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ZUR BIEGUNG UND VERDREHUNG
DES DUNNWANDIGEN SCHLANKEN STAHLSTABES.

ETUDE SUR LA FLEXION ET LA TORSION D'UNE BARRE EN ACIER
ELANCEE ET A PAROIS MINCES.

CONCERNING THE BENDING AND TORSION OF A THIN-WALLED
SLENDER STEEL BAR.

Prot. Dr. F. STUSSI, Eidg. Techn. Hochschule, Generalsekretir fiir Stahlbau
der I. V. B. H., Ziirich.

1. In der klassischen Biegungslehre nach NaviER werden die sechs
raumlichen Gleichgewichtsbedingungen zwischen den duBern Schnittkraften
und den innern Spannungen in einem Stabquerschnitt in zwei von einander
unabhidngige Gleichungsgruppen aufgeteilt: Die erste dieser Gruppen be-
zieht sich auf das Gleichgewicht der Biegungsmomente und Normalkréfte
(M,, M, und N) mit den Normalspannungen o, die zweite auf das Gleich-
gewicht der Querkriafte und Torsionsmomente (Q,, @, und 7°) mit den Schub-
spannungen r. DaBl diese Aufteilung eine Einschrinkung des Giiltigkeits-
bereiches der Navier’schen Biegungslehre zur Folge hat, ergibt sich aus
den C. von Bach’schen Biegungsversuchen an U-Trigern!), bei denen im
Gegensatz zur klassischen Biegungslehre urspriinglich ebene Querschnitte
nicht eben blieben und die Normalspannungen nicht linear iiber den Quer-
schnitt verteilt waren. R. MAiLLART 2) hat die Bedeutung des Schub-
mittelpunktes fiir die Biegung von Stiben mit unsymmetrischem Quer-
schnitt erkannt; ungefahr gleichzeitig bestimmten auch H. ScHwyzer 3) und
A. EGGENSCHWYLER %) den Schubmittelpunkt als Angriffspunkt der Aussern
Belastung fiir verdrehungsfreie Biegung. S. TiMOSHENKO ?) verdanken wir
die Losung des Torsionsproblems von I-Trigern auf Grund der Erkenntnis,
daB bei der Verdrehung solcher Profile nicht nur Torsionsschubspannungen,
sondern auch Flanschquerkriafte und Flanschbiegungsmomente und damit
Normalspannungen o auftreten. Diese Normalspannungen infolge Torsion
sind es, die im Widerspruch mit der Aufteilung der Gleichgewichtbedin-
gungen in zwei unabhidngige Gruppen und damit auch zur Voraussetzung
vom Ebenbleiben der Querschnitte der klassischen Biegungslehre stehen;
sie sind damit die Ursache, daB die klassische Biegungslehre heute nicht nur
aus erkenntnistheoretischen Griinden, sondern auch wegen den Bediirfnissen

1) C. v.Bacn: Versuche iiber die tatsichliche Widerstandsfihigkeit von Balken mit
[ -formigem Querschnitt. Z.d.V.d.I. 1909, 1910. S. auch ,FElastizitét und Festigkeit“,
Berlin, Springer.

%) R, ManLart: Zur Frage der Biegung. Schweiz. Bauzeitung Bd. 77, 1921

3) H. ScHwvyzer: Statische Untersuchung der aus ebenen Tragflichen zusammenge-
setzten raumlichen Fachwerke. Diss. E. T. H. 1920.

4) A. EcceEnscHwYLER: Uber die Festigkeitsberechnung von Schiebetoren und dhn-
lichen Bauwerken. Diss. E. T. H. 1921.

S. TimosHenko: Einige Stabilititsprobleme der Elastizititstheorie. Zeitschr. f.

Math. u. Physik 1910.
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der Bemessungspraxis erweitert werden muBl. Die spiteren Arbeiten iiber
dieses Problem, deren wichtigste von C. WEBER ¢), E. TrRerrTz 7), F. und H.
BreicH 8) und H. NEuBER ?) herriihren, haben die Erkenntnisse {iber die Ver-
drehung zusammengesetzter dilnnwandiger Stahlstibe weitergefordert.

Nachstehend wird eine direkte und fiir die Konstruktionspraxis geeignete
Darstellung des Problems mit elementaren Mitteln der Baustatik versucht,
ausgehend von der Doppelbedeutung des Schubmittelpunktes, die auf ein-
fachste Weise mit Hilfe des MaxwELL’schen Reziprozititssatzes aufgezeigt
werden kann.

2. Wenn ein Stab durch ein Drehmoment X belastet wird, so dreht sich
jeder Querschnitt des Stabes um einen noch zu bestimmenden Punkt 0
(Fig. 1). Greift nun in einem dieser Punkte O, in beliebiger Schnittebene,
eine Last Y an, so leistet sie wihrend der Verdrehung des Querschnittes in-
folge X keine Arbeit, da die Verschiebung a,, des Punktes 0 in Richtung
von Y infolge des Momentes X null ist:

@ = 0 | (1)
Nach dem MaxweLL’schen Reziprozititsgesetz ist
. Qxy = Qyx; (2)
da damit auch
ay = 0, (3)

leistet auch das Drehmoment X wihrend einer Belastung durch YV keine
Arbeit oder infolge einer Belastung durch Y in 0 verbiegt sich der Querschnitt
verdrehungsfrei. Damit ist die doppelte Bedeutung des Schub-
mittelpunktes 0 nachgewiesen: der Schubmittelpunkt 0 ist sowohl
Drehpunkt des Querschnittes bei Verdrehung wie auch Lastangriffspunkt
fiir verdrehungsfreie Biegung.

Die beiden Belastungszustinde X und Y sind wegen a,, = a,, = 0
voneinander unabhidngig; jede duBlere Belastung des Stabes kann in die
beiden von einander unabhidngigen und damit je fiir sich erfaBbaren Teil-
belastungen X und Y zerlegt werden.

Aus der doppelten Bedeutung des Schubmittelpunktes ergeben sich auch
zwei Wege zu seiner Bestimmung: der Schubmittelpunkt kanun sowohl aus
der Lage der innern Schnittkrifte bei verdrehungsfreier Biegung, wie auch
als Drehpunkt bei reiner Verdrehung bestimmt werden. Es wird sich zeigen,
dafBl die erste Moglichkeit bei offenen Querschnitten zu einer recht einfachen
Darstellungsart des Torsionsproblems fithrt, wahrend die zweite bei ge-
schlossenen Kastenquerschnitten angezeigt sein diirfte. Der Unterschied zwi-
schen diesen beiden Querschnittsformen beruht darauf, daB bei der Biegung
von schlanken Stiben mit offenem Querschnitt der Einflufl der Schubspan-
nungen auf die Forminderungen der einzelnen Stabteile vernachlissigbar
klein ist, wahrend bei der Verdrehung von Stiben mit geschlossenem Quer-
schnitt gerade die Schubspannungen (Schubfluf z-d) maBgebend werden.

6) C. WeBer: Biegung und Schub in geraden Balken. Z.a. M. M. 1924, Ubertragung
des Drehmomentes in Balken mit doppelflanschigem Querschnitt. Z.a. M. M. 1926.

7) E. Trerrrz: Uber den Schubmittelpunkt in einem durch eine Einzellast gebogenen
Balken. Z.a: M. M. 1035,

8) F. u. H. BreicH: Biegung, Drillung und Knickung von Stiben aus diinnen Win-
den. 1.V.B.H., Vorbericht z. KongreB Berlin 1936.

9) H. NeuBer: Schubmittelpunkt und Querschnittsverwolbung diinnwandiger Triger
unterhalb der Beulgrenze. Z.a. M. M. 1941,
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In den folgenden Untersuchungen wollen wir uns auf den fiir den Stahlbau
wichtigen Fall des diinnwandigen Stabes beschrinken, sodaBl die Wider-
stinde der einzelnen Scheiben, aus denen sich ein Stab zusammensetzt, gegen
Verbiegung in Richtung der kleineren Querschnittsabmessungen gegeniiber
den Widerstianden in Scheibenebene vernachldssigbar klein werden. Fiir die
Einzelscheiben soll von vornherein die NAviER’sche Biegungslehre als giiltig
angenommen werden.

Bei der Betrachtung der Forminderungen des Stabes gehen wir davon
aus, daB die Querschnittsform erhalten bleiben soll. Diese Voraussetzung,
die bei Walzprofilen durch den Zusammenhang der einzelnen Scheiben, bei
zusammengesetzten Querschnitten auch durch Querschotten erfiillt w1rd er-
setzt die speziellere Voraussetzung vom Ebenbleiben der Querschnitte bei
der klassischen Biegungslehre.

! G,
" >" 7 L
/ | i -
&
Fig. 1 Fig. 3

3. Bei verdrehungsfreier Biegung erleiden alle Punkte eines
Querschnitts gleiche Verschiebungen . Bezeichnen wir nach Fig. 2 die Kom-
ponenten der Verschiebung z in bezw. senkrecht zur Schnittebene mit
und &, den Winkel zwischen % und # mit ¢, so folgt

N = u-Ccosg
§ = u-sing

(4)

Wegen der Voraussetzung diinner Scheiben brauchen wir die Verschiebungen
¢ nicht weiter zu beriicksichtigen.

In einer herausgetrennt gedachten Scheibe # eines Stabes mit offenem
Querschnitt sollen die Randspannungen die Werte o% und o9 besitzen; zwei
um den Abstand dz voneinander entfernte Schnitte werden sich damit nach
Fig. 3 gegenseitig um den Winkel

o u
On—Gn . dz

o E -0

drehen. Das Verhiltnis da,: dz ist die Neigungsinderung der elastischen
Linie oder

dan ==

doy _ 0p—0a, _ d’n, »
iz b E g U ©
Bei fiir den ganzén Stab gleichbleibender Richtung von « wird nach Glei-
chung 4 »,” = u” - cosg,; da u” wie u fiir den ganzen Querschnitt kon-
stant ist, so folgt daraus fiir alle Scheiben des Querschnitts
Gtz - Un _ 83 - Eilz .
E-b,-cosqp, by cosqp, kost. (7
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Gleichung 7 bedeutet nun folgendes: Wenn wir die Randfaserdehnungen e
der einzelnen Scheiben des Querschnittes von einer gemeinsamen Quer-
schnittsebene aus auftragen, so lassen sich diese Dehnungen durch parallele
Ebenen, von denen je eine zu einer Scheibe gehért, begrenzt denken. Da
aber in zusammenstoBenden Kanten benachbarter Scheiben wegen ihres Zu-
sammenhanges die Dehnungen &7 und & gleich groB sein miissen, so fallen
alle diese parallelen Ebenen in eine einzige zusammen: bei verdre-
hungsfreier Biegung bleiben urspriinglich ebene Quer-
schnitte auch nach der Formidnderung eben.

Dies ist aber nichts anderes als die Voraussetzung der klassischen
Biegungslehre nach Navier, die damit fiir den Fall verdrehungsfreier
Biegung, d. h. bei Belastung durch den Schubmittelpunkt, sowohl beziiglich
der Beanspruchungen wie der Forminderungen, voll giiltig bleibt. Die
Normalspannungen ergeben sich damit, bezogen auf die Hauptachsen x und y
des Querschnitts, aus der bekannten Spannungsformel
M, M,

X g + jy
wihrend fiir die Durchbiegungen, unter der fiir schlanke Stibe zulidssigen
Vernachldssigung des Schubspannungseinflusses, die Differentialgleichungen
der elastischen Linie

N :
Oy = F + * % (8)

M, M,
= — * V": _ 9
E /o 7 9)

144

u

giiltig bleiben.

dM,

Die Querkrafte @, = =~ _dam,

und Q. = iy

miissen dabei durch den Schubmittelpunkt O gehen; damit konnen wir den
Schubmittelpunkt 0 des Querschnitts als Schnittpunkt der Resultierenden
@, und Q, der Schubspannungen ¢ infolge M, und M,, bezw.

dM, am,
dz und dz

bestimmen.

Die Schubspannung z im Schnitt y’ der Scheibe 7 finden wir aus einer
Gleichgewichtsbetrachtung fiir den schraffierten Scheibenteil dz - y" der Fig.4:

1% de . d,
T_Fjd-d;.der[O.g- (10)
0

Fiir einen freien Scheibenrand ist 7z, = 0; fiir einen Innenrand ergibt
sich (bei den hier vorausgesetzten offenen Querschnitten) 7z, aus der Rand-

schubspannung der vorhergehenden Scheibe. Die Werte gg = ¢ ergeben

sich beispielsweise fiir eine zur y-Achse parallele Belastung aus der Spau-
nungsformel Gleichung 8 zu

_ Ay _ @, (8a)
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Aus den Schubspannungen t ergeben sich wegen t,, = 1, als Resul-
tierende iiber die Scheibenbreite &, die Scheibenquerkrifte Q,

b, . .
Qp=—1[v-d-dy; » (11)
0

dabei ist das negative Vorzeichen deshalb einzufiihren, weil die bei den in

Fig. 4 eingetragenen Spannungsrichtungen auftretende Scheibenquerkraft
negativ ist.

p T-dp-dz G+do . A (2]
-—, — M ﬁ ]
\:.:_l I:/ d ) — n . .
/ 2\ (365 46
T-d-az 2\
S S S | I B, == mw |
oy &, \
) A\
z A
6,
fa—0z — 173 5/” ,ﬁn_éa"z* 7
Fig. 4 Fig. 5

Fiir Scheiben konstanter Stirke d kénnen die Schubspannungen z und
aus der parabelférmig begrenzten Schubspannungsfliche die Scheibenquer-
krafte £, einfach berechnet werden (Fig. 5):

Q,= — d - by <r0 + %”— (20 + O"u)) (113a)

Bei der Beanspruchung eines Stabes auf Torsion tritt im allgemeinen
die Schwierigkeit auf, daBl sich sowohl die Torsionsschubspannungen wie die
Flanschbiegungsmomente 9N bezw. Flanschquerkrifte & an der Aufnahme
des Torsionsmomentes 7 beteiligen. Die Grofie der beiden Anteile ¢, (Tor-
sion) und ¢, (Flanschbiegung) ist einmal aus der Gleichgewichtsbedingung

T=¢+ 4 (12)
und ferner aus der Forminderungsbedingung, daB die Querschnittsver-
drehungen ¢ aus beiden Anteilen gleich groB sein miissen, zu bestimmen.

Fiir den Torsionsanteil ¢, ist der Zusammenhang mit dem Verdrehungswinkel
@ gegeben durch die bekannte Beziehung

t.=C- ¢, (13)
wobei C = G - J, die Verdrehungssteifigkeit bedeutet.
Mit Hilfe der Abstande a der einzelnen Scheiben vom nun bekannten

Schubmittelpunkt 0 (Fig. 6) lassen sich die Scheibendurchbiegungen z und
ihre Ableitungen durch ¢ ausdriicken:

77” f— afl . (P; ,,}n/”: an . q)lﬂ. (14)
Aus Gleichung 6 folgt durch Differentiation
i -1 OJ” e "
B Ty (15)

Zur Bestimmung der 7z 41 unbekannten Werte ¢’ an den # 41 Kanten lassen
sich bei #n Scheiben n Gleichungen 15 anschreiben; auBerdem gilt, da bei

Abhandlungen VI 19
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Verdrehung die Liangskraft N und ihre Anderung null sind, auch
o .dF = C; ' (16)
Gleichung 16 148t sich durch die n---1 Werte ¢’ an den Kanten ausdriicken."

Durch Auflosen des aus # Gleichungen 15 und der Gleichung 16 bestehenden
Gleichungssystems ergeben sich die gesuchten Werte ¢’ in der Form

0'n="2-ay b, L q" (16a)
und daraus nach Gleichung 11 die Flanschquerkrifte 9, in der Form
Qp=—D,- E- ¢". ' (16b)
Mit
fo:égn-an:-~~éan0ﬂ-E-(p"’:-—A.(p"” (16 c)
0 0

wobei der Drehsinn der Momente £ - a zu beachten ist, liefert Gleichung 12
nun die Grundgleichung des Torsionsproblems:

T=C-¢'— A-¢". (17)
Die Zahlenwerte von «, D und A ergeben sich numerisch aus dem ange-
gebenen Rechnungsgang. Fithren wir noch die Abkiirzung a2 :—AZE ein,
so 1aBt sich Gleichung 17 mit {, = C - ¢’ in der Form schreiben
T=t—— s « (17a)
a?

Diese Grundgleichung des Torsionsproblems ist fiir I-Triger schon von
S. TiIMOSHENKO ?) angegeben worden; sie ist also in der gleichen Form fiir
alle offenen Querschnittsformen giiltig. Bei beliebiger Form der Belastungs-
funktion T kann sie beispielsweise durch Umsetzen in ein dreigliedriges
Gleichungssystem

6
—0y=1)tm_y+ (127 +4) tn— (67 = 1) tnyy = Tm—1 +4Tn+ T = Ax Kr, (13)
2
wobei y =iy f et gelost werden 19). Als Randbedingung ist bei frei dreh-
baren Flanschenden die Gleichung
6y +2)ta— 6y —1) . £, =2T4 + T (18a)

einzufithren; bei starr eingespannten Flanschenden ist 7, = 0 zu setzen.

Mit den t-Werten sind aus Gleichung 13 auch die Werte ¢’ und damit
aus QGleichung 17 die Werte ¢ bekannt; mit Hilfe von Gleichung 16a
konnen damit die Werte o’ und durch Summation direkt oder iiber ¢” auch
die Langsspannungen o bestimmt werden.

4. Genau genommen ist auch bei offenen Querschnitten ein Einfluf
der Schubspannungen auf den Schubmlttelpunkt vorhanden. Wir kénnen uns
dies am einfachen Beispiel der Fig. 7 veranschaulichen: Fiir jeden der beiden
ungleichen Flanschen gehorcht die Durchbiegung der Beziehung

~10) F.St0ssi: Die Stabilitdit des auf Biegung beanspruchten Trigers. I.V.B. H.,
Abhaudlungen Bd. IlI, 1935. ,
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_ Mx M”x
"= T FElL, T GAiF

Die Last P verbiegt den Stab dann verdrehungsfrei, wenn jeder Flansch
unter seinem Lastanteil die gleiche Durchbiegung aufweist. Da aber M und
M” einander im allgemeinen nicht dhnlich sind und die Querschnittswerte /
und F’ sich mit verschiedenen Flanschhéhen verschieden verindern, wird die
Lage des Schubmittelpunktes von der Lage des Querschnittes abhingig, fiir
den wir die Verdrehungsfreiheit fordern. Der Schubmittelpunkt ist also nicht
mehr ein Querschnittsfestpunkt, sondern auch von der Art der Belastung und
der Stablinge abhingig. Praktisch ist jedoch dieser Einflu der Schubspan-
nungen bedeutungslos; er verursacht erst bei ganz kurzen Stiben, bei denen
unsere Voraussetzungen der baupraktischen Biegungslehre auch sonst nicht
mehr zutreffen, eine merkliche Anderung in der Lage des Schubmittelpunktes.

P
l
| / PN S

Fih =y b % T 7 .
] h—-I——dz —~
| dL e
! f ¥
NG 0

Fig. 7 * Fig. 8

5. Die angegebene und auf die klassische Biegungslehre aufbauende
Darstellung des Torsionsproblems versagt bei geschlossenen Querschnitten,
weil sich dort die Schubspannungen z, bei verdrehungsfreier Biegung nicht
mehr allein aus den Normalspannungen o bezw. o’ durch Summation von
einem freien Rand her berechnen lassen. Der Schubmittelpunkt ist also hier,
wenigstens von den Normalspannungen o bei verdrehungsfreier Biegung aus
betrachtet, in seiner Lage unbestimmt. Fiir diese Fille soll nachstehend am
Beispiel des rechteckigen Kastenquerschnittes eine direkte Darstellung des
Torsionsproblems skizziert werden.

In einem Querschnitt nach Fig. 8 wird ein Torsionsmoment in der Haupt-
sache durch den Schubfluf s,

S:’[()'d

aufgenommen. Wegen der Voraussetzung diinner Scheiben darf z, gleich-
miafig iiber die Scheibenstirke angenommen werden oder die Torsions-
schubspannung infolge der Verdrehung der Einzelscheiben darf gegeniiber
1, vernachlassigt werden. Aus Gleichgewichtsgriinden ist

Ty, dy = Tg, - dy = ... = s = konst, (19)

Die Scheibenquerkriafte Q, infolge s
s, =803 =50, Qso =8, =5 A (20)
bilden zusammen ein Drehmoment
ts=2s5-0-h. (21)
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Der zugehorige Drehwinkel ¢ wird durch die Scheibendurchbiegungen

n bestimmt; es ist infolge der gleichmiBig iiber Scheibenhohe verteilten

Schubspannung 7, == %
, T s

=G =G a (22)

Fiir das Scheibenpaar 1 und 3 ergibt sich eine gegenseitige Verschiebung
von 7, -+7; und damit ein zugehoriger Drehwinkel

_ mt s , S (_1_ L)
(psl“—' h ) (psl - G/l dl + d3, . (23)
Analog ist '
=S (L L)
Vo = Go\g, t @)
Sind die beiden Drehwinkel ¢, und ¢, gleich gro8,
Ps1 = Ps2, (24)

so ist damit auch die Formidnderungsbedingung von der Erhaltung der Quer-
schnittsform erfiillt, der SchubfluBl s nimmt allein das ganze Torsionsmoment
auf: es ist 7 = ¢,.

2 (M - & 4
W I
% 1111 22 ! Y .
s —
Fig. 10 Fig. 11

Fiir die Verwirklichung dieses ,,reinen Torsionsfalles‘‘ konnen, auch bei
beliebiger Querschnittsform des Kastenquerschnittes, die Stirken dreier
Seiten beliebig angenommen werden, wihrend die vierte daraus bestimmt
ist. In Fig. 9 muB fiir diesen Fall die Bedingung

1 . 1 _ 1 . 1
d, - a, o dy - a, o ds- as - dy- a

(24 a)

erfiillt sein; der Schubmittelpunkt O ist durch den Schnittpunkt der zwei
Geraden

a, d, as;

L% und BB (g )
2

also durch drei Seitenstirken d, bestimmt.

Ist die Bedingung 24 bezw. 24 a nicht erfiillt, so verlangt der Zusammeun-
hang der Einzelscheiben zusitzliche Formianderungen und damit das Auf-
treten von Normalspannungen o (Fig. 10). Wird einer der vier Spannungs-
werte o beliebig angenommen, so sind die andern drei aus den Gleich-
gewichtsbedingungen
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My=fo.-y-dF=0
My=[0o-x-dF=0 (25)
bestimmbar. Aus den Spannungsinderungen o/, deren Verteilung zu der von
o dhnlich verlauft, ergeben sich nun, beginnend an einer Ecke, nach Gleichung
11, Scheibenquerkrifte Q,, die ihrerseits wieder ein Drehmoment #; bilden:
L=,k + Q0. (26)

Zur Bestinfmung des einen angenommenen Wertes von ¢ miissen nun die
Gleichgewichtsbedingung

und die Formidnderungsbedingung ‘
P1 = @y (28)

erfiillt sein. :

Diese Berechnungen werden wohl am einfachsten numerisch durch-
gefithrt. Mit Riicksicht auf moéglichst einfache Darstellung soll der Rech-
nungsgang am Beispiel der Fig. 11 fiir einen rechteckigen Kastenquerschnitt
mit je paarweise gleichen Seiten gezeigt werden, fiir den alle vier Werte
o und o’ je gleich gro werden.

Die Gleichgewichtsbedingung Gleichung 27 lautet

hb?d, bh?d,

T=2s-h-b+ 6 e 6 o (29)
oder
T hd, — bd, ,
ST T 12 (292)

Bei den Scheibendurchbiegungen s und damit auch bei den Drehwinkeln ¢
ist zu beachten, daB nun auBler dem Schubfluf s (Gleichung 22) und den
Normalspannungen o (Gleichung 6) auch die Scheibenquerkrifte ., Bei-
trige liefern; es ist

[ D’O’

e = LFGe (30)

Wegen der ungleichméBigen Schubspannungsverteilung ist hier der redu-
zierte Querschnitt 2F = F’ einzufiithren. Damit ergibt sich

"o , 2b%d, ., 4

Y= 0hG ST 6n-kbd, -G ° TEREC
und

. 2 242 d, , 4

V2= 0.6G ° " 66 khd, ° prE "

Setzen wir nun @,” = @,” (Forminderungsbedingung) und fiithren wir
dabei den Wert s’ aus der einmal differenzierten Gleichgewichtsbedingung
Gleichung 29a ein, so erhalten wir nach kurzer Zwischenrechnung die

Gleichung:
dyb—dih ., [(hdy—bd) (dyb—dih) 1, . 2] ., 8G
didor 1Y 64, d, T3 (B4 00)] - 0"+ T 0=0. (31
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Diese Grundgleichung des Torsionsproblems von Kastenquerschnitten hat
den gleichen Bau wie diejenige der Torsion offener Querschnitte; ihre Auf-
16sung, zum Beispiel durch Umsetzen in ein dreigliedriges Gleichungssystem,
liefert aus den Anderungen 77 der Torsmnsmomente d.h. aus den duBern
Drehmomenten, die Kantenspannung o.

Durchgerechnete Beispiele zeigen, daB der Anteil der Momente #;, am
gesamten Torsionsmoment auch bei vom reinen Torsionsfall stark abweichen-
den Verhiltnissen der Scheibenstirkeun ziemlich gering ist, sodaB der Schub-
fluB auch dort mit
' ts T

2b/z = 2bh

nach Gleichung 21 niherungsweise ermittelt werden darf, eine Feststellung,
die mit den fritheren Untersuchungen von A. EGGENSCHWYLER*) iiberein-
stimmt. Immerhin ist die genauere Untersuchung mit Beriicksich-
tigung der Randspannungen o dieses Problems dort angezeigt, wo
die Forminderungen zuverlidssig bekannt sein miissen.

S —=

I

o

|

6. Die Torsion bei unsymmetrischen Querschnitten beeinflufit
auch, wie schon A. OsTENFELD 11) festgestellt hat, das Knicken
eines zentrisch belasteten Stabes.

Infolge einer Ausbiegung » des Stabes entstehen Ablenkungs-
krafte P -»n” (Fig. 12), in der Schwerachse des Stabes wirkend,
die nicht nur eine zusétzliche Verbiegung, sondern auch eine Ver-
drehung um O bewirken: der Stab kippt und die kritische Be-
lastung erfihrt gegeniiber der EuLER’schen Knicklast eine Ab-
minderung. Eine baupraktische Behandlung von Kippaufgaben,
auch bei gleichzeitig wirkender Langskraft, habe ich bereits friiher
angegeben 10),

<
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Zusammenfassung.

Die doppelte Bedeutung des Schubmittelpunktes als Angriffspunkt der
Belastung bei verdrehungsfreier Biegung und als Drehpunkt des Quer-
schnittes bei biegungsfreier Verdrehung wird mit Hilfe des MaxwEgLL’schen
Reziprozititssatzes nachgewiesen. Die Forméinderungen aus Verbiegung sind
von denen aus Verdrehung unabhingig; jede Belastung 1dBt sich mit Hilfe
des Schubmittelpunktes in einen rein verbiegenden und einen rein verdrehen-
den Anteil zerlegen. Fiir die verdrehungsfreie Biegung ist die Hypothese
vom Ebenbleiben der Querschnitte als Sonderfall der allgemeineren Form-
inderungsbedingung von der Unveridnderlichkeit der Querschnittsform
giiltig; die klassische Biegungslehre nach NAvieEr mit ihren Folgerungen
bleibt hierfiir voll anwendbar. Bei Stiben mit offenem Querschnitt kann aus
der Biegungsbeanspruchung in zwei verschiedenen Richtungen der Schub-
mittelpunkt als Schnittpunkt der resultierenden inneren Querkrifte leicht
bestimmt werden; vom Schubmittelpunkt ausgehend 148t sich aber auch eine
einfache Darstellung des Torsionsproblemes angeben. Bei Kastenquer-
schnitten kann der Schubmittelpunkt nicht von der klassischen Biegungslehre
aus angegeben werden; fiir diese Falle wird ein anderes, direktes Verfahren
skizziert. Auf den EinfluB des Schubmittelpunktes auf das Knickproblem
wird hingewiesen.

11) A. OsTENFELD: Mitt. Nr. 5 u. Nr. 6 des Lab. fiir Baustatik der Techn. Hoch-
schule in Kopenhagen, 1931, 1932,
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Résumaé.

En partant de la loi de réciprocité de MaxweLL, "auteur démontre la
double signification du centre des efforts tranchants (centre de torsion) qui
est tout a la fois le point d’application de la force dans le cas d’une flexion
sans torsion et le centre de rotation de la section dans le cas d’une torsion
sans flexion. Les déformations engendrées par la flexion sont indépendantes
de celles dues a la rotation; il en résulte que toute surcharge peut eétre décom-
posée, grace au centre des efforts tranchants, en une portion de pure flexion
et en une portion de pure torsion. Dans le cas de la flexion sans torsion,
I’hypotheése disant que les sections restent planes est un cas particulier de
la condition générale de déformation posant que la forme des sections reste
invariable; c’est pourquoi la théorie classique de Navier et ses conséquences
restent entierement valables. Dans les barres a section ouverte, le centre
des efforts tranchants peut étre déterminé, en partant de la flexion dans deux
directions différentes, comme point d’intersection des résultantes des efforts -
tranchants internes; on peut représenter de facon simple le probleme de la
torsion en partant du centre des efforts tranchants. Il n’est par contre pas
possible de déterminer sur la base de la théorie classique de la flexion, Ie
centre des efforts tranchants dans les sections en forme de caisson; ’auteur
esquisse pour ce cas un autre procédé de détermination directe. L’auteur
montre en outre I’influence du centre des efforts tranchants sur le probléme
du flambage.

Summary.

The double significance of the centre of twist as point of application
of the loading in the case of bending free from torsion, and as pivot point
of the cross-section in the case of torsion free from bending, is demonstrated
with the help of the MaxweLL law of reciprocity. The deformations caused
by bending are independent of those caused by torsion; each loading can,
by means of the centre of shear, be resolved into a purely bending and a
purely twisting part. For bending free from torsion, the hypothesis of the
cross-sections remaining plane holds good as a special case of the more
general condition of elasticity from the immutability of the shape of cross-
section; the classic theory of bending according to Navier with its conclu-
sions holds still perfectly good for this. In bars with open cross-section the
centre of twist as point of intersection of the resultant internal transverse
forces can easily be determined from the bending stresses in two different
directions; starting with the centre of twist, however, a simple representation
of the torsion problem can also be -obtained. In b-ox-section,s the centre of
twist cannot be obtained from the classic theory of bending; for these cases
another direct method is sketched. Reference is made to the influence of
the centre of twist on the buckling problem.
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