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THEORY OF LOCAL PLASTIC DEFORMATIONS.

THEORIE DER ORTLICHEN PLASTISCHEN FORMANDERUNGEN.

THEORIE DES DEFORMATIONS PLASTIQUES LOCALES.
Prof. Ir. P. P. BIJLAARD, Bandoeng, Netherlands Indies.

1. Resistance of a weakened section of a thin plate.

With respect to the calculation of the resistance of a steel plate between
rivets in an oblique row 1), we have considered the more fundamental theo-
retical case of a thin plate of sufficient width, showing a weakened strip
AA, which embraces an angle g with the normal plane2) and may be ob-
tained by a local reduction of the original thickness (fig. 1). Under a certain
load minor plastic deformations will occur in the weakened strip. In conse-
quence of this the state of stress in the strip will deviate from that in the
elastic domain. The state of stress which will establish itself before the
yielding of the section, that is to say before considerable deformations arise,
depends, so far as the ratio and the direction of the principal stresses o,
and g, are concerned, on the mechanism of the plastic deformations, so far
as their magnitude depends on the plasticity condition.
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If e. g. the shearing energy was assumed to be determinant for the
appearance of plastic deformations, so that the hypothesis of HUBER-vON
Mises-HENcKY is valid, and in this connection, since there is no preference
for any plane, that the material behaves quasi-isotropically under the plastic
deformation, then it appeared that the state of stress established itself prior
to the yielding of the section in such a manner that a maximum resistance
is obtained.

To prove this we adopt the o —e¢ diagram for structural steel subjected
to pure tension according to fig. 2 and compute the envelope of the stress
circles g0, of all the states of stress o,0,0 located at the yield point accor-
ding to the yield condition of the limited shearing energy. This envelope,

1) Byraarp, De Ingenieur, No. 8 (1931) (Dutch).
2) Biyraarp, De Ingenieur, No. 37 (1931) (Dutch).
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which to the author’s knowledge, was introduced for the first time by himself
in 19312), is not identical with the envelope according to Monr, which
comprises the largest stress circles and which is with the yield condition of
HUBER-VON Mises-HENCKY an impossibility. If the yield stress in the case
of pure tension is denoted by o,, the combinations of principal stresses
situated at the yield point for a plane state of stress, according to the men-
tioned yield condition, are given by the equation:

01— 0103 + 0% = 0,° (1)
As to the stress circles g, 0,, the following equation holds:
| o+ o) 01— 0:)?
(o @ F o)y (ae) )

Partial differentiation of (2) with respect to o, gives:

N P 91+Q2>( do:\ _ & — 0 ( d(’2>
(" 2 1+d91)_ 2 I — o,

as from (1) it follows that:

d o, — 9 — 2¢,
doy  2¢:— 0
Substitution of this in the foregoing equation yields:
2(e; + 03) = 30 3)

Elimination of o, and ¢, from (1), (2) and (3) yields as equation of the
envelope:

3624 124 40,2 =0 (4)

This is obviously an ellipse with semi-axes 20,/)'3 and 6,/} 3 (fig. 3).
Now in the elastic region the state of stress in the strip, apart from
the disturbances at the boundaries A, is represented e. g. by the dotted circle
(fig. 3), as the stress in the weakened plane A A is indicated by the point B”3).
Thus it follows from the equilibrium that / B’ O¢ = v,,/0, = tan # and that

u = Vo, + 7%, represents the oblique stress on the plane AA. The stress
on the plane A4, and only this one stress on that one plane, is consequently
determined by the equilibrium, thus statically determined. For the stresses
on other planes depend on the forces S, which, in view of the junction of
the strip at the unweakened plate portions, are exerted by these on it, in
order to keep the elongation of the strip in the direction 44 equal to that
of the unweakened plate portions.

If now with increasing tensile force P the stress circle touches the en-
velope, plastic deformations will occur, which are very small and of the
same order of magnitude as the elastic deformations. The state of
stress will subsequently change in such a way that prior
tothe yielding of the section,thatisbefore considerable
deformations occur, the oblique stress u increases up to
the envelope and the state of stress isindicated by the
circle g0, t hat touches the envelope at B. For differentiation

3) 7By a plane is understood in the following, a plane perpendicular to the stress-
less plane, unless it concerns planes of maximum shearing stress, which, when o, and g,
have the same sign, are not perpendicular to the stressless plane.
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of (4) yields for the slope angle of the envelope dv/do = — o/47. Thus for
the slope angle 2a of the diameter BC of circle g, 0, we find:
. do Ty
tan2a_—a?_4—a—;_4tanﬂ (5)

Since point C represents the stress on a plane perpendicular to the weakened
plane, the normal stress g, acting in the longitudinal direction of the weakened
strip AA (fig. 1), is consequently equal to:
27y Oy Oy
=6 2= (6)
which relation may also be deducted from eq. (3).

Indeed o, should be o,/2 for the following reason:

As compared with the greater plastic deformations, as will be proved
below, the elastic deformations may be disregarded. In view of the junction
at the not yet plastically deformed unweakened plate portions, the plastic
elongation of the strip in the direction AA must remain zero. For quasi-
isotropic deformation, as is known, the relation between the plastic defor-
mations and the state of stress prevailing, is the same as between the de-
formations and stresses for an isotropic elastic material, whereby however
instead of the modulus of elasticity £ a variable modulus of deformation E,
appears, as the coefficient of lateral contraction?) m is equal to 2, because
plastical deformations do not involve an alteration of the volume ). In order
that the plastic strain ¢,, of the strip in the direction AA be equal to zero
the following condition has to be fulfilled:

Gy: Gx_‘

0y O
E, Ep

According to equation (6) this will be the case when the stress circle
in the representative point B of the weakened plane touches the envelope
(fig. 3). The state of stress establishes itself in such a manner that a maxi-
mum resistance to deformation is obtained, since for any other state of stress
for which the stress circle should remain within the envelope, the oblique
stress u© would be smaller than OB. As may be understood readily, the same
holds when the plate is acted upon by any arbitrary plane state of stress,
for it is quite indifferent through what cause the oblique stress is produced;
but then /L B O¢ will not be equal to §.

Ox

0 or o= (7)

2. Resistance of a symmetrically situated weakened section.
Direction of yielding.

In case the weakened strip has not the same direction over its whole
length, but e. g. is situated symmetrically with respect to the middle of the
plate (fig. 4), then a more favourable establishment of the stresses will be
possible1) 2). For it is not in conflict with the equilibrium, when the
oblique stresses u deviate over an angle y from the direction of the tensile
force P, so that they make an angle f—y with the normal on the weakened
plane. Then the oblique stress u will, according to fig. 5, in which the en-
velope (4) is drawn, attain the magnitude OB, prior to the yielding of the
section, corresponding with the effective oblique stress OD = u, = u cosy
in the direction of the tensile force. u, will now reach a greatest possible

4) Ros and EicniNGer, Diskussionsbericht E. M. P. A. Ziirich, No. 34 (1929).
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value when the normal BD at B touches the envelope. Whereas for a
weakened strip according to fig. 1, the envelope (4) is the limit curve for
the oblique stress u, so the pedal curvebelonging to(4),dotted
line in fig. 5, must be the limit curve for the effective
oblique stress u, witha weakened stripaccordingto fig.4.
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That this is indeed the case, results from the fact that during the yielding
of a weakened strip according to fig. 1, the lower part of the plate moves
with respect to the upper part in a direction which we have termed the d i-
rection of yielding, and which embraces an angle w, with the axis
of the plate (fig. 6). The displacement v, of the lower portion of the plate
with respect to the upper portion is namely, also in connection with (6):

l,wae_a(ﬂx__@&)_i L
= =0 \E T 2F,) T 4 %,

The displacement v, in the Y-direction depends on the plastic modulus of

rigidity G,, which, with m = 2, is equal to G, =’2——(’—nﬁ+—l—) E, = 1 E, so that,

as according to fig. 1, 7,, = o, tan :

—gy—=a®@ —3,5 %
vy__a/-.aGp 3aEptan,8

Hence it follows that (fig. 6):

. tanp = v, /v, = 4tanp 8)
and thus:
tang — tanp _ 3tangp )
1 + tangtang 1 + 4tan2?p

For a symmetrical position of the weakened strip however the direction
of yielding will ultimately necessarily coincide with the axis of the plate,
so that the oblique stress u will have to deviate with respect to the axis
of the plate over such an angle y that this will indeed be the case. Therefore
the angle ¢ in fig. 6 between the direction of yielding and the normal to
the strip will have to be equal to f. According to (5) und (8) tan ¢ = tan 2a
when o denotes the angle between the plane upon which o, acts and the
weakened plane, so that 2a has to be equal to p. This is indeed the .case
when the angle y increases in such a manner, that g, has increased up to
the pedal curve of (4), for according to fig. 5, then both MB and OD will
be perpendicular to BD, so that 2a = §5).

5) This may also be derived in a different way, see litt. footnote 2.

tanw, = tan(p —B) =
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3. Determination of the laws of deformation and of the
condition of yielding.

So the stresses will always establish themselves in
siuch a way that a maximum resistance to deformation is
developed. Thetangent pointsofthestress circlesonthe
envelope represent always planes in which the lines pa-
ralleltothe stressless plane show aplasticstrainofzero:

By = Oyl Ep— o) 2By = 05| 25— @y 2Ep =1,

These planes we have termed the dangerous p lanes.

The same appeared to be the case when the maximum shearing stress
was assumed to be determinant for yielding, that is to say, when the hypo-
thesis due to Coulomb was assumed and in connection with this, that the
plastic deformation took place through sliding along the planes of maximum
shearing stresst).

I should be considered as a universal law of nature, which however has
only been proved for the elastic region, viz. the law of minimum strain
energy, that the stresses in a body will generally establish themselves in such
2 manner that a maximum of resistance to the deformation due to external
forces arises.
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From the experimental determination of the oblique stress w it could
not be definitively concluded which yield condition was the right one; that
according to HuUBER-vON Mises-HENCKY procures values which are at most
15,4 o5 higher than those according to COULOMB. On account of the prece-
ding, if the actual law of deformation should be determined, the conclusion
might be drawn directly with regard to the yield condition too. For this
purpose a favourable opportunity presented itself, since tanw, according to
(9), through which the direction of yielding for quasi-isotropic deformation
is determined, for certain values of f appeared to be over 100 o/ higher than
tan w, for sliding along the planes of maximum shearing stress. As may be
proved readily 1), for <450, in case of sliding along the planes of max.
shearing stress through the line AA: tan w, — tan # and for > 459, whereby
sliding takes place along the weakened plane itself, tanw, — cotanf. In
fig. 7 tan w, and tan w, have been plotted as functions of tan f. With the




32 P. P. Bijlaard

aid of locally weakened test plates (fig. 8) tanw has been measured by
fixing to the upper part of the test bar above the weakened strip a scratch-
pen, which on pulling traces a line on the lower part. The values which have
been found are indicated in fig. 7 by circles. They are quite in
agreement with what may be expected for quasi-isotropic
deformation, so that the correctness of this law of deformation may
be concluded. At the same time we concluded from this regarding the cor-
rectness of the condition of yielding of HUBER-vON Mises-HENCKY, since only
in accordance with this condition of yielding a max. resistance is developedS$).

This may more generally be understood as follows. Since in the
weakened strip the same state of stress prevails everywhere and also the
same plastic deformations occur, the modulus of deformation E, for these
deformations will be everywhere the same. Since the elastic deformations
may be disregarded with respect to the plastic deformations, so that only
in the weakened strip work is done, the stresses will establish themselves
in the same way as for elastic deformations, consequently in such a manner
that the strain energy is a minimum.

However for the plastic deformations, for which m = 2, the energy
due to the change of volume is zero, so that the total strain energy is ex-
clusively shearing energy and so the stresses will establish them-
selves in such a manner, that the shearing energy becomes
aminimum. Only if the function of the stresses, which be-
comes aminimum for plasticdeformation, and it has been
proved that this is the shearing energy, is assumed to be
determinant with regard to yielding, the stresses will
establish themselves in such a manner that under a cer-
tain load as small as possible deformations occur and
consequently so that the max. resistance to deformation
isdeveloped. At the same time it follows from this, that in that case
the oblique stress w will reach a value as large as possible, consequently
will increase up to the envelope, whereby the stress circle in the represen-
tative point of the weakened plane will have to touch the envelope. This
tangent point of a stress circle on the envelope may always represent such
a weakened plane, so that the plastic strain of the lines situated in such a
plane and parallel to the stressless plane is always zero.

4. Influence of the elastic deformations.

That in the foregoing considerations the elastic deformations may be
disregarded with respect to the plastic deformations will be explained e. g.
for the case that f = 0°6)10), We adopt a 0 —¢ diagram according to fig. 2

6) BijLaarp, De Ingenieur, No. 23 (1933) (Dutch). — Also voN Mises established a
hypothesis, from which from quasi-isotropic deformation the plasticity condition of
HuBer-von Mises-HENcKY can be concluded: Zeitschrift fiir angew. Math. u. Mech., No. 3
(1928). The hypotheses of quasi-isotropy and of Huser-voN Mises-HENckyY are rather
well confirmed also by the well-known experiments of Ro§ and EicHiNGER on tubes under
pressure: Diskussionsbericht E. M. P. A. Ziirich, No. 34 and Lope: Forsch.arb. V. D. 1.
Heft 303, though for the former hypotheses in my opinion, my experiments allow a more
definite conclusion, viz. 1st, due to the considerable discrepancy between the results
to be expected in my experiments according to the different hypotheses, leaving no
doubt about the correctness of the hypotheses of quasi-isotropy (fig. 7), 2nd, in conse-
quence of the fact that for tubes the inner and outer strains are not equal, and 3 rd, be-
cause with fubes the strains in directions perpendicular to each other have to be measured
at different points, so that, due to irregularities, spreading occurs.
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and assume further that at any given moment the total deformation and the
then prevailing state of stress determine each other reciprocally, that is to
say, that the state of stress is independent of the course of deformation along
which this total deformation is reached and that the components of the stress
deviator are always proportional to those of the deformation deviator. Ac-
cording to HoHENEMSER and PRAGER however mild steel does not behave in
this way, like a so-called HeENcky body, as after a free deformation i. e. a
deformation during which the ratios of the deviator components do not
change, the preceding deformations have no influence on the state of stress?).

They found deviations however towards the assumption of PRANDTL and
REuss, according to which the preceding deformations have no influence at
all, so that the increase of the plastic deformation is at any moment de-
termined by the then existing state of stress only. For a changing state of
stress a PrRANDTL-REUSs body will show a higher resistance than a HOHEN-
EMSER-PRAGER body and such a body again a higher resistance than a HENCKkY
body, so that we are perfectly safe and we may draw a more universally
valid conclusion when we conceive the material as a HENcky body?8). With a
o —e diagram according to fig. 2 the preceding free deformations are zero,
so that a HOHENEMSER-PRAGER body will behave in the same way as a HENckY
body.

Thus in the weakened strip (fig. 9) the plastic strains are:

i"’ % O
&y = E 2E, (10a)

}/j
b
- _ % % 20,0
AE—- f——ﬁyl\éa and = E, 2E, 20,—o0, Exp (10b)
g The total strain in the Y-direction, including the elastic
LVT/V strain, is9):
p _ _ % 0 200
Fig. 9 &= G T bp = E mE 20— oy S (11)
So the total strain in the X-direction is:
. __Ox 0y 20x~—(7y< _{TL__(LJ’)
G=fet it =g E T o, o\ O T WE T E (12)
As o, and o, must continue to satisfy eq. (1) (0 = 64 02 = 0,):
1 .3
0=t et Vﬁvz -3 (13)

In our case o, will always be less than {0, so the minus sign in (13) will
have to be taken into account. It follows from (12) and (13) that:

_ (m—2)(B0,2—20,%+ oy \/21_(;,,2—*36,52) — (@3 Uxi-\/il 0,°—306*)mEe,
T 2mE {40,2—30,?

The value ¢, is determined in this case by the shortening in transverse di-
rection of the unweakened plate portions. If the thickness % of the plate in

(14)

7} HoHeNEMSER and PRAGER, Zeitschr. fiir angew. Math. und Mech., No. 1 (1932).

( ;ﬂ BijLaarp, Proceeding Royal Netherlands Academy of Sciences, Vol. 41, No. 7
1038).

" %) m = 1/r. r is Poisson’s ratio.
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the weakened strip has been reduced e. g. to one third, then a stress of 4,/3
prevails in the unweakened plate in the X direction. In the Y direction
compressive forces S = }-1%ao, act in each half of the plate. The strain
arising through the forces S depends on the width & of the plate, which should
always be assumed to be large with respect to the thickness, and is e. g. as
large as with axially loaded plates with a dimension 3 in the X direction.
So the total strain in the ¥ direction is in connection with (13) 10),

o o has, _ (m + 12)0,— mV40,2—30,’ (15)
%= 7 3mE  18haE 36mE |

According to (12) and apart from disturbances at the boundaries A,
plastic deformations will arise when ¢, + o.,/mE — 0,/E becomes positive,
consequently in connection with (13) and (15), with m = 10/3, when o, =
1.09 o,. Further according to (14) and (15), when ¢, = 1,14 ¢, and 1,15 o,
respectively, ¢, is 2,27 o,/E and 3,87 o,/E respectively, so with o, = 2400 KG/
cM2:2,69/,, and 4,49/,, respectively. When increasing up to the envelope,
in this case (8 = 0), according to fig. 3, u = ¢, = 26,/V3 = 1,154 ¢,, so that,
when disregarding the elastic deformations, plastic deformations would only
arise when o, = 1,154 o,. As a matter of fact this limit is practically al-
ready reached for a strain ¢, of about 59/, so that the horizontal portion of
the o, —e¢, diagram, which for a linear stress extends to about ¢ = 159/,
lies as high as when the elastic deformations are disregarded.

Since for linear stress, in reality plastic deformations arise already at the
proportional limit, that is below the yield point, it may be stated that due
to the elastic deformations only the proportional limit of the weakened strip
is reduced slightly, but that the yield point is determined by
the oblique stress u which increases up to the envelope.
As may be proved, under the conditions assumed here, minor plastic de-
formations will arise in general in a weakened strip under an angle 8 when
the oblique stress amounts to:

. " 27075(1 + 3sin?p)
.‘ (4000 tan*g + 100040 tan?p + 30556) cos?p

in which u represents the oblique stress at the yield point of the strip, so
the oblique stress which increases up to the envelope.

5. Explanation for the direction of flow lines and necking
in thin plates.
Since according to fig. 3: ¢ = ucosp and = = usinf holds for the
envelope, it follows from eq. (4):
2 Oy 2 oy

T V3 Y14+ 3sinp Y3 Y4 —3cosp

If the section of the weakened plane A A be denoted by f; and its pro-
jection on the normal plane by f;cos 8 = f, then for the resistance of the
weakened strip we may write:

(16)

10) g, has not been substituted directly in (14), because eq. (14) has then more uni-
versal valldlty and may be used in connection with our theory on the buckling of
plates in the plastic domain, which is published in these publications, just as well.
This derivation is also of importance for understanding the phenomena occuring with
the plastic deformation in case of non-homogeneous stress distribution.
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2 1
P=fsu= V3 cosfy4—3cos?p fov

This resistance P has been plotted in fig. 10 as a function of p.
J = [, cos B has for any angle 8 the same value when the weakened strips

have the same thickness. P becomes a minimum when cosf — V2/3 or

tanf — 1/y 2 and 8 = 359, as also follows readly from the differentiation
of P with respect to cos 8. P gets then the value fo,. For increasing values
of p the weakened strip is obviously stronger than the unweakened plate,
which shows a resistance of pfo, at the utmost, when the thickness of the
plate % in the strip is reduced to //p. In that case the strength of the plate
is not reduced by the weakening 11).

(17)

P —leertfis r
I3 cos3V3-3cos%3 0556, (055 65)
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1) In “De Ingenieur’”’, No. 8 (1931), the author has calculated the resistance of a
plate between rivet holes in an oblique row, whose normal makes an angle § with the
direction of the force, starting from the yield condition of the limited shearing stress.
In fig. 11 the dotted line a represents the limit curve which has been determined for
the oblique stress u, for rivet holes placed in one line; the dotted line & is the pedal
curve for a and holds for symmetrically situated rivet holes. The results of the ex-
periments carried out by the authour for single and symmetrically situated sections
have been indicated by single and double circles. According to the theory of the
limited shearing energy it might be expected that for § = 0, u, would be in excess
of ¢,, though smaller than 20,/ 3, since the contraction in transverse direction cannot
be prevented entirely. Nevertheless it has not been found that u, was in excess of
o,, which should be attributed to the inhomogeneity of the stress distribution in the
section. For = 0 we may indeed not permit more than the allowable stress o,.
This comes down to neglecting stresses gy acting in the direction of the line connecting
the centres of the rivet holes. It is then self-evident to neglect these stresses oy (see
fig. 1) also for other values of f, so that o, = y, cos 8, 6, = 0, 7,, = —7,,, = u, sin .
This stress distribution underlies the graph for such sections published in Waddell Bridge
Engineering, Vol. 1, p. 205, whereby however an incorrect yield condition has been
started from. According to the yield condition of the constant shearing energy as limit
curve for u, the ellipse 0,2 + 3 1x? = 0,2 holds, which is sometimes used nowadays
in computations. As appears from my above-mentioned publication, the stress will not,
after plastic deformation, be uniformly distributed over the plane through the line con-
necting the centres of the rivet holes, which may readily be understood upon examination
of the course of the stress-trajectories. Thus we arrive at the limit curve ¢2 | 3,3 72 :=
0,2. (The same holds for the theory of the limited shearing stress, but on the strength
of our experiments we neglected this and got the curves a und b.) The oblique stress,
assumed to be uniformly distributed over the section through the connecting line of the
rivet holes, will consequently, since ¢ = u, cos f and t = u, sin f§, not be allowed to
be in excess of

O

thy= 18)

- ylr:}- 2,3 sin2p

when ¢, denotes the allowable stress for linear stress. This limit curve 02 -}- 3,312 =
0,2 belonging to u, has been illustrated in fig. 11 by the full line. For symmetrically
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If now an unweakened plate of structural steel is subjected to tension,
then the flow lines arising at the yield point and the necking at the point
of rupture indicate the places where the material is locally plastically de-
formed. In these portions of the o —e& diagram where do/de <0, local plastic
deformations will be possible. For the plate will always show, due to minor
irregularities, in some plane less resistance than in all other planes. If such
a plane at the yield point gives way a little, then the resistance of this section
will not increase, so that further deformations are only confined to this
weakest strip. This continues until, due to strain hardening, the resistance
of the strip increases again a little and another plane comes to its turn.
Various flow lines arise in this way. At the point of rupture where do/de = 0
just as well, an increase in resistance does not any longer occur on further
deformation; therefore at that place the local plastic deformation, the so
called necking, will be confined to one single section, where finally rupture
occurs as well. Since in the yield lines the plastic strain in the longitudinal
direction of the flow lines, due to the junction with the not yet plastically
deformed material, for a sufficient width of the plates, must be zero, the
stresses will try to establish themselves as in a weakened section. As may
be seen readily from fig. 10, at the yield point, so for a tensile force of /o,
only a section inclined at 350 will be able to deform plastically. In general,
according to the preceding, for any arbitrary plane state of stress o,0,, when
the yield point is reached, so eq. (1) is satisfied, so that the relative stress
circle o, 0, touches the envelope, the oblique stress w’ on an arbitrary plane
would have to increase first to the envelope to make greater local plastic
deformation possible.

However there are two planes for which the oblique
stress u’ has already increased totheenvelope. These are
the planes which show the leastresistancetolocal plastic
deformation, and in these planes the flow lines will ap--
pear. The necking will later on appear as well here. For
these are also the only planes for which the lines coinci-
ding withthe plane of the plateshowaplasticstrainequal
tozero, and this should be just the case for the flow lines.
From the fact that for these planes according to (6) o, = 0,/2, it follows
" according to fig. 12 that o, = (0, + 0,)/2 = 30,/4, so that:

0. /4 _ 01 1+ 09
(91 - 92)/2 3 (Ql — 92) ’

as a denotes the angle between these planes and the plane on which o,
acts. So:

cos 2a —

S
tan « :‘/QL 2¢; (19)
29, — 0,

So these are also the planes in which a weakening is
most dangerous, and we termed these planesthedangerous planes.

situated sections the pedal curve of this limit curve holds, but for practical use it is more
convenient to calculate for any section with (18). Strictly speaking (18) holds alone when
failure due to fatigue has not to be feared. If however the plausible assumption is made
that the influence of the secondary stresses, that is the difference between the stresses
computed according to the plasticity theory and elasticity theory, for values >0 is
not greater than for =0, then it may be used as well in that case.
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For linear stress o, = 0, so eq. (19) yields tana — 1/y2 and « — 350, as
appeared already from flg 10. For plates for which the width is wufﬂcmnt
with respect to the thickness, e. g. more than 10 to 15 times, the yield lines,
the necking and finally rupture as well, occur in these pldncs (fig. 13) 12)
For plates of aluminium and brass (fm 13 on the right) likewise necking
and fracture occur in these planes.

Fig. 14 Fig. 13

Also without using the yield condition of the limited ‘%hearmg energy
this may be understood. For relatively thin plates the yielding in the di-
rection of the thickness is not impeded. Only when neither the yielding in
longitudinal direction of the yield lines is impeded by the ad]acent materlal
the resistance to yielding in the yield lines will not be in excess of that
for ummpeded yielding. This will only be the case when the state of stress
010, existing in the plate, in the direction of the flow lines, shows already
4 plastic strain g, = 0, 50 when &, = vy/L; —a/2E; = 0 and o, = o, o
as applies to the planes indicated by the pomts B in fig. 12.

Hence when considered macroscopically the material
does not yield in the direction of the flow lines, so that the
yielding may be visualized as the pulling from one another of merely elasti-
cally deformed lines, situated in the dangerous planes and parallel to the
width of the plate.

If along the sides of the plate sufficiently large grooves are made,
situated opposite each other, then a symmetrical necking and accordingly a
symmetrical plane of fracture may arise (fig. 14) In publicatiom in which
we applied the preceding theory to the ear th’s crust!?), in which the
local plastic deformations (bands of negative gravity anomalies, geosynclines,

12) Korser and Sieper, Mitt. Kaiser Wilhelminstitut fiir Eisenforschung, p. 189
(1928), give an explanation of the angle of rupture, founded on the supposition of two
hypothetic sliding planes, which supposition is rather arbitrary — as may be proved,
sliding along these sliding planes in general does not take place in the direction of the
shearing stress — and does not indicate the real cause of the establishment of a certain
angle of rupture.

13) Brjraarp Int., Congress of the geodetic and geophysical Union, Edinburgh (1930),
3rd. Engineering Congress, Tokio (1936). De Ingenieur in Ned. Indié, No. 11 and 12
(1935); No. 4, 7 und 11 (1936).
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isles series, chains of mountains) will arise as well in the dangerous planes
according to eq. (19), we have explained the origin of such planes of fracture.
It should only be observed here that the necking in the middle of the plate
coincides with a plane perpendicular to the axis of the plate, which is due
to the fact that when the yielding, as in that case, has to take place precisely
in the direction of the axis of the plate, such a plane has a smaller resistance
than a symmetrically situated oblique section. For in fig. 5 this resistance

is equal to 20,/V3 and thus always smaller than the stress w./cos 8 = OF,
which has, if working in the normal plane, the same effect as the effective
oblique stress u, working in an oblique plane.

 If o, is the greatest principal stress and g, > 0,/2, then the circles g0,
will not touch the envelope. Equation (19) gives for this case imaginary
values. There is not a single plane in which ¢, = 0. As may be seen readily
the plane with the greatest principal stress g, is the plane in which u’ has
to increase the least to reach the envelope. Flow lines can arise only when g,

increases first up to 20,/V3, that is to a higher value than is required for
unimpeded yielding. So the angle a is here 00°.

6. Explanation of the flow lines in thick bars.

For bars, for which the thickness is not too small with respect to the
width, e. g. bars with a circular or square cross section (fig. 15), the flow
lines for tension or compression arise in planes which make an angle of about
4590 with the axis of the bar, that is approximately in the planes of maximum
shearing stress. Therefore it is often assumed that for the so-called yielding
in layers 14), that is the local yielding in the flow lines, the yield condition
of CouLomB would be valid. In that case however, the yield lines would
for a wide plate make also angles with the normal plane which range in
value from 09 to 450; in reality this angle is however 350, It might also
be expected that at yielding in the planes of max. shearing stress, in the
beginning indeed a sliding along these planes took place. Then at yielding
in planes perpendicular to the front surface ABCD of the square bar illu-
strated in fig. 15, there would be no tendency in a plastically deformed strip
EFG (B = a = 459) to become shorter in the direction F G, that is in the Z
direction.

In reality a shortening does occur; a cross section according to the
plane V, is illustrated in fig. 15a1%). This mode of deformation points to
quasi isotropic deformation and thus to the validity of the yield condition
of the limited shearing energy.

This may therefore be explained in the same way as for wide and thin
plates. Though according to the yield condition of HUBER-vON Mises-HENCKY
there are no planes, which as far as plastic deformation is concerned, stand
in a special position, it may be proved that for certain planes the
resistance to local plastic deformations is a minimum,
and these are again the planes in which the yield lines
appear. ' '

Suppose that, in a bar under tension, local plastic deformations appear
in a plane EF G, denoted by V,, and perpendicular to the front surface V,
(fig. 15). If the thickness of the deformation strip is still small with respect

14) Lopg, Forschungsarbeiten V. D. 1., Heft 303 (1928). — KoLLBRUNNER, Publications
Int. Association for Bridge and Structural Engineering, Third Volume (1935).
1) Napal, Der bildsame Zustand der Werkstoffe, Fig. 58 a.




Theory of local plastic deformations 30

to the lengths EF and FG, then both the plastic strains ¢,, and ¢,, will have
to be equal to zero. Thus

e, — ¥y Ox O 0
yp E, 2E, 2E, 20
(0} Oy (i} ( )
P E, 2E, 2E,
from which follows:
O = 0y == O3z - (21)

This state of stress is illustrated in fig. 16. Before considerable plastic
deformations appear, the oblique stress

u = vlgxg + Tyt

in V. will have to increase so that the yield condition of HuBER-vON MisEs-

HENCKY :
(01— €2)® + (02— 05)* + (05— €1)* = 20,° . (22)
is satisfied. According to fig. 16:
01 = Oy + Ty, Q02 = 0z — Ty, 03 = O¢
from which, after substitution in eq. (22), follows
T =1y = 0,[|3 (23)
2 6=y =6y
o v,
o 7
14
o5
Fig. 16
Ik tc
Fig. 15 ~ Fig. 17

That this must be, may be seen readily, since the deviator of the state of

stress is the same as with pure shearing stress, for which 7, = ¢,/}3 just
as well.

Before local plastic deformations appear in any plane V,, the shearing
stress 7 in that plane will therefore have to increase up to ov/‘/3 and the
oblique stress u acting on it will have to increase until it reaches one of the

lines v = 4 0,/Y3 (fig. 16). These lines form consequently the limit curve
for u.

Since it is indifferent whether the oblique stress  is due to pure tension
in the bar or due to any other arbitrary homogeneous state of stress, the
preceding holds for any arbitrary state of stress which might act on the bar.
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Since according to eq. (23) flow lines appear as soon

astheshearing stressinthatplanebecomesequaltoo,/Y3,
they will therefore appear in the planes with max. shea-
ring stress, consequently in the same planes in which ac-
cording to the hypothesis of CourLomB the sliding planes
would arise.

That e. g. for a thick bar subjected to tension the flow lines will lie
in planes inclined at 450 to the axis, may be understood as well as follows.
In fig. 15 the contraction in the Z direction is impeded anyhow. Thus ¢,,= 0.
If now the plastic deformation in the strip were not impeded further on, the
directions 7 and U (fig. 15) for the deformation strip would remain directions
of principal stress, for which the plastic strains are denoted by ¢, and ¢,,.
Since &, + &, + &, = 0, it follows that ¢,, = — ¢&,. The plastic strain ¢,,
is now:

Ep = 4pCOS% B + €4,c08%(90° -— B) = &4, (sin? B — cos? )

The plastic deformation will not any longer be impeded when ¢,, = 0
and consequently tanf = + 1, that is when = +450.

Obviously the yield lines will in general appear in the planes of max.
shearing stress when their width a (fig. 15) is (still) small with respect to
the thickness # of the bar, whilst when @ is of the same magnitude as 7,
so that the contraction in the direction of the thickness is almost not impeded
(any longer), for a plane state of stress they will appear in the planes ac-
cording to eq. (19).

Since yielding is impeded only in the direction FG (fig 15), the yield
lines will establish themselves in such a way for a bar with rectangular
cross section, that this impediment is as small as possible, so such that
the horizontal lines FG appear along the narrow sides
and so the lines inclined at 459 along the wide sides, which
is in agreement with the observations. Fig. 17, taken from the book of
Napai 16), ijllustrates the course of the yield lines. First of all the dark
thin lines « appeared. These lines have consequently according to the pre-
ceding to be inclined at 450, which they are indeed. Afterwards the lines &
appeared, which extend up to the broad strip ¢, shaded in fig. 17. This will
have to be inclined at about 359 with the normal plane of the bar, which is
indeed the case.

7. Yield conditions for local yielding. Upper and
lower yield point.

Instead of the yield condition (1), holding for unimpeded yielding, when
the stress circles for unimpeded yielding do not touch the envelope, namely
when o, and g, have the same sign and 20 > 0, > 04/2, for local yielding
comes for thin plates the condition: g, < 20,/{3 or g, < 20,/V3. As in fig. 18
the ellipse represents the limit curve for unimpeded yielding, the figure
SABASABAS, in fig. 19 indicated separately, represents the limit curve for
local yielding in the yield lines.

For thick bars, instead of the condition (1) for local yielding, the con-
dition (23) holds, so that therefore the difference of the ultimate principal

stresses has to reach the value 20V/\/§. The geometric interpretation of this

16) Napal, Der bildsame Zustand der Werkstoffe, Fig. 55.
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yield condition in the o, 0,05 Space is a six-sided prism, that is circumscribed
around the circular cylinder, which represents the yield condition (22). For
plane states of stress the limit figure is the hexagon CBCCBC (fig. 18) cir-
cumscribed around the ellipse (1). The limit figure of CouLoms is dotted
in fig. 18. For the so-called yielding in layers this latter hypothesis is only
apparently valid. In the o—z diagram the envelope of the critical stress
circles for local yielding for plane states of stress consists of two straight
lines = = +4-0,/{3 and two semicircles with radius 0,/Y3 and centre points
at 6 = + 0, V3 respectively (fig. 20). The yield lines in the stressless plane
of the bar, being the lines of transition of it with the planes of max. shearing
stress, occur here as well in the planes, indicated by the tangent points of
the circles g,0, on the envelope.

M A s
s/ Y4 .
c 7 GV:/ 5% —T—=
l Y2k ; \
4 1 by a <]
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Fig. 18 Fig. 19 Fig. 20

The stress required for the appearance of the first
yield lines is the upper yield point; the stress to which
the yield stress decreases on its further spreading,
whereby the contraction is practically not impeded any
longer, is the lower yield point. The upper yield point
and probably also the elastic limit is consequently de-
termined by the limit figures for local yielding, the
lower yield point consequently by those for unimpeded
yielding.

The limit figures for local yielding are only of a qua-
litative value, since e. g. the hexagon CBCCBC in fig. 18 will hold
completely only for very thick bars, in which very thin yield lines appear
at first. Moreover, as to the difference between upper and lower yield point,
other factors play a part as well, such as the speed of testing and such like17).

According to fig. 18 e. g., for thick bars subjected to tension, a diffe-
rence between upper and lower yield stress will appear, whereas for thin
plates this is not the case. We found this proved by experiments carried out
by ourselves. For bars 24 x 24 mM? in size we found a difference between
upper and lower yield stress; with bars 24 X3 mM? and 24 X 1,5 mM2, cut
from the same material, we found no difference. The tests of BacH 18), in-
dicated in fig. 21 (each value is an average of three) show clearly that the
difference between upper and lower yield stress is smaller if the ratio between
the thickness and the width of the bars is smaller. K6rBER and Pomp found
e. g. for the difference between upper and lower yield point for bars of
18 x 18 mM2, 25 < 12,5 mM? and 36 X 9 mM? in size resp. max. 400 KG/cM2
250 KG/cM? and 160 KG/cM2 19).

17) KorBER, Congress for testing materials. Amsterdam (1927).

18) Bach, Elastizitit und Festigkeit, p. 164, Fig. 22.

19) Korser and Pomp, Mitt. Kaiser Wilhelminstitut fiir Eisenforschung (1934).

Abhandiuagen VI 4
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When, after the yield point is reached, the first flow lines do not continue
to spread out, additional flow lines can appear after a small increase in stress,
after which the stress decreases again, which may elucidate the fluctuations
in the 0 —e diagram at the yield point 20).

According to fig. 18 and 19 the limit figure SABASABAS will hold for
thin plates for the upper yield point and for the proportional limit. Experi-
ments carried out with soft steel tubes, which refer to the proportional limit,
have been taken by BECKER 2!).

They have been indicated in fig. 19 by small circles. They are very satis-
factorily approximated by the new limit figure.

8. Apparent raising of the yield point with non-homogeneous
stress distribution.

For a non-homogeneous stress distribution, since plastic deformation
appears at first in a small region, the yielding will be impeded for rather
thin plates as well. Moreover in general the yield lines will not be able to
arise in the planes showing the least resistance to local plastic deformation,
so that in the other direction as well plastic deformation is impeded (as e. g.
for the bar of fig. 15 the yielding in the direction EF would be impeded also
if § were not 459). Also the parts of the plate in which the stresses have
not yet reached the yield point will prevent a relative motion of the portions
situated on both sides of the flow lines in the direction of the yielding; in
consequence of this the forces establish themselves in another way, as for
instance was the case with the symmetrically situated sections in fig. 4,

Limite decoulernent supérreure
Obere Fliessgrenze
Upper yreld limit

2335
' G 2185

1919 kg/cm 2
17987 61 1879 kg /em’*

Limite o’ ecoulement mferieure

Unfere Fliessgrenze 45 < —[
L o hmit
ower yield limit | %—7’

X
Fig. 21 Fig. 22
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through which the resistance to local yielding is increased. It may be under-
stood now why the flow lines, i. e. larger plastic deformations, appear only
after the maximum stress, calculated according to the theory of elasticity, is
considerably beyond the yield point, whereby of course the fact that beyond
the proportional limit the actual max. stress is already lower than the stress
calculated in this way, plays also a part.

Before the appearance of flow lines the material yields indeed, but very
slightly only. So in this respect we agree with RINAGL 22). In consequence of
those minor plastic deformations however, another state of stress is created

20y FrEémonT (Le Génie Civil, No. 8, Tome 82 — 1923) gives another explanation of
the fluctuations in the o — ¢ diagram at the yield point, which however, as we have
proved (De Ingenieur in Ned. Indié, No. 8, 1936), is in conflict with experience.

21) BeckEer, University of Illinois. Bulletin No. 85 (1916).

22) RinacL, Bauingenieur No. 41/42 (1936).
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by the forces, exerted by the elastically deformed portion, so that for a pro-
gressing yielding higher stresses are required. Also when the max. stress
does not appear locally, such as for a rectangular girder subjected to pure
bending, the resistance to local yielding will neverthless be increased con-
siderably. The flow lines appear here in planes V inclined at 459 with the
centerline of the bar. (fig. 22, see also fig. 15). If a free relative motion of
the bounding portions would be possible, these flow lines, according to the

preceding, would require a linear stress ¢ = 20,/ 3 in the extreme fibres of
the girder. A relative motion of the bounding parts in the direction of yielding
will however be impeded here as well 23), even when the flow line ran from
the upper to the lower side, because the upper and lower halves of the girder
would have to move in opposite directions (the dotted arrows in fig. 22).

Since such a motion is not possible, the forces C and 7 will rotate
through an angle y’, in such another way as has been proved for the sym-
metrically weakened section in fig. 4, through which, as may be derived from
fig. 16, because g <4590, the oblique stress u required for local yielding is
increased, as well as the normal stress on the plane V. The moment required

for local yielding will consequently be considerably in excess of W (20,/V3),
as W denotes the resisting moment 442/6, which is also in agreement with
the experiments.

In this way all phenomena connected with local yielding may be ex-
plained by means of the yield condition of the limited shearing energy.

Summary.

Starting from quasi-isotropic plastic deformation and the yield condition
of the limited shearing energy, the state of stress establishes itself in a
weakened oblique section of a wide plate in such a manner that the oblique
stress u increases up to the envelope of the critical stress circles g;0,. In
symmetrically situated sections the effective oblique stress u, increases up
to the pedal curve of the envelope, because yielding in the so-called direction
of yielding is impeded. From the experimental determination of the yield di-
rection, the correctness of the deformation law of quasi-isotropy is concluded,
and from this the correctness of the yield condition of the limited shearing
energy, due to HuBER-vON Mises-HENcky. The points of tangency of the
circles o0, on the envelope, whose lines of transition with the wide surface
of the plate show a plastic strain equal to zero, the so-called dangerous
planes, are the planes with the least resistance to local plastic deformation.
In these planes both the flow lines and necking appear. In thick bars the flow
lines appear just as well in the planes, which according to the yield condition
of the limited shearing energy, show the least resistance to local plastic
deformation. The difference between upper and lower yield point is ex-
plained. The apparent raising of the yield point in case of non-homogeneous
states of stress is explained just as well with the yield condition of the
limited shearing energy. The theory forms an introduction to our theory of
the plastic buckling of plates which is based on this plasticity condition too.

28) Also FritscHE (Stahlbau, No. 7/8, 1938) points out, that in a bent girder un-
impeded yielding at the outset is not possible. His conclusions are however utterly
dissimilar from ours. — The impossibility of sliding in certain positions of the shearing
planes, has been pointed out by the author in connection with the resistance of weakened
oblique sections (De Ingenieur, No. 8, 1931).
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Zusammenfassung.

Ausgehend von quasi-isotroper plastischer Deformation und von der
FlieBbedingung der begrenzten Gestaltinderungsarbeit stellt der Span-
nungszustand in einem abgeschwichten Schnitt einer breiten Platte sich so
ein, daB die schiefe Spannung w anwiachst bis zur Umbhiillenden der kritischen
Spannungskreise g,0,. Bei symmetrisch angeordneten Schnitten wichst die
effektive schiefe Spannung u. an bis an die Pedalkurve der Umhiillenden,
weil ein FlieBen in der sogenannten FlieBrichtung dort verhindert wird.
Aus der experimentellen Bestimmung der FlieBrichtung wird geschlossen
auf die Richtigkeit der Deformationshypothese der Quasi-Isotropie und dar-
aus auf die Richtigkeit der FlieBbedingung der begrenzten Gestaltinderungs-
arbeit von HuBer-voN Mises-HENcky. Die den Berithrungspunkten der Kreise
010, auf der Umbhiillenden zugeordneten Schnitte, deren Schnittlinien mit
der breiten Fliche der Platte die plastische Dehnung Null zeigen, die soge-
nannten gefdhrlichen Schnitte, sind die Ebenen mit dem geringsten Wider-
stand gegen Ortliche plastische Deformation. Darin erscheinen auch die
FlieBlinien und die Einschniirung. Auch bei dicken Stdben treten die Flie8-
linien in Ebenen auf, welche, der FlieBbedingung der begrenzten Gestalt-
anderungsarbeit nach, den geringsten Widerstand gegen ortliche plastische
Deformation haben. Die Differenz zwischen oberer und unterer FlieBgrenze
wird erldutert. Die scheinbare Erhohung der FlieBgrenze bei nichthomogenen
Spannungszustinden wird auch mit der FlieBbedingung der begrenzten Ge-
staltinderungsarbeit erklidrt. Die Theorie bildet eine Einfithrung zu unserer
gleichfalls auf dieser Plastizititsbedingung beruhenden Theorie der plasti-
schen Beulung von Platten.

Résumé.

Partant d’une déformation plastique quasi-isotrope et de la condition
pour la déformation plastique du travail de transfiguration limité, le systeme
de contraintes dans une section oblique affaiblie d’une plaque mince, avant
que la section céde, s’établit de sorte que la contrainte oblique u croit jusqu’a
I’enveloppe des cercles de contraintes g, 0, critiques. Pour des sections situées
symétriquement, la contrainte effective oblique w. croit jusqu’a la courbe
pédale de I’enveloppe, parce qu’une déformation plastique dans la direction
de la déformation plastique est empéchée. De la détermination expérimentale
de la direction de la déformation plastique nous concluons a la justesse de
la loi de déformation quasi-isotrope et de celle-ci a la justesse de la condition
de déformation plastique du travail de transfiguration limité de HuBer-von
Mises-HENcky. Les plans indiqués par les points de tangence des cercles o;0,
a ’enveloppe, dont les lignes d’intersection avec la surface large de la plaque
montrent un allongement plastique égal a zéro, c’est-a-dire les plans dange-
reux, sont les plans dont la résistance est minimum par rapport a la dé-
formation plastique et locale. C’est dans ces plans que les lignes de HART-
MANN et la striction apparaissent. Aussi pour des barres épaisses les lignes
de HARTMANN paraissent dans les plans qui, suivant la condition du travail
de transfiguration limité montrent une résistance minimum par rapport a la
déformation plastique et locale. La différence entre les limites d’écoulement
inférieures et supérieures est expliquée. L’élévation apparente du palier en
cas de systemes de contraintes non-homogenes peut également étre élucidée
par la condition du travail de transfiguration limité. Cette théorie forme une
introduction a notre théorie du flambage plastique de plaques, qui a aussi
comme base la méme condition de déformation plastique.
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