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THEORIE DU FLAMBEMENT PAR TORSION.

THEORY OF BUCKLING BY TWISTING.

THEORIE DES KNICKENS DURCH VERDREHUNG.

CH. MASSONNET, Ingénieur civil des Constructions A. I. Lg., Aspirant du Fonds
National Belge de la Recherche Scientifique, Liége.

1. Hypothéses de base et notations.

L’hypothese fondamentale de la théorie est que les sections droites de
la colonne ne subissent aucune déformation au cours du flambement. On
admet donc que le treillis de la colonne est composé de barres infiniment
rapprochées. Ces barres sont infiniment rigides a la flexion et maintiennent
les deux membrures opposées dans leur position relative. Le treillis a de
plus une résistance nulle a la torsion autour de 1’axe de la colonne. Si la
colonne possede des ames pleines, ces ames sont également supposées in-
finiment rigides a la flexion autour de leur axe.

La théorie développée dans les paragraphes suivants s’appliquera donc
a toutes les colonnes en treillis ou a 4me pleine dont la
section droite posséde un centre de symétrie. On trouvera
a la figure 1 quelques exemples de telles sections.

Nous établirons la théorie pour une colonne a dmes en treillis; le cas
de la colonne a ames pleines sera examiné a part dans la suite.

Appelons (fig. 2):

z  Vordonnée d’une section droite courante dans la colonne.

p P’angle de torsion de la colonne, c’est-a-dire P’angle dont a tourné la
section droite d’abscisse z apres flambement. Cet angle est compté po-
sitivement dans le sens dextrogyre (c’est-a-dire dans le sens de rotatlon
d’un tire-bouchon dirigé vers les z positifs).

r  la demi-largeur de la colonne, ou encore le rayon de la surface cylindrique
contenant les fibres moyennes des membrures déformées.

y  le déplacement d’un point de la fibre moyenne, mesuré suivant la
tangente horizontale au cylindre en ce point.

I, le moment d’inertie de la membrure dans le plan tangent au cylindre.

I; le moment d’inertie de la membrure dans le plan radial.

C la rigidité torsionnelle d’une membrure.

n  le nombre de membrures.
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nP la force axiale concentrée appliquée a 'extrémité supérieure de la co-
lonne.

np la valeur unitaire des forces axiales réparties le long de la colonne

nu le moment de torsion transmis (a titre de réaction d’appui) par appui
a Pextrémité supérieure de la colonne.

Les éléments de réduction de tous les couples et
forces extérieurs appliqués a la colonne au-dessus de la
section courante z sont, dans chaque membrure:

Un effort axial V¥ compté positivement comme com-
pression.

Un moment de flexion d’axe radial M, dont le vecteur
représentatif est compté positivement vers 'intérieur du
cylindre.

Un moment de flexion d’axe tangentiel M, dont le
vecteur représentatif est dirigé positivement vers les y
positifs.

! Un moment de torsion M compté posmvement dans
Fig. 2 le sens dextrogyre.
Un effort tranchant 7 dont la composaunte tangen-
tielle au cylindre est .

2. Théorie du flambement par torsion selon la méthode d'Euler.

L’équation de la fibre moyenne déformée d’une membrure est:

B =1
le déplacement tangentiel horizontal du point A, supposé infiniment petit,
vaut:

y=28r (1)

aux quantités du second ordre pres.
L’équilibre statique de la portion de la colonne SItuee au-dessus de la

section z exige que l'on ait:

ap
translation verticale: (N Tr —) P l—2z)=0.
+ Tr— )+ P+ p(l—2) )
rotation autour de Oz;: M + Tr— Nr? ap_ w— M; - réﬁ =
dz dz

L’effort tranchant 7 est nul au départ et dit au flambement. C’est donc
un infiniment petit du premier ordre. Comme S est également infiniment
petit du premier ordre, le terme 7 -rdpf/dz est infiniment petit du second
ordre et peut étre négligé devant N dans la premiere équation (2). On en con-
clut que:

N+ P+ p(l—2)=0. ‘ 3)
aux deuxieme ordre pres.

Pour la méme raison, le terme — M, - rdp/dz peut étre négligé dans la
seconde équation (2).

La Résistance des Matériaux nous apprend de plus que:
dzp . am, ap

—% m=ct’ @)

M, = E],rd22 T = P
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d’oit: . (5)
: = =5

En remplacant N et ¢ par leurs valeurs (9) et (11) dans la deuxiéme équation
(2), on obtient:
c?h as g
dz dz®

En divisant cette relation par — 72 et en ordonnant, on obtient ’équation
différentielle générale du flambement par torsion:

g

—ELrYl _pyp—arlf—u=o. (©6)

3
ELgs + 1P+ =2 — o+ =0, (1)
Il nous reste a examiner quelles modifications subit I’équation (7)
lorsque la colonne possede des ames pleines.
La colonne étant uniformément comprimée dans toute sa section, la
tension unitaire de compression vaut:

g = :9— .
Le moment de torsion — Nr2d f/dz intervenant dans la seconde équation (2)
doit étre remplacé ici par ’expression:

ag (., dp
———a!;(ijr dfu_ d—zalp,

S

ol dw représente I’élément d’aire et » sa distance au centre de la section.
Mais | r'2dw n’est autre que le moment d’inertie polaire /, de la section
autour de son centre. Le terme ci-dessus peut donc s’écrire:

P+t —2) % ¢

oll ¢ est le rayon d’inertie de la section droite de la colonne. L’équation
différentielle du flambement par torsion prend ici la forme:
d3/>’ .
El,—5 + P+ p(l—2)]e*— }7§7+ ®)

Comme P’ame posséde dans le cas actuel une résistance a la torsion
appréciable, C doit représenter ici le nieme de la rigidité torsionnelle de
toute la colonne.

3. Etablissement des conditions d'extrémiié.

Les extrémités de la poutre peuvent étre liées au monde extérieur de
trois manieres différentes; elles peuvent étre, soit encastrées, soit guidées,
soit libres.

1. Extrémité encastrée: "encastrement empéche toute rotation
de la colonne et toute inclinaison des membrures a leur extrémité, ce qui
se traduit par les conditions:

=10 (9) ‘;f 0. (10)
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L’encastrement peut transmettre a la colonne un moment de torsion d’axe
vertical.

2. Extrémité guidée: le guide empéche toute rotation de la co-
lonne, ce qui se traduit par:

8=0, (11)
et ne peut transmettre aucun couple de flexion aux membrures, d’ot:
azp
M,=0 et 32?:0' (12)

Le guide peut transmettre a la colonne un moment de torsion d’axe
vertical. :

3. Extrémité libre: aucun moment de flexion ne peut étre trans-
mis auX membrures, d’oti:
dz B
De plus, le moment extérieur de tor31on d’axe vertical est nécessairement
nul, ce qui entraine

(13)

ds g Cidp
e ) {[p+ pl—2)] _rz} L= (14)
Remarque importante: il découle de nos hypotheses de départ
que le treillis est capable de transmettre un moment de torsion aux mem-
brures afin de réaliser "équilibre statique. En effet, s’il en était incapable,
il en résulterait une rotation de la section de la membrure autour de son
centre, ce qui est contraire a ’hypothése fondamentale de 1'indéformabilité
des sections droites de la colonne.

El

4. Formule générale du flambement par torsion.

Si ’on compare l'équation (7) a l’équation générale du flambement
des pieces chargées de bout, a savoir:

4 d2
o P+pU— =0, (15)

on constate que ces équations deviennent identiques si l’on remplace E/
par El,, y par r8, P par P— C/r2.

Les conditions d’extrémité du § 3 coincident de méme avec celles du
flambement ordinaire quand on fait les substitutions ci-dessus. On en con-
clut que la charge critique de flambement par torsion peut s’obtenir en rem-
placant dans I’expression de la charge critique d’EuLER correspondant aux
mémes conditions d’extrémité P par P — C/r2 et El par EI,.

La charge critique d’EULER a comme expression générale:

RET
P, = 5 (16)
avec 7% poutre biarticulée.

4 7% poutre biencastrée.
c2 | 4 poutre encastrée-libre.
20,19 poutre encastrée-articulée.

k=
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La charge critique de flambement par torsion vaut par conséquent:

. REI, C
La charge critique totale de la colonne au flambement par torsion vaut n/f’,,,
n étant le nombre de membrures dans la colonne en question.

Si la colonne est a 4mes pleines, la formule (17) doit étre remplacée
par la formule:

r2 kEI
,lplcr: ’Z‘Q_‘é‘ lz + C, (18)

C étant la rigidité torsionnelle totale de la colonne.

Le flambement par torsion ne peut effectivement se produire que lorsque
la charge critique qui y correspond est inférieure a la charge critique d’EULER
du flambement par flexion. La condition pour qu’il en soit ainsi est évi-
demment:

np’c‘l‘é Pcr
d’olt I’on tire:
. . B 2
n kr? PYe
. 9 IZC12 (19)
soit 2> AET— nEL) "

Pour les colonnes a dmes pleines, on établirait des formules analogues.

5. Effet du poids propre de la colonne.

Dés qu’on a remplacé EI, par EIl, rf par y, et P par P — C/r2, on re-
tombe sur l'équation (15) du flambement ordinaire par flexion. Appelons
P., la charge critique d’une poutre lorsqu’elle est soumise a la force con-
centrée P. Soit (pl)., la charge critique de la méme poutre soumise unique-
ment aux forces uniformément réparties p. Nous avons montré ailleurs (voir
Réf. 5, pages 117 a 120) que, lorsque les forces P et p/ agissent simultané-
ment sur la poutre, on a V’inégalité:

P pl -
a5+ =1, 20
Per ) ( )
le premier membre étant toujours trés voisin de 'unité. On déduit de la:

pl
P~ P,[] — ————]
c (P )er

Si ’on remplace P par P’ — C/r%, on obtient la charge critique P’ de flambe-
ment par torsion sous la forme:

— _ _PL] C _p e

P _—P”[l (p1)er +"2_P” pl(Pl)cr.

Pour pouvoir appliquer cette formule, il faut connaitre les valeurs de
(p!)., pour tous les modes d’appui usuels. Ces valeurs sont les suivantes:

(21)
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272 F]

1. poutre biarticulée: (pl),, = 18, ()5 (Ref 2,p.122)ou (pl), =~ 5

=2P, 1)

875 EI

12 “'—zpﬂ‘

2. poutre biencastrée: (p/), =~

EI (Réf. 2, pp.425
2 Réf.6, pp.115

. \ I
4. poutre encastrée-articulée: (pl), = {gg gz _i_

o

426;

3. poutre encastrée-libre: (p!), = 7,837 — 122)

o

selon le sens des forces réparties. (Ref. 4, pp. 215 a 223))

6. Méthode énergétique.

Bien que les paragraphes précédents aient completement résolu le pro-
bléeme du flambement par torsion, il nous semble utile d’établir 1’équation
différentielle et les conditions aux limites par une méthode tout a fait diffé-
rente, la méthode énergique. Nous en profiterons pour examiner de plus
pres la question des grandes déformations (§ 7). Pour ne pas compliquer
inutilement les calculs, nous supposerons que les forces repartles p sont
nulles.

Nous ne revenons pas sur les principes qui sont 4 la base de la méthode
énergétique. On trouvera ceux-ci exposés avec tout le détail désirable dans
I’excellent livre de M. S. TIMOSHENKO consacré a la stabilité élastique (Réf.0).

1) Il est facile de montrer que ’on a approximativement
(0D = 2P,

dans tous les cas oit la déformée de flambement est symétrique.

En effet, utilisons la méthode énergétique et comparons (p/)., & P, en adoptant
en premiére approximation comme déformée de flambement de la poutre soumise aux
charges réparties p la déformée de flambement de la poutre chargée de bout.

L’énergie potentielle
El d2y>
1@,

0

a évidemment la méme valeur dans les deux cas.
Quant au travail 7 des forces extérieures, il vaut si la poutre est chargée de bout:

T(P): Pll.

Pour calculer sa valeur quand la poutre est chargée uniformément sur toute sa longueur,
il suffit de considérer deux points de la fibre moyenne symétriques par rapport au milieu.
Par raison de symétrie, leurs déplacements #” et #” ont comme somme le raccourcisse-
ment total # de la poutre. Le travail total des forces p s’obtient en faisant la somme
des travaux élémentaires p (¢’ -+ u”) dx pour toute la poutre, ce qui donne:

ra pu.l.
0
La relation fondamentale V = T conduit ainsi a:
Vv 2V
Per= 7, et pl)crz_ﬁzzp
Si P'on remarque de plus que la méthode énergétique fournit toujours une valeur
de la charge critique supérieure a la valeur exacte, on en conclut que 'on a en réalité:

(pl),<2P,
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Si T représente le travail des forces extérieures pendant le flambement
et V ’énergie potentielle correspondante emmagasinée dans le corps déformé,
la méthode énergétique se traduit analytiquement par la relation:

o(V—T7T)=20, (22)
qui exprime simplement que la quantité (V — 7') est stationnaire pour toutes
les positions d’équilibre infiniment voisines qui coexistent sous la charge
critique.

Evaluation de V: Considérons un point d’abscisse z de la fibre
moyenne déformée d’une membrure. Appelons avec M. A. E. H. Love (Réf. 2,
p. 382):

k et k' les composantes de la courbure de cette fibre.

7 la torsion de cette fibre.

k, £’ et v ne sont rien d’autre que les composantes de la vitesse angu-
laire de rotation du triédre principal 2) lorsque ce triedre se déplace avec
la vitesse unitaire le long de la fibre moyenne.

Fig. 3 Fig. 4

On peut exprimer k, £’ et v en fonction des trois angles d’EULER O, ¢, v
(fig. 3) utilisés dans la théorie du mouvement d’un corps solide. On trouve
(Réf. 1, p. 153; Réf. 2, p. 386): '

dé . dy .
k= g Sy sin @ cos ¢
, do dy .
K = 7-C08¢+ r—sin@sing (23)
. de dvy .
C= s T oas 089 J

L’énergie potentielle interne de la membrure déformée a pour expression

(Réf. 2, p. 395):
!
1
V= 9 j(Ak‘—’i—k Bk®*+ Ct¥)ds, (24)
0
A, B et C représentant respectivement les deux rigidités flexionnelles prin-
cipales et la rigidité torsionnelle de la membrure au point considéré. On

a d’ailleurs (Réf. 2, p. 388) en premiere approximation:

2) Rappelons que le triédre principal en un point d’une tige mince est le triedre
trirectangle formé par la tangente & la fibre moyenne et les axes principaux d’inertie
de la section droite.

Abhandlungen VI ] 15
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A= EIl = El. (25)
L’élément d’arc ds de la fibre moyenne déformée est donné par:
ds®=r*dp? + dz* (20) car dr = 0.
I1 s’ensuit que (fig. 4):

: AB _Vds*—dz* _ df
sin @ = S —_ . 217
BC~  ds T~ Tds (27)
D’autre part:

7T
' 2z ’ l 28
_w ] =

7= 2

La déformation de flambement pouvant étre supposée infiniment petite,
O est un infiniment petit du premier ordre, et I’on a, au second ordre pres:

__rép
ds

Appliquons les formules (23) en tenant compte des égalités (28) et
(29). Négligeons de plus les infiniment petits d’ordre supérieur au premier;

nous avons deés lors le droit de remplacer ds par dz, sin § par f et sin & par
6, cos f et cos @ par P'unité; il vient ainsi

I IR

La courbure £’ est infiniment petite du second ordre; elle est donc nulle
a 'approximation envisagée; d’oi, par la formule (24), il vient, si on néglige
le terme B K2 _

G (29)

1 j{m T P

Le travail de la force extérieure P vaut: 7 = Pu, u étant le raccourcisse-
ment axial de la colonne dii au flambement. u est la différence entre la

longueur initiale
I

L:(ds

0

de la colonne, et sa longueur aprés flambement
l

e

0
On a donc:

ot 1= ftas—an= ([ (T a4

et i j("ﬂ) (32)

2 dz
0
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L’équation 6 (V — T ) = 0 s’écrit ainsi sous forme développée:

l
: G+ (8= re(80))ax)
d(zi{” (Zi?f +C a’z) Pr\az) 192) =0 (33)
Effectuons ’opération de variation; il vient, tous calculs faits:
/ /
,a'p azp dﬁ} l °p (d/f d*/)’ ]
l
+ Cld‘@dp’] Pr [d{gdﬂ] =0. (34)
0

La variation df étant arbitraire, le coefficient de df dans 'intégrale définie
doit s’annuler, ce qui donne:

dB . d?p ,d*8
E[rrz‘l—i-Z—Z—C"A-]Lp d2

De plus, les termes tout intégrés doivent s’annuler en vertu des conditions
d’extrémité. Examinons celles-ci successivement:

1. Extrémité encastrée: 'encastrement impose df/dz = 0, donc
o(dp/ dz) = 0 et p# = 0, donc 68 = 0. Les termes intégrés s 'annulent donc
d’eux-mémes.

2. Extrémité guidée: p = 0, donc 6 = 0; mais la membrure peuf
tourner a son extrémité, c’est-a-dire que 8(dp/dz) est = O.

Pour que le terme intégré s’annule, il faut donc nécessairement qu’on ait:
a*g _
dz?

=0. (35)

= 0.

3. Extrémité libre: g et Zf sont arbitraires, donc dp et ()(d()’)

sont différents de zéro. Les termes integres ne s’annulent que si:

dd{)’ dp’

On retrouve ainsi tous les résultats établis précédemment dans les §§ 2et 3.

7. Etude des grandes déformations.

L’étude du phénomeéne de flambement par torsion quand les déformations
ne sont pas infiniment petites, s’effectue le plus aisément en adoptant comme
variable ’angle ® que la tangente a la fibre moyenne fait avec les géné-
ratrices du cylindre. Les angles d’EuLEr O, ¢, v, valent dans le cas actuel:

=6 p="1—8 p= (36)

7r
2

sin @ds, dou el = sAle. (37)

3= -
avec / 5= .
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On en déduit, par les formules (23),

de
k= ds
, _dp . sin*@
k= E“s"Sln G = — p (38)
;- _g_ﬂCOS@:_smOcos@ :_st@ -
ds r r
L’énergie potentielle interne a donc pour expression exacte:
i
R (a’@")Q sm4(9 sin22@]
D’autre part, le travail de la force extérieure P vaut:
! i i :
T:P[ (ds ~-~jcos F)ds]:Pj’(l -— cos W) ds. (40)
0 0 0
L’équation fondamentale de la méthode énergétique s’écrit des lors:
! ;
1 J‘[ ’d@)2 sin*® Csin*2 6 ]
S(V - T)_o'z—0 A(Hg + B2 4 S EZ 2P (1-cos 6) ds[_ 1)
Effectuons la variation de cette intégrale; il vient, tous calculs faits:
!
" 2
} {——A (fi @+2§sm3 @ cos O+ QZI—E;E—Psm@ ] 0 Qafer[ZA%(i 6@] 0. (42)
0

Si 'on peut considérer la variation 66& comme arbitraire, le coefficient
de d® dans l’intégrale définie (42) doit s’annuler, ce qui donne 1’équation
différentielle:

2
Aa’ G) B CsA1>n4O

ds? 4 r2

Cette équation n’est exacte que dans le cas de la colonne encastrée-libre.
En effet, dans tous les autres modes de fixation des extrémités, les sections
terminales ne peuvent tourner "une par rapport a "autre autour de ’axe de
la colonne, ce qui se traduit par la condition

/

!
Aﬂ:ﬂ,—-ﬂO:Jdﬁ %(sm@ds~—0 (44)
0 0

Il nous faut donc rechercher la fonction ® = @ (s) qui rend minimum la
quantité (V — T) sous la condition que 'intégrale 48 ait une valeur constante
(ici 0). On sait par le calcul des variations que cela revient a rechercher la
fonction O (s) qui rend minimum ’expression

V- T—148

olt 1 est un parametre arbitraire.
Si ’on effectue ’opération:

O(V—_T—2148) =0,

= 0. (43)
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on trouve aisément "équation différentielle:

d? @ B Csin4 @
A ger 2 s’ i

Si la colonne est a ames pleines' il suffit, par analogie avec ce qui a été dit

— cos 0 =0. (45)

au § 2, de remplacer P par P 9,

Dans le cas des petites deformations, on peut poser:
. 3
sin® = 6 = (—JL, cos O =1
ds

ct négliger le terme en B. On retrouve ainsi I’équation (7) du § 2.
Les conditions aux limites sont les suivantes:

1. extrémité encastrée: @& = O, l

2. extrémité guidée: %? =0. (T “ sin® ds = 0. (40)
0

3. extrémité libre: (fi? =0.2=0.

On voit ainsi que l’on a dans chaque cas trois conditions aux limites.
Elles sont nécessaires pour déterminer la valeur de 71 et les 2 constantes
d’intégration.

Nous avions trouvé au § 3 quatre conditions aux limites, tandis qu’ac-
tuellement nous n’en obtenons que trois. Cette différence résulte simple-
ment du fait que ’équation différentielle actuelle est du second ordre, tandis
que l’équation (7) intervenant au § 3 était du troisieme ordre.

Etudions maintenant de plus pres I’équation (43) valable dans le cas
de la poutre encastrée-libre. Si l’on se borne a conserver les termes en 6,
2 et O3, on obtient:

B Csm4 O C 8 )5) . ( (~)3>
2 aim® ~2 - O3, g _ 29 9 ~~ -
2 sm O cos O ~ 2 () 4 r? (( 3 Psin ® PiE 6

et ’équation (43) se réduit a:

@2 0 ( c> (sc ZB_P),g,
A =+ P——16 + T 6 63 = 0. (47)
Elle peut s’écrire:
2
d0+po+am: (48)

a condition de poser:
1 C _ 1 (8 C 2B P)
(P=7) e=2l55-%-%)
Sous sa forme (48), 'équation du flambement par torsion est tout a
fait analogue a celles que l'on rencontre dans 1’étude des vibrations des

systemes non linéaires. (Voir Réf. 7, pp. 117 a 154). Ces équations sont de
la forme générale:

(49)

4+ k2 (x) = 0.



222 Ch. Massonnet

Dans le cas ol f(x) est de la forme:
f(x) = ax 4+ bx* + cx?,

on peut obtenir la solution de I’équation (48) en se servant des fonctions
elliptiques. Mais ces fonctions sont compliquées et peu favorables a une
application technique.

On peut aussi utiliser des méthodes graphiques ou numériques, ou en-
core une méthode d’approximations successives. On trouvera a la Réf. 7,
pp. 125 a 140, 'exposé détaillé de ces méthodes.

Pour notre objet, nous nous contenterons d'une solution approchée, mais
commode a manier.

Tant que les défoermations ne sont pas trop grandes, la fonction @ obéit
approximativement a la loi: ,

rS )

O = asin®. 5 (50)
trouvée dans ’hypothese des déformations infiniment petites. Le parametre
a représente la valeur ©, que prend @ a 'extrémité libre de la membrure.

Introduisons la solution (50) dans I"équation (48). Nous trouvons:

T \ 3765 _
A +p asm21+aa sin '3 = 0. (51)

l
Il n’est évidemment pas possible de trouver une valeur de p? telle que
la relation (31) soit vérifiée en tout point de l'intervalle (0,/). Mais nous
pouvons choisir p? de maniere que I'égalité (51) soit vérifiée en mo-
yenne, c’est-a-dire de maniere que 'intégrale du premier membre de (51),
étendue a toute la longueur de la colonne, soit nulle. p2 doit ainsi satisfaire
a la condition:

l ' / i
nza" . LS ) j .S
_4F.sm§7ds+pajsm21ds+aa 0sm 7l~a!s__0. (52)
0 0

Si 'on remarque que:
3 . =as 1 . 3xus

3’ s L R
Sin 21 =g Sy S

on obtient aisément, en résolvant les intégrales,

20 ata | d(3 20 1 zz)_
< 4p TP “) ted g a3, =0

ou, apres simplifications,

Z
R 2
412 + p? + 3(1a = {,
En remplacant p2? et « par leurs valeurs (49), il vient:
w1 C\, 2a*(8 C 2B P)_
a2t a (P-4 3%(5 5% —5)=0
d’olr:

P a‘z) et 1 16a*C 4 , )
all=)=ap+ aplc—"G"+ ya'B).
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En remplacant 4 et B par leurs valeurs (25), on obtient finalement:
. 1 J w?El C a* /16 4E];
=@ [(’ v ) e oS3 )} (53)
-

Si la colonne est a ames pleines, il suffit de multiplier le second membre
2

de (53) par le facteur ;,

Pour vérifier la précision de la solution approchée (53), appliquons-la
au cas du flambement ordinaire par flexion. Il suffit pour cela d’y faire
B = C = 0. On obtient alors:

1 wEl P,
P= | a® ar 1’__” a®
9 Y

La relation exacte qui lie P a « = ©,, peut s’obtenir par "’emploi des
fonctions elliptiques (voir p. ex. Réf. 6, pp. 69 a 75).

Le tableau ci-dessous fournit a la fois les résultats numériques exacts
et les résultats approchés fournis par la formule (54).

(54)

f ‘
a en degrés 0° | 20° 1 40° 600
a en radians 0 | 0,3491 @ 0,6981 1,047
a2/9 0 | 0,01354 ‘ 0,05415 | 0,1218
P/Por=1/(1-2a2/9) | 1 | 1,014 | 1,057 1,139
P/ Pcr exact 1 1,015 | 1,063 1,152
y/l 0 ' 0,221 0,426 0,583
(y/l) exact 0 ‘ 0,220 i 0,422 0,593

Ce tableau fournit également pour chaque valeur de « la valeur exacte
du déplacement horizontal y de 'extrémité supérieure de la poutre.
La valeur approchée de ce déplacement se calcule aisément. On a:
i !

/
C L . ©3 [( . LS a’ . /L'S)
Gds ~ ) ———1dS —— LS L
jsm 9 ds j(() 6>ds . asmz[ 65m 57 ds,
0 0

0

ce qui donne, apres calcul de l’intégrale:
y N%a(l ,_a'°’>
it 0/

Cette formule a servi a calculer ’avant-derniére ligne du tableau ci-dessus.

8. Application numérique. (empruntée a la Réf. 3)

Soit a calculer la charge critique de flambement par torsion d’une co-
lonne constituée par deux poutres en double té de dimensions et caracté-
ristiques ci-dessous:

Ame: 1000 < 10 mm, soit 100 cm?

2 semelles: 150 x 15 mm, soit 45 cm?
Section totale: 290 cm?.

Poids par metre courant: 230 kgs.
Longueur: 27 metres.

} 145 cm?2,
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Caractéristiques élastiques de ’acier:
E = 21500 kgs/mm?;
G = 8500 kgs/mm?2,
Le moment d’inertie d’une semelle dans son plan vaut:

15155 1
=200 = 4219cm!.

La rigidité a la torsion de la colonne vaut, d’aprés M. S. TIMOSHENKO (Théorie
de D’élasticité, p. 278):
100-1°+2.15 . 158

C=G-2 3 = = 134,2 . G - kgs - cm?,

Le moment d’inertie minimum d’une poutre en double té est:
100 - 13 2.15.153

852 cm.

]min = "’“”Tz“' -+ — 12 M
Le moment d’inertie maximum de la méme poutre vaut:
Inax = Lil]»zo—of 4+ 2.225 .50% = 195833 cm*.

Le moment d’inertie de la colonne autour d’un axe central quelconque est
donc: :
[ = 852 - 195833 = 196 685 cm*

et son moment d’inertie polaire vaut:
[, = 2x196 685 = 393370 cm*.

Le rayon d’inertie polaire de la section vaut donc:
393370

e=1V 590 = 36,8 cm.
La charge critique de flambement par torsion est donnée par la formule (18):
r? KEI, C
Po=n 0?2 K e T s
0 / 0

En remplacant les lettres par leurs valeurs numériques, on obtient:
50° K-2150000 - 421,09 & 850000 - 134,2
36,8 27002 36,82

Supposons que la colonne soit guidée a ses deux extrémités (K = n2). On
obtient:

P,=4 + = 918 K + 84200.

P, = 93250 kgs.
La charge critique d’EuLErR de la méme colonne vaut:
P w*El 9,87 - 2150 000 - 196 685

cT e T 27002

Si la colonne est soumise en outre a son poids propre 230 kgs/m. ct, sa charge
critique utile vaut d’aprés la formule (21),

Py L o . _LQM .
(/)l)c: = 03250 230.27 1865 890065 kgS

— 572000 kgs .

P=P.y—pl
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9. Théorie compléte du flambement par torsion en tenant
compte de l'élasticité du treillis.

L’effet du poids propre ayant été élucidé au § 5, nous pourrons supposer
dans 1’étude actuelle p = 0.

La supposition fondamentale de la théorie du flambement par torsion
(telle qu’elle a été développée dans les paragraphes 2 a 4), a savoir I’indé-
formabilité des sections droites de la colonne, n’est jamais réalisée en
pratique. Le treillis est toujours flexible, et les membrures tendent a la
déformer de maniere a absorber elles-mémes le travail de torsion minimum.

Comme c’est le terme de torsion qui prédomine de loin dans la formule
(17) de la charge critique, la réduction de ce terme affecte tres fort la valeur
de cette charge.

Nous nous proposons dans le paragraphe actuel de calculer la charge
critique de flambement par torsion en tenant compte de I’¢lasticité du treillis
ou de ’ame de la colonne.

Désignons par a l’angle supplémentaire dont tourne la section droite
d’une membrure autour de son centre par suite de la déformation du treillis.

Le treillis est composé généralement de barres a section rectangulaire
de hauteur / et d’épaisseur b. La rigidité flexionnelle minimum d’une telle
barre est:

blp®
Be=E1y
et sa rigidité torsionnelle vaut:
3
c—=al”.

3

Si le treillis ne comporte que des barres horizontales, on peut le rem-
placer par un treillis continu équivalent ayant par unité de longueur des ri-
gidités flexionnelle et torsionnelle:

»b:IZBt, C:/ZCf, (55)

n étant le nombre moyen de barres de treillis par unité de longueur.
Si le treillis comporte des barres obliques, on prend comme rigidités &
et ¢ les valeurs
" Bi 2 Ci
b= 2ri§:]l—l-;~ = 2rlZ] li" (56)

ol /; est la longueur de la /&me barre du treillis.

Enfin, si la colonne est a ames pleines, on a, d’aprés la théorie des
plaques:

Eh? G h?
" ea—py T30 7
oit 1 est le coefficient de PoissoN (y = 0,3 pour ’acier normal); on re-

marquera que la rigidité torsionnelle de Pame autour de son axe est égale
a 2cr.

Etudions a présent 1’équilibre d’une barre élémentaire de hauteur dz
du treillis continu. Cette barre est soumise & deux moments de flexion
opposés mdz et —mdz et a 2 moments de torsion opposés adz et — ndz
(fig. 5). D’apres les lois de la torsion, on a:
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mdz d /J’

~Tdz R A__ﬁfz . 7% = C Zi~ (58)
o " D’autre parf, on sait par la Résistance des
~mdz (L] fo | ymdz Matériaux que la rotation « d’une poutre pris-
matique soumise a deux moments de flexion M
’mm‘wm égaux et opposés vaut
Fig. 5 a = fl’l_lf
' T OEI
Si 'on remplace M par mdz, [ par 2~ et EIl par bdz, on obtient:
mr . 3ba
@ =35 d’oti m = - »’;: " (59)
L’effort tranchant dans la barre est constant et vaut, d’apres la fig. 5:
tdz = 7 dz = 3~b,—a dz. (60)
r r-

Considérons 1'élément de membrure compris entre deux plans hori-
zontaux infiniment voisins z et z-- dz. Cette partie sera, aprés déformation,
en équilibre sous l'influence des forces suivantes:

1. La force tangentielle fdz appliquée au centre de gravité de la section
droite. :
2. Le moment de flexion mdz = trdz.

3. Le moment de torsion ndz = C-Z—f dz.

4. Sur la section inférieure z les efforts exercés par le restant inférieur
de la membrure, et qui se réduisent a un effort tranchant r, un moment
fléchissant M,, un effort axial N et un moment de torsion M.

5. Sur la section supérieure z-i- dz, les sollicitations analogues 7 - dt,
M,--dM,  N--dN et M+ dMN.

Les équations d’équilibre de I’élément de membrure considéré sont:

a) Equilibre de translation:

dN
e 0 (61)
dv d:p B
b) Equilibre de rotation:
dMr  df_ S
g + ¢ €y = 0 (63)
dM
—d?f+ tr =0. (64)
La théorie de la flexion nous apprend de plus que:
ap
M,= EJ,r Ez—/ (65)

Enfin, comme le treillis est supposé encastré sur les membrures, la
rotation de la section droite d’abscisse z autour de son centre est (a-i- B).
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La théorie de la torsion nous permet donc d’écrire:

d(e+p)
M=C- iy (606)
De (61), on tire directement: :
N = C#= P, (67)
De (64) et (60), on déduit: ' ‘
__C a@+p
t= ro dz* (08)

Les égalités (62), (67) et (68) combinées fournissent alors la relation:

dr a*g | C d*(a+8) _
dz' Pr dz? * rodz* = 0. 0%
Si 'on dérive (63), on obtient:
d*Mr  dv dz g
@ T Y (70)

dv "
En remplacant dans cette équation 2 par sa valeur tirée de (69) et

d* M . .
dz‘-’r ‘par sa valeur obtenue en dérivant 2 fois (65), on obtient finalement:
a8, )d"/)’ C d*(«+p)
Elrd « ([ T or)dz? T 2 dz? = 0. (71)

Il faut adjoindre a cette équation celle qu’on obtient en remplacant dans
(68) ¢ par sa valeur (60), soit:

C d*(a + B) + 3ba

r dz?> r2

=0. (72)

Les équations (71) et (72) résolvent ensemble le probleme de flambe-
ment 3).
ﬁ 3) Signalons en passant que les équations (71) et (72) peuvent s’obtenir aisément

par la méthode énergétique (cf. § 6).
En se bornant aux termes du premier ordre, on trouve pour les composantes de

la courbure et de la torsion les valeurs suivantes: (¢ = .,2. — )
azp , ' d(«+p)
k—-r(l'Q’ k:0, 7T = — m»;{;,ﬁ,

d’olt 'on déduit la valeur de V’énergie potentielle interne:

] - 9 2
e e () e[ 2 s )

2

0
Dans cette expression, le terme 1 - :}—;(S représente I’énergie de flexion et le terme
& C(([:z/) Pénergie de torsion par unité de longueur de la moitié du treillis adjacente

4 la membrure considérée. ‘
Le travail de la force extérieure P vaut comme précédemment:
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Examinons maintenant les conditions d’extrémité. On peut les obtenir
aisément par la méthode énergétique, comme au § 6. Nous ne donnerons ici
que les résultats:

Les conditions aux limites relatives a § restent inchangées, sauf pour
I’extrémité libre ol elles deviennent:

azg d® g ( _E)E’_/Z’ Cd(e+p)
= 0 Bragst\P =) &= r & =9

En ce qui concerne les conditions d’extrémité relatives a a, il faut
distinguer 2 cas:

1. Si la colonne est renforcée par une plaque d’assise terminale ou
assemblée par ses membrures aux autres piéces de la charpente, on a né-
cessairement

a=20
aux deux extrémités.

2. Si, au contraire, les membrures ne sont liées entre elles que par le
treillis, il est évident que le moment de torsion I a 'extrémité des membrures
est nul, parce que la tranche élémentaire extréme du treillis ne peut trans-
mettre qu’un moment infiniment petit. On a donc aux extrémités:

Mm=0  don e+H _g
dz

Dans ce qui suit, nous supposerons toujours avoir affaire au premier cas
et nous poserons aux deux extrémités de la colonne a = O.

Les équations différentielles (71) et (72) peuvent s’intégrer exactement
dans tous les cas.

En effet, en éliminant « entre les relations (71) et (72), on obtient,
aprés quelques calculs, I"équation différentielle du 6&me ordre:

/“’3,Elr as [r*" _,f) EI,rQ]g‘-*_/)’ [< 7_9_)/’2_“ ]d‘zé’_
T =g [T s R o P (GRS R e S R

L’intégrale générale de cette équation contient 6 constantes arbitraires.
On peut les déterminer par les 6 conditions d’extrémité: 4 relatives a g et
2 relatives a a. Les formules de la charge critique qu’on obtient ainsi sont
en général extrémement compliquées.

Cependant, la solution exacte peut s’obtenir aisément dans le cas de la
colonne guidée a ses deux extrémités.
Posons en effet:

1 . =z
? = —_—
£ p sin 7

a«a =A ﬁr (74)
A étant une constante arbitraire.

Cette solution satisfait aux conditions aux limites relatives a « et a fS.
Remplagons a et g par leurs valeurs (74) dans les équations (71) et (72).

La variation de (V—T) doit étre nulle.

Comme le probléeme comporte 2 variables indépendantes a et (8, il nous faut
annuler la variation de (V-—T7) successivement par rapport a a puis par rapport a f.
Les calculs (que nous ne reproduirons pas ici) conduisent respectivement aux équations
différentielles (72) et (71).
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[1 vient:

e ()= (p = (5 e S -
rC () 1+ A) + §ffl— 0

En éliminant A entre ces 2 équations, on obtient:

w2 El, c C 1

Po="pmtytn e, (75)

Tt 55m

Dans les autres cas de fixation, on ne peut obtenir aussi simplement la
solution exacte du probleme parce que « et g doivent obéir a des conditions
d’extrémité différentes, de sorte qu’on ne peut poser a = ApB.

Remarquons ici que, dans le cas-limite olt le treillis est infiniment
flexible (6 = 0), les membrures sont comme articulées sur lui et leurs
sections droites peuvent tourner librement autour de leurs centres. Le travail
de torsion des membrures est alors nul et I’on a simplement:

kREI c
=t (76)

On obtient une bonne formule approchée de la charge critique, applicable
a tous les cas de fixation, en remplacant dans la formule (75) =% par %, ce
qui donne la relation:

Pcr:

kEI, c 1
Pe= T L kc (1)
3612

Cette formule coincide avec la formule exacte (75) dans le cas de la
colonne guidée a ses deux extrémités. Elle se réduit a la formule (17) si
le treillis est infiniment rigide. Enfin, elle se réduit a la formule (76) si
le treillis est infiniment flexible.

Cette formule n’est pas valable dans le cas de la colonne encastrée-
libre si les membrures ne sont liées entre elles que par le treillis; car, dans

(+/>’)

ce cas, on a a l’extrémité supérieure = 0 et non pas a = 0.

Application numérique: Reprenons I’exemple numérique du

§ 8 et évaluons le facteur de réduction lqc?C qui affecte le terme de
torsion rf dans la formule (75). 1+ LYY

C représente ici la rigidité torsionnelle d’'une seule membrure, soit:

. 3 ‘
1003 17 = 333G = 283 - 10%kgs - cm?,

Eh? 2,15 - 10 . 15

b= a—y = 120 —oay = 190800 kg - cm.

Gh® _ 850000 - 1
3 3

C=0G:

3
= 283400 kg - cm ,
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D’otr:
72Cr 987 .283 - 10°. 50
352 = 3196800 - 27000 — 00024
Le facteur de correction - — ! - vaut donc ici 0,997, et la correction

x:Cr
" aee
est négligeable.

Remarque finale: Dans les colonnes en treillis, 4 est beaucoup
plus faible que ci-dessus et C généralement plus grand. Si la colonne est
courte, le facteur de correction peut étre de 'ordre de 0,8 et la correction
due a I’élasticité du treillis atteint 20 0y, ce qui n’est pas du tout négligeable.
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Résumsé.

L’auteur recherche, dans le domaine élastique, la charge critique de
colonnes a section évidée symétrique, lorsque le flambement se produit non
par dérobement transversal, mais par torsion autour de 1’axe de la piece.
La solution est établie a partir de 1’équation différentielle de 'angle de
torsion dans le cas ordinaire de flambement et a partir de considérations
énergétiques, également dans le cas des grandes déformations. L’auteur
établit une formule approximative pour tenir compte du poids propre. En
complément, il établit la diminution de la charge critique résultant des défor-
mations élastiques de la section en suite de la flexion des éléments de
liaison des membrures (que ces éléments soient en treillis ou a Ame pleine).

Summary.

The author investigates the buckling load in the elastic range in columns
of hollow, symmetrical cross-section, when buckling takes place not by lateral
displacement, but by twisting round the axis of the bar. The solution is
obtained from the differential equation for the angle of twist based on the
usual case of buckling, or also from energy considerations. The case of
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large deformations is also checked. For taking the weight of the bar into
account, the author gives a formula of approximation. Then the diminution
in the buckling load is determined, which is caused by a change in shape
of the cross-section in consequence of bending of the ties (whether these
are hollow or solid).

Zusammenfassung.

Der Verfasser untersucht die Knicklast im elastischen Bereich von Siaulen
mit aufgeldstem, symmetrischem Querschnitt, wenn das Knicken nicht durch
seitliches Ausweichen, sondern durch Verdrehung um die Stabachse erfolgt.
Die Losung ergibt sich aus der Differentialgleichung fiir den Verdrehungs-
winkel in Anlehnung an den gewohnlichen Knickfall oder aber aus einer
Energiebetrachtung. Der Fall der groen Formidnderungen wird auch be-
riicksichtigt. Zur Beriicksichtigung des Eigengewichtes gibt der Verfasser
eine Naherungsformel. Ergidnzend wird die Abnahme der Knicklast bestimmt,
die durch eine Veridnderung der Querschnittsgestalt infolge Verbiegung der
Bindungen (seien diese nun aufgelost oder vollwandig) verursacht wird.
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