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ZUR BIEGUNG UND VERDREHUNG
DES DÜNNWANDIGEN SCHLANKEN STAHLSTABES.

ETÜDE SUR LA FLEXION ET LA TORSION D'UNE BARRE EN ACIER
ELANCEE ET Ä PAROIS MINCES.

CONCERNING THE BENDING AND TORSION OF A THIN-WALLED
SLENDER STEEL BAR.

Prof. Dr. F. STÜSSI, Eidg. Techn. Hochschule, Generalsekretär für Stahlbau
der I. V. B. H., Zürich.

1. In der klassischen Biegungslehre nach Navier werden die sechs
räumlichen Gleichgewichtsbedingungen zwischen den äußern Schnittkräften
und den innern Spannungen in einem Stabquerschnitt in zwei von einander
unabhängige Gleichungsgruppen aufgeteilt: Die erste dieser Gruppen
bezieht sich auf das Gleichgewicht der Biegungsmomente und Normalkräfte
(Mx, My und N) mit den Normalspannungen o, die zweite auf das

Gleichgewicht der Querkräfte und Torsionsmomente (Qx, Qy und T) mit den
Schubspannungen r. Daß diese Aufteilung eine Einschränkung des Gültigkeitsbereiches

der NAViER'schen Biegungslehre zur Folge hat, ergibt sich aus
den C. von BACH'schen Biegungsversuchen an U-Trägern1), bei denen im
Gegensatz zur klassischen Biegungslehre ursprünglich ebene Querschnitte
nicht eben blieben und die Normalspannungen nicht linear über den
Querschnitt verteilt waren. R. Maillart2) hat die Bedeutung des
Schubmittelpunktes für die Biegung von Stäben mit unsymmetrischem
Querschnitt erkannt; ungefähr gleichzeitig bestimmten auch H. Schwyzer 3) und
A. Eggenschwyler 4) den Schubmittelpunkt als Angriffspunkt der äussern
Belastung für verdrehungsfreie Biegung. S. Timoshenko 5) verdanken wir
die Lösung des Torsionsproblems von I-Trägern auf Grund der Erkenntnis,
daß bei der Verdrehung solcher Profile nicht nur Torsionsschubspannungen,
sondern auch Flanschquerkräfte und Flanschbiegungsmomente und damit
Normalspannungen o auftreten. Diese Normalspannungen infolge Torsion
sind es, die im Widerspruch mit der Aufteilung der Gleichgewichtbedingungen

in zwei unabhängige Gruppen und damit auch zur Voraussetzung
vom Ebenbleiben der Querschnitte der klassischen Biegungslehre stehen;
sie sind damit die Ursache, daß die klassische Biegungslehre heute nicht nur
aus erkenntnistheoretischen Gründen, sondern auch wegen den Bedürfnissen

C. v. Bach : Versuche über die tatsächliche Widerstandsfähigkeit von Balken mit
[ -förmigem Querschnitt. Z. d. V. d. I. 1909, 1910. S. auch „Elastizität und Festigkeit",
Berlin, Springer.

R, Maillart: Zur Frage der Biegung. Schweiz. Bauzeitung Bd. 77, 1921.
3) H. Schwyzer: Statische Untersuchung der aus ebenen Tragflächen zusammengesetzten

räumlichen Fachwerke. Diss. E. T. H. 1920.
4) A. Eggenschwyler: Über die Festigkeitsberechnung von Schiebetoreu und

ähnlichen Bauwerken. Diss. E. T. H. 1921.
5) S. Timoshfnko: Einige Stabilitätsprobleme der Elastizitätstheorie. Zeitschr. f.

Math. u. Physik 1910.
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der Bemessungspraxis erweitert werden muß. Die späteren Arbeiten über
dieses Problem, deren wichtigste von C. Weber6), E. Trefftz7), F. und H.
Bleich 8) und H. Neuber 9) herrühren, haben die Erkenntnisse über die
Verdrehung zusammengesetzter dünnwandiger Stahlstäbe weitergefördert.

Nachstehend wird eine direkte und für die Konstruktionspraxis geeignete
Darstellung des Problems mit elementaren Mitteln der Baustatik versucht,
ausgehend von der Doppelbedeutung des Schubmittelpunktes, die auf
einfachste Weise mit Hilfe des MAxwELL?schen Reziprozitätssatzes aufgezeigt
werden kann.

2. Wenn ein Stab durch ein Drehmoment X belastet wird, so dreht sich
jeder Querschnitt des Stabes um einen noch zu bestimmenden Punkt 0
(Fig. 1). Greift nun in einem dieser Punkte 0, in beliebiger Schnittebene,
eine Last Y an, so leistet sie während der Verdrehung des Querschnittes
infolge X keine Arbeit, da die Verschiebung ayx des Punktes 0 in Richtung
von Y infolge des Momentes X null ist:

ayx 0 (1)

Nach dem MAxwELL'schen Reziprozitätsgesetz ist

UXy Uyx y \£)
da damit auch

axy= 0, (3)

leistet auch das Drehmoment X während einer Belastung durch Y keine
Arbeit oder infolge einer Belastung durch Y in 0 verbiegt sich der Querschnitt
verdrehungsfrei. Damit ist die doppelte Bedeutung des
Schubmittelpunktes 0 nachgewiesen: der Schubmittelpunkt 0 ist sowohl
Drehpunkt des Querschnittes bei Verdrehung wie auch Lastangriffspunkt
für verdrehungsfreie Biegung.

Die beiden Belastungszustände X und Y sind wegen axv ayx 0
voneinander unabhängig; jede äußere Belastung des Stabes kann in die
beiden von einander unabhängigen und damit je für sich erfaßbaren
Teilbelastungen X und Y zerlegt werden.

Aus der doppelten Bedeutung des Schubmittelpunktes ergeben sich auch
zwei Wege zu seiner Bestimmung: der Schubmittelpunkt kann sowohl aus
der Lage der innern Schnittkräfte bei verdrehungsfreier Biegung, wie auch
als Drehpunkt bei reiner Verdrehung bestimmt werden. Es wird sich zeigen,
daß die erste Möglichkeit bei offenen Querschnitten zu einer recht einfachen
Darstellungsart des Torsionsproblems führt, während die zweite bei
geschlossenen Kastenquerschnitten angezeigt sein dürfte. Der Unterschied
zwischen diesen beiden Querschnittsformen beruht darauf, daß bei der Biegung
von schlanken Stäben mit offenem Querschnitt der Einfluß der Schubspannungen

auf die Formänderungen der einzelnen Stabteile vernachlässigbar
klein ist, während bei der Verdrehung von Stäben mit geschlossenem
Querschnitt gerade die Schubspannungen (Schubfluß r-d) maßgebend werden.

6) C. Weber: Biegung und Schub in geraden Balken. Z. a. M. M. 1924. Übertragung
des Drehmomentes in Balken mit doppelflanschigem Querschnitt. Z. a. M. M. 192ö.

7) E. Trefftz: Über den Schubmittelpunkt in einem durch eine Einzellast gebogenen
Balken. Z. a. M. M. 1935.

8) F. u. H. Bleich: Biegung, Drillung und Knickung von Stäben aus dünnen Wänden.

I.V. B. H., Vorbericht z. Kongreß Berlin 1936.
9) H. Neuber : Schubmittelpunkt und Querschnittsverwölbung dünnwandiger Träger

unterhalb der Beulgrenze. Z. a. M. M. 1941.
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In den folgenden Untersuchungen wollen wir uns auf den für den Stahlbau
wichtigen Fall des dünnwandigen Stabes beschränken, sodaß die Widerstände

der einzelnen Scheiben, aus denen sich ein Stab zusammensetzt, gegen
Verbiegung in Richtung der kleineren Querschnittsabmessungen gegenüber
den Widerständen in Scheibenebene vernachlässigbar klein werden. Für die
Einzelscheiben soll von vornherein die NAViER'sche Biegungslehre als gültig
angenommen werden.

Bei der Betrachtung der Formänderungen des Stabes gehen wir davon
aus, daß die Querschnittsform erhalten bleiben soll. Diese Voraussetzung,
die bei Walzprofilen durch den Zusammenhang der einzelnen Scheiben, bei
zusammengesetzten Querschnitten auch durch Querschotten erfüllt wird,
ersetzt die speziellere Voraussetzung vom Ebenbleiben der Querschnitte bei
der klassischen Biegungslehre.

e„
i /// <focn/in / dz^—p

\ W
'S

'£

Fig. 1 Fig. 2 Fig. 3

3. Bei verdrehungsfreier Biegung erleiden alle Punkte eines
Querschnitts gleiche Verschiebungen u. Bezeichnen wir nach Fig. 2 die
Komponenten der Verschiebung u in bezw. senkrecht zur Schnittebene mit r)
und |, den Winkel zwischen rj und u mit cp, so folgt

rj u
£ u

COS cp

sin cp
(4)

Wegen der Voraussetzung dünner Scheiben brauchen wir die Verschiebungen
I nicht weiter zu berücksichtigen.

In einer herausgetrennt gedachten Scheibe n eines Stabes mit offenem
Querschnitt sollen die Randspannungen die Werte oun und o°n besitzen; zwei
um den Abstand dz voneinander entfernte Schnitte werden sich damit nach
Fig. 3 gegenseitig um den Winkel

dan
bn- E

dz (5)

drehen. Das Verhältnis dxn : dz ist die Neigungsänderung der elastischen
Linie oder

J OLdan _ On On

dz bn • E
'in

dz2
h7 « (6)

Bei für den ganzen Stab gleichbleibender Richtung von u wird nach
Gleichung 4 r]n" u" • coscpn; da u" wie u für den ganzen Querschnitt
konstant ist, so folgt daraus für alle Scheiben des Querschnitts

E bn • cos cpn bn - cos cpn
— konst. (7)
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Gleichung 7 bedeutet nun folgendes: Wenn wir die Randfaserdehnungen e

der einzelnen Scheiben des Querschnittes von einer gemeinsamen
Querschnittsebene aus auftragen, so lassen sich diese Dehnungen durch parallele
Ebenen, von denen je eine zu einer Scheibe gehört, begrenzt denken. Da
aber in zusammenstoßenden Kanten benachbarter Scheiben wegen ihres
Zusammenhanges die Dehnungen eun und e0n+1 gleich groß sein müssen, so fallen
alle diese parallelen Ebenen in eine einzige zusammen: bei
verdrehungsfreier Biegung bleiben ursprünglich ebene
Querschnitte auch nach der Formänderung eben.

Dies ist aber nichts anderes als die Voraussetzung der klassischen
Biegungslehre nach Navier, die damit für den Fall verdrehungsfreier
Biegung, d. h. bei Belastung durch den Schubmittelpunkt, sowohl bezüglich
der Beanspruchungen wie der Formänderungen, voll gültig bleibt. Die
Normalspannungen ergeben sich damit, bezogen auf die Hauptachsen x und y
des Querschnitts, aus der bekannten Spannungsformel

TV Mx ^_My
r Jx Jy

während für die Durchbiegungen, unter der für schlanke Stäbe zulässigen
Vernachlässigung des Schubspannungseinflusses, die Differentialgleichungen
der elastischen Linie

U=—TT> v"=--f (9)
C-Jx Jy

gültig bleiben.

Die Querkräfte Qy ^ und Qx ^y dz dz

müssen dabei durch den Schubmittelpunkt 0 gehen; damit können wir den
Schubmittelpunkt 0 des Querschnitts als Schnittpunkt der Resultierenden
Qy und Qx der Schubspannungen x infolge MK und My, bezw.

dMx dMv—~^ und —7^-
dz dz

bestimmen.

Die Schubspannung r im Schnitt y' der Scheibe n finden wir aus einer
Gleichgewichtsbetrachtung für den schraffierten Scheibenteil dz • y' der Fig. 4:

i'p U-*+H-$ 00)

Für einen freien Scheibenrand ist t0 0; für einen Innenrand ergibt
sich (bei den hier vorausgesetzten offenen Querschnitten) r0 aus der

Randschubspannung der vorhergehenden Scheibe. Die Werte — o' ergeben

sich beispielsweise für eine zur y-Achse parallele Belastung aus der Span-
nungsformel Gleichung 8 zu

•, £ £., (8„
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zy als Resul-Aus den Schubspannungen x ergeben sich wegen %yz x.

tierende über die Scheibenbreite bn die Scheibenquerkräfte £trt
bn

Qn — $ r • d • dy; (")
dabei ist das negative Vorzeichen deshalb einzuführen, weil die bei den in
Fig. 4 eingetragenen Spannungsrichtungen auftretende Scheibenquerkraft
negativ ist.

er
T0-d0-dz <5+d6

i \i ' W' y

l>/7

r

Z-d-dz

Fig. 4

drh+esL

(tel+*'u)

Fig. 5

Für Scheiben konstanter Stärke d können die Schubspannungen x und
aus der parabelförmig begrenzten Schubspannungsfläche die Scheibenquerkräfte

£Xn einfach berechnet werden (Fig. 5):

&n=—d-btt(T0 + ^ (2tj'0 + O-'a)) (IIa)

Bei der Beanspruchung eines Stabes auf Torsion tritt im allgemeinen
die Schwierigkeit auf, daß sich sowohl die Torsionsschubspannungen wie die
Flanschbiegungsmomente WI bezw. Flanschquerkräfte £} an der Aufnahme
des Torsionsmomentes T beteiligen. Die Größe der beiden Anteile tr (Torsion)

und ta (Flanschbiegung) ist einmal aus der Gleichgewichtsbedingung

T=tr+tc (12)

und ferner aus der Formänderungsbedingung, daß die Querschnittsverdrehungen

cp aus beiden Anteilen gleich groß sein müssen, zu bestimmen.
Für den Torsionsanteil tr ist der Zusammenhang mit dem Verdrehungswinkel
cp gegeben durch die bekannte Beziehung

tx=C Cf', (13)

wobei C G • Jd die Verdrehungssteifigkeit bedeutet.
Mit Hilfe der Abstände a der einzelnen Scheiben vom nun bekannten

Schubmittelpunkt 0 (Fig. 6) lassen sich die Scheibendurchbiegungen y\ und
ihre Ableitungen durch cp ausdrücken:

j*> rjn= an • cp; vtn"r an • cf.
Aus Gleichung 6 folgt durch Differentiation

a'«_i — o'n

Fig. 6 bn>E
Tl— ?]n an • cp"

(14)

(15)

Zur Bestimmung der n-\-\ unbekannten Werte <f an den /z + 1 Kanten lassen
sich bei n Scheiben n Gleichungen 15 anschreiben; außerdem gilt, da bei

Abhandlungen VI 19
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Verdrehung die Längskraft N und ihre Änderung null sind, auch

J a'. dE C; (16)

Gleichung 16 läßt sich durch die n-\-\ Werte o' an den Kanten ausdrücken.
Durch Auflösen des aus n Gleichungen 15 und der Gleichung 16 bestehenden
Gleichungssystems ergeben sich die gesuchten Werte o' in der Form

o'n ** • <*n ' bn • E • cp'" (16 a)

und daraus nach Gleichung 11 die Flanschquerkräfte €in in der Form

Qn — Dn • f • <p'". (16 b)
Mit v

4 20«.^= - 2 aÄ£>Ä • f • ?>'" — A • cp'", (16c)

wobei der Drehsinn der Momente O • a zu beachten ist, liefert Gleichung 12
nun die Grundgleichung des Torsionsproblems:

T C ¦ y/ — A - ?>'". (17)

Die Zahlenwerte von <x, D und A ergeben sich numerisch aus dem ange-
C l2

gebenen Rechnungsgang. Führen wir noch die Abkürzung a2 —-— ein,
/\

so läßt sich Gleichung 17 mit tT C cp' in der Form schreiben

T=tT-~-f'T. (17a)

Diese Grundgleichung des Torsionsproblems ist für I-Träger schon von
S. Timoshenko 5) angegeben worden; sie ist also in der gleichen Form für
alle offenen Querschnittsformen gültig. Bei beliebiger Form der Belastungsfunktion

T kann sie beispielsweise durch Umsetzen in ein dreigliedriges
Gleichungssystem

- (67 - 1) tm_, + (127 + 4) tm- (6y - 1) tm+1 7m_1 + 47w+r,+1=^. Kr, (18)

l2
wobei y ==-r-2 §> Se^st werden10). Als Randbedingung ist bei frei
drehbaren Flanschenden die Gleichung

(Oy + 2)tA — {6y — \) • k 2TA + T± (18a)

einzuführen; bei starr eingespannten Flanschenden ist tA 0 zu setzen.
Mit den t-Werten sind aus Gleichung 13 auch die Werte cp' und damit

aus Gleichung 17 die Werte cp'" bekannt; mit Hilfe von Gleichung 16a
können damit die Werte o' und durch Summation direkt oder über cp" auch
die Längsspannungen o bestimmt werden.

4. Genau genommen ist auch bei offenen Querschnitten ein Einfluß
der Schubspannungen auf den Schubmittelpunkt vorhanden. Wir können uns
dies am einfachen Beispiel der Fig. 7 veranschaulichen: Für jeden der beiden
ungleichen Flanschen gehorcht die Durchbiegung der Beziehung

l0) F. Stüssi: Die Stabilität des auf Biegung beanspruchten Trägers. I. V. B. H.,
Abhandlungen Bd. III, 1935.
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V"
Mx

EJX

M"
G-k-E

Die Last P verbiegt den Stab dann verdrehungsfrei, wenn jeder Flansch
unter seinem Lastanteil die gleiche Durchbiegung aufweist. Da aber M und
M" einander im allgemeinen nicht ähnlich sind und die Querschnittswerte /
und Ef sich mit verschiedenen Flanschhöhen verschieden verändern, wird die
Lage des Schubmittelpunktes von der Lage des Querschnittes abhängig, für
den wir die Verdrehungsfreiheit fordern. Der Schubmittelpunkt ist also nicht
mehr ein Querschnittsfestpunkt, sondern auch von der Art der Belastung und
der Stablänge abhängig. Praktisch ist jedoch dieser Einfluß der Schubspannungen

bedeutungslos; er verursacht erst bei ganz kurzen Stäben, bei denen
unsere Voraussetzungen der baupraktischen Biegungslehre auch sonst nicht
mehr zutreffen, eine merkliche Änderung in der Lage des Schubmittelpunktes.

FtJt
S\o

Fig. 7

¦**.+¦ T J*b —

1 w

Fig. 8

5. Die angegebene und auf die klassische Biegungslehre aufbauende
Darstellung des Torsionsproblems versagt bei geschlossenen Querschnitten,
weil sich dort die Schubspannungen tö bei verdrehungsfreier Biegung nicht
mehr allein aus den Normalspannungen o bezw. o' durch Sumrnation von
einem freien Rand her berechnen lassen. Der Schubmittelpunkt ist also hier,
wenigstens von den Normalspannungen o bei verdrehungsfreier Biegung aus
betrachtet, in seiner Lage unbestimmt. Für diese Fälle soll nachstehend am
Beispiel des rechteckigen Kastenquerschnittes eine direkte Darstellung des
Torsionsproblems skizziert werden.

In einem Querschnitt nach Fig. 8 wird ein Torsionsmoment in der Hauptsache

durch den Schubfluß s,

s t0 • d

aufgenommen. Wegen der Voraussetzung dünner Scheiben darf x0 gleichmäßig

über die Scheibenstärke angenommen werden oder die
Torsionsschubspannung infolge der Verdrehung der Einzelscheiben darf gegenüber
t0 vernachlässigt werden. Aus Gleichgewichtsgründen ist

To1 • dx — t02 • d2 — 5 konst.

Die Scheibenquerkräfte Os infolge 5

051 Q53 5 • b, €ls2 Q54 5

bilden zusammen ein Drehmoment

ts 2s • b • //.

(19)

(20)

(21)
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Der zugehörige Drehwinkel cp wird durch die Scheibendurchbiegungen
rj bestimmt; es ist infolge der gleichmäßig über Scheibenhöhe verteilten

Schubspannung t0 -7

ls G O ¦ d (22)

Für das Scheibenpaar 1 und 3 ergibt sich eine gegenseitige Verschiebung
von y]x -f- rjs und damit ein zugehöriger Drehwinkel

<Psi _ Vi + Vs

Analog ist

99,51 - Uh W + dj' (23)

Sind die beiden Drehwinkel cpx und cp2 gleich groß,

(24)

so ist damit auch die Formänderungsbedingung von der Erhaltung der
Querschnittsform erfüllt, der Schubfluß 5 nimmt allein das ganze Torsionsmoment
auf: es ist T t*.

*3 \ \ÜL

^S*

w
Fig- 9

MUman».

¦*üi^iiijjuiU <?;

Fig. 10

W

dz &ILw

Fig. 11

Für die Verwirklichung dieses „reinen Torsionsfalles" können, auch bei
beliebiger Querschnittsform des Kastenquerschnittes, die Stärken dreier
Seiten beliebig angenommen werden, während die vierte daraus bestimmt
ist. In Fig. 9 muß für diesen Fall die Bedingung

1 1 1 1

dx • ax do* üo d» • «o dd- a3
(24 a)

erfüllt sein; der Schubmittelpunkt 0 ist durch den Schnittpunkt der zwei
Geraden

und
dx ß3

also durch drei Seitenstärken d, bestimmt.
Ist die Bedingung 24 bezw. 24 a nicht erfüllt, so verlangt der Zusammenhang

der Einzelscheiben zusätzliche Formänderungen und damit das
Auftreten von Normalspannungen o (Fig. 10). Wird einer der vier Spannungswerte

a beliebig angenommen, so sind die andern drei aus den
Gleichgewichtsbedingungen



Zur Biegung und Verdrehung des dünnwandigen schlanken Stahlstabes 285

(25)
Mx ¦i o -y ¦ dF 0

My =¦ J a ¦ x ¦¦ dF 0

N rr= J odF 0

bestimmbar. Aus den Spannungsänderungen o', deren Verteilung zu der von
o ähnlich verläuft, ergeben sich nun, beginnend an einer Ecke, nach Gleichung
11, Scheibenquerkräfte Oö, die ihrerseits wieder ein Drehmoment ta bilden:

4,= Qi h + Q2 • *. (26)
Zur Bestirrfmung des einen angenommenen Wertes von o müssen nun die
Gleichgewichtsbedingung

T ts + tn (27)
und die Formänderungsbedingung

<Pi <P2 (28)
erfüllt sein.

Diese Berechnungen werden wohl am einfachsten numerisch
durchgeführt. Mit Rücksicht auf möglichst einfache Darstellung soll der
Rechnungsgang am Beispiel der Fig. 11 für einen rechteckigen Kastenquerschnitt
mit je paarweise gleichen Seiten gezeigt werden, für den alle vier Werte
a und o' je gleich groß werden.

Die Gleichgewichtsbedingung Gleichung 27 lautet

T= 2s ¦ h ¦ b + *^?L • *- <^L ¦ <f (2Q)

oder
T hd2 — bd1

S Ybh+ 12— '° (29a)

Bei den Scheibendurchbiegungen rj und damit auch bei den Drehwinkeln cp

ist zu beachten, daß nun außer dem Schubfluß s (Gleichung 22) und den
Normalspannungen a (Gleichung 6) auch die Scheibenquerkräfte £}<,
Beiträge liefern; es ist

Wegen der ungleichmäßigen Schubspannungsverteilung ist hier der
reduzierte Querschnitt kE E' einzuführen. Damit ergibt sich

2 2b2dx „ *
d,hG ' 6ä • kbdx G ^ bhE

und
» - 2 2h2d* » i_

(p2~~d2bG'S 6b.khd2
' ° bhE'°'

Setzen wir nun cp±" cp%" (Formänderungsbedingung) und führen wir
dabei den Wert s' aus der einmal differenzierten Gleichgewichtsbedingung
Gleichung 29 a ein, so erhalten wir nach kurzer Zwischenrechnung die
Gleichung:



286 F. Stüssi

Diese Grundgleichung des Torsionsproblems von Kastenquerschnitten hat
den gleichen Bau wie diejenige der Torsion offener Querschnitte; ihre
Auflösung, zum Beispiel durch Umsetzen in ein dreigliedriges Gleichungssystem,
liefert aus den Änderungen T' der Torsionsmomente, d.h. aus den äußern
Drehmomenten, die Kantenspannung a.

Durchgerechnete Beispiele zeigen, daß der Anteil der Momente ta am
gesamten Torsionsmoment auch bei vom reinen Torsionsfall stark abweichenden

Verhältnissen der Scheibenstärken ziemlich gering ist, sodaß der Schubfluß

auch dort mit
t< T

s 2bh — 2bh
nach Gleichung 21 näherungsweise ermittelt werden darf, eine Feststellung,
die mit den früheren Untersuchungen von A. Eggenschwyler4) überein¬

stimmt. Immerhin ist die genauere Untersuchung mit Berücksichtigung

der Randspannungen o dieses Problems dort angezeigt, wo
die Formänderungen zuverlässig bekannt sein müssen.

F\ 6. Die Torsion bei unsymmetrischen Querschnitten beeinflußt
auch, wie schon A. Ostenfeld n) festgestellt hat, das Knicken
eines zentrisch belasteten Stabes.

Infolge einer Ausbiegung rj des Stabes entstehen Ablenkungskräfte
P • rj" (Fig. 12), in der Schwerachse des Stabes wirkend,

die nicht nur eine zusätzliche Verbiegung, sondern auch eine
Verdrehung um 0 bewirken: der Stab kippt und die kritische
Belastung erfährt gegenüber der EuLER'schen Knicklast eine Ab-

/i[ minderung. Eine baupraktische Behandlung von Kippaufgaben,
p auch bei gleichzeitig wirkender Längskraft, habe ich bereits früher

Fig. 12 angegeben10).

Zusammenfassung.
Die doppelte Bedeutung des Schubmittelpunktes als Angriffspunkt der

Belastung bei verdrehungsfreier Biegung und als Drehpunkt des
Querschnittes bei biegungsfreier Verdrehung wird mit Hilfe des MAxwELL'schen
Reziprozitätssatzes nachgewiesen. Die Formänderungen aus Verbiegung sind
von denen aus Verdrehung unabhängig; jede Belastung läßt sich mit Hilfe
des Schubmittelpunktes in einen rein verbiegenden und einen rein verdrehenden

Anteil zerlegen. Für die verdrehungsfreie Biegung ist die Hypothese
vom Ebenbleiben der Querschnitte als Sonderfall der allgemeineren
Formänderungsbedingung von der Unveränderlichkeit der Querschnittsform
gültig; die klassische Biegungslehre nach Navier mit ihren Folgerungen
bleibt hierfür voll anwendbar. Bei Stäben mit offenem Querschnitt kann aus
der Biegungsbeanspruchung in zwei verschiedenen Richtungen der
Schubmittelpunkt als Schnittpunkt der resultierenden inneren Querkräfte leicht
bestimmt werden; vom Schubmittelpunkt ausgehend läßt sich aber auch eine
einfache Darstellung des Torsionsproblemes angeben. Bei Kastenquerschnitten

kann der Schubmittelpunkt nicht von der klassischen Biegungslehre
aus angegeben werden; für diese Fälle wird ein anderes, direktes Verfahren
skizziert. Auf den Einfluß des Schubmittelpunktes auf das Knickproblem
wird hingewiesen.

n) A. Ostenfeld: Mitt. Nr. 5 u. Nr. 6 des Lab. für Baustatik der Techn.
Hochschule in Kopenhagen, 1931, 1932.
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Resume.
En partant de la loi de reciprocite de Maxwell, Fauteur demontre la

double signification du centre des efforts tranchants (centre de torsion) qui
est tout ä la fois le point d'application de la force dans le cas d'une flexion
sans torsion et le centre de rotation de la section dans le cas d'une torsion
sans flexion. Les deformations engendrees par la flexion sont independantes
de celles dues ä la rotation; il en resulte que toute surcharge peut etre decom-
posee, gräce au centre des efforts tranchants, en une portion de pure flexion
et en une portion de pure torsion. Dans le cas de la flexion sans torsion,
Fhypothese disant que les sections restent planes est un cas particulier de
la condition generale de deformation posant que la forme des sections reste
invariable; c'est pourquoi la theorie classique de Navier et ses consequences
restent entierement valables. Dans les barres ä section ouverte, le centre
des efforts tranchants peut etre determine, en partant de la flexion dans deux
directions differentes, comme point d'intersection des resultantes des efforts
tranchants internes; on peut representer de fagon simple le probleme de la
torsion en partant du centre des efforts tranchants. II n'est par contre pas
possible de determiner sur la base de la theorie classique de la flexion, le
centre des efforts tranchants dans les sections en forme de caisson; Fauteur
esquisse pour ce cas un autre procede de determination directe. L'auteur
montre en outre Finfluence du centre des efforts tranchants sur le probleme
du flambage.

Summary.
The double significance of the centre of twist as point of application

of the loading in the case of bending free from torsion, and as pivot point
of the cross-section in the case of torsion free from bending, is demonstrated
with the help of the Maxwell law of reciprocity. The deformations caused
by bending are independent of those caused by torsion; each loading can,
by means of the centre of shear, be resolved into a purely bending and a
purely twisting part. For bending free from torsion, the hypothesis of the
cross-sections remaining plane holds good as a special case of the more
general condition of elasticity from the immutability of the shape of cross-
section; the classic theory of bending according to Navier with its conclusions

holds still perfectly good for this. In bars with open cross-section the
centre of twist as point of intersection of the resultant internal transverse
forces can easily be determined from the bending stresses in two different
directions; starting with the centre of twist, however, a simple representation
of the torsion problem can also be obtained. In box-sections the centre of
twist cannot be obtained from the classic theory of bending; for these cases
another direct method is sketched. Reference is made to the influence of
the centre of twist on the buckling problem.
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