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DIE KNICKBERECHNUNG MEHRFELDRIGER, IN DEN
FELDGRENZEN BELIEBIG GESTUTZTER STABE.

LE CALCUL DU FLAMBAGE DES POUTRES CONTINUES
SUR APPUIS D’'UN GENRE QUELCONQUE.

CALCULATING THE BUCKLING OF MEMBERS WITH SEVERAL
BAYS AND SUPPORTED IN ANY MANNER WITHIN THE LIMITS
OF THE BAYS.

Prof. Dr. Ing. K. KRISO, Deutsche Technische Hochschule, Briinn.

I. Einleitung.

Die Bedingung fiir das Ausknicken eines mehrfeldrigen geraden Stabes,
der in den Feldgrenzen auf elastischen Stiitzen gelagert ist und da-
selbst von axial wirkenden Kriaften ergriffen wird, wurde erstmals von Zim-
MERMANN 1) hergeleitet. Von dieser prinzipiellen Lésung ausgehend, kann
man nur mithsam, auf recht umstindliche Weise iiber umfangreiche Zahlen-
rechnungen bis zu dem vom Ingenieur bendtigten Zahlenresultat vordringen.
Aus diesem Grunde hat ZIMMERMANN fiir gewisse Sonderfille?) ein
systematisches Verfahren zur zahlenmiBigen Durchfiihrung der Knickberech-
nung entwickelt. Dieses ZiMMERMANN’sche Verfahren erstreckt sich auf
gleichfeldrige Stabe, die hinsichtlich Konstruktion und Belastung
Symmetrie zur Mitte aufweisen und in allen Feldgrenzen eine elastische
Querstiitzung von gleicher Intensitit besitzen. Die Druckgurte offener Fach-
werksbriicken entsprechen vielfach dieser Voraussetzung, ihre Knickberech-
nung nach dem nunmehr schon dreifig Jahre bestehenden ZiMMERMANN’schen
Verfahren hat sich jedoch in der Praxis nicht einbiirgern konnen.
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Fig. 1

[a] 1

Unter dhnlichen, aber erweiterten Voraussetzungen hat der Verfasser
ein ebenfalls strenges Verfahren zur Knickberechnung der Druckgurte offener
Briicken hergeleitet, das in einfacher Art zu handhaben ist und verhiltnis-
maBig rasch zur Ermittlung der Knickdeterminante fiihrt 3).

1) H. ZimmermaNN, Der gerade Stab auf elastischen Einzelstiitzen mit Belastung
durch ldngsgerichtete Krifte. (Sitzungsberichte der Berliner Akademie, mathem.-physik.
Klasse, 1907, Seite 326 ff.)

H. ZiMmmermANN, Die Knickfestigkeit des geraden Stabes mit mehreren Feldern.
(Sitzungsbericht der Berliner Akademie, mathem.-physik. Klasse, 1909, Seite 180 ff.)

2) H. ZimmermanN, Die Knickfestigkeit der Druckgurte offener Briicken. (Berlin
1910, Ernst & Sohn.)

3) K.KRiso, Die Knicksicherheit der Druckgurte offener Fachwerksbriicken. Band I1I
cligg ;&bhandlungen der Internationalen Vereinigung fiir Briickenbau und Hochbau, Ziirich
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In der vorliegenden Arbeit wird das Ausknicken von geraden Durchlauf-
stiben untersucht, deren Querschnitt und Tragheitsmoment innerhalb eines
Feldstabes konstant ist und die in den Feldgrenzen von axial wirkenden
Einzelkriften ergriffen werden. Neben Druckkraften konnen auch Zugkrifte
auftreten, wie z. B. beim Ausknicken des Obergurtes im durchlaufenden
Triger einer offenen Briicke (S, in Fig. 1), auch Feldstidbe, die durch keiner-
lei Axialkraft beansprucht sind (S, in Fig. 1) diirfen im Durchlaufstab ent-
halten sein. Die Stiitzung in den Feldgrenzen kann nach irgend einer der
in Fig. 2 schematisch dargestellten Art erfolgen und diese Stiitzungsarten
konnen in beliebiger Kombination verwendet werden. Fiir derartige Durch-
laufstibe, die jede beliebige Unsymmetrie hinsichtlich Konstruk-
tion, Belastung und Stiitzung aufweisen diirfen, wird nun im folgenden ein
strenges, ganz allgemein giiltiges Verfahren zur zahlen-
miBigen Durchfithrung der Knickberechnung entwickelt.

Dieses Verfahren beschreitet, im Gegensatz zum ZIMMERMANN’schen Ver-
fahren, andere Wege. Es zeichnet sich vor allem durch seinen einheitlichen
Aufbau aus, der fiir alle, wie immer gearteten Fille, seine Giiltigkeit behilt
und daher die Durchfithrung der Berechnung in immer gleicher und gleich
einfacher Weise gestattet. Ein solches, besonders vom praktischen Rechner
geschitztes Verfahren, ermoglicht eine leichte Kontrolle, verbiirgt ein Mini-
mum an Fehlerquellen und fiithrt in iibersichtlicher schematischer Form in
jedem Falle sicher zu dem in der Praxis geforderten Zahlenresultat. Infolge
zweckmiBig getroffener Anordnungen in der Herleitung, erscheinen in der
Zahlenrechnung nur kleine dimensionslose Grossen, so daB die-
selbe, falls keine Rechenmaschine zur Verfiigung steht, auch mit Hilfe eines
Rechenschiebers durchgefiihrt werden kann.

Im Vergleich zu meiner in Band IIl der ,,Abhandlungen‘‘ der 1. V. B. H.
veroffentlichten Methode, ermoglichen die Ergebnisse des hier zu entwickeln-
den Verfahrens auch neuerdings eine bedeutend vereinfachte strenge Knick-
rechnung der Druckgurte offener Briicken, die nunmehr unter Erweiterung
der bisherigen eingeschrinkten Voraussetzungen durchgefiihrt werden kann.

II. Bezeichnungen.

Die Fig. 2a—2c stellt eine in der Querrichtung unverschiebliche, die
Fig. 2d —2f eine in der Querrichtung federnde Stiitzung dar. Die iiber den
Stiitzen liegenden ,,Stiitzenquerschnitte‘* des Durchlaufstabes sind entweder
frei drehbar (Fig. 2a, 2d), elastisch drehbar (Fig. 2b, 2e) oder unverdrehbar
(Fig. 2¢, 2f).

lateralement non deplagable b/érq/emen/ élastigue
sertlich unverschieblich seitlich federnd
lalerally immovgble laterally elashcally sypported
a) & o d) e #
- . -
o) 1 +
@{a/zpu/ é rofule @ ® @ 1@ ©)
Frei drehbar v .
, encastrement élaslque encasfrement folal
Freely supported @{e/as//kch emgespannt {fe's/ eingespannt
elastrcally Fixed firmly fixed

Fig. 2
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In den letzten zwei Fillen wird die elastische bezw. feste ,,Einspannung*
des Stiitzenquerschnittes so verwirklicht gedacht, daB, wie Fig. 2 zeigt, der
Stiitzenquerschnitt des durchgehenden Stabes mit einem hierauf senkrechten
starren Stab biegungssteif verbunden sei, der entweder elastisch drehbar
oder unverdrehbar ist. Dieser starre Stab soll als ,,Stittzenstab‘ be-
zeichnet werden, zum Unterschied von dem zwischen zwei Stiitzen liegenden
,Feldstab‘.

Ein iiber mehrere elastische Stiitzen durchlaufender Stab ist duBerlich
statisch unbestimmt. Hieraus erhidlt man bei Kenntnis der elastischen
Stiitzungselemente ein statisch bestimmtes Hauptsystem, indem man an den
Enden der Feldstibe Gelenke einschaltet. Folgen im Stabzug zwei Feld-
staibe unmittelbar aufeinander, so liegt das einzuschaltende Gelenk unmittel-
bar iiber der Stiitze. Sind zwei aufeinanderfolgende Feldstibe jedoch durch
einen Stiitzenstab getrennt, dann sind die einzuschaltenden Gelenke unend-
lich nahe links und rechts vom Stiitzenstab anzubringen. Das zwischen ihnen
liegende Stabelement ist mit dem Stiitzenstab in starrer Verbindung.

a 3
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In diesen ,,Gelenkquerschnitten, die nach Fig. 3 mit den fortlaufenden
arabischen Ziffern 1, 2, ... zu bezeichnen sind, kommen im ausgeknickten
Zustand die ,,Knickmomente‘ M;, M, usw. zur Wirkung. Die zwischen den
Gelenken liegenden ,,Feld-‘ bezw. ,,Stiitzenstibe‘‘ werden, wie Fig. 3 zeigt,
mit einer eingeklammerten arabischen Ziffer bezeichnet, derart, daB zwischen
den Gelenken » — 1 und » der Feld- bezw. Stiitzenstab [7] zu liegen kommi.

Die Stiitzen selbst werden ebenfalls durch arabische Ziffern gekenn-
zeichnet. Eine zwischen zwei Feldstiben liegende Stiitze fiihrt die Ordnungs-
nummer des links von ihr liegenden Feldstabes. Ist der Stiitzenquerschnitt
in einen Stiitzenstab eingespannt, so wird die Stiitze mit der Ordnungs-
nummer des Stiitzenstabes bezeichnet. In solchen Fillen weist die Beziffe-
rung der aufeinander folgenden Stiitzen allerdings keine regelmafBige Zahlen-
folge auf. Die letzte Stiitze eines n-stibigen Durchlaufstabes fiihrt stets die
Bezeichnung ,,z*, die erste Stiitze hingegen wird mit ,,1¢‘ bezeichnet, falls
der erste Stab des Verbandes ein Stiitzenstab ist, jedoch mit ,,0‘, wenn der
Stabzug mit einem Feldstab beginnt.
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Sind in einem Durchlaufstab nur Feldstiabe allein vorhanden, so
weist die Bezifferung dieser Stibe eine regelmiBige Zahlenfolge auf. Bei
der Anwesenheit von Stiitzenstiben wird diese RegelmédBigkeit der
Zahlenfolge gestort. Es ist aber, wie sich spater erweisen wird, zweckmaBig,
daB auch in solchen Fillen die an beiden Enden oder auch nur an einem
Ende federnd quergeschiitzten Feldstédb e in ihrer Bezifferung eine regel-
miBige Zahlenfolge bilden. Um diese RegelméaBigkeit herzustellen, wird bei
der Anwesenheit von Stiitzenstidben und iiberdies auch bei An-
wesenheit von Feldstiben,die an beiden Enden auf unverschieb-
lichen Querstiitzen aufliegen, neben der bereits festgelegten
Bezifferung durch arabische Ziffern noch eine zweite Bezifferung durch fort-
laufende eingeklammerte romische Ziffern [I], [II], ... erforderlich. Diese
Ziffern werden jenen Feldstidben zugeordnet, die an beiden Enden
oder auch nur an einem Ende federnd quergestiitzt sind. Alle anderen Stidbe
fithren nur die zuerst festgesetzte Bezeichnung durch arabische Ziffern (siehe
Fig. 3).

Innerhalb eines Feldes sind, wie schon erwihnt, Querschnitt, Tragheits-
moment und Axialkraft unverdnderlich. Fiir ein beliebiges Feld » werden
die folgenden Bezeichnungen eingefiihrt: ¢, = Feldliange, /, = Trigheits-
moment des Querschnittes F, in bezug auf die zur Zeichenebene senkrechte
Symmetrieaxe des Querschnittes, &, = die im Felde wirksame Normalkraft.
In den Stiitzenquerschnitten sollen die von auBlen, z. B. von den Fiillstiben
eines Fachwerkes aufgebrachten Axialkriafte 4&, angreifen. Diese Ge-
brauchsbelastung erzeugt in den Feldstiben die Normalkrifte &,.

Der Durchlaufstab besitzt bei vorgegebener elastischer Stiitzung die
Knicksicherheit », wenn erst die »-fach erhohte Belastung v4&, = 4-S, das
Ausknicken des Stabes bewirkt. Im Felde r eines Druckstabes wirkt dann
die Knickkraft S, = »&,, sie erzeugt die Knickspannung o, = %; T, ist der
der Knickspannung o, zugeordnete (Engesser’sche) Knickmodul. Die elastische
Senkung eines Stiitzpunktes / wird nach Fig. 3 mit y, bezeichnet, die Tangente
in einem beliebigen Punkte der elastischen Linie des ausgeknickten Stabes
besitze die Neigung v, im Stiitzpunkt » daher die Neigung v,. Die Neigung »,*)
der Stabsehne im Felde r wird gelegentlich auch als Verdrehung des
Feldstabes [r] bezeichnet. Die Verdrehung ¢, des Stiitzen-
stabes [r] stimmt mit der Neigung v = v, der Stiitzpunkttangente iiber-
ein. Die - Winkel », und vy, werden auch kurz ,Stabverdrehungen*
genannt. a, bezw. 8, ist der Winkel, den die Stabsehne des rten Feldes mit
der Stiitzpunkttangente der elastischen Linie am linken bezw. rechten Stab-
ende einschlieBt. », und v, sind im Sinne der Uhrzeigerdrehung positiv zu
rechnen, ebenso a,, wiahrend fiir 8, der entgegengesetzte Drehsinn
als positiv zihlt. Fiir die in den Gelenkquerschnitten wirkenden Momente
gilt dieselbe Vorzeichenregel, wie fiir die Winkel a und g.

III. Die elastische Stiitzung.

" Die elastischen Stiitzenreaktionen — der Stiitzenwiderstand W; und das
in Fig. 4 durch das Kraftpaar H,; gekennzeichnete Einspannungsmoment 3¢, —
gehorchen dem Elastizititsgesetz und sind demnach den sich einstellenden

4) Die Knicksicherheit wurde mit dem Buchstaben », die Neigung der Stabsehnen
mit ‘dem gleichen, jedoch immer bezeigerten Buchstaben v, bezeichnet. Eine Ver-
wechslung dieser GroBen scheint daher ausgeschlossen.
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Deformationen proportional. Daher ist in bezug auf ¥
Fig. 4 N | L]
-
u7i = Aiyi; (1) &
M; = C; yy;.. >

Man nennt 4; den spezifischen Stiitzenwiderstand, C; den spezi-
fischen Verdrehungswiderstand. Diese Konstantwerte sind die Sonder-
werte von W; und IM;, welche den Deformationen y; = 1 bezw. y; = 1 ent-
sprechen. A;, C; — die ,Federkonstanten‘ — bestimmen die ,,Starke*
der elastischen Stiitzung.

Man bezeichnet die dem Widerstand W; = 1 zugeordnete Stiitzensenkung
y; mit §;, bezw. die IM; = 1 entsprechende Stiitzenverdrehung y; mit ¢; J; ist
die ,spezifische Stiitzensenkung*, ¢ die ,,spezifische Stiitzen-
stabverdrehung‘“. Mit Einfilhrung dieser Gr6Ben ergeben sich die
Formeln ’ e

yi = 0; W; bezw. Y = &M; (2)
und aus (1) folgen die Beziehungen '
1= A;9; oder A; = L3 bezw. 0; = L,
d; A;
: 1 3)
1= CGCe ” Ct:“é: ” Ei:a-l

IV. Knickgleichungen, Knickbedingung und
Knickdeterminante.

Der Knickzustand eines Durchlaufstabes, z. B. des in Fig. 3 dargesteliten
Stabes, ist dadurch gekennzeichnet, daB neben der geraden Gleichgewichts-
lage (Fig. 3a) noch eine zweite Gleichgewichtslage (Fig. 3b) existiert, in
der sich die Knickbelastung 45; =vA4&;, die Stiitzenreaktionen W; und 9; am
ausgebogenen Stab das Gleichgewicht halten. Im ,Knickzustand‘‘ wird sich
diese letztere Gleichgewichtslage auch immer ausbilden, weil das Gleich-
gewicht am geraden Stab unsicher ist.

Im folgenden sind nun jene analytischen Bedingungen aufzusuchen, die
erfiillt sein miissen, wenn sich die oben genannten Krifte am deformierten
Stab das Gleichgewicht halten. Ist dies der Fall, so werden z. B. die Stiitzen-
senkungen y; und ebenso auch die Neigungswinkel », der Stabsehnen in einem
ganz bestimmten Verhiltnis zueinander stehen.

Der Rechnungsgang in dieser Abhandlung fithrt zu einem System von
Gleichungen zur Berechnung der Neigungswinkel »,. Sind in einem
n-feldrigen Durchlaufstab z. B. m Feldstibe enthalten, die an einem Ende
oder auch an beiden Enden federnd quergestiitzt sind — nur solche Stibe
konnen im deformierten Stabzug eine Neigung », erhalten — so 148t sich,
wie im folgenden gezeigt werden wird, stets eine Gleichungsgruppe von
der Form

ag v + @gve + - ¢ - -+ @G =20
g1 V1 + Qa2 Ve + - - ¢ - -+ Gam V=0

....... > (4)

--------

AmiVy + AmaeVe + + ¢+ ¢+ ¢+« + QGumVm =0
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zur Errechnung der dem Knickzustand entsprechenden Neigungswinkel », er-
mitteln.

Diese Gleichungen, die auch als ,Knickgleichungen* bezeichnet
werden, sind hinsichtlich der Unbekannten », linear und homogen und liefern
bekanntlich nur dann endliche Werte »,, wenn die Koeffizientendeterminante
verschwindet. Da im-ausgeknickten Zustand die Stabneigungen », von Null
verschiedene endliche Werte besitzen, so folgt, daB im Knickzustand die
Bedingung

@y P Qg P o0 L Qim

asy asy « e e e éazm
A=| « ... 00 =0 (5)
my Amg © * + =+ *  Qmm

erfiillt sein muB. Diese Bedingung 4 = 0 ist die ,Knickbedingung*
des Problems, die Determinante 4 aus den Beiwerten der Knickgleichungen
wird ,Knickdeterminante‘ genannt.

Will man also ein Ausknicken des Durchlaufstabes herbeifiithren, was
in verschiedener Weise geschehen kann — z. B. durch »-fache Erh6hung der
Gebrauchsbelastung oder durch eine u-fache Verschwiachung der vorhandenen
federnden Querstiitzung usw. — so ist in den Beiwerten a,x zunéchst die der
verlangten Forderung entsprechende GroBe », u usw. frei zu halten und dann
aus 4 = 0 zu errechnen. Diese aus 4 = 0 flieBende Gleichung ist die ein-
zige Gleichung zur Losung des Knickproblems.

- Fir die zahlenmiaBige Durchfithrung der Knickberechnung ist es von
grofBter Bedeutung, ein Verfahren zu besitzen, das fiir jeden beliebig ge-
lagerten Stab in iibersichtlicher, immer gleicher und gleich einfachen Art
rasch die Glieder der Knickdeterminante liefert. Ein solches Verfahren soll
nun an dem Sonderfall des in der Fig. 3 dargestellten Stabes entwickeit
und dann verallgemeinert werden.

V. Ermittlung der Knickgleichungen.

Gleichgewichts- und Forminderungsbetrachtungen an dem durch die
Knickbelastung 4 S deformierten Stab liefern zwei Gruppen von Gleichungen,
die Lagergleichungen und die Kontinuitatsgleichungen,
durch deren Verbindung die nach den Neigungswinkeln », linearen und
homogenen Knickgleichungen gewonnen werden.

Die anzustellenden Untersuchungen werden am statisch bestimmten
Hauptsystem durchgefiihrt, das unter der Wirkung der Knicklasten S, und
der statisch unbestimmten Knickmomente M; dieselbe Beanspruchung und
Deformation erleidet, wie der ausgeknickte statisch unbestimmte Durchlauf-
stab unter der alleinigen Belastung S,.

A. Ermittlung der Lagergleichungen.

1. Die Lagergleichungen eines Durchlaufstabes, der
nur federnd quergestiitzte Feldstdibe besitzt. Die Lager-
gleichungen eines solchen Durchlaufstabes werden an der Hand der Fig. 5
hergeleitet, die einen aus dem Hauptsystem herausgeschnittenen Stabteil zur
Darstellung bringt. In den Feldgrenzen wurde die von auBen aufgebrachte
Differenzbelastung A4S durch zwei Einzelkrifte von der GroBe der Feld-
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stabkrifte ersetzt, in den Gelenken des Hauptsystems werden die Knick-
momente als duBere Belastung angebracht.

Die in der Figur eingeschriebene Stabbezeichnung und Bezeigerung ist
im speziellen Falle mit arabischen Ziffern vorzunehmen. Die Einfithrung
einer Beschreibung mit romischen Ziffern ist hier wegen des Fehlens von
Stiitzenstiben nicht erforderlich.

Fiir die Stabneigungen », und die Stiitzensenkungen y, ergibt sich aus
der Figur die geometrische Beziehung

Jr—JVr1 = &g v, = ¢, (6)
Nach Gl. (1) und (3) folgt
%t
Wr o
/ Yr= 2—; = 6r W,
T,;\ analog
_ Wy _
Jra = A, = 0py Wiy

daher yr_.Vr—1 = CpVy — dr Wr"_ d‘l’—l Wl‘—l (7)

Wie aus der Fig. 5 erkenntlich, wird der Stiitzenwiderstand (Lagerwider-
stand) W, nur durch die auf die Feldstibe [7] und [r -+ 1] wirkenden Mo-
mente und Normalkrifte erzeugt, daher ist

Wr: M"—l—M}‘ _ Mr_‘ Mr+1 + gSrCrtgvr L Sr+1 Cr+1 tgvr_'_l .

Cr Crit Cr Cry1

Da die Neigungswinkel », sehr klein sind, so ist sin», = tg », = »,,
cosv, = 1. Die Differenz der an einem Feldstab wirkenden Momente wird
weiterhin kurz ,,Momentendifferenz am Feldstab »‘ genannt und mit 4 M,
oder (4 M), bezeichnet. Mit

(AM),- = Mr—l — M, = Miinps — Myecnss (8)
folgt somit aus obiger Gleichung
(dM), _ (AM)ri

Wr —_— + Sr Vy — Sr+1 Vr+1

analo o s 9)
s _ @My dmye o
s c 1 Vr— r Yy

und mit Riicksicht auf (7)
Or_ Gy y 0, '
L (AM)y + 0 My, — (UMY — Opy Spy vy
Cr Cry1
(10)
+ (dl‘—l + (sr) Syvp— 0, Sri1 Vry

Fiir die zahlenmaBige Durchfithrung der Berechnung ist es zweckmiBig,
mit dimensionslosen Verhiltniszahlen zu rechnen. Aus diesem Grunde werden
die in (10) und in allen spateren Gleichungen noch auftretenden Grofien mit
gewissen frei zu wihlenden Konstantwerten in Vergleich gesetzt.

Daher wihlt man einen beliebigen, abgerundeten Vergleichswert ¢* von
der GroBenordnung der Feldlidngen c,, ebenso Vergleichswerte $* und 6* von

CrVp — —
Cr_y
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der GroBenordnung der Stabkrifte S, bezw. der spezifischen Stiitzen-
senkungen ¢, und setzt

% = Fap bezw. b == C¥ iy
% = 6,"? o» 0p = 0% o'y,
S)’ ’ % Q7
ferner o = S, ” r = S* &, (11)
Si:‘/]é = M, ) M, = S*c* My,
AM r ’ ’
(S*Lj — UMY, (M) = S*c(AM),.

Hier und auch spiterhin soll der an irgend eine GréBe beigesetzte
,,Strich* daran erinnern, daB durch ihn eine dimensionslose, mit den
Vergleichswerten S*, ¢*, * gebildete Verhiltniszahl angedeutet wird. Trotz-
dem soll aber auch weiterhin noch, in allerdings nicht ganz richtiger Aus-
drucksweise, kurzerhand von ,,Momenten M von ,,Kraften §*‘ usw. ge-
sprochen werden. Mit (11) geht nun Gleichung (10) iiber in
é ’ ’ ’

s (), + T aay, — O

r—1 I’

— 01 Sy Ve + (6’;'_1 + d,r) S'pvy— d,rS’rH Vryy }

und hieraus folgt durch Division mit (¢, 6* S*)

c* v, = 0% S*{ (AM |

”— 7 ,I’v (.)‘lr ’ dlr 6’r_ "
o+ e, — TR0 a4 it | + 25 Sy
(:* r— + d’l‘ ’ dVr ’ ‘
+ (a*s* — lclr ) Srvr + z, Sravrin =0 (12)

Gl. (12) ist dem Feldstab [7] der Fig. 5 zugeordnet, auch jedem anderen
Feldstab entspricht eine solche analog gebaute Gleichung. Diese Gleichungen,
deren Zahl mit der Zahl der Stabneigungswinkel », iibereinstimmt, bilden die
osLagergleichungen“ oder ,Lagerbedingungen‘ des Knick-
problems.

Fig. 6

Die Lagergleichungen (12) lassen sich in noch einfacherer und iiber-
sichtlicherer Weise anschreiben, wenn man jedem Feldstab je einen
mit der Ordnungsziffer des Feldstabes bezeigerten a’-, m’- und &-Wert zu-
ordnet. Fiir den Feldstab [r] werden diese Werte aus den in (12) erschei-
nenden Koeffizienten der 4 M’ gebildet. Das Bildungsgesetz dieser Werte —
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es wurde in die Fig. 6 eingeschrieben — prigt sich dem Gedéichtnis, un a b-
hidingig von der jeweiligen Bezeigerung, leicht ein, wenn man es in folgende
Worte fafit:

Der ¢/-Wert eines Feldstabes ist gleich dem ¢-Wert der linken
Stiitze, geteilt durch den ¢’-Wert des links von der Stiitze liegenden Feld-
stabes. Der a’-Wert des ersten Feldstabes ist daher immer gleich Null
zu setzen, weil kein zugeordneter ¢’-Wert existiert.

Der &'-Wert eines Feldstabes ist gleich dem ¢-Wert der rechten
Stiitze, geteilt durch den ¢’-Wert des rechts von der Stiitze liegenden Feld-
stabes. Der &-Wert des letzten Feldstabes ist daher immer gleich Null,
weil der zugeordnete c’-Wert nicht existiert.

Der m’-Wert eines Feldstabes ist gleich der Summe aus den ¢’-
Werten der das Feld begrenzenden Stiitzen, geteilt durch den ¢’-Wert des
Feldes oder, was auf dasselbe hinauskommt, auch gleich der Summe aus
dem 6'-Wert des linken und dem &' -Wert des rechten Nach-
barfeldes.

Nach dieser letzten Anweisung wird man beim praktischen Rechnen die
m’-Werte ermitteln, denn in erster Linie sind die «’- und &’-Werte der Feld-
stabe zu bestimmen, die dann die Ermittlung der m’-Werte in einfacher Weise
ermoglichen.

Die zahlenmaBige Ermittlung der a’-, - und m’-Werte ist am besten
nach dem in Fig. 8 dargestellten Schema durchzufiihren.

Auf Grund der festgelegten Regeln ergeben sich nun die Formeln

r o (sllinks b, — 0 ,rec}zz‘s
a r— 5 b r ’ )
C links C rechts
’ (S’ll'llks + 5’reclzts

m,=— ra = 0'links + @ recnts. l
r

(13)

Setzt man in (12) die aus den Vergleichswerten c*, 6*, $* aufgebaute
dimensionslose Verhiltniszahl

il A* ¢
so nimmt die dem Stab [r] zugeordnete Lagergleichung (12) mit Riicksicht
auf (13) die folgende endgiiltige Form an:

=17, (14)

1., / /
F[ar(AM)y__l—mr(AM) +b (AM)r+1]+b ISI‘—IV" 1—{—(!]—”1 S )‘Vr
+ ar+18r+1 ’}I‘+1 = O. (15)

2. DieLagergleichungen eines Durchlaufstabes von
beliebiger Bauart. Die Querstiitzung kann nunmehr wie bei dem in
Fig. 3 dargestellten Stab teils federnd, teils unverschieblich sein und neben
den Feldstiben soll der Durchlaufstab auch Stiitzenstibe besitzen.

Zunichst sei hervorgehoben, daBl einem Feldstab, der beiderseits auf
unverschieblichen Stiitzen aufliegt, keine Lagergleichung zugeordnet
ist, weil fiir einen solchen Stab wegen J§, ; = J, = 0 die der Herleitung zu-
grunde liegende Gleichung (7) nicht existiert.

In der Fig. 7 des aus Feld- und Stiitzenstiben bestehenden Durchlauf-
stabes wird die arabische Bezifferung durch die in der Figur erscheinenden
»i‘¢, die romische Bezifferung hingegen durch die ,,¢‘ angedeutet.
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Auch im vorliegenden Fall behalten Gl. (6) und (7) ihre formale Giiltig-
keit, wenn die hierin auftretenden Zeiger auf die ,,romische Bezifferung‘
bezogen wetrden. Fiir den Stiitzenwiderstand W, erhdlt man aus Fig. 7

| /'l—/ i "2 W, — Mi—l - M; . Mi+1 - Mi+2 +S,y — Sr+1 Yyt

/ g
e G ey

Cr Cri1

In Analogie zu (8) sind die hier auftretenden
Momentendifferenzen mit

A/M,. — My — M;
AMH-] = My —— Miys

zu bezeichnen, womit obige Gleichung formal
in die zu (9) vollkommen analoge Form

AM,  AM,.,,
Cr Cri1

itbergeht. Bildet man aus (16) W, ,, indem man hierin » durch » — 1 er-
setzt und nun W,_; und W, in Gleichung (7) einfiihrt, so erhilt man die
dem Stab [r] zugeordnete Lagergleichung, die formal mit (15) vollkommen
iibereinstimmt. Hieraus folgt, daB die Lagergleichung (15) auch fiir
beliebig konstruierte Durchlaufstibe ihre Giiltigkeit beibehidlt, wenn man
die hierin auftretenden ,,Zeiger 7‘‘ auf die ro mis ch e Bezifferung der Feld-
stibe des Durchlaufstabes bezieht.

Aus (13) gewinnt man die in Fig. 7 dem Feldstab [r] zugeordneten
Werte

Fig. 7 W” = '+' Sr Vp — Sr+1 Vet (16)

’ ’ ’ ’
’ 6,«_1 . 6[_1 ’ (5, - 6[+1
a,— — - -7 y br: 7 j— 7 )
ct‘—l Cig cl’+1 Ci+2 (17)
’ ' ’ ’
’ (;r_1+ 5r“6i—1+6i+1
mr: 7 S 7 y
Cr Ci

wihrend die in (15) auftretenden Differenzen 4 M’ durch die Ausdriicke
AM,I‘——l == M’i_,:), - M’[_z
AM,, =M, —M; (18)
AM pyy = My — Mo

gegeben sind.

Anmerkung. Die Lagergleichungen (15) bleiben auch formal unver-
indert, wenn der eine oder der andere von den elastisch gestiitzten Feld-
stiben nicht, wie vorausgesetzt, auf Druck, sondern auf Zug beansprucht
wird. Die in (15) auftretenden Zugkrifte S sind dann mit entgegen-
gesetzten Vorzeichen zu versehen. Wird ein im Stabverband liegender
elastisch gestiitzter Feldstab [r] durch keine Normalkraft beansprucht, so
ist in den Lagergleichungen der ihm zugeordnete Wert §’, = 0 zu setzen.

3. Die Lagergleichungen des in Fig. 3 dargestellten
Stabes. Nach den in 1. und 2. gegebenen Anweisungen lassen sich die
Lagergleichungen fiir den allgemeinsten Fall beliebiger Stiitzenkombination
unmittelbar ohne Herleitung in der stets gleichen Form der Gleichung (15)
fiir jeden Feldstab, der an einem Ende oder an beiden Enden federnd quer-
gestiitzt ist, anschreiben. Die Fig. 8 zeigt das Schema ‘zur Ermittlung der
a’-, b’- und m’-Werte des in Fig. 3 dargestellten Stabes.
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N ZE Yy [ s o (W
wbw 2 b WL [T (67 (7}
. g 4 g s gl=--- X
Fig. 8 [Z/ /3]
\/ d \/ 6 \/ 6 \/ Y ’ 67
()1:51 53:5:? 64:3’% 05=0 d=0 5713**“
: : , 0y 0 ,
a, nach (17) ar =0 ag = —~ ar = —— — ay = 0
Co Cy
, , s |, a4, 04+0 , 0+0,
my ) w | M= 6’2 mp = T mp= 6"5 my= 6'7
’ ’ 6’ 4 6’ ’ 4
br 9 9 bI — 2,“43 bII — E’: bll[ =0 - bIV =0

Der Anweisung zur Bildung von (13) entsprechend, wurde der a’-Wert
des ersten und der &-Wert des letzten Feldstabes gleich Null gesetzt.

Mit den obigen Tabellenwerten erhidlt man in Analogie zu (15) die
folgende Gruppe von Lagergleichungen:

1 7 ’ ’ ’ ’ ’ !/ ’

677[ —my AMy; +0 1 AMpgl+ 0 +[y-m; Si]lvi +anSuvne =0

1 ’ r’ s ’ ’ ’ 7 ’ ’ 7 /

*;1—[[0 udMyp—m g AM g+ 6 yAM ) +61 St v + [77—”211 Sulvu +am Swvin =0

1 ’ ’ ’ Y4 ’ 7 ’ 7 (19)
g @& mAM y—m jgd Mg+ O |+ 6uS uva+ [p—m mS w)vin+ 0 =0

1 ’ 1 ’ ’
7‘;[ 0 —m ydAM v+ 0 ] + 0 + [n—m wS 1vl viv+ 0 =0

1

Wie schon frither bemerkt, miissen in den Lagergleichungen — falls,

wie hier, die Stabkonstruktion eine Bezeichnung mit romischen Ziffern ver-
langt — samtliche Bezeigerungen mit romischen Ziffern vorgenommen wer-
den, weil nur durch diese Bezeichnung die herrschende GesetzmiBigkeit zu
Tage tritt. In den zur Ermittlung der &’-, 6’- und m’-Werte dienenden Formeln
(17) konnen die hiezu benétigten ¢’- und ¢’-Werte auch ihre arabische Be-
zeigerung beibehalten.

Die weitere Aufgabe besteht nun darin, die Momentendifferenzen A M’,
als Funktion der Neigungswinkel », zu errechnen und in die Lagergleichungen
(19) einzufithren, wodurch diese Gleichungen in die Gruppe der homogenen
Knickgleichungen iibergefithrt werden.

B. Ermittlung der Kontinuitétsgleichungen.

Die Momente M’, als Funktion der Neigungswinkel v, errechnen sich
aus den Kontinuititsgleichungen, die zum Ausdruck bringen, daB im aus-
geknickten Stab die elastische Linie des statisch bestimmten Hauptsystems
unter der Wirkung der Belastung M und S einen ,kontinuierlich stetigen*
Verlauf besitzt. In den Gelenkpunkten / darf daher kein Knick auftreten,
weshalb die im Hauptsystem durch simtliche Ursachen erzeugte gegenseitige
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Verdrehung 4 ¢; der in i zusammengeschlossenen Stabquerschnitte gleich
Null sein muB. Diese aus der Bedingung A¢;, = 0 entspringenden Glei-
chungen sind die Kontinuititsgleichungen des Problems.

Denkt man sich die federnde Querstiitzung des Knickstabes un-
verschieblich festgelegt — die elastische Einspannung von even-
tuell vorhandenen Stiitzenstiben bleibt unverindert erhalten — so soll dieser
auf nunmehr starren Querstiitzen ruhende Durchlaufstab als ,Ersatzstab‘
bezeichnet werden, weil er den gegebenen Knickstab fiir die folgende Be-
trachtung zu ersetzen vermag. Schaltet man an den Enden seiner Feldstibe
Gelenke ein, so erhdlt man ein statisch bestimmtes Hauptsystem, das mit
jenem des Knickstabes bis auf die verschiedene Art der Querstiitzung voll-
kommen iibereinstimmt.

Erteilt man dem Ersatzstab derartige Stiitzensenkungen, daB diese mit
den Stiitzensenkungen des ausgeknickten Stabes iibereinstimmen, so besitzen
beide Stibe in allen Feldern gleiche Stabneigungen »,, gleiche Deformation
und daher auch gleich groBe Beanspruchungen. In diesem Falle stimmen
also die Knickmomente M; im Knickstab mit den Momenten in den Gelenk-
querschnitten des Ersatzstabes iiberein. Diese durch die Stiitzenverschie-
bungen des Ersatzstabes erzeugten Momente M; werden nun aus der auf
sein Hauptsystem anzuwendenden Bedingung 4¢; = 0 errechnet.

Ist A¢;, die durch Stiitzensenkung und Stiitzenstabverdrehung erzeugte
gegenseitige Verdrehung der Querschnitte im Gelenk /des Hauptsystems,
Ag; ns die gegenseitige Verdrehung dieser Querschnitte infolge der Be-
lastung M S, so folgt aus Ad@; = A us + Ad¢;y = 0 die Kontinuitats-
bedingung in der Form

Api ms = — Ay . (20)

1. Die gegenseitige Verdrehung 4¢,, im Hauptsystem
des Ersatzstabes. Wird nach Fig. 9 ein Feld- oder Stiitzenstab im
Sinne der Uhr um (—+ ») bezw. (- v) verdreht, so drehen sich auch die ,,Ge-
lenkquerschnitte“ dieser Stibe im gleichen Sinn und um denselben Winkel..
Die Vorzeichen dieser Querschnittsverdrehungen sind nach der bereits im
Abschnitt II fiir die Drehwinkel « und g festgesetzten Vorzeichenregel zu
beurteilen. Demnach ist die Verdrehung der Gelenkquerschnitte an den
linken Stabenden positiv,andenrechten Stabenden hingegen
negativ.

Auf Grund dieser Feststellung errechnet sich die gegenseitige Ver-
drehung 4 ¢;, der im Gelenk / der Fig. 9 zusammengeschlossenen Gelenk-
querschnitte aus den folgenden Gleichungen

3) Fig. 9a) Apig = — vi + viy

» 9b) Apio=—ri+ Yia | (21)

» 9 C) A‘Pio =—yY;+ Vipa
Y Hieraus folgt mit Riicksicht -auf (20) die

Form

9 Fig. 9a) — Apig = vi— viy
Fio » 2D — Apig = vi— Yiny [ (22)

& » 9¢) — Apig = Y — iy

d. h. die auf der rechten Seite der Kontinuititsgleichung (20) stehende gegen-
seitige Verdrehung (—A4¢;,) zweier Gelenkquerschnitte, infolge der Ver-
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drehung von Feld- und Stiitzenstiben, ist gleich der Differenz der von links
nach rechts aufeinander folgenden ,,Stabverdrehungen‘‘ der beiden im Ge-
lenk / zusammengeschlossenen Stibe.

Infolge alleiniger Stiitzensenkung erleiden im Haupt-
system des Ersatzstabes, wie in Fig. 10 dargestellt, nur die Feldstébe,
nicht aber die Stiitzenstibe, Verdrehun-
gen. Die hiedurch erzeugten gegenseitigen
Verdrehungen A ¢; errechnen sich daher
aus den Gleichungen

~7

r+] 2

+
i
]
i
'
1
1
!
f

;
] T
| :
1

]
| 1
t
1

i
1
i
i
i
|
I
I

I—-“ﬂ-———_——_ Q)

[
— A(Pi, 0o —VYi —Vigrs
Vi — A(,Ui+1,o = Viy — 07 (23)
Fig. 10 — APisz,0 = 0 — iy,

2. DiegegenseitigeVerdrehung A¢g; ysim Hauptsystem
des Ersatzstabes. Wie schon erwidhnt, werden diese gegenseitigen Ver-
drehungen durch die auf das Hauptsystem gleichzeitig einwirkende Belastung
MS erzeugt. Es ist gleichgiiltig, ob man, wie in Fig. 10, zuerst die Stiitzen-
verschiebung durchfiihrt und nachher die Belastung MS aufbringt oder um-
gekehrt zuerst diese Belastung wirken 148t und nachtriaglich die Stiitzen-
verschiebung vornimmt. Die Belastung MS deformiert einerseits die Feld-
stibe (Fig. 11—13) und bewirkt anderseits eine Verdrehung der starren
Stiitzenstibe (Fig. 14). Die hiedurch erzeugten Verdrehungen der Gelenk-
querschnitte sollen im folgenden berechnet werden. '

a) Verdrehung der Gelenkquerschnitte eines Feld-
stabes infolge seiner Deformation durch die Belastung
MS. Die Abmessungen des Feldstabes, seine Feldlinge ¢,, die Querschnitts-
fliche F, und das Trigheitsmoment J, sind gegeben. In den Gelenkquer-
schnitten, die mit den Endquerschnitten des Stabes zusammenfallen, wirken
die Momente M,_, bezw. M, und die Normalkréfte S,. Die in den Fig. 11—13
dargestellten Verdrehungswinkel a, und g, der Endquerschnitte sind zu er-
mitteln. Diese Verdrehungen sind unabhingig von der Neigung », der Stab-
sehne, wenn », klein, d. h. sin», = ~tg », = ~w,, cos», = 1 gesetzt wer-
den darf, sie besitzen aber verschiedene Werte, je nachdem S, eine Druck-
oder Zugkraft oder S, = 0 ist. In all diesen drei Fillen lassen sich die Ver-
drehungswinkel a, und g, aus den formal gleichen Formeln

oy = M,r—l I/r I er O"r; }

Br= M’r_1 O"r+ M,rT,r
bestimmen, wenn hierin fiir ¢/, und ¢/, die durch die Gleichungen (28) bezw.
(29) oder (33) bestimmten Werte eingefithrt werden.

Sonderfall 1. Die Normalkraft §, ist eine Druckkraft.
Die Integration der Differentialgleichung der elastischen Linie, die hier
unterbleiben moge, fithrt zur Berechnung der in Fig. 11 dargestellten Winkel
a,, B,, die aus den Formeln

(24)

a, = Mr—l 4+ Mr Sr,
S, ¢ Sy
(25)
ﬁ : Mr—l s + Mr ¢
"7 8¢ " S, "

gewonnen werden, wobei
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”—ﬁL*’l
Pr (26)
L,=1— Pr l
tg o,
und
/S 2
= /S 27
v 'Eﬁ .

In (27) ist 7, durch den Modul E zu ersetzen, falls o, <o, ist.

Die Bezeichnungen s,, ¢, sollen an die Funktion sin und tg erinnern.
Die Gleichungen (25) werden nun mit Hilfe der bereits in (11) eingefiihrten
Vergleichswerte S* und ¢* umgeformt in

o — Moy & n M, s
Tses o Tses o
S* c* A
. M, s M, ¢
oS eS . TFeS o
S* ¢* S* ¢*
Nach (11) ist
M, ) M " S , ¢ ,
G = My = M G =S L=l
womit aus obigen Gleichungen
’ tr ’ Sy
promec=g 7 7 M 7 7
a, Mr_]_ Src’, + f'sr r’

—_ M. S
ﬁr——- M,-.l S,rC’r + Mr S’r ’r

folgt. Setzt man hierin

o — _5r ]
=S,
L (28)
Fig. 12 =
¢ rT s J

so erhilt man die in (24) angegebene Form zur Ermittlung von a, und g,.

Sonderfall 2. DieNormalkraftS,isteine Zugkraft. Die
in Fig. 12 dargestellten Verdrehungswinkel a, und g, sind ebenfalls mit
Gl. (24) zu errechnen, doch ist nunmehr

O (1 S L ) _ %
" S, Gin ¢, S, ¢, 29)
’ 1 r tr

T e~ A A (L —— 1) - 7 7
r S,c, Eg ©r S,c,
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wobei Pr

30)

gesetzt wurde.
@, ist wieder nach (27) zu bestimmen, wihrend Sin und Eg die hyper-
bolischen Funktionen andeuten.

Sonderfall 3. Die Normalkraft S, = 0. In diesem Falle ist
@, = 0; hiemit erhdlt man aus (25) oder in direkter Rechnung aus Fig. 13

; € —— M,_ ¢ M, ¢,
} B, = M, ¢ + M, c, l (30)
o . Fig. 13 "7 6EJ, 3E/,

Um die Form der Gl. (24) herzustellen, bildet man mit den Vergleichs-
werten S*c* einen zu (27) analogen Wert

/G% p*2
EJ "’
eliminiert hiemit £/, aus (30) und erhélt

’ *2
oo, =M, ﬂ + M' r

6
/ r(p ¢ (32)
ﬂr =M r—1 -+ M’ 3
in formaler Ubereinstimmung mit (24), wenn in (32)
. %2 ! k2
£r99 — 'L", und & = (i,r (33)

3 6

gesetzt wird.

b) Verdrehung der Gelenkquerschnitte eines Stiitzen-
stabes [r]infolge seiner Verdrehung durch die Belastung
MS. Die Verdrehung v, des in Fig. 14 dargestellten Stiitzenstabes wird
einzig und allein durch die beiden Momente M, _; und M, erzeugt. Beide
Momente drehen im positiven Sinn, daher ist nach GIl. (2)

M, — M,
l;’r:Mr—l & — My, = é*(,‘* S*c*e, '—(Mr~ —M")‘s" (34)
. wobei
e o= 8"y (35)
S_éi b N* gesetzt wurde. Die Verdrehung des links liegenden
NNV S, Gelenkquerschnittes r—1 ist durch
0,, s ’ ’ ’
Hr W, ! Fig. 14 Pra=+Yp=M,;, —M NEr (36)

jene des rechts liegenden Gelenkquerschnittes » durch
Qp —= — l,!'r - — (M’r—l —_— M’r) 8’,- (37)
gegeben.

Abhandlungen VI 1n
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c) Die gegenseitige Verdrehung A¢, ys der zweistiabi-
gen Systeme und ihre Kontinuitidtsbedingung. Die gegen-
seitige Verdrehung A ¢; = A us + 4 @iy der Gelenkquerschnitte in einem
Gelenk { des Hauptsystems wird, wie leicht zu erkennen, nur von der auf die
Stibe [i/] und [/ -+ 1] wirkenden Belastung M,S und von den Neigungen »;
und »;,; dieser Stibe erzeugt. Solche zwei in einem Gelenk / zusammen-
geschlossene Stibe [/] und [/ 1] bilden ein sogenanntes ,,zweistdbiges
System, das sich nach Fig. 15 entweder aus zwei Feldstiben oder aus
je einem Feld- und Stiitzenstab zusammensetzt. Die Kontinuititsbedingung
Ap; = 0 in der Form. A ¢; ys = — A ¢@;, liefert fiir das Gelenk i = » der
Fig. 15, die folgenden, mit Hilfe von -(24) und (23) zu bildenden Konti-
nuititsgleichungen:

Mr-1
S 1%
—‘-’r ,1,. I‘ff'
r N\ A
SrT T=£ L/
. Fig. 15
g b g
Fig. 15&) +M’;‘_1 O-,r+ M,r(T,y+ T,]'+1)+M,r+1 6’r+1 = *A(Pro — V"_)}I’+]
» 15Db) My Er kM (Er 4T p1 )+ M i 0 pyy =~ dpry =0 — vy 1 (38)
” 15(:) +Mr—10'r+Mr(tr+8’r )“Mr+1€r+1 :_J‘pro’———vr_o

3. Die Fortleitungszahleneund 6 der zweistibigen Sy-
steme. Die Klammerausdriicke in obigen Gleichungen geben die gegen-
seitige Verdrehung »’, im Gelenk / = » infolge M’, = + 1 an. SchlieBt das
Gelenk i/ zwei Feldstibe zusammen, so ist der »’;-Wert die Summe aus den
v-Werten der zusammengeschlossenen Stibe. Verbindet das Gelenk / aber
einen Feld- und Stiitzenstab, so ist der »’;-Wert die Summe aus dem 7’-Wert
des Feldstabes und dem &-Wert des Stiitzenstabes. Nach dieser Definition
erhdlt man z. B. fiir

. ’ / ’
Flg. 15 a) _ i == T linksi T+ T rechtsi
’ ’ ’
, 15 b) Ni= Elinksi + T rechtsi (39)
’ ’
, 1B C) i =T linksi + € rechtsi

Jedem Gelenk / ist ein solcher nach (39) zu bildender »’;-Wert zuge-
ordnet und ebenso ein #’-Wert, der durch

, 1
gegeben ist. »’; und sein Reziprokwert %’; sind stets Absolutwerte.
Mit (39) und (40) geht die Gleichungsgruppe (38) iiber in

. ;0 . , 0 1 .
Fig. 15a) +Mr~1#+Mr‘|‘Mr+1 ;H:—%—ré’](l?ro:"—kr/—'/gvro
r r r
;€ , , a 1 ’
- 15b) —-—Mrkl Tr + M, + Mr+1 A’;—H = — 7 4/(]7/*0 :"_krjq’ro (41)
2, | . v
15¢) 4+ M, MM — N g
» r—1 xlr r rel 7 —7 AQry = r 4 Pro

Ar vy
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Der »’-Wert, der einem links- bezw. rechtsseitigen Gelenk eines Feld-
bezw. Stiitzenstabes zugeordnet ist, soll nunmehr kurz mit ,s';,.5¢‘ bezw.
mit |2, bezeichnet werden. Mit Vorteil wird nun jedem Feld- und
jedem Stiitzenstab [r] ein a- bezw. b6-Wert zugeordnet, der durch die
Gleichungen

O_/ G’
Feldstab . . . o, = —F—"—, b = -~
% links 4 rechts (42)
N & &
Stiitzenstab. . o, = ', b = -~ J
2 links 4 rechts

gegeben ist. _
Mit (42) lassen sich die Kontinuitatsgleichungen (41) auch in der fol-
genden Form anschreiben:

Flg 153) M,r = — br M’r~1 — Qpyq M’r+1 - k,r ‘fl(pro I
, 15b) M, =+ bM,— apy Moy, — k, gy, [ (43)
35 15C) M, = —b, M/r_1 + apy ,r+1 — K, Apry

Aus (43) erkennt man nun die statische Bedeutung der a-, 6- und £’-
Werte.

Leitet man am linken Stabende eines zweistibigen Systems [r—1] [#]
ein Moment M’,_, ein, so wird es gewissermaBen nach rechts hin iiber
den Stab [r] ,fortgeleitet’ und kommt am anderen rechten Stabende
in der GroBe (— &, M’,_;) zur Wirkung, wenn die Fortleitung iitber einen
Feldstab erfolgte, hingegen in der GréBe (-6, M’,_,) im Falle der Fort-
leitung iiber einen Stiitzenstab.

Wird hingegen am rechten Ende dieses zweistibigen Systems ein Mo-
ment M’, , eingeleitet, so wird es nach links hin iiber den Stab [r--1]
fortgeleitet und kommt am linken Ende eines Feldstabes in der
GroBe (—a,yy M, 4), am linken Ende eines Stutzenstabes in
der GroBe (-+-a,,; M, ;) zur Wirkung.

Die fiir die Fortleitung charakteristischen, durch die Formeln (42) be-
stimmten Zahlenwerte ¢ und &, sollen daher als ,,Fortleitungszahlen
der zweistibigen System e’ bezeichnet werden.

Fir M, _{ =0, M,,; =0 und 4d¢,, = — 1 folgt aus (43) der Wert
M, = -k, als Sonderwert des Momentes M’, infolge der gegenseitigen,
durch alleinige Stiitzenverschiebung erzeugten Verdrehung A¢,, = — 1

4. Die Kontinuitidtsgleichungen des in Figur 3 dar-
gestellten Stabes. Wie schon erwihnt, ist die einem Gelenk / des
Hauptsystems zugeordnete Kontinuititsbedingung mit der Kontinuitits-
gleichung des in / zusammengeschlossenen zweistabigen Systems identisch.
Errechnet man daher fiir den in Fig. 3 dargestellten Stab mit Hilfe von (40)
samtliche £;-Werte, mit (42) die Fortleitungszahlen @, und &4,, so kann man
die durch (43) bestimmten Kontinuitiatsgleichungen unmittelbar in der fol-
genden Form anschreiben:

Ml = —-—a2M'2——k'1A9910,
M s = — b, Mlx + alea - k/z Apag,
My =+ by My — ﬂ4M"4 - k‘—s sy, [ (44)
My=—b My —a;My;— k Adp,o,
M’5 = — by M,4 — O M’c — k5 Ay,
Mle = — b M’s ' T kiu*“]’«;o;
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wobei die Belastungsglieder 4 ¢;, nach (21) durch

Apyo = v — 0 Apyo = var — Vi
Apso = 0 — v Apso = 0 — vy (45)
Apgy = vip—0 Apgg = viv — 0

gegeben sind.

C. Die Berechnung der Knickmomente M’;.

1. Die Knickmomente M,; als Funktion der Belastungs-
glieder A¢;. Aus den linearen Gleichungen (44) ergeben sich die un-
bekannten Momente AM’; als Funktion der ,,Belastungsglieder 4 ¢;,*“ in der
Form

My =Xy Apyg + Xy Apgo + X1y Apgo + 414 Apyy + Fi Apso + 4 g /—19960 l
M _'121 ” +122 bl +'?'23 ” +'?'24 » +’?'25 ”» +2’26 ” (46)
Mg =2y +As5 5 +Ass 5 +4h50 5 +A55 , 56

Die Gleichungen (44), (46) gelten sowohl fiir den elastisch gestiitzten
ausgeknickten Durchlaufstab, als auch fiir den ihm zugeordneten und der
weiteren Betrachtung zugrunde gelegten, durch Stiitzensenkung deformierten
Ersatzstab.

Aus dem linearen Aufbau von (44), (46) folgt die Giiltigkeit des
Superpositionsgesetzes zur Ermittlung der Momente AM’; aus den ,,Teil-
belastungen 4 ¢;,‘. Unter einer ,Teilbelastung 4 ¢;,‘ versteht man eine auf
die Stiitzen des Ersatzstabes derartig ausgeiibte Kraftwirkung, daB infolge
der hiedurch erzeugten Stiitzenverschiebungen nur ein einziges Belastungs-
glied 4¢;, == 0 ist, wie z. B. 4¢,, in Fig. 16, hingegen alle iibrigen 4 ¢,
den Wert Null besitzen.

Im folgenden werden zunichst die Sonderwerte der Momente AM’; in-
folge der einzelnen Teilbelastungen ermittelt und dann durch Superposition
die Momente M’; infolge ,, Totalbelastung‘‘ bestimmt.

Fig. 16

EinfluBzahlen A und Fortleitungszahlen p,q,. Diein (46)
erscheinenden 1’-Werte sind die mit Vorzeichen behafteten EinfluBzahlen der
Belastungsglieder 4 ¢;,. Ihre Absolutwerte |1'| sollen in Hinkunft durch die
Bezeichnung 1, also durch Weglassung des Querstriches, gekennzeichnet
werden. Die in einer Vertikalkolonne von (46) stehenden EinfluBzahlen,
z.B. 1'y,, 4, ..., sind Sonderwerte der Momente M’; infolge der ,,Tell-
belastung A¢g;, = + 1, die der in Fig. 16 dargestellten Stiitzenverschiebung
entspricht. Die dieser ,, Teilbelastung‘‘ zugeordneten Kontinuititsgleichungen
erhilt man aus (44), indem man hierin 4¢,, = -+ 1 und alle iibrigen 4¢;; =0
setzt. Hieraus werden unter Beibehaltung eines zunichst beliebigen Ver-
drehungswinkels A¢,,, durch Elimination von oben bezw. von unten die
folgenden zwei Gleichungsgruppen gewonnen:
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M’lz_ng’z,.........pz—_-%
M'2:+p3M'3 .........pgzl_azwh
M,‘D’:_p"'M,“°"”"“p“:1~agsp~3r (47)
M, =—p, Mls—-‘g:‘k/‘;l@w' * o Ps = 1_&;4/}4
M'e:—-%M/a""""'(]e:bsb

My =—g, M, - « - « « . .. .%:1—2646 (48)
M'4:——q4M'3—%i-k'4A<p4o~ C gy = 1:’;5(]—5

M’y aus (47) in die letzte Gleichung (48) eingesetzt, liefert

’ ' k,4 37
My=——"—-=4 = A4 4 49
4 1— 291 b, Pao 44 AP0 (49)
und M’y aus (48) in die letzte Gleichung (47) gibt
/ Ps K, 77
M= ———=—=> =4 = Ay 4 50
4 1— s g5 as P10 44 APso (50)

Die Gleichung (49) oder (50) bestimmt das der Teilbelastung Ag,, zu-
geordnete Moment M’, im Gelenkquerschnitt i = 4. Mit Kenntnis dieses
Momentes gewinnt man aus (47) die Momente M’ in den links von i = 4
liegenden Gelenkquerschnitten des Ersatzstabes mit Hilfe der ,,Fort-
leitungszahlen p“ hingegen aus (48) die Momente M’ in den Gelenk-
querschnitten rechts von / = 4 mit Hilfe der ,,Fortleitungszahlen g*.

Diese Fortleitungszahlen p und ¢, deren allgemeines Bildungsgesetz aus
(47), (48) zu erkennen ist, sind den einzelnen Feld- und Stitzen-
staben zugeordnet, ihre Absolutwerte errechnen sich mit Hilfe der
bereits nach (42) bekannten Fortleitungszahlen «,, b, der zweistibigen
Systeme aus den durch Verallgemeinerung von (47) und (48) gefundenen
Formeln

ar
o 51
r 1— br—l Pr-1 ’ r=1,2+-°n ( )
b,
i T . 52
7 1**¢r+1 Jri1 r=nn-1---2,1 ( )

Die Zeiger r in (51) und (52) beziehen sich auf die arabische Beziffe-
rung der Feld- und Stiitzenstdbe des durchlaufenden Stabverbandes. Da, wie
seinerzeit erwidhnt, der erste Stab im Stabverband, gleichgiiltig ob Feld- oder
Stiitzenstab, stets den Wert ¢; = 0, der letzte Stab des Verbandes immer den
Wert b, = O besitzt, so folgt auch aus (51) bezw. (52), daB stets p, = 0
und ¢, = 0 ist.

Der linke Randstab eines durchlaufenden Stabes besitzt daher
keinen p-Wert, der rechte Randstab hingegen keinen ¢-Wert,
wihrend jedem inneren Stab je ein p- und ¢g-Wert zugeordnet ist.
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Die Berechnung der Fortleitungszahlen p, ¢, 148t sich zweckmiaBig nach
dem im Zahlenbeispiel IX verwendeten Schema durchfiihren.

Aus (47) und (48) erkennt man ferner, daB die Momente M’ an den
Enden eines Feldstabes stets entgegengesetzte Vorzeichen be-
sitzen, die beiden Momente M’ zu beiden Seiten eines Stiitzenstabes hin-
gegen stets gleiche Vorzeichen aufweisen. Wie beim zweistibigen
System, so ist auch hier die Momentenfortleitung iiber einen
Feldstab stets mit Zeichenwechsel, die Fortleitung iiber
einen Stiitzenstab hingegen stets mit Zeichenfolge ver-
bunden. Dieses hier fiir die Teilbelastung (<-4 ¢,,) hergeleitete Gesetz
der Momentenfortpflanzung im Ersatzstab, das sinngemiB auch in jedem
anderen Falle von Teilbelastung Giiltigkeit besitzt, soll weiterhin kurz als
sFortleitungsregel’“ bezeichnet werden.

Aus (49), (50) ergibt sich infolge der Belastung (—4¢y) ein nega-
tives Moment M, das in den oberen Fasern des Gelenkquerschmttes i=4
Zug erzeugt, was auch unmittelbar in Fig. 16 aus der Form der Abknickung
zu erkennen ist. Die nach der Fortleitungsregel bestimmten Vorzeichen der
iibrigen Momente M’ wurden in die Fig. 16 eingeschrieben.

Mit 4¢,, = |+ 1 werden die Momente M’ in (47)—(50) identisch mit
den EinfluBzahlen 1’;;. Aus (49) erhdlt man zur Bestimmung des Absolut-
wertes 4/, die Formel

4 K

i = 1—pigs by’ (53)
aus (50) die Formel

Vi — P K

hae = l—psq5 a5’ 4

wihrend alle iibrigen EinfluBzahlen 1’;, mittelst der Fortleitungsregel zu
bestimmen sind und zwar fiir / <4 mit Hilfe der Fortleitungszahlen p, fiir
i >4 mit Hilfe der Fortleitungszahlen g¢.

Aus (53), (54) ergeben sich durch Verallgemeinerung die Formeln zur
Bestimmung der EinfluBzahlen 2; in der von links nach rechts fallenden
,Hauptdiagonale‘ von (46) und zwar

E;

aus (53) Vi = rhi’/g? N (55)
ryr r r=1
aus (54) V= . Pm ki | (56)

Vo pris Gron. @rpy @ r=i

Die Zelger r beziehen sich auf die arabische Bezifferung der Feldstibe,
die Zeiger i auf die arabische Bezifferung der Gelenkquerschnitte.

/; als Sonderwert des Momentes M’; infolge der Belastung dg;y=-+1
ist stets negativ.

Da der erste Gelenkquerschnitt mit ,,1°, der letzte Gelenkquerschmtt
immer mit ,n — 1¢ beziffert ist, so sind d1e EinfluBzahlen A, fiir i = 1 bis
[ = n—1 zu ermitteln.

Fiir die erste und letzte EinfluBzahl 1’; ergeben sich besonders einfache
Formeln und zwar

wegen p, = 0 aus (55) g = %‘ KL, (57
1
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wegen g, = 0 aus (56) p— Zi Eni (58)

Sind die Randstibe des Stabzuges aber unverdrehbar gelagerte,
also fest eingespannte Stiitzenstdbe, so besitzen die ihnen zu-
geordneten a - und p g-Fortleitungszahlen den Wert Null. Die Gleichungen

(57), (58) nehmen dann die unbestimmte Form % an, weshalb in solchen

Fallen 2{y aus (56) und 2',_, ,_, aus (55) zu errechnen ist.

SchlieBlich 148t sich noch eine wichtige Beziehung herleiten, durch
welche die 1’;-EinfluBzahlen miteinander verkniipft sind. Nach der Fort-
leitungsregel gelten fiir die Absolutwerte 4, ;_; und 1, ; die Beziehungen

-t

7 ’ -7
Kiia=qrliq,in|r=i bzw. Niq,i = prh

ilr=1i

und da nach MAXWELL 4';;_, == 4;_4; so folgt

Ny = % Kigia|rei =t Vig,im1 | r=i (59)
oder hieraus durch Umkehrung und Erhohung des Zeigers i auf i -~ 1
]«’u — /;r Z’l+1,i+1 l r=1i41- (60)

Errechnet man nun nach (57) die erste EinfluBzahl 'y, oder die letzte
EinfluBzahl 4, , , , aus (58), so kann man die iibrigen 1’;-Werte nach
(59) oder (60) in einfacherer Weise erhalten, als durch direkte Berechnung
nach den Gleichungen (55), (56), die zu Kontrollrechnungen verwendet,
immerhin gute Dienste tun.

Die in (46) oberhalb der Hauptdiagonale stehenden EinfluBzahlen sind
nach der Fortleitungsregel mit Hilfe der p-Zahlen aus den EinfluBzahlen
/; zu ermitteln. In analoger Weise gewinnt man die in (46) unterhalb der
Hauptdiagonale stehenden EinfluBzahlen aus den A’; mit Hilfe der Fort-
leitungszahlen q.

Mit Kenntnis der ElnfluBzahlen A’ sind nunmehr auch die in (46) durch
Totalbelastung erzeugten Knickmomente M’; bekannte Funktionen der Be-
lastungsglieder 4 g¢;,.

2. Die Knickmomente M, als Funktion der Neigungs-
winkel »,. Die Gleichungen (46) liefern auch die Knickmomente M’; des
in Fig. 3 dargestellten Durchlaufstabes als Funktion der Neigungswinkel »,,
wenn man hierin die Belastungsglieder 4 ¢;, mit Hilfe von (45) als Funktion
der Stabneigungen », ausdriickt. Die Gleichungsgruppe (46) geht dann
iiber in

M, = 4’1 vy + 1%'1 vir + ?1 vir + Qll"’lvl
M’2:4’2”+Bi?.” +(32 ” +Q,2 ” (61)
Mla - A’3,, + B,3 w +Cs 5 + Dl3 ”

Diese in (61) auftretenden Beiwerte A’, B, C' und D sind Sonderwerte
der Momente M’;, falls der Durchlaufstab bezw. sein Ersatzstab Stiitzen-
senkungen nach Fig. 17a—d, die das Hauptsystem dieses Stabes darstellt,
erleidet.
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a)
¢ M s s [
~A,  —3Ay +A; +£A}g?;;. -S4y *

)
[

()

)

In allen diesen Fillen erhdlt immer nur ein Feldstab die ,Neigung
v, = -} 14, wihrend alle iibrigen Feldstibe die ,,Neigung » = 0‘‘ aufweisen.
Kraftwirkungen auf die Stiitzen, die eine derartige Verformung erzeugen,
sollen als ,Teilbelastung oder kurz als Belastung », = 4 1‘ bezeichnet
werden. So z. B. sind die Beiwerte A’; die Sonderwerte der Momente
M’; infolge der ,Belastung v, = - 1%, die die in Fig. 17 a dargestellte
Stiitzensenkung bewirkt. Diese Momente werden im folgenden kurz als
»A’-Momente‘ bezeichnet. In Analogie hiezu sind die ,,B’- bezw. C’- und
D’-Momente‘ die Sonderwerte der in den Gelenkquerschnitten des Ersatz-
stabes wirkenden Momente M’;, infolge der durch die Belastung »;,=-1
bezw. v;;; = |+ 1 oder v;y = - 1 erzeugten Stiitzensenkung nach Fig. 17b—d.
Die Bezeichnung dieser Sondermomente mit den Buchstaben A, B, C ...
des Alphabetes steht im Einklang mit der Bezifferung /7, /1, 111 ... jener
Stibe, durch deren Verdrehung diese Momente erzeugt werden. Da nach
Fig. 3 der Feldstab [6] an beiden Seiten auf starren Stiitzen ruht, so er-
leidet die Stabsehne auch im Knickzustand keinerlei Verdrehung, weshalb
der Neigungswinkel »; wegen »; = 0 weder in den Belastungsgliedern (45)
noch in den Gleichungen (61) erscheint.

Die einer Belastung », = 4 1 zugehoérigen Belastungsglieder 4 ¢;, sind,
mit Ausnahme von jenen zwei, die den Gelenkquerschnitten » — 1 und » an
den Enden des geneigten Feldstabes [7] zugeordnet sind, gleich Null. So
z.B. sind die von Null verschiedenen, dem in Fig. 17b dargestellten Be-
lastungsfall v, = -+ 1 zugeordneten Belastungsglieder durch 4 g5, = + 1,

A@,y = — 1 gegeben. Hiemit erhdlt man aus (46)
Bls — j?33 (+ 1) + 2'34 ("" 1) - Z’33 - )734
und wegen 1’5, = 1';; folgt mit V3 = — g, V'35

Bls = zI:—se. (1 + g94) l

3 Mgy (1 + ps) l

und in analoger Herleitung
B,

I



Knickberechnung mehrfeldriger, beliebig gestiitzter Stibe . 161

Bekanntlich sind die den Belastungsgliedern 4 ¢, = -+ 1 zugeordneten
EinfluBzahlen 1’; stets negativ. In Fig. 17D ist daher 7;; = — 1,5, hingegen
Ny = + 7y, das Moment B’; somit negativ, B’; aber positiv, was auch an-
schaulich in Fig. 17b aus der Form der Abknickung zu erkennen ist.

Aus obigen Gleichungen folgen die Absolutwerte

By = Vg3 (1 4 q4), |
By = (14 py). J

Hieraus werden die Absolutwerte der iibrigen B’-Momente, wie dies
auch die untenstehende Tabelle zeigt, mit Hilfe der Fortleitungszahlen p
und ¢ gewonnen. Die ihnen nach der Fortleitungsregel zukommenden Vor-
zeichen sind in die Fig. 17b eingetragen worden.

Aus (62) erkennt man bereits das Gesetz zur Ermittlung der an den
Enden des geneigten Feldstabes [r], infolge », = 4 1, erzeugten Momente.
Diese, an dem mit der romischen Ziffer [7] bezw. mit der arabischen Ziffer
[{] bezeichneten Feldstab, zur Wirkung kommenden Sondermomente sollen
nun nach Fig. 18, zwecks Aufstellung einer allgemein giiltigen Berechnungs-
formel, die allgemeine Bezeichnung K’;_, und
K’; fithren. Ihre Absolutwerte sind dann durch

K'i, = }v’i_1,i—1 (1 + ¢ }
Ki =V, Q4+ p)

bestimmt. Das Vorzeichen von K’; _; ist stets negativ, jenes von K’; stets
positiv.

In (63) ist K’ durch A’, B’, C’ ... zu ersetzen, wenn der geneigte Feld-
stab die Ordnungsnummer /, bezw. /1, /1] ... besitzt.

Wie oben im Sonderfall »;; = - 1, sind die Momente in den Gelenk-

querschnitten links vom Gelenk / — 1, ausgehend von K’;_,, nach der Fort-
leitungsregel mit Hilfe der Fortleitungszahlen p, die Momente in den Ge-
lenkquerschnitten rechts vom Gelenk i, ausgehend vom Moment K’;, mit Hilfe
der Fortleitungszahlen ¢ zu ermitteln. Dies ist auch aus der untenstehenden
Tabelle, die dem in Fig. 3 dargestellten Stab zugeordnet ist, ersichtlich. lhre
stark umrandete Hauptdiagonale enthilt die Absolutwerte aller nach (63)
errechneten Momente K’;_; und K’;, deren Vorzeichen in die Fig. 17 einge-
schrieben wurden.

(62)

Fig. 18 (63)

Momente 4, B/, C’ und D'. [Gl. (64)].

Nach (63) infolge
vy =+1 v =+ 1 vy =+ 1 Yy = +1

A=V (+q) | B1=p, B, Ci=pC, D'y=p: D',

A= (1+p0) | Bs = ps B Cy= 1 Cs Dy=p, D, |77
= Ty = g, A’ By= 14 (1+45) | Cs=ps Cls Dy=p0, |77
= A= g A’ By=",(1+p) § Ci=Vy(l +q5) | D's= ps D’ Pe=
T = A,=qg; A, By=¢q,B, Cy=V(1+ps) | D's= ps D'y Po=
o= | 4y = go A7, By= g, B’ C's= g5 Cs D'y=Ve(1+0) |07

he
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Mit Kenntnis der Sonderwerte A’, B’, C’. .. gewinnt man nun durch Super-
position aus (61) die Knickmomente M’; als bekannte Funktionen der Stab-
neigungen v,.

D. Die Knickgleichungen und die Knickdeterminante.

Im folgenden werden die Knickgleichungen und die Knickdeterminante
des in Fig. 3 dargestellten Stabes hergeleitet. Fiihrt man, wie bereits im
Abschnitt V/A/3 erwihnt, die Momentendifferenzen 4M’, als Funktion der
Stabneigungen », in die Lagergleichungen (19) ein, so werden diese Glei-
chungen in die Gruppe der homogenen Knickgleichungen iibergefiihrt. Die
durch (8) definierten, in (19) auftretenden Momentendifferenzen AM’, er-
rechnen sich mit Hilfe von (61) in der Form

AM'p =M -My = (1‘1,1 - A,z) vr+ (3’1 - B_’z) vir+ (6’1" 6,2) Yrr + (D_’l - 5’2\) 1914
= AA] vi+ 4B} vy+AC[ vy +AD{ vy

und in Analogie hiezu

AMy =M s~ My = A4 g v+ AB'yp vyp + AC 1 vy + AD' if vy, (65)

AMuy=M~My=A4y, +AB'y, +ACw », +AD'm ,,

AMpy=Mgs- 0 =44y, +4B'y,, +4Cw , +4D'w.,, .

Die in den Enden der Feldstibe wirkenden Momente A’, B’, C' und D’
besitzen auf Grund der Fortleitungsregel stets entgegengesetzte Vor-
zeichen. Daher gehen die in (65) auftretenden, iiber die Feldstibe zu bil-
denden Momentendifferenzen, in mit positiven oder negativen Vor-
zeichen versehene Momentensumm en iiber, die aus den Absolutwerten
der an den Stabenden angreifenden Momente A’, B’,C’, D’ zu bilden sind.
So z. B. ist

AA] = Ay — Ay = — (A + A%) = — 3 A]

Adp = A's - A’4 =+ (A5 + Ay = + ZA;

AA:I'II = 4'4 _ 4’5 =— (A + As) = — ZAn ' (66)
AA_’[G] = 4’5 — A'g = + (A5 + A) = + 2 A4

Adyy = A —0 =— A+ 0 )=—2Ap

und man erkennt aus (66) und auch aus den in die Fig. 17 eingeschriebenen
Momentensummen, daB die Summen der an einem ,geneigten Stab‘
angreifenden Momente stets negative Vorzeichen besitzen, die (-)
und (—) Vorzeichen aller iibrigen Momentensummen hingegen schachbrett-
artig iiber die Feldstibe verteilt sind. Diese Vorzeichen wurden in Fig. 17
unterhalb der Feldstabmitte eingeschrieben. Die Gleichungen (65) gehen
somit in die folgende Form iiber:

AM; = —ZAf vi + SBf vg — 2Crvypg — 2D vy

AMIII — + 2‘AI’I | — ZBI'I 9 +‘ ZC;I ) + Z"l)l’[ ) 67
AMpp= —2Amy + 2By, —2Cut y — 2Dpr (67)
AM[,V: - ZA;V” + ZBIIV” - ZCI,V » ZD;V »

Die schachbrettartige Verteilung der (+) und (—) Vorzeichen wird in
(67) dadurch gestort, daB der beiderseits auf starren Stiitzen ruhende Feld-
stab [6] zu diesen Gleichungen keinen Beitrag gibt. Aus diesem Grunde
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weisen die letzten zwei Zeilen in

(67) bezw. die letzten zwei Vertikal-

kolonnen keinen Zeichenwechsel auf.

Wie sich leicht nachweisen 148t, sind die in (65) bezw. (67) auftretenden

Beiwerte die EinfluBzahlen d

Grunde sind die in (67) symmetrisch zur Hauptdiagonale liegenden Mo-

er Stabneigungen »,. Aus diesem

mentensummen dem Vorzeichen und der Gr6B8e nach gleich. In diesen

Gleichungen besteht daher Symmetrie zur Hauptdiago-
gleichgiiltig ob der

nale,

Durchlaufstab selbst Sym-

metrie aufweist oder nicht. Diese Tatsache bildet beim Zahlen-
rechnen eine erwiinschte Kontrolle fir die Richtigkeit der Rechnung.

Bezeichnet man in (

67) die in der ,Momentensumme iiber

einem Feldstab [r]‘ auftretenden Momente ganz allgemein mit K’
und K’,.cn, SO ist diese Momentensumme aus der Formel

& Kr’ = K’links -+ K recnts

zu ermitteln. In (68) ist K’ durch

mente K’ infolge v; = + 1, vy = + 1, vy = -} 1...

A,B,C’... zu ersetzen, wenn die Mo-

erzeugt werden.

Fithrt man (67) in (19) ein, so erhdlt man die folgende Gruppe von

homogenen Knickgleichungen, in denen die Unbekannten », als ,,Kopf‘‘ iiber

ihre Beiwerte geschrieben wurden.

Yr
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(68)

1 ’ 4 ’ ’ ’ ’
r;+71,[ 0 +my TA; +b; 2Ag)-mS;

1 ’ v ’ ’ ’ ’ v ’ ’ ’
Y lan 2Ar +my 2 Ay + b5 2 A+ br Sy

1 ’ ’ 7 ’
+—lam=An+ mpupZAm+ 0 ]
cr

1

7'(1
1 14 4 ’ ’ ’ ’
—7[ 0 + my ZBI + b7 ZB”]—I-(Z[[ S
7
1 ’ v ’ ’ ’ ’ ’ Y 4 ’
n+ o lan 2 Br + my 2By + by 2 By — my Siy

1 ’ N 4 ’ ’ ’ ’
~ lam 2By +mu2By+ 0 ]+b6n Sk
1

+—[ 0 +myZAp+ 0 ] —i,[ 0 +my2By+ 0 ]
(517% v
Yir Viy
1 ’ ’ Ry 1 ’ ’ ’ ’
+71,[ 0 +my ZC{ +b; ZC”] + 6'1’ [ 0 +my; 2Dy +bf ED[[] |

1 ’ =] ’ ’ ’ -l ’ ’ 14
r lan 2Ci+mpy 2Chx +bnp 2 Cry) + am Sin

1 ’ ’ ’ ’ ’ !’
n+ o lam2 Cit mp 2 Cyr+ 0 |-mmSh
0

+my2Chp+ 0 0

+1,[

+
(4% ]

1 ’ ’ ’ ’ ’ ’
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Aus diesen linearen und homogenen Gleichungen sind nun die sich im
Knickfall einstellenden Neigungen », der Stabsehnen zu errechnen. Die tri-
viale Losung »;, = v;; = w;; = »;y = 0 hat keine Bedeutung, sie entspricht
dem Gleichgewichtsfall des geraden nicht ausgeknickten Stabes. Endliche,
dem ausgeknickten Stab entsprechende Werte ergeben sich aus obigen

(69)
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Gleichungen nur dann, wenn die Nennerdeterminante verschwindet. Diese
bereits aus der Anschreibung (69) zu erkennende Nennerdeterminante ist
die Knickdeterminante A4 des vorliegenden Problems.

Die aus der ,Knickbedingung 4 = 0* flieBende Gleichung ist die
einzige Gleichung zur Lésung des Knickproblems. Um in einem vorliegenden
Knickproblem die Bedingung 4 = 0 zu erzwingen, sind in den Gliedern
der Determinante alle von vornherein unbekannten GréB8en passend anzu-
nehmen bis auf eine einzige, die dann aus der Bedingung 4 = 0 zu errechnen
ist. Je nach der Wahl dieser frei zu haltenden und aus 4 = 0 zu ermittelnden
Unbekannten x ergeben sich zwei Hauptaufgaben, die im Abschnitt VII naher
umschrieben werden.

Aus dem regelmaBigen Aufbau der Knickdeterminante des hier be-
trachteten Sonderfalles werden im Abschnitt VIII durch Verallgemeinerung
der hier gewonnenen Erkenntnisse Gesetze hergeleitet, welche die unmittel-
bare Anschreibung der Knickdeterminante eines jeden beliebigen Durchlauf-
stabes ermoglichen.

VI. Formédnderung des ausgeknickten Durchlaufstabes.

Wurde aus 4 = 0 die Unbekannte x errechnet, so werden hiemit auch
samtliche Determinantenglieder zahlenmiBig bekannt. Aus den homogenen
Gleichungen (69) gewinnt man dann die unbekannten Stabneigungen be-
kanntlich in der Form v, = k A4y vy = k A1y, viir = k Ayg, viv = k 4y, Wo-
bei £ eine beliebige Konstante, die 4-Werte jedoch die Unterdeterminanten
der Elemente der ersten Zeile der Knickdeterminante darstellen. An Stelle
dieser Unterdeterminanten kann man aber auch die Unterdeterminanten
irgend einer anderen Zeile nehmen. Mit den nun zahlenmiBig bekannten
Stabneigungen erhdlt man aus (61) auch die Zahlenwerte und Vorzeichen
der Knickmomente M’;. Hiemit ist aber auch die Form der elastischen Linie
des ausgeknickten Stabes und damit auch die Zahl der Knickwellen be-
stimmt. Wegen des beliebig zu wihlenden Konstantwertes %2 bleibt zwar
die Gro B e, nicht aber die Art der Formidnderung unbestimmt. Wird die
Durchsenkung von irgend einer Stiitze beliebig angenommen, so ist hier-
durch auch die Lage des Stabsehnenpolygons bestimmt. Liefert die Be-
dingung 4 = 0 mehrere Werte fiir die hieraus zu errechnende Unbekannte
x, so sind auch ebensoviele verschiedene Gleichgewichtslagen, d. h. verschie-
dene elastische Linien des ausgeknickten Stabes mit voneinander verschie-
dener Zahl von Knickwellen moéglich. Im allgemeinen ist die im Knickfalle
eintretende Forméanderung nicht von Interesse, ihre Berechnung kann daher
entfallen. Wohl aber interessiert jener aus 4 = 0 zu bestimmende Wert x
der frei gehaltenen Unbekannten, der das Ausknicken des Durchlaufstabes
gerade noch zu verhindern vermag. Ergeben sich aus 4 = 0 mehrere Werte
x, so liefern nur die Grenzwerte und zwar je nach der Art des vorliegenden
Problems entweder x,, oder x,;, die Losung des Problems.

VII. Die beiden Hauptaufgaben.
A. Die Uberpriifung einer bestehenden Konstruktion.

Im Falle der Uberpriifung sind simtliche Abmessungen des Durchlauf-
stabes, die Axialkrifte &, der Gebrauchsbelastung, die spezifischen Stiitzen-
widerstinde A; bezw. Verdrehungswiderstinde C; und ihre Reziprokwerte
d;¢; gegeben. Mit Bezug auf das Ausknicken in der Zeichenebene ergeben
sich nun zweierlei Fragestellungen:
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1. die Frage nach der ,Knicksicherheit »* des Durchlaufstabes und
2. die Frage nach der ,Stiitzensicherheit u‘ der federnden Quer-
stiitzung.

Die erste Frage lautet: Um wieviel diirfen die durch die Gebrauchs-
belastung erzeugten Axialkriafte &, der Feldstibe auf S, = v &, erh6ht wer-
den, damit die vorhandene Stiitzung ein Ausknicken des Durchlaufstabes ge-
rade noch zu verhindern ermag. Die Unbekannte des Problems ist die Knick-
sicherheit ».

Im zweiten Falle wird gefragt, um wieviel die vorhandenen spe-
zifischen Querstiitzenwiderstinde A; ,,, groBer sind als die erforder-
lichen Widerstinde A; .,;, die das Ausknicken des Durchlaufstabes bei vor-
gegebener Knickbelastung und, falls Stiitzenstibe vorhanden sind,
auch bei vorgegebenen spezifischen Verdrehungswider-
stinden C,,,,, gerade noch zu verhindern vermégen. Wird A; .o = tAi crs
gesetzt, so zeigt ein Wert x> 1 die ,,Stiitzensicherheit“ an, der Wert u=1
gibt zu erkennen, daB die vorhandene Querstiitzung gerade geniigt, wihrend
ein Wert u << 1 darauf hindeutet, daB die vorhandene Querstiitzung zu
schwach ist, um das Ausknicken unter den gegebenen Umstinden zu ver-

hindern. Wegen A; = 1 folgt aus obiger Gleichung 6; .,; = u d; vorn und

ein Wert u>1 bedeutet wieder, daB die erforderliche Federung um das
wn-fache [ weicher‘ sein koénnte, als die vorhandene. Die Unbekannte des
Problems ist die Stiitzensicherheit u.

Bei der ersten Uberpriifungsaufgabe ist die unbekannte

v S, ¢

Knicksicherheit » in den Werten ¢, = enthalten, die in die Knick-

rechnung in transzendenter Form (sin¢,, tg¢,) eingehen. Eine direkte
Ermittlung von » aus der Bedingung A4 = 0 ist daher nicht méglich. Die
Losung ist nur mit Hilfe eines analytisch-graphischen Verfahrens zu ge-
winnen. Fiir eine beliebig o-fach erh6éhte Gebrauchslast S, = ¢ &, besitzt
die Knickdeterminante einen ganz bestimmten Zahlenwert 4 (g). Ermittelt
man nun fiir einige Werte o die zugeordneten Knickdeterminanten, so 14t
sich graphisch die Kurve 4 = f (o) konstruieren. Der dem Punkte 4 = 0
zugeordnete Wert o, liefert die Knicksicherheit » = o, als Losung des
Problems.

Bei der zweiten Uberpriifungsaufgabe, der Ermittlung der
Stiitzensicherheit u, erscheint diese Unbekannte in den nach (13) bezw. (17)

zu ermittelnden Werten «’,, &', und m’, in der Form 6"c,”f u d”d"—""’. Daher

wiren, falls mit der Determinante aus (69) z. B. die Stiitzensicherheit u ermit-
telt werden sollte, mit Ausnahme von 7 alle Glieder mit dem Multiplikator u
zu multiplizieren, wenn man die dort auftretenden «’-, &’- und m’-Werte mit
den gegebenen Werten ¢, ,,, gebildet hatte. Teilt man dann
jede Zeile der Determinante durch u, so tritt diese Unbekannte nur mehr

L:’ = LT()ij o= y' auf. Durch diesen Vorgang wird die Knick-
determinante 4 in 4 — u* A’ iibergefiihrt, wobei die Determinante A4’ in
ihrem Aufban vollkommen mit der durch (69) gegebenen Determinante 4
iibereinstimmt. Nur sind in 4’ die Beiwerte «’, &’ und m’ mit den bekannten

Werten ¢'; ,o,1/c’ zu bilden, in 4 hingegen mit den unbekannten Werten
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& eri/c’. Aus A = ut A = 0 folgt auch 4" == 0 und hierin ist nun »’ = A

c*u
Jg* S*
bekannt wire. Die Ausrechnung der in ihrer Form ebenfalls durch (69) gege-
_ benen Determinante 4’ = 0 liefert eine algebraische Gleichung vierten Grades

nach der Unbekannten n’:g. Der groBte »’-Wert bestimmt u,,;,, die vor-

dic einzige Unbekannte des Problems, wihrend in 4 der Wert 5 =

handene Stiitzensicherheit, in der Form wu,;, = i’/ = ,1 ——— . Hiemit
Y max N max o* §*
erscheint der Vorgang zur Ermittlung der Stiitzensicherheit vollkommen klar

gestellt.

Wie aus (69) leicht zu erkennen, liefert die Knickbedingung 4 = 0
immer dann eine algebraische Gleichung zur direkten Ermittlung der
Unbekannten, wenn dieselbe, wie hier, nur in den Beiwerten «’, &', m’ oder
/'S, ¢t

T7,J,
der Fall, wenn irgend ein Element der elastischen Quer-
stiitzung als unbekannt offen bleibt.

in # auftritt und nicht in den Werten ¢, = Dies ist immer dann

B. Entwurf einer Neukonstruktion.

Beider zweiten Hauptaufgabe, dem Entwurf einer Neukonstruk-
tion, sind die Gebrauchslasten &,, die verlangte Knicksicherheit » des Durch-
laufstabes und daher auch die Knickkrifte S, = » &, gegeben. Die Ab-
messungen der Feldstibe, die Stirke der elastischen Stiitzung (die spezi-
fischen Widerstinde A;C;) sind nun so zu bestimmen, daf die vorgeschrie-
bene Knicksicherheit des Durchlaufstabes gewihrleistet erscheint.

Im vorliegenden Falle existiert eine groBe Zahl von vornherein unbe-
kannten frei zu wihlenden Bestimmungsstiicken. Um, wie schon erwihnt,
aus 4 = 0 eine algebraische Gleichung zur direkten Ermittlung der Un-
bekannten zu erhalten, muB ein Element der federnden Querstiitzung als
unbekannt frei gehalten werden, die iibrigen Bestimmungsstiicke der Quer-
stiitzung, die spezifischen Verdrehungswiderstinde C; und die Abmessungen
der Feldstibe sind hingegen passend anzunehmen. Wurden diese Annahmen
bis auf die Querschnitte der Feldstibe getroffen, so ist, wie die Knick-
berechnung leicht erkennen 148t, das fragliche Element der federnden Quer-
stiittzung nur mehr eine Funktion der Steifigkeit 7,/, der einzelnen Feldstibe,

2
die in der durch (27) gegebenen Kennziffer ¢, = Sk zahlenméBig zum

Ausdrucke kommt. An Stelle des dem Feldstab [r] zugeordneten Wertes
@, kann man auch den anschaulicheren Wert ~

_ T _ /T 70
==t (70)
2 2
heranziehen, dessen Bedeutung aus S, = Zn—?){; = 1—[7;51’ hervorgeht,
wobei
lr = myc, (71)

die ,freie Knicklinge‘ des Feldstabes ¢, darstellt. Diese freie Knicklinge
I, ist bekanntlich jene Linge, bei welcher ein mit dem Feldstab gleich di-
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mensionierter, an beiden Enden gelenkig gelagerter Stab unter der alleinigen
Wirkung der Knickkraft S, ausknickt. Der obere Grenzfall, der elastisch
gestiitzte starre Durchlaufstab, benotigt die kleinste Querstiitzung, der
untere Grenzfall, der durchlaufende Gelenkstab, bei welchem die
innerhalb der Feldweite knicksicheren Feldstibe gelenkig aneinander ge-
schlossen sind, erfordert die stirkste Querstiitzung. Ein nur aus Feld-
staben bestehender Durchlaufstab mit Kennziffern m, = 1 verhilt sich,
trotz seiner kontinuierlichen Verbindung mit den Nachbarstiben, wie ein Ge-
lenkstab. Nur wenn fiir alle Feldstibe die Werte m, > 1 sind, wird im Knick-
falle der Stab als Ganzes ausknicken, somit als Durchlaufstab zur Wirkung
kommen und eine entsprechend schwichere Querstiitzung erfordern. So z. B.
wihlt man im Briickenbau beim Entwurf des Druckgurtes von offenen
Briicken 1,2 <<m, < 3. Ein Druckgurt, dessen Feldstibe Werte m, <1,2 auf-
weisen, erfordert unverhidltnismidBig groBe elastische Querstiitzungen. Im
iibrigen ist es auch zweckméaBig, daBl die m,-Werte der Feldstiabe nicht allzu-
sehr voneinander abweichen, weil schon ein einziger im Verhiltnis zu den
itbrigen m-Werten kleiner Wert von m eine starke Schwichung des durch-
gehenden Stabverbandes herbeizufithren vermag, die eine unverhiltnismaBig
starke Erhohung der elastischen Querstiitzung zur Folge hat.

Bei einer Entwurfsaufgabe wird nun, nachdem die spezifischen Ver-
drehungswiderstinde C; gewihlt und die Feldstibe dimensioniert sind, aus
der Gruppe der die federnde Querstiitzung kennzeichnenden J;-Werten ein
passender §;-Wert ausgewihlt und als unbekannt offen gelassen. In dieser
Auswahl bieten sich unter anderem folgende Moglichkeiten dar.

a) Samtliche Querstiitzungen werden wie im Zahlenbeispiel IX als gleich
stark vorausgesetzt und als unbekannt offen gelassen Der diese Quer-
stiitzung kennzeichnende §-Wert ist dann die einzige Unbekannte des Pro-
blems, die aus der Knickbedingung 4 = 0 zu ermitteln ist. Bei der Durch-
fﬁhrung der Rechnung wird hier mit Vorteil der Vergleichswert é* = 6 ge-

wihlt, wodurch fiir simtliche Querstiitzen die Werte & :TO,: 1 bekannt

werden und die Unbekannte é = ¢* nur im Gliede 5 = der Haupt-

)* S*
diagonale erscheint. Die Ausrechnung der Knickdeterminante liefert eine
algebraische ‘Gleichung hoheren Grades nach 7.

b) Die spezifischen Stiitzensenkungen d; oder, was auf dasselbe hinaus-
kommt, die spezifischen Stiitzenwiderstinde A; werden frei gewéahlt bis auf
einen, der als unbekannt offen bleibt und aus der Knickbedingung 4 = 0
zu errechnen ist, die in diesem Falle eine nach der Unbekannten lineare
Gleichung liefert. Wenn es die gegebenen Umstinde erlauben, so ist es
hinsichtlich der Rechenarbeit von Vorteil, den A-Wert einer Randstiitze
offen zu lassen. Statt dieses einen freibleibenden Widerstandes kann auch
eine Gruppe von zwei oder mehreren untereinander gleich groB vor-
ausgesetzten Widerstinden A frei bleiben und errechnet werden.

c¢) Man kann auch fiir sidmtliche Querstiitzen zunichst beliebige J;-
Werte annehmen und hiezu die proportionalen erforderlichen 6; ., = ud;
so bestimmen, daB die verlangte Knicksicherheit gewihrleistet erscheint. In
dieser Form wird die Entwurfsaufgabe auf die zweite Uberpriifungsaufgabe
zuriickgefiihrt.

d) SchlieBlich kann man, wie es v1elfach bei der Knickberechnung der
Druckgurte von offenen Briicken geschieht, die untereinander gleichen Zwi-
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schenstiitzen in passender Stirke annehmen und hiezu den spezifischen
Widerstand der ebenfalls als gleich vorausgesetzten Endstiitzen bestimmen.

In dhnlicher Weise lassen sich noch andere verschiedene Annahmen fiir
die Berechnung der federnden Querstiitzen treffen. Entscheidend fiir die
jeweiligen Annahmen sind die besonderen, in der Praxis vorliegenden Ver-
hiltnisse.

VIII. Aufbau der Knickdeterminate eines beliebigen
Durchlaufstabes.

An der Hand der in dieser Abhandlung durchgefithrten Herleitung der
Knickdeterminante (69) fiir den in Fig. 3 dargestellten Durchlaufstab lassen
sich nun ganz allgemein giiltige Regeln fiir den Aufbau der Knick-
determinante eines beliebigen Durchlaufstabes angeben, welche die un-
mittelbare Anschreibung dieser Determinante ermdéglichen.

Mit den nach (27) zu ermittelnden ¢,-Werten bestimmt man die o,-
und v',-Werte (Gl. (28), (29), (33)), die «’; nach (39) und die &’; nach (40),
ferner die Fortleitungszahlen a, b, nach (42) und die Fortleitungszahlen p ¢
nach (51), (52). Nun berechnet man mit Hilfe der Gleichungen (55)—(60)
die EinfluBzahlen 4; und die 4’-, B’-, C’- ... Momente aus (64) und bildet
nach (68) die ,,Momentensummen 2 A4’, ¥B’, 2C"... iiber die elastisch quer-
gestiitzten Feldstabe‘‘.

Nach (13) werden nun die von der elastischen Querstiitzung abhingigen
Werte «’,, &', und m’, ermittelt. Im Falle eines Entwurfes ist in diesen Werten
ein nach den Ausfuhrungen im Abschnitt VII passend zu wéhlender Frei-
wert als unbekannt offen zu halten und dann aus der Knickbedingung 4 =0
zu errechnen.

Der Aufbau der Knickdeterminante soll nun zunichst fiir den soge-
nannten ,Normalfall“ angegeben werden. Als Normalfall wird ein aus
n Stiben, entweder nur aus Feldstiben oder aus Feld- und Stiitzenstaben
bestehender Durchlaufstab bezeichnet, der in allen Stiitzpunkten eine
federnde Querstiitzung aufweist und dessen Feldstabe durch Druck-
krafte beansprucht sind.

Sind unter den n Stiben m Stiitzenstibe enthalten, so ist die Knick-
determinante (n-—m)-gliedrig und besitzt z. B. fiir den in Fig. 19 darge-
stellten ,,Normalfall‘ die Form

%/ﬂ U mw T m % m TH

7 (2 [y (5
S & 3 S,' Sg ~opSg Sz 3 Sw Sgf— Fig. 19
A &
n+hiw —m/S/ —hip+aygSn; +hic L - WD
—hira+ b/ Sy y+ by —mySy; — hpo +amSmi + hip —0
+ hma ~ hip + b S i+ hm e - mSir:  — kipp+ apy Sty
— hva +lye .~ hye+ bmSm: v+ hyp—my Sy

Das Bildungsgesetz dieser aus lauter Absolutgliedern auf-
gebauten Determinante ist leicht zu erkennen.

Die Summen in der nach rechts fallenden Hauptdiagonale sind stets
dreigliedrig. Das erste nach (14) zu bildende #-Glied ist stets mit einem

(72)
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positiven Vorzeichen zu versehen, das Produkt 'S’ erhilt immer ein
negatives Vorzeichen, in der Zeile dariiber und darunter erscheinen
die Produkte &’S’ bezw. 6’S’, die stets ein positives Vorzeichen be-
kommen. Diese ,,S’-Produkte sind in der ersten Spalte dem Feld-
stab /, in der zweiten Spalte dem Feldstab // usw. zugeordnet und daher
dementsprechend zu bezeigern.
Die /#’-Glieder in (72) entsprechen den ,,Klammergliedern‘ in (69) und
man erkennt daselbst, da die #’-Glieder der ersten, bezw. zweiten, dritten
. Kolonne im wesentlichen aus den A’- bezw. B’-, C’- ... Momenten aufge-
baut sind. Die erste Kolonne der Knickdeterminante soll daher im weiteren
als ,,A-Kolonne*‘‘, die zweite als ,,B-Kolonne‘‘ usw. bezeichnet werden.

Diese /#’-Glieder sind doppelt bezeigert, der erste Zeiger bezeichnet die
Reihe, der zweite durch den ,,Kolonnenbuchstaben® gekennzeichnete Zeiger
bestimmt die Kolonne. Die allgemeine Bezelchnung eines #’-Gliedes ist dann
durch #’,x" gegeben.

Jedes 4, x’-Glied ist aber iiberdies auch einem Feldstab zugeordnet und
zwar jenem Stab, der durch den Zeiger r angedeutet wird. Alle #’-Glieder
der ersten Reihe sind daher dem Feldstab /, jene der zweiten Reihe dem
Feldstab // usw. zugeordnet. Ein A’-Glied besteht aus einer dreigliedrigen
Summe, die durch die allgemein giiltige Formel

hi = ~cl,— e 2Kia + m', 2K, + b, ZKr_llr IAHBIHC (73)

gegeben ist. Hieraus erhilt man z. B. fiir alle Glieder in der zweiten Reihe
(r = II) der Knickdeterminante (72) die Formel

1
bk = & [an 2 K[+ mu2 Ki+ bn 2 Kl k' = 4, B, € - -+
y

fiir das Glied in der vierten Reihe der zweiten Kolonne mit o)y = 0
die Formel .

’ 1 14 ’ ’ i ’
hy p = o lav 2 By + mpy 2 By + 0],

fiir das Glied in der ersten Reihe der dritten Kolonne mit a, = 0 die
Formel

’ 1 ’ ’ ’ ’
hro = ;17 [O + my 2C; + b[ZC[[].

In der ersten und letzten Zeile der Determinante reduziert sich
die dreigliedrige Summe (73) stets auf zwei Glieder, da in diesen Fillen,
wegen o, = 0, b';y = 0, das erste bezw. letzte Glied der Summe nicht
existiert.

Die (4) und (—) Vorzeichen der #’-Glieder sind schachbrett-
artig so zu verteilen, daB die #’-Glieder in der von links nach rechts
fallenden Hauptdiagonale stets positive Vorzeichen erhalten.

Eine Abweichung von dieser durch (72) gegebenen Normalform
der Knickdeterminante wird durch folgende Ursachen bewirkt: 1. wenn einer
der Feldstibe nicht durch eine Druckkraft, sondern durch eine Zugkraft be-
lastet wird, 2. wenn einer der Feldstibe iiberhaupt keine Belastung durch
Axialkriafte erfihrt und 3. wenn im Stabzug unverschiebliche Stiitzen auf-
treten.

Abhandlungen VI 12
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Im ersten Falle sind in (72) die dem Zugstab zugeordneten S’-
Produkte mit entgegengesetzten Vorzeichen zu versehen, das Produkt m’S’
erhilt daher ein positives, die Produkte ¢S’ und &’S’ ein negatives
Vorzeichen.

Im zweiten Falle entfallen wegen &’ = 0 die dem Feldstab zu-
geordneten S’-Produkte.

Im dritten Falle werden, wegen ¢’ = 0, auch die nach (13) zu
bildenden, links und rechts von der Stiitze liegenden a’- und &’-Werte gleich
Null. In (72) (73) entfallen daher jene Summenglieder, deren &’- und 5’-Werte
infolge der unverschieblichen Stiitze verschwinden. So z. B. geht die Knick-
determinante (69) formal aus (72) hervor, indem man hierin 4’;; = 0 und
a’;v = 0 setzt. Ruht ein Feldstab auf zw ei unverschieblichen Stiitzen, so
sind seine a’-, &’- und m’-Werte gleich Null, ihm ist daher keine Lager-
gleichung zugeordnet, er gibt auch keinen Beitrag zur Knickdeterminante,
bewirkt aber, wie schon zu (67) bemerkt, eine Stérung in der schachbrett-
artigen Verteilung der den #’-Gliedern zukommenden (4) und (—) Vor-

zeichen. In derartigen Fillen fertige man ein quadra-
— tisches Schema nach Fig. 20 an, die Zahl der Zeilen und
tl-|+ + Kolonnen entspricht der Zahl der vorhandenen Feld-
—|+|— - stabe, gleichgiiltig, wie dieselben gelagert
sind. Ist z. B. der r-te Stab beiderseits auf un-

;— verschieblichen Stiitzen gelagert, so streiche man die

I, r-te Zeile und Kolonne, die iibrigbleibende Restfigur

+ gibt die Vorzeichenverteilung der #’-Glieder. Fig. 20

zeigt das Vorzeichenschema fiir den in Fig. 3 darge-

Fig. 20 stellten Stab, bei welchem der vierte Feldstab auf
beiderseits starren Stiitzen ruht.

Zwei aufeinander folgende, beiderseits starr gelagerte Feldstibe be-
wirken im Vorzeichenschema die Streichung von zwei nebeneinander liegen-
den Zeilen bezw. Kolonnen, di¢ Restfigur zeigt wieder vollkommene schach-
brettartige Anordnung in der Vorzeichenverteilung.

DRI

_|..
79
+

7

Sonderfalle.

1. Der durchlaufende Gelenkstab. Fiir einen solchen Stab
existieren keine Kontinuititsgleichungen, daher auch keine A4’-, B'-, C’- ...
Momente und keine hieraus aufgebauten #’-Glieder. Die ihm zugeordnete
Knickdeterminante geht aus (72) durch Streichung der /#’-Glieder hervor.

2. Der durchlaufende Stab auf durchwegs unver-
schieblichen Stiitzen besitzt keine Lagergleichungen. Die Konti-
nuititsgleichungen bilden in diesem Falle eine Gruppe von linearen homo-
genen Gleichungen, die nur dann endliche Werte fiir die Knickmomente
liefern, wenn die aus ihren Beiwerten gebildete Nennerdeterminante ver-
schwindet. Diese Determinante ist die Knickdeterminante des Problems, die
beispielsweise fiir einen vierfeldrigen Durchlaufstab die aus den Fortleitungs-
zahlen a b aufgebaute Form

besitzt,
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IX. Zahlenbeispiel. °)

Von dem aus zwei Stiitzenstiben und fiinf Feldstiben bestehenden Durch-
laufstab der Fig. 3 a sind die in der Tabelle 1 eingetragenen Abmessungen,
die Gebrauchsbelastung &,, die Knicksicherheit » = 2, die Knickkrifte und
die spezifischen Verdrehungswinkel der Stiitzenstibe [1] und [3] mit & =
0,19167- 104 und &5 = 0,15556- 10~% gegeben. Man ermittle den erforder-
lichen, fiir alle elastischen Stiitzen als gleich gro8 vorausgesetzten spezifi-
schen Stiitzenwiderstand 4 = A,,;, der das Ausknicken des Durchlaufstabes
gerade noch zu verhindern vermag.

1. Verdrehungswinkel ¢, und 7,.

Feldstab [r] [2] [4] 5] [6] [7]
¢r in cm 400 300 450 500 400
F,, cm? 79,2 106,9 154 160,4 69,7
J, 5 cmt 5860 7670 11520 12000 4460
S, , ton 180 240 300 360 150
iy = i_’ t/cm? 2,273 2,245 1,048 2,244 2,152
r

7, in tjem? | 1212,2 1279,2 2015,4 1281 1507,6
m, nach (70) 1,56 2,12 1,94 1,30 1,67
N 1)) 2,01384 1,48188 1,61938 2,41661 1,88119
?7 115023 5" 84°54°24” | 02047°1”7 | 138°27°28” | 107°47 04"
s, o (20) 1,22906 0,48776 0,62129 2,64403 0,97561
t, , (26) 1,95558 0,86792 1,07874 3,72743 1,60342

Nach (11) frei gewihlte Vergleichswerte: §* = 360 ton, ¢*= 500 cm

S, nach (11) 0,5 0,66667 |  0,83333 1,00 0,41667
e, , (11) 0,8 0,6 0,9 1,00 0,8
52 et 0,4 0,4 0,75 1,00 0,33333
s, , (28) 3,07265 1,21940 0,82839 2,64403 2,92687
., (28) 4,88895 2,16980 1,43832 3,72743 4,81031

+) Weil o, > (0,,,, = 1,905 t/cm?) findet das Knicken im unelastischen Gebiet statt. Nach

ENGESSER-TETMAJER errechnet sich daher der den o, t/cm? zugeordnete Knickmodul 7, aus

(G3,1 —0)%0
T =108 _"___ " 7 2,
r o865 [

5) Dieses und viele andere Zahlenbeispiele hat mein Assistent Dr. Ing. E. STRELSKY
gerechnet, wofiir ich ihm an dieser Stelle besten Dank sage.
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2. Momente £, Fortleitungszahlen @ und b,.

Gelenk ¢ 1 2 3 4 5 6

Stab [r] 1] [ 2] 3] { [4] [5] ’ [6] I 7]
¢); 7, (3,45000)| 4,88805 (2,80000)’ 2,16980 | 1,43832 { 3,72743 { 4,81031
"‘i’ nach (39) l 8,33895 l 7,68895 4,96980 | 3,60812 5,16575 8,53774
K, (40) | 0,11992 | 0,13006 | 020122 | 0,27715 | 0,19358 | 0,11713
), s, (3,45000) | 3,07265 !(2,80000)’ 1,21940 l 0,82839 I 2,64403 } 2,02687

| | | |

a, nach (42) | 0 0,36847 | 0,36416 | 0,24536 | 0,22950 | 051184 | 0,34282
b,. »  (42) 0,41372 | 0,39962 | 0,56340 | 0,33796 | 0,16036 | 0,30969 | O

3. Fortleitungszahlen p,und ¢, Multiplikatoren g, [Gl (51), (52)].

i

a,

Pr={h 5
r l_bl"—-l pr_li F=1,2¢°°6,17 ,ur:_-';)—_
r

= a”

b v pr=}:

r—1Pr_y (r=2,3+5,6)

Cryy {
|

iy 9ria

-
11_ar+1 Gri1

0 0

0,41372

0,36847

0,36847

1,30879

0,36847
0,36416

0,39962
056340
0,33796
0,16036
0,30969

0,14725
0,24060
0,10919
0,04133
0,16535

0,36416
0,24536
0,22950
0,51184
0,34282

0,42705
0,32310
0,25773
0,53391
0,41074

1,44457
1,00385
0,73943
0,58005

0,24536
0,22959
0,51184
0,34282

0,18991
0,22465
0,08672
0,04375
0,15851
0

0,81009
0,77535
0,91328
0,95625
0,84149
1

1

0,41372
0,30962
0,56340
0,33796
0,16036
0,30969
0

0,51071
0,51541
0,61690
0,35342
0,19057
0,30969
0

4, EinfluBzahlen ;.

Die EinfluBzahl 1’;; wird mit (57), alle
berechnet.

9

Vip= gt EL = 014804, 2
Vyy = uy Ay, = 0,20708, Xgs =
Vg = usgp = 020014,  Ngs =
Kontrollen:
nach (55) Ny = T?q,j?(}; i—: — 020014,
nach (58) Voo = Pk, = 0,14034.

a;

iibrigen EinfluBzahlen

= !,(4 24’33 = 0,32721 3

us A'yy = 0,24105,
ug M55 = 0,14034,

mit (59)
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5. Momente A, B, C’ und D'. [Gl. (63), (64)].

Infolge
v, = + 1 vy = + 1 vy = + 1 y = + 1
A, =022434 | B, =006371 | C,=0,01981 | D', = 0,00098
A, =028338 | B,=0,17200 | C,=005375 | D’y = 0,00266
0,61690 A;=0,17482 | B3 =0,40486 | C,=0,12587 | D’y = 0,00624
035342 |\ b _ 06178 | B, =o043203 [TC,=038057 | D= 001931
019057 1 001177 | B. = 008250 | C,=030431 | D', = 007493
03099 1 4. — 000365 | B,=002555 | C,=000424 | D, 0,14058
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0,36847
0,42705
0,32310
0,25773
0,53391

6. Momentensummen XA, B/, 3C;,2D;.| ,—1nmmw. [Gl. (68)].

h Infolge
P K;

T~

1},=+1

vp=+1

v =+ 1

q}IV=+1

SKj =K'+ Ky
SKpy =K+ Ky
> Kjy= K+ Ky’
3 Kjy=Ky'+0

JA; = 0,50772

3B} = 0,23661

SAj = 0,23660
SAf,= 0,00365

B}, = 0,83779

3C} =0,07356
SCj = 051544

SBj; = 0,51543
3B}, = 0,02555

2Cpp=0,69388

D} = 0,00364
3D}y = 0,02555
ZDI,I[: 0,09424

3Cj,= 0,00424

3D}, = 0,14034

Die in dieser Tabelle aufscheinende Symmetrie zur Hauptdiagonale ist ein Beweis fiir die
Richtigkeit der Zahlenrechnung.

7. Werte o,, m',, b, der Feldstabe [r]. [Gl (13)].

Vergleichswert 6* = 4, ¢* = 500 cm.

Stiitze 1 3 4 5 6 7

Y Y Y Y Y Y

Stab [] A [ A [ A [] A A [IV] A

0; ) ) 0 0 )

d; = ;[ 9% 1 1 1 0 1
¢, nach (11) 0,8 0,6 0,9 1, 0,8
o » (13) |0 1,25000 | 1,66667 | 0 | 0

m' . 2,50000 | 3,33333 | 1,11111 | O | 1,25000
b’ . 1,66667 | 1,11111 | 0 0o |0

8. Die #,x'-Glieder der Knickdeterminante. [Gl (72), (73)].

1. Reihe - -
2.

3. ,

4

»

I

- hige
. h[’IKI

0,00000

+3,12500 2 K7 +2,08333 =Kj;
2,08333 2 K7 +5,55556 2Ky + 1,85185 2 Ky

- hjg o= 1,85185 IKjr + 1,23457 ZKjy+ 0,00000

. iy o= 0,00000

1+ 1,56250 ZKjy + 0,00000

K=A,B,C,D.
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Hieraus ergeben sich die in der folgenden Tabelle stehenden Zahlen-
werte. Die beigefiigten Vorzeichen und auch jene der S’-Produkte in der
letzten Tabelle entsprechen den im Abschnitt VIII angegebenen Regeln.

] 4 2,07954 | — 2,48480 : I 1,30371 | + 0,06460
j —2 ,50840 | + 6 10181 i —4,30177 | — 0,32405

+ 0, 52894 — 2 18780 i + 1,81116 | + 0,16365
+ 0,00570 -0, 03993 + 0,14725 ; + 0, 21929

9. Die §-Produkte der Knickdeterminante. [GL (72)].

—1,25000 | + 0,83333 | — —
+0,83333 | —2,22222 | + 1,38888 | —
— 1 4074074 | —0,02592 | ~ 0,00000
| — — | +0,00000 | — 0,52084 |

10. Knickdeterminante und Losung.

Die Addition der vertikalen Kolonnen der zwei vorhergehenden Tabellen
fiihrt nach Hinzufiigung der #-Glieder zum Zahlenwert der aus (72) hervor-
gehenden Knickdeterminante (69)

7 4082054 | —165147 | 4130371 | 4+ 0,06460

A — | —167507T iy 4387950 | —291280 i —032405 | _
4052804 | —1,44706 7y 4 0,88524 : -+ 0,16365
+0,00570 | —0,03993 i -+ 0,14725 % —0,30155

deren Ausrechnung die Gleichung
n* + 5,29282 ? —- 2,00848 »2 — 0,01729 , 4 0,02197 = 0
liefert. Aus ihr gewinnt man die vier Wurzeln

= —+ 033702, s = + 0,12121,
7, = — 5,04775, s = — 0,00690.

Von diesen vier Wurzeln hat nur die groBte positive Wurzel
Nmax = - 0,33702 praktische Bedeutung. Sie liefert die untereinander gleich
groBen spezifischen Stiitzenwiderstinde A,,;, die erforderlich sind, um ein
Ausknicken des Durchlaufstabes bei zweifach erhohter Gebrauchslast gerade
noch zu verhindern. Nach (14) ist

T s T oSt T s
und hieraus mit y = Nmar TOlgt

&
A =Aps = Ymas SE = 0,33702 %%%%E— — 0,238 t/cm
und
‘l .
§ = dpy = ——— = 4,202 cm/t.
4 Aerf / ’

Weitere Zahlenbeispiele finden sich in meiner Abhandlung ,,Ein Rechen-
schema zur Knickberechnung mehrfeldriger beliebig gestiitzter Stabe und
seine Anwendung auf Zahlenbeispiele“ (Stahlbau 1941).
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Zusammenfassung.

In der vorliegenden Abhandlung wird ein strenges Verfahren zur Knick-
berechnung eines mehrfeldrigen Durchlaufstabes entwickelt, dessen Quer-
schnitte und Triagheitsmomente innerhalb eines Feldes konstant sind und
der in den Feldgrenzen von axial wirkenden Einzelkriften ergriffen wird.
Neben Druckkriaften kénnen auch Zugkrifte auftreten, wie z. B. beim Aus-
knicken des Obergurtes im durchlaufenden Triger einer offenen Briicke (S,,
in Fig. 1), auch Feldstibe, die durch keinerlei Axialkraft beansprucht sind
(Sy in Fig. 1) diirfen im Durchlaufstab enthalten sein. Die Stiitzung in den
Feldgrenzen kann nach irgend einer der in Fig. 2 schematisch dargestellten
Art erfolgen, und diese Stiitzungsarten konnen in beliebiger Kombination
verwendet werden.

Fiir derartige Durchlaufstidbe, die jede beliebige Unsymmetrie hinsicht-
lich Konstruktion, Belastung und Stiitzung aufweisen diirfen, wird ein
Rechenschema entwickelt, nach welchem die Berechnung der Knickdetermi-
nante in immer gleicher und gleich einfacher Weise erfolgen kann.

Das Zahlenbeispiel im Abschnitt IX und weitere Zahlenbeispiele in der
Abhandlung des Verfassers ,,Ein Rechenschema zur Knickberechnung mehr-
feldriger Stibe‘‘ (Stahlbau 1941/42) zeigen die praktische Anwendung des
Verfahrens.

Résumé.

Dans le présent mémoire l'auteur développe une méthode exacte de
calcul du flambage de la poutre continue sur plusieurs appuis dont les sec-
tions et les moments d’inertie sont invariables a ’intérieur d’une ouverture
et qui est soumise, dans les limites des ouvertures, a des forces concentrées
axiales. On peut avoir simultanément des forces de traction a c6té des forces
de compression, comme c’est par exemple le cas lors du flambage de la
membrure supérieure d’une poutre continue d’un pont a section ouverte (S,
de la fig. 1); on peut également avoir dans une poutre continue des barres
qui ne sont soumises a aucune force axiale (§’; de la fig. 1). Les appuis
peuvent étre d’un quelconque des types représentés schématiquement a la
fig. 2 et ils peuvent étre combinés a volonté.

L’auteur développe, pour des poutres continues de ce genre, c’est-a-dire
pour des poutres qui peuvent présenter une disymetrie quelconque quant
& sa construction, ses surcharges et ses appuis, un schéma de calcul d’apres
lequel le calcul des déterminants de flambage peut toujours se faire de la
méme facon et avec la méme simplicité.

L’exemple numérique traité au chapitre IX ainsi que d’autres exemples
numériques publiés par 'auteur sous le titre « Ein Rechenschema zur Knick-
berechnung mehrfeldriger Stibe» (Stahlbau 1941/42) montrent ’application
pratique de la méthode.

Summary.

In this article a strict method of calculating the buckling of a continuous
multi-bay member is developed, whose cross-sections and moments of inertia
within any bay are constant, and which is supported within the limits of
the bays by separate forces acting axially. Besides pressure forces, tensile
forces may also occur, as for instance in the buckling of the top boom in
the continuous girder of an opea bridge (S, in fig. 1); also bay members.
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which are not stressed by any ‘axial force (S, in fig. 1) may be present in
the continuous member. The supporting within the limits of the bays may
be effected by any of the methods illustrated diagrammatically in fig. 2,
and these methods of supporting may be adopted in any desired combination.

For such continuous members, which may display any desired lack of
symmetry with respect to design, load and supporting, a method of calcu-
lation is developed, according to which the buckling determinants can always
be calculated in the same manner and in an equally simple manner.

The numerical example in section IX and further numerical examples
in the author’s article ‘‘Ein Rechenschema zur Knickberechnung mehrfeldriger
Stibe” (in Stahlbau 1941/42) show how the method can be applied in
practice.
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