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CONTRIBUTION TO THE EXACT THEORY OF THICK
CYLINDRICAL SHELLS.

BEITRAG ZUR GENAUEN THEORIE DICKWANDIGER
ZYLINDRISCHER ROHRE.

CONTRIBUTION A LA THEORIE EXACTE DES ENVELOPPES
CYLINDRIQUES EPAISSES.

Prof. Dr. Z. BAZANT, Prague.

I

Let us consider a hollow circular cylinder subjected to the radial pres-
sure of a fluid, the surface of which stands at a vertical distance % above
the horizontal axis X of the cylinder (Fig. 1). The radial pressure acting
on the interior surface of the shell is

p=yh—y) = po—pi
where p, = y/ is a constant pressure corresponding to the axis of the cy-
linder and p;, = —yy = — yr; cos is a radial pressure varying linearly
with the coordinate y; y is the spectific weight of the fluid.

Fig. 1 Fig. 2

If we consider a portion of the cylinder between the supports and dis-
regard the dependence of stresses and strains on the coordinate x (distance
along the axis of the cylinder), the fundamental equations for this case follow
from general equations for cylindrical shells ) by neglecting all derivatives
with respect to x. The radial directions are the principal directions in which

1) See author’s paper ,,Théorie exacte des enveloppes cylindriques épaisses‘‘. Mé-
moires de I’Assoc. Intern. des Ponts et Charpentes, 4¢ v, p. 131.
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Here ¢ and o represents the deformation in the direction of the radius r
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there is no tangential stress component: z,, = v,, = 0. There remains only
one tangential component t,, = 1, = 7 (Fig. 2).

In the general equation (1) all the terms vanish, and this is true also
for equation (9) derived from (1). The fundamental equations for this case
are deducible from equations (10), (11) by neglecting body forces and all
derivatives with respect to x:

and the arc s = r¢ respectively, m is Poisson’s constant. From o and o the
stress components follow in equations (7), (8). Omitting all derivatives with
respect to x, we obtain the normal stresses
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(m+1)(/n—2),5;+ r Q+é’(p,
and the tangential stress
o 1lée ¢o o).
frs = Tor =1 = G( rég Car rl 4)
E (G) is the modulus of elasticity in tension (shear). The equations (3) give
o Em | de m( 00\] .
Yt Vs = (m 4+ 1) (m — 2)[/71 or T\ 699) = M,

which corresponds to a plane deformation, where there is no elongation in
the direction X.

For the solution of equations (1) and (2) it is necessary to transform
them into two independent equations corresponding to each of the functions
o and o. To eliminate the function ¢ from equations (1), (2) we can use
(1), (2) and their first and second derivatives with respect to » and ¢. The
equations necessary for the elimination of o may best be determined by noting
ina table which of the equations (1), (2) and their derivatives contains the
function ¢ and its derivatives
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without differentiating the equations (1), (2). The equations not necessary
for the elimination of o may then be recognised as those which alone con-
tain o or any derivative of it. Omitting successive equations in accordance
with this condition we finally obtain equations containing o and each deri-
vative of it at least twice, which can be used to eliminate 0. In our case these
are the equations:

. 2(m- 1)r~ . ,,+2(m l)r )&;:0,
L 2(m-1)r 2216 (m-1 o' +mr—§ji——2( ) 0
4 + (m ) A ':r‘z(’: 5 (r(ﬁ (7)
.2(m-1 +10 1 r +6 1 ——+(m 2)-. e ot (m 4);% =0
m-— )’ (m-1) (m-1) ”‘z~(pé '””"a;,éw Fop™ "
. ,\4 3 a-io-
2(m-1) 7 orop 2+2(m l)rm ”tp"' +(m-— ) —2(m-— orogt =0,
930 , 0% 00
sragi M- 4) +2( -1) o Hm -2)rT (m— (% - —2)55_0,
¢ 1 2(m-1 2)r2 2% 1 3(m-2)r- 27 _
e +4 (m— ) + (rm— ) +(m )r -—+ (- )rcr ap- 0"

To eliminate o from these equations, we multiply the first with ay, the
second with a,..., the sixth with a; and add them all together; the coeffi-
cients a are to be determined from the conditions that o and all its deri-
vatives vanish from the resulting equation. The following are the conditions
to be satisfied:

N4
the factor of 7;36% is mrag + (m— 2)r2e; =0,
~4
” » ) OT’Cfa—;; y mroy + 2(’”"” 1)a6:O)
030 \
» O, —87% y mroay —(m-—4)yag + (m--—-2)ries + 3(m— 2) rog =0,
03
” ” ” Cf/(}?(‘: y (3”1** 4)6(4 + 2(m — 1)a5 = 0,
0%
7 ) 9 ara(p ” ’”ra1—2(ﬂl——2)0t2 -+ (IIZ——2)}’O(5:O,
” ” ” % ” “‘—(3”2'—*4)0(1*—(172—2)&5:0

We thus have 6 linear homogeneous equations for 6 coefficients a; ... ag4;
one equation is superfluous, but the equations are not mutually contradlctory
and they can be solved.

The sixth equation can be satisfied with

o, = — (m—2), ag = 3m — 4;
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from the fifth it follows that ay = (m — 2)r,
from the fourth ay =2 (m—1),
from the second g = — mr
and from the first ay = (m — 2) 2,

These values of « satisfy also the third equation.

Multiplying the foregoing equations by ay, a,, ... ay and adding them
together, we eliminate o and obtainh for ¢ the independent equation

o4 o4 ~4 3 ot b 2 o
0 , 00 ¢ aJ'o 0 e c do

rt— Q+2r‘ - 5+ —h——g+6rgﬁ‘3+2r, A-g;,+5r'—§+2—n—go—r;;+g:0, (5)
ort oropr o or Crop* or opt  or

Eliminating the elongation o in a similar way from equations (1) and
(2), we find for o an equation identical with (5). This means that by inte-
grating we get for o and o the same function of » and ¢; the only difference

between them being in the constants of integration.

IL.

Another method of solution starts from the stresses. The conditions
of equilibrium of an element?2) are here

L) o Ler v (0)
v cr 7 c r

1 ¢ T cT .

F ot 2+ - =0. (7)

Equations (6), (7), the former equations (3) for v,, vy and the equation (4)
for t give 5 equations for 5 functions v,, v, 7, 9, 0. By eliminating the stres-
ses v,, v, © from these equations we obtain the equations (1) and (2) for
the elongations ¢ and o. But we can also from these 5 equations eliminate
0, o and two components of stresses and thus find an independent equation
for one stress component only.

From equations (3) for v,, v we obtain

‘e _ (m*—1)y,— (m + 1)

or Em? ’ (8)
n do __ (m*—Nrvs— (m + 1)rv,
- op Em? ’
Differentiating the last equation, we find
Jae d*c m*—1 irvs) om+ 1 a(rw)
or éréop  Em? cr E m?® or

and substituting for 579 from (8), we have

0tc _ m*—1 (6‘(1‘1:5) -, )__ m 4+ 1 (6(rv,.) B y> ©)

orop ~  Em? ar Em? or

?) See equations (2), (3) in the author’s article ,, Théorie exacte. ..,
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From equation (4) it follows

rt = G(ag + ranf — 0)
o ar

and differentiating this once with respect to » and once with respect to ¢,
we find

o (rr) <63g A )
orop G or 0¢? +r

ortopl’
Differentiating equation (8) twice with respect to ¢, we have
¢ _ mf—1 o, om+ 1 Py
oroep:  Em?® op* Em* g2
and dlfferentiating equation (9) with respect to », we find
6o _ ( () ) _m+l] ( (ro) éis)
crop Em~ or? or Em? or? orl’
s E . o .
Substituting the last two values and G = ~=™ _into —0—(’:1), we obtain
2(m+1) or o
0% (r7) :m—l (012 vy L r§i(l;’2 raft>J_(fv2ps 62(r:,.) c)vs) (10)
orc @ 2m \ dp? or? or 2m\dqp? or? cr
The equation (6) gives
€T, a(: ) apg T s (),
coy or crop or or*
therefore
6A2 (r7) _, A@:i[ n (;\i ., g—& _, 62(,;,,1) 4oy — 5(1'1/7.2.
crog orc e op or cr?

cr
This gives with respect to (10) a relation between v,, v which can be pﬁt
into the form

~ 2
C "))7.

vy o (rvy) cZ(rvg) o )3
- re—— 2 r———=
op? or or + or? +2

54 2y, =0. 1)

A second equation for v,, v can be obtained by ehmmatmg 7 from equa-
tions (6) and (7). By differentiating equation (7) with respect to ¢, we find

“‘_7. 2
c or 0 T
2 ——

— r = 0;
c@® dp orc e
z bo
substituting here for f(-;an ¢ " s already obtained from equation
cCqQ ro
(6), we have
¢ % ¢ (rvy) ovs' 02 (rv,)
2 = r—=*=20.
2 — 27 or T cr 7 cr? 0 (12)
Subtractmg equatlon (12) from (11), we find
Cre oy JEUW) P o e
op or or? cp or ‘

or?
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. (9(1" l’,-) (’:Vr,- (’3 2 (I’ l'/)-)' 6 2 7’-
It is orm) _ 0y, ) 2 :
or iy T or? ot

and analogically for v;. The foregoing equation becomes
e vy - Qv 0wy

0%vs r&'vs 0%vg

e 2 0 — ° :
P e T i T e e 13)
and the equation (12) ‘
0%, 0 vg 02y,
-3 " 4r + 2, =re+ 2v, + a(pg. (14)

From the equations (13), (14) we eliminate v, analogically, as we have
eliminated o from the equations (1) and (2). We use equations (13), (14)
and their first and second derivatives with respect to » and ¢. Omitting each
equation which alone contains any derivative of v,, we get the following
equations for the elimination of v,:

(9 1 7% O'vq 0 V/, 621’3 61’3 621'3
or? 0 p? or or og
0(13) e o 00 ¥r n 0%y, Oy o3y, 2 03, 3r02vs ovs 0%y
or " ar art o er - orog? ors ort- or  orép?’
Ca3) e e POy s OO
op? crrog’ rép* = Ot crt ot crop?  eqpt’
c(14) P o OFvr o gOW Oy gy OP
or or cr? cr Cre cr = orégp?’
) B P R O DS il U R i S "
ort "0 ort or? ert 3 ort T ortop?’
*(14) , Oy, 63y v, TRET 0%vg | Otwg
= oo e+ 4 + —=—r—— 42 J .
P YE B2 o2 72 S 2 o
o crece 0 cQ Crop cp 0

For the elimination of v, it is necessary to multiply the foregoing
equations successively by

2 1 1 1 1 |1
oy == &, g == -—, Oz — — oy — -—, O == O —§—
1 72 y Y2 P )y ©38 72 )y 4 P y “b ) 6 5 B

and to add them; the values of a can be determined analogically as above.
In this manner we obtain for v, the equation

64’}7' 64’}7' 1 84”) 631} 4) 6”3 Vy 621’1.
2070 g W 10, L0 4 O T gz O
Tan or® 6p® T P10 orég? + or?

4 0%, 9 01/7.
=+ =0 15
+ I"2 ’\gp‘z + r (7/’ O ( )

Eliminating in the same manner v, from the equations (13) and (14),
we obtain for v; an equation identical with the equation (15).

An independent equation for the tangential stress t can be obtained by
eliminating v,, v, from the equations (6), (7) and (10). The equation (0)
gives
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o(rvy) ov 0 vy T
V¢ = ———=—— A = — + n+
cr dg r @
differentiating we obtain
C Vg P v, , o vy 0%t 0% vg p o3 v 0% %t
T — T = ~ B ~ — ~ 9 < ~ ]
o orop  dp o dp*’ 0 p? orop? 1 op? = ol
&vs_rézv,. Lo, 0%t 62vs_r63v,.+3(’~} v, 0%
or  ar? or ' ordp’ or*  or? or: = or2op’

Substituting these derivatives, we find

02 (rvg) _ r(i" )
or? o r )
The equation (7) gives, when substituting for 0-;5

02 v, o vy 0%t cT
r — 27 = 0 16
orop 0<p+6"+r0r+ v (16)
and from the equation (10) we find with
o*re) _, v 07
, ordp ~  drdg op
and substituting for
o) 0P g O
_ or: 7 g or
03w 0%y ¢ vy 0w 03w &tz
_ ] ( 3C r 2 l‘ 1) _ ki _ 7 g "1 2
(m - 1)\~ 7 s +3r 7y +(m - 2) e r 6(p3+(m )7 irep
' 58 7 52 5 ~ 17
——O—i—r—f——-z—Zmin::O (17)
op®  ordp o

From the equations (16), (17) we can now eliminate v, as before v;;

making use for this purpose of the equations
¢(16) 02(16) @o3(16) ¢%(16) @%(16) ¢ (17) ¢*(17)
or > ert 7 ard e 7 orop:’ Cfe 7 Oréep
We obtain for z an independent equation identical with (15).
All the three stresses v,, v, 7 have also an identical differential equatlon
integrating it, we find for v,, v;, = formulas which differ only in constants

of integration.

IIL.
The third method of solution is based on stress function F. Putting
in polar coordinates 3)
1 é6F 1 ¢*F 0*F
E et EEr T g (18)
we obtam

5) See S. TimosHENKO, ‘‘Theory of elasticity”, p. 53.
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6w 1 62F 1 oF 1 &F 2 0'F
or — r or? rt or rr orog®  r® o¢?’
Qm) _ v | _@F 1 PF 1 8F
Tar T Ter TUT e T dragt T P agr
The equation (6) gives ’
or o(rm) 1 *F 1 3F
S = Vs — T = oy o5
‘@ or re og*® r oraop
integrating, we find
1 oF 1 é*F (19)
r? dg r orép’

From the stress function we can determine also the components of de-
formation ¢ and o. Substituting from (18) into (8), we obtain

fe_ 1 [ y(LiFy L ery or)
~ - Em2 (m2 1) + 2 (IIZ + 1) 2 (20)

ar r or r° o
In the equation (9) we substitute
o(rvy) _ , vy o(rvs) - 0 v dvs _ O°F

_ VYV, — 4 —
or or T or or T s or ord’

ov .
; as above and for v,, v, from the equations (18); whence
C

9 L 2 -2 - "2
cto _ 1“[( ~~])( F ¢:F 1 oF 1 OF) (In-H)(] ¢ F 1 c? F>

crop Em? e e Ty ar r? 0p?®

|-en

a7

r érég? C @

The condition for F follows from the equation (4) which gives

o
re = G((p+r8—r~~-—0).
Differentiating with respect to », we obtain

P 52 o2
cT c o0
r———{—r::G(h Q + r _,)
or ordg or:

and differentiating again with respect to ¢:

0%t T 0% )
= — 22
g crop - op G ( t7 (22)

From the equation (19) we find

oT 182F 1 ¢3F 5’2’”_l O3 F QF 1 0t F +i 63F.
0 T rTopt  roreg? drdp rtérdp riog®  rortég®  r?

from the equation (20) it follows that
c®e 1 [ : (1 0 F 1 64F> 64F]
— W _—: N 2 _1 [ — iy P ————
orép*  Em? (m ) r orogt + r? et (m+1) 0 2
and from (21)
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3 ] 02 3 2F
%o 1[(m2___1)( AF o 8*F 1*F 16F 1 &°F 26F)

ortép  Em? ort rort " rtor. rraorog*  r® oe?

0*F 2 ¢%F 2 a?F)]
— ])<r orteg: 1 arogt T rd o/l
Substituting G = A_(Em 0 and the foregoing values of derivatives in the

equation (22), we find the condition for F in the form

64F+2 ¢*F ¢*F 20%F 2 ¢%F 1 ¢*F 46‘2F+1 oF
ort riéréet rtcet rard riirée’ r*art riée? réar

=0. (23)

Using for polar coordinates the symbol

, P 1 ¢ 1 ¢2
V= an T T g
and )
oy vy =2 1@ L_fi) 0,20 16 138
Vi=VHV )~<6r2+ rort r? o ¢p? Y )—8r4+ rord r? 8r2+ rdar
+g &4 —g— (‘)3 _4__ &2 —1‘_ 64
r2ertip? 1t drep? U ort dg® ' rt o’
we can write the equation (23) in the form
VF=0. (23)
IV.

The general expression for the stress function F follows from the
equation (23). Taking this function in the form

F=R,
where R is function of » and & function of ¢ only, we obtain
'Vl am+n
F — R® D, flf — R (D(n) ,,,,,m___[i = R @),
crt &(p ort o ()9

Substituting in the equation (23) we find
2 1 1 4 1
(R+ 2R LRt LR) o (AR -2 R4 LR) 0t LROW=0.  (29)
r r® re r? ré r rt
We can satisfy this equation by putting
= 0 (whence ®@®* = 0) and R® 4+ = R”’ — 12— R’ + Jg R = 0.
r r

From the first equation it follows that
O=a0a ¢+ a,.
The integral of the second equation is
R=cq¢rtlnr+ clnr + c;r? 4+ ¢,.
The stress function is therefore ;
FF=R® = (qriinr + qlnr+ cr* + ¢,) (a1 + a,). (25a)
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The equation (24) can also be satisfied with
R=r or R=1, R"=R"=R®W=0.
Substituting in (24) we find
W 4+ 20" + ® = 0;
and the integral of this equation is
D = ¢ sing + o8¢ + dypsing + dypcose,

The second form of the stress function is

F;, = R® = r(cysing 4+ c3cos¢ + dspsing + ¢ pcose).

As a further possibility we take
v,
integrating we find _ i
o | O = asing + aycosp
and differentiating

(11O
o = 1.
‘From (24) it follows that e
24 3 17 3 ’ 3
RW + R o R" + 8 R - P R = 0;

and integrating we obtain
R=c"\rinr 4 "or ' + 'sr3 + ' r

The stress function may, therefore, have the form

F; = RO = (¢'yrinr + yr ' + 5rd + ¢y r)(@ysing + a'5cosg).

Finally we can take

where 7 is an arbitrary integer. Then we have
11X
)]

= n4

® = a,sinny + b,cosng,

Substituting in (24) we obtain

1 + 2n* 1 + 2;12 4}12——-”4
r

R —

R (4) + RHI Rll

Putting R = r* we have

(25 b)

(25¢)

R=art !, R'z=a(a-1)r* 2, R"=a(a-1)(a-2)r*" 3, RW=a(a-1)(«— )(a—3)r“’“4,

and the last equation reduces to the characteristic equation
(«? — n?)(¢®? — 4o — n? 4+ 4) = 0.
The solutions of this equation are

o=+ n o3, =2+n
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the general solution of the foregoing differential equation is, therefore,
R =cprs + dyr* + eyr® + for*s = cur" + dyr" + epr®+t" + for2—n

This result is valid for each integer n = 2, because only then the characte-
ristic equation gives four different values a. For n = 1 we find a; =a, =1,
and it is necessary to include not only the terms with », -1, 3 but also a
term with » Inr, which gives the function F3. For n = 0 we have ay,, = 0,
az,, = 2 and we obtain, besides the absolute term and the term contammg
r2, also terms with 1nr and r2 1nrs. Hence the function F, with a; = 0.

The calculated values of R, @ being valid for each integer n = 2, the
equation (24) is also satisfied by the series

oo

Fo=3R® = X (car"+dpr="+e,r2tn { fr2=")(aysinng + b,cosnp). (25d)

n=2

V.

The boundary conditions are satisfied only by the solution F, in the
form of a series. Taking F = F, we obtain

’) o0
(f D (ear = ndyr V4 (240) e E(2— 1) furt ") (@nsin ng + b, cos ne)
7 2
0F Q& 5 g
i = Z;[n(n—l)c e +rz(n+1)d,,r =24+ (2+n)(1+n)e,r

+@2=n)(1 —n)for-"](a,sinngp + b, cos ng),
or = D (Cn P+ dn T+ €y P2 4 [ 121 (n @, COS g — /zb,,smmp),

72F oo — . .
S A D+ Ay F 4 ey P2 fr P2 1) (- n2 @y Sin g — 12 by, COS nY),
2

— ;(rzc,,r” Ynd,r—"- 1+(2+/z)¢=3 ritry(2-p) fpri-")(na,cos np— rzb,zsmrzgp)
The first formula (18) gives
1 0F 1 ¢*F__ 2

+ @ 2 [r(1—n)cyr' 2 —n(1 + n)d,r "2 (26)

Vp =—= — —
+ 1+ n2—n)e,r*+ (1—n)(2 + n)far|(ansin np+b, cosng).

ror r? og?
On the inner surface of th¢ shell we have

F=rn, w=— P1= yn cosq. (27)

We can develop f(¢) = cose in the interval 0 — z in a Fourier’s series*)

fp) =a + Za'nCOSZmp + Zb',lsin 2np,
1 1

where
- 4) The function cos¢ in the interval 0-— xr signifies a periodical intermittent
function having for the limits of the interval (p = 0, @, 2=z, ...) the values cos ¢ =

+ 1. The series in which we develop cos ¢, gives for the limits of the interval the
arithmetic average of both values of the function, therefore zero.
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JT 1 JT
[f(<)9) dp = — [ cosp dy = —[smqﬂ]
0 b
L2 2 |
= | 1(®)cos2np dp =~ |cosq cos 2 ngp dp
0 0

i [sin (2n+1)¢ sin (2”—1)(p]j0

2 1}’
P [COS(2n+1)(p+COS(2/ZA1)(p]d(p_—; TS| 27
0

]
SJIN

b’,,:%jf(cp)sin 2np dp=- [COS(pSin 2npdy
]

0
4

1;? : ; : B 1 [ cos(2n+l)p cos(2n-1)¢ ]
.[sm(2nH)¢+sm(2n l)qoldq)a}—r— B PIrS B

__1_< 2 . 2 )__8‘ __r_
T \2n+41  2n-1)" u  (2r-1)(2r+1)’

We obtain

Cos ¢ = Eb’,,sin2mp:—8~2 "
1 i

3n—1)@n F1) 2"

A

= —8—(1—%sin2¢ + 3?—5Si114(p+ ﬁsinﬁw +%gsin8¢+...)- (28)
Substituting » = r; in (26) and developing Cosqo in the series (28), we find
from the condition (27)

Z[n(l—n)c,,rl””Q—rz(th) d,r, 24+ (141)(2—n) ey 1, "
—~ n

+(1-n)(2+n) fory "] (@nsin np+b,cosne)=y r, 2(2’2 D @ns 1)sin2rzzp.

In order that this condition may be satisfied for each value of ¢, it is ne-
cessary that b, = 0 and also that each «, with an odd index must vanish.
Joining the coefficient g, with the coefficients ¢,, d,, e,, f,, we have, putting

on the left hand side 27 instead of n, the condition

2r(1-2n)cynr 2" 2-2n(142n)dypnry 2" 2+ (1420) (2—-2n) €4, 1, *"
P (29a)

8
- —2n — R
+(1-2n) 2+ 2n)fonr, " =yn v @noT) @ntl)’

This condition is valid for each integer n = 1 =+ co.
As all b, and all 4, with odd indexes vanish and all other a, terms can

be joined with the constants c, d, e, f, the equation (26) becomes

ve=22n(1-21) c3a 72" 2 =20 (142 0) dyp r=2"2+ (142 1) (2 -2 1) €2,

+(1-21) (242 1) fonr—27] sin 2 ng. (26a)



Contribution to the Exact Theory of Thick Cylindrical Shells 25

The second formula (18) gives generally

ne ot '
07 rI::Z [n(n-1)cn,r" 2+n(n+1)d,r "2+ (2+n)(1+n) e, r
or: 2

+(2-n)(1-n) for~") (a,sin ng + b, cos ne);

omitting all b, and all 4, with odd indexes and joining all a, with even
indexes to the constants ¢, d, e, f, we arrive at the formula

Yg =

re= 220 (21-1) ey, 2" 2420 (20 +1) dyp r=224 (242 12) (14 22) €3, 72"
1
+(2-2n)(1-2n) fonr 2"]sin2ng. (30)
Finally with respect to (19) the general equation emerges:

~ 9 29
=Ll L S (- n (L) dy 2 (12 e
2

T rog r érog
—n(1-n)fnr ") (a,cos ng—b,sin ny);

and by analogy with v,, v; we find

I:Z[2ﬂ(1—2n)c2nr2”*9+2,z(1+2,1) Ayn 722~ 2 11 (142 1) €y 12"
1
-2n(1-2n) fanr~2" cos 2 ne. (31)

For the constants c¢y,, dy,, €44, fon We can obtain, besides the equation
(29 a), three further equations from boundary conditions. On the outer sur-
face » = r, and v, = 0, which gives by each sin 2n¢ in (26 a) the coefficient
Zero:

21 (1=2n) canrs 221 (142 1) dyy 1224 (14 21) (2— 2 11) €907 2"
" +(1-21) (2421) fanry2"=0.  (29b)

On the inner surface » = r; and = = 0; in the equation (31) the coeffi-
cient of cos 2n¢ must vanish, therefore

2n(1-2n) conr ® 2420 (14 2n)dynry 727 2=2n (142 n) 3, 1 2"
-2n(1-2n) fgnr,"2"=0. (29 ¢)

Finally, also, on the outer surface (» = r,) the stress  — 0, which gives
analogically the condition

2n(1-2n) ey, 2420 (14 20) dypy 7,27 220 (142 n) €2, 752"
—2n(1-2n)fonr,~2"=0. (29d)

We have, therefore, four linear equations for cy,, dyn, €94, fon and can
calculate the constants from them. It is necessary to compute values for
n= 1,2, 3, ... and to include in the series for v,, v,, T as many terms as
are needed for exact calculation.

For the elongations ¢ and o equations (20) and (21) can be used.

Summary.

In a hollow circular cylinder subjected to a variable radial pressure the
stresses and strains are functions of the coordinates » and ¢ only. For two
strains we obtain from general equations two partial simultaneous differential
equations of the second order, which can be transformed into two independent

Abhandlungen VI 3
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equations for each strain separately. From two conditions of equilibrium
of an element and three relations of stresses and strains, which are partial
differential equations of the first order, we can eliminate four unknown
function: and obtain also for each of the three stresses an independent
equation as a differential equation of the fourth order. The stresses and
strains can be expressed by means of a stress function; this being a bi-
harmonical function given by a differential equation of the fourth order.
Integrating it we obtain stress functions of different forms. The boundary
conditions are satisfied in the present case only by a function in the form
of a series.

Zusammenfassung.

Ist eine zylindrische Schale durch einen veridnderlichen radialen Druck
innen beansprucht, so sind die Spannungen und die Verformungen allein
Funktionen der Koordinaten r und ¢. Fiir die Verformungen erhilt man aus
den allgemeinen Gleichungen zwei partielle simultane Differentialgleichungen
2. Ordnung, aus welchen zwei unabhingige Gleichungen fiir beide Verfor-
mungen abgeleitet werden konnen. Zwei Gleichgewichtsbedingungen eines
Elements und drei Gleichungen, welche die Abhéingigkeit der Spannungen
und Verformungen ausdriicken, sind partielle simultane Differentialgleichun-
gen 1. Ordnung; durch Elimination von vier unbekannten Funktionen kann
man auch fiir die Spannungen unabhidngige Gleichungen in der Form von
Differentialgleichungen 4. Ordnung aufstellen. Die Spannungen und Ver-
formungen koénnen auch durch eine Spannungsfunktion ausgedriickt werden,
die durch eine Differentialgleichung 4. Ordnung gegeben ist. Durch Inte-
gration findet man die Spannungsfunktion in verschiedenen Formen. Die
Oberflichenbedingungen kénnen in diesem Falle nur durch eine Spannungs-
funktion in der Form einer Reihe befriedigt werden.

Résumé.

Dans une enveloppe cylindrique circulaire, sollicitée par une pression
radiale variable, les composantes des tensions et des déformations sont des
fonctions de deux coordonnées r, ¢ seulement. Pour deux composantes de
déformation on tire des équations générales deux équations différentielles
partielles simultanées que ’on peut transformer séparément en deux équations
indépendantes pour chaque composante de déformation. De deux conditions
d’équilibre d’un élément et de trois relations entre les tensions et les dé-
formations qui sont des équations différentielles de premier ordre, on peut
éliminer quatre fonctions inconnues et parvenir ainsi pour chacune des trois
tensions a une équation différentielle indépendante de quatrieme ordre. Les
tensions et les déformations peuvent étre exprimées par une seule fonction;
c’est une fonction biharmonique donnée par une équation différentielle de
quatrieme ordre. En intégrant cette équation on obtient différentes formes
de la fonction. Dans le cas présent, les conditions aux surfaces sont satis-
faites seulement par une fonction en forme de série.
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