stress. With

buckling in the Z direction here ¢’, = 0, as contraction may occur freely; hence it

follows from equation (20) that ¢/, = — Cé¢’,/D. When we insert this value in the

first equation (20), we find, on making use of (21) and (22), and after further trans-
formation:

6! — Etang o ! — (da/dge)(do/dsp) £l=—¢ rd%‘f

* F4tang * do/d£e+do/dsp * * de

This proves that the theory of ENGEsser-KARMAN remains valid for bars.

or do,=ds, .%,
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(Vorschriften fiir Eisenbauwerke), on account of the relations op = «? 7/12
and the relation 7 = 4FE,/(V E + V E,)? holding for rectangular sections,
the magnitude of the total deformation modulus E; = do/de may be calculated
for the underlaying o-—¢ diagram, as was done already by others too. We
may now write for tan ¢:
do do 1 EFE;
Ny =g, = di—ds, ~ 1E—IE ~ E—E (31)

Since ¢, = eo,/E we have:

_E  E(ds EJ‘ _E
e = o &y = -ﬁf Jo do o doltang = F 2do/tan g (32)

So for any stress tan @ and e may be computed. Just below the yield point
we find tangp = 0,294 F and ¢ = 0,1675. With m = 10/3 it follows from
(20)— (23) that:
o'y = E(0421¢, + 0,426¢), o'y = E(0,426 ¢, + 0,038¢)) (33)
T’y = 0,322E /'y, }

whilst from (25) it follows that in the elastic
domain:

o'y = E(1,099¢, 4+ 0,320¢),

o'y = E(0,329¢, 4+ 1,099 ¢,) {

and finally

&y ah

(34) . .
Fig. 6a Fig. 6b
'y = 0,385 Ey'yy J

We first suppose ¢, = 0 (fig. 7a). If 4, is chosen so as to make
jo dh = 0, then [ o ,dh would represent a comparatively great compres-
sion, as on the upper side ¢,,/0’,p, = O 426/0 421 whereas on the lower side

yo/o 0 18 only 0,329/1,099. The compression |o’,d# would be proportional
to 02w/ox? (fig. 6a). It will cause an extension — ¢’,, of the plate in the YV
direction, and as the result of this there will be a shortening ¢,, in the X di-
rection. Since for x = +a/2, 0?w/0x? and 02w/0y? are zero, o, must in

Gy /
i

YA
e

~Gxo

Fig. 7a Fig. 7b

any case be zero there, as with buckling o, does not increase. As in the case
of shortening, the plate behaves plastically over its entire height, ¢, in (33)
will have to be zero. If we insert the ratio ¢./¢,, resulting from this in the
second equation (33), we find that ¢’,, = 0,507 ¢’,.. The strain ¢,. must be
the same for the entire plate. Supposing ¢, likewise to be the same every-
where, we find ¢, = 0,507 ¢,, and ¢, = O for the entire plate. As ¢, is
negative, o', represents a tensile stress. The equilibrium now requires that
for all values of x the distance %, (fig. 7b) for the superposed bending is
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chosen in such a way, that if the superposed bending stresses are denoted by
0", and O'”yr J‘O./x dh — J‘ 0", dh = O;
and further that ¢, is chosen in such a way that

jfo'ydhdx = aho'y. + [[0”,dhdx

becomes equal to0. As couldbe foundgraphically, ¢, then must be about — 0,05
(¢'vo — €xy) if ¢, and ¢, represent the strains at top and bottom for x =0,
where 02w/0x? is maximum. The plate remains plastic in the region where
gy>(m—2)¢,/(2m —1) (see footnote 7), and thus, in connection with
the strains ¢,. and ¢,. over the entire height, the plate, close to the boun-
daries x = 4 a/2, remains plastic over its entire height (fig. 8). More
towards the centre it behaves elastically at the convex side, as shown like-
wise in fig. 7b. [o’,dh is shown in fig. 6b. Fig. 8 gives a section with a
plane perpendicular to the Y axis (the height % has been drawn on an ex-
aggerated scale). The concave side is supposed to be at the top. The plastic
domain is indicated by cross hatching. The planes N, and N,, where ¢, and
¢’y respectively are zero, also have been shown in fig. 8. Thus the plate is
more rigid in the central strip than at the boundaries x = 4-a/2; consequently
it will not buckle according to a plane w = w, cos (wx/a). As the stress
distribution now is known in the various sections, it was possible graphi-
cally to determine the buckling stress o3 as a function of #, E and 4. Inversely
this showed at what ratio a/% the plate will buckle just below the yield stress.

e

N,
Wy m

Fig. 8

[t is not worth while to determine the stress distribution exactly also
for other boundary conditions. If for an imaginary, entirely elastic or en-
tirely plastic plate the buckling stresses are called oy and op respectively,
then the actual buckling stress oz in any case is to be found between of
and op. With the above case it appears that approximately:

op = 0'5/4 + 30‘p/4 (35)
This relation may be considered to hold for other cases too 19).

10) With buckling at the elastic limit the deformation is wholly elastic, at higher
buckling stresses it becomes partly plastic and partly elastic. At the yield point itself,
so if tan @ = 0, it is entirely plastic. It is obvious to apply for structural steel No. 37
and for buckling stresses below the yield stress, the only case that is of any importance
for technical purposes, the above-mentioned relation for other boundary conditions as
well, the more so when one considers the following. As has been observed by CHwALLA 1),
a discharge will only occur at buckling of rectangular bars in the plastic region when
the eccentricity is less than about %/50. The admissable stresses are based on the
assumption that such an eccentricity will always be on hand, so that as a matter of fact
the reduced modulus of elasticity 7 is not determinant for the admissable stresses but
the total deformation modulus £, and really we should reckon with the buckling stress,
calculated for the bar supposed to be plastic all over, as a basis for the determination
of the admissible stress. Thus we might state that the buckling stresses from which we
start are 7/E, times too large. We might therefore in a certain sense contend, that for
plates as well, in order to make the calculated stresses comparable with those of bars,
we should have to reckon with a buckling stress of oz = (T/E,) 6p. As may be seen
readily in the region below the yield point for structural steel No. 37, (7/E)) op is
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For the determination of the buckling stress op of plates, compressed
in one direction, according to (30), since 9y = op, 0, = 0 and C = B, the
following equation is valid:

otw otw o*w 0w

For the case dealt with in the preceding (fig. 6) we assume w =
w, - cos (wx/a) ; after insertion in (36) we find 2op = a2 EJA /a2, from which
we compute op with equation (35).

We now consider the case where the boundaries x = 4 a/2 are simply
supported, whilst the boundaries y = -+ 5/2 are elastically built in, which
is the position of the webs of compression members of steel bridges. We
first consider the limit case where the boundaries y = --54/2 are also
simply supported. As in the elastic domain 12) we put

W = w, cos (prx/a)cos (qny/b),
after inserting which in (36) we find:
hop= (n?EJ|b*){Apb?|a® + 2(B + 2F)q*> + Dg*a?|p?b? (37)
For minimum buckling stress, ¢ must be 1, whilst differentiation shows
that p must be (a/b) (D/A)%. Substitution gives:
hop= (2#*EJ|b2)YAD + B + 2F) (38)
When a/b is greater than 3 to 4, and this practically is always the case,

(38) will also apply when (a/b) (D/A)%* is not an integer. If we substitute
in (38) the values for 4, B, D and F used in (33), which are valid just below
the yield point, then (38) yields Zop = 3,40 a2EJ/b2.

The buckling force 4og is known, but naturally follows also from (38),
when for A,B,D and F are inserted the values prevailing for the elastic
region, where tangp = co and ¢ = 0. These values may be calculated with
the aid of (21), (22) and (23). A,B and D may also be found directly by
comparing (20) with (25) or (34) viz. A = D = m?/(m2 —1) = 1,099.
B = m/(m? — 1) = 0,329. F is equal to m/(2m -+ 2) = 0,385.

Insertion in (38) shows /4or = 4,40 a2EJ /b2, so that according to (35)

hop—=(4,40/4 4 3.3,40/4) w2 EJ[b? = 3,652 EJ[6*> or op= 3,00 E(k[b)2.
As slightly below o, the reduced modulus of elasticity 7 = 1%20,/a?

= 3600-2400/22 kg/cm2 = 875000 kg/cm?2, whilst E — 2100000 kg/cm?2,
according to the existing theory13) we should have:

ho'p= (T|Eyhop=18372EJ[b®> or o's= 1,50E(k|b)>

Many compression members in bridge engineering have a slenderness
ratio 1< 60, so that according to the German specifications the buckling

=0 (36)

ox2

always greater than the value o5/4 | 30p/4 calculated on account of other conside-
rations, so that this latter value is indeed not too high as a basis for the determination
of the admissible stresses. Eq. (35) may therefore be considered to be safe for other
cases as well.

11) See e. g. CHwWALLA, Int. Ass. for Bridge and Structural Engineering. 1st. Con-
gress Paris. Final Report, p. 58.

12) TimosHENKO, Theory of elastic stability (1936). Hartmann, Knickung, Kippung,
Beulung (1937).

13) ScHLEICHER, Bauingenieur, p. 505 (1934).
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stress is equal to the yield stress. It is required that the webs will not buckle
before the member buckles as a whole. With webs which may be considered
as simply supported and with ¢, = 2400 kg/cm?2, the requirement ¢'; = o,
leads to the condition &/4# = 361%). According to the theory outlined here,
it is sufficient when oz = 0, and so b/F = 51,2,

That we find oz to be comparatively slightly smaller than of is the re-
sult of the considerable resistance to twisting in the plastic region, which
expresses itself in the following quantity: F = 0,32215), As has been ob-
served in my preceding publication 3) we consider the material as a HENcKkY-
body, since in that case we are sure that the resistance of the material is
not over-estimated 16). When preliminary free deformations or any prelimi-
nary plastic deformations are disregarded, consequently when we consider
the material as a HOHENEMSER-PRAGER or PRrRANDTL-REuUss body, then
obviously e must be equated to zero, which for the rest does not make
much difference as e is small. Thus according to (23) F would be just
as great as in the elastic region i. e. F = 0,385. The results of tests of
HOHENEMSER and PRAGER concerning the plastic deformation of hollow tubes
of structural steel 17), as given in their fig. 5, actually indicate that this is
the case, although as far as we know, nobody has hitherto drawn the con-
clusions of this fact with regard to buckling phenomena8)., The experi-
ments of CHAsg, made in connection with the design of the bridge across
the Delaware River between Philadelphia and Camden 19) also give results
which are not contradictory to our theory. With his plates o, was 3170
KG/cM2. Admitting the same values of tan¢ and e for this case, the con-
dition oz = 0, shows that o will attain the yield stress at a ratio &/4 = 45.
In the tests the yield stress is attained at a ratio /4 = 46,8. Admitting e to be
zero in our equations, then o= 3,30 E (%/b)2, and thus o, will be reached
at /i = 46,8. The exact agreement with the experiments — the existing
theory, according to condition ¢’ = o,, gives the ratio 31 — is merely acci-
dental, as no experiments were undertaken between b/# = 46,8 and b/h =
56,0, at which latter ratio ¢, was no more reached. The plates buckled in
4 or 5 waves. According to our theory oz becomes minimum with m = 4,
according to the existing theory o’z with m = 3 (but nearly 4).

For other boundary conditions at y = &/2 we assume in the same way
as in the elastic domain, that w = Y cos (pa x/a), when Y is a function of
y, upon which (36) transforms in the ordinary differential equation:

Dd*V|dyt— 2(B + 2F)12d2Y|dy* + (A2 — ¢?) 2V = 0 (39)

in which
A=pr|a and p*=hop|EJ

Assuming in (39) ¥ = e*¥, we obtain the general solution:

14) TIMOSHENKO, 1. c¢., p. 406,

15) Compare equation (33).

16) This question has been discussed in detail in my publication in the proceedings
of the Royal Netherlands Academy of Sciences, Vol. 41, No. 7 (1938).

17) HoHeNeEmsER and PRrAGER, Zeitschrift fiir angew. Math. u. Mech., No. 1 (1932).

18) e. g. the resistance to twisting of the boundary angles of bridge-members will
near the yield stress not be much less than in the elastic domain and thus also in the
plastic domain give some support to the plate.

19) CHask, Journal of the Franklin Institute, Vol. 200, p. 417. For the discussion
of the edge conditions and the ratio b/4 to be taken into account, cf. ScHLEICHER, First
Congress of the Int. Ass. for Bridge and Structural Engineering, Final Report, p. 123.
ScHLEICHER concludes that the edges could practically be considered as simply supported.
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w = (C,coshe,y 4+ C,sinhe;y + Cscosayy + C,sinaypy)cos(prx/a) (40)
with:

@y = ]iG A+ A VHAR + Ko® (41)
in which:
B+ 2F (B4 2F):—AD 1
o= H= D 0P and k=, (42)

With the values of A, B,D and F introduced in (33), valid just below
the yield point, we find:

G = 1,141, H = 0,852 and K = 1,066 (43)

If both sides y = 4 &/2 are built in, the symmetry with regard to the X
axis requires C, and C; to be zero. The boundary conditions w = 0 and
dw/dy = 0 for y = + b/2 lead of course to the same condition as in the
elastic domain, viz. a; tanh («;6/2) -+ a, tan (ayb/2) = 0. Combination of
this equation with (41) and (43) allows us to determine the value of /op
for various values of p. The minimum value is: ~

hop = 5,41 n?2EJ /b2 with a/p = 0,54 b. As hop = 7,67 a2 E J,b?

we find according to (35) /hop = 5,97 a2EJ /b2 or o5 = 4,91 E (h/b)2. The
condition o5 = o, yields b/4 = 65,5 (according to the existing theory &/A
should be 48).

If one side is simply supported and the other is built in, then the boundary
conditions lead to the equation: «y; cotha,;b—a, cotha,b = 0, from which
in connection with (41) und (43) follows: %o, = 4,38 #2EJ /b2 with a/b =
0,65 6. As horp = 594x2EJ /b2, (35) gives hogp = 4,7Ta2EJ/b? or
op = 3,92 E (h/b)2. The condition o3 = o0, leads to: b/# = 58,6.

For sections as illustrated in Table I the plates are partly built in. The
plates, which, if simply supported on the other plates, would have the lowest
buckling stress, are called the ‘“buckling’’ plates, with dimensions & and /7;
the other ones are called the “resisting’”’ plates, with dimensions &’ and 7’
With the sections of Table I &/4 > &'/#’. The calculations which have been
in use till now for those sections 20) are neither exact for the elastic region.
Therefore the exact computation will be given here, which holds for the
elastic region as well. -

20y BiricH, Theorie und Berechnung der eisernen Briicken (1924). BikicH, Int. Ass.
for Bridge and Structural Engineering. 1st. Congress. Preliminary Publication p. 107
(1932). CrHwaLra points out already that BrLeichH does not consider the varying rotation
of angle: Ingenieur-Archiv, p. 62 (1934). The course pursued by CHwaLLA with respect
to the calculation of the building as given by edge angles, whereby he assumes these to
be concentrated in the edges of the plate, is however not at once applicable to tubular
cross sections. Moreover CHwaLLA neglects in this way the torsional action of the forces
-~ ho (0*w/0ox?) dx dy given by the compressive stresses acting in the angles on an ele-
ment Adxdy, in consequence of which the supporting action of the angles is over-estimated
(on the other hand however the resistance to bending of the flanges of the angles is
neglected). BreicH takes approximately the influence of the compressive stresses in the
vertical plates (fig. 9a) into account afterwards, but assumes that the buckling plate
(fig. 9a upper plate) may be considered to be simply supported when (4356")/(A#’3b) = 1
whereas this as a matter of fact will be almost the case when 4/b = #’/b’, so when
(hd")/(h’b) = 1. Consequently the formulas of BLEIcH, esnecially those in the second
publication, procure in various cases values for b/# which are relatively considerably
too high. The way in which BLeicH reckons in the plastic domain, namely in the direction
of compression with 7 and perpendicular to it with E, seems to be in better agreement
with our calculations than the conception that it should be reckoned in all directions with
the reduced modulus of elasticity 7.

Abhandlungen VI 5
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If for a section as given in fig. 9a eq. (40) holds for the upper plate,
the “buckling” plate, a similar equation will be valid for the vertical plates,
the “resisting’’ plates, viz.:

w = (C'ycosha’,y'+ C'ysinhe’y y + C'scos s y' + C'ysin e’y y’) cos (pre x|a) (44)

p with:

y M , - "”“;) - T 'T‘f:ji):'—_‘—‘_'; =
/‘,/}’ ‘\{:lZ/l(j /‘6’/ al,? :ViG}.«'+ ]u‘/H/t."-*— K@z (45)
" ! 5 in which 7 = px/a and ¢/ = I’ op/EJ".
W L@ The half-wave length a/p is of
A course the same as that of the “buck-
Fig. 9 ling”’ plate. We assume that the upper
plate, when it buckles, exerts moments
M’y = M cos (pax/a) on the vertical plates. Considering first the vertical

plates, the “re51stmg” plates, then, since M’, is determined by (29) and

since for y = 0 and y’ = b (fig. Qb) 02w’ /0x2 = 0, the following boundary
conditions will hold:

w = 0... (I) and é2w'/dy’? = 0... (1I) for y’ = 0,

w = 0...(lll) and —EJ/'D 2w /dy’2 = M cos (pax/a) ... (IV) for y’ = b'.
The first two conditions yield, after insertion of (44): C’; = C’5 = 0.
The third condition yields:

, , sinh o/, &’

Ci=—0Cs sind’y &

and the fourth:
M

EJD(1® + oy sinha, ¥

After substitution of these values in (44) we find for the angular dis-
tortion for y’ = ¥’:

C’z =

) ’

ow , g oicothd 8" — oycota’y b
fAy’ —My'/’a—M E_/ D(a’12+a’ 2)

We consider now the upper plate, the ‘“buckling’”’ plate. The bending
moments M, as indicated in fig. Ob, i. e. as negative moments, are according
to (29), since 02w/dx2 = O for y = - b/2: M, = + EJD&2w ¢y2.

As at the same time for y = 4—b 2: M, = M, and éw/dy = + ow'/dy’,
from equation (46) it follows that for y = ib/2

cw 0w
T Y gy
in which, since J/J' = (h/k)3:

(46)

=0 (47)

_ [k )3 o' cothe', 8 — d'ycotay b
G, = E.]Dl+ﬂ - (};7 a/12 + 0’22
Further the condition w = 0 holds for y = - &/2.
Due to the symmetry C, = C, = 0 in eq. (40), applying to the upper
plate. The condition (47) and w = 0, holding for y = &/2, lead then after
insertion of (40) to the equations:

Ci{e, sinh (¢; 8/2)+ @, 2 cosh (a; 8/2) }— Cs {ers sin (03 8/ 2) + O 25* cOS (12 5/2)} = 0
C, cosh(a, 6/2) +C, cos(a;b[2) v =0

(48)
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which yield values for C, and C, different to zero only when the denomi-
nator determinant is zero. This condition gives the buckling condition:

oy tanh (o, 812) + agtan (ay6)2) + (¢, + 0,%) @ =0 (49)

in which a; and ay are given by (41) and © by 6, in (48).

For the elastic region, consequently for tamp = oo and e = 0, in (41)
and (45): G = 1, H = 0 and K = (m2 —1)/m>.

When #'/h is fairly great, o', in (43) becomes imaginary. The solution
of (36) is then:

w'=(Cicosh ay y’'+ Cisinh ey y'+ Cicoshas y' + Cysinh eg y’) cos (prex|a) (50)
with : a2 =G it AYHIE + Ky (51)

In the same way as before we find now:

/ 3 ’" ” r__ ” . 17 ’

(‘;)a:Eth"a——:(g7) ‘a”,cothe” b a”ycotha”, b

which form can also be found directly with (48) by putting there o’y = a”y
and @’y = ia”,.

So if, as in fig. 9, the “resisting’’ plate is bent as in fig. 9b or 10a
and the “buckhng” plate has boundary conditions as in fig. 9b or 11a, the
buckling condition is given by (49), in which ® = @, and is given by (48)
or (52). Several other combinations are possible. With section 2 in Table 1
the vertical ‘‘resisting’’ plates are bent as in fig. 10b when the two hori-
zontal plates buckle. Due to symmetry C’, and C’; will be zero now in the
general equation (44) of the ‘‘resisting” plates. From the boundary con-
ditions for y’ = &’/2, viz.:

= 0 and M’y = — EJ'D0*w'/dy’? = M cos (pn x/a),

the values of C’; and C’; are found, and from these — ow'/dy’ = M,y =
My’l/)b and @b == E./Dl/)b
We find:

(52)

"9 "9
a " — 0 g

h ) o’y tanh (a’, 8';) + o’y tan (a’y &)
@y = EJD yp = (h, a? T (53)
and if o', is imaginary, by putting ¢’y = «”; and o’y = iu”,:
@ — (Z) a,” tanh («,” b”,/ 3——0:2: t:mh (cts” &']3) (54)
a’y o

In the case of a 7 -section, as given in fig. 12a, the “resisting’’ plate,
viz. the horizontal plate, has still other boundary conditions. Let us consider
one half of the horizontal plate, which may have a total breadth of 24’ and
a thickness #’. It is bent as shown in fig. 10c (rotated 90 degrees). At
y’ = 0 we have the boundary conditions:

w'=0 (I) and M'y= -—EJ'D¢*w'[dy'? = Mcos(pmx|a) (1)

At y» = b’ the bending moment M’,, given by equation (29), must be
zero. Moreover the shearing forces @', and the twisting moments #,, must
be zero there. The equivalent load p’,, transmitted from the plate to its
support and including the influence of the twisting moments, is at y* — &/,
1f we choose our positive directions in the same way as TIMOSHENKO“) did:

) TIMOSHENKO Theory of elastic stability, p. 295—300.
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it oMy | oty Oty

— o J
o <y cx oy’ + ox ox
Introducing the values of M’,, t’u and ¢, of eq. (29), based on the same
positive directions, we find for y' = &0’, as C = B:
O;‘i w
py:E]{D (B4R Qﬂy, (55)

So the conditions M’, = 0 and p’, = 0 lead to the following boundary con-
ditions for y’ = &’:

6‘~’W’ 6 w o3 w Swf
"l

—~0 () and DA,3+(B+ F)&_Uy

Introducmg the general equation (44) of the ‘“‘resisting” plate in these
four boundary conditions, we find the values of the constants C’;, C’,,
and C’, of (44).
The angular distortion dw’,
and from this we find:
G.=EJDuy,
3 (Zz_)?’ (¢ r*—a'y? ¢?) sinh @', b'sindy '~ oy (¢ + ") cosh o’y &' cos o, b'— 20y &y g 7'
\r (2 +a'y®) (o r'2cosh e’ 0'sindy &'~y g2 sinh ') &' cos &'y &)
in which ¢’ = 2, —B2%/D and v’ = a'?, - B2 D
If «’; becomes imaginary, we have:
©.=EJ Dy,
( ) (ed?r'+az’ q'”) sinh of b'sinag b'-af «z(g"+7") coshey b’ cosazb’'—2ai a3 g r"
h (e 2= a3 ?) (af r"2 cosh i &' sinag &'~ a3 ¢”"?sinh af & cos a3 &)

=0 (IV)

A BA

/ey’ = M’,p, for y» = 0 can now be computed

in which a”, , is given by (51), ¢” = «"2; — B12/D and " = — a"2, - B2/D.

If a side of the ‘“buckling’”’ plate is connected with two or more ‘re-
sisting’’ plates of the types given in fig. 10a, 10b or 10c, then M, will be
equal to XM’,. As the bending moments, which give the same angular distor-
tion, are inversely proportional to the angular distortions v by the unit of
moment, and thus to the coefficients & = EJ D, it can easily be perceived,
that in this case the value ®,, which has to be introduced in the buckling con-
dition of the “buckling”’ plate, is given by the following equation:

1 1
o, = 2 (58)

In the case of a 7 -section, the upper side of the “buckling’ plate (the
vertical plate) is e. g. connected to two plates of the type of fig. 10c, so that
@]— = 9. and ®;, = 1 6,. In accordance with HARTMANN 22) we neglect the

S c
resistance to angular distortion of the connecting angles.

Also for the “buckling” plates several boundary conditions may occur.
With section 4 in Table I the angular distortion is only resisted at the upper
side. The plate buckles as shown in fig. 11b (rotated 90 degrees). The
boundary conditions are:

w=0 () and otwlay: =0 {0 for y:O.r
w=0 () and owldy + @d*w/oyr =0 (IV) for y=2=a.

22) HarRTMANN, l.c., p. 181,

(57)
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Introducing in these the general equation (40) of the ‘“buckling” plate, we
find the buckling condition:

@, cotheay b — a; cotay b + (1 + «,?) @ =0 (59)

We had better consider now the most general case for the boundary con-
ditions of the “buckling”” plate. This is when the plate is supported at both
sides y = 0 and y = b by “beams” of different flexural rigidities By and
B, and different cross-sectional areas A; and A,, whilst also the values of ©
are different, viz. ®; and O, respectively (fig. 11c).

Fig. 10 Fig. 11

“At y = 0 the difference between the shearing forces working on an
element dx of the beam will have to be in equilibrium with the load p,
transmitted by the plate and the resultant force of the compression forces
A,op working on the element dx, as is given by the equation 23):

otw 0Zw
B, Y — A ap Y
T oxt Py 17 ox2

Proceeding in the same way as with the derivation of eq. (53), we find
for y = O:

o c3w c’w |
py= — E/{D PR (60)
so. that our first boundary condition for y = 0 is:
3w ciw
3194 'f-Ef{ (J;}+A1 (“x{__O (I

'If the unit of bendmg moment gives at y = 0 an angular distortion ),
we know that there dw/dy = M, ;.

The negative moment M, (flg 11c¢) is given by eq. (29) by omitting the
minus sign. As C = B and EJDy, == ©, we obtain in this way our second
boundary condition for y = 0, viz.:

w B o*w | ¢F w) -
R B 2) =0 (I
For y = b we obtain the third and the fourth boundary conditions:
ctw ccw
B, Y Ej{ +B+4R) | 2;}—{—,420,, —0

23) Comp. TiMOSHENKO, l.c., p. 346.
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ow B 02w 62w>
oW i =0 IV
(7_}’ + @2 (D axg ay‘g ( )

Introducing the general solution (40) in these four equatlons the fol-
lowing linear homogeneous equations appear:

sy Cy + a,rC,
+ 5 Gs —39C, =0
— 06,¢9C, + a,C
+ 6,rCy + a,C, =0

(sgcosha b — a, rsinhe; 6) C; + (s: sinh &, 6 — a, rcosh a,;5) C,
1+ CsyCO80ty b — agqsinay,d)Cy + (sgsinezbd + o3gcosa6)Cy = 0
(0,9 cosha, b + &, sinhe, b)C; + (O, g sinh a,b6 + a,cosh «, ) C,
— (@yrcosayb + aysinay8)C; — (@ rsinwgb — eycosa36) C, = 0
which give only values of the constants different from zero, if the denomi-

nator determinant A of the system is equal to zero.
Thus we get the buckling condition:

[a12{s; Sg— a2 2— (O S3+ Oy 5,) r?+ Oy Oy r}

—ay2{s; $3— (O, S9+ 925,)q2+ 0, 0394+ O, Oy s, 5, ¢%] sinh ¢, bsinay b

— 00528, S5 (O + Oy)(5,+55) 2+ 2(O, S5+ Og5,) g7 +2 O, O, q* r?] cosh a, b cos ay b
togtfo 2 {s;+Ss—(O1+ @) 12} — (O + Oy) s, 55+ Oy Oy (s,+5,) g%] sinh ¢, b cos ay b
oy t[og?{s;+S5— (O + Oy) g2} + (O + Oy) 5, 53— @ Oy (s,+5;) r?] cosh &, bsinh ey b

+2a, 095,594+ (O; 53+ O38,)gr+ 0, G, ¢g2r?] =0 (61)

in which:

g=ea*—BA|D, r=a,®+ BA%|D, t:q+r:a12+ag2=2wH,{2 + Ko?
;'2

In the elastic region, where, as we remarked already, A = D =
m2/(m? — 1) — 1,000, B — m/(m? — 1) = 0,320, F = m/(2m -} 2) = 0,385,
G = 1 and H = 0, we consequently have:

b or )\I "o 2
t—zl‘%{;ﬁ 1,8 = ~; (B1,2A*— Ay, 2 OF) N—-:m?__—lfj

and in the formulae for ®:

hoe , k2 22
a,l,gz‘/‘J‘l + y) N 77 q’::a'f—- ;;2) r ——0,22—"77"1“'

For the elastic domain (61) can be shown to be identical with the buck-
ling condition derived by CHwaLLA 20) for the section given in fig. 12b,
with the difference however that instead of our coefficients © in his formulae

the coefficients g appear, which with our notations are equal to - e gl , In
which G is the modulus of rigidity, whilst /5 is assumed to be }2& /3. As
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we remarked already 20) the unfavourable influence of the compressive forces
in the angles is neglected in this way.

With symmetrical boundary conditions of the “buckling’ plate, where
B, == B{, A, = Ay and thus s, = s,, whilst ®, = ©,, eq. (61) becomes much
simpler. \X/lth the sections in Table I, where this is the case (1, 2, 3 and 6)
the plate will buckle most easily in short half-waves a/p, so that the ,beams‘
get the same deflections as if they were simply supported with a span of
«/p, thus being very rigid. We may suppose then B, = B, = oo and s; :=
S, = 0o. As CHwaALLA 20) showed already with his formulae for the elastic
domain, the buckling condition for symmetrical cases can be factorisized.
Eq. (61) transforms with @y, = 6, = 6 and s; = s, = oo in:

{e, tanh (o, 6/2)+ e, tan («y &/ 2) + O ¢} {, coth(e, b/ 2)—ascot (e, 6/2) + O £}
- cosh (er; &2) cos (ay &/ 2) sinh (e, b[2)sin (e 8/2) =0

This does not imply that we get now 4 (or 6) buckling conditions by
equating each of these factors to zero. For if e. g. cos (ayb/2) is zero,
tan (ay6/2) in the first factor will be infinite and thus the product will not
be zero. This will only be the case if the first or second factor is zero, so
that we have only two buckling conditions. The first one, which gives the
smallest buckling stresses, coincides of course with eq. (49).

With 7T-sections (fig. 12a) s, = 0 and @, = co in eq. (61). If O, is
large, the ,,buckling* plate will buckle in one wave, so that with slender
bars the deflection of the ‘“beam’ (the horizontal ‘‘resisting’’ plate), as a
result of the load transmitted to it by the “buckling’ plate, will diminish
the buckling stress rather much. With section 5 in Table I, a single angle,
the flanges will not influence each other, so that moreover ®;, = co, though
in the plastic domain this is not quite true.

= 2b
=T
» @ |®
P
L ||

The buckling condition for sections 2 and 3 in Table I is e.g. given
by (49) in which & = 6, according to (33) or (54). For section 4 the con-
dition (59) holds, whilst ® = @, in (53) or (54). As we neglect the angles
eq. (38) determines the buckling stress of section 6. The buckling condition
for a T-section (fig. 12a) is given by eq. (61) with s, = 0 and @, = oo,
whilst @, is determined by (58) and (56) or (57), being 1 O,.. I or U-sections
(fig. 12c and d) buckle according to eq. (61) with s, = s; and O, = @,
whilst @, is resp. 1 ©. or ©.. For the | or U-sections used in bridge en-
gineering it will be allowed to put s, = s, = oo, but with the sections
hitherto existing buckling will not be p0551b1e below the yield stress accor-
ding to my theory.

For a TT-section, if buckling according to fig. 12 e, eq. (61) with s;=0,
0, = 0o, §; = © and 0, = 0, according to eq. (53) or (54) will prevail.
It is possnble to allow also for the supporting action of the parts &', of the

horizontal ‘‘resisting’” plate, in which case according to (58) (_1) == (1 -+ g ,
1 b Te
whilst @, follows from (56) or (57) by replacing 4" by &’,. If the “resisting”’
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plates are thin, the number of half waves p will only be one (or two), in
which case the deflection of the ‘“beams’” of the ‘resisting”” plate may di-
minish the buckling stress. We may not then put w’ =0 for y' = - &’/2 (fig.
10b), but ®, must be found by replacing this condition by a similar con-
dition as eq. (1) following eq. (60). Allowing for the parts &’ is more
laborious now. If the vertical plates buckle both in the same direction, in
which case the whole section is twisted, the exact solution is still more
intricate.
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Fig. 13 Fig. 14

In order to derive practical formulae, e. g. for section 1 in Table I,
we proceed as follows. Eq. (49) with ® = 0, according to (48) oder (52)
is valid here. With certain values of op, 2, #’/ and of the half-wavelength
a/p, we calculate o’; , or «”,, from (45) or (51). Assuming also a certain
value of &, ®, can then be determined. As with the assumed values we know
also a,,, from (41), in eq. (49) 4 is now the only unknown and can be found
by trial. By variation of «/p we seek now the most unfavourable value of
b/h. By doing so with other values of &’ we can find with the assumed values
of op and B = /'/i the ratio b/ as a function of w = (20’)/(A’b). Now

we put:
A R *

(b> and (b) being the values of &'/ corresponding with o, if both
I /) Fe h/ss

sides are fixed or simply supported respectively. In this way the curves
for y, given in fig. 13, were determined by my assistent Ir. L. F. Cooke
for different values of f and a buckling stress in the elastic domain. As
can be shown, the same curves are valid for any other buckling stress in the
elastic domain. It will be sufficiently accurate to reckon with the same values
of y, for buckling stresses in the plastic domain too. The curves for y, in
fig. 14, in which also Ir. P. TH. WijNHAMER cooperated, apply to the sections 2
and 3 in Table I. Approximately y, and y, can e. g. for values of § << <3
be represented by the equation:

y = u'+fsin2wu (63)
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in which for y:

n=02p8(1+4p--0,153%), f=0,1(04+3)forp<1andf=0,07(3-p)forp >1 (64)
whilst for y,:

n=018(1+83-0,373%), j=0,12 gfor < 1 and f=0,00(3-3) for p =1 (65)

If we demand that the ratio &/ has at the utmost such a value that the
critical stress for the plates is equal to the critical stress for the entire strut,

then (/[:) and (Z) can be expressed in the slenderness ratio //r of the
. /ss 4
strut. In the precedmg we found that to reach the yield stress, (/z) and
SS
<7f‘> should be at the utmost 51,2 and 65,5 respectively (till now 36 and
FF ;

48). So according to the German Specifications these ratios correspond to

slenderness ratios = 60. In the elastic domain we have e. g. (%) = 0,6 —l;.

SS
Between the proportional limit, 2073 kg/cm?, corresponding with //r =100

and the yield stress, 2400 kg/cm where l/r is a linear function of the
buckling stress, the same will be almost the case with &/4, which ratio 1s

thus also a linear function of //». Thus we have e. g. (Z) = 37 -~ 0,23 'r
ss
if 60 < i< 100. Insertion of these values in (62) leads to the formulae

given in Table I. The coefficient y; for section 4 is not yet determined, but
it is sufficiently accurate to put y; = 7,.

If we would demand with TimosHENKO 1) that the buckling stress of
the plates in any case reaches the yield stress, /% should not exceed the
values given in Table I for //r < 60.

The formulae for the smgle angle we determined in a recent publi-
cation 2¢), where we allowed for the fact that one flange is only elastically
supported by the other, which was done by a new easy method considering
the equality of inner and outer bending moment, once for one flange and
then for the whole angle. If e. g. a flange is conSIdered as simply sup-
ported, as usual, in the elastic domain &/# would have to be < 0,20 l/r 25)
instead of 0,18 l/r

Accordmg to the tests of KoOLLBRUNNER 26) with angles of soft steel,
with a yield stress o, == 3316—3334 kg/cm?2, the angles with b1 — 16
buckled practically at the yield stress. With our values tangp = 0,294 E
and ¢ = 0,1675 we found that according to our theory with these angles
the yield stress should be reached if 6/ < 15 and with e = 0 if b/ = < 16 24),
Although the o —¢ diagram of the angles is not known and the proportional
limit was rather high, the behaviour of the angles does anyhow not conflict

with our theory. The existing theory, supposing oy — ok would require
here b/ << 10. : |

In some cases it is more easy to use the energy method 2) to compute
the buckling stresses. Since the strain energy of bending dV an element

h dx dy is 27) :

—‘1% BIJLAARD De Ingenieur in Ned. Indié¢, No. 3 (1939) (Dutch).

25) BieicH, Theorie und Berechnung der eisernen Briicken, p. 238.

26) KOLLBRUNNER, Mitt. a. d. Institut fiir Baustatik, E. T. H. Ziirich, No. 4 (1935).
27) TimosHENKO, l.c., p. 306.
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dV = — 32 (M 02w[ox2+ My02wloy® — 244,02 w[0x 0y) dx dy;
insertion of (29) gives us the strain energy of the entire plate:
1 0 c'2Wo w 0w
= — ) +(B+ C — D 4F dxd
2o [l o0 G G (G e o0

which at the buckling stress has to be equal to the work done by the external
forces. In this way we calculated the buckling stress zz in the plastic domain
of the web of a plate girder subjected to pure shearing (fig. 15) 28). We
must remark that in this case, where the X and Y axes cannot be orientated
in the directions of the principal stresses, eq. (20)—(23) have to be trans-
formed. We can find the necessary relations by applying the well known
transformation equations to (20)—(23) or directly. It follows that in this
case we have to introduce in (20) and (23) and thus in (66):

A=D=4m*(1 +e)[{d(m*—1)+ 4em(2m — 1) 4+ 3e?* m?}
B=C=2m(2+ em)|{4(m*—1)+ 4dem(2m — 1) + 3e*m?}
F= mtane[{3mE + 2(m + 1)tan ¢}

It follows that EF = dx/dy, the tangent of the slope angle of the v —y

diagram. To compute the buckling stress tp in the plastic domain for a
plate with infinite length, we used the method of SouTHwEeLL and Skan?29).

(67)
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Fig. 15 Fig. 16

We found for structural steel No. 37, with £ = 2100 kg/cm2, a proportional
limit 2073/y 3 kg/cm? = 1197 kg/cm? and a yield stress 2400/V 3 kg/cm? =
1386 kg/cm? and with > b, for the plastic domain:

(5
()12,

in which: (Z) = V8456 + 6351 (Z)Z and (%) — V5667 + 3879 (g)“’
E v

If we find with (68) 75>1386 kg /cm* we should assume 75— 13806 kg/cm?.

With a square plate the yield stress is still reached if &//# < 98 (according
to the existing theory with &/4 < 73).

From the several cases of plates, supported on three or four sides and
subjected to compression or shearing, which we examined till now, it can

g = 11197 4 189 kg/cm? ’ (68)

‘3) BijLaarDp, De Ingenieur in Ned. Indié, No. 4 (1939) (Dutch).
29) SOUTHWELL and SKAN, Proceedmgs of the Royal- Society of London, Series A.
p. 582 (1924).
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be deduced that we still remain on the safe side if in the plastic domain
we put:

Op = and g = TEE TF (69)

In this equation oy or 7, is the buckling stress which is computed on the
supposition of proportionality of stress and strain. 7, is the reduced modulus

of elasticity for a bar at a stress o or a stress 0,5 = 75 ¥ 3 according to (14),
however under the supposition that the relation between buckling stress
and slenderness ratio is given by the full line in fig. 16, which reaches the
yield stress with a slenderness ratio of 80. Thus for other cases of plates
supported on three or four sides it will be possible to find an approximate
value of the buckling stress. It is easy to show that for that purpose, with
the real relation between buckling stress and slenderness ratio (according
to the German Specifications), if the buckling stress is situated in the plastic
domain, we have to put the comparable slenderness ratio 3%) equal to:

(l) — 2./ E — 100 (70)
Fi. O4F

. [ AN 43 ] /"E—
It we find (;)C<60, then we have to put(; )t— 47 l or (71)

o,r is according to (14) equivalent to the state of stress at buckling, computed
in the supposition of proportionality of stress and strain.

By means of this comparable slenderness ratio we proceed in the same
way as according to the existing theory to determine the real buckling
stresses 39). According to the hitherto existing theory

(£) == )£

ri/, OgE

30) SCHLEICHER, l.c., footnote 1, p. 131. CHwaLLA, Int. Ass. for Bridge and Struct.
Eng., 2nd Congress Berlin, Vorbericht, p. 980 (1936).
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Table | — Tafel | — Tableau 1.

Section Formulae for structural steel No. 37
Querschnitt Bemessungsformeln fiir Baustahl St. 37
Coupe Formules pour acier doux No. 37
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y; and y, have to be determined by interpolation by means of figs. 13 and 14 or
approximately with equation (63).

On détermine les valeurs de y, et y, avec les fig. 13 et 14 ou approximativement
avec P’équation (63).
- y. und p, sind aus den Abb. 13 und 14 zu bestimmen oder angenihert aus Glei-
chung (63).
b b

PR
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Summary.

Starting from the deformation law of quasi-isotropy and from the plasti-
city condition of the limited shearing energy, the relations are derived
between the extra strains and extra stresses which appear in case of buck-
ling. From these the general differential equation for buckling in the plastic
domain is deduced. Due to the fact that in case of buckling the state of stress
changes, the resistance to buckling is considerably greater than has been
assumed hitherto and is not zero at the yield point. The theory is applied to
cross sections of members used in bridge engineering, for which simple
formulae are given. In this connection an exact theory for the computation
of the buckling stress of such members, valid for the elastic domain as well,
is developed.

Zusammenfassung.

Ausgehend vom quasi-isotropen Deformationsgesetz und von der Plasti-
zititsbedingung der begrenzten Gestaltinderungsarbeit werden die Be-
ziehungen abgeleitet zwischen den bei Beulung auftretenden spezifischen
Zusatzdehnungen und Zusatzspannungen. Hieraus wird die allgemeine Diffe-
rentialgleichung fiir Beulung im plastischen Gebiet abgeleitet. Da sich beim
Ausbeulen der Spannungszustand dndert, ist der Widerstand gegen Beulung
viel groBer als bis jetzt angenommen wurde und ist an der FlieBgrenze nicht
gleich Null. Die Theorie wird angewandt auf die im Briickenbau iiblichen
Stabprofile, fiir welche einfache Gebrauchsformeln gegeben werden. In
diesem Zusammenhang wird auch eine strenge Theorie fiir die Berechnung
der Beulspannungen zusammengesetzter Querschnitte entwickelt, die auch
im elastischen Gebiet Giiltigkeit hat.

Résumé.

Partant de la loi de déformation de la quasi-isotropie et de la condition
de plasticité du travail de transfiguration limité, les relations sont derivées
entre les allongements spécifiques et supplémentaires et les contraintes
supplémentaires qui apparaissent au flambage. De celles-ci est tirée
I’équation différentielle générale pour le flambage dans le domaine plastique.
Du fait que ’état de contraintes se modifie au flambage, la résistance au
flambage est beaucoup plus grande que nous ’avons admis jusqu’ici et n’est
pas nulle aux paliers. Cette théorie est appliquée a des sections employées
dans la construction des ponts, pour lesquelles sont données des formules
simples. Dans cette étude est également développée une méthode exacte
pour le calcul de la contrainte de flambage pour sections valables en méme
temps dans le domaine élastique.
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