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STATIK DER SEILE.
STATIQUE DES CORDES.
STATICS OF ROPES.

Prof. Dr. F. STUSSI, Eidg. Techn. Hochschule, Generalsekretir fiir Stahlbau
, der 1.V.B.H., Ziirich

1. Allgemeines.

Seile sind bei zahlreichen Anwendungen (Héingebriicken, Seilbahnen
und Kabelkrane, Freileitungen, Turmabspannungen, Fo6rdereinrichtungen)
wichtige Bauelemente. Zu ihrer Berechnung wird meist mit geniigender Ge-
nauigkeit der EinfluB der Steifigkeit vernachlissigt; fiir das biegsame
Seil sind dann zwei Aufgaben zu l6sen: es miissen die Seilform und
der Seilzug bestimmt werden. Die Seilform ist bestimmt durch das
Seilpolygon zur Belastung; es wird sich zeigen, daB bei beliebig ge-
richteten Seilbelastungen das Seilpolygon nicht mehr von ,normaler Art‘
ist, sondern dafl der Begriff des Seilpolygons weiter zu fassen ist. Zur Be-
stimmung des Seilzuges ist, abgesehen von denjenigen Fillen, wo er
durch ein Spanngewicht bestimmt wird, eine Formidnderungsbedingung oder
Elastizitdtsbedingung aufzustellen. In dieser Elastizititsbedingung
tritt die Horizontalkomponente des Seilzuges (der Horizontalzug H) in der
dritten Potenz auf; das Seilproblem ist ein Spannungsproblem
dritter Ordnung, das durch gewisse Vernachlissigungen auf ein Span-
nungsproblem zweiter Ordnung vereinfacht werden kann.

Das biegungssteife Seil unterscheidet sich von der versteiften
Haingebriicke dadurch, daB hier Lingskrifte und Momente im gleichen Bau-
element, dort in verschiedenen Elementen (Kabel und Versteifungstriger)
auftreten. Der EinfluB der Seilsteifigkeit wird sich allerdings hier nur in
einer lokalen Anderung der Seilform (unter Einzellasten) und praktisch kaum
in einer Anderung des Seilzuges auswirken. Dieser EinfluB wird deshalb
praktisch, falls iiberhaupt notwendig, fiir sich getrennt in einer zusitzlichen
Untersuchung erfafBt werden konnen.

Nachstehend wird eine allgemeine baustatische Theorie des biegsamen
Seiles versucht, die auf ein- und mehrfeldrige Seile anwendbar sein soll.
Fiir das biegungssteife Seil werden die Grundgleichungen angegeben.

2. Die Seilform.

a) Lotrechte Lasten.

Im Ausgangszustand besitze das nur durch sein Eigengewicht g belastete
Seil die Durchbiegungen y,, der zugehorige Horizontalzug sei H,. Durch
eine Temperaturinderung ¢ und die Belastung p (P) dndern sich y, in y und
H, in H (Fig. 1). Da das biegsam vorausgesetzte Seil keine Momente auf-
nehmen kann, sind die Durchhinge gegeben durch M; = 0 = M, — H - y:
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___Mg __ME+P__M4
yO_"_]_Ey J = H - H (1)

Dabei sind M, und M, die Momente in einem einfachen Balken A4 B infolge
g bezw. ¢ = g + p. Sobald der Horizontalzug H bekannt ist, ist auch die
Seilform bestimmt; damit ergibt sich aber auch in jedem Schnitt der Seil-
zug S
. H
S—.COS(p-——H-SeCQp. (2)

Bei der Bestimmung der Forméidnderungen des Seils ist zu be-
achten, daB der Seilpunkt m sich nicht lotrecht, sondern nach m’ verschiebt
(Fig. 2), also lotrechte und waagrechte Verschiebungskomponenten 5 und &
besitzt.

Fig. 1

Nach Fig. 2 ist
y—yo=n—§tgg. ©)

Dieser Zusammenhang zwischen den Seildurchhingen und Formidnderungen
wird im Zusammenhang mit der Formidnderungsbedingung weiter verwendet
und vereinfacht werden.

b) Beliebig gerichtete Lasten.

Die Besonderheit dieses Belastungsfalles besteht darin, daB die An-
griffspunkte oder Wirkungslinien der Lasten nicht festliegen, sondern von

Fig. 3

der Seilform abhéingig sind. Nach Fig. 3, die einen Ausschnitt aus dem Krifte-
und Seilpolygon des durch die Last P,, mit den KomponentenV,, und W,, be-
lasteten Seiles darstellt, ist
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A.Vm = VYm1 + I - _[?]-:'

Ymi1 = Ym + by - %::—i .

Durch Elimination von -

Q’ﬂ_ Qm+1 S Vm“—tga‘ W
finden wir

—ym~1T+ym<T+ m+1)_ * =

)"”1+1

Dabei gilt die Gleichgewichtsbedingung
Hm o Hm+1 = Wm . (5)

Bei gleich hoch liegenden Endpunkten 4 und B, tg o = 0, vereinfacht sich
Gleichung (4) zu

Hp (Hm Hn
T mert tVm\ 5

m m+1

Hy

Am 41

) —JVmy1: = Vin. (42)
Die Gleichungen bezw. Gleichungssysteme (4) und (4 a) stellen offensichtlich
Seilpolygone dar, aber nicht mehr Seilpolygone normaler Art. Das normnale
Seilpolygon ist dadurch charakterisiert, daB wir die Richtung des ersten Seil-
strahles beliebig annehmen und die Randbedingungen (hier y, = yz = 0)
durch eine gerade SchluBlinie erfiillen kénnen. Das ist hier nicht mehr
moglich, die SchluBlinie ist keine Gerade mehr, abgesehen vom Sonderfall
der zufallig richtigen Annahme des ersten Seilstrahles.

Hier ergeben sich die Seilpolygonordinaten y aus der Auflésung eines
dreigliedrigen Gleichungssystems. Dagegen 148t sich auch eine andere L6-
sungsart des Gleichungssystems angeben, die sich direkter an den Begriff
des Seilpolygones anlehnt und die deshalb als erweiterte Form des Seil-
polygones angesprochen werden kann. Dieses Verfahren sei am Beispiel
der Gleichung (4 a) skizziert: Wir schreiben die Gleichung (4 a) in der Form
einer Rekursionsformel:

Hm Hm+1) Z'm+1 : Hm }Vm+1 )m+1
mit = Y| L) T m | om
Imi y”’(xm Y T Hoo 7" i Hp Z
oder allgemein :
CVmyt = Y — B Ymy — 7 Kn. (4b)

Wir setzen y = y, + c¢-4y, wobei wir mit y, eine Losung der in-
homogenen Gleichung (4 b) bezeichnen, die nur eine der beiden Randbedin-
gungen (z. B. y4 = 0) erfiillt; wir kénnen also neben y,4 = 0 den Wert von
¥oy beliebig annehmen und mit Gleichung (4 b) die iibrigen zugehdrigen Werte
yo berechnen. Mit A4 y bezeichnen wir eine Losung der homogenen Gleichung
(4b), K,, = 0; hier ist neben 4y, = 0 der Wert 4 y, beliebig anzunehmen.
Der Wert des Faktors ¢ ist dann so zu bestimmen, daB die zweite Rand-
bedingung, hier

yp=yop+c-Adyp=0

erfiillt ist. In Tabelle 1 ist ein einfaches Beispiel zu Gleichung (4 a) durch-
gerechnet.
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Tabelle 1:
A Vv | w | H a B YK |- Ay |e-dy | vy
m t t t m m m m m
A 0 0 0 0
10,0 10,0
1 1,0 1,0 2,1111 § 1,1111 | 1,1111 1,0 1,0 0,7149 | 1,7149
10,0 9,0
2 1,0 0 2,0000 | 1,0000 | 1,1111 | 1,0000 | 2,1111 | 1,5092 | 2,5092
10,0 9,0
3 0 | 1,0 2,1250 [ 1,1250 | 0 |-0,1111| 3,2222 | 2,3035 | 2,1924
10,0 8,0
4 10 | 10 2,1429 | 1,1429 | 1,4286 |-1,3611| 4,4722 | 3,1970 | 1,8359
10,0 7,0
B -4,2183 | 5,9008 | 4,2183 0
Das Ergebnis der Berechnung ist
8 in Fig. 4 (in verzerrtem MaBstab) auf-
Ligne de fermeture i getragen. ‘ .
‘EZZ‘;’?/;ZZ l Diese Art der Aufldsung ist seibst-
‘ verstindlich auf die Losung aller drei-
| ] | gliedrigen Gleichungssysteme anwend-
Ai | bar; ob sie gegeniiber einer Auflésung
n 7z ! mit Hilfe des abgekiirzten Gauss’schen
10 Po/}/w/”ef””/w/ﬁ”‘e ’ Algorithmus eine Einsparung an Ar-
20] ‘;Z%fgfgawm | beitszeit ermoglicht, diirfte weitgehend
, eine Frage der personlichen Vorliebe
y*._,___ = 50m ____..1 sein. Eine graphische Durchfiihrung
i der Berechnung ist moéglich, doch ist
Fig. 4 ihre Anwendung aus Genauigkeits-

griinden meist nicht zu empfehlen.

Wenn allerdings, was praktisch meist der Fall sein diirfte, die waag-
rechten Lasten gegeniiber den lotrechten verhiltnismaBig klein sind, so liefert
Gleichung (1) auch hier praktisch geniigend genaue Werte fiir y, wenn fiir
H der Mittelwert der angrenzenden Felder eingesetzt und M, nur infolge
der lotrechten Lasten V — W .tga berechnet wird. Trotzdem die Voraus-
setzung kleiner, waagrechter Lasten hier nicht erfiillt ist, soll diese Nahe-
rungsrechnung in Tabelle 2 am Beispiel der Tabelle 1 durchgefiihrt werden:

Tabelle 2: y ~ M

Hp'
V| Q | Mg | Hu | y 4 %
t t mt t m
A 0 0
1,6 .
1|10 160 | 95 | 1,6842 | -1,8
0,6 .
2 |10 220 | 9,0 |24444 | -26
-04
3| — 180 | 85 | 21176 | -3,4
04
4 1,0 |- 14,0 7,5 1,8667 | +1,7
-1,4
B 0




Statik der Seile 203

In der letzten Kolonne sind die Fehler der Niherungsrechnung gegen-
itber den genauen Werten nach Tabelle 1 eingetragen. Da auch hier, in
diesem &uBerst ungiinstigen und den Voraussetzungen der Niherungsrech-
nung nicht entsprechenden Beispiel, die Fehler nicht groB sind, ist der Nach-
weis erbracht, daB bei verhidltnismaBig kleinen waagrechten Lasten die Durch-
biegungen y geniigend genau nach Gleichung 1

M,

Y="m
berechnet werden diirfen, wobei H in der angegebenen Weise iiber die Spann-
weite verinderlich einzufithren ist. Fiir die folgenden Anwendungen diirfen

wir somit Gleichung (1) fiir alle in der Seilebene wirkenden Lasten als giiltig
voraussetzen.

3. Die Elastizititsbedingung.

Die Elastizititsbedingung eines beidseitig festgehaltenen oder ver-
ankerten Seiles hat auszudriicken, daB8 der Abstand der Seilendpunkte, oder
einfacher, daB die Horizontalprojektion dieses Abstandes sich nicht (oder
um einen bekannten Betrag) dndert. Lotrechte Verschiebungen allein sind
wohl nicht vorhanden; wenn doch, kénnen sie durch eine gleichwertige Hori-
zontalverschiebung ausgedriickt werden (Fig. 5):

E=—Av.sine-cosa “ ”
Yy m X
N
7 | % M
|
8 __l__gq@’. oy +de
—_ o
| F" ' I 4 2
o b T ~J°
Ao T x—-—-:,-_g»{
|
Fig. 5 Fig. 6

Die Aussage & = 0 fiir den Seilendpunkt gewinnen wir durch die aus
der Theorie der Hingebriicken bekannte Betrachtung der Verformung eines
Seilelementes, Fig. 6:

ds? = dx* + du?® (5a)
(ds + Ads)? = (dx + d&)? + (du+ dn)? 4+ d? (5b)

Dabei sind die Seildurchhdnge # = x-tg o - y von der Horizontalen durch
den linken Seilendpunkt aus gemessen. Um in der Elastizititsbedingung
auch die Formanderungen aus Querbelastung v (Winddruck) zu erfassen, ist
beim verformten Element (Gleichung (5b)) auch eine Querverschiebung ¢
mit d {? beriicksichtigt.

Multiplizieren wir Gleichung (5b) aus und subtrahieren wir Gleichung
(5a), so finden wir

2Ads-ds + Ads? = 2d& -dx + d&® + 2du - dy + dn? + d?
oder, unter Vernachldssigung von 4ds gegen 2ds:

Ad W12 9 re
—Ssecgw——u’-q’—i———f———g . (6)

(L J—

ST ds
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Das erste und die drei letzten Glieder der rechten Seite sind verhiltnis-
méiBig klein; die letzteren werden in der Héangebriickentheorie gewd6hnlich
nicht beriicksichtigt. Die Beriicksichtigung der Glieder #’2/2 und {’2/2 bietet
keine Schwierigkeiten; das Glied &'2/2 beriicksichtigen wir niherungsweise,
jedoch fiir flachgespannte Seile geniigend genau, mit

F o —u-votge -1 atga-y (7)
Damit wird mit 392(1 + tg2a) = 3 9/2 - sec?«
’ Ads 4 7/, ’ a-:'2
5 =-d—s—-sec2<p——-(u +—2~SCC2(1) "—‘i‘. (8)

Nun haben wir die einzelnen Beitrige der Gleichung (8) zu ermitteln, wo-
bei zu beachten ist, daBl in der Elastizititsbedingung nicht &, sondern nur

!
J & dx auftritt.
0
Die spezifische Lingenidnderung des Seilelementes betrigt

Ads AS AH .
I = -|— Wyt = EF-squo+ Wyt 9)
(wobei 4H = H—HO) und es ist

l l /
Ads . _ {4aH s J .

jwd?~sec @ - dx = jEF sec’pdx 4+ we- £ | S€C?p - dx.

0 0

Fiir H = konst. (lotrechte Lasten) und mit

j sec3@ - dx = L; © [(sec3a 4 8n? . sec a)
0

! 1
jsec%p dx =L l(sec%—}-?n) ),

wobei n = ~/; das Pfeilverhiltnis des Seils bedeutet, folgt

dds

J———Secztpdx——AH (u;-t-Lt. (10)
0

L
d EF
Fiir veranderliches H kann L, ML—?— -sec3 @ dx leicht numerisch berechnet
werden. ¢ ‘
Die weiteren Glieder der Gleichung (8) formen wir fiir die Dbe-
quemere Anwendung noch etwas um. Durch partielle Integration finden wir
wegen 7 = 0

l
j u —l— sec2 ) ' dx=—j(zz”+%—-sec2a>»;-dx

0

und analog : j J {"dx.
0 0

1) S. z. B. D B. Steinman, Deflection theory for continuous suspension bridges.
I.V.B.H., Abhandlungen, Band II 1933/34.
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14

Damit ergibt sich durch Ihtegration von Gleichung (8) und mit z” = y,

p l
L, , , secla |
Ojg'dngﬁ-ﬁ+wt-t-Lt+j<J’o+") 2 ) ax J an
0

Die Werte y%, ”, 5, ¢” und ¢ konnen nach Abschnitt 2 bestimmt werden.
Aus Gleichung (3) unter Beachtung von Gleichung (7) (§~ —tgwa-7) er-
gibt sich

y—yo=n(1+1g%a) = y- sec’«
oder ‘
n = (y —Jy,) cos?a (12)

Fiir Belastungen g und p in der Seilebene, bezogen auf die Einheit der
Spannweite (nicht der Seillinge), folgt aus den Gleichungen (12) und (1)

) = (Ad_q R /_VI_> COS2
H H, (13)
und n'=— (% e go) cos’a, yj=— Ho [

Damit wird

! l
" ] Sec2a — ( g q g )(Mq ’ Mg) 2
j<y°+" 2 )”d"‘ (3[71‘;+2H 3H)\H —H,) 05

1A
£ My _j_Z.Mg.
jHO dx = H dx

J H H,
und mit
i /
" C _ fv-M,
j 2 'dx"‘_j Yz
0 0
(v = Belastung quer zur Seilebene) nach kurzer Zwischenrechnung finden
i i / 1
q-My &M
j "dx = (H - HO)-—+w¢ z Lt‘—j—z—Hg cos®a- dx+J 2H‘€cos2 dx J 2H2 .
0 0

Diese Integrale erstrecken sich iiber die ganze Seillinge, d. h. fiir mehr-
feldrige Seile iiber alle Spannweiten, wobei im allgemeinen der Horizontal-
schub H von Spannweite zu Spannweite veranderlich ist.

4. Einzelfelder.

Bei einem Seil iiber nur eine Spannweite / konnen die Seilenden elastisch
oder unverschieblich verankert sein.

Fiir elastische Verankerun g, mit der gegenseitigen Verschie-
bung .5 == — e H der Seilenden, lautet die Elastizititsbedingung

(14)
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! l

/
9 M, [t 1 1) ot a1, 5o
0= jZH"COS o-dx+ SH? —dx—-H EF 02Hg2COS a dx+H°EF wgt- Ly,

Fiir unverschiebliche Verankerung, £, = 0, ist e = 0 zu
setzen. Die Elastizititsbedingung wird am einfachsten durch Probieren auf-
gelost.

Wirken in Seilebene nur lotrechte Lasten, / = konst., so 1aBt sich Glei-
chung (15) wie folgt schreiben (wobei wir von nun an den EinfluB der Quer-
belastung v und der Nachgiebigkeit der Verankerung weglassen):

/
H&%;Url‘[ {J%—]Mg cos?a-dx — HOZ.;JrZ(ut £ Lt]—(q M,-cos?a-dx =0,
0
0

Der Horizontalzug H ist durch diese Gleichung dritter Ordnung bestimmt;
das Seilproblem ist ein Spannungsproblem dritter Ord-
nung.

Es soll noch kurz auf einige Vereinfachungen und ihre Auswirkungen
hingewiesen werden:

’2

Hitten wir das zweitletzte Glied % auf der rechten Seite von Glei-
chung (6) und damit den EinfluB der waagrechten Verschiebungen ¢ auf die
Formanderungen vernachlissigt, so wiirde die Elastizititsbedingung lauten:

i

l
H® . ;LF%H% U iﬁgdxﬂﬁo-%+2wt-tlt} —jq-Mq-dx= 0. (17
0 0

Bei einer numerischen Auswertung ist der Unterschied in / fiir die beiden
Gleichungen (16) und (17) klein; umso eher ist die nur angeniherte Be-
9
riicksichtigung von 5 berechtigt.
Wiirden wir in Gleichung (6) auch 5’ gegen 2’ vernachlissigen, so
wiirden wir die Elastizititsbedingung finden:

H?. EL;:+H[(gHM§dx—H0"E%SE-Fwt'Z‘-Lt]— (glg/lq dc = 0. (18)
) H, J Iy
0

Das Seilproblem vereinfacht sich durch Vernachliassigung von Nebenein-
flissen zum Spannungsproblem zweiter Ordnung; das Span-
nungsproblem zweiter Ordnung ist ein durch Vereinfachung entstandener
Sonderfall des allgemeineren Spannungsproblems dritter Ordnung. Wiirden
wir iiberhaupt die Forminderungen des Seils nicht beriicksichtigen, die Krifte
also am unverformt gedachten Seil angreifen lassen, so wiirde sich das
Seilproblem als Spannungsproblem erster Ordnung ergeben.

Die Anwendung der Gleichung (16) und der Vergleich mit den Glei-
chungen (17) und (18) soll am Beispiel der Fig. 7 gezeigt werden.

2) F.StUssl, Zur Theorie des Tragseils von Militirseilbahnen. Technische Mittei-
lungen fiir Sappeure, Pontoniere und Mineure, Ziirich 1937.

(15)

(16)



Statik der Seile 207

Es sei tg o = 048, seca = 1,1002

Ls _ 020mt, g=120kg/m’, P = 250kg
EF
2
Mgm = 1,20 -1073. 250°_ 938 mt, H,— 0938t
! Mpp = 0,25 . 220 — 15,63 mt
I\\>/l
adbmt | jg.Mg-dx —1,20. 10“3-9,38-%-250 — 1,875 t2m

Fxg. 7

2
3

+ 0,25 (9,38 + 15,63) = 10,47 t?2m
Mit diesen Werten kann Gleichung (16) geéchrieben werden:

1,875
0,038?
04-H3+4+1359 . H? = 8508; - H=1988t, y, =1258 m.

Jq-Mq-dxz 1,20- 10‘3-250( 9,38 + 15 63)

H3.2.0,20 + H2[ .0,8127 — 0,938 - 2 - 0,20] — 10,47 - 0,8127

Nach Gleichung (17) wiirde sich ergeben
0,40 - H3 + 1,756 - H*> = 1047 ; H= 2020, y,=1232m.

Der Fehler in H und y, infolge der Vernachliassigung der Horizontalver-
schiebungen & betrigt 2,1 op.

Endlich liefert Gleichung (18) :
0,20 - H* + 1,812 - H = 4,219; H=1921, y,=13,01m.

Hier betragt der Unterschied gegen den genauen Wert 3,4 9o; er kann aller-
dings bei gréBerem Seildurchhang betrichtlich ansteigen, wihrend der Fehler
der Gleichung (18) nur vom Neigungswinkel « abhiangig ist.

Wirken auf das Seil nur gleichmiBig verteilte lotrechte Belastungen,
so konnen die Integrale in Gleichung (16) in geschlossener Form eingesetzt
werden:

. q212 ?—l . q2l3 )
J" Mg dx="g""3 =12
und die Elastizititsbedingung lautet ;
3 2 R —_—
H +H[24H0 cos?a—H,- EF—'—(UftLt 54 -cos?a=0. (16a)

Solche ,,Zustandsgleichungen‘ sind beim Entwurf elektrischer Freileitungen
im Gebrauch; die bekannten Formeln von A. JoBIN 3) und F. BLEICH %) unter-
scheiden sich von Gleichung (16a), abgesehen von der Schreibweise, nur
durch mehr oder weniger geringfiigige Vereinfachungen in der Ableitung.

3) A. JoBiN, Berechnung der Freileitungen mit Riicksicht auf die mechanischen Ver-
hidltnisse der Leiter. Zeitschrift des Schweiz. Elektrotechn. Vereins 1919.
4) F. BreicH, Stahlhochbauten, 2. Bd., S. 876. Berlin 1933.

Abhandlungen VI 20



208 F. Stiissi

Nach der Auflosung der Elastizititsbedingung Gl. (16) ist die gestellte
Aufgabe gelost; alle Fragen iiber die Kabelform sind durch Gleichung (1)
direkt oder indirekt beantwortet. Bei Seilbahnen ist dabei fiir den Betrieb
die GroBe des ungiinstigsten Neigungswinkels des Tragseils bei den Stiitzen
von besonderem Interesse. Diese Neigungswinkel der Lastwegkurve (Fig. 8)
konnen direkt angeschrieben werden zu

Q
H

(19)

Fig. 8

dabei sind Q4 und Qp die Querkrifte bezw. Auflagerkrifte des einfachen
Balkens A B.

Fiir den Fall einer einzigen Einzellast P unmittelbar neben der Stiitze
andert sich A nicht gegen H, und es wird “

L+ 2P
tgs,y = tga ¥ £ 520 (19a)

Diese ungiinstigsten Neigungswinkel liefern nach Gleichung (2) auch den
ungiinstigsten Seilzug.

Es ist noch kurz auf die statische Sicherheit der Seile hinzuweisen: Bei
einer VergroBerung der Last wéchst der Seilzug nicht proportional dazu.
Verdoppeln (verdreifachen) wir die Gesamtlast im Beispiel der Fig. 7, so
steigt der Horizontalzug nur auf das rund 1,34 (1,60) fache des Wertes fiir
die einfache Belastung. Die Sicherheit eines Seiles ist also wesentlich groBer
als das Verhiltnis der vorhandenen Beanspruchung zur Materialfestigkeit.

5. Kontinuierliche Seile.

Bei iiber mehrere Felder durchlaufenden Seilen ist der Beanspruchungs-
zustand der einzelnen Felder vom Verhalten der Zwischenstiitzen abhingig.
Eine alle Seilfelder umfassende Zustandsgleichung kann hier nicht mehr auf-
gestellt werden, sondern die Lésung muB schrittweise so erfolgen, daf§ der
Horizontalzug A im Endfeld geschitzt wird; daraus kann aus dem Verhalten
der ersten Stiitze der Horizontalzug im zweiten Feld bestimmt werden usw.
War die Schitzung von H richtig, so ist auch die iiber alle Felder summierte
Elastizititsbedingung Gleichung (14) erfiillt, andernfalls muB die Rechnung
mit einer neuen verbesserten Schiatzung von / wiederholt werden. Die mog-
lichen Fialle der Zwischenstiitzung sind nachstehend (unter AusschluB lot-
rechter Nachgiebigkeit) dargestellt, wobei wir der Einfachheit halber die
Elastizititsgleichungen nur fiir lotrechte Lasten in Seilebene anschreiben.
Grundsatzlich wird der Ausgangszustand (stindige Last g, Montagetempe-
ratur ¢ = 0, durch Einregulieren bekannte Durchhinge) als gegeben anzu-
nehmen sein.

a) Elastisch nachgiebige Zwischenstﬁtiung.

Dieser Fall ist etwa dann verwirklicht, wenn das Seil mit der Ausleger-
spitze eines Mastes m fest verbunden ist. Ist der Horizontalzug links und
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rechts vom Mast verschieden, so verschiebt sich die Auslegerspitze und damit
der Seilstiitzpunkt entsprechend der Verdrehungssteifigkeit des Mastes:

Haben wir fiir das erste Feld /, geschitzt, so liefert Gleichung (14)
1, 4

L cos?a cos?a
& = (M, - 1!7'01)1‘_;‘%[;‘-9 + wg bt Ly — —27_]T2‘1“j‘71 Mg, dx + 2H0€£ng « My, - dx;
0
damit ist aus Gleichung (20) H, bestimmt:
&
m—m+4
In gleicher Weise kann nun &, : )
ol by
coszoe2

Ey =8 +(Hy— Hoz) +wt t Lot —

qu M%afx+929j1 [g‘, . My, - dx

02 5

2H,® -
und damit H, bestimmt werden. Weist auch das Seilende A eine Nach-
giebigkeit £, auf, so ist diese einfach zu den iibrigen Verschiebungen zu

addieren. An der Endstiitze » muf§ die Bedingung

bn=—H, e,

erfiillt sein.

Unverschiebliche Stiitzung und waagrecht bewegliche Auflagerung stellen
die beiden Grenzfille dar:

Bei unverschieblicher Stiitzung ist e = 0: die Elastizititsbedingung

= 0 muB fiir jedes Feld allein erfiillt sein; die Felder sind voneinander
unabhanglg

Ist die Zwischenstiitzung dagegen waagrecht frei beweglich, so ist
e — oo; der Horizontalzug H ist iiber alle Felder konstant und die Elasti-
21tatsbed1ngung kann direkt durch Aufsummieren der einzelnen Beitrige iiber
alle Felder angeschrieben werden. Dieser Grenzfall ist z. B. bei als Pendel-
stiitzen ausgebildeten Masten verwirklicht.

Dieser letztere Fall tritt auch bei abge-
spannten Tiirmen auf (Fig. 9). Einer am Turm-
kopf angreifenden Last W hilt der Unterschied
der Horizontalziige

AH =Hy—H, =W >}

hy

Gleichgewicht. Die Elastizitétsbedingung dieser
(hier in einfachster Form skizzierten) Aufgabe
lautet:

51 = *‘52

und damit, wenn beide Seile mit H, vorgespannt sind,

~

1

Lys
EF,

1 1 |
g Mg-dx(h,lg—H02>=——(H1+AH—H0)-

(HI_HO)' El

2

+ cos?a

S (O

1 1
g M d"((17714-411)2 - H02)
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Z
L ! : )
(2H, + AH~2Hy) 7 — cos a!g Me- (57 T @Ay T H) =0

b) Aufhingung der Seile.

Bei Tragmasten sind die Seile meist an Isolatorenketten aufgehingt.
Das Kraftebild in der Aufhangung ist in Fig. 10 skizziert:

Fig. 10

Nach dem Krifteplan der Fig. 10, in dem die Neigungswinkel der Seilkrifte
der Gleichung (19) entsprechen, ergibt sich aus der Parallelitit von R, mit
der Isolatorenkette:

Hm +1 — Hm . Em

Hy - tg Cp — Qr'r,z + Q;n+1 — Hmy tg Q41 o hm

woraus

Hup (b + & -t 0m) + En(Qmyy — Qm) ) (21)

H =
e bm + Em - tgOCm+1

Im Ausgangszustand ist meist £ = 0 und H,,,y = H,, = konst. Eine gra-
phische Berechnung von H, , ; ist moglich, doch aus Genauigkeitsgriinden,
besonders wegen der auf die Aufhingung wirkenden Krifte, nicht zu emp-
fehlen. Die Rechnung ist im iibrigen analog durchzufiihren wie fiir Fall a).

Damit sind auch die Auflagerkraft R,, und ihre Komponenten W,, und V,,
bestimmt:

Vie = Hp {8 ¢ — Qn + Qs — Hmyy tg Om 1
I’Vm = lipmy — Hm
Ry = VV,,2, +WE= V(Hm'tg tm—Qm+ Qmi1—Hmy1 1€ 1) + (Hmy1 — Hn)? (22)

.

-~

Falls ¢m+ . groBer ist als «,,, kann die Auflagerkraft negativ werden; Druck
in der Isolatorenkette ist aber (mit einer gewissen Sicherheit) zu vermeiden.
Der kritische Grenzfall ist durch R, = 0 gekennzeichnet. Dafiir ist

Vie = 0: H, . (tgam ——-tgam-m)—errlz . Qr,nl =0. (23)
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c) Auflagerung in Seilschuhen.

Diese Auflagerungsart kommt als Normalfall bei Tragseilen von Luft-
seilbahnen vor. Hier ist der Zusammenhang zwischen H, und H, , ; beim
Ubergang iiber die Stiitze m nicht mehr, wie bei den Fillen a) und b), von
den Verschiebungen £,, sondern nur noch von den Gleichgewichtsbedin-
gungen am Seilschuh abhiingig. Falls das Seil reibungsfrei im Seilschuh
gleiten kann, sind die angreifenden Seilziige gleich groB:

S = Stm41 > (24)
wobei durch den Index O der Fall ,,Reibung null‘“ bezeichnet werden soll.
Nach dem Krifteplan der Fig. 11 ist
51;22 = Hn2t + (Hm’tg“m— Qr’r;)z = 5612n+1 = H02m+1 + (H0m+1 'tgamﬂ + Qr;l+1)2
woraus

Q;nzﬂ — 2 Qm41 + Homsr + 1€ @miy + Hogm%l (14182 an,) = Su

oder geordnet

5 B , 2 tg Cmiy S';;Z _ Q;'?‘H
H0m+1 Hom+1 Qm+1 1+ tg2 Qm 4y 1 + tg‘“’ Umyy ’

. 1 . ' '
woraus mit 1 -+ tg2a = o sich der gesuchte Wert von H, ,, + ; nach kurzer

Zwischenrechnung ergibt zu

H2

/
Hymi1 = Qmayr - COS oty [sin Uy + V ,';’ — COS? Ay (25)

m+1

Damit kann R, , nach Gleichung (22) bestimmt werden.

//’id//ﬂf/
/7'anm A”/‘

Fig. 11

Falls Reibung zwischen Seil und Seilschuh vorhanden ist, wird die Auf-
lagerkraft R, annidhernd, und zwar mit vernachlissigbar kleinem Fehler, um
den Reibungswinkel u gegeniiber R, abgelenkt. Dabei soll (Fig. 11) der
Reibungswinkel dann positiv sein, wenn die Reibungskraft F eine VergroBe-
rung von S’ , gegeniiber &, bewirkt. Nach Fig. 12 ist

A8y _ Rom
sin u sing’
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Den Winkel g erhalten wir aus

B Tyt + e
wobei v, durch

tg /4}0 = IJE)JEL_ H"n

-—

om
gegeben ist.
Mit 4H, = 48§, cosa,, . finden wir
Sif g« COS Uy
sin 8

AHIu:Rom'

und damit
Sin u - COS oty 4y
sin

Hm_‘_l —_— ,H()m+1 + R(ym * ] (26)

Damit ist der ganze Kréfteplan bestimmt; insbesondere kann man aus der
bekannten Gleichung

Smsr = Sm - e (27)

die Genauigkeit der mit x4 angenommenen Ablenkung von R, gegeniiber
R, im Einzelfall iiberpriift werden. Gleichung (27) kann zu einer einfachen
graphischen Losung beniitzt werden, indem B’ durch eine logarithmische Spi-
rale mit dem Pol 0 von A aus (Fig. 11) (bezw. B durch einen Kreisbogen)
bestimmt wird. Da aber die Winkel zwischen den Seilkriften S in prak-
tischen Fillen meist klein sind, also schleifende Schnitte entstehen, ist mit
Riicksicht auf die Genauigkeit besonders der Auflagerkrifte (Stiitzenbemes-
sung) die rechnerische Bestimmung der Krifte einer graphischen Losung
vorzuziehen.

Der Rechnungsgang zur Bestimmung der Horizontalziige H ist grund-
sitzlich wie bei den Féllen a) und b) durchzufiihren. Eine Besonderheit be-
wirken die Reibungskrifte, die entgegen der Differenz der Seilziige S wirken.
Die Reibungskrifte beteiligen sich also an der Aufnahme der durch die Be-
lastung eines Feldes entstehenden VergroBerung der Seilkrifte und zwar
vom belasteten Feld aus nach beiden Seiten so weit weg, bis die Seilkrifte
auf diejenigen des Ausgangszustandes abgebaut sind.

6. EinfluB der Seilsteifigkeit.

An Stellen scharfer Kriimmung, also an den Angriffspunkten von Einzel-
lasten und bei erzwungener Abbiegung, treten infolge der Biegungssteifig-
keit des Seiles zusitzliche Biegungsbeanspruchungen auf, die durch die be-
kannte Beziehung der Biegungsmomente M,

mzm% (28)
bestimmt sind.

Fiir erzwungene Abbiegung mit Kriimmungsradius o ist mit Gleichung
(28) die Aufgabe grundsitzlich geldst; wir wollen deshalb nachstehend nur
noch den Fall des biegungssteifen Seiles unter Einzellasten untersuchen.
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Hier ist, im Gegensatz zum biegsamen Seil nach Gleichung 1, das Biegungs-
moment M, nicht null, sondern es ist

Ms=M, —H.y (29)

’” 77

Setzen wir M, nach Gleichung (28) und mit
J

1 y _
e (142t secdy

in Gleichung (29) ein, so erhalten wir die Differentialgleichung des biegungs-
steifen Seiles.

V'EJ.cos®¢p—H-y+ M, =0. (30)

Da wir es in praktischen Fillen immer mit flachen Seilen mit kleinem Durch-
hang zu tun haben, diirfen wir mit geniigender Genauigkeit cos¢ durch cos «
ersetzen und erhalten die leicht 16sbare Gleichung

y'-EJ-cosba—H-y+ M, =0. (31)

Wir kénnen iibrigens cos ¢ durch cos ¢, ersetzen und erhalten dadurch eine
etwas genauere, aber immer noch leicht 16sbare Gleichung (31).

Der Unterschied von Gleichung (31) gegeniiber der in der Baustatik iib-
lichen Form fiir die Differentialgleichung der lotrechten Biegungslinie y,

M

Vv = 7 "EJ cosa

ist durch Fig. 13 mit y, = y-cos?« erklirlich.
|

ZI Jx
NN
Y J

Nun interessiert uns hier allerdings nicht in erster Linie der Durchhang y
selbst, sondern die Durchhangsianderung 4 y infolge der Seilsteifigkeit, weil
ja damit das Seilmoment

H-Ay=H-(ys—y) = M, (32)
bestimmt ist. Mit y;
M,
J’s — H

haben wir hier den Durchhang des biegsamen Seils bezeichnet.

Setzen wir
y=y—4dy
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in Gleichung (31) ein, so erhalten wir

(s — Ay) - EJcosPa — H - (ys — Ay) + My =0

woraus mit
Heys=M,, yi=—1, Ay -H=M,
sich eine Differentialgleichung fiir M, ergibt:
" H
Ms*TW'Ms—I-(]—O. (33)

Zur Auflosung solcher Gleichungen habe ich frither ein baustatisches Ver-
fahren durch Umsetzen in ein dreigliedriges Gleichungssystem angegeben %).
Fiir Gleichung (33) ergibt sich danach, je nachdem, ob man die Belastungs-
funktion in Trapeze aufteilt oder durch Parabeln je iiber zwei Felder begrenzt
denkt, mit

A x? H
12 EJcosda

C ==

die Trapezformel
— Msm (1 =20+ Msm(2+8¢) —Msmp (1 —20)=4dx - Py, =

. ra— 1/EJcos®a
= PuV120. 525
oder die Parabelformel
S Ej 3
Moy (1—¢) + My (2 + 106) — My ppyy (1 —26) = Pp-{12¢- —i]?liﬁ‘f

Dabei brauchen diese Gleichungen nicht etwa iiber die ganze Seillinge an-
geschrieben zu werden, da ja die Seilmomente nach beiden Seiten rasch ab-
ch;_;su x je beid-
seitig von Einzellasten oder Lastgruppen. Fiir den Angriffspunkt einer Ein-
zellast ist wegen der Unstetigkeit in M, die Trapezformel zu verwenden,
wiahrend fiir unbelastete Teilpunkte aus Genauigkeitsgriinden die Parabel-
formel vorzuziehen ist. Die Grof3e der Teile 4 x ist so zu wihlen, dafl ¢ nicht
grofier als etwa 0,05 wird.

Die Auflésung der Gleichung (33) nach diesem Verfahren ist nach-
stehend in Tabelle 3 fiir ein waagrechtes Seil gezeigt. Wir wihlen ¢ = 0,04,

woraus
aaa . 1/E/ EJ
Ax =048 . |/°; = 06028 - ]/ﬁ,

die Rechnung wird nur fiir 4 Felder statt fiir 4:0,6928 =~ 6 durchgefiihrt.
Die Randbedingung lautet M;, = 0; M, verlauft symmetrisch zum Lastpunkt.

klingen; es geniigt ein Untersuchungsbereich von etwa 4 -

%) F.StUssi, Die Stabilitit des auf Biegung beanspruchten Tréigefs. I.V.B.H., Ab-
handlungen, Band III, 1935.
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Tabelle 3.
M;, \\ Mg, :\ Mg | M, Bel. glied
1 240 | —0,96 —
2 —0,96 2,40 |—096 | o
—0384 | —
2016 | — 0,96
3 | —096 | 240 [—0,96
| —0,4571 _
; 1,429 | — 0,96
m | —1,84 | 232 0,6028
i — 0,9092
? 1,4108 0,6928
M,= | 00462 01155 0,2427| 04911| -P- VEHJ
. . . X E7
Der groBite Wert von M; im Lastpunkt ist mit M, = 0,4911-P. =

um rund 1,8 9% kleiner als nach der bekannten Formel von ISAACHSEN.

Wird die Berechnung mit 6 Feldern durchgefiihrt, so sinkt der Fehler
auf rund 1 9. Eine genauere Gleichung fiir m kann iibrigens aus der be-
kannten GroBe des Knickwinkels von M, in m leicht aufgestellt werden 6).

Die Bedeutung eines solchen baustatischen Verfahrens gegeniiber For-
meln fiir Spezialfidlle beruht darauf, daB es die Untersuchung beliebig all-
gemeiner Anwendungsfille gestattet.

Zusammenfassung.

Die Form eines biegsamen Seiles ist bestimmt durch das Seilpolygon
zur Belastung; bei beliebig gerichteten Seilbelastungen ist der Begriff des
Seilpolygons zu erweitern. Die GroBe des Horizontalzuges H ist entweder
durch ein Spanngewicht festgelegt oder dann durch eine Elastizititsbedin-
gung zu bestimmen. Diese Elastizititsbedingung fithrt auf eine Gleichung
dritter Ordnung fiir /: das Seilproblem ist ein Spannungsproblem dritter
Ordnung, das durch Vernachlissigung von Nebeneinfliissen auf ein Span-
nungsproblem zweiter Ordnung vereinfacht werden kann. Das biegungs-
steife Seil wird durch eine Differentialgleichung beherrscht, die der Durch-
biegungsgleichung des Versteifungstrigers einer verankerten Hingebriicke
eng verwandt ist. Bei den praktisch vorkommenden geringen Seilsteifigkeiten
haben die Biegungsmomente nur ortliche Bedeutung.

Résumé.

La forme d’une corde fléxible est déterminée par le polygone funi-
culaire des charges; lorsque les forces appliquées a la corde ont une direction
quelconque, il est indispensable de compléter la notion du polygone funi-

6) F. STUSSI, Die Berechnung verankerter Hangebriicken. Mitt. a. d. Institut f. Baustatik
an der E.T.H., Heft 2. In Vorbereitung.
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culaire. La grandeur de la traction horizontale H est déterminée soit par
un contrepoids, soit par une condition d’¢élasticité. Cette condition d’élasticité
conduit a une équation du 3¢ ordre pour /; le probleme de la corde est un
probleme de tensions du 3¢ ordre qui peut étre ramené a un probleme du
2¢ ordre si l’on néglige des influences secondaires. La corde rigide
peut étre représentée par une équation différentielle trés étroitement parente
a I’équation de la ligne élastique de la poutre raidisseuse d’un pont suspendu
avec cibles ancrés. La rigidité de la corde étant, en fait, trés faible, les
moments de flexion n’ont qu’une importance locale.

Summary.

The form of a flexible rope is determined by the funicular polygon
for the loading; for some particular arrangements of loads on the rope the
conception of the funicular polygon is to be extended. The magnitude of the
horizontal force H is either determined by a stressing weight or has to be
derived from an elasticity condition. This condition leads to an equation of
the third order for H: the rope problem is a stress problem of the third
order which can be simplified into a stress problem of the second order by
neglecting subsidiary influences. The form of a stiff rope is expressed by
a differential equation which is closely related to the loading equation of
the stiffening girder of an anchored suspension bridge. With the slight
stiffnesses of ropes occurring in practice, the bending moments have only
local significance.
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