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THEORIE DU FLAMBEMENT PAR TORSION.

THEORY OF BUCKLING BY TWISTING.

THEORIE DES KNICKENS DURCH VERDREHUNG.

CH. MASSONNET, Ingenieur civil des Constructions A. I. Lg., Aspirant du Fonds
National Beige de la Recherche Scientifique, Liege.

1. Hypotheses de base el notations.
L'hypothese fundamentale de la theorie est que les sections droites de

la colonne ne subissent aucune deformation au cours du flambement. On
admet donc que le treillis de la colonne est compose de barres infiniment
rapprochees. Ces barres sont infiniment rigides ä la flexion et maintiennent
les deux membrures opposees dans leur position relative. Le treillis a de
plus une resistance nulle ä la torsion autour de Faxe de la colonne. Si la
colonne possede des ämes pleines, ces ämes sont egalement supposees
infiniment rigides ä la flexion autour de leur axe.

La theorie developpee dans les paragraphes suivants s'appliquera donc
ä toutes les colonnes en treillis ou ä äme pleine dont la
section droite possede un centre de symetrie. On trouvera
ä la figure 1 quelques exemples de telles sections.

_4

Fig. 1

Nous etablirons la theorie pour une colonne ä ämes en treillis; le cas
de la colonne ä ämes pleines sera examine ä part dans la suite.

Appelons (fig. 2):
z Pordonnee d'une section droite courante dans la colonne.
ß Pangle de torsion de la colonne, c'est-ä-dire Pangle dont a tourne la

section droite d'abscisse z apres flambement. Cet angle est compte po-
sitivement dans le sens dextrogyre (c'est-ä-dire dans le sens de rotation
d'un tire-bouchon dirige vers les z positifs).

r la demi-largeur de la colonne, ou encore le rayon de la surface cylindrique
contenant les fibres moyennes des membrures deformees.

y le deplacement d'un point de la fibre moyenne, mesure suivant la
tangente horizontale au cylindre en ce point.

Ir le moment d'inertie de la membrure dans le plan tangent au cylindre.
lt le moment d'inertie de la membrure dans le plan radial.
C la rigidite torsionnelle d'une membrure.
n le nombre de membrures.
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nP la force axiale concentree appliquee ä Pextremite superieure de la co¬
lonne.

np la valeur unitaire des forces axiales reparties le long de la colonne.
n/jL le moment de torsion transmis (ä titre de reaction d'appui) par Pappui

ä Pextremite superieure de la colonne.

Les elements de reduction de tous les couples et
forces exterieurs appliques ä la colonne au-dessus de la
section courante z sont, dans chaque membrure:

Un effort axial N compte positivement comme
compression.

Un moment de flexion d'axe radial Mr dont le vecteur
representatif est compte positivement vers Pinterieur du
cylindre.

Un moment de flexion d'axe tangentiel Mt dont le
vecteur representatif est dirige positivement vers les y
positifs.

Un moment de torsion W compte positivement dans
le sens dextrogyre.

Un effort tranchant T dont la composante tangentiale

au cylindre est %.

Fig. 2

2. Theorie du flambement par torsion selon la methode d'Euler.

L'equation de la fibre moyenne deformee d'une membrure est:

ß /(*)
le deplacement tangentiel horizontal du point A, suppose infiniment petit,
vaut:

y ßr (1)

aux quantites du second ordre pres.
L^equilibre statique de la portion de la colonne situee au-dessus de la

section z exige que Pon ait:

translation verticale: \N + Tr~r~) + p + p{l~ z) 0.

rotation autour de Oz:

(2)

dz -fX Mt • r-jL- 0.
dz

L'effort tranchant T est nul au depart et du au flambement. C'est donc
un infiniment petit du premier ordre. Comme ß est egalement infiniment
petit du premier ordre, le terme T-rdß/dz est infiniment petit du second
ordre et peut etre neglige devant iV dans la premiere equation (2). On en con-
clut que:

N + P + p(l—z) 0. (3)

aux deuxieme ordre pres.
Pour la meme raison, le terme — Mr r dßldz peut etre neglige dans la

seconde equation (2).
La Resistance des Materiaux nous apprend de plus que:

Mr Elrr d2ß
~dz*

dMr
dz

9JI
dz (4)
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d3 8
d'oü: T -EIrr^. (5)

En remplagant N et r par leurs valeurs (9) et (11) dans la deuxieme equation
(2), on obtient:

c'i-E'r^-lP + pV-wg-^O. (6)

En divisant cette relation par —r2 et en Pordonnant, on obtient Pequation
differentielle generale du flambement par torsion:

^+{[P + p(l-z)]-^+fl 0. (7)

II nous reste ä examiner quelles modifications subit Pequation (7)
lorsque la colonne possede des ämes pleines.

La colonne etant uniformement comprimee dans toute sa section, la
tension unitaire de compression vaut:

P

Le moment de torsion — Nr2dß/dz intervenant dans la seconde equation (2)
doit etre remplace ici par Pexpression:

d][
dz<*lo\r»dco=-^o/p,

oü dcL represente Pelement d'aire et r' sa distance au centre de la section.
Mais J* r'2dco n'est autre que le moment d'inertie polaire Ip de la section
autour de son centre. Le terme ci-dessus peut donc s'ecrire:

[P + pil-z)]^?,
oü $ est le rayon d'inertie de la section droite de la colonne. L'equation
differentielle du flambement par torsion prend ici la forme:

EI^ + \^ + p(l-^^-c}^ + ^ °- (8)

Comme Päme possede dans le cas actuel une resistance ä la torsion
appreciable, C doit representer ici le nieme de la rigidite torsionnelle de
toute la colonne.

3. Etablissement des conditions d'exlremite.
Les extremites de la poutre peuvent etre liees au monde exterieur de

trois manieres differentes; elles peuvent etre, soit encastrees, soit guidees,
soit libres.

1. Extremite encastree: Pencastrement empeche toute rotation
de la colonne et toute inclinaison des membrures ä leur extremite, ce qui
se traduit par les conditions:

ß 0 (9) g=0. (10)
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L'encastrement peut transmettre ä la colonne un moment de torsion d'axe
vertical.

2. Extremite guide e: le guide empeche toute rotation de la
colonne, ce qui se traduit par:

ß 0, (11)

et ne peut transmettre aucun couple de flexion aux membrures, d'oü:
d2 8Mr=° et ^ 0- <12>

Le guide peut transmettre ä la colonne un moment de torsion d'axe
vertical.

3. Extremite libre: aucun moment de flexion ne peut etre trans-
mis aux membrures, d'oü:

d2 8
M,= 0 et ^f 0. (13)

De plus, le moment exterieur de torsion d'axe vertical est necessairement
nul, ce qui entraine

EIr^+\[P + p(l-z)]-^=0. (14)

Remarque importante: il decoule de nos hypotheses de depart
que le treillis est capable de transmettre un moment de torsion aux
membrures afin de realiser Pequilibre statique. En effet, s'il en etait incapable,
il en resulterait une rotation de la section de la membrure autour de son
centre, ce qui est contraire ä Phypothese fundamentale de Pindeformabilite
des sections droites de la colonne.

4. Formule generale du flambement par torsion.
Si Pon compare Pequation (7) ä Pequation generale du flambement

des pieces chargees de bout, ä savoir:

¦% + *+*-*%
on constate que ces equations deviennent identiques si Pon remplace EI
par EIr, y par rß, P par P — C/r2.

Les conditions d'extremite du § 3 coincident de meme avec Celles du
flambement ordinaire quand on fait les substitutions ci-dessus. On en con-
clut que la charge critique de flambement par torsion peut s'obtenir en rem-
plagant dans Pexpression de la charge critique d'EuLER correspondant aux
memes conditions d'extremite P par P — C/r2 et EI par EIr.

La charge critique d'EuLER a comme expression generale:

Pcr=~ 06)

avec { 7i2 poutre biarticulee.
4 7f2 poutre biencastree.

ji2\ 4 poutre encastree-libre.
20,19 poutre encastree-articulee.

£'lÄ + lF + P(l-x)]-^=0, 05)
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La charge critique de flambement par torsion vaut par consequent

kEIr C
~l2~ + rP>cr=*^j:+ (i7)

La charge critique totale de la colonne au flambement par torsion vaut nP'cr,
n etant le nombre de membrures dans la colonne en question.

Si la colonne est ä ämes pleines, la formule (17) doit etre remplagee
par la formule:

r2 kFInP'cr^n^^+C, (18)

C etant la rigidite torsionnelle totale de la colonne.
Le flambement par torsion ne peut effectivement se produire que lorsque

la charge critique qui y correspond est inferieure ä la charge critique d'EuLER
du flambement par flexion. La condition pour qu'il en soit ainsi est evi-
demment:

tt I er —^ -* cr

d'oü Pon tire:

kt^EI C/2 •* n^k{EI—nEIr)r2soit EIr<L 7-5-, soit /2<— -—
n kr1 tiC

soit r2> ^ (19)
S01T r — k(EI—nEIr) '

Pour les colonnes ä ämes pleines, on etablirait des formules analogues.

5* Effet du poids propre de la colonne.
Des qu'on a remplage EIr par EI, rß par y, et P par P — C/r2, on re-

tombe sur Pequation (15) du flambement ordinaire par flexion. Appelons
Pcr la charge critique d'une poutre lorsqu'elle est soumise ä la force con-
centree P. Soit (pl)cr la charge critique de la meme poutre soumise unique-
ment aux forces uniformement reparties p. Nous avons montre ailleurs (voir
Ref. 5, pages 117 ä 120) que, lorsque les forces P et pl agissent simultane-
ment sur la poutre, on a Pinegalite:

~ + ^~>\, (20)
Per KP1)er

le premier membre etant toujours tres voisin de Punite. On deduit de lä:

"L1 (pDcrY
Pä^ p

Si Pon remplace P par P' — C/r2, on obtient la charge critique P' de flambement

par torsion sous la forme:

Pour pouvoir appliquer cette formule, il faut connaitre les valeurs de
(pl)cr pour tous les modes d'appui usuels. Ces valeurs sont les suivantes:
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1. poutre biarticulee: (p t)„ 18,65 =5- (Ref. 2, p. 122) ou (p l)cr«* f 2 P„. *)

Q 2 F" t
2. poutre biencastree: (pl)cr^ —-ß— 2 Pcr x)

„ A n^EI (Ref.2, pp.425 ä 426;3. poutre encastree-hbre: {pl)cr= 7,837^ V.6,pp.ll5 ä ]22)

4. poutre encastree-articulee: {pl)cr~ ] «Vi ~^-

selon le sens des forces reparties. (Ref. 4, pp. 215 ä 223.)

6. Methode energetique.
Bien que les paragraphes precedents aient completement resolu le

Probleme du flambement par torsion, il nous semble utile d'etablir Pequation
differentielle et les conditions aux limites par une methode tout ä fait diffe-
rente, la methode energique. Nous en profiterons pour examiner de plus
pres la question des grandes deformations (§ 7). Pour ne pas compliquer
inutilement les calculs, nous supposerons que les forces reparties p sont
nulles.

Nous ne revenons pas sur les principes qui sont ä la base de la methode
energetique. On trouvera ceux-ci exposes avec tout le detail desirable dans
Pexcellent livre de M. S. Timoshenko consacre ä la stabilite elastique (Ref. 6).

-¥Ji

II est facile de montrer que Ton a approximativement

(pl)cr= 2Pcr

dans tous les cas oü la deformee de flambement est symetrique.
En effet, utilisons la methode energetique et comparons (pl)cr ä Pcr en adoptant

en premiere approximation comme deformee de flambement de la poutre soumise aux
charges reparties p la deformee de flambement de la poutre chargee de bout.

L'energie potentielle

Wv dx
ö

a evidemment la meme valeur dans les deux cas.
Quant au travail T des forces exterieures, il vaut si la poutre est chargee de bout:

T(p)=Pu.
Pour calculer sa valeur quand la poutre est chargee uniformement sur toute sa longueur,
il suffit de considerer deux points de la fibre moyenne symetriques par rapport au milieu.
Par raison de symetrie, leurs deplacements u' et a" ont comme somme le raccourcisse-
ment total u de la poutre. Le travail total des forces p s'obtient en faisant la somme
des travaux elementaires p (u' -\- u") dx pour toute la poutre, ce qui donne:

l 2

T(pD J P("' + u,,)dx=^-'
o

La relation fundamentale V T conduit ainsi ä:
V 2V

Pcr= - et (£/)»¦= — 2Prr
Si Fon remarque de plus que la methode energetique fournit toujours une valeur

de la Charge critique superieure ä la valeur exacte, on en conclut que Ton a en realite:

(pl)cr<2Pcr.
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Si T represente le travail des forces exterieures pendant le flambement
et V Penergie potentielle correspondante emmagasinee dans le corps deforme,
la methode energetique se traduit analytiquement par la relation:

d(V~ T)= 0, (22)

qui exprime simplement que la quantite (V — T) est stationnaire pour toutes
les positions d'equilibre infiniment voisines qui coexistent sous la charge
critique.

Evaluation de V: Considerons un point d'abscisse z de la fibre
moyenne deformee d'une membrure. Appelons avec M. A. E. H. Love (Ref. 2,
p. 382):

k et k' les composantes de la courbure de cette fibre.
t la torsion de cette fibre.
k, k' et r ne sont rien d'autre que les composantes de la vitesse angu-

laire de rotation du triedre principal2) lorsque ce triedre se deplace avec
la vitesse unitaire le long de la fibre moyenne.

Fig. 3 Fig. 4

On peut exprimer k, k' et r en fonetion des trois angles d'EuLER 0, cp, xp

(fig. 3) utilises dans la theorie du mouvement d'un corps solide. On trouve
(Ref. 1, p. 153; Ref. 2, p. 386):

de
ds sin 99

dtp
ds

sin 0 cos cp

dG dip* —cos^+^sinösin?

ds ds

(23)

L'energie potentielle interne de la membrure deformee a pour expression
(Ref. 2, p. 395) :

V= 2
\{Ak',+ Bk'*+ Cc2)ds, (24)

A, B et C representant respectivement les deux rigidites flexionnelles prin-
cipales et la rigidite torsionnelle de la membrure au point considere. On
a d'ailleurs (Ref. 2, p. 388) en premiere approximation:

2) Rappeions que le triedre principal en un point d'une tige mince est le triedre
trirectangle forme par la tangente ä la fibre moyenne et les axes prineipaux d'inertie
de la section droite.

Abhandlungen VI 15
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A EIr B EIt. (25)
L'element d'arc ds de la fibre moyenne deformee est donne par:

ds2 r2dß2 + dz2 (26) car dr 0.

II s'ensuit que (fig. 4):

D'autre part:

in0 _AB __yds2— dz2

BC ~ ds

7V

* 2

dß
rd~s (27)

(28)

La deformation de flambement pouvant etre supposee infiniment petite,
0 est un infiniment petit du premier ordre, et Pon a, au second ordre pres:

Appliquons les formules (23) en tenant compte des egalites (28) et
(29). Negligeons de plus les infiniment petits d'ordre superieur au premier;
nous avons des lors le droit de remplacer ds par dz, sin ß par ß et sin 0 par
0, cos/? et cos 0 par Punite; il vient ainsi

ä" —^ <*»dz2 \dz
La courbure k' est infiniment petite du second ordre; eile est donc nulle

ä Papproximation envisagee; d'oü, par la formule (24), il vient, si on neglige
le terme B • /C'2

o

Le travail de la force exterieure P vaut: T Pu, u etant le raccourcisse-
ment axial de la colonne du au flambement. u est la difference entre la
longueur initiale

/

L \ds
o

de la colonne, et sa longueur apres flambement

On a donc:

/

o
4

.=i-,=j«,.-^=j(|/,+(47.*-4.*j(£)'*
0 0

/
Pret T

2
o
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L'equation d (V — T) 0 s'ecrit ainsi sous forme developpee:

o

Effectuons Poperation de Variation; il vient, tous calculs faits:

0 0

0 0

La Variation dß etant arbitraire, le coefficient de dß dans Pintegrale definie
doit s'annuler, ce qui donne:

De plus, les termes tout integres doivent s'annuler en vertu des conditions
d'extremite. Examinons celles-ci successivement:

1. Extremite encastree: Pencastrement impose dß dz 0, donc
d(dß dz) — 0 et ß 0, donc dß 0. Les termes integres s'annulent donc
d'eux-memes.

2. Extremite g u i d e e: ß 0, donc dß 0; mais la membrure peut
tourner ä son extremite, c'est-ä-dire que d{dßldz) est |- 0.

Pour que le terme integre s'annule, il faut donc necessairement qu'on ait:

£? <>•

3. Extremite libre: ß et -r- sont arbitraires, donc dß et d[-
dz \i

{df
\dz

sont differents de zero. Les termes integres ne s'annulent que si:

dll + tp-cYJ'
dz3 T \ r9-! dz

On retrouve ainsi tous les resultats etablis precedemment dans les §§ 2 et 3.

E,'7&+[P-r>)*=°-

7. Etüde des grandes deformations.
L'etude du phenomene de flambement par torsion quand les deformations

ne sont pas infiniment petites, s'effectue le plus aisement en adoptant comme
variable Pangle 0 que la tangente ä la fibre moyenne fait avec les gene-
ratrices du cylindre. Les angles d'EuLER 0, cp, \p, valent dans le cas actuel:

0 0 *P ~-ß fp Y (36)

avec
1 f • ^ v dß sin0 /o7.ß= \smQds, d'ou -j w')
r J ds r
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On en deduit, par les formules (23),
dO

k

k' -

x —

ds

ds

dß_

ds

sin 0 :

cos0

sin2 0
r

sin 0 cos 0 sin 2 0

(38)

L'energie potentielle interne a donc pour expression exacte:

1 fl Jde\2 Dsin40 _ sin220
+ B —-r— + C —~rl 4 rlV ¦JK£ -1 ds.

D'autre part, le travail de la force exterieure P vaut:
/ / /

7 PNfl?<> ~ JcOS0flfsl==P|(l — COS0)flfs.
0 0 ü

L'equation fondamentale de la methode energetique s'ecrit des lors:

.sin40 Csin22 0

(39)

(40)

<><—ÜIN0 + £- Ar2
2P(l-cos0)ltfsLo. (41)

Effectuons la Variation de cette integrale; il vient, tous calculs faits:
•

l

J J-^^ + 2^sin30cos0+-^^-Psin0 (50rfs + [2i^(f0] O. (42)
0 0

Si Pon peut considerer la Variation d© comme arbitraire, le coefficient
de d© dans Pintegrale definie (42) doit s'annuler, ce qui donne Pequation
differentielle:

d2® nB • s/i r> Csin40 D n—t-t — 2 — sm3 0 cos © — —t^>— + ^sin 0 0.
ds2 r2 Ar2 (43)

Cette equation n'est exacte que dans le cas de la colonne encastree-libre.
En effet, dans tous les autres modes de fixation des extremites, les sections
terminales ne peuvent tourner Pune par rapport ä Pautre autour de Faxe de
la colonne, ce qui se traduit par la condition

Aß ßi — ß0= \dß — [ sin0tfs O. (44)
o o

II nous faut donc rechercher la fonetion 0 0 (s) qui rend minimum la
qu^ntite (V — T) sous la condition que Pintegrale Aß ait une valeur constante
(ici 0). On sait par le calcul des variations que cela revient ä rechercher la
fonetion 0 (s) qui rend minimum Fexpression

V—T—lAß
oü l est un parametre arbitraire.

Si Pon effectue Poperation:

ä(V— T- lAß) 0,
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on trouve aisement Pequation differentielle:

Ad2© „B ^ „ Csin4 0 /l
/4 -—- - 2 -sin3 0 cos 0 j-^ h ^sin 0 H cos 0 0. (45)

as2 r- Ar2 r
Si la colonne est ä ämes pleines, il suffit, par analogie avec ce qui a ete dit

Q2
au § 2, de remplacer P par P^r2.

Dans le cas des petites deformations, on peut poser:

sin 0 0 -J-, cos 0 1

ds

et negliger le terme en B. On retrouve ainsi Pequation (7) du § 2.

Les conditions aux limites sont les suivantes:

1. extremite encastree: 0 0.

1®=0. +fsin0öfs=O. (46)
rt c

"
*

2. extremite guidee. ds j 0

</0
3. extremite libre: -,— 0.1 0.

On voit ainsi que Pon a dans chaque cas trois conditions aux limites.
Elles sont necessaires pour determiner la valeur de / et les 2 constantes
d'integration.

Nous avions trouve au § 3 quatre conditions aux limites, tandis qu'ac-
tuellement nous n'en obtenons que trois. Cette difference resulte simple-
ment du fait que Pequation differentielle actuelle est du second ordre, tandis
que Pequation (7) intervenant au § 3 etait du troisieme ordre.

Etudions maintenant de plus pres Pequation (43) valable dans le cas
de la poutre encastree-libre. Si Pon se borne ä conserver les termes en 0,
02 et 03, on obtient:

nB • ,^ r, nB^ Csin40 Cl„ 8Ö8\ D „ n{^ 03
2 r- sin3 0 cos 0 « 2 ^ 03; —^—^^ \e ^ J; Psin f)^p[ß-^
et Pequation (43) se reduit ä:

»£+('-D«+(£-?M)<"=°- <">

Elle peut s'ecrire:
d2 (9
-~^+p2O+aO» 0, (48)

ä condition de poser:
1 (d C\ \ (8 C 2B P\

Sous sa forme (48), Pequation du flambement par torsion est tout ä

fait analogue ä Celles que Pon rencontre dans Petude des vibrations des
systemes non lineaires. (Voir Ref. 7, pp. 117 ä 154). Ces equations sont de
la forme generale:

x"\+ k2\f{x) 0.
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Dans le cas oü /(x) est de la forme:

f(x) — ax + bx2 + cx3,

on peut obtenir la Solution de Pequation (48) en se servant des fonetions
elliptiques. Mais ces fonetions sont compliquees et peu favorables ä une
application technique.

On peut aussi utiliser des methodes graphiques ou numeriques, ou en-
core une methode d'approximations successives. On trouvera ä la Ref. 7,
pp. 125 ä 140, Fexpose detaille de ces methodes.

Pour notre objet, nous nous contenterons dTune Solution approchee, mais
commode ä manier.

Tant que les deformations ne sont pas trop grandes, la fonetion 0 obeit
approximativement ä la loi:

0 asirf-J (50)

trouvee dans Phypothese des deformations infiniment petites. Le parametre
a represente la valeur 0m que prend 0 ä Pextremite libre de la membrure.

Introduisons la Solution (50) dans Pequation (48). Nous trouvons:

7il a res 9 7is „7f5 n /eiV— 472-s,n2~/ + P asm 27 + ««3sin8^y 0. (51)

II n'est evidemment pas possible de trouver une valeur de p1 teile que
la relation (51) soit verifiee en tout point de Pintervalle (0,/). Mais nous
pouvons choisir p2 de maniere que Pegalite (51) soit verifiee en
moyenne, c'est-ä-dire de maniere que Pintegrale du premier membre de (51),
etendue ä toute la longueur de la colonne, soit nulle, p2 doit ainsi satisfaire
ä la condition:

/ / /
7i2a f 7ts 9 f 7ts „ f q/r5 _ /rov

~~~ÄW I sinI7 + p Jsin27 + aa Jsm "2/
^ *

0 0 0

Si Pon remarque que:
Q

7C S 3 .TIS 1 3 7T S

s,n327=4S,n2/-4Sm^T"'
on obtient aisement, en resolvant les integrales,

2

7C

11 ^a „ \ ,(32/ 1 2/\

ou, apres simplifications,
?c2 2 _-4*+' +3M =°-

En remplagant p2 et a par leurs valeurs (49), il vient:

4/8+/l\ rV+ 3 /*V3rÄ ~

r» 6/~U'
d'oü:

/>/' a2\ .c2 1 /_ 16a* C 4 \
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En remplagant A et B par leurs valeurs (25), on obtient finalement:

i-a: i

C*E/r
4¥~ ^ r"-) Ehr*

16 *n (53)

Si la colonne est ä ämes pleines, il suffit de multiplier le second membre
r2

de (53) par le facteur -.
Pour verifier la precision de la Solution approchee (53), appliquons-la

au cas du flambement ordinaire par flexion. II suffit pour cela d'y faire
B C 0. On obtient alors:

_1 7Z2EI
__

PCr

7ZZ 4^ "
x _

a2
'

(54)
P

La relation exacte qui lie P ä a &m peut s'obtenir par Pemploi des
fonetions elliptiques (voir p. ex. Ref. 6, pp. 69 ä 75).

Le tableau ci-dessous fournit ä la fois les resultats numeriques exaets
et les resultats approches fournis par la formule (54).

a en degres 0° 20° 40° 60°
a en radians 0 0,3491 0,6981 1,047
a2/9 0 0,01354 0,05415 0,1218
PjPcr^ 1/(1 ~a2/9) 1 1,014 1,057 1,139
PI Per exact 1 1,015 1,063 1,152
y/i 0 0,221 0,426 0,583
(y/1) exact 0 0,220 0,422 0,593

Ce tableau fournit egalement pour chaque valeur de a la valeur exacte
du deplacement horizontal y de Pextremite superieure de la poutre.

La valeur approchee de ce deplacement se calcule aisement. On a:
/ / /

J sin Has?** (o- ds asm 7lß
27

a
^sind rjjäs,

ce qui donne, apres calcul de Pintegrale:
2a

Cette formule a servi ä calculer Pavant-derniere ligne du tableau ci-dessus.

8. Application numerique. (empruntee ä la Ref. 3)

Soit ä calculer la charge critique de flambement par torsion d'une
colonne constituee par deux poutres en double te de dimensions et caracte-
ristiques ci-dessous:

Arne: 1000 " 10 mm, soit 100 cm2 } 14. 2
2 semelles: 150 X 15 mm, soit 45 cm2 J

14D cm *

Section totale: 290 cm2.
Poids par metre courant: 230 kgs.
Longueur: 27 metres.



224 Ch. Massonnet

Caracteristiques elastiques de Pacier:
E 21 500 kgs/mm2;
G 8 500 kgs/mm2.

Le moment d'inertie d'une semeile dans son plan vaut:
1 5 • 153

Ir=lL°^° =421,9001*.

La rigidite ä la torsion de la colonne vaut, d'apres M. S. Timoshenko (Theorie
de Pelasticite, p. 278):

C G ¦ 2 J00_lü±2 ^1,51 i342 q ^ ^^
Le moment d'inertie minimum d'une poutre en double te est:

100-1» 2 • 1,5 • 153 a„Irnin J2" - + Y2
852cm •

Le moment d'inertie maximum de la meme poutre vaut:
1 • 100»

12 + 2 • 22,5 • 50* 195 833 cm4.

Le moment d'inertie de la colonne autour d'un axe central quelconque est
donc:

/ 852 f 195 833 196 685 cm*

et son moment d'inertie polaire vaut:
lp 2x196 685 - 393 370 cm4.

Le rayon d'inertie polaire de la section vaut donc:

-K393370
29Ö =36'8cm'

La charge critique de flambement par torsion est donnee par la formule (18):

p. _ „
r% KEjr_ c

1 cr - n ^ p + e*
•

En remplacant les lettres par leurs valeurs numeriques, on obtient:

_ 50* K- 2150000 ¦ 421,9 850000 • 134,2 _P"-A~M& 2700^ + 3W -918/C+84200.

Supposons que la colonne soit guidee ä ses deux extremites (K ^2). On
obtient:

P'cr 93250kgs.
La charge critique d'EuLER de la meme colonne vaut:

P. *BL W L?iM^li?M» 572000^.
Si la colonne est soumise en outre ä son poids propre 230 kgs/m. et, sa charge
critique utile vaut d'apres la formule (21),

Pi TL'
P=P>cr — pl-^-^ =93250 23027^—^- 89965kgs.

\pL)cr lo,Ö3
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9. Theorie complete du flambement par torsion en tenant
compte de l'elasticite du treillis.

L'effet du poids propre ayant ete elucide au § 5, nous pourrons supposer
dans Petude actuelle p 0.

La supposition fundamentale de la theorie du flambement par torsion
(teile qu'elle a ete developpee dans les paragraphes 2 ä 4), ä savoir Pinde-
formabilite des sections droites de la colonne, n'est jamais realisee en
pratique. Le treillis est toujours flexible, et les membrures tendent ä la
deformer de maniere ä absorber elles-memes le travail de torsion minimum.

Comme c'est le terme de torsion qui predomine de loin dans la formule
(17) de la charge critique, la reduction de ce terme affecte tres fort la valeur
de cette charge.

Nous nous proposons dans le paragraphe actuel de calculer la charge
critique de flambement par torsion en tenant compte de Pelasticite du treillis
ou de Päme de la colonne.

Designons par a Pangle supplementaire dont tourne la section droite
d'une membrure autour de son centre par suite de la deformation du treillis.

Le treillis est compose generalement de barres ä section rectangulaire
de hauteur h et d'epaisseur b. La rigidite flexionnelle minimum d'une teile
barre est:

Bt-E~Y2'
et sa rigidite torsionnelle vaut:

Si le treillis ne comporte que des barres horizontales, on peut le rem-
placer par un treillis continu equivalent ayant par unite de longueur des ri-
gidites flexionnelle et torsionnelle:

b nBt, c — nCt, (55)

n etant le nombre moyen de barres de treillis par unite de longueur.
Si le treillis comporte des barres obliques, on prend comme rigidites b

et c les valeurs
n Bi n Ci

b=2r% -l c 2r^\'-; (56)

oü /,- est la longueur de la / eme barre du treillis.
Enfin, si la colonne est ä ämes pleines, on a, d'apres la theorie des

plaques:
Eh3 Gh$*= 12(T=7.)- r "T"' (57)

oü ?] est le coefficient de Poisson (rj 0,3 pour Pacier normal); on re-
marquera que la rigidite torsionnelle de Päme autour de son axe est egale
ä 2cr.

Etudions ä present Pequilibre d'une barre elementaire de hauteur dz
du treillis continu. Cette barre est soumise ä deux moments de flexion
opposes tndz et — tndz et ä 2 moments de torsion opposes ndz et —ndz
(fig. 5). D'apres les lois de la torsion, on a:
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mdz '

jrdz irdz

-mdz

mdzmdz

dß
dz ' (58)

Rg. 5

D'autre part, on sait par la Resistance des
Materiaux que la rotation « d'une poutre pris-
matique soumise ä deux moments de flexion M
egaux et opposes vaut

Ml
6EI'

Si l'on remplace M par mdz, l par 2r et El par bdz, on obtient:

mr d'oü m
3ba

(59)" _ 3b ' /-

L'effort tranchant dans la barre est constant et vaut, d'apres la fig. 5:

tdz — dz — ~~~- dz. (60)

Considerons Pelement de membrure compris entre deux plans hori-
zontaux infiniment voisins z et z ~dz. Cette partie sera, apres deformation,
en equilibre sous Finfluence des forces suivantes:

1. La force tangentiale tdz appliquee au centre de gravite de la section
droite.

2. Le moment de flexion mdz trdz.

3. Le moment de torsion ndz c ~ dz.
dz

4. Sur la section inferieure z les efforts exerces par le restant inferieur
de la membrure, et qui se reduisent ä un effort tranchant r, un moment
flechissant Mr, un effort axial /V et un moment de torsion 3W.

5. Sur la section superieure z -dz, les sollicitations analogues x Tdx,
Mr -r dMr, N \-dN et 2R - dm.

Les equations d'equilibre de Pelement de membrure considere sont:
a) Equilibre de translation:

dz
0

b) Equilibre de rotation:

dr Kr d2ß
dz dz2

— t 0

dMr
dV + t i

dß
dz :0

dW
dz + tr 0.

(61)

(62)

La theorie de la flexion nous apprend de plus que:
d28

(63)

(64)

(65)

Enfin, comme le treillis est suppose encastre sur les membrures, la
rotation de la section droite d'abscisse z autour de son centre est (a + ß).
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La theorie de la torsion nous permet donc d'ecrire:

m cd(ad+ß). m
De (61), on tire directement:

N Cte ~ P. (67)
De (64) et (66), on deduit:

t _c *(« + />). mr dz2 '

Les egalites (62), (67) et (68) combinees fournissent alors la relation:

"; Prw+c*(a+ji 0m
dz dz'2 r dz1

Si l'on derive (63), on obtient:
d2Mr de d*ß
Hz* +-dz-~Cd^=°- <70>

En rempla^ant dans cette equation par sa valeur tiree de (69) et
dl MJ *par sa valeur obtenue en derivant 2 fois (65), on obtient finalement:

dz-4

II faut adjoindre ä cette equation celle qiPon obtient en remplagant dans
(68) t par sa valeur (60), soit:

CdHa+ßl+3b^=0
r dz2 r- '

Les equations (71) et (72) resolvent ensemble le probleme de flambement

3).

3) Signaions en passant que les equations (71) et (72) peuvent s'obtenir aisement
par la methode energetique (cf. § 6).

En se bornant aux termes du premier ordre, on trouve pour les composantes de

la courbure et de la torsion les valeurs suivantes: (cp _ — a)

k=r"l, 0f r=_ä(±±J)
dz2 dz

d'oü Pon deduit la valeur de l'energie potentielle interne:

0
9

Dans cette expression, le terme ^ • represente l'energie de flexion et le terme
4?c( - \ l'energie de torsion par unite de longueur de la moitie du treillis adjacente
ä la membrure consideree.

Le travail de la force exterieure P vaut comme precedemment:
l

=;m$*-
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Examinons maintenant les conditions d'extremite. On peut les obtenir
aisement par la methode energetique, comme au § 6. Nous ne donnerons ici
que les resultats:

Les conditions aux limites relatives ä ß restent inchangees, sauf pour
Pextremite libre oü elles deviennent:

En ce qui concerne les conditions d'extremite relatives ä a, il faut
distinguer 2 cas:

1. Si la colonne est renforcee par une plaque d'assise terminale ou
assemblee par ses membrures aux autres pieces de la charpente, on a ne-
cessairement

a 0
aux deux extremites.

2. Si, au contraire, les membrures ne sont liees entre elles que par le
treillis, il est evident que le moment de torsion ffi ä Pextremite des membrures
est nul, parce que la tranche elementaire extreme du treillis ne peut
transmettre qu'un moment infiniment petit. On a donc aux extremites:

9)1 0; d'oü J^L+A. q.
dz

Dans ce qui suit, nous supposerons toujours avoir affaire au premier cas
et nous poserons aux deux extremites de la colonne a 0.

Les equations differentielles (71) et (72) peuvent s'integrer exactement
dans tous les cas.

En effet, en eliminant a entre les relations (71) et (72), on obtient,
apres quelques calculs, Pequation differentielle du 6eme ordre:

^£H£(^)+T]£M(--7)c- '1£=°- <">

L'integrale generale de cette equation contient 6 constantes arbitraires.
On peut les determiner par les 6 conditions d'extremite: 4 relatives ä ß et
2 relatives ä a. Les formules de la charge critique qu'on obtient ainsi sont
en general extremement compliquees.

Cependant, la Solution exacte peut s'obtenir aisement dans le cas de la
colonne guidee ä ses deux extremites.

Posons en effet:

ß= \ sin^2; a=Aß, (74)

A etant une constante arbitraire.
Cette Solution satisfait aux conditions aux limites relatives ä a et ä ß.

Rempla^ons a et ß par leurs valeurs (74) dans les equations (71) et (72).

La Variation de (V—T) doit etre nulle.
Comme le probleme comporte 2 variables independantes a et ß, il nous faut

annuler la Variation de (V—T) successivement par rapport ä a puis par rapport ä ß.
Les calculs (que nous ne reproduirons pas ici) conduisent respectivement aux equations
ditferentielles (72) et (71).
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^7H'-^(t)'^-M7)W'> <>

C(7c\2^ „, 3bA
r

En eliminant A entre ces 2 equations, on obtient:

lEIr c C 1

n2Cr
'

(75)1 + 3bl2
Dans les autres cas de fixation, on ne peut obtenir aussi simplement la

Solution exacte du probleme parce que a et ^ doivent obeir ä des conditions
d'extremite differentes, de sorte qu'on ne peut poser a Aß.

Remarquons ici que, dans le cas-limite oü le treillis est infiniment
flexible (b 0), les membrures sont comme articulees sur lui et leurs
sections droites peuvent tourner librement autour de leurs centres. Le travail
de torsion des membrures est alors nul et Pon a simplement:

/V ^ + ;. (76)

On obtient une bonne formule approchee de la charge critique, applicable
ä tous les cas de fixation, en remplagant dans la formule (75) ji2 par k, ce
qui donne la relation:

l2 r
' r2 kC2 (77)+ 3b l2

Cette formule comcide avec la formule exacte (75) dans le cas de la
colonne guidee ä ses deux extremites. Elle se reduit ä la formule (17) si
le treillis est infiniment rigide. Enfin, eile se reduit ä la formule (76) si
le treillis est infiniment flexible.

Cette formule n'est pas valable dans le cas de la colonne encastree-
libre si les membrures ne sont liees entre elles que par le treillis; car, dans

ce cas, on a ä Pextremite superieure —— 0 et non pas a 0.

Application numerique: Reprenons Pexemple numerique du

§ 8 et evaluons le facteur de reduction -^-- qui affecte le terme de
C i ^Cr

torsion
2

dans la formule (75). •" 2bl2

C represente ici la rigidite torsionnelle d'une seule membrure, soit:
100 • l3

C=- Q- -ir^-i— 33,3 Q 28,3 • 106kgs • cm2.

Eh* 2,15- 10613 inAQnnl

^oy^jsoooo-P ^28340okg,cmt
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D'oü:
n2£L- 9>8L: ^lll0!^50 - o 00324
3bl2 ~~ 3 • 196800 • 27002 "" U'ÜUJZ*-

Le facteur de correction - —7> _ vaut donc ici 0,997, et la correction
7t2 Cr J

1 + 3bl2
est negligeable.

Remarque finale: Dans les colonnes en treillis, b est beaucoup
plus faible que ci-dessus et C generalement plus grand. Si la colonne est
courte, le facteur de correction peut etre de Pordre de 0,8 et la correction
due ä Pelasticite du treillis atteint 20 °o, ce qui n'est pas du tout negligeable.
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Resume.
L'auteur recherche, dans le domaine elastique, la charge critique de

colonnes ä section evidee symetrique, lorsque le flambement se produit non
par derobement transversal, mais par torsion autour de Faxe de la piece.
La Solution est etablie ä partir de Pequation differentielle de Pangle de
torsion dans le cas ordinaire de flambement et ä partir de considerations
energetiques, egalement dans le cas des grandes deformations. L'auteur
etablit une formule approximative pour tenir compte du poids propre. En
complement, il etablit la diminution de la charge critique resultant des
deformations elastiques de la section en suite de la flexion des elements de
liaison des membrures (que ces elements soient en treillis ou ä äme pleine).

Summary.
The author investigates the buckling load in the elastic ränge in columns

of hollow, symmetrical cross-section, when buckling takes place not by lateral
displacement, but by twisting round the axis of the bar. The Solution is
obtained from the differential equation for the angle of twist based on the
usual case of buckling, or also from energy considerations. The case of
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large deformations is also checked. For taking the weight of the bar into
account, the author gives a formula of approximation. Then the diminution
in the buckling load is determined, which is caused by a change in shape
of the cross-section in consequence of bending of the ties (whether these
are hollow or solid).

Zusammenfassung.
Der Verfasser untersucht die Knicklast im elastischen Bereich von Säulen

mit aufgelöstem, symmetrischem Querschnitt, wenn das Knicken nicht durch
seitliches Ausweichen, sondern durch Verdrehung um die Stabachse erfolgt.
Die Lösung ergibt sich aus der Differentialgleichung für den Verdrehungswinkel

in Anlehnung an den gewöhnlichen Knickfall oder aber aus einer
Energiebetrachtung. Der Fall der großen Formänderungen wird auch
berücksichtigt. Zur Berücksichtigung des Eigengewichtes gibt der Verfasser
eine Näherungsformel. Ergänzend wird die Abnahme der Knicklast bestimmt,
die durch eine Veränderung der Querschnittsgestalt infolge Verbiegung der
Bindungen (seien diese nun aufgelöst oder vollwandig) verursacht wird.
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