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STATIK DER SEILE.

STATIQUE DES CORDES.

STATICS OF ROPES.

Prof. Dr. F. STÜSSI, Eidg. Techn. Hochschule, Generalsekretär für Stahlbau
der I.V.B.H., Zürich

1. Allgemeines.
Seile sind bei zahlreichen Anwendungen (Hängebrücken, Seilbahnen

und Kabelkrane, Freileitungen, Turmabspannungen, Fördereinrichtungen)
wichtige Bauelemente. Zu ihrer Berechnung wird meist mit genügender
Genauigkeit der Einfluß der Steifigkeit vernachlässigt; für das biegsame
Seil sind dann zwei Aufgaben zu lösen: es müssen die S e i 1 f o r m und
der S e i 1 z u g bestimmt werden. Die S e i 1 f o r m ist bestimmt durch das
Seilpolygon zur Belastung; es wird sich zeigen, daß bei beliebig
gerichteten Seilbelastungen das Seilpolygon nicht mehr von „normaler Art'4
ist, sondern daß der Begriff des Seilpolygons weiter zu fassen ist. Zur
Bestimmung des S e i 1 z u g e s ist, abgesehen von denjenigen Fällen, wo er
durch ein Spanngewicht bestimmt wird, eine Formänderungsbedingung oder
Elastizitätsbedingung aufzustellen. In dieser Elastizitätsbedingung
tritt die Horizontalkomponente des Seilzuges (der Horizontalzug H) in der
dritten Potenz auf; das Seilproblem ist ein Spannungsproblem
dritter Ordnung, das durch gewisse Vernachlässigungen auf ein
Spannungsproblem zweiter Ordnung vereinfacht werden kann.

Das biegungssteife Seil unterscheidet sich von der versteiften
Hängebrücke dadurch, daß hier Längskräfte und Momente im gleichen
Bauelement, dort in verschiedenen Elementen (Kabel und Versteifungsträger)
auftreten. Der Einfluß der Seilsteifigkeit wird sich allerdings hier nur in
einer lokalen Änderung der Seilform (unter Einzellasten) und praktisch kaum
in einer Änderung des Seilzuges auswirken. Dieser Einfluß wird deshalb
praktisch, falls überhaupt notwendig, für sich getrennt in einer zusätzlichen
Untersuchung erfaßt werden können.

Nachstehend wird eine allgemeine baustatische Theorie des biegsamen
Seiles versucht, die auf ein- und mehrfeldrige Seile anwendbar sein soll.
Für das biegungssteife Seil werden die Grundgleichungen angegeben.

2. Die Seilform.
a) Lotrechte Lasten.

Im Ausgangszustand besitze das nur durch sein Eigengewicht g belastete
Seil die Durchbiegungen y0, der zugehörige Horizontalzug sei H0. Durch
eine Temperaturänderung t und die Belastung p (P) ändern sich y0 in y und
//0 in H (Fig. 1). Da das biegsam vorausgesetzte Seil keine Momente
aufnehmen kann, sind die Durchhänge gegeben durch Ms 0 Mq — H • y:
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J\>
Mg Mq

H 0)

Dabei sind Mg und Mq die Momente in einem einfachen Balken AB infolge
g bezw. q g + p. Sobald der Horizontalzug H bekannt ist, ist auch die
Seilform bestimmt; damit ergibt sich aber auch in jedem Schnitt der Seilzug

5

S H see cp. (2)
cos cp

T v '

Bei der Bestimmung der Formänderungen des Seils ist zu
beachten, daß der Seilpunkt m sich nicht lotrecht, sondern nach m' verschiebt
(Fig. 2), also lotrechte und waagrechte Verschiebungskomponenten rj und |
besitzt.

J*
-_i

Fig. 1

Nach Fig. 2 ist

Fig. 2

• ^o 1 — f tg cp (3)

Dieser Zusammenhang zwischen den Seildurchhängen und Formänderungen
wird im Zusammenhang mit der Formänderungsbedingung weiter verwendet
und vereinfacht werden.

b) Beliebig gerichtete Lasten.
Die Besonderheit dieses Belastungsfalles besteht darin, daß die

Angriffspunkte oder Wirkungslinien der Lasten nicht festliegen, sondern von

ym-1

Jm

im m+T

Ym+J

r--..

m+i

Fig. 3

Mm+7~

der Seilform abhängig sind. Nach Fig. 3, die einen Ausschnitt aus dem Kräfte-
und Seilpolygon des durch die Last Pm mit den Komponenten Vm und Wm
belasteten Seiles darstellt, ist
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Qm
ym — ym-\ + hm

ym+i ym + ^m+i

Hm

Qm+i

m+i
Durch Elimination von

Qm — Qm+i =Vm — tg <X • Wm

finden wir

-y^-^+yJ^ + ^)-ym+1.^ Vm-tga- Wm (4)
i^m \ hm f^m+l / "m+\

Dabei gilt die Gleichgewichtsbedingung
Hm — Hm+1 Wm (5)

Bei gleich hoch liegenden Endpunkten A und B, tgoc 0, vereinfacht sich
Gleichung (4) zu

v Hut I v (Hü _J_ ttm+l\ Hm+i _ v (a v

"m \ ^m ^m+l ' ^m+\

Die Gleichungen bezw. Gleichungssysteme (4) und (4 a) stellen offensichtlich
Seilpolygone dar, aber nicht mehr Seilpolygone normaler Art. Das normale
Seilpolygon ist dadurch charakterisiert, daß wir die Richtung des ersten Seil-
strahles beliebig annehmen und die Randbedingungen (hier yA yB 0)
durch eine gerade Schlußlinie erfüllen können. Das ist hier nicht mehr
möglich, die Schlußlinie ist keine Gerade mehr, abgesehen vom Sonderfall
der zufällig richtigen Annahme des ersten Seilstrahles.

Hier ergeben sich die Seilpolygonordinaten y aus der Auflösung eines
dreigliedrigen Gleichungssystems. Dagegen läßt sich auch eine andere
Lösungsart des Gleichungssystems angeben, die sich direkter an den Begriff
des Seilpolygones anlehnt und die deshalb als erweiterte Form des Seil-
polygones angesprochen werden kann. Dieses Verfahren sei am Beispiel
der Gleichung (4a) skizziert: Wir schreiben die Gleichung (4a) in der Form
einer Rekursionsformel :

„ „ ["m Hm+1 ^ Im+i Hm 1-m+i T/ ^m+\
ym+l —ym\ i ~r i J /_/ ym-i' }

' t-f Vm ' j-t\ Am Am+i / **m+1 Am fim+i **m+i

oder allgemein
ym+i et • ym — ß • ym-i —y - Km. (4b)

Wir setzen y y0 + c • Ay, wobei wir mit y0 eine Lösung der
inhomogenen Gleichung (4 b) bezeichnen, die nur eine der beiden Randbedingungen

(z. B. yA 0) erfüllt; wir können also neben yoA 0 den Wert von
y01 beliebig annehmen und mit Gleichung (4 b) die übrigen zugehörigen Werte
y0 berechnen. Mit A y bezeichnen wir eine Lösung der homogenen Gleichung
(4 b), Km 0; hier ist neben A y0 0 der Wert Ayt beliebig anzunehmen.
Der Wert des Faktors c ist dann so zu bestimmen, daß die zweite
Randbedingung, hier

yB y0B + c- AyB 0

erfüllt ist. In Tabelle 1 ist ein einfaches Beispiel zu Gleichung (4 a)
durchgerechnet.
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Tabelle 1

k V w H « ß YK " fo Ay c-Ay y
m t t t m m m m m

A
10,0 10,0

0 0 0 0

1

10,0
1,0 1,0

9,0
2,1111 1,1111 1,1111 1,0 1,0 0,7149 1,7149

2
10,0

1,0 0
9,0

2,0000 1,0000 1,1111 1,0000 2,1111 1,5092 2,5092

3
10,0

0 1,0
8,0

2,1250 1,1250 0 -0,1111 3,2222 2,3035 2,1924

4
10,0

1,0 1,0
7,0

2,1429 1,1429 1,4286 -1,3611 4,4722 3,1970 1,8359

B -4,2183 5,9008 4,2183 0

Ligne de fermeture
Schlusslinie
Closing line

s^PiPolygone Funiculaire

Seilpolygon
Funicular polygon

i l'SOm

Fig. 4
i

Das Ergebnis der Berechnung ist
in Fig. 4 (in verzerrtem Maßstab)
aufgetragen.

Diese Art der Auflösung ist
selbstverständlich auf die Lösung aller
dreigliedrigen Gleichungssysteme anwendbar;

ob sie gegenüber einer Auflösung
mit Hilfe des abgekürzten Gauss'schen
Algorithmus eine Einsparung an
Arbeitszeit ermöglicht, dürfte weitgehend
eine Frage der persönlichen Vorliebe
sein. Eine graphische Durchführung
der Berechnung ist möglich, doch ist
ihre Anwendung aus Genauigkeitsgründen

meist nicht zu empfehlen.
Wenn allerdings, was praktisch meist der Fall sein dürfte, die

waagrechten Lasten gegenüber den lotrechten verhältnismäßig klein sind, so liefert
Gleichung (1) auch hier praktisch genügend genaue Werte für y, wenn für
H der Mittelwert der angrenzenden Felder eingesetzt und Mq nur infolge
der lotrechten Lasten V — W • tg <x berechnet wird. Trotzdem die Voraussetzung

kleiner, waagrechter Lasten hier nicht erfüllt ist, soll diese
Näherungsrechnung in Tabelle 2 am Beispiel der Tabelle 1 durchgeführt werden:

Tabelle 2: y ^ ^-.
Hm

V Q Mq Hm y A %

t t mt t m
A

1,6
0 0

1 1,0
0,6

16,0 9,5 1,6842 -1,8

2 1,0 22,0 9,0 2,4444 -2,6
-0,4

3 —
-0,4

18,0 8,5 2,1176 -3,4

4 1,0
-1,4

14,0 7,5 1,8667 + 1,7

B 0
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In der letzten Kolonne sind die Fehler der Näherungsrechnung gegenüber
den genauen Werten nach Tabelle 1 eingetragen. Da auch hier, in

diesem äußerst ungünstigen und den Voraussetzungen der Näherungsrechnung
nicht entsprechenden Beispiel, die Fehler nicht groß sind, ist der Nachweis

erbracht, daß bei verhältnismäßig kleinen waagrechten Lasten die
Durchbiegungen y genügend genau nach Gleichung 1

y
Mq_

H
berechnet werden dürfen, wobei H in der angegebenen Weise über die Spannweite

veränderlich einzuführen ist. Für die folgenden Anwendungen dürfen
wir somit Gleichung (1) für alle in der Seilebene wirkenden Lasten als gültig
voraussetzen.

3. Die Elastizitätsbedingung.
Die Elastizitätsbedingung eines beidseitig festgehaltenen oder

verankerten Seiles hat auszudrücken, daß der Abstand der Seilendpunkte, oder
einfacher, daß die Horizontalprojektion dieses Abstandes sich nicht (oder
urn einen bekannten Betrag) ändert. Lotrechte Verschiebungen allein sind
wohl nicht vorhanden; wenn doch, können sie durch eine gleichwertige
Horizontalverschiebung ausgedrückt werden (Fig. 5):

f — — A v • sin a - cos a

:i*

j
dt

«*<

H
Fig. 5 Fig. 6

Die Aussage f 0 für den Seilendpunkt gewinnen wir durch die aus
der Theorie der Hängebrücken bekannte Betrachtung der Verformung eines
Seilelementes, Fig. 6:

ds2 dx2 + da2 (5 a)

(ds + Ads)2 (dx+d£)2 + (du+drj)2 + dl2 (5 b)
Dabe« sind die Seildurchhänge a x • tg oc + y von der Horizontalen durch
den linken Seilendpunkt aus gemessen. Um in der Elastizitätsbedingung
auch die Formänderungen aus Querbelastung v (Winddruck) zu erfassen, ist
beim verformten Element (Gleichung (5 b)) auch eine Querverschiebung £

mit dt2 berücksichtigt.
Multiplizieren wir Gleichung (5 b) aus und subtrahieren wir Gleichung

(5 a). so finden wir
2 A ds • ds + A ds2 2 rff • dx + d£2 + 2 du • dr] + dif + dt2

oder, unter Vernachlässigung von A ds gegen 2 ds:
Ads 9—— see2 cp — u! • r —
ds

11
2

£'2

~2 (6)
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Das erste und die drei letzten Glieder der rechten Seite sind Verhältnis;
mäßig klein; die letzteren werden in der Hängebrückentheorie gewöhnlich
nicht berücksichtigt. Die Berücksichtigung der Glieder rj'2/2 und £'2/2 bietet
keine Schwierigkeiten; das Glied £'2/2 berücksichtigen wir näherungsweise,
jedoch für flachgespannte Seile genügend genau, mit

f' ^ — u' • rf ^ tg cp • rf i£ tg a • if (7)

Damit wird mit J r/2(l + tg2«) J rf2 • see2«

/Ids / r/ \ l'2f -^- • sec2^ — («' + ± sec2aj ?' — y. (8)

Nun haben wir die einzelnen Beiträge der Gleichung (8) zu ermitteln, wobei

zu beachten ist, daß in der Elastizitätsbedingung nicht £', sondern nur
[l?dx auftritt.

Die spezifische Längenänderung des Seilelementes beträgt
Ads AS AH— w+cüt.t==~.seccp+cot.t (9)

(wobei AH H — //0) und es ist

lAds
« ^ fJ// s ^ < f 2 ^-7— • sec2 99 • dx ^p • see3 9? <& + ce* • / I see2 cp - dx

0 0 0

Für // konst. (lotrechte Lasten) und mit

sec3 cp dx Ls ^ l(secsa + 8/z2 • seca)

f' [ \6 \ x)
sec2 cp - dx U^ l \see2 a + — n2)

wobei n ~ das Pfeilverhältnis des Seils bedeutet, folgt

^sec2cpdx AH.j^ + iOft-Lt. (10)
0

Für veränderliches H kann Ls jj- • sec3 cp dx leicht numerisch berechnet
werden. ^ c

Die weiteren Glieder der Gleichung (8) formen wir für die
bequemere Anwendung noch etwas um. Durch partielle Integration finden wir
wegen r]B 0

\\u! + y sec2af • rf • dx — iu" + ^- • sec2aj )] • öfe

0 0

/
und analog C'2 dx — C • l" dx.

0 0

x) S. z. B. D. B. Steinman, Deflection theory for continuous Suspension bridges.
I.V.B.H., Abhandlungen, Band II, 1933/34.

I
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Damit ergibt sich durch Integration von Gleichung (8) und mit u" y0"
i i

Jfd* =AH-^F+lot.t-Lt+ J(/0' + //' • St^) ,«fe+J^ • dx. (11)
0 0

Die Werte y'd, rj", rj, £" und £ können nach Abschnitt 2 bestimmt werden.
Aus Gleichung (3) unter Beachtung von Gleichung (7) (|^ —tgoc-^)
ergibt sich

y — y0 rj(\ + tg2«) rj> sec2«
oder

rj (y—y0)cos2a (12)

Für Belastungen g und p in der Seilebene, bezogen auf die Einheit der
Spannweite (nicht der Seillänge), folgt aus den Gleichungen (12) und (1)

(Mq Mg\ 2

und r-AÜ-Wj'™**' ¦* —^-
(13)

Damit wird

K*+T^)-*-*--J(£+ä&-^(£-#)—-*
0 0

sodaß wir unter Beachtung, daß

J H0 H J H H0
o

und mit

)^2"dx -)'2lrdx
o o

(v Belastung quer zur Seilebene) nach kurzer Zwischenrechnung finden
/ / / /

Jf'^ (//-//0)A + £^/:,_J (14)
0 0 0 0

Diese Integrale erstrecken sich über die ganze Seillänge, d. h. für mehr-
feldrige Seile über alle Spannweiten, wobei im allgemeinen der Horizontalschub

H von Spannweite zu Spannweite veränderlich ist.

4. Einzelfelder.
Bei einem Seil über nur eine Spannweite / können die Seilenden elastisch

oder unverschieblich verankert sein.

Für elastische Verankerun g, mit der gegenseitigen Verschiebung

lAB — eH der Seilenden, lautet die Elastizitätsbedingung



296 F. Stüssi

o=|gM,
2H2| cos2 a-dx + \t£«-»&')-\%gM^cos2a.dx + H0^-ojrt-Lt. (15)

7 JU l

Für unverschiebliche Verankerung, gAß 0, ist e 0 zu
setzen. Die Elastizitätsbedingung wird am einfachsten durch Probieren
aufgelöst.

Wirken in Seilebene nur lotrechte Lasten, H konst., so läßt sich
Gleichung (15) wie folgt schreiben (wobei wir von nun an den Einfluß der
Querbelastung v und der Nachgiebigkeit der Verankerung weglassen):

//3~5 + //2EF 77y-COS2a.rfjc- ¦H0j=p + 2cürt'Lt
o

cos2«-^ 0. (16)

Der Horizontalzug H ist durch diese Gleichung dritter Ordnung bestimmt;
das Seilproblem ist ein Spannungsproblem dritter
Ordnung.

Es soll noch kurz auf einige Vereinfachungen und ihre Auswirkungen
hingewiesen werden:

f'2Hätten wir das zweitletzte Glied -y auf der rechten Seite von

Gleichung (6) und damit den Einfluß der waagrechten Verschiebungen £ auf die
Foimänderungen vernachlässigt, so würde die Elastizitätsbedingung lauten:

"»•§£+"¦ J //„
gM*dx-H. 2LS

EF + 2v)ft-Lt [q-Mq-dx Q 2). (17)

Bei einer numerischen Auswertung ist der Unterschied in H für die beiden
Gleichungen (16) und (17) klein; umso eher ist die nur angenäherte Be-

f2
rücksichtigung von -^ berechtigt.

Würden wir in Gleichung (6) auch rf gegen 2 u' vernachlässigen, so
würden wir die Elastizitätsbedingung finden:

H2~ + HEF
o

[sMq
1 H0

dx 0. (18)

Das Seilproblem vereinfacht sich durch Vernachlässigung von Nebenein-
flüssen zum Spannungsproblem zweiter Ordnung; das
Spannungsproblem zweiter Ordnung ist ein durch Vereinfachung entstandener
Sonderfall des allgemeineren Spannungsproblems dritter Ordnung. Würden
wir überhaupt die Formänderungen des Seils nicht berücksichtigen, die Kräfte
also am unverformt gedachten Seil angreifen lassen, so würde sich das
Seilproblem als Spannungsproblem erster Ordnung ergeben.

Die Anwendung der Gleichung (16) und der Vergleich mit den
Gleichungen (17) und (18) soll am Beispiel der Fig. 7 gezeigt werden.

2) F. Stüssi, Zur Theorie des Tragseils von Militärseilbahnen. Technische
Mitteilungen für Sappeure, Pontoniere und Mineure, Zürich 1937.
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tg a 0,48, sec « 1,1092

0,20 mt, g 1,20 kg/m', P 250 kg

2502

Es sei

Ls
EF

iW«w=l,20-ia-8- 8
9,38 mt, //0 0,938 t

AfPm 0,25
250

15,63 mt

Fi£. 7

[ ^-Af^rix 1,20. IO-3.9,38 — 250= 1,875 t2r

[^.^.^ 1,20.10-3.250 (^9,38 + ^15,63)

+ 0,25 (9,38 + 15,63) 10,47 t2m

Mit diesen Werten kann Gleichung (16) geschrieben werden:

//3. 2 • 0,20 + H2 f^SS • 0>8127 — 0,938 2 • 0,2ol 10,47 • 0,8127

0,4 • H3 + 1,359 • H2 8,508 ; H 1,988 t, ym 12,58 m.

Nach Gleichung (17) würde sich ergeben

0,40 • H3 + 1,756 • H2 10,47 ; H ¦ 2,029, ym 12,32 m.

Der Fehler in H und ym infolge der Vernachlässigung der Horizontalverschiebungen

£ beträgt 2,1 <y0.

Endlich liefert Gleichung (18)
0,20 • H2 + 1,812 • H 4,219; H 1,921, ym 13,01 m

Hier beträgt der Unterschied gegen den genauen Wert 3,4 o/0; er kann allerdings

bei größerem Seildurchhang beträchtlich ansteigen, während der Fehler
der Gleichung (18) nur vom Neigungswinkel a abhängig ist.

Wirken auf das Seil nur gleichmäßig verteilte lotrechte Belastungen,
so können die Integrale in Gleichung (16) in geschlossener Form eingesetzt
werden:

q2l2 2A__ tf2/3
T ""q • Mq • dx

8 12

und die Elastizitätsbedingung lautet

">w + //s[ 24 /V COS"a ¦ n°"eF^~ COrt'Lt]- q2P
24

cos2« 0. (16a)

Solche „Zustandsgieichungen" sind beim Entwurf elektrischer Freileitungen
im Gebrauch; die bekannten Formeln von A. Jobin3) und F. Bleich4)
unterscheiden sich von Gleichung (16a), abgesehen von der Schreibweise, nur
durch mehr oder weniger geringfügige Vereinfachungen in der Ableitung.

3) A. Jobin, Berechnung der Freileitungen mit Rucksicht auf die mechanischen
Verhältnisse der Leiter. Zeitschrift des Schweiz. Elektrotechn. Vereins 1919.

4) F. Bleich, Stahlhochbauten, 2. Bd., S. 876. Berlin 1933.

Abhandlungen VI 20
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Nach der Auflösung der Elastizitätsbedingung Gl. (16) ist die gestellte
Aufgabe gelöst; alle Fragen über die Kabelform sind durch Gleichung (1)
direkt oder indirekt beantwortet. Bei Seilbahnen ist dabei für den Betrieb
die Größe des ungünstigsten Neigungswinkels des Tragseils bei den Stützen
von besonderem Interesse. Diese Neigungswinkel der Lastwegkurve (Fig. 8)
können direkt angeschrieben werden zu

tg/& tga-
Qa
H

tgr tg<*-~

(19)
Qb
H '

Fig. 8

dabei sind QA und Qß die Querkräfte bezw. Auflagerkräfte des einfachen
Balkens A B.

Für den Fall einer einzigen Einzellast P unmittelbar neben der Stütze
ändert sich H nicht gegen H0 und es wird

tg£r tg«+ ^2//02P (19a)

Diese ungünstigsten Neigungswinkel liefern nach Gleichung (2) auch den
ungünstigsten Seilzug.

Es ist noch kurz auf die statische Sicherheit der Seile hinzuweisen: Bei
einer Vergrößerung der Last wächst der Seilzug nicht proportional dazu.
Verdoppeln (verdreifachen) wir die Gesamtlast im Beispiel der Fig. 7, so
steigt der Horizontalzug nur auf das rund 1,34 (1,60) fache des Wertes für
die einfache Belastung. Die Sicherheit eines Seiles ist also wesentlich größer
als das Verhältnis der vorhandenen Beanspruchung zur Materialfestigkeit.

5. Kontinuierliche Seile.
Bei über mehrere Felder durchlaufenden Seilen ist der Beanspruchungszustand

der einzelnen Felder vom Verhalten der Zwischenstützen abhängig.
Eine alle Seilfelder umfassende Zustandsgieichung kann hier nicht mehr
aufgestellt werden, sondern die Lösung muß schrittweise so erfolgen, daß der
Horizontalzug H im Endfeld geschätzt wird; daraus kann aus dem Verhalten
der ersten Stütze der Horizontalzug im zweiten Feld bestimmt werden usw.
War die Schätzung von H richtig, so ist auch die über alle Felder summierte
Elastizitätsbedingung Gleichung (14) erfüllt, andernfalls muß die Rechnung
mit einer neuen verbesserten Schätzung von H wiederholt werden. Die
möglichen Fälle der Zwischenstützung sind nachstehend (unter Ausschluß
lotrechter Nachgiebigkeit) dargestellt, wobei wir der Einfachheit halber die
Elastizitätsgleichungen nur für lotrechte Lasten in Seilebene anschreiben.
Grundsätzlich wird der Ausgangszustand (ständige Last g, Montagetemperatur

t 0, durch Einregulieren bekannte Durchhänge) als gegeben
anzunehmen sein.

a) Elastisch nachgiebige Zwischenstützung.
Dieser Fall ist etwa dann verwirklicht, wenn das Seil mit der Auslegerspitze

eines Mastes tn fest verbunden ist. Ist der Horizontalzug links und
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rechts vom Mast verschieden, so verschiebt sich die Auslegerspitze und damit
der Seilstützpunkt entsprechend der Verdrehungssteifigkeit des Mastes:

U (Hm+i - Hm) ¦ em (20)

Haben wir für das erste Feld H1 geschätzt, so liefert Gleichung (14)
Ix

2 i

damit ist aus Gleichung (20) H2 bestimmt:

H2=Hl + ^.
In gleicher Weise kann nun |2

i2=t1 + iH,-H02)j^+cort.L2t-^^\q,.Mqsdx+C^\g2-Mg2.dx
l\ h

und damit H3 bestimmt werden. Weist auch das Seilende A eine
Nachgiebigkeit J-A auf, so ist diese einfach zu den übrigen Verschiebungen zu
addieren. An der Endstütze n muß die Bedingung

£n *~*n ' &n

erfüllt sein.
Unverschiebliche Stützung und waagrecht bewegliche Auflagerung stellen

die beiden Grenzfälle dar:
Bei unverschieblicher Stützung ist e 0: die Elastizitätsbedingung

| =- 0 muß für jedes Feld allein erfüllt sein; die Felder sind voneinander
unabhängig.

Ist die Zwischenstützung dagegen waagrecht frei beweglich, so ist
e oo; der Horizontalzug H ist über alle Felder konstant und die
Elastizitätsbedingung kann direkt durch Aufsummieren der einzelnen Beiträge über
alle Felder angeschrieben werden. Dieser Grenzfall ist z. B. bei als Pendelstützen

ausgebildeten Masten verwirklicht.
Dieser letztere Fall tritt auch bei abge- w

spannten Türmen auf (Fig. 9). Einer am Turm- LI
köpf angreifenden Last W hält der Unterschied jjr
der Horizontalzüge Afi^M f hf

AH=H%-HX W^ /l|\ i

Gleichgewicht. Die Elastizitätsbedingung dieser M^m^mmum^mmm^mLmfLm

(hier in einfachster Form skizzierten) Aufgabe [^_I '

l _J
lautet: ' f~\ 2

i

und damit, wenn beide Seile mit H0 vorgespannt sind,

(//,-//„)• -^ - cos2« j g ¦ Mg ¦ dx(-^ -f^j - (H1 + Afi-H0) ¦ j±
0
4

+ ^a\g.Mg.dx[{HJAf1)i--^)



300 F. Stüssi

oder mit lx l2, F1 F2:

(2H1 + AH-2ff0)^—cos»ajg.Mg-dX'(-p-i +
1

(Ht + AH)* b?)-°-

b) Aufhängung der Seile.
Bei Tragmasten sind die Seile meist an Isolatorenketten aufgehängt.

Das Kräftebild in der Aufhängung ist in Fig. 10 skizziert:

Tl
-i .1. -_r_34m+f

dm^
Sm+t

<sT 5/77

|

Im J. lm+1

*n,\^.
fim-tgcC^f

-Qmi

Sm+f
Qm+r

Jl >

Hmrf-tg&m+t

Fig. 10

Nach dem Kräfteplan der Fig. 10, in dem die Neigungswinkel der Seilkräfte
der Gleichung (19) entsprechen, ergibt sich aus der Parallelität von Rm mit
der Isolatorenkette:

Hm+i Hm qm

hm

woraus
Hm 'tgam — Qm+ Q'm+i ~ Hm+1 • tg CXm+i

_ Hm(hm + U - tgam) + Zm(Qm+i — Qm)H
hm + fm • tg«„

(21)

Im Ausgangszustand ist meist f 0 und Hm + 1 Hm konst. Eine
graphische Berechnung von Hm + 1 ist möglich, doch aus Genauigkeitsgründen,
besonders wegen der auf die Aufhängung wirkenden Kräfte, nicht zu
empfehlen. Die Rechnung ist im übrigen analog durchzuführen wie für Fall a).

Damit sind auch die Auflagerkraft Rm und ihre Komponenten Wm und Vm
bestimmt:

Vm Hm- tg am — Qm + Qm+! — Hm+1 - tg am+1

Wm Hm+1 — Hm

k* jvy^=i^ (22>

Falls cLm + 1 größer ist als am, kann die Auflagerkraft negativ werden; Druck
in der Isolatorenkette ist aber (mit einer gewissen Sicherheit) zu vermeiden.
Der kritische Grenzfall ist durch Rm 0 gekennzeichnet. Dafür ist

Wm 0: H,
Vm =0

m+\ — Hm

Hm • (tgam- tg«*i + l) — Q'm + Q'mi 0. (23)
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c) Auflagerung in Seilschuhen.
Diese Auflagerungsart kommt als Normalfall bei Tragseilen von

Luftseilbahnen vor. Hier ist der Zusammenhang zwischen Hm und Hm + x beim
Übergang über die Stütze m nicht mehr, wie bei den Fällen a) und b), von
den Verschiebungen |m, sondern nur noch von den Gleichgewichtsbedingungen

am Seilschuh abhängig. Falls das Seil reibungsfrei im Seilschuh
gleiten kann, sind die angreifenden Seilzüge gleich groß:

S'm Slm+1 (24)

wobei durch den Index 0 der Fall „Reibung null" bezeichnet werden soll.
Nach dem Kräfteplan der Fig. 11 ist

Hm + (Hm-tgOCm — QmY So/w+1 //oot+1 + (Hom + i * tg <*m+\ + Qm+i)2Q"2^m

woraus
V2

Qm+i ~

oder geordnet

2 Q'm+i • Hom+i ' tgVm+i + Hom+l (1 + *g2 ^m+i) S^

Hom+l Hn Qn
2tgan ö,'2

m+i

1

woraus mit 1 + tg2 oc 0ö cos2 OL

Zwischenrechnung ergibt zu

m+1 l-f-tg2«„+1 l + tg2«m+1 '

sich der gesuchte Wert von H0m + 1 nach kurzer

H0m+i — Qm+l " COS«m+i
1

I Sm2
sin«m+1 + \l

Qm+l
— COS^ «„ (25)

Damit kann R0m nach Gleichung (22) bestimmt werden.

Hm A

Sm+t

Hn tg*rri

' /s'„ Rom

V
^/77

0

Qm+fy
oom+f

1

Hormhtg

&'

AHA

Fig. 11

Falls Reibung zwischen Seil und Seilschuh vorhanden ist, wird die
Auflagerkraft Rm annähernd, und zwar mit vernachlässigbar kleinem Fehler, um
den Reibungswinkel pt gegenüber R0m abgelenkt. Dabei soll (Fig. 11) der
Reibungswinkel dann positiv sein, wenn die Reibungskraft F eine Vergrößerung

von S'm + 1 gegenüber S'0m + 1 bewirkt. Nach Fig. 12 ist

ASß
sin ii sin ß '

om
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Den Winkel ß erhalten wir aus

Wo - - i" + am+i

wobei tp0 durch

tg^o
Hqth+i Hm

vtom

gegeben ist.
Mit A H^ ASß- cosxm + 1 finden wir

sin (.1 • cos am+1

m\ Väom m

\*d
AS.

I "*>/*

\Affo AHu

A Hß — Rofi
Fig. 12

sin ß

und damit

Hm+i — */owi+i "»"- /vom *
Sin ^ • COS CCm+i

sin 0
(26)

Damit ist der ganze Kräfteplan bestimmt; insbesondere kann man aus der
bekannten Gleichung

Sm+1 Sm • <*"* (27)

die Genauigkeit der mit /u angenommenen Ablenkung von Rm gegenüber
R0 m im Einzelfall überprüft werden. Gleichung (27) kann zu einer einfachen
graphischen Lösung benützt werden, indem B' durch eine logarithmische Spirale

mit dem Pol 0 von A aus (Fig. 11) (bezw. B durch einen Kreisbogen)
bestimmt wird. Da aber die Winkel zwischen den Seilkräften 5 in
praktischen Fällen meist klein sind, also schleifende Schnitte entstehen, ist mit
Rücksicht auf die Genauigkeit besonders der Auflagerkräfte (Stützenbemessung)

die rechnerische Bestimmung der Kräfte einer graphischen Lösung
vorzuziehen.

Der Rechnungsgang zur Bestimmung der Horizontalzüge H ist
grundsätzlich wie bei den Fällen a) und b) durchzuführen. Eine Besonderheit
bewirken die Reibungskräfte, die entgegen der Differenz der Seilzüge S wirken.
Die Reibungskräfte beteiligen sich also an der Aufnahme der durch die
Belastung eines Feldes entstehenden Vergrößerung der Seilkräfte und zwar
vom belasteten Feld aus nach beiden Seiten so weit weg, bis die Seilkräfte
auf diejenigen des Ausgangszustandes abgebaut sind.

6. Einfluß der Seilsleifigkeii.
An Stellen scharfer Krümmung, also an den Angriffspunkten von Einzellasten

und bei erzwungener Abbiegung, treten infolge der Biegungssteifig-
keit des Seiles zusätzliche Biegungsbeanspruchungen auf, die durch die
bekannte Beziehung der Biegungsmomente Ms

Ms -— (28)
Q

bestimmt sind.
Für erzwungene Abbiegung mit Krümmungsradius o ist mit Gleichung

(28) die Aufgabe grundsätzlich gelöst; wir wollen deshalb nachstehend nur
noch den Fall des biegungssteifen Seiles unter Einzellasten untersuchen.
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Hier ist, im Gegensatz zum biegsamen Seil nach Gleichung 1, das Biegungsmoment

Ms nicht null, sondern es ist

Ms Mq-H-y (29)

Setzen wir Ms nach Gleichung (28) und mit
1 f f
Q (1+/*)¦/. sec3<p

erhalten wir die Differentia

/'EJ. cosscp — H-y + Mq 0. (30)

in Gleichung (29) ein, so erhalten wir die Differentialgleichung des biegungssteifen

Seiles.

Da wir es in praktischen Fällen immer mit flachen Seilen mit kleinem Durchhang

zu tun haben, dürfen wir mit genügender Genauigkeit cos cp durch cos a,

ersetzen und erhalten die leicht lösbare Gleichung

y" • EJ- cos3« — H.y + Mq 0 (31)

Wir können übrigens cos cp durch cos cp0 ersetzen und erhalten dadurch eine
etwas genauere, aber immer noch leicht lösbare Gleichung (31).

Der Unterschied von Gleichung (31) gegenüber der in der Baustatik
üblichen Form für die Differentialgleichung der lotrechten Biegungslinie yv

M
yv — ¦

EJ. cos «

ist durch Fig. 13 mit yv y • cos2 <x erklärlich.

Fig. 13

Nun interessiert uns hier allerdings nicht in erster Linie der Durchhang y
selbst, sondern die Durchhangsänderung A y infolge der Seilsteifigkeit, weil
ja damit das Seilmoment

H.Ay H.{ys-y) Ms (32)

bestimmt ist. Mit ys
Mqys=ff

haben wir hier den Durchhang des biegsamen Seils bezeichnet.
Setzen wir

y ys — A y
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in Gleichung (31) ein, so erhalten wir

(ys — Ay) • EJ cos3« - H. (ys — Ay) 4- Mq 0

woraus mit

H.ys Mq ys' — ^, Ay. H Ms

sich eine Differentialgleichung für Ms ergibt:

Zur Auflösung solcher Gleichungen habe ich früher ein baustatisches
Verfahren durch Umsetzen in ein dreigliedriges Gleichungssystem angegeben5).
Für Gleichung (33) ergibt sich danach, je nachdem, ob man die Belastungsfunktion

in Trapeze aufteilt oder durch Parabeln je über zwei Felder begrenzt
denkt, mit

Ax2 H
c

12 £7cos3«

die Trapezformel

— Afs,m-i0 -2c) + MS)m(2 + 8c)— Ms,m+1(\— 2c) Ax.Pm

PM.VT2-,.|/£y^
oder die Parabelformel

-iWs,m-i(l—^)+Af,>«»(2+10£r)-iM5,wl+1(l— 2c) Pm.i\2c.y^^
Dabei brauchen diese Gleichungen nicht etwa über die ganze Seillänge
angeschrieben zu werden, da ja die Seilmomente nach beiden Seiten rasch ab-

-t I EJcos^ OL

klingen; es genügt ein Untersuchungsbereich von etwa 4 1/ — je

beidseitig von Einzellasten oder Lastgruppen. Für den Angriffspunkt einer
Einzellast ist wegen der Unstetigkeit in Ms die Trapezformel zu verwenden,
während für unbelastete Teilpunkte aus Genauigkeitsgründen die Parabelformel

vorzuziehen ist. Die Größe der Teile A x ist so zu wählen, daß c nicht
größer als etwa 0,05 wird.

Die Auflösung der Gleichung (33) nach diesem Verfahren ist
nachstehend in Tabelle 3 für ein waagrechtes Seil gezeigt. Wir wählen c 0,04,
woraus

Ax fm ¦ |/~ 0,6928 • |/^ ;

die Rechnung wird nur für 4 Felder statt für 4:0,6928 ^ 6 durchgeführt.
Die Randbedingung lautet Ms0 0; Ms verläuft symmetrisch zum Lastpunkt.

5) F. Stüssi, Die Stabilität des auf Biegung beanspruchten Trägers. I.V.B.H.,
Abhandlungen, Band III, 1935.
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M8x MS2 Ms3 Msm Bei. glied

1 2,40 — 0,96 —

2 — 0,96 2,40

- 0,384
2,016

— 0,96
—

-0,96
3 -0,96 2,40

— 0,4571
1,9429

-0,96
—

— 0,96

m — 1,84 2,32
— 0,9092

0,6928

1,4108 0,6928

Ms 0,0462 0,1155 0,2427 0,4911 ¦"¦n
Der größte Wert von Ms im Lastpunkt ist mit Msm 0,4911 'p \ jt

um rund 1,8 o/o kleiner als nach der bekannten Formel von Isaachsen.

Wird die Berechnung mit 6 Feldern durchgeführt, so sinkt der Fehler
auf rund 1 <y0. Eine genauere Gleichung für m kann übrigens aus der
bekannten Größe des Knickwinkels von Ms in m leicht aufgestellt werden6).

Die Bedeutung eines solchen baustatischen Verfahrens gegenüber
Formeln für Spezialfälle beruht darauf, daß es die Untersuchung beliebig
allgemeiner Anwendungsfälle gestattet.

Zusammenfassung.
Die Form eines biegsamen Seiles ist bestimmt durch das Seilpolygon

zur Belastung; bei beliebig gerichteten Seilbelastungen ist der Begriff des
Seilpolygons zu erweitern. Die Größe des Horizontalzuges H ist entweder
durch ein Spanngewicht festgelegt oder dann durch eine Elastizitätsbedingung

zu bestimmen. Diese Elastizitätsbedingung führt auf eine Gleichung
dritter Ordnung für H: das Seilproblem ist ein Spannungsproblem dritter
Ordnung, das durch Vernachlässigung von Nebeneinflüssen auf ein
Spannungsproblem zweiter Ordnung vereinfacht werden kann. Das biegungssteife

Seil wird durch eine Differentialgleichung beherrscht, die der
Durchbiegungsgleichung des Versteifungsträgers einer verankerten Hängebrücke
eng verwandt ist. Bei den praktisch vorkommenden geringen Seilsteifigkeiten
haben die Biegungsmomente nur örtliche Bedeutung.

Resume.
La forme d'une corde flexible est determinee par le polygone funi-

culaire des charges; lorsque les forces appliquees ä la corde ont une direction
quelconque, il est indispensable de completer la notion du polygone funi-

6) F. Stüssi, Die Berechnung verankerter Hängebrücken. Mitt. a. d. Institut f. Baustatik
an der E.T. H., Heft 2. In Vorbereitung.
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culaire. La grandeur de la traction horizontale H est determinee soit par
un contrepoids, soit par une condition d'elasticite. Cette condition d'elasticite
conduit ä une equation du 3e ordre pour H; le probleme de la corde est un
probleme de tensions du 3e ordre qui peut etre ramene ä un probleme du
2e ordre si Fon neglige des influences secondaires. La corde rigide
peut etre representee par une equation differentielle tres etroitement parente
ä Fequation de la ligne elastique de la poutre raidisseuse d'un pont suspendu
avec cäbles ancres. La rigidite de la corde etant, en fait, tres faible, les
moments de flexion n'ont qu'une importance locale.

Summary.
The form of a flexible rope is determined by the funicular polygon

for the loading; for some particular arrangements of loads on the rope the
conception of the funicular polygon is to be extended. The magnitude of the
horizontal force H is either determined by a stressing weight or has to be
derived from an elasticity condition. This condition leads to an equation of
the third order for H: the rope problem is a stress problem of the third
order which can be simplified into a stress problem of the second order by
neglecting subsidiary influences. The form of a s t i f f rope is expressed by
a differential equation which is closely related to the loading equation of
the stiffening girder of an anchored Suspension bridge. With the slight
stiffnesses of ropes occurring in practice, the bending moments have only
local significance.
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