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ERWEITERTE THEORIE DES SEILPOLYGONES ZUR
BERECHNUNG VON HANGEBRUCKEN.

EXTENSION DE LA THEORIE DU POLYGONE FUNICULAIRE
AU CALCUL DES PONTS SUSPENDUS

EXTENDED THEORY OF THE FUNICULAR POLYGON FOR
CALCULATING SUSPENSION BRIDGES.

ERNST AMSTUTZ, Dipl. Ing. E.T.H., Zirich.

Im folgenden wird gezeigt, daB sich die Versteifungstrager von Hinge-
briicken auf ebenso einfache Art — graphisch oder tabellarisch — wie ge-
wohnliche Biegetriger mit Hilfe von Krifte- und Seilpolygon berechnen
lassen, wenn die bisherige Theorie des Seilpolygons erweitert wird. Zu
diesem Zwecke wird die lineare Differentialgleichung zwéiter Ordnung des
Problems in zwei Gleichungen erster Ordnung aufgespalten, womit sich die
Berechnung in zwei Stufen (Querkraft-Moment) durchfithren 1aBt. Integriert
man diese Gleichungen iiber ein Trigerfeld, so ergeben sich einfache Be-
ziehungen zur fortlaufenden numerischen Berechnung der Schnittkrifte, die
auch durch graphische Konstruktionen (Kréfte- und Seilpolygon) dargestellt
werden konnen. Damit wird eine Methode gegeben, die ohne Ableitung
langer Fomeln in allen Fillen sicher und rasch zum Resultat fiihrt.

1. Grundgleichungen.

Wenr man von den Horizontalverschiebungen des Kabels!) absieht, ist
der Versteifungstriger aus den Formidnderungen 5 gegeniiber der Elastizitits-
d?y
dx?
komponente des gesamten Kabelzuges bedeutet.

Das Moment M im Versteifungstrager ergibt sich also aus

am d?y
— e =Pt Hs (1)

theorie zusitzlich mit den Kriften H belastet, worin /4 die Horizontal-

wobei in p auBer der duBern Belastung auch die Reaktion der Hiangestangen
(ohne ForminderungseinfluB) enthalten ist. Mit Hilfe der Beziehung

ay M
i = EJ @)

(E = Elastizititsmodul, / = Trigheitsmoment) gewinnt man die Differential-

1) Zur Beriicksichtigung der Horizontalverschiebungen: F. StUsst und E. AmsTuTz,
,verbesserte Forminderungstheorie von Stabbogen und verankerten Hingebriicken®.
Schweiz. Bauzeitung vom 6. Juli 1940.
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gleichung fiir das Biegemoment im Versteifungstriger:

M M
P e P
mit der Abkiirzung L l /E] ©)
H

Grundlegend fiir die folgende Methode ist — analog wie bei der Be-
rechnung des gewohnlichen Biegetrigers — die Aufspaltung der Differential-
gleichung 2. Ordnung (3) in zwei simultane Differentialgleichungen 1. Ord-
nung :

o
€ 2=y @
M adaM -

7+7x—:@ (3)

Die Elimination der HilfsgroBe Q ergibt, wie man sich leicht iiberzeugt,
Gleichung (3). Die Analogie mit dem gewdhnlichen Biegetriger ist augen-
fillig. Die Gleichung (4) stellt das Kriftepolygon, die Gleichung (5) das -

Fig. 1

Seilpolygon dar. Die GroBe ¢ kann als ideelle Querkraft angesprochen
werden; sie weicht von der wirklichen Querkraft @ um das Korrekturglied
g ab.

Diese Verwandtschaft mit dem Seilpolygon hat ihren tieferen Grund.
Es 148t sich nidmlich leicht zeigen, daB der Durchhang eines gespannten
Seiles, das stetig elastisch gestiitzt resp. aufgehingt ist, einer zu (3) analogen
Differentialgleichung gehorcht. Die Versteifungstriger von Héangebriicken
haben als Gleichnis das gespannte, elastisch unterstiitzte Seil, so wie die ge-
wohnlichen Biegetriger das frei gespannte Seil als Gleichnis haben. Die
Berechnung ist somit in beiden Fillen auf einheitlicher Grundlage moglich,
wie im folgenden weiter gezeigt wird.

Zur Durchfiihrung einer graphischen oder tabellarischen Berechnung

stellen wir nun Beziehungen zwischen den ideellen Querkriften ¢ und den
Momenten M in zwei benachbarten Tragerschnitten mit dem Abstand 7 auf.

Hierbei diirfen wir feldweise konstante Belastung (gf = O) und feldweise
konstantes Triagheitsmoment (E: = O) voraussetzen. Die Lésung von (4)

lautet daher, wenn mit e die Basis der natiirlichen Logarithmen bezeichnet
wird,
X

Q=A-e” +r-p (0)
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und von (5)

X

M:B-e_7+ %eT-{- rr-p, (7)

wovon man sich leicht iiberzeugt. A und B sind Integrationskonstanten, die
von den Randbedingungen abhingen.

Betrachten wir ein Trdgerfeld von der Linge 4, so ist fiir den Endpunkt
links (x = 0)

Qu=A+r-p, (8)
fiir den Endpunkt rechts (x = )
5 Qnir=A-e+r-p 9)
mit ¢ = - Die Elimination von A ergibt die Beziehung
Qri1 = Qn-€—rp(e—1) (10)
Entsprechend findet man aus (7)
Myyy =M, -e*+r-she. @, +r2p(l1—che), (11)
worin she = ie—_i—e—_i, che = —e—s—g—e_—s die hyperbolischen Funktionen
darstellen.”

Poutre raidisseuse

Versteifungstrager
Stiffening girder
H £ A

Poutre ordinaire

Gewdhnlicher Balken
Ordinary beam
p 1

g_éﬁ_/e ”Sbr;? Céble sur appuis Elastigues
F;:;escag/le . Abgefedertes Sell

Spring supported rope
Fig. 2

Besteht die Belastung aus Einzellasten P in den Feldgrenzen, so ergibt
sich einfacher

Qn+1 = @Qn - € (103)
My, =M, e+ rshe. @,. (11a)

An der Feldgrenze weist der Wert von ¢ den Sprung -P auf:
er_ le: — P. (12)

2. Knotenlasten.

Um die vereinfachten Rekursionsformeln (10a) und (11a) auch bei ver-
teilter Belastung anwenden zu konnen, fithren wir den Begriff der Knoten-
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lasten ein; das sind diejenigen Einzellasten in den Feldgrenzen, die das
Sehnenpolygon der Momentenfliche ergeben.

Fiir zwei aufeinanderfolgende Felder (Fig. 3) ergeben die Formeln (10)
und (11):
O =Quae—rplE—1)
Qn+1 — Qn . et — rrpr(eer__ 1)
M, =M, -e*+rshe.-@Q, ,+ rip(1—che) (13)
Mpyy=M,-e¥+r'she-Q,+ r2p'(1—ch¢).
Rechnet man mit Knotenlasten P, so findet man hingegen gemill (10a),
(11a) und (12):
0 =i e
Q”+1 — Qn*l. eal
M, =M, ,-e*+r-she.Q,_,

Mn+1 =M, 3_8’—*- r'sheé Q,;’ (14)
und die Ubergangsbeziehung
Q_n*' o Q’:: . P_

Aus den beiden Gleichungsgruppen (13) und (14) lassen sich die 10 GréBen
M, @ und @* eliminieren. Man gewinnt schlieBlich die Knotenlast zu

P:r-;zChe__l 4 ,che—1

she P she¢ (15)

. . . Lo
Fiir kleine Werte ¢ findet man auch, wenn man noch » = - einsetzt, durch

Reihenentwicklung

Pg%”(l—ﬁ%t l’p/(l—ﬁ). (16)

3. Tabellarische Berechnung.

Der Horizontalschub H ist eine iiberzihlige GroBe X, die aus einer
Elastizititsgleichung zu bestimmen ist. Fiir den Formanderungseinflu§ setzen

wir jedoch in 7 =V%{ einen geschitzten Konstantwert?) H ein, der — fiir

strenge Giiltigkeit — dem zu berechnenden Totalwert gleich sein mufi. Da-
durch gilt, wie in der Baustatik gewohnt, das Superpositionsgesetz wieder,
sodaBl Teileinfliisse gesondert untersucht werden kénnen. Genauer 1d8t sich
die Berechnung auch mit zwei oder drei Werten /7 durchfiihren, sodaB am
SchluB8 der richtige Wert durch Interpolation beriicksichtigt werden kann.

Bei Anwendung der Rekursionsformeln (10a) und (11a) ist, da es sich
um einen beidseitig aufliegenden Balken handelt, der Anfangswert von
nicht bekannt und muf als unbekannte GréBe aus der Bestimmungsgleichung
M = 0 iiber dem Auflager gefunden werden. Dies entspricht beim Biege-

2) F. StUssi
(1936).

3 »

Zur Berechnung verankerter Hingebriicken*. 4. Bd. Abh. I.V.B.H.
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triger dem Einziehen der SchluBlinie. Hier ist jedoch die SchluBlinie keine
Gerade mehr, sondern mufl nach (10a) und (11a) fiir fehlende Belastung P
berechnet werden. Bei weichen Versteifungstragern wihlt man zweckmiBig
die ideelle Querkraft @ auf dem rechten Auflager als Uberzihlige und rechnet
nach der Formel

@n= Qny1- € | (17)
p P von rechts nach links, da dann die Werte ¢ rasch
——1 "]  abklingen, und damit eine bessere Genauigkeit er-
-— 7 [ zielt wird als bei umgekehrter Reihenfolge.
- | PO Die Elastizititsbedingung fiir den Horizontal-
; P ! schub X lautet bekanntlich
! \ i
Py, n e X a,+a,=0 (18)
Fig. 3 worin die VerschiebungsgroBen
_ Y Mx—, —L_ . . J’JL*
all_—j EJ dx + 2 mit L= Fc- cos’ g dx
y-m dx (19)
— 0 ' —
Ao = ‘( EJ dx + w-t- L mit Ly __J o

mit Hilfe der SimpsoN’schen Fliachenregeln oder graphisch bestimmt werden.
Ex und Fg sind Elastizititsmodul und Querschnittsfliche des Kabels oder
der Kette, die iibrigen Bezeichnungen gehen aus Fig. 1 hervor.

l< ef £ )
: = | 2 2 A A
u_..wl s_/,_g_-—-—:l] E P,1_1 Pn ’[/)7+/
— . i -1 n n+]
g 1 “T“T‘ s——xM et
1 & n, , T2
1 3 |
------- N Tl
-------- et szo TN e
________ L) ! I T
j L | 2.0, Ste
+! Polygone des forces Polygone Funiculsire | Ul g
; Kriftepolygon Seilpolygon |
A Polygon of Forces Funicular polygon {
N
-1
1
Fig. 4
4. Graphische Berechnung.
Fig. 4 zeigt die Umsetzung der Gleichungen
Qi1 = Qn - € (20)
Sha -
M,z+1 _ M '—'8 + 2’ I Qﬂ (21 )

in eine einfache graphische Konstruktion. Gegenijber dem gewdhnlichen
Kriftepolygon sind hier die Polstrahlen bis zu einer Vertikalen zu verlidngern,
die den e*-fachen Polabstand hat, die Querkraft ¢, ; ist dann wieder auf
die Polare n zu projizieren, wo auch die Knotenlasten P abzutragen sind.

ZweckmiBig wihlt man den Polabstand zu h , dann wird der Seilstrahl s
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im Seilpolygon parallel zum Polstrahl p im Kraftepolygon. Selbstverstind-
lich kann der Polabstand auch ein Vielfaches von EI% betragen, dement-
sprechend ergibt sich dann — wie gewohnt — der MaBstab der Momenten-
flache. ’

Hat man die Seilstrahlen s im Seilpolygon gezogen, so sind die Ordi-
naten noch fortlaufend im Verhiltnis ¢ ® zu reduzieren. Es verbleibt die
schraffierte Momentenflache, die natiirlich im Falle von verteilter Belastung
noch auszurunden ist. Zur Reduktion der Ordinaten fertigt man sich zweck-
maBig einen ReduktionsmaBstab mit zwei drehbaren Schenkeln an, dessen
einen Schenkel man an der Reifischiene anlegt. Die Anwendung geht aus
Fig. 5 hervor. Statt dessen leistet auch ein Reduktionszirkel gute Dienste.

o~ | Um beide Randbedingungen M = 0 zu
befriedigen, ist noch eine SchluBlinie mit
beliebigem Anfangswert ¢ zu konstruieren
und mit dem jeweiligen Belastungsfall im

$’T

l
I : =

Margie | } geeigneten MaBstab zu kombinieren. Die
/'/Z://:e I_v/oa I — Reduktion der SchluBlinie auf den passen-

den MaBstab geschieht zweckmiBig durch
Fig. 5 zeichnerische Projektion, sofern nicht ein
' Reduktionszirkel zur Verfiigung steht.
Auch bei der graphischen Berechnung konstruiert man zweckmaBig die
Querkrifte ¢ von rechts nach links, die Momente aber von links nach rechts,
um ein rasches Anwachsen der Ordinaten und damit Ungenauigkeiten zu
vermeiden.

l

5. Verdnderliches Tragheitsmoment.

Unsere Grundformeln und Konstruktionen gelten fiir feldweise kon-
stantes Triagheitsmoment. Da die Feldweiten sich beliebig wihlen lassen,
kann jeder treppenférmige Verlauf des Triagheitsmomentes (aufgelegte Gurt-
platten) erfaBt werden. Aber auch eine stetige Verinderung der Triger-
hohe 14Bt sich durch eine Treppenlinie geniigend genau darstellen. Im
Kriaftepolygon ergibt sich so bei konstanter Feldweite eine veridnderliche
Poldistanz und eine verdnderliche Projektionsweite. Will man dies ver-

meiden, so wihle man nicht 1, sondern ¢ konstant, wozu die Fléichej V# -dx

in gleich groBe Felder zu unterteilen ist (/. ist ein beliebiger Konstant-
wert).

Zu beachten ist, daB infolge eines Sprunges der GroBe r auch die
ideelle Querkraft ¢ einen Sprung von der GréBe M- A4 (—lr-) erleidet, so als
ob eine ideelle Belastung

P:——M.A(—i—) 22)
angreifen wiirde. Eine vollstindige Trennung der Berechnung von ¢ und
M ist daher nun nicht mehr durchfithrbar, vielmehr ist die Bestimmung der
GroBen @ und M Punkt fiir Punkt parallel durchzufithren. Hingegen darf P
fiir jeden TeileinfluB — auch die SchluBlinie — getrennt beriicksichtigt
werden, da ja das Superpositionsgesetz gilt.
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Die bei sehr weichem Versteifungstriger vorteilhafte Berechnungsfolge
der Querkrifte von rechts nach links und der Momente von links nach rechts
kann bei verinderlichem Trigheitsmoment nicht mehr angewendet werden.
Sehr weiche Versteifungstriger haben jedoch fast immer konstantes Trig-
heitsmoment. Es werden sich also bei Anwendung der Berechnung kaum
Schwierigkeiten ergeben.

6. EinfluBlinien.

Zufolge fester Wahl des Horizontalschubes im Formanderungsglied gilt
das Superpositionsgesetz zu Recht, und es koénnen daher EinfluBlinien fiir
SchnittgroB8en und Formanderungen gezeichnet werden. Wir interpretieren
die EinfluBlinien wie iiblich als Biegelinien 7.

Zur EinfluBlinie einer Durchbiegung berechnen wir vorerst die Mo-
mentenfliche infolge P = 1 nach der hier dargestellten erweiterten Theorie
des Seilpolygons. Hierauf ergibt sich die Biegelinie zu dieser Momenten-
flache nach der gewohnlichen Theorie des Seilpolygons.

Bei der EinfluBlinie eines Momentes oder einer Querkraft halten wir
uns an die bekannte Differentialgleichung

U
T—y=o0. (23)

Fiir die EinfluBlinie der Querkraft ist im betrachteten Schnitt Ay = 1, fir
das Moment 4 BT? = — 1 zu setzen. Die Berechnung der Werte » im Grund-

system erfolgt auf analoge Art wie bei den Momenten mit Hilfe der er-
weiterten Theorie des Seilpolygons. Man beachte, daB trotz dem gleich-
artigen Belastungsglied die EinfluBlinie des Momentes nicht mit dem Mo-
ment fiir P = 1 iibereinstimmt (wie von anderen Autoren schon behauptet
wurde), da sich die Uberzihlige X aus verschiedenen Elastizitatsgleichungen
ergibt und auch verschiedenen EinfluB hat (im einen Fall Biegelinie aus X,
im andern Momentenfliche aus X).

Die VerschiebungsgroBen der Elastizititsgleichung lassen sich hier
zweckmaiBiger als aus den Momenten direkt aus den Durchbiegungen in der
Form

d‘)
a,k:——f J * Nk dx——y J"l;’k-dx (24)

berechnen. Bei sehr weichem Verstelfungstrager ist die Summation mit Hilfe
der SimpsoN’schen Flichenregeln in diesem Falle zu ungenau. Da hier der
Versteifungstrager im Grundsystem unbelastet ist (p = 0), 14Bt sich zur
Integration eine einfache, strenge Formel angeben:

n ist gegeben durch

x

77:(1*87"[—[7'3—7, (25)

in den Feldgrenzen:

N, =a-+b
= actbe | )

I

® =%
I
>0
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Die Integration ergibt

nf—r;-a’x::r-a(es—l)—l— r-b(l—e»). (27)

n

Nach Elimination der Integrationskonstanten erhidlt man schlieBlich:

n+1

lche—l

R« Bx = ¢ she

(77n <+ 77n+1)- (28)

n

. Die Summation ist iibe_r alle Felder zu erstrecken.

7. Kontinuierliche Hangebriicken.

Die Berechnung kontinuierlicher Hingebriicken bereitet nach der dar-
gelegten Methode keinerlei Schwierigkeiten. Es sind lediglich auBer dem
Horizontalzug auch die Kontinuititsmomente der Versteifungstriager als
Uberzahlige einzufiihren. .

Die Verschiebungsgrofen ergeben sich in der Form

dx dx
aik:jMoi'Mk-E—j:jMi'Mok'E, (29)
worin der Index 0 andeuten soll, daBl es sich um die Momente des gew6hn-
lichen Balkens ohne ForminderungseinfluB handelt. Im iibrigen sind die
Elastizitiatsgleichungen wie in der Elastizititstheorie gewohnt anzuschreiben.

8. Berechnungsbeispiel.

Fiir die in Fig. 6 dargestellte Hangebriicke sollen im folgenden, ana-
lytisch und graphisch die Momente infolge X = 17 und infolge halbseitiger
Nutzlast p, sowie die EinfluBlinie des Momentes im Viertel der Offnung
berechnet werden.

Feldweite 2 = 100 m
Pfeil f=64 m

Abmessungen: Stiitzweite / — 800 m
y'=——=—08.10"3 m™!

Versteifungstriager:
Tragheitsmoment / = 12m* = konst.

— 959 . 106 m?2
Elastizititsmodul £ = 21.106 t/m® } EJ = 252-107m*t

Kabel : FxFrx=125-106t L i,
L =1250m } Ex P 0001077 mit
Belastungen : Eigengewicht g =4 t/m Hg = (—)—§—41—0:§ —5000t
Verkehrslast p = 2,4t/m %HIJ, max ~1300t

H 26300t
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I

|
g_X-I ’
Jem~ Q1+ .,
D~ 12600mt |
L 1 N ’860{” Yo
Y tom'~ 800 ipp.1p?
’ = < .
fJ'D[.l ' \\ F e 33im? jOmfn Z\Sil
Tem ~ 5000 m% ) \ﬁ“‘m—l—————"/
|

Jom ~ 500 100 = 50000mt
MO
[ \\4\ :
fem ~ 250 T, S
I \/"‘_'
//c‘m ~2:-0°m% M
lem ~ 50000 mt
| M.

i : ; "o

Ligne d'influence pour le moment— Einflusslime Fir Moment - influence line for moment M,
‘ " . d ,

‘ N\ Iem ~ 100m ‘
i : D,
- | £ = 23600m? ‘ 7

",‘ﬂj“x ,
| | ‘-l+l W- M I

Z
lem~05

V.

Abhandlungen VI 2
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Tabelle 1. SchluBlinie und Horizontalzug X.
SchluBlinie Belastungsfall X=1¢: P= —0,8-10"3-100-0,9795 = 0,07836*
_ g | . . ~
7-Qs - %‘i | Ms Q M AM M %Kl& —12751' 0oy
| _ )
m m t mt mt mt mt mt mm
A 1,91 0 -0,11713 | 0 0 0 0
-0,19312 ~768,1
1 3,15 191 | 5qia7e |-1221 | + 022 | -11,99 | -1388 2,540
~0,18922 -629,3
2 5,19 431 | 571086 | -1937 | + 0,50 | -18,87 [ -223,1 4,621
-0,18279 ~406,2 |
3 8,55 780 | 50443 | 2330 | + 090 | -22,40 | 2664 5,965
| 0,17219 -139.8
4 14,10 | 1328 | —5'ooags | 2502 | + 1,53 | -2349 |-2797 6,427
~0,15471 +139,8
5 23,25 | 22,15 | ~goreas | 2495 |+ 255 | 22,40 | -266,4 5,965
. -0,12580 +406,2
6 3834 | 3668 | Joz7ss | 23,00 |+ 4,22 | -18,87 | -223,1 4,621
-0,07836 +629,3
7 6321 | 6059 i ~18,96 | + 6,97 | -11,00 | -1388 2,540
B | 10422 | 9906 0 |-11,50 | +11,50 | 0 1681 |
" K @i’(M +10M,, + M,,,.); 3307107041
M,m == 12 m—1 m m+1)’ 12 Ej y .

Tabelle II. Halbseitige Nutzlast p = 2,4 t/m.
Py_3 = 240-0,9795 = 235,1/; P, = 117,5".

) M | am | M, ¥ My | M
, |
1 mt mt mt m ,‘ mt mt
Al 2074 0 0 0 0 0
1] 4994 135005 | — 0330002 | 28 | -15149 | +15753
2553
2| %209 145406 | - 200 (45107 | 48 | —23842 | 421355
1858 , .
306,4 ‘ g
3| 304 146003 | - 379 | 46524 | 60 28302 | +18222
4 ‘_167*2 35878 | - 645 | 35233 | 64 | -20680 | +5553
5/ o |[21760 | -1076 |20684 | 60 | -28302 | -7618
16| 0 [13197 | -1781 | 11416 | 48 | —23842 | -12426
71 o 8004 | 2042 | 5062 | 28 | -15149 | -10087
Bl o 4854 | -4854 0 0 0 0
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HilfsgroBen : ro= EHJ — 200m

e = =05 e = 106487 che = 1,1276

e* = 0,6005 she = 0,5211

2
she o422, 2(e—1) _ 49705 [1 L 0,9792]
& &-she 12 i
In Tabelle I sind die Momente M und Durchbiegungen » infolge X = 1
berechnet. Die zugehorige VerschiebungsgroBe ergibt sich wie folgt:

Jy-dx = 3,313m?|t —y" [ydx = 2,650 - 107 m |t

L — -8
Ex Fx = 0,500 -103 m/t
all = 3,150 * 10—3 m/t

Fiir halbseitige Nutzlast (Tabelle II) folgt:
{y - Mydx = 1003 - 106 m®t q,, = ——j—‘y%}@_—: ,,,,, 3,080 m
10
X = — — = 1263,5t

(H = 6263,5 t, Annahme H = 6300 t geniigend genau)
und fiir die EinfluBlinie Mj:

Jpo-dx =2359.100m2 g, =y"[p, -dx = — 18872 m
X = 2105001 t
- all i

Der entsprechende EinfluB von X ist zu superponieren.
Die entsprechenden Berechnungen sind in Fig. 6 auch graphisch durch-
gefiihrt.

Tabelle III. EinfluBlinie M,.

w | ‘ a,

A S—bﬁn" ] Any Mo nx 7

m I;l m m m m

Al 383 0 0 |0 0 0
1| 63,21 | 3834| -0,08| 3826 -15,22 | +23,04
2 19402_2.; 86,46 | -0,10 | 86,27 | -27,68 | +58,59
3| o0 |5244|-034]5210] -3574 | +16,36
4| 0 31,8 -057|31,23| -3850 | ~ 7,27
50 0 1929 -096| 1833 -35,74 | -17,41
6| 0 | 11,70 -1,58| 10,12| -27,68 | -17,56
7| o | 710 261 449] -1522 | -10,73

Bl 0 431 -431| o 0 0
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Zusammenfassung.

Durch Aufspalten der Differentialgleichung 2. Ordnung des Problems
148t sich die Berechnung in zwei Stufen — Querkraft, Moment — durch-
fithren. Die Integration iiber ein Trigerfeld ergibt einfache Rekursions-
formeln oder graphische Konstruktionen, die eine genaue Untersuchung mit
gewohnten baustatischen Mitteln erlauben. Die gewohnliche Seilpolygon-
theorie ergibt sich als Spezialfall.

Horizontalzug und allfdllige Kontinuititsmomente des Versteifungs-
tragers werden wie in der Elastizitatstheorie als {iberzdhlige Grofen mit
Hilfe von Elastizititsgleichungen berechnet. Zur direkten Bestimmung von
Schnittkriften und Verformungen verwendet man zweckméBig EinfluBlinien.

Résumaé.

Le partage de I’équation différentielle du 2¢ ordre de ce probleme permet
un calcul en deux étapes: effort tranchant, moment. L’intégration sur une
travée fournit des formules simples ou des constructions graphiques qui
permettent une étude exacte au moyen des méthodes comme de la statiqie.
La théorie usuelle du polygone funiculaire est un cas spécial.

La traction horizontale et les moments de continuité éventuels de la
poutre raidisseuse sont calculés, comme dans la théorie de D’elasticité, en
tant que grandeurs hyperstatiques a 1’aide des équations d’élasticité. Pour
la détermination directe des efforts dans les sections et des déformations il
est bon d’utiliser des lignes d’influence.

Summary.

By splitting up the differential equation of the 2nd order of the problem,
the calculation can be effected in two steps — transverse force, moment.
Integrating over one field of the beam gives simple formulae or graphical
constructions which allow an exact investigation by the usual static means.
The ordinary theory of the funicular polygon follows as a special case.

Horizontal pull and any continuity moments of the stiffening girder are
calculated with the help of elasticity equations as in the elasticity theory,
as redundant values. Influence lines are conveniently used for the direct
determination of shearing forces and deformations.
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