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CONTRIBUTION TO THE EXACT THEORY OF THICK
CYLINDRICAL SHELLS.

BEITRAG ZUR GENAUEN THEORIE DICKWANDIGER
ZYLINDRISCHER ROHRE.

CONTRIBUTION A LA THEORIE EXACTE DES ENVELOPPES
CYLINDRIQUES EPAISSES.

Prof. Dr. Z. BAZANT, Prague.

I.

Let us consider a hollow circular cylinder subjected to the radial pressure

of a fluid, the surface of which Stands at a vertical distance h above
the horizontal axis X of the cylinder (Fig. 1). The radial pressure acting
on the interior surface of the shell is

P 7 (h — y) p0 — pl9
where p0 yh is a constant pressure corresponding to the axis of the
cylinder and p1 —yy —yrt cos cp is a radial pressure varying linearly
with the coordinate y; y is the spectific weight of the fluid.

Tsry^TS+dTrs

Vr /\T.

^H^

vT+dvT

Fig. 1 Fig, 2

If we consider a portion of the cylinder between the Supports and dis-
regard the dependence of stresses and strains on the coordinate x (distance
along the axis of the cylinder), the fundamental equations for this case follow
from general equations for cylindrical shells x) by neglecting all derivatives
with respect to x. The radial directions are the principal directions in which

J) See author's paper „Theorie exacte des enveloppes cylindriques epaisses".
moires de l'Assoc. Intern, des Ponts et Charpentes, 4e v., p. 131.

Me-



14 Z. Bazant

there is no tangential stress component: xKr xxs 0. There remains only
one tangential component xrs =- xsr x (Fig. 2).

In the general equation (1) all the terms vanish, and this is true also
for equation (9) derived from (1). The fundamental equations for this case
are deducible from equations (10), (11) by neglecting body forces and all
derivatives with respect to x:

[\ ^d2o m-\dQ m-\l Sg\ 1 d2a 1 _/1 C*0d2Q 1

2 dcp2 r drdcp
1 °l)-o

rLr>o>
+

r Up+cV/l + t/W )L/-lrc> +
6r r/r cV3<p

+ cV2!- '

or

2(/»-l)r8ff + 2(m-l)r^ + (w-2)|-^v ' cV2 v er y ' c>2
2(/«-l)o-(3/»-4)-^- + »w^r- 0,

/»/*¦
62g

erdqp
CQ <92ff (9äff ciff

+ {3m„4)^ + 2(m-\)—2 + (m-2)r*~ + (m--2)r7r-(m]-2)o 0.
dcp dcp

0)

(2)

Here q and a represents the deformation in the direction of the radius r
and the are 5 rep respectively, m is Poisson's constant. From o and a the
stress components follow in equations (7), (8). Omitting all derivatives with
respect to x, we obtain the normal stresses

Em
(m + \)(m

Em

2) UM (• + £)]•

(m + l)(m — 2)

_ f/« I c e
"' ~ (m"+"!)"(« — 2jU> +

and the tangential stress

[<--»£+'(•+£)!•
-T-M«^)!

(3)

T=0(J>+°?_-?);\ r 6<p £r r r (4)

£(G) is the modulus of elasticity in tension (shear). The equations (3) give

+ vb
Em

(m + \)(m — 2)
[ £q m do\l

mv.

which corresponds to a plane deformation, where there is no elongation in
the direction X.

For the Solution of equations (1) and (2) it is necessary to transform
them into two independent equations corresponding to each of the funetions
o and o. To eliminate the funetion a from equations (1), (2) we can use
(1), (2) and their first and second derivatives with respect to r and cp. The
equations necessary for the elimination of o may best be determined by noting
ina table which of the equations (1), (2) and their derivatives contains the
funetion o and its derivatives

cg CÖ

Ir' ~&p' "
c*o
oV ' 6r* d cp dcp 4 >
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without differentiating the equations (1), (2). The equations not necessary
for the elimination of o may then be recognised as those which alone con-
tain o or any derivative of it. Omitting successive equations in accordance
with this condition we finally obtain equations containing o and each
derivative of it at least twice, which can be used to eliminate o. In our case these
are the equations:

(l)...2(W-l)r.|^ + 2(«-1)r|j+(»-2)0-2(*-l)(?+^-(3OT-4)|j O,
dr

:2S(\) o/ i\ o CSQ zw u d2Q ov d3q dsa 0/ ox d2G _

rH dr2 x crccp2 er2 c cp
v ' dre cpdr

cV2
*

Ulli,
0992

cTj2)

dcp

••2(^-1)^.;4 + 10(/ii-l)r^8+6(/ii-l)^+(/ii 2)ÄÄ^2 + /iir^ -(/ii-4)^ ==0,
er* cr° 'dr2 dr dr^dcp drdcp

..2(/rc-l)r2^~2+2(m-l)/^^^
^ 3dr^2 ' drdcp1 'dcp* v 'c)<p2 c<p8 drdcp3 -0,

/#r i3!
drdcp2

d2Q ^d3G C°G d2G do
7+(3»-4)^I+2(«-l)^+(fl,-2)r.^-+(»-2)r^--(»-2)^=0(9<p

/#/"
£*Q CÖQ C*G d*o Cj°G

^2+4(/rc-l)^-2+2(/rc-l)^3+(//z-2)^crdcpz er dcp2 drdcp6 ' drsccp v 7 d/*2c^

To eliminate o from these equations, we multiply the first with av the
second with a2..., the sixth with a6 and add them all together; the coeffi-
cients a are to be determined from the conditions that o and all its
derivatives vanish from the resulting equation. The following are the conditions
to be satisfied:

d^G
the factor of t-^— is mra* + (m — 2)r2aR 0,

crsdcp '
c*o

' drdcp'6

d3G
' ~dr2dcp

d3G

dcp3

d2G
' drdcp

dcp

„ mra^ + 2 (m — 1) «6 0,

„ m ra2 — (m - 4) «3 + (m - 2) r2a5 + 3 (m — 2) r«6 0,

„ — (3 m — 4)a4 + 2(w — l)a5 0,

„ mra1 — 2(m — 2)cc2 + (/# — 2)rab 0,

„ — (3 //z — 4)a! — (m — 2)ab 0.

We thus have 6 linear homogeneous equations for 6 coefficients ax...a6;
one equation is superfluous, but the equations are not mutually contradictory
and they can be solved.

The sixth equation can be satisfied with

fti — (m — 2), ab= 3m — 4;



16 Z. Bazant

from the fifth it follows that a2 (m _ 2) r,

from the fourth a± 2 (m — 1),
from the second aG — mr
and from the first a3 (m — 2)r\
These values of (/ satisfy also the third equation.

Multiplying the foregoing equations by ax, «2, a6 and adding them
together, we eliminate o and obtaift for $ the independent equation

^ + 2^^ +i^^ +2rJ^9+5^ + 2^-r£Au 0. (5)cr4 drdcp1 ccp4 er erdcp- dr dcp2 er v '

Eliminating the elongation g in a similar way from equations (1) and
(2), we find for o an equation identical with (5). This means that by inte-
grating we get for o and o the same funetion of r and cp; the only difference
between them being in the constants of Integration.

IL
Another method of Solution starts from the stresse s. The conditions

of equilibrium of an element2) are here

(6)

(7)

Equations (6), (7), the former equations (3) for vn vs and the equation (4)
for x give 5 equations for 5 funetions vn vs, t, q, o. By eliminating the Stresses

vry vs, x from these equations we obtain the equations (1) and (2) for
the elongations q and a. But we can also from these 5 equations eliminate
q, o and two components of stresses and thus find an independent equation
for one stress component only.

From equations (3) for vn vs we obtain

1 ,c(rvr) 1 dr
r dr r c r

0,

1 ili + 2 - + £1
r ccp r er

0.

dg
__

(m2 — \)vr— (m + \)v8
dr ~ Em2

d g _ (m2 — \)rvs — (m + \)rvr
dcp Em2

Differentiating the last equation, we find

dq d2G
__

m2—1 d(rvs) m + 1 d(rvr)
dr drdcp Em2 dr Em2 dr

d Q
and substituting for -~- from (8), we have

(8)

dr
d2G m2

drdcp Em '(^- «h^Ps?-«)- «
2) See equations (2), (3) in the author's article „Theorie exaete .".
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From equation (4) it follows

rz 0\^- + r— — o)
\dcp er I

and differentiating this once with respect to r and once with respect to q?,

we find
d2(rT)

__
/ d3Q 63g
' ^- ^^2 "t" r ?Jlzrdrdcp \drdcp2 dr2 dcp!

Differentiating equation (8) twice with respect to cp, we have

d3Q
___

m2— 1 d2vr m + 1 e2vs

drdcp2 Em2 dcp2 Em2 dcp2

and differentiating equation (9) with respect to r, we find

c3o
___

m2 — 1 /d2(ri>s) ciy\ m +1 fc2(rvr) d vs\
TP-cTcp ~ ~Em2 \ dr2 dr) ~ lEm2 \d72 ~6r)'

Substituting the last two values and Q ^--—rr into ^ \ we obtain6 2(/rc + l) drdcp'
d*(rT) m-\(d*vr d2(rvs) dvr\ 1 (d2vs d2(rvr) d va\

drdcp 2m Xdep2^ dr2 dr) 2m\dcp2^ dr2 dr Y y ]

The equation (6) gives

ct d(rvr) e2r evs e2(rvr)- vs V~^ and — - / —^-f/;
c cp dr erc cp er dr-

therefore

c2(rr) __
d2v de

__
dvs 62(rvr) d(rvr)

__—— — / _—_— _|_ — — r __^ — r — — _j_ v — — — <

er dcp dreep dcp dr dr1 er

This gives with respect to (10) a relation between vn vs which can be put
into the form

dcp2 er er er2 ccp2 v '

A second equation for vn vs can be obtained by eliminating x from equations

(6) and (7). By differentiating equation (7) with respect to cp, we find

ccp* dcp dr dcp

CT CTsubstituting here for „ - and —- the values already obtained from equation
aep er dcp J n

(6), we have

?* + 2),-2^+ r^_rq^ o. d2)ccp1 er er dr2 v '

Subtracting equation (12) from (11), we find

dcp2 dr dr2 dcp2 dr dr2



18 Z. Bazant

It is *£>> r p + Hi^ ,6^' + 2 £."'
er <9 r er2 d r- er

and analogically for vs. The foregoing equation becomes

Ä+r^ + ^=_ ^_,^-^ (13)
<9r2 cV <9<p2 or2 er dcp2 v '

and the equation (12)

r^+ Ar£? + 2r,= r^ + 2vs + p!. (14)er2 er dr dcp2 v '

From the equations (13), (14) we eliminate vs analogically, as we have
eliminated o from the equations (1) and (2). We use equations (13), (14)
and their first and second derivatives with respect to r and cp. Omitting each
equation which alone contains any derivative of vSJ we get the following
equations for the elimination of vs:

' dr2 dr dcp2 dr2 dr dcp2

==— r2 - — — 3r-
d (13) ^ d3 vr d2vr d vr d3vr _ ^ d3vs r^^Vg dvs d3vs

~r Jr~ — -h — |- — ^— — —
er- dr dreep2er crs ' "' er2 ' cV ' dref* ' er* "' er2 er ere<p2'

o-'(i3) s ö*vr ehr e*v, _ e*v8 e*vs c-v.
c<p2 "' e^eep1 ere<p2 eqp* er2e<p2 ere<pl cy4'

c(14) esvr e2vr fi
0 »> e2v, .~evs esvs

«M r2^4-8r^ + 12 c—r - r ?*-' + 4^ 4- —^
er2 ••" e^ +sr er* + lz er2 ~ er* + 4

er2 + cVV'

ccp- er-ccp- dreep- eq- er ccp2 ccp2 dcp*

For the elimination of vs it is necessary to multiply the foregoing
equations successively by

2 1 1 1 |1
al r2 > «1 ^i «i r"a l «4 -f «5 1, «6 =|72

and to add them; the values of a can be determined analogically as above.
In this manner we obtain for i>, the equation

cV "*"
d/"2o<p2 + r2 dv* i" ö/-3 + /- <3roV ^ cV2

r2 ccp2 r dr
Eliminating in the same manner vr from the equations (13) and (14),

we obtain for vs an equation identical with the equation (15).
An independent equation for the tangential stress x can be obtained by

eliminating vr, vs from the equations (6), (7) and (10). The equation (6)
gives
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er dq er ccp

differentiating we obtain

C^ — 11 Vr ' *LlL _l_
^2 T ^2 Vs

—
^3yr

4.
^2yr J- -^

<9<^ c^d^ c5^ dcp29 dcp2 drdcp2 dcp2 dcp31

cv_8 __ d2vr 2 ß_iV
i

d2T d2vs _ g8yr g2iy d3 f
6r ~~ r dr2 + "ä7+ örfy?' dr2 ~ K

dr2 ^ dr2 ^ dr2dcp'

Substituting these derivatives, we find

d*(rv*) _ r^ 2-h ~ r2 ^ 4- 5r6—r + 4 l-r 4- 2 — + r -^-
dr2 dr2 ^ dr dr3 ^ dr2 ^ dr ^ c>c> ^ dr2dcp'

d Ve
The equation (7) gives, when substituting for ^— :

rf?-+^ + ^ + r^ + 2T 0 (16)
ßroy 6)99 dcp2 dr

and from the equation (10) we find with
d2(rx) c2t dr
d r dcp d r dcp dcp

and substituting for

£!^)f «!* and p:dr2 dcp2 dr
C°T

dr2dcp
(/w - l) I a-3 -7—0- + 5 r2 -—- + 3 /- — + (/w - 2) -^-j - r-—-~> + (m - l) r2 -\ dr3 dr2 er/ v ccp2 erdcp2 e

d3T d2T 0 dt A (17)
_ _r —2m^ 0.

dcpö drdcp ccp

From the equations (16), (17) we can now eliminate vr as before vs;
making use for this purpose of the equations

£(16) <92(16) j9»(16) 62(16) 63(16) 6(17) 6^(17)
dr ' dr2 ' c>» ' <9<p2 ' drdcp2' dcp ' <9r6<p '

We obtain for x an independent equation identical with (15).
All the three stresses vn vs, x have also an identical differential equation;

integrating it, we find for vn vsy x formulas which differ only in constants
of integration.

III.
The third method of Solution is based on stress funetion/7. Putting

in polar coordinates 3)

1 6F 1 d2E d2F
r' r-dr+T2W Va &*' (18)

we obtain

d) See S. Timoshenko, "Theory of elasticity", p. 53.
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cvr 1 d2F 1 dF 1 o*3/7 2 d2F
~d~r~ ~~ T dr2 r2 dr + r2 (3/-<V r3 dcp2'

c(r*v) d*V d2F 1 o3/7 1 d2F
r2 dcp2'

The equation (6) gives

ot _ 6(r>y)
__

1 d2F 1

69?
s <9r r2 dcp2 r

dsF
drdcp2 '

integrating, we find
1 eF 1 e2F

r2 ecp r ere<p'
(19)

From the stress funetion we can determine also the components of
deformation q and a, Substituting from (18) into (8), we obtain

ä7 m? L^'-^b ä7 + 7* -ä^) - <" + '> eA- (20)

In the equation (9) we Substitute

d(rvr) dvr d(rvs) d vs d vs d3F\ r h »r, \ r - h v8, —— -T-T,dr dr dr er dr d r3

d Vf
~r- as above and for vn vs from the equations (18); whence

c2g 1 l\ 9 1X/ d3F d2F 1 o/7 1 d2F\ %J\ d3F 1 d2F\] /olx

The condition for T7 follows from the equation (4) which gives

r> [ÖQ CGrr G -^ + /¦ —

Differentiating with respect to r, we obtain

CT d2 Q C2 G

rJ7+r °\TFe<p+re-^
and differentiating again with respect to cp:

d2T
r ,rr r> c Q C3G \

dcp \drdcp2 er2 dcp/drdcp dcp \drdcp2 d r2 dcp

From the equation (19) we find

ct _
1 d2/7 1 d3F c2t _

1 d3F 2 d2F 1 o4/7 1 d6F
m

dcp
~ r2 dcp2 r drdcp2' drdcp~r2 drdcp2 ~r3 dcp2 7dr2dq2 r2 drdcp21

from the equation (20) it follows that

g>V "" Em2 Vm }\r drdcp2 + r2 £<p4/ ^ + ' dr3dcp2\

and from (21)
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esa _ i r 2__ / eAF a8f 1 e2F 1 eF 1 a»/5, 2 e2F\
e,r2e<p~ Em2Vm '\ er* + er3 r er2 +~r2 er r2 e<re<p2 r9 ecp2)

{m + 'W or2r>2 >* clrV + r3 rT^VJ*
Em

Substituting G ——-—p- and the foregoing values of derivatives in the

equation (22), we find the condition for F in the form

<H£ 2 ^F x ^F 2ß*F 2 6*F ] ^F 4 g2/7 li^-ndrA+^df-dcp1^ r±dcp±+r dr3 r3 drdcp" r2 dr2
+

r4 c>2+ r3 d r ~ ' * '
Using for polar coordinates the symbol

__ f2 1 o 1 o2

er2 ' r dr ' r2 dcp2

and

v ~v vv ' W2^ /• r9r^ r*d<p*)KW ;— er*^ r er3 r*8r*^ r*ir
2 6* 2 es 4 e2 i e4

I «2 ^«2 ^^2 «2 ^„n„2 I" ..4 n„„9 ~T"r2 dr2 dcp2 r2 drdcp2
] r4 dcp2 ^ r4 dcp4'

we can write the equation (23) in the form

\74F=0. (23')

IV.
The general expression for the stress funetion F follows from the

equation (23). Taking this funetion in the form

F=RO,
where R is funetion of r and 0 funetion of cp only, we obtain

pn p fin p fim + n f?—^ /?(«) Q — — RQ)(n), £. 1_ — J?(m) ®(n)
d rn ' dcpn

~ ' dfndcp"

Substituting in the equation (23) we find

We can satisfy this equation by putting

CD" 0 (whence CP<4> 0) and /?<4) + - R" — \ R' + \ R' 0.

From the first equation it follows that
(D ax cp + a2.

The integral of the second equation is

R z= d r2 In r + c2 In r -h r3 r2 + £4.

The stress funetion is therefore
Fx ~ R(D (Clr2\nr + c2\nr + r3/-2 + ^)(#i<P + 02). (25a)
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The equation (24) can also be satisfied with
R r or R'= 1, R" R"'= RW 0.

Substituting in (24) we find
(p(4) + 2 0>" + O 0;

and the integral of this equation is

CD — ^ sin cp + cf2 cos cp -f ^99 sin cp -f ^90 cos 99.

The second form of the stress funetion is

E2 R<D r(c\smcp + c'2 cos99 + £'599 sin <p -f- ^99cos99). (25b)

As a further possibility we take

°" — _Ö> ~ ;

integrating we find
0 a'jsin99 + a'2 cos cp

and differentiating
0)<4)

From (24) it follows that

/j(4) + 1 /?'" _
3

R» + 33 /?' 34 /? 0;
r r2 r6 r4

and integrating we obtain

R= c\r\r\r + c\r~l + c'\r3 -f d\r.
The stress funetion may, therefore, have the form
E3 R(& — (c"tr\nr + c'\r~l + d\r3 + £"4/-)(a'iSin<p + a\coscp). (25 c)

Finally we can take
CD"^ — *8,

where /z is an arbitrary integer. Then we have

0) a„sinncp + bn cos nep, —— n4.

Substituting in (24) we obtain

RW + «._ «+£f!*. + L±*Ü«. _«»!zl* * 0.
r r2 r3 r4

Putting R =- ra we have

R'^cxr"-1, R"=a(a-\)ra- *, /?"=a(a-l)(a-2)ra-8, /?(4>=a(a-l)(«-2)(a-3)r«-4,
and the last equation reduces to the characteristic equation

(a2 — n2) (a2 — 4a n2 + 4) 0.
The Solutions of this equation are

«i,2 ± nf «3,4 2 ± n;
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the general Solution of the foregoing differential equation is, therefore,

R cnr°i + dnr°* + enra* + fnra* cnrn + dnr~n + enr2+n + fnr*~n.

This result is valid for each integer n^>2, because only then the characte-
ristic equation gives four different values a. For n 1 we find a± a4 1,
and it is necessary to include not only the terms with r, r*1, r3 but also a
term with r lnr, which gives the funetion Fs. For n 0 we have alt2 ¦= 0,
a3>i 2 and we obtain, besides the absolute term and the term containing
r2, also terms with In/- and r2\nr. Jience the funetion F± with ax 0.

The calculated values of R, 0 being valid for each integer // => 2, the
equation (24) is also satisfied by the series

oo

F4 HR0= S (cnri+dnr-'+enrt+n + fnrt-^ianSixinfp + bnCOsntp). (25d)

V.
The boundary conditions are satisfied only by the Solution F± in the

form of a series. Taking F F± we obtain

d F °°

T~ ^^(ncnrn-1--ndnr-n-1 + (2^n)enrl+n(2-n)fnrl~n)(ansmncp + bncosncp)y
d r 2

(~*4 S [«(« - ^)cnr"~2 + n(n+ \)dnr~"-2 + (2 + «)(1 + n)enr"
er 2

+ (2 - n) (1 - n) fn r~n] (an sin #99 + bn cos /19?),

d F °°

— - S (Oi^ + ^»r~~n + *»r2+n+fnr2~n) (nan cosncp-nbn sin7/99),
C 99 2

7—^ ==S(^^+^/'~/z+^/'2+/z + /«/'2',')(-^2^sin^-^2^cos^99),
c 99 2

d2 F £y
^r^-=lj(nCnrn-1-ndnr-n-H(2i-n)enr1+ni-(2-n)fnr1-n)(nanCOsncp-(r dcp 2

The first formula (18) gives
1 r) F 1 r 2 F J^

*r=±j:r+Ttj± VW (26)

4- (1 + /i)(2 —/i)^r«+ (1 —/i)(2 + n)fnr-n]{ansmncp+bncosncp).

On the inner surface of the shell we have

r—rx, vr— - /7X yrx cos <?>. (27)

We can develop 7(99) COS99 in the interval 0 — jt in a Fourier's series l)
00 CO

/ (99) a + 2 a'n cos 2/299+2 *'« sin 2 #99,
1 1

where

4) The funetion cos cp in the interval 0 — n signifies a periodical intermittent
funetion having for the limits of the interval (cp 0, tt, 2jt, the values cos cp

-f- 1. The series in which we develop cos 99, gives for the limits of the interval the
arithmetic average of both values of the funetion, therefore zero.
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1 f 1 f 1

a-—\f(cp)dcp- — cos cp dcp - — [sin cp] 0,
o o °

n jt

dn-— / (99) cos 2ncp dcp- — cos cp cos 2 #90 ^99

0
'

0

2 1 fr /0 I1X /n 1X t
1 rsin(2/z+l)<z> s\n(2n-\)cp~\ ^

17 ' 2) [cos(2,+l)^+cos(2,-l)^]^=-[--^-^+—2^^1=0,

b'» f (cp) sin 2ncpdcp- cos cp sin 2 nq?dq

2 1 fr 1 T cos(2/z + l)99 cos(2//-l)o9l

0 0

1/2 2 \_8 g
~ 7c\2n + \+2n-\)~~ n "(2ä-1)(2«+1)"

We obtain
00

cos 99 ^b'n sin 2 #99 sin 2 ncp7Cr(2n -l)(2/i + l)
8/1 2 3 4 \
"77\T^Sin299 + 075 sin499 + —sin 699 + y-^sin8^ + ...j • (28)

Substituting r r± in (26) and developing COS99 in the series (28), we find
from the condition (27)

%[n(\--n)cnr1n-2-n(l+n)dnr1-»-2 + (\+n)(2-n)enr1n
2

+(\-n)(2+n)fnr1-n](ansmncp+bncosncp)-yrl—2
ttY(2/i-1)(2/i+1)

sin 2 ncp.

In order that this condition may be satisfied for each value of 99, it is
necessary that bn 0 and also that each an with an odd index must vanish.
Joining the coefficient an with the coefficients cn, dn, en, fn> we have, putting
on the left hand side 2n instead of /z, the condition

2/z(l -2n)c2nr, 2n-2-2n(\+2n)d2nrl-2n~2^{n2n)(2--2n)e2nrx2n

+ (\-2n)(2 + 2n)f2nrr2n yr1.
8 n (29a)

(2/i-l) (2/i+l)'
This condition is valid for each integer n 1 -^ 00.

As all bn and all an with odd indexes vanish and all other an terms can
be joined with the constants c, d, e, /, the equation (26) becomes

00

vr-^[2n(\-2n)c2nr2n~2-2n(\ + 2n)d2nr~2fl-2 + (\ + 2n)(2--2n)e2nr2n
1

+ (l-2/z)(2 + 2/*)/2„r-2"]sin2/z?). (26a)
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The second formula (18) gives generally

>s ~ Zln(n-\)cnrn-2 + n(n + \)dnr-"--2+(2 + n)(nn)e„r"
d r- 2

+ (2 - n) (1 - n) fn r~n] (an sin #99 + bn cos ncp);

omitting all bn and all an with odd indexes and joining all an with even
indexes to the constants c, d, e, /, we arrive at the formula

00

r, 2[2/z(2/z-l)^2Wr2^2+2/z(2^+l)flf2«r-2«-2 + (2 + 2/z)(l + 2/z)^2^^
+ (2-2n)(\-2n)f2nr-2n]sm2ncp. (30)

Finally with respect to (19) the general equation emerges:

T^\^-^^^[n(\-n)cnr--2+n(nn)dnr^-2-n(nn)enr-
r2 dcp r drdcp ^

~n(\-n)fn r~n] (an cos ncp-bn sin ncp);

and by analogy with vn vs we find
00

T^^[2n(\-2n)c2nr2n'2 + 2n(\i-2n)d2nr-2n-2-2n(n2n)e2nr2n

-2n(\-2n)f2nr~2n]cos2ncp. (31)

For the constants c2n, d2n, e2n, f2n we can obtain, besides the equation
(29 a), three further equations from boundary conditions. On the outer
surface r r2 and vr 0, which gives by each sin 2nep in (26 a) the coefficient
zero:

2/z(l-2//)r2«r2^-2-2/z(l+2/z)^^r2-2^2+(l + 2/z)(2-2/z)^2«r2^
+ (l-2/z)(2 + 2/z)/2,r2~2-=0. (29 b)

On the inner surface r i\ and x 0; in the equation (31) the coefficient

of cos 2ncp must vanish, therefore

2n(l-2n)c2nr12n-2 + 2n(\ + 2n)d2nrr2n-2-2n(\ + 2n)e2nr12n

-2n(\-2n)f2nr1-2"=0. (29c)

Finally, also, on the outer surface (r r2) the stress x 0, which gives
analogically the condition

2n{\-2n)c2nr22n-2 + 2n(\ + 2n)d2nr2-2n-2~2n(n2n)e2nr22n
-2n(\-2n)f2nr2-2*=0. (29 d)

We have, therefore, four linear equations for c2n> d2m e2m f2n and can
calculate the constants from them. It is necessary to compute values for
n 1, 2, 3, and to include in the series for vn vs, x as many terms as
are needed for exact calculation.

For the elongations cj and a equations (20) and (21) can be used.

Summary.
In a hollow circular cylinder subjected to a variable radial pressure the

stresses and strains are functions of the coordinates r and 99 only. For two
strains we obtain from general equations two partial simultaneous differential
equations of the second order, which can be transformed into two independent

Abhandlungen VI 3
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equations for each strain separately. From two conditions of equilibrium
of an element and three relations of stresses and strains, which are partial
differential equations of the first order, we can eliminate four unknown
functionr and obtain also for each of the three stresses an independent
equation as a differential equation of the fourth order. The stresses and
strains can be expressed by means of a stress funetion; this being a bi-
harmonical funetion given by a differential equation of the fourth order.
Integrating it we obtain stress funetions of different forms. The boundary
conditions are satisfied in the present case only by a funetion in the form
of a series.

Zusammenfassung.
Ist eine zylindrische Schale durch einen veränderlichen radialen Druck

innen beansprucht, so sind die Spannungen und die Verformungen allein
Funktionen der Koordinaten r und cp. Für die Verformungen erhält man aus
den allgemeinen Gleichungen zwei partielle simultane Differentialgleichungen
2. Ordnung, aus welchen zwei unabhängige Gleichungen für beide
Verformungen abgeleitet werden können. Zwei Gleichgewichtsbedingungen eines
Elements und drei Gleichungen, welche die Abhängigkeit der Spannungen
und Verformungen ausdrücken, sind partielle simultane Differentialgleichungen

1. Ordnung; durch Elimination von vier unbekannten Funktionen kann
man auch für die Spannungen unabhängige Gleichungen in der Form von
Differentialgleichungen 4. Ordnung aufstellen. Die Spannungen und
Verformungen können auch durch eine Spannungsfunktion ausgedrückt werden,
die durch eine Differentialgleichung 4. Ordnung gegeben ist. Durch
Integration findet man die Spannungsfunktion in verschiedenen Formen. Die
Oberflächenbedingungen können in diesem Falle nur durch eine Spannungsfunktion

in der Form einer Reihe befriedigt werden.

Resume.

Dans une enveloppe cylindrique circulaire, sollicitee par une pression
radiale variable, les composantes des tensions et des deformations sont des
fonetions de deux coordonnees r, cp seulement. Pour deux composantes de
deformation on tire des equations generales deux equations differentielles
partielles simultanees que Ton peut transformer separement en deux equations
independantes pour chaque composante de deformation. De deux conditions
d'equilibre d'un element et de trois relations entre les tensions et les
deformations qui sont des equations differentielles de premier ordre, on peut
eliminer quatre fonetions inconnues et parvenir ainsi pour chaeune des trois
tensions ä une equation differentielle independante de quatrieme ordre. Les
tensions et les deformations peuvent etre exprimees par une seule fonetion;
c'est une fonetion biharmonique donnee par une equation differentielle de
quatrieme ordre. En integrant cette equation on obtient differentes formes
de la fonetion. Dans le cas present, les conditions aux surfaces sont satis-
faites seulement par une fonetion en forme de serie.
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