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ERWEITERTE THEORIE DES SEILPOLYGONES ZUR
BERECHNUNG VON HÄNGEBRÜCKEN.

EXTENSION DE LA THEORIE DU POLYGONE FUNICULAIRE
AU CALCUL DES PONTS SUSPENDUS

EXTENDED THEORY OF THE FUNICULAR POLYGON FOR
CALCULATING SUSPENSION BRIDGES.

ERNST AMSTUTZ, Dipl. Ing. E.T. H., Zürich.

Im folgenden wird gezeigt, daß sich die Versteifungsträger von
Hängebrücken auf ebenso einfache Art — graphisch oder tabellarisch — wie
gewöhnliche Biegeträger mit Hilfe von Kräfte- und Seilpolygon berechnen
lassen, wenn die bisherige Theorie des Seilpolygons erweitert wird. Zu
diesem Zwecke wird die lineare Differentialgleichung zweiter Ordnung des
Problems in zwei Gleichungen erster Ordnung aufgespalten, womit sich die
Berechnung in zwei Stufen (Querkraft-Moment) durchführen läßt. Integriert
man diese Gleichungen über ein Trägerfeld, so ergeben sich einfache
Beziehungen zur fortlaufenden numerischen Berechnung der Schnittkräfte, die
auch durch graphische Konstruktionen (Kräfte- und Seilpolygon) dargestellt
werden können. Damit wird eine Methode gegeben, die ohne Ableitung
langer Fomeln in allen Fällen sicher und rasch zum Resultat führt.

1. Grundgleichungen.
Wenr man von den Horizontalverschiebungen des Kabels1) absieht, ist

der Versteifungsträger aus den Formänderungen rj gegenüber der Elastizitäts-
d2i)

theorie zusätzlich mit den Kräften Fi -,-{ belastet, worin Ff die Horizontal-
dx2

komponente des gesamten Kabelzuges bedeutet.
Das Moment M im Versteifungsträger ergibt sich also aus

d2M ^d2rj
dx2 ' ' dx2

wobei in p außer der äußern Belastung auch die Reaktion der Hängestangen
(ohne Formänderungseinfluß) enthalten ist. Mit Hilfe der Beziehung

d2rj
___

M
(2)

dx2 EJ

(E Elastizitätsmodul, / Trägheitsmoment) gewinnt man die Differential

*) Zur Berücksichtigung der Horizontalverschiebungen: F. Stüssi und E. Amstutz,
„Verbesserte Formänderungstheorie von Stabbogen und verankerten Hängebrücken".
Schweiz. Bauzeitung vom 6. Juli 1940.
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gleichung für das Biegemoment im Versteifungsträger:

M d2M
dx2 P

mit der Abkürzung n-
(3)

Grundlegend für die folgende Methode ist — analog wie bei der
Berechnung des gewöhnlichen Biegeträgers — die Aufspaltung der Differentialgleichung

2. Ordnung (3) in zwei simultane Differentialgleichungen 1.

Ordnung:

« dQ'P (4)

M
+

dx

dM
dx

Q (5)

Die Elimination der Hilfsgröße Q ergibt, wie man sich leicht überzeugt,
Gleichung (3). Die Analogie mit dem gewöhnlichen Biegeträger ist augenfällig.

Die Gleichung (4) stellt das Kräftepolygon, die Gleichung (5) das

h"

JE

Fig. 1

Seilpolygon dar. Die Größe Q kann als ideelle Querkraft angesprochen
werden; sie weicht von der wirklichen Querkraft Q um das Korrekturglied
M u— ab.
r

Diese Verwandtschaft mit dem Seilpolygon hat ihren tieferen Grund.
Es läßt sich nämlich leicht zeigen, daß der Durchhang eines gespannten
Seiles, das stetig elastisch gestützt resp. aufgehängt ist, einer zu (3) analogen
Differentialgleichung gehorcht. Die Versteifungsträger von Hängebrücken
haben als Gleichnis das gespannte, elastisch unterstützte Seil, so wie die
gewöhnlichen Biegeträger das frei gespannte Seil als Gleichnis haben. Die
Berechnung ist somit in beiden Fällen auf einheitlicher Grundlage möglich,
wie im folgenden weiter gezeigt wird.

Zur Durchführung einer graphischen oder tabellarischen Berechnung
stellen wir nun Beziehungen zwischen den ideellen Querkräften Q und den
Momenten M in zwei benachbarten Trägerschnitten mit dem Abstand l auf.

Hierbei dürfen wir feldweise konstante Belastung [—/-= 0) und feldweise
(dr \ * \dx

konstantes Trägheitsmoment I— Ol voraussetzen. Die Lösung von (4)

lautet daher, wenn mit e die Basis der natürlichen Logarithmen bezeichnet
wird,

Q A • e >' +- r-p (6)
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und von (5)

M B-e~^+~e~^+ r2-p,

wovon man sich leicht überzeugt. A und B sind Integrationskonstanten, die
von den Randbedingungen abhängen.

Betrachten wir ein Trägerfeld von der Länge A, so ist für den Endpunkt
links (x 0)

Q«=A + r.p, (8)
für den Endpunkt rechts (x X)

Qn + 1 A-e£+r.p (9)

mit e — Die Elimination von A ergibt die Beziehung

Qn+i Qn-<f—rP(?—X) (10)

Entsprechend findet man aus (7)

Mn+1 M„ • rE +r • sh e • Q„ + i*p(\ —che), (")
worin sh e ch e —

darstellen.'

Poutre ordinaire
—Gewöhnlicher Balken

Ordinary beam

fi WT^mrmTnmMmTri

•^tL__^^~
nTTTr,. ^~_.-rt-TTTTffi S'! '*-¦ ^nsM0^

Cäble libre
—Freies Seil

Free cable

ee -f- e~
die hyperbolischen Funktionen

Poutre raidisseuse

r— Versteifungsträger
Stiffening girder

5 /5-/

Cäble sur appuis elash'ques
^-Abgefedertes Seil

Spring supported rope

Fig. 2

Besteht die Belastung aus Einzellasten P in den Feldgrenzen, so ergibt
sich einfacher

Qn+i Qn-e* (10a)
Mn+1 Mn • e~£+ /-sli s Qn. (IIa)

An der Feldgrenze weist der Wert von Q den Sprung -P auf:

(12)

2. Knotenlasten.
Um die vereinfachten Rekursionsformeln (10a) und (Ha) auch bei

verteilter Belastung anwenden zu können, führen wir den Begriff der Knoten-
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lasten ein; das sind diejenigen Einzellasten in den Feldgrenzen, die das
Sehnenpolygon der Momentenfläche ergeben.

Für zwei aufeinanderfolgende Felder (Fig. 3) ergeben die Formeln (10)
und (11):

Qn =Qn-i-e°-rp(e°—\) \

Qn+i Qn-e°'-r'p'(<?'-\)
Mn =M„^-e-e+ rshe- <)„_,+ r*p(l— che) (13)

Mn+1 Mn ¦ e~°' + /-'shs'.Qn + r'*p'{\ —ch«').

Rechnet man mit Knotenlasten P, so findet man hingegen gemäß (10a),
(IIa) und (12):

Mn =^„_,.^-£+/-.sh«.«?;_!
Mn+1 Mn • e~°' + r'sh«' Q? \ (14>

und die Übergangsbeziehung
Q«t,— Q»*= — P.

Aus den beiden Gleichungsgruppen (13) und (14) lassen sich die 10 Größen
M, Q und Q* eliminieren. Man gewinnt schließlich die Knotenlast zu

che —1 ,che'p-rP. „u„ +r'p'
1

she she'

Für kleine Werte e findet man auch, wenn man noch r
Reihenentwicklung

(15)

einsetzt, durch

P^il 12/+ 22 V 12/ (16)

3. Tabellarische Berechnung.
Der Horizontalschub H ist eine überzählige Größe X, die aus einer

Elastizitätsgleichung zu bestimmen ist. Für den Formänderungseinfluß setzen
\I~EJ

wir jedoch in r y —=j- einen geschätzten Konstantwert2) H ein, der — für

strenge Gültigkeit — dem zu berechnenden Totalwert gleich sein muß.
Dadurch gilt, wie in der Baustatik gewohnt, das Superpositionsgesetz wieder,
sodaß Teileinflüsse gesondert untersucht werden können. Genauer läßt sich
die Berechnung auch mit zwei oder drei Werten Ff durchführen, sodaß am
Schluß der richtige Wert durch Interpolation berücksichtigt werden kann.

Bei Anwendung der Rekursionsformeln (10a) und (Ha) ist, da es sich
um einen beidseitig aufliegenden Balken handelt, der Anfangswert von Q
nicht bekannt und muß als unbekannte Größe aus der Bestimmungsgleichung
M 0 über dem Auflager gefunden werden. Dies entspricht beim Biege-

2) F. Stüssi, „Zur Berechnung verankerter Hängebrücken". 4. Bd. Abh. I.V.B.H.
(1936).
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träger dem Einziehen der Schlußlinie. Hier ist jedoch die Schlußlinie keine
Gerade mehr, sondern muß nach (10a) und (Ha) für fehlende Belastung P
berechnet werden. Bei weichen Versteifungsträgern wählt man zweckmäßig
die ideelle Querkraft Q auf dem rechten Auflager als Überzählige und rechnet
nach der Formel

Qn= Qn+i-e-e (17)

von rechts nach links, da dann die Werte Q rasch
abklingen, und damit eine bessere Genauigkeit
erzielt wird als bei umgekehrter Reihenfolge.

Die Elastizitätsbedingung für den Horizontalschub

X lautet bekanntlich

|—£

L—a—i a

X > an + al0 — 0
n

Fig. 3 worin die Verschiebungsgrößen

-=-!'- EJ
dx + EK- FK°

=-te**+-<-fc
mit

mit

L J FK- cos* cp
dx

dx

cos2 cp

(18)

(19)

mit Hilfe der SiMPSON'schen Flächenregeln oder graphisch bestimmt werden.
EK und FK sind Elastizitätsmodul und Querschnittsfläche des Kabels oder
der Kette, die übrigen Bezeichnungen gehen aus Fig. 1 hervor.

she

she

.TPn-1

Li. S»+

rn+t Polygone des Forces

KräFtepolygon

n Polygon of Forces

Pn-1 Pn.I

n+l
Mn-e

she
n t Mn+res/p

Polygone funiculaire
Seilpolygon
Fumcular polygon

Fig. 4

4. Graphische Berechnung.
Fig. 4 zeigt die Umsetzung der Gleichungen

Qn+i Qn' e£

Mn+l Mn • e~e + l she
Qn

A'Qn+!~t~

(20)

(21)

in eine einfache graphische Konstruktion. Gegenüber dem gewöhnlichen
Kräftepolygon sind hier die Polstrahlen bis zu einer Vertikalen zu verlängern,
die den ^-fachen Polabstand hat, die Querkraft Qn + i ist dann wieder auf
die Polare n zu projizieren, wo auch die Knotenlasten P abzutragen sind.

Zweckmäßig wählt man den Polabstand zu -r-, dann wird der Seilstrahl 5& she
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Mn Mn-e-'
_£__

Marque

f- 1-e-e
Marke
Mark

Fig. 5

im Seilpolygon parallel zum Polstrahl p im Kräftepolygon. Selbstverständ-

lieh kann der Polabstand auch ein Vielfaches von -r- betragen,

dementsprechend ergibt sich dann — wie gewohnt — der Maßstab der Momentenfläche.

Hat man die Seilstrahlen s im Seilpolygon gezogen, so sind die Ordi-
naten noch fortlaufend im Verhältnis e~s zu reduzieren. Es verbleibt die
schraffierte Momentenfläche, die natürlich im Falle von verteilter Belastung
noch auszurunden ist. Zur Reduktion der Ordinaten fertigt man sich zweckmäßig

einen Reduktionsmaßstab mit zwei drehbaren Schenkeln an, dessen
einen Schenkel man an der Reißschiene anlegt. Die Anwendung geht aus
Fig. 5 hervor. Statt dessen leistet auch ein Reduktionszirkel gute Dienste.

Um beide Randbedingungen M 0 zu
befriedigen, ist noch eine Schlußlinie mit
beliebigem Anfangswert Q zu konstruieren
und mit dem jeweiligen Belastungsfall im
geeigneten Maßstab zu kombinieren. Die
Reduktion der Schlußlinie auf den passenden

Maßstab geschieht zweckmäßig durch
zeichnerische Projektion, sofern nicht ein
Reduktionszirkel zur Verfügung steht.

Auch bei der graphischen Berechnung konstruiert man zweckmäßig die
Querkräfte Q von rechts nach links, die Momente aber von links nach rechts,
um ein rasches Anwachsen der Ordinaten und damit Ungenauigkeiten zu
vermeiden.

5. Veränderliches Trägheitsmoment.
Unsere Grundformeln und Konstruktionen gelten für feldweise

konstantes Trägheitsmoment. Da die Feldweiten sich beliebig wählen lassen,
kann jeder treppenförmige Verlauf des Trägheitsmomentes (aufgelegte
Gurtplatten) erfaßt werden. Aber auch eine stetige Veränderung der Trägerhöhe

läßt sich durch eine Treppenlinie genügend genau darstellen. Im
Kräftepolygon ergibt sich so bei konstanter Feldweite eine veränderliche
Poldistanz und eine veränderliche Projektionsweite. Will man dies

vermeiden, so wähle man nicht 2, sondern s konstant, wozu die Fläche) y ~- - dx

in gleich große Felder zu unterteilen ist (Jc ist ein beliebiger Konstantwert).

Zu beachten ist, daß infolge eines Sprunges der Größe r auch die

ideelle Querkraft Q einen Sprung von der Größe MAl—1 erleidet, so als

ob eine ideelle Belastung

P= — M- A i) (22)

angreifen würde. Eine vollständige Trennung der Berechnung von Q und
M ist daher nun nicht mehr durchführbar, vielmehr ist die Bestimmung der
Größen Q und M Punkt für Punkt parallel durchzuführen. Hingegen darf P
für jeden Teileinfluß — auch die Schlußlinie — getrennt berücksichtigt
werden, da ja das Superpositionsgesetz gilt.
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Die bei sehr weichem Versteifungsträger vorteilhafte Berechnungsfolge
der Querkräfte von rechts nach links und der Momente von links nach rechts
kann bei veränderlichem Trägheitsmoment nicht mehr angewendet werden.
Sehr weiche Versteifungsträger haben jedoch fast immer konstantes
Trägheitsmoment. Es werden sich also bei Anwendung der Berechnung kaum
Schwierigkeiten ergeben.

6. Einflußlinien.
Zufolge fester Wahl des Horizontalschubes im Formänderungsglied gilt

das Superpositionsgesetz zu Recht, und es können daher Einflußlinien für
Schnittgrößen und Formänderungen gezeichnet werden. Wir interpretieren
die Einflußlinien wie üblich als Biegelinien r\.

Tut Einflußlinie einer Durchbiegung berechnen wir vorerst die
Momentenfläche infolge P 1 nach der hier dargestellten erweiterten Theorie
des Seilpolygons. Hierauf ergibt sich die Biegelinie zu dieser Momentenfläche

nach der gewöhnlichen Theorie des Seilpolygons.
Bei der Einflußlinie eines Momentes oder einer Querkraft halten wir

uns an die bekannte Differentialgleichung

-2—^=0. (23)

Für die Einflußlinie der Querkraft ist im betrachteten Schnitt Arj \} für
du

das Moment A —r± — 1 zu setzen. Die Berechnung der Werte rj im Grundsystem

erfolgt auf analoge Art wie bei den Momenten mit Hilfe der
erweiterten Theorie des Seilpolygons. Man beachte, daß trotz dem
gleichartigen Belastungsglied die Einflußlinie des Momentes nicht mit dem
Moment für P 1 übereinstimmt (wie von anderen Autoren schon behauptet
wurde), da sich die Überzählige X aus verschiedenen Elastizitätsgleichungen
ergibt und auch verschiedenen Einfluß hat (im einen Fall Biegelinie aus X,
im andern Momentenfläche aus X).

Die Verschiebungsgrößen der Elastizitätsgleichung lassen sich hier
zweckmäßiger als aus den Momenten direkt aus den Durchbiegungen in der
Form

Cd2y f
alk — J -jjp

• if* • dx= —y" J Tjk • dx (24)

berechnen. Bei sehr weichem Versteifungsträger ist die Summation mit Hilfe
der SiMPSON'schen Flächenregeln in diesem Falle zu ungenau. Da hier der
Versteifungsträger im Grundsystem unbelastet ist (p 0), läßt sich zur
Integration eine einfache, strenge Formel angeben:

rj ist gegeben durch

rj a- er + b • e r

in den Feldgrenzen:
jt — 0 rjn a + b

x z= l rjn+1 ae8 + b

(25)

(26)
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Die Integration ergibt
n

J rj • dx r. a(£*— 1) + r £(1 — <r*). (27)

Nach Elimination der Integrationskonstanten erhält man schließlich:

J ' ' dx ^e^she Ü" + Vn+1>>' (28)

Die Summation ist über alle Felder zu erstrecken.

7. Kontinuierliche Hängebrücken,
Die Berechnung kontinuierlicher Hängebrücken bereitet nach der

dargelegten Methode keinerlei Schwierigkeiten. Es sind lediglich außer dem
Horizontalzug auch die Kontinuitätsmomente der Versteifungsträger als
Überzählige einzuführen.

Die Verschiebungsgrößen ergeben sich in der Form

aik ^Moi • Mk~ ^Mi-Mok. *£- (29)

worin der Index 0 andeuten soll, daß es sich um die Momente des gewöhnlichen

Balkens ohne Formänderungseinfluß handelt. Im übrigen sind die
Elastizitätsgleichungen wie in der Elastizitätstheorie gewohnt anzuschreiben.

8. Berechnungsbeispiel.
Für die in Fig. 6 dargestellte Hängebrücke sollen im folgenden,

analytisch und graphisch die Momente infolge X V und infolge halbseitiger
Nutzlast p, sowie die Einflußlinie des Momentes im Viertel der Öffnung
berechnet werden.

Abmessungen: Stützweite / 800 m j
Feldweite l 100m y =—-!=— 0,8-10~3 nr1
Pfeil f 64 m

Versteifungsträger:
Trägheitsmoment J 12 m4 konst.
Elastizitätsmodul E 21.106 t/m2

Kabel: EKFK 2,5 -1061

EJ 252.106m2t

EKFL 1250m I EKFK

0,8-10~3

0,50.10-3m/t

4
Belastungen: Eigengewicht g 4 t/m Hg 5000t

Verkehrslast /7 2,4t/m ~Hp,max «1300t

H^ 6300 t
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f-64
1582 D

7 4-
%0-D-A |

3 \k

— I 800m

Ligne de fermelure-bchlusslinie-Closmg hne
km-IOOmt

km -05t i

Cas de Charge -Belastungsfall- Case of loadmg X- 1

WOkm mt

Qx-t

km ~ 011

1160m

fy-r
1860m

1220m

2330m

2220m
D-12600m2tc mom2t t_ 2

I 1160 mct

im*ww3km 252 106 w ,u

- 50mmEJ VJLLL 9x=iF=331m
1cm - 5000m*/

Surcharge sur la 1/z portee-Halbseitige Nutzlast-Effechve löad on half side

km-500 100 =50000ml

km - 2501

1cm-2Wmzl 'y M0100

km -50000ml

^^m^sm^^Lrm nu^*:tL-Aiin

Ligne d'mfluence pour le moment-Einflusslinie für Moment- Influence line for moment Mz

km- 100m

F-23600m2

km -05 km ~ 100m \Q
i i r

Fig. 6

Abhandlungen VI
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Tabelle I. Schlußlinie und Horizontalzug X.

Schlußlinie Belastungsfall X=\*: P=-0,8-10~3-100-0,9795 0,07836'

^ €
Ms Q M AM M ?«a 12 Ef

V

A

1

2

3

4

5

6

7

B

m

1,91

3,15

5,19

8,55

14,10

23,25

38,34

63,21

104,22

m

0

1,91

4,31

7,80

13,28

22,15

36,68

60,59

99,96

t

-0,11713
-0,19312
-0,11476
-0,18922
-0,11086
-0,18279
-0,10443
-0,17219
-0,09383
-0,15471
-0,07635
-0,12589
-0,04753
-0,07836

0

0

mt

0

-12,21

-19,37

-23,30

-25,02

-24,95

-23,09

-18,96

-11,50

mt

0

+ 0,22

+ 0,50

+ 0,90

+ 1,53

+ 2,55

+ 4,22

+ 6,97

+11,50

mt

0

-11,99

-18,87

-22,40

-23,49

-22,40

-18,87

-11,99

0

mt

-138,8

-223,1

-266,4

-279,7

-266,4

-223,1

-138,8

mt

-768,1

-629,3

-406,2

-139,8

+139,8

+406,2

+629,3

+768,1

mm

0

2,540

4,621

5,965

6,427

5,965

4,621

2,540

0

*) KM>m iQ \^{Mm_x + 10Afm + Mm+l); j~ 3,307 • 10~«t~\

Tabelle II. Halbseitige Nutzlast p
P1_3 240 0,9795 235,1'; />4

2,4 t/m.
117,5'.

Q M AM Afo y Mx M
\

A

1

2

3

4

5

6

7

B

t

297,4

490,4
255,3
420,9
185,8
306,4
71,3
117,5

0

0

0

0

0

mt

0

30 995

45 406

46 903

35 878

21760

13 197

8 004

4 854

mt

0

- 93

- 209

- 379

- 645

-1076

-1781

-2942

-4854

mt

0

30 902

45 197

46 524

35 233

20 684

11416

5 062

0

m

0

28

48

60

64

60

48

28

0

mt

0

-15 149

-23 842

-28 302

-29 680

-28 302

-23 842

-15149

0

mt

0

+15 753

+21 355

+18 222

+5 553

-7 618

-12 426

-10 087

0
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Hilfsgrößen : r 1/ £/ 200 m

11

n=
e =0,5 e 1,6487

she
1,0422;

che= 1,1276

e-e= 0,6065 she 0,5211

2(che — 1)
£ • sh e

0,9795; [l - ^ 0,9792]

In Tabelle I sind die Momente M und Durchbiegungen r\ infolge X V
berechnet. Die zugehörige Verschiebungsgröße ergibt sich wie folgt:

/»,.</* 3,313m2/1 -y"-l^dx 2,650- 10-3m/t
L

0,500 .10-8m/tEkPk
3,150 • 10-a m/t

Für halbseitige Nutzlast (Tabelle II) folgt:
\y- M0dx= 1003 106m3t cI0

\yM0dx
EJ

3,980 m

X 1263,5t

(H - 6263,5 t, Annahme H 6300 t genügend genau)
und für die Einflußlinie M3:

J >i0 ¦ dx 23,59 • 103 m2 a10=y"\ rl0 ¦ dx — 18,872 m

X 5991 t

Der entsprechende Einfluß von X ist zu superponieren.
Die entsprechenden Berechnungen sind in Fig. 6 auch graphisch

durchgeführt.

Tabelle III. Einflußlinie M9.

shf
K ti

€
n Ar} Vo Vx n

m m m m m m

A 38,34 0 0 0 0 0

1 63,21 38,34 -0,08 38,26 -15,22 +23,04

2 104,22
0

86,46 -0,19 86,27 -27,68 +58,59

3 0 52,44 -0,34 52,10 -35,74 +16,36
4 0 31,80 -0,57 31,23 -38,50 - 7,27
5 0 19,29 -0,96 18,33 -35,74 -17,41
6 0 11,70 -1,58 10,12 -27,68 -17,56
7 0 7,10 -2,61 4,49 -15,22 -10,73

B 0 4,31 -4,31 0 0 0
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Zusammenfassung.
Durch Aufspalten der Differentialgleichung 2. Ordnung des Problems

läßt sich die Berechnung in zwei Stufen — Querkraft, Moment —
durchführen. Die Integration über ein Trägerfeld ergibt einfache Rekursionsformeln

oder graphische Konstruktionen, die eine genaue Untersuchung mit
gewohnten baustatischen Mitteln erlauben. Die gewöhnliche Seilpolygontheorie

ergibt sich als Spezialfall.
Horizontalzug und allfällige Kontinuitätsmomente des Versteifungsträgers

werden wie in der Elastizitätstheorie als überzählige Größen mit
Hilfe von Elastizitätsgleichungen berechnet. Zur direkten Bestimmung von
Schnittkräften und Verformungen verwendet man zweckmäßig Einflußlinien.

Resume.
Le partage de l'equation differentielle du 2e ordre de ce probleme permet

un calcul en deux etapes: effort tranchant, moment. L'integration sur une
travee fournit des formules simples ou des constructions graphiques qui
permettent une etude exacte au moyen des methodes comme de la statique.
La theorie usuelle du polygone funiculaire est un cas special.

La traction horizontale et les moments de continuite eventuels de la
poutre raidisseuse sont calcules, comme dans la theorie de Pelasticite, en
tant que grandeurs hyperstatiques ä Paide des equations d'elasticite. Pour
la determination directe des efforts dans les sections et des deformations il
est bon d'utiliser des lignes d'influence.

Summary.
By Splitting up the differential equation of the 2nd order of the problem,

the calculation can be effected in two steps — transverse force, moment.
Integrating over one field of the beam gives simple formulae or graphical
constructions which allow an exact investigation by the usual static means.
The ordinary theory of the funicular polygon follows as a special case.

Horizontal pull and any continuity moments of the stiffening girder are
calculated with the help of elasticity equations as in the elasticity theory,
as redundant values. Influence lines are conveniently used for the direct
determination of shearing forces and deformations.
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