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DIE KNICKBERECHNUNG MEHRFELDRIGER, IN DEN
FELDGRENZEN BELIEBIG GESTÜTZTER STABE.

LE CALCUL DU FLAMBAGE DES POUTRES CONTINUES
SUR APPUIS D'UN GENRE QUELCONQUE.

CALCULATING THE BUCKLING OF MEMBERS WITH SEVERAL
BAYS AND SUPPORTED IN ANY MANNER WITHIN THE LIMITS

OF THE BAYS.

Prof. Dr. Ing. K. KRISO, Deutsche Technische Hochschule, Brunn.

I. Einleitung.
Die Bedingung für das Ausknicken eines mehrfeldrigen geraden Stabes,

der in den Feldgrenzen auf elastischen Stützen gelagert ist und
daselbst von axial wirkenden Kräften ergriffen wird, wurde erstmals von
Zimmermann x) hergeleitet. Von dieser prinzipiellen Lösung ausgehend, kann
man nur mühsam, auf recht umständliche Weise über umfangreiche
Zahlenrechnungen bis zu dem vom Ingenieur benötigten Zahlenresultat vordringen.
Aus diesem Grunde hat Zimmermann für gewisse Sonderfälle2) ein
systematisches Verfahren zur zahlenmäßigen Durchführung der Knickberechnung

entwickelt. Dieses ZiMMERMANN'sche Verfahren erstreckt sich auf
gleichfeldrige Stäbe, die hinsichtlich Konstruktion und Belastung
Symmetrie zur Mitte aufweisen und in allen Feldgrenzen eine elastische
Querstützung von gleicher Intensität besitzen. Die Druckgurte offener
Fachwerksbrücken entsprechen vielfach dieser Voraussetzung, ihre Knickberechnung

nach dem nunmehr schon dreißig Jahre bestehenden ZiMMERMANN'schen
Verfahren hat sich jedoch in der Praxis nicht einbürgern können.

Hg. 1

Unter ähnlichen, aber erweiterten Voraussetzungen hat der Verfasser
ein ebenfalls strenges Verfahren zur Knickberechnung der Druckgurte offener
Brücken hergeleitet, das in einfacher Art zu handhaben ist und verhältnismäßig

rasch zur Ermittlung der Knickdeterminante führt3).
*) H. Zimmermann, Der gerade Stab auf elastischen Einzelstützen mit Belastung

durch längsgerichtete Kräfte. (Sitzungsberichte der Berliner Akademie, mathem.-physik.
Klasse, 1907, Seite 326 ff.)

H. Zimmermann, Die Knickfestigkeit des geraden Stabes mit mehreren Feldern.
(Sitzungsbericht der Berliner Akademie, mathem.-physik. Klasse, 1909, Seite 180 ff.)

2) H. Zimmermann, Die Knickfestigkeit der Druckgurte offener Brücken. (Berlin
1910, Ernst & Sohn.)

3) K.Kriso, Die Knicksicherheit der Druckgurte offener Fachwerksbrücken. Band III
der Abhandlungen der Internationalen Vereinigung für Brückenbau und Hochbau, Zürich
1935.
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In der vorliegenden Arbeit wird das Ausknicken von geraden Durchlaufstäben

untersucht, deren Querschnitt und Trägheitsmoment innerhalb eines
Feldstabes konstant ist und die in den Feldgrenzen von axial wirkenden
Einzelkräften ergriffen werden. Neben Druckkräften können auch Zugkräfte
auftreten, wie z. B. beim Ausknicken des Obergurtes im durchlaufenden
Träger einer offenen Brücke (Sm in Fig. 1), auch Feldstäbe, die durch keinerlei

Axialkraft beansprucht sind (S0 in Fig. 1) dürfen im Durchlaufstab
enthalten sein. Die Stützung in den Feldgrenzen kann nach irgend einer der
in Fig. 2 schematisch dargestellten Art erfolgen und diese Stützungsarten
können in beliebiger Kombination verwendet werden. Für derartige
Durchlaufstäbe, die jede beliebige Unsymmetrie hinsichtlich Konstruktion,

Belastung und Stützung aufweisen dürfen, wird nun im folgenden ein
strenges, ganz allgemein gültiges Verfahren zur
zahlenmäßigen Durchführung der Knickberechnung entwickelt.

Dieses Verfahren beschreitet, im Gegensatz zum ZiMMERMANN'schen
Verfahren, andere Wege. Es zeichnet sich vor allem durch seinen einheitlichen
Aufbau aus, der für alle, wie immer gearteten Fälle, seine Gültigkeit behält
und daher die Durchführung der Berechnung in immer gleicher und gleich
einfacher Weise gestattet. Ein solches, besonders vom praktischen Rechner
geschätztes Verfahren, ermöglicht eine leichte Kontrolle, verbürgt ein Minimum

an Fehlerquellen und führt in übersichtlicher schematischer Form in
jedem Falle sicher zu dem in der Praxis geforderten Zahlenresultat. Infolge
zweckmäßig getroffener Anordnungen in der Herleitung, erscheinen in der
Zahlenrechnung nur kleine dimensionslose Grössen, so daß
dieselbe, falls keine Rechenmaschine zur Verfügung steht, auch mit Hilfe eines
Rechenschiebers durchgeführt werden kann.

Im Vergleich zu meiner in Band III der „Abhandlungen" der I.V. B. H.
veröffentlichten Methode, ermöglichen die Ergebnisse des hier zu entwickelnden

Verfahrens auch neuerdings eine bedeutend vereinfachte strenge
Knickrechnung der Druckgurte offener Brücken, die nunmehr unter Erweiterung
der bisherigen eingeschränkten Voraussetzungen durchgeführt werden kann.

II. Bezeichnungen.
Die Fig. 2a—2c stellt eine in der Querrichtung unverschiebliche, die

Fig. 2d — 2f eine in der Querrichtung federnde Stützung dar. Die über den
Stützen liegenden „Stützenquerschnitte" des Durchlaufstabes sind entweder
frei drehbar (Fig. 2a, 2d), elastisch drehbar (Fig. 2b, 2e) oder unverdrehbar
(Fig. 2c, 2f).
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In den letzten zwei Fällen wird die elastische bezw. feste „Einspannung"
des Stützenquerschnittes so verwirklicht gedacht, daß, wie Fig. 2 zeigt, der
Stützenquerschnitt des durchgehenden Stabes mit einem hierauf senkrechten
starren Stab biegungssteif verbunden sei, der entweder elastisch drehbar
oder unverdrehbar ist. Dieser starre Stab soll als „Stü tze n s tab"
bezeichnet werden, zum Unterschied von dem zwischen zwei Stützen liegenden
„Feldstab".

Ein über mehrere elastische Stützen durchlaufender Stab ist äußerlich
statisch unbestimmt. Hieraus erhält man bei Kenntnis der elastischen
Stützungselemente ein statisch bestimmtes Hauptsystem, indem man an den
Enden der Feldstäbe Gelenke einschaltet. Folgen im Stabzug zwei Feldstäbe

unmittelbar aufeinander, so liegt das einzuschaltende Gelenk unmittelbar
über der Stütze. Sind zwei aufeinanderfolgende Feldstäbe jedoch durch

einen Stützenstab getrennt, dann sind die einzuschaltenden Gelenke unendlich

nahe links und rechts vom Stützenstab anzubringen. Das zwischen ihnen
liegende Stabelement ist mit dem Stützenstab in starrer Verbindung.

[ü
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Fig. 3

In diesen „Gelenkquerschnitten", die nach Fig. 3 mit den fortlaufenden
arabischen Ziffern 1, 2, zu bezeichnen sind, kommen im ausgeknickten
Zustand die „Knickmomente" Ml9 M2 usw. zur Wirkung. Die zwischen den
Gelenken liegenden „Feld-" bezw. „Stützenstäbe" werden, wie Fig. 3 zeigt,
mit einer eingeklammerten arabischen Ziffer bezeichnet, derart, daß zwischen
den Gelenken r — 1 und r der Feld- bezw. Stützenstab \r\ zu liegen kommt.

Die Stützen selbst werden ebenfalls durch arabische Ziffern
gekennzeichnet. Eine zwischen zwei Feldstäben liegende Stütze führt die Ordnungsnummer

des links von ihr liegenden Feldstabes. Ist der Stützenquerschnitt
in einen Stützenstab eingespannt, so wird die Stütze mit der Ordnungsnummer

des Stützenstabes bezeichnet. In solchen Fällen weist die Bezifferung

der aufeinander folgenden Stützen allerdings keine regelmäßige Zahlen-,
folge auf. Die letzte Stütze eines /z-stäbigen Durchlaufstabes führt stets die
Bezeichnung „n", die erste Stütze hingegen wird mit „1" bezeichnet, falls
der erste Stab des Verbandes ein Stützenstab ist, jedoch mit „0", wenn der
Stabzug mit einem Feldstab beginnt.
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Sind in einem Durchlaufstab nur Feldstäbe allein vorhanden, so
weist die Bezifferung dieser Stäbe eine regelmäßige Zahlenfolge auf. Bei
der Anwesenheit von Stützenstäben wird diese Regelmäßigkeit der
Zahlenfolge gestört. Es ist aber, wie sich später erweisen wird, zweckmäßig,
daß auch in solchen Fällen die an beiden Enden oder auch nur an einem
Ende federnd quergeschützten Feldstäbe in ihrer Bezifferung eine
regelmäßige Zahlenfolge bilden. Um diese Regelmäßigkeit herzustellen, wird bei
der Anwesenheit von Stützenstäben und überdies auch bei
Anwesenheit von Feldstäben, die an beiden Enden auf unverschieblichen

Querstützen aufliegen, neben der bereits festgelegten
Bezifferung durch arabische Ziffern noch eine zweite Bezifferung durch
fortlaufende eingeklammerte römische Ziffern [I], [II], erforderlich. Diese
Ziffern werden jenen Feldstäben zugeordnet, die an beiden Enden
oder auch nur an einem Ende federnd quergestützt sind. Alle anderen Stäbe
führen nur die zuerst festgesetzte Bezeichnung durch arabische Ziffern (siehe
Fig. 3).

Innerhalb eines Feldes sind, wie schon erwähnt, Querschnitt, Trägheitsmoment

und Axialkraft unveränderlich. Für ein beliebiges Feld r werden
die folgenden Bezeichnungen eingeführt: cr Feldlänge, Jr Trägheitsmoment

des Querschnittes Fr in bezug auf die zur Zeichenebene senkrechte
Symmetrieaxe des Querschnittes, @A die im Felde wirksame Normalkraft.
In den Stützenquerschnitten sollen die von außen, z. B. von den Füllstäben
eines Fachwerkes aufgebrachten Axialkräfte A (&r angreifen. Diese
Gebrauchsbelastung erzeugt in den Feldstäben die Normalkräfte ©r.

Der Durchlaufstab besitzt bei vorgegebener elastischer Stützung die
Knicksicherheit v, wenn erst die r-fach erhöhte Belastung v A @r A~Sr das
Ausknicken des Stabes bewirkt. Im Felde r eines Druckstabes wirkt dann

die Knickkraft Sr v ©„ sie erzeugt die Knickspannung or -£-; Tr ist der

der Knickspannung ar zugeordnete (Engesser'sehe) Knickmodul. Die elastische
Senkung eines Stützpunktes / wird nach Fig. 3 mit yt bezeichnet, die Tangente
in einem beliebigen Punkte der elastischen Linie des ausgeknickten Stabes
besitze die Neigung \p, im Stützpunkt/-daher die Neigung^. Die Neigung vrL)
der Stabsehne im Felde r wird gelegentlich auch als Verdrehung des
Feldstabes [r] bezeichnet. Die Verdrehung ipr des Stützenstabes

[r] stimmt mit der Neigung \p \pr der Stützpunkttangente überein.

Die Winkel vr und %pr werden auch kurz „Stabverdrehungen"
genannt, a, bezw. ßr ist der Winkel, den die Stabsehne des rten Feldes mit
der Stützpunkttangente der elastischen Linie am linken bezw. rechten Stabende

einschließt. vr und ipr sind im Sinne der Uhrzeigerdrehung positiv zu
rechnen, ebenso an während für ßr der entgegengesetzte Drehsinn
als positiv zählt. Für die in den Gelenkquerschnitten wirkenden Momente
gilt dieselbe Vorzeichenregel, wie für die Winkel a und ß.

III. Die elastische Stützung.
Die elastischen Stützenreaktionen — der Stützenwiderstand Wt und das

in Fig. 4 durch das Kraftpaar Hl gekennzeichnete Einspannungsmoment Tlt —
gehorchen dem Elastizitätsgesetz und sind demnach den sich einstellenden

4) Die Knicksicherheit wurde mit dem Buchstaben v, die Neigung der Stabsehnen
mit dem gleichen, jedoch immer bezeigerten Buchstaben vr bezeichnet. Eine
Verwechslung dieser Größen scheint daher ausgeschlossen.
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0)
K

Deformationen proportional. Daher ist in bezug auf
Fig. 4

SR/=C/i/'/. I

Fig. 4

Man nennt At den spezifischen Stützenwiderstand, Q den
spezifischen Verdrehungswiderstand. Diese Konstantwerte sind die Sonderwerte

von Wi und 9Jf/, welche den Deformationen yt 1 bezw. \p-t 1

entsprechen. Ah Ci — die „Federkonstanten" — bestimmen die „Stärke"
der elastischen Stützung.

Man bezeichnet die dem Widerstand W, 1 zugeordnete Stützensenkung
y-t mit <3|, bezw. die 9K/ 1 entsprechende Stützenverdrehung xpt mit er, <5; ist
die „spezifische Stutzens enkung", et die „spezifische Stützenstab

v e rdr e hu n g". Mit Einführung dieser Größen ergeben sich die
Formeln

yt dt Wi bezw. x\h «/9H/ (2)
und aus (1) folgen die Beziehungen

1 =Aidi

1 Qet

oder A--1-
0;

bezw.

Q
_1_

Ai
J_
Q

(3)

IV. Knickgleichungen, Knickbedingung und
Knickdeterminante.

Der Knickzustand eines Durchlaufstabes, z. B. des in Fig. 3 dargestellten
Stabes, ist dadurch gekennzeichnet, daß neben der geraden Gleichgewichtslage

(Fig. 3 a) noch eine zweite Gleichgewichtslage (Fig. 3 b) existiert, in
der sich die Knickbelastung ASi vA®i9 die Stützenreaktionen Wt und Wt£ am
ausgebogenen Stab das Gleichgewicht halten. Im „Knickzustand" wird sich
diese letztere Gleichgewichtslage auch immer ausbilden, weil das
Gleichgewicht am geraden Stab unsicher ist.

Im folgenden sind nun jene analytischen Bedingungen aufzusuchen, die
erfüllt sein müssen, wenn sich die oben genannten Kräfte am deformierten
Stab das Gleichgewicht halten. Ist dies der Fall, so werden z. B. die
Stützensenkungen yi und ebenso auch die Neigungswinkel vr der Stabsehnen in einem
ganz bestimmten Verhältnis zueinander stehen.

Der Rechnungsgang in dieser Abhandlung führt zu einem System von
Gleichungen zur Berechnung der Neigungswinkel vr. Sind in einem
/z-feldrigen Durchlaufstab z. B. m Feldstäbe enthalten, die an einem Ende
oder auch an beiden Enden federnd quergestützt sind — nur solche Stäbe
können im deformierten Stabzug eine Neigung vr erhalten — so läßt sich,
wie im folgenden gezeigt werden wird, stets eine Gleichungsgruppe von
der Form

flu vi + ai2 v2 + + alm vm — 0
021 Vl + #22 ^2 + + «2fl 0

amiv1 + am2v2 + + an

<4)
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zur Errechnung der dem Knickzustand entsprechenden Neigungswinkel vr
ermitteln.

Diese Gleichungen, die auch als „K n i c k g 1 e i c h u n g e n" bezeichnet
werden, sind hinsichtlich der Unbekannten vr linear und homogen und liefern
bekanntlich nur dann endliche Werte vr, wenn die Koeffizientendeterminante
verschwindet. Da im ausgeknickten Zustand die Stabneigungen vr von Null
verschiedene endliche Werte besitzen, so folgt, daß im Knickzustand die
Bedingung

#11 #12 1 #l/w

#21 #22 j #2/rc

- • •

#/#l #/«2 : &mm

0 (5)

erfüllt sein muß. Diese Bedingung A 0 ist die „Knickbedingung"
des Problems, die Determinante A aus den Beiwerten der Knickgleichungen
wird „Knickdeterminante" genannt.

Will man also ein Ausknicken des Durchlaufstabes herbeiführen, was
in verschiedener Weise geschehen kann — z. B. durch r-fache Erhöhung der
Gebrauchsbelastung oder durch eine /^-fache Verschwächung der vorhandenen
federnden Querstützung usw. — so ist in den Beiwerten arK zunächst die der
verlangten Forderung entsprechende Größe v, p usw. frei zu halten und dann
aus A 0 zu errechnen. Diese aus A 0 fließende Gleichung ist die
einzige Gleichung zur Lösung des Knickproblems.

Für die zahlenmäßige Durchführung der Knickberechnung ist es von
größter Bedeutung, ein Verfahren zu besitzen, das für jeden beliebig
gelagerten Stab in übersichtlicher, immer gleicher und gleich einfachen Art
rasch die Glieder der Knickdeterminante liefert. Ein solches Verfahren soll
nun an dem Sonderfall des in der Fig. 3 dargestellten Stabes entwickelt
und dann verallgemeinert werden.

V. Ermittlung der Knickgleichungen.
Gleichgewichts- und Formänderungsbetrachtungen an dem durch die

Knickbelastung A S deformierten Stab liefern zwei Gruppen von Gleichungen,
die Lagergleichungen und die Kontinuitätsgleichungen,
durch deren Verbindung d i e nach den Neigungswinkeln vr linearen und
homogenen Knickgleichungen gewonnen werden.

Die anzustellenden Untersuchungen werden am statisch bestimmten
Hauptsystem durchgeführt, das unter der Wirkung der Knicklasten Sr und
der statisch unbestimmten Knickmomente Mt dieselbe Beanspruchung und
Deformation erleidet, wie der ausgeknickte statisch unbestimmte Durchlaufstab

unter der alleinigen Belastung Sr.

1.

A. Ermittlung der Lagergleichungen.
Die Lagergleichungen eines Durchlaufstabes, der

nur federnd quergestützte Feldstäbe besitzt. Die
Lagergleichungen eines solchen Durchlaufstabes werden an der Hand der Fig. 5

hergeleitet, die einen aus dem Hauptsystem herausgeschnittenen Stabteil zur
Darstellung bringt. In den Feldgrenzen wurde die von außen aufgebrachte
Differenzbelastung A S durch zwei Einzelkräfte von der Größe der Feld-
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stabkräfte ersetzt, in den Gelenken des Hauptsystems werden die
Knickmomente als äußere Belastung angebracht.

Die in der Figur eingeschriebene Stabbezeichnung und Bezeigerung ist
im speziellen Falle mit arabischen Ziffern vorzunehmen. Die Einführung
einer Beschreibung mit römischen Ziffern ist hier wegen des Fehlens von
Stützenstäben nicht erforderlich.

Für die Stabneigungen vr und die Stützensenkungen yr ergibt sich aus
der Figur die geometrische Beziehung

*-/

r+T
«¦-/ r'1

H', ÄS
Sr+1

r+Z

"r+I

Fig. 5

yr — JV-i Cr ig Vr Cr Vr

Nach Gl. (1) und (3) folgt

(6)

JV ^ dr Wr
Ar

analog

JV-i
Wr-l
Ar-i

<Jr-i Wr-x

daher yr JV-i Cr Vr Ör Wr $r-\ Wr-X (7)

Wie aus der Fig. 5 erkenntlich, wird der Stützenwiderstand (Lagerwiderstand)

Wr nur durch die auf die Feldstäbe [r] und [> +1] wirkenden
Momente und Normalkräfte erzeugt, daher ist

Wr- Mr-x—Mr Mr—M,r+i SrCrtgVr tgVr.

W*+l

Da die Neigungswinkel vr sehr klein sind, so ist sinr, tg vr vn
o,osvr 1. Die Differenz der an einem Feldstab wirkenden Momente wird
weiterhin kurz „Momentendifferenz am Feldstab r" genannt und mit A M[r\
oder (AM), bezeichnet. Mit

(AM)r — Mr-x — Mr= MUnks Mrechts

folgt somit aus obiger Gleichung

(AM)r (AM)r+1

(8)

analog

Wr-

Wr-X

Cr

(JM)r.i
Lr+i

{AM),

-f- Or l'r *-V+l ^V+i

+ Sr-i Vr-l SrVr
(9)

und mit Rücksicht auf (7)

CrVr= ^ (AM)r-i +
Cr-i

(AM)r

+ (dr-i + dr) Sr V,

cr+i

ör Or+i V

(AM)W <?r-i $r-i >V-i

(10)

Für die zahlenmäßige Durchführung der Berechnung ist es zweckmäßig,
mit dimensionslosen Verhältniszahleji zu rechnen. Aus diesem Grunde werden
die in (10) und in allen späteren Gleichungen noch auftretenden Größen mit
gewissen frei zu wählenden Konstantwerten in Vergleich gesetzt.

Daher wählt man einen beliebigen, abgerundeten Vergleichswert c* von
der Größenordnung der Feldlängen cr, ebenso Vergleichswerte S* und 6* von
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der Größenordnung der Stabkräfte Sr bezw. der spezifischen
Stützensenkungen 6r und setzt

ferner

— — d
c* " c" bezw. Cr — CT C r,

dr *,
H 6r Ö* Ö'r,

s* ~ r' y, O/* — O O r y

S*c* ~ " » Mr= S*C*M'r,

li% - <^%. » {AM)r= S*C*(AM')r.

(11)

Hier und auch späterhin soll der an irgend eine Größe beigesetzte
„Strich" daran erinnern, daß durch ihn eine dimensionslose, mit den
Vergleichswerten S*, c*, 6* gebildete Verhältniszahl angedeutet wird. Trotzdem

soll aber auch weiterhin noch, in allerdings nicht ganz richtiger
Ausdrucksweise, kurzerhand von „Momenten M,u, von „Kräften Sni usw.
gesprochen werden. Mit (11) geht nun Gleichung (10) über in

C-c'rVr ($*S* j- J^ (AM)r^ + ÖJ^Il (AM)r - -^ (AM%+1
Cr~\ C r C r+i

— (J'r-i S'r-i Vr-x + (<SV-1 + Ö'r) S'rVr — Ö'rS'r+i »V+l j

und hieraus folgt durch Division mit (c'r d* S*)
1

Cr +
''-1

(AM')r^ - d'~ + Ö'r
(AM')r + 4^ (AM'Ux | + l"-1 -

+

Cr-i * C-

_^ <*V-i + #r
1 Srvr

Cr /

dr

+ ~T $ r+i vr+l

Cr
6 r~i vr-\

o (12)

Gl. (12) ist dem Feldstab [r] der Fig. 5 zugeordnet, auch jedem anderen
Feldstab entspricht eine solche analog gebaute Gleichung. Diese Gleichungen,
deren Zahl mit der Zahl der Stabneigungswinkel vr übereinstimmt, bilden die
„Lag er gl eichungen" oder „Lagerbedingungen" des
Knickproblems.

K
fr-t Sr-f br-cT^rcT-a»*

fr-U
r*~ Cr "' r*

[r]

Fig. 6

frtff

Die Lagergleichungen (12) lassen sich in noch einfacherer und
übersichtlicherer Weise anschreiben, wenn man jedem Feldstab je einen
mit der Ordnungsziffer des Feldstabes bezeigerten a'-, m'- und 6'-Wert
zuordnet. Für den Feldstab \r\ werden diese Werte aus den in (12) erscheinenden

Koeffizienten der A Mf gebildet. Das Bildungsgesetz dieser Werte —
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es wurde in die Fig. 6 eingeschrieben — prägt sich dem Gedächtnis,
unabhängig von der jeweiligen Bezeigerung, leicht ein, wenn man es in folgende
Worte faßt:

Der «'-Wert eines Feldstabes ist gleich dem d'-Wert der linken
Stütze, geteilt durch den c'-Wert des links von der Stütze liegenden
Feldstabes. Der a'-Wert des ersten Feldstabes ist daher immer gleich Null
zu setzen, weil kein zugeordneter c'-Wert existiert.

Der b' -Wert eines Feldstabes ist gleich dem <5'-Wert der rechten
Stütze, geteilt durch den c'-Wert des rechts von der Stütze liegenden
Feldstabes. Der &'-Wert des letzten Feldstabes ist daher immer gleich Null,
weil der zugeordnete c'-Wert nicht existiert.

Der /?z'-Wert eines Feldstabes ist gleich der Summe aus den df~

Werten der das Feld begrenzenden Stützen, geteilt durch den £'-Wert des
Feldes oder, was auf dasselbe hinauskommt, auch gleich der Summe aus
dem &' - W e r t des linken und dem ö'-Wert des rechten
Nachbarfeldes.

Nach dieser letzten Anweisung wird man beim praktischen Rechnen die
m'-Werte ermitteln, denn in erster Linie sind die af- und b'-Werte der Feldstäbe

zu bestimmen, die dann die Ermittlung der m'~Werte in einfacher Weise
ermöglichen.

Die zahlenmäßige Ermittlung der a'-, bf- und m'-Werte ist am besten
nach dem in Fig. 8 dargestellten Schema durchzuführen.

Auf Grund der festgelegten Regeln ergeben sich nun die Formeln

0 links i, O rechts
— Dr— —f j

t- links L rechts

mt "links + 0 rechts h,"* r — > — ° links "T # rechts •

(13)

Setzt man in (12) die aus den Vergleichswerten c*, ö*, S* aufgebaute
dimensionslose Verhältniszahl

C* ^ v, (14)d*S*

so nimmt die dem Stab [r] zugeordnete Lagergleichung (12) mit Rücksicht
auf (13) die folgende endgültige Form an:

— \dr(AM')r_x — m'r(AM')r + b'r(AM\+1] + ^V-i S'r-i Vr_x + (rj — ttlrS'r) Vr
Cr

+ a'r+1 S'r+i Vr+l 0. (15)

2. Die Lagergleichungen eines Durchlaufstabes von
beliebiger Bauart. Die Querstützung kann nunmehr wie bei dem in
Fig. 3 dargestellten Stab teils federnd, teils unverschieblich sein und neben
den Feldstäben soll der Durchlaufstab auch Stützenstäbe besitzen.

Zunächst sei hervorgehoben, daß einem Feldstab, der beiderseits auf
unverschieblichen Stützen aufliegt, keine Lagergleichung zugeordnet
ist, weil für einen solchen Stab wegen ör__1 dr 0 die der Herleitung
zugrunde liegende Gleichung (7) nicht existiert.

In der Fig. 7 des aus Feld- und Stützenstäben bestehenden Durchlaufstabes

wird die arabische Bezifferung durch die in der Figur erscheinenden
„/", die römische Bezifferung hingegen durch die ,/" angedeutet.
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Auch im vorliegenden Fall behalten Gl. (6) und (7) ihre formale Gültigkeit,
wenn die hierin auftretenden Zeiger auf die „römische Bezifferung"

bezogen werden. Für den Stützenwiderstand Wr erhält man aus Fig. 7

i+Zi-l M
Cr+t

fr

Wr„

r+j

r+1

"r+t

Wr
Mi_x - Mi Mtm Mi+2

T" ^f ^r £>r

In Analogie zu (8) sind die hier auftretenden
Momentendifferenzen mit

AMr MUl — Mi
AMr+1 Mi+1 — Mi+2

zu bezeichnen, womit obige Gleichung formal
in die zu (9) vollkommen analoge Form

Fig. 7 Wr-
AMr AMr

+ SrVr
<"r+i

->r+\ rr+i (16)

übergeht. Bildet man aus (16) Wr_ly indem man hierin r durch r — 1

ersetzt und nun W/._1 und Wr in Gleichung (7) einführt, so erhält man die
dem Stab [r] zugeordnete Lagergleichung, die formal mit (15) vollkommen
übereinstimmt. Hieraus folgt, daß die Lagergleichung (15) auch für
beliebig konstruierte Durchlaufstäbe ihre Gültigkeit beibehält, wenn man
die hierin auftretenden „Zeiger r" auf die römische Bezifferung der
Feldstäbe des Durchlaufstabes bezieht.

Aus (13) gewinnt man die in Fig. 7 dem Feldstab [r] zugeordneten
Werte

C i-2

m r
Ö'r-l + d'r

b\
U-i + d'i+i

c'i

d'n
¦ 1+2 (17)

während die in (15) auftretenden Differenzen AM' durch die Ausdrücke

AM'r-x M't_s
AM'r Af/_i
AM'r+i M'i+1

M'i_2
¦M't
M

(18)

1+2

gegeben sind.

Anmerkung. Die Lagergleichungen (15) bleiben auch formal
unverändert, wenn der eine oder der andere von den elastisch gestützten
Feldstäben nicht, wie vorausgesetzt, auf Druck, sondern auf Zug beansprucht
wird. Die in (15) auftretenden Zugkräfte 5 sind dann mit
entgegengesetzten Vorzeichen zu versehen. Wird ein im Stabverband liegender
elastisch gestützter Feldstab [r] durch keine Normalkraft beansprucht, so
ist in den Lagergleichungen der ihm zugeordnete Wert 5^ 0 zu setzen.

3. Die Lagergleichungen des in Fig. 3 dargestellten
Stabes. Nach den in 1. und 2. gegebenen Anweisungen lassen sich die
Lagergleichungen für den allgemeinsten Fall beliebiger Stützenkombination
unmittelbar ohne Herleitung in der stets gleichen Form der Gleichung (15)
für jeden Feldstab, der an einem Ende oder an beiden Enden federnd
quergestützt ist, anschreiben. Die Fig. 8 zeigt das Schema zur Ermittlung der
a'-, b'- und m'-Werte des in Fig. 3 dargestellten Stabes.
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\
CU

\A^->*->/\»

Fig. 8 [1]
ö' -A

[2]
&¦¦¦

\

°8- A*

/i7 £Z?

/¥
<?:---

[5] [6] ¥- DF7

cs- C6-

C7J

c;...

d' -2*. <*'« o <5'« 0 d'7
*7
(5*

a, nach (17) ö/ =0 6'3
an ;- C 4

— a'jy 0

///^ „ „
d\ + d's

c.
<J'4 + 0

C5
—

0 + 6\
C 7

h' *'»
bn =-j-c5

*Az o — *Ä. 0

1

Der Anweisung zur Bildung von (13) entsprechend, wurde der a'-Wert
des ersten und der 6'-Wert des letzten Feldstabes gleich Null gesetzt.

Mit den obigen Tabellenwerten erhält man in Analogie zu (15) die
folgende Gruppe von Lagergleichungen:

- trii AM1! + b'/AM'n] + 0 + \r\-trii S'i ] vr +an S'// vn 0

[an AM/ - trinAM'n + b'j/AM'm] + b7 S'/ vf + \y]-iriu S'u\vu +a IH S'In vm 0
cu

-/— {dniAM'u- triIIIAM'III+
c m

-t—[ 0 -triivAMV+

0 ] + b'nS' iivn+ [rj-triniS'm] vm+ 0 =0

0 ]+ 0 + [r]-m'IVS'Iv]viv+ 0 0

Wie schon früher bemerkt, müssen in den Lagergleichungen — falls,
wie hier, die Stabkonstruktion eine Bezeichnung mit römischen Ziffern
verlangt — sämtliche Bezeigerungen mit römischen Ziffern vorgenommen werden,

weil nur durch diese Bezeichnung die herrschende Gesetzmäßigkeit zu
Tage tritt. In den zur Ermittlung der a'-, b'- und m'-Werte dienenden Formeln
(17) können die hiezu benötigten d'- und c'-Werte auch ihre arabische Be-
zeigerung beibehalten.

Die weitere Aufgabe besteht nun darin, die Momentendifferenzen AMfr
als Funktion der Neigungswinkel vr zu errechnen und in die Lagergleichungen
(19) einzuführen, wodurch diese Gleichungen in die Gruppe der homogenen
Knickgleichungen übergeführt werden.

B. Ermittlung der Kontinuitätsgleichungen.
Die Momente M'r als Funktion der Neigungswinkel vr errechnen sich

aus den Kontinuitätsgleichungen, die zum Ausdruck bringen, daß im
ausgeknickten Stab die elastische Linie des statisch bestimmten Hauptsystems
unter der Wirkung der Belastung M und 5 einen „kontinuierlich stetigen"
Verlauf besitzt. In den Gelenkpunkten / darf daher kein Knick auftreten,
weshalb die im Hauptsystem durch sämtliche Ursachen erzeugte gegenseitige

(19)
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Verdrehung A cpt der in i zusammengeschlossenen Stabquerschnitte gleich
Null sein muß. Diese aus der Bedingung Acpt> 0 entspringenden
Gleichungen sind die Kontinuitätsgleichungen des Problems.

Denkt man sich die federnde Quer Stützung des Knickstabes u n-
verschieblich festgelegt — die elastische Einspannung von eventuell

vorhandenen Stützenstäben bleibt unverändert erhalten — so soll dieser
auf nunmehr starren Querstützen ruhende Durchlaufstab als „Ersatz st ab"
bezeichnet werden, weil er den gegebenen Knickstab für die folgende
Betrachtung zu ersetzen vermag. Schaltet man an den Enden seiner Feldstäbe
Gelenke ein, so erhält man ein statisch bestimmtes Hauptsystem, das mit
jenem des Knickstabes bis auf die verschiedene Art der Querstützung
vollkommen übereinstimmt.

Erteilt man dem Ersatzstab derartige Stützensenkungen, daß diese mit
den Stützensenkungen des ausgeknickten Stabes übereinstimmen, so besitzen
beide Stäbe in allen Feldern gleiche Stabneigungen vr, gleiche Deformation
und daher auch gleich große Beanspruchungen. In diesem Falle stimmen
also die Knickmomente Mi im Knickstab mit den Momenten in den
Gelenkquerschnitten des Ersatzstabes überein. Diese durch die Stützenverschiebungen

des Ersatzstabes erzeugten Momente Mi werden nun aus der auf
sein Hauptsystem anzuwendenden Bedingung Aqpi 0 errechnet.

Ist Aqpi0 die durch Stützensenkung und Stützenstabverdrehung erzeugte
gegenseitige Verdrehung der Querschnitte im Gelenk /des Hauptsystems,
AcpitMS die gegenseitige Verdrehung dieser Querschnitte infolge der
Belastung MS, so folgt aus Acpi =¦- Aq>itMS + Aq>iQ 0 die Kontinuitätsbedingung

in der Form

Aq)ifMS= — Acpi0. (20)

1. Die gegenseitige Verdrehung A<pi0 im Hauptsystem
des Ersatzstabes. Wird nach Fig. 9 ein Feld- oder Stützenstab im
Sinne der Uhr um (-\-v) bezw. (-\-yj) verdreht, so drehen sich auch die
„Gelenkquerschnitte" dieser Stäbe im gleichen Sinn und um denselben Winkel.
Die Vorzeichen dieser Querschnittsverdrehungen sind nach der bereits im
Abschnitt II für die Drehwinkel a und ß festgesetzten Vorzeichenregel zu
beurteilen. Demnach ist die Verdrehung der Gelenkquerschnitte an den
linken Stabenden positiv, an den rechten Stabenden hingegen
negativ.

Auf Grund dieser Feststellung errechnet sich die gegenseitige
Verdrehung AcpiQ der im Gelenk / der Fig. 9 zusammengeschlossenen
Gelenkquerschnitte aus den folgenden Gleichungen

Fig. 9 a) A<pi0 — vi+vi+l |

„ 9 b) Aq>i0 — vi+i!'i+1 (21)

„ 9 c) A<pi0 — i/v + vi+l
J

Hieraus folgt mit Rücksicht auf (20) die
Form

/-/

/-/
i+t

M
litt]c) hl

V/H

64 M Fig. 9

Fig. 9 a) — A<pi0 n — vi+l

„ 9 b) — A<pi0 vi— i/v+i

„ 9 c) —A<pi0 xl'i — vi+1

(22)

d. h. die auf der rechten Seite der Kontinuitätsgleichung (20) stehende
gegenseitige Verdrehung (—A(pi0) zweier Gelenkquerschnitte, infolge der Ver-
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drehung von Feld- und Stützenstäben, ist gleich der Differenz der von links
nach rechts aufeinander folgenden „Stabverdrehungen" der beiden im
Gelenk / zusammengeschlossenen Stäbe.

Infolge alleiniger Stützensenkung erleiden im Hauptsystem

des Ersatzstabes, wie in Fig. 10 dargestellt, nur die Feldstäbe,
nicht aber die Stützenstäbe, Verdrehungen.

Die hiedurch erzeugten gegenseitigen
Verdrehungen A <p/o errechnen sich daher
aus den Gleichungen

/-; i+l i+Z i+3

-*hi

v,+3

6+2] ü+i

Fig 10

— d<Pi, o =Vi — »i+l i

— ^/+1,0 vi+\ — °>

— d<Pi+2t0= 0 — Vi+3.

(23)

2. Die gegenseitige Verdrehung zl92/, MS im Hauptsystem
des Ersatzstabes. Wie schon erwähnt, werden diese gegenseitigen
Verdrehungen durch die auf das Hauptsystem gleichzeitig einwirkende Belastung
MS erzeugt. Es ist gleichgültig, ob man, wie in Fig. 10, zuerst die
Stützenverschiebung durchführt und nachher die Belastung MS aufbringt oder
umgekehrt zuerst diese Belastung wirken läßt und nachträglich die
Stützenverschiebung vornimmt. Die Belastung MS deformiert einerseits die Feldstäbe

(Fig. 11—13) und bewirkt anderseits eine Verdrehung der starren
Stützenstäbe (Fig. 14). Die hiedurch erzeugten Verdrehungen der
Gelenkquerschnitte sollen im folgenden berechnet werden.

a) Verdrehung der Gelenkquerschnitte eines
Feldstabes infolge seiner Deformation durch di e Belastung
MS. Die Abmessungen des Feldstabes, seine Feldlänge cr, die Querschnittsfläche

Fr und das Trägheitsmoment Jr sind gegeben. In den Gelenkquerschnitten,

die mit den Endquerschnitten des Stabes zusammenfallen, wirken
die Momente Mr__1 bezw. Mr und die Normalkräfte Sr. Die in den Fig. 11—13
dargestellten Verdrehungswinkel ar und ßr der Endquerschnitte sind zu
ermitteln. Diese Verdrehungen sind unabhängig von der Neigung vr der
Stabsehne, wenn vr klein, d.h. siniv ^tg vr ^vn cos*v 1 gesetzt werden

darf, sie besitzen aber verschiedene Werte, je nachdem Sr eine Druckoder

Zugkraft oder Sr 0 ist. In all diesen drei Fällen lassen sich die
Verdrehungswinkel ar und ßr aus den formal gleichen Formeln

ar — M'r-i T r+ M r O'n

ßr= M'r-iO'r-\~ MrT r
(24)

bestimmen, wenn hierin für o'r und %'r die durch die Gleichungen (28) bezw.
(29) oder (33) bestimmten Werte eingeführt werden.

Sonderfall 1. Die Normalkraft Sr ist eine Druckkraft.
Die Integration der Differentialgleichung der elastischen Linie, die hier
unterbleiben möge, führt zur Berechnung der in Fig. 11 dargestellten Winkel
an ßr, die aus den Formeln

ßr'-

A*r-1

ör Cr

Mr-l
O/» Cr

tr +

Sr +

Mr
OrCr

Mr
Or Cr

tr,
(25)

gewonnen werden, wobei
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<Pr

sin cpr

tr= 1

-1,

tg<Pr

und

Fig. 11 ¦>-m

(26)

(27)

In (27) ist Tr durch den Modul E zu ersetzen, falls Gr<oProp ist.

Die Bezeichnungen sr, tr sollen an die Funktion sin und tg erinnern.
Die Gleichungen (25) werden nun mit Hilfe der bereits in (11) eingeführten
Vergleichswerte 3* und c* umgeformt in

tr Mr Sr

S*C* SLCL~T~ S*C* S^ Cr_y

5* C* S* C*

Mr^x Sr Mr tr
S*C* S^ C^

+
S* C*

C* Sr^ Cr_

S* C*

Nach (11) ist

M'r_x,
S*c*

womit aus obigen Gleichungen

Mr — M' — — S' —S*c*~ " S* ~ " c*

"r-t

ar^M'r.x^r + M'r-^y-,
o r *s r <j r *^ r

ßr=M,r-i-J£?- + M'r-Jh
O r C r O r C r

folgt. Setzt man hierin

ö r —

Fig. 12

o rC r

o r C r

(28)

so erhält man die in (24) angegebene Form zur Ermittlung von ar und ßr.

Sonderfall 2. Die Normalkraft Sr ist eine Zugkraft. Die
in Fig. 12 dargestellten Verdrehungswinkel ar und ßr sind ebenfalls mit
Gl. (24) zu errechnen, doch ist nunmehr

S'rCr\ &in <prJ S'rCr

} <Pr A trf
S'r Cr ^8 (fr ' S'r C r

(29)
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wobei (fr
<S\Xl (pr

(fr
%Q<pr

1 tr
(30)

gesetzt wurde.
cpr ist wieder nach (27) zu bestimmen, während ©in und %§ die

hyperbolischen Funktionen andeuten.

Sonderfall 3. Die Normalkraft 5, 0. In diesem Falle ist
cp, 0; hiemit erhält man aus (25) oder in direkter Rechnung aus Fig. 13

Mr.r-1
-Jtr

Mtr-A Cr Mr Cr

Fig. 13
ßr

3EJr
Mr-xCr
ÖEJr +

ÖEJr
MrCr
^EJr

(30)

Um die Form der Gl. (24) herzustellen, bildet man mit den Vergleichswerten

S*c* einen zu (27) analogen Wert

SP'
/S* c*2

~Ejr~

eliminiert hiemit EJr aus (30) und erhält

=\

Mr
C r(p* + M CrV*

6

ßr M'r-x
C r<P + M Cr<p*

6 ' "Mr 3

in formaler Übereinstimmung mit (24), wenn in (32)

Cr<P* und Cr<P*
O >

(31)

(32)

(33)3 — "r 6

gesetzt wird.
b) Verdrehung der Gelenkquerschnitte eines Stützenstabes

[r] infolge s e i n e r Ve r dr e h u n g durch die Belastung
MS. Die Verdrehung %pr des in Fig. 14 dargestellten Stützenstabes wird
einzig und allein durch die beiden Momente Mr^± und Mr erzeugt. Beide
Momente drehen im positiven Sinn, daher ist nach Gl. (2)

l/V Mr-t er —MrSr= ^kE^ S* * E' Wr-i ~ M'r) *r (34)S*c*

r t

&sr
Sr-

r+f
<?r+f

wobei
e r S*C* Er (35)

gesetzt wurde. Die Verdrehung des links liegenden
Gelenkquerschnittes r—1 ist durch

Fig. 14
<Pr-i + VV {M'r-i — M'r) Br

jene des rechts liegenden Gelenkquerschnittes r durch

(fr t/V — (M'r-i — Mr) S'r

gegeben.

Abhandlungen VI

(36)

(37)
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c) Die gegenseitige Verdrehung Aq>lfMS der zweistäbi-
gen Systeme und ihre Kontinuitätsbedingung. Die gegenseitige

Verdrehung Acpt A(pi>MS + AcpiQ der Gelenkquerschnitte in einem
Gelenk / des Hauptsystems wird, wie leicht zu erkennen, nur von der auf die
Stäbe [/] und \l-\- 1] wirkenden Belastung M,S und von den Neigungen vt
und vi+1 dieser Stäbe erzeugt. Solche zwei in einem Gelenk /
zusammengeschlossene Stäbe [/] und [/-f- 1 ] bilden ein sogenanntes „zweistäbiges
System", das sich nach Fig. 15 entweder aus zwei Feldstäben oder aus
je einem Feld- und Stützenstab zusammensetzt. Die Kontinuitätsbedingung
Acpi 0 in der Form AcpitMS —Aq?i0 liefert für das Gelenk i r der
Fig. 15, die folgenden, mit Hilfe von (24) und (23) zu bildenden
Kontinuitätsgleichungen:

*#

"r-, «k
®. f r+1

r+1 ' 'r+1

0
[r] 3.r+1 i-rr+1sr ,:

r+l)

C+1 r+1 M*J
Fig. 15

Fig. 15 a)

„ 15b)

„ 15 c)

+ M'r-x G r+ Mr {r r+ V r+1) + M'r+1 6 r+x ~ 4<fr

- M'r-x e'r + M'r (s r + ^r+x + M.\r+x « r+x J(fr{ *>+l (38)
+ M'r-xdr+M!r(v r\£ r )-Mr+x^r+x ~ ^<Pro vr~0

3. Die Fortleitungszahlen a und b der zweistäbigen
Systeme. Die Klammerausdrücke in obigen Gleichungen geben die gegenseitige

Verdrehung x'r im Gelenk / r infolge M'r + 1 an. Schließt das
Gelenk / zwei Feldstäbe zusammen, so ist der ^'/-Wert die Summe aus den
%'-Werten der zusammengeschlossenen Stäbe. Verbindet das Gelenk / aber
einen Feld- und Stützenstab, so ist der ///-Wert die Summe aus dem r'-Wert
des Feldstabes und dem e'-Wert des Stützenstabes. Nach dieser Definition
erhält man z. B. für

Fig. 15 a) "// T unks i + * rechts i I

„ 15 b) %'/ £ links i + * rechts i j (39)

„ IOC) Z / T links i ~T~ € rechts i
Jedem Gelenk / ist ein solcher nach (39) zu bildender ^',-Wert

zugeordnet und ebenso ein £'rWert, der durch

*'/=-i- (40)

gegeben ist. x't und sein Reziprokwert k't sind stets Absolutwerte.
Mit (39) und (40) geht die Gleichungsgruppe (38) über in

Fig. 15 a) + Af'r_i U + M'r + M'm ^£1 — 4- J<pn - k'r J<pr0

15 b) - M'r-! U + M'r + M'r+1 ^Z r Z r

1

15C) + M'r-i ^ + M'r
Z r

M e
r+1

r+1

Jq?ro — — k'r-J<Pn

J(pr0 — k'r J<Pr

(41)
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Der ;*'-Wert, der einem links- bezw. rechtsseitigen Gelenk eines Feld-
bezw. Stützenstabes zugeordnet ist, soll nunmehr kurz mit „Kflblksu bezw.
mit „^rechts" bezeichnet werden. Mit Vorteil wird nun jedem Feld- und
jedem Stützenstab [r] ein a- bezw. Z?-Wert zugeordnet, der durch die
Gleichungen

Feldstab ar=—f-1—, br —
*- links A rechts

(42)
Stützenstab ar r br -'A links ^ rechts

gegeben ist.
Mit (42) lassen sich die Kontinuitätsgleichungen (41) auch in der

folgenden Form anschreiben:

Fig. 15 a) M'r — — brM r-x — ctr+x M'r+x ~ k'r4<Pro I

„ 15 b) M'r + brMr-x ~ «r+1 M'r+1 — H\ 4(pr0 / (43)

„ 15C) M'r — brMr-x + Ö/-+1 M!r+x *V <J<Pro I

Aus (43) erkennt man nun die statische Bedeutung der a-, b- und &'-
Werte.

Leitet man am linken Stabende eines zweistäbigen Systems [r—1] [r]
ein Moment M'r—x ein, so wird es gewissermaßen nach rechts hin über
den Stab \r\ „fortgeleitet" und kommt am anderen rechten Stabende
in der Größe (— brMfr__t) zur Wirkung, wenn die Fortleitung über einen
Feld stab erfolgte, hingegen in der Größe (+&/.yW'r_1) im Falle der
Fortleitung über einen Stützenstab.

Wird hingegen am rechten Ende dieses zweistäbigen Systems ein
Moment M'r+i eingeleitet, so wird es nach links hin über den Stab [r-\- 1]
fortgeleitet und kommt am linken Ende eines Feldstabes in der
Größe (—ar+1M,r+1), am linken Ende eines Stützenstabes in
der Größe (-\-ar+1M'r+1) zur Wirkung.

Die für die Fortleitung charakteristischen, durch die Formeln (42)
bestimmten Zahlenwerte a und b, sollen daher als „Fortleitungszahlen
der zweistäbigen Systeme" bezeichnet werden.

Für M'r^t 0, M'r+1 0 und Aq>,0 — 1 folgt aus (43) der Wert
M^ -{-k'r als Sonderwert des Momentes M'r infolge der gegenseitigen,
durch alleinige StützenVerschiebung erzeugten Verdrehung Aq?r0 — 1.

4. Die Kontinuitätsgleichungen des in Figur 3
dargestellten Stabes. Wie schon erwähnt, ist die einem Gelenk / des
Hauptsystems zugeordnete Kontinuitätsbedingung mit der Kontinuitätsgleichung

des in / zusammengeschlossenen zweistäbigen Systems identisch.
Errechnet man daher für den in Fig. 3 dargestellten Stab mit Hilfe von (40)
sämtliche kfrWerte, mit (42) die Fortleitungszahlen ar und br, so kann man
die durch (43) bestimmten Kontinuitätsgleichungen unmittelbar in der
folgenden Form anschreiben:

M\ — a2 M\ — k\Acpxo,
M'2 — b2 M\ + #3 M\ — k\ A(p20,

MH + bs M\ — a±M\ -- k\ Acp30, 1 ^^M\ — b± M\ — abM\ — k 4 A(p40,

M'b — b6 M\ — ß6 MQ — kb Acp50,

M'q — b6 M\ — k\ Afpl]0, j
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wobei die Belastungsglieder Aq>i0 nach (21) durch

^10 vi — 0 A<p±0 — vm — vu
Acp20 0 — vi A(p50 0 — vm | (45)
^sü vn — 0 A(p60 — vIV — 0

gegeben sind.

C. Die Berechnung der Knickmomente M'i.
1. Die Knickmomente M'i als Funktion der Belastungsglieder

Aqpl0. Aus den linearen Gleichungen (44) ergeben sich die
unbekannten Momente M'i als Funktion der „Belastungsglieder Aq>i0" in der
Form

M\ l\x A<p1Q + l'x2 Aip20 + *'l3 A<p30 + *'l4 ^40 + *'l 5 A<pb0 + ^'l6 ^60
M 2 A 21 » +^22 » + ^ 2 3 v + * 24 » ~*~ ^ 2 5 » + ^ 26 »

^ 3 * 31 » + ^ 32 » + ^ 33 » + * 34 » + * 35 » + ^ 36 »
(46)

Die Gleichungen (44), (46) gelten sowohl für den elastisch gestützten
ausgeknickten Durchlaufstab, als auch für den ihm zugeordneten und der
weiteren Betrachtung zugrunde gelegten, durch Stützensenkung deformierten
Ersatzstab.

Aus dem linearen Aufbau von (44), (46) folgt die Gültigkeit des
Superpositionsgesetzes zur Ermittlung der Momente M\ aus den
„Teilbelastungen Aqpi0". Unter einer „Teilbelastung Aq>i0" versteht man eine auf
die Stützen des Ersatzstabes derartig ausgeübte Kraftwirkung, daß infolge
der hiedurch erzeugten Stützenverschiebungen nur ein einziges Belastungsglied

A(pi0 #= 0 ist, wie z.B. Acp^ in Fig. 16, hingegen alle übrigen Aq>l0
den Wert Null besitzen.

Im folgenden werden zunächst die Sonderwerte der Momente M'i
infolge der einzelnen Teilbelastungen ermittelt und dann durch Superposition
die Momente M'i infolge „Totalbelastung" bestimmt.

jS nfT

'*0 +1

(-)

(-)

Fig. 16

Einfluß zahlen l' und Fortleitungszahlen prqr. Die in (46)
erscheinenden X'-Werte sind die mit Vorzeichen behafteten Einflußzahlen der
Belastungsglieder Aq>i0. Ihre Absolutwerte \A'\ sollen in Hinkunft durch die
Bezeichnung 1', also durch Weglassung des Querstriches, gekennzeichnet
werden. Die in einer Vertikalkolonne von (46) stehenden Einflußzahlen,
z. B. >1'14, 2'24 sind Sonderwerte der Momente M'i infolge der
„Teilbelastung A<pi4: +1", die der in Fig. 16 dargestellten Stützenverschiebung
entspricht. Die dieser „Teilbelastung" zugeordneten Kontinuitätsgleichungen
erhält man aus (44), indem man hierin Acp^ + 1 und alle übrigen Aq?i0 0
setzt. Hieraus werden unter Beibehaltung eines zunächst beliebigen
Verdrehungswinkels A(p^0, durch Elimination von oben bezw. von unten die
folgenden zwei Gleichungsgruppen gewonnen:
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M\ — Pz M'2 p2 — a2

M'2 + p3 M\ p3

M'3 — p± M't

PöM\ — pb Mb — '-$- k\ A(pA0
ab

Pb

1 — b2p2

«4

l—^3^3
«5

1 — bA p4
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(47)

M'e

Mb

q*M:b

q$M\

bR

<74 M\ — p- *'4 zf^o

<7ö

?4

bR

l — a6q6

b,
1 «5^5

(48)

M\ aus (47) in die letzte Gleichung (48) eingesetzt, liefert

?4 *\^4 1-/^4^4 #4
zd9940 I'44 zl9940

und jW'5 aus (48) in die letzte Gleichung (47) gibt
Pb k\M4 1- -PbQb üb

A<p40 ^44 A<p,40

(49)

(50)

Die Gleichung (49) oder (50) bestimmt das der Teilbelastung Acp^
zugeordnete Moment M\ im Gelenkquerschnitt / 4. Mit Kenntnis dieses
Momentes gewinnt man aus (47) die Momente M' in den links von / 4

liegenden Gelenkquerschnitten des Ersatzstabes mit Hilfe der „Fort-
leitungszahlen /?", hingegen aus (48) die Momente M' in den
Gelenkquerschnitten rechts von / 4 mit Hilfe der „Fortleitungszahlen qu.

Diese Fortleitungszahlen p und q, deren allgemeines Bildungsgesetz aus
(47), (48) zu erkennen ist, sind den einzelnen Feld- und Stützenstäben

zugeordnet, ihre Absolutwerte errechnen sich mit Hilfe der
bereits nach (42) bekannten Fortleitungszahlen ar, br der zweistäbigen
Systeme aus den durch Verallgemeinerung von (47) und (48) gefundenen
Formeln

P

qr —

1 br^x Pr-x

1 ar+1 qr+i

r— l, 2 • • • n

r—n, n-x • • • 2, 1

(51)

(52)

Die Zeiger r in (51) und (52) beziehen sich auf die arabische Bezifferung

der Feld- und Stützenstäbe des durchlaufenden Stabverbandes. Da, wie
seinerzeit erwähnt, der erste Stab im Stabverband, gleichgültig ob Feld- oder
Stützenstab, stets den Wert a± 0, der letzte Stab des Verbandes immer den
Wert bn 0 besitzt, so folgt auch aus (51) bezw. (52), daß stets p± 0
und qn 0 ist.

Der linke Randstab eines durchlaufenden Stabes besitzt daher
keinen /?-Wert, der rechte Randstab hingegen keinen ^-Wert,
während jedem inneren Stab je ein p- und ^-Wert zugeordnet ist.
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Die Berechnung der Fortleitungszahlen pr qr läßt sich zweckmäßig nach
dem im Zahlenbeispiel IX verwendeten Schema durchführen.

Aus (47) und (48) erkennt man ferner, daß die Momente M' an den
Enden eines Feldstabes stets entgegengesetzte Vorzeichen
besitzen, die beiden Momente M' zu beiden Seiten eines Stützenstabes
hingegen stets gleiche Vorzeichen aufweisen. Wie beim zweistäbigen
System, so ist auch hier die Momentenfortleitung über einen
Feldstab stets mit Z e i ch e n w e ch s e 1, die Fortleitung über
einen Stützenstab hingegen stets mit Zeichenfolge
verbunden. Dieses hier für die Teilbelastung (-f- A <p40) hergeleitete Gesetz
der Momentenfortpflanzung im Ersatzstab, das sinngemäß auch in jedem
anderen Falle von Teilbelastung Gültigkeit besitzt, soll weiterhin kurz als
„Fortleitungsregel" bezeichnet werden.

Aus (49), (50) ergibt sich infolge der Belastung (-r- Aqp±0) ein negatives
Moment M\, das in den oberen Fasern des Gelenkquerschnittes / 4

Zug erzeugt, was auch unmittelbar in Fig. 16 aus der Form der Abknickung
zu erkennen ist. Die nach der Fortleitungsregel bestimmten Vorzeichen der
übrigen Momente M' wurden in die Fig. 16 eingeschrieben.

Mit Acp±0 +1 werden die Momente M' in (47) — (50) identisch mit
den Einflußzahlen l'iJL. Aus (49) erhält man zur Bestimmung des Absolutwertes

k'ti die Formelii
l\ q±

aus (50) die Formel
1 — P4 94

Pb

b,

k\
1- PbQb ab

(53)

(54)

während alle übrigen Einflußzahlen l'i± mittelst der Fortleitungsregel zu
bestimmen sind und zwar für / < 4 mit Hilfe der Fortleitungszahlen .p, für
/ > 4 mit Hilfe der Fortleitungszahlen q.

Aus (53), (54) ergeben sich durch Verallgemeinerung die Formeln zur
Bestimmung der Einflußzahlen l'n in der von links nach rechts fallenden
„Hauptdiagonale" von (46) und zwar

aus (53)

aus (54)

Ä U
qr k^

1 PrCjr br

h ii — 1

Pr+l
' Pr+l qr+x

ÄL

(55)

(56)

Die Zeiger r beziehen sich auf die arabische Bezifferung der Feldstäbe,
die Zeiger / auf die arabische Bezifferung der Gelenkquerschnitte.

X'a als Sonderwert des Momentes M'i infolge der Belastung A(piQ -{-1
ist stets negativ.

Da der erste Gelenkquerschnitt mit „1", der letzte Gelenkquerschnitt
immer mit „n — 1" beziffert ist, so sind die Einflußzahlen l'ü für / 1 bis
i n — 1 zu ermitteln.

Für die erste und letzte Einflußzahl l'u ergeben sich besonders einfache
Formeln und zwar

wegen pt 0 aus (55) l'11==?±
bx

k\ (57)
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wegen qn 0 aus (56) l'n-i,n-i PjL k'n-x. (58)
dn

Sind die Randstäbe des Stabzuges aber unverdrehbar gelagerte,
also fest eingespannte Stützenstäbe, so besitzen die ihnen
zugeordneten a b- und p <7-Fortleitungszahlen den Wert Null. Die Gleichungen

(57), (58) nehmen dann die unbestimmte Form — an, weshalb in solchen

Fällen X'1± aus (56) und X'n_1>n_1 aus (55) zu errechnen ist.
Schließlich läßt sich noch eine wichtige Beziehung herleiten, durch

welche die AVEinflußzahlen miteinander verknüpft sind. Nach der
Fortleitungsregel gelten für die Absolutwerte X'u_1 und X'i__lti die Beziehungen

l* i, i-x — qr Ä /_i, i-x \ r i bzw. A /_Xj / pr X # | r /

und da nach Maxwell a,/,,_1 X'i_1>h so folgt

X ii — X /-i, i~i \ r=i =z Llr X i-i,i-i \ r—i w")
Pr

oder hieraus durch Umkehrung und Erhöhung des Zeigers / auf / + 1

A/7 — A/+i,/+i I r=H-i- (^U)

Errechnet man nun nach (57) die erste Einflußzahl X'lx oder die letzte
Einflußzahl X'n_1>n_1 aus (58), so kann man die übrigen X'irWerte nach
(59) oder (60) in einfacherer Weise erhalten, als durch direkte Berechnung
nach den Gleichungen (55), (56), die zu Kontrollrechnungen verwendet,
immerhin gute Dienste tun.

Die in (46) oberhalb der Hauptdiagonale stehenden Einflußzahlen sind
nach der Fortleitungsregel mit Hilfe der /7-Zahlen aus den Einflußzahlen
l'd zu ermitteln. In analoger Weise gewinnt man die in (46) unterhalb der
Hauptdiagonale stehenden Einflußzahlen aus den l'ü mit Hilfe der
Fortleitungszahlen q.

Mit Kenntnis der Einflußzahlen X' sind nunmehr auch die in (46) durch
Totalbelastung erzeugten Knickmomente M'i bekannte Funktionen der
Belastungsglieder A qpi0.

2. Die Knickmomente M'i als Funktion der Neigungswinkel
vr. Die Gleichungen (46) liefern auch die Knickmomente M'i des

in Fig. 3 dargestellten Durchlaufstabes als Funktion der Neigungswinkel vn
wenn man hierin die Belastungsglieder A cpiQ mit Hilfe von (45) als Funktion
der Stabneigungen vr ausdrückt. Die Gleichungsgruppe (46) geht dann
über in

Mx Ä\ Vf 4- B\ vn + C\ vm + D'x vIV\
M 2 A 2 „ -f Z?

2 » + ^ 2 » + D 2 » /*z h v

M\ Ä'z „ + B\ „ + C's „ + D\ l K }

Diese in (61) auftretenden Beiwerte Ä', B', C und D' sind Sonderwerte
der Momente M'i, falls der Durchlaufstab bezw. sein Ersatzstab
Stützensenkungen nach Fig. 17a — d, die das Hauptsystem dieses Stabes darstellt,
erleidet



160 K. Kriso

4C-
TO I

v -+1 t-*
2A' [MJU fJOr&

Azl+A +2A 1A' «Ä7 -A -ZA

£-*füV W; %--*+IBt -+f

fWfW [67

r?w-+i'<> \i, ca iLL
IC, HCl *r~-

[6J FW
-C's "BZ+c- +Z£cej

**,-+*nofXJ
V kk 2\3 CG

~*s +£DL -*D* +d* +idl -i>r<?mz
W

JT

Fig. 17

In allen diesen Fällen erhält immer nur ein Feldstab die „Neigung
vr +1", während alle übrigen Feldstäbe die „Neigung v 0" aufweisen.
Kraftwirkungen auf die Stützen, die eine derartige Verformung erzeugen,
sollen als „Teilbelastung oder kurz als Belastung vr 4- 1" bezeichnet
werden. So z. B. sind die Beiwerte A\ die Sonderwerte der Momente
M'i infolge der „Belastung vf + 1", die die in Fig. 17 a dargestellte
Stützensenkung bewirkt. Diese Momente werden im folgenden kurz als
„^'-Momente" bezeichnet. In Analogie hiezu sind die ,,B'- bezw. C'- und
Z^-Momente" die Sonderwerte der in den Gelenkquerschnitten des Ersatzstabes

wirkenden Momente M't, infolge der durch die Belastung vII -jr 1

bezw. vm + 1 oder v/v + 1 erzeugten Stützensenkung nach Fig. 17b—d.
Die Bezeichnung dieser Sondermomente mit den Buchstaben A, B, C
des Alphabetes steht im Einklang mit der Bezifferung /, //, /// jener
Stäbe, durch deren Verdrehung diese Momente erzeugt werden. Da nach
Fig. 3 der Feldstab [6] an beiden Seiten auf starren Stützen ruht, so
erleidet die Stabsehne auch im Knickzustand keinerlei Verdrehung, weshalb
der Neigungswinkel v6 wegen v6 0 weder in den Belastungsgliedern (45)
noch in den Gleichungen (61) erscheint.

Die einer Belastung vr + 1 zugehörigen Belastungsglieder A cplQ sind,
mit Ausnahme von jenen zwei, die den Gelenkquerschnitten r — 1 und r an
den Enden des geneigten Feldstabes [r] zugeordnet sind, gleich Null. So
z.B. sind die von Null verschiedenen, dem in Fig. 17b dargestellten
Belastungsfall v/j -f 1 zugeordneten Belastungsglieder durch Acpso + 1>

^^40 — 1 gegeben. Hiemit erhält man aus (46)

^ 3 A 33 (+ 1) + ^ 34 1) ~ ^ 33
"^

34

und wegen 1'34 1'43 folgt mit I'43 — q± I'33

B\ r33 (1 + qA)

und in analoger Herleitung
B\ ^44 (1 + Pa)
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Bekanntlich sind die den Belastungsgliedern A (pi0 -f- 1 zugeordneten
Einflußzahlen X'u stets negativ. In Fig. 17 b ist daher I'33 —a'33, hingegen
I'44 +a'44, das Moment B'd somit negativ, B\ aber positiv, was auch
anschaulich in Fig. 17 b aus der Form der Abknickung zu erkennen ist.

Aus obigen Gleichungen folgen die Absolutwerte

B'z =X'33 (1 + qA), j
B\ r44 (1 +/74). J

(62)

Hieraus werden die Absolutwerte der übrigen ^'-Momente, wie dies
auch die untenstehende Tabelle zeigt, mit Hilfe der Fortleitungszahlen p
und q gewonnen. Die ihnen nach der Fortleitungsregel zukommenden
Vorzeichen sind in die Fig. 17b eingetragen worden.

Aus (62) erkennt man bereits das Gesetz zur Ermittlung der an den
Enden des geneigten Feldstabes [r], infolge vr + 1, erzeugten Momente.
Diese, an dem mit der römischen Ziffer [r] bezw. mit der arabischen Ziffer
[/] bezeichneten Feldstab, zur Wirkung kommenden Sondermomente sollen
nun nach Fig. 18, zwecks Aufstellung einer allgemein gültigen Berechnungs¬

formel, die allgemeine Bezeichnung K'i—± und
j ola^). K'i führen. Ihre Absolutwerte sind dann durch

vr-+f

Fig 18
K'i-x Ä'/-i,/-i (1 + q£)

K'i =l\t (1 + pi)
(63)

bestimmt. Das Vorzeichen von /C'/_i ist stets negativ, jenes von K'i stets
positiv.

In (63) ist K' durch A', B', C zu ersetzen, wenn der geneigte Feldstab

die Ordnungsnummer /, bezw. //, ///... besitzt.
Wie oben im Sonderfall vn -f 1, sind die Momente in den

Gelenkquerschnitten links vom Gelenk /— 1, ausgehend von K'i-±, nach der
Fortleitungsregel mit Hilfe der Fortleitungszahlen p, die Momente in den
Gelenkquerschnitten rechts vom Gelenk /, ausgehend vom Moment K'h mit Hilfe
der Fortleitungszahlen q zu ermitteln. Dies ist auch aus der untenstehenden
Tabelle, die dem in Fig. 3 dargestellten Stab zugeordnet ist, ersichtlich. Ihre
stark umrandete Hauptdiagonale enthält die Absolutwerte aller nach (63)
errechneten Momente K'i-± und K'h deren Vorzeichen in die Fig. 17
eingeschrieben wurden.

Momente^5',C'undZ)'. [Gl. (64) ].

q*

q*

qe

Nach (63) infolge

Vj + 1 va + l vm + 1 viv +1

A\ ^11(l+q2)

A\ Ä'22 (1 +p2)

B\ p,B\
B's p, B\

C 1 P2 C 2

C 2 — Pz C g

C'3 /74 C'4

D\ p2 D\
D\ p% D\
D\ p,D\
D\=phD\
D'b=p6D'6

A\ qs A\
A\=qAA\
A 5 qbA 4

A ß qQA 5

C'4 A'44(l+^5)

CB A'85(l+/>5)ß's <7» B\
C«=^6Q D'e A'ee(l+0)

P2

Pz

P*

Pf>

Pe
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Mit Kenntnis der Sonderwerte Ä, B', C... gewinnt man nun durch Super-
position aus (61) die Knickmomente M'i als bekannte Funktionen der
Stabneigungen vr.

D. Die Knickgleichungen und die Knickdeterminante.
Im folgenden werden die Knickgleichungen und die Knickdeterminante

des in Fig. 3 dargestellten Stabes hergeleitet. Führt man, wie bereits im
Abschnitt V/A/3 erwähnt, die Momentendifferenzen AM'r als Funktion der
Stabneigungen vr in die Lagergleichungen (19) ein, so werden diese
Gleichungen in die Gruppe der homogenen Knickgleichungen übergeführt. Die
durch (8) definierten, in (19) auftretenden Momentendifferenzen AM'r
errechnen sich mit Hilfe von (61) in der Form

AM'i M\-M2 (Ä\ - Ä2) Vi+ (B\ - B\) vn+ (C\-€'2) vm + (D\ - D'2) vlv

— AÄ/ vf + AB/ vri + Ac/ vm + AD/ vIV

und in Analogie hiezu

MAM'n M\
AMm M\
AM'IV=MQ- 0

AÄ'/j vf + AB'u vn + Ac'n vm + AD'n vlv,
+ AC'Iff „ + AD'm „
+ Ac'iV „ + AD'jy „

M b AA'm„ +AB m„
AA IV» + AB iv »

(65)

Die in den Enden der Feldstäbe wirkenden Momente A'y B', C und D'
besitzen auf Grund der Fortleitungsregel stets entgegengesetzte
Vorzeichen. Daher gehen die in (65) auftretenden, über die Feldstäbe zu
bildenden Momentendifferenzen, in mit positiven oder negativen
Vorzeichen versehene Momentensummen über, die aus den Absolutwerten
der an den Stabenden angreifenden Momente A', B', C, D' zu bilden sind.
So z. B, ist

"
— (A\ + A'2) — HAI
+ (A'z + A\) + 2Ah

- (A'A + A'b) — ZA'm \ (66)

+ (A'b + A'6) + ZA'[e]

- (A'B + 0 — ZAW

und man erkennt aus (66) und auch aus den in die Fig. 17 eingeschriebenen
Momentensummen, daß die Summen der an einem „geneigten Stab"
angreifenden Momente stets negative Vorzeichen besitzen, die (-]
und (—) Vorzeichen aller übrigen Momentensummen hingegen schachbrettartig

über die Feldstäbe verteilt sind. Diese Vorzeichen wurden in Fig. 17
unterhalb der Feldstabmitte eingeschrieben. Die Gleichungen (65) gehen
somit in die folgende Form über:

AÄ'i Ä\ - Ä\
AÄ'n Ä'3 — Ä\
AÄ'„, Ä\ -Ä'-0
AÄ'M Ä's ~Ä\
AÄ'jy Ä'. — 0

AM', — ZA'i vi + 2B, v'„ — ZC'i v'm — ZD'i vw \

AM'n + 2A'a „ — 2B'B + 2Ch „ + SD'„ „
AM'in= — 2A'ni„ + 2B'm „ — 2C'm » — 2D'ui „
AM'W= - 2Ahr„ + ZBw„ — ZCW „ — 2Div „

(67)

Die schachbrettartige Verteilung der (+) und (—) Vorzeichen wird in
(67) dadurch gestört, daß der beiderseits auf starren Stützen ruhende Feldstab

[6] zu diesen Gleichungen keinen Beitrag gibt. Aus diesem Grunde
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weisen die letzten zwei Zeilen in (67) bezw. die letzten zwei
Vertikalkolonnen keinen Zeichenwechsel auf.

Wie sich leicht nachweisen läßt, sind die in (65) bezw. (67) auftretenden
Beiwerte die Einflußzahlen der Stabneigungen vr. Aus diesem
Grunde sind die in (67) symmetrisch zur Hauptdiagonale liegenden
Momentensummen dem Vorzeichen und der Größe nach gleich. In diesen
Gleichungen besteht daher Symmetrie zur Hauptdiagonale,

gleichgültig ob der Du r ch 1 au f s t ab selbst
Symmetrie aufweist oder nicht. Diese Tatsache bildet beim Zahlenrechnen

eine erwünschte Kontrolle für die Richtigkeit der Rechnung.
Bezeichnet man in (67) die in der „Mo m e n t e n s u m m e über

einem Feldstab [r]" auftretenden Momente ganz allgemein mit K'nni*
und K'rechts, so ist diese Momentensumme aus der Formel

2Kr' Klinks + K'rechts (68)

zu ermitteln. In (68) ist K' durch A',B',C... zu ersetzen, wenn die
Momente K' infolge vf -f- 1, vn -f 1, vw -{ 1 erzeugt werden.

Führt man (67) in (19) ein, so erhält man die folgende Gruppe von
homogenen Knickgleichungen, in denen die Unbekannten vr als „Kopf" über
ihre Beiwerte geschrieben wurden.

vi i'n

J7 + — [ 0 +mi 2Ai + b\ 2Ah]-m}Si
Ci

~\[ 0 +m} 2B\ + b[ 2B'n\+ah Sh

~ K [ah 2A't + mh 2Ah + bhZAhft + */' S/
cn

r\ + — [ah ZB\ + mh ZB'H + *// 2B'm] - mh Sh
cn

+ — [ahi2Ah+m'nlZAhi+ 0 ]
Cm

-4 [ahiZBh + mhi2Bhi+ 0 ]+bh Sh
cm

+ ~[ 0 +mh,2AiV+ 0 ] -4-1 0 +mh,2Biv+ 0 ]
cw

vm vw

+\[ 0 +mi 2CI +bi2Ch]
Cr

+ X[ 0 +m}2D}+b}2Dh]
ci

- — [ah 2Ci + mh 2Ch + bh^Chi] + ahiShi
cn

1

- -r [ah 2DI \mh 2D'n +bhZDhi]
cn

rj + — [a'm2 C//+ m'm2Chi + 0 ] -mhiShi
cm

+ ~r [ahiZDh+mhi2Dhi+ 0 ] + 0
cm

+ —[ 0 +miv2Civ+ 0 1+0
civ

rj + -r[ 0 +m'IV2D'IV+ 0 ]-mivS/v
Cjy

(69)

0

0

0

0

Aus diesen linearen und homogenen Gleichungen sind nun die sich im
Knickfall einstellenden Neigungen r, der Stabsehnen zu errechnen. Die
triviale Lösung v, vu vm v,v 0 hat keine Bedeutung, sie entspricht
dem Gleichgewichtsfall des geraden nicht ausgeknickten Stabes. Endliche,
dem ausgeknickten Stab entsprechende Werte ergeben sich aus obigen



164 K. Kriso

Gleichungen nur dann, wenn die Nennerdeterminante verschwindet. Diese
bereits aus der Anschreibung (69) zu erkennende Nennerdeterminante ist
die Knickdeterminante A des vorliegenden Problems.

Die aus der „Knickbedingung J 0" fließende Gleichung ist die
einzige Gleichung zur Lösung des Knickproblems. Um in einem vorliegenden
Knickproblem die Bedingung A 0 zu erzwingen, sind in den Gliedern
der Determinante alle von vornherein unbekannten Größen passend
anzunehmen bis auf eine einzige, die dann aus der Bedingung A 0 zu errechnen
ist. Je nach der Wahl dieser frei zu haltenden und aus A 0 zu ermittelnden
Unbekannten x ergeben sich zwei Hauptaufgaben, die im Abschnitt VII näher
umschrieben werden.

Aus dem regelmäßigen Aufbau der Knickdeterminante des hier
betrachteten Sonderfalles werden im Abschnitt VIII durch Verallgemeinerung
der hier gewonnenen Erkenntnisse Gesetze hergeleitet, welche die unmittelbare

Anschreibung der Knickdeterminante eines jeden beliebigen Durchlaufstabes

ermöglichen.

VI. Formänderung des ausgeknickten Durchlaufstabes.
Wurde aus A 0 die Unbekannte x errechnet, so werden hiemit auch

sämtliche Determinantenglieder zahlenmäßig bekannt. Aus den homogenen
Gleichungen (69) gewinnt man dann die unbekannten Stabneigungen
bekanntlich in der Form vf k A±1 vu k A12, v//> k A13, vIV k Au, wobei

k eine beliebige Konstante, die zl-Werte jedoch die Unterdeterminanten
der Elemente der ersten Zeile der Knickdeterminante darstellen. An Stelle
dieser Unterdeterminanten kann man aber auch die Unterdeterminanten
irgend einer anderen Zeile nehmen. Mit den nun zahlenmäßig bekannten
Stabneigungen erhält man aus (61) auch die Zahlenwerte und Vorzeichen
der Knickmomente M'i. Hiemit ist aber auch die Form der elastischen Linie
des ausgeknickten Stabes und damit auch die Zahl der Knickwellen
bestimmt. Wegen des beliebig zu wählenden Konstantwertes k bleibt zwar
die Größe, nicht aber die Art der Formänderung unbestimmt. Wird die
Durchsenkung von irgend einer Stütze beliebig angenommen, so ist
hierdurch auch die Lage des Stabsehnenpolygons bestimmt. Liefert die
Bedingung A 0 mehrere Werte für die hieraus zu errechnende Unbekannte
x, so sind auch ebensoviele verschiedene Gleichgewichtslagen, d. h. verschiedene

elastische Linien des ausgeknickten Stabes mit voneinander verschiedener

Zahl von Knickwellen möglich. Im allgemeinen ist die im Knickfalle
eintretende Formänderung nicht von Interesse, ihre Berechnung kann daher
entfallen. Wohl aber interessiert jener aus A 0 zu bestimmende Wert x
der frei gehaltenen Unbekannten, der das Ausknicken des Durchlaufstabes
gerade noch zu verhindern vermag. Ergeben sich aus A 0 mehrere Werte
x, so liefern nur die Grenzwerte und zwar je nach der Art des vorliegenden
Problems entweder xmax oder xmin die Lösung des Problems.

VII. Die beiden Hauptaufgaben.
A. Die Überprüfung einer bestehenden Konstruktion.

Im Falle der Überprüfung sind sämtliche Abmessungen des Durchlaufstabes,

die Axialkräfte ©, der Gebrauchsbelastung, die spezifischen
Stützenwiderstände Ai bezw. Verdrehungswiderstände C; und ihre Reziprokwerte
dt£i gegeben. Mit Bezug auf das Ausknicken in der Zeichenebene ergeben
sich nun zweierlei Fragestellungen:
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1. die Frage nach der „K n i ck s i ch er h ei t v" des Durchlaufstabes und
2. die Frage nach der „Stützensicherheit ju" der federnden

Querstützung.

Die erste Frage lautet: Um wieviel dürfen die durch die Gebrauchsbelastung

erzeugten Axialkräfte @, der Feldstäbe auf Sr v ©, erhöht werden,

damit die vorhandene Stützung ein Ausknicken des Durchlaufstabes
gerade noch zu verhindern ermag. Die Unbekannte des Problems ist die
Knicksicherheit v.

Im zweiten Falle wird gefragt, um wieviel die vorhandenen
spezifischen Querstützenwiderstände Aitvor/i größer sind als die erforderlichen

Widerstände Ai>erf, die das Ausknicken des Durchlaufstabes bei
vorgegebener Knickbelastung und, falls Stützenstäbe vorhanden sind,
auch bei vorgegebenen spezifischen Verdrehungswiderständen

Ci>vorh gerade noch zu verhindern vermögen. Wird AitVorh ^Ai>erf
gesetzt, so zeigt ein Wert /u>\ die „Stützensicherheit" an, der Wert ^=1
gibt zu erkennen, daß die vorhandene Querstützung gerade genügt, während
ein Wert ^i < 1 darauf hindeutet, daß die vorhandene Querstützung zu
schwach ist, um das Ausknicken unter den gegebenen Umständen zu

verhindern. Wegen At —- folgt aus obiger Gleichung diferf fidltVOrn und
*i

ein Wert /u > 1 bedeutet wieder, daß die erforderliche Federung um das
/^-fache „weicher" sein könnte, als die vorhandene. Die Unbekannte des
Problems ist die Stützensicherheit (a.

Bei der ersten Überprüfungsaufgabe ist die unbekannte
/ v © c 2

Knicksicherheit v in den Werten cpr y-—r~L- enthalten, die in die Knick-
f 'r Jr

rechnung in transzendenter Form (sin cpr, tg cpr) eingehen. Eine direkte
Ermittlung von v aus der Bedingung A 0 ist daher nicht möglich. Die
Lösung ist nur mit Hilfe eines analytisch-graphischen Verfahrens zu
gewinnen. Für eine beliebig £-fach erhöhte Gebrauchslast Sr Q&r besitzt
die Knickdeterminante einen ganz bestimmten Zahlenwert A(q). Ermittelt
man nun für einige Werte q die zugeordneten Knickdeterminanten, so läßt
sich graphisch die Kurve A f (q) konstruieren. Der dem Punkte A 0
zugeordnete Wert q0 liefert die Knicksicherheit v q0 als Lösung des
Problems.

Bei der zweiten Überprüfungsaufgabe, der Ermittlung der
Stützensicherheit p, erscheint diese Unbekannte in den nach (13) bezw. (17)

cY • c)' •

zu ermittelnden Werten a'r, b'r und m'r in der Form l>e,rf u —l*vorhm Daher
c c

wären, falls mit der Determinante aus (69) z. B. die Stützensicherheit ju ermittelt

werden sollte, mit Ausnahme von rj alle Glieder mit dem Multiplikator ,a
zu multiplizieren, wenn man die dort auftretenden a'-, b'- und tn'-Werte mit
den gegebenen Werten d'itvorh gebildet hätte. Teilt man dann
jede Zeile der Determinante durch ^, so tritt diese Unbekannte nur mehr

im Werte — ——-—- r/ auf. Durch diesen Vorgang wird die Knick-
{.i /Li o* S*

determinante A in A ^ A' übergeführt, wobei die Determinante A' in
ihrem Aufbau vollkommen mit der durch (69) gegebenen Determinante A
übereinstimmt. Nur sind in A' die Beiwerte a', b' und tn' mit den bekannten
Werten d'irVOrh/c' zu bilden, in A hingegen mit den unbekannten Werten
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d'i.erf/c'- Aus A p^Ä 0 folgt auch A' =- 0 und hierin ist nun rj' ~^-

c*
die einzige Unbekannte des Problems, während in A der Wert ri ~^rw~0* S*
bekannt wäre. Die Ausrechnung der in ihrer Form ebenfalls durch (69)
gegebenen Determinante A' 0 liefert eine algebraische Gleichung vierten Grades

nach der Unbekannten rj' — Der größte rj'-Wert bestimmt jumin, die vor-

handene Stützensicherheit, in der Form jxmin —~— —— Hiemit
'/ max r\ max " o

erscheint der Vorgang zur Ermittlung der Stützensicherheit vollkommen klar
gestellt.

Wie aus (69) leicht zu erkennen, liefert die Knickbedingung A 0
immer dann eine algebraische Gleichung zur direkten Ermittlung der
Unbekannten, wenn dieselbe, wie hier, nur in den Beiwerten a', b', m' oder

ör Cr

der Fall, wenn irgend ein Element der elastischen Quer
Stützung als unbekannt offen bleibt.

in rj auftritt und nicht in den Werten cpr V ~^-L- Dies ist immer dann

B. Entwurf einer Neukonstruktion.
Bei der zweiten Hauptaufgabe, dem Entwurf einer Neukonstruktion,
sind die Gebrauchslasten @r, die verlangte Knicksicherheit v des

Durchlaufstabes und daher auch die Knickkräfte Sr v&r gegeben. Die
Abmessungen der Feldstäbe, die Stärke der elastischen Stützung (die
spezifischen Widerstände AtC/) sind nun so zu bestimmen, daß die vorgeschriebene

Knicksicherheit des Durchlaufstabes gewährleistet erscheint.
Im vorliegenden Falle existiert eine große Zahl von vornherein

unbekannten frei zu wählenden Bestimmungsstücken. Um, wie schon erwähnt,
aus A 0 eine algebraische Gleichung zur direkten Ermittlung der
Unbekannten zu erhalten, muß ein Element der federnden Querstützung als
unbekannt frei gehalten werden, die übrigen Bestimmungsstücke der
Querstützung, die spezifischen Verdrehungswiderstände Q und die Abmessungen
der Feldstäbe sind hingegen passend anzunehmen. Wurden diese Annahmen
bis auf die Querschnitte der Feldstäbe getroffen, so ist, wie die
Knickberechnung leicht erkennen läßt, das fragliche Element der federnden
Querstützung nur mehr eine Funktion der Steifigkeit TrJr der einzelnen Feldstäbe,

die in der durch (27) gegebenen Kennziffer cpr 1/——~ zahlenmäßig zum

Ausdrucke kommt. An Stelle des dem Feldstab [r] zugeordneten Wertes
cpr kann man auch den anschaulicheren Wert

ml-'i 'i^? (70)

ji2 T J ji2 T J
heranziehen, dessen Bedeutung aus Sr -, ^ —j^-^ hervorgeht,

(mr cr) If"
wobei

/,. mrcr (71)

die „freie Knicklänge" des Feldstabes cr darstellt. Diese freie Knicklänge
lr ist bekanntlich jene Länge, bei welcher ein mit dem Feldstab gleich di-
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mensionierter, an beiden Enden gelenkig gelagerter Stab unter der alleinigen
Wirkung der Knickkraft Sr ausknickt. Der obere Grenzfall, der elastisch
gestützte starre Durchlaufstab, benötigt die kleinste Querstützung, der
untere Grenzfall, der durchlaufende Gelenkstab, bei welchem die
innerhalb der Feldweite knicksicheren Feldstäbe gelenkig aneinander
geschlossen sind, erfordert die stärkste Querstützung. Ein nur aus
Feldstäben bestehender Durchlaufstab mit Kennziffern mr 1 verhält sich,
trotz seiner kontinuierlichen Verbindung mit den Nachbarstäben, wie ein
Gelenkstab. Nur wenn für alle Feldstäbe die Werte tnr > 1 sind, wird im Knickfalle

der Stab als Ganzes ausknicken,, somit als Durchlaufstab zur Wirkung
kommen und eine entsprechend schwächere Querstützung erfordern. So z. B.
wählt man im Brückenbau beim Entwurf des Druckgurtes von offenen
Brücken l,2<//z,.<3. Ein Druckgurt, dessen Feldstäbe Werte tnr<\,2
aufweisen, erfordert unverhältnismäßig große elastische Querstützungen. Im
übrigen ist es auch zweckmäßig, daß die #zr-Werte der Feldstäbe nicht allzusehr

voneinander abweichen, weil schon ein einziger im Verhältnis zu den
übrigen /^-Werten kleiner Wert von m eine starke Schwächung des
durchgehenden Stabverbandes herbeizuführen vermag, die eine unverhältnismäßig
starke Erhöhung der elastischen Querstützung zur Folge hat.

Bei einer Entwurfsaufgabe wird nun, nachdem die spezifischen
Verdrehungswiderstände Ci gewählt und die Feldstäbe dimensioniert sind, aus
der Gruppe der die federnde Querstützung kennzeichnenden drWerten ein
passender (5,-Wert ausgewählt und als unbekannt offen gelassen. In dieser
Auswahl bieten sich unter anderem folgende Möglichkeiten dar.

a) Sämtliche Querstützungen werden wie im Zahlenbeispiel IX als gleich
stark vorausgesetzt und als unbekannt offen gelassen. Der diese
Querstützung kennzeichnende <5-Wert ist dann die einzige Unbekannte des
Problems, die aus der Knickbedingung A 0 zu ermitteln ist. Bei der
Durchführung der Rechnung wird hier mit Vorteil der Vergleichswert d* ö

gewählt, wodurch für sämtliche Querstützen die Werte d' —- 1 bekannt
()*

c*
werden und die Unbekannte ö d* nur im Gliede rj VJ. ^ der Haupt-

o* S*
diagonale erscheint. Die Ausrechnung der Knickdeterminante liefert eine
algebraische Gleichung höheren Grades nach rj.

b) Die spezifischen Stützensenkungen öt oder, was auf dasselbe hinauskommt,

die spezifischen Stützenwiderstände A-, werden frei gewählt bis auf
einen, der als unbekannt offen bleibt und aus der Knickbedingung A 0
zu errechnen ist, die in diesem Falle eine nach der Unbekannten lineare
Gleichung liefert. Wenn es die gegebenen Umstände erlauben, so ist es
hinsichtlich der Rechenarbeit von Vorteil, den A-Wert einer Randstütze
offen zu lassen. Statt dieses einen freibleibenden Widerstandes kann auch
eine Gruppe von zwei oder mehreren untereinander gleich groß
vorausgesetzten Widerständen A frei bleiben und errechnet werden.

c) Man kann auch für sämtliche Querstützen zunächst beliebige dr
Werte annehmen und hiezu die proportionalen erforderlichen dit erf fx öi
so bestimmen, daß die verlangte Knicksicherheit gewährleistet erscheint. In
dieser Form wird die Entwurfsaufgabe auf die zweite Überprüfungsaufgabe
zurückgeführt.

d) Schließlich kann man, wie es vielfach bei der Knickberechnung der
Druckgurte von offenen Brücken geschieht, die untereinander gleichen Zwi-
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schenstützen in passender Stärke annehmen und hiezu den spezifischen
Widerstand der ebenfalls als gleich vorausgesetzten Endstützen bestimmen.

In ähnlicher Weise lassen sich noch andere verschiedene Annahmen für
die Berechnung der federnden Querstützen treffen. Entscheidend für die
jeweiligen Annahmen sind die besonderen, in der Praxis vorliegenden
Verhältnisse.

VIII. Aufbau der Knickdeterminate eines beliebigen
Durchlaufstabes.

An der Hand der in dieser Abhandlung durchgeführten Herleitung der
Knickdeterminante (69) für den in Fig. 3 dargestellten Durchlaufstab lassen
sich nun ganz allgemein gültige Regeln für den Aufbau der
Knickdeterminante eines beliebigen Durchlaufstabes angeben, welche die
unmittelbare Anschreibung dieser Determinante ermöglichen.

Mit den nach (27) zu ermittelnden ^-Werten bestimmt man die o'r
und r>Werte (Gl. (28), (29), (33)), die k'i nach (39) und die k'i nach (40),
ferner die Fortleitungszahlen arbr nach (42) und die Fortleitungszahlen pq
nach (51), (52). Nun berechnet man mit Hilfe der Gleichungen (55) —(60)
die Einflußzahlen X'it und die A'-, B'-, O- Momente aus (64) und bildet
nach (68) die „Momentensummen 2A', 2B', 2C... über die elastisch
quergestützten Feldstäbe".

Nach (13) werden nun die von der elastischen Querstützung abhängigen
Werte a'r, b'r und m'r ermittelt. Im Falle eines Entwurfes ist in diesen Werten
ein nach den Ausführungen im Abschnitt VII passend zu wählender Freiwert

als unbekannt offen zu halten und dann aus der Knickbedingung A 0

zu errechnen.
Der Aufbau der Knickdeterminante soll nun zunächst für den

sogenannten „Normalfall" angegeben werden. Als Normalfall wird ein aus
n Stäben, entweder nur aus Feldstäben oder aus Feld- und Stützenstäben
bestehender Durchlaufstab bezeichnet, der in allen Stützpunkten eine
federnde Querstützung aufweist und dessen Feldstäbe durch Druckkräfte

beansprucht sind.
Sind unter den n Stäben m Stützenstäbe enthalten, so ist die

Knickdeterminante (ti — tn)-gliedrig und besitzt z.B. für den in Fig. 19
dargestellten „Normalfall" die Form

\o. fU
Jü

[TO

m
M
M

Sx ' Sr

fJß
£0

ff tö
Fig. 19

A

rj + h'iA' - m{ S{ - hj B> + ah Sh \ + h{ a - h{ D>

~ h'uA' + b{ Si /; + h'nB' - mhS'ii\ - hha + a'mS'm\ + hhü'
+ hhiA' ~ hhiB' + b'nSh \ r\ + h'ma- mhiS'm\ - h'mD' + a'wS'w

- h'jvA' + hjvs' - hivc'+ b'mShi \ rj + hjyry-m'wS'w

0 (72)

Das Bildungsgesetz dieser aus lauter Absolutgliedern
aufgebauten Determinante ist leicht zu erkennen.

Die Summen in der nach rechts fallenden Hauptdiagonale sind stets
dreigliedrig. Das erste nach (14) zu bildende ?y-Glied ist stets mit einem
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positiven Vorzeichen zu versehen, das Produkt m'S' erhält immer ein
negatives Vorzeichen, in der Zeile darüber und darunter erscheinen
die Produkte a'S' bezw. b'S', die stets ein positives Vorzeichen
bekommen. Diese ,,S' - P roduk t e" sind in der ersten Spalte dem Feldstab

/, in der zweiten Spalte dem Feldstab // usw. zugeordnet und daher
dementsprechend zu bezeigern.

Die A'-Glieder in (72) entsprechen den „Klammergliedern" in (69) und
man erkennt daselbst, daß die A'-Glieder der ersten, bezw. zweiten, dritten

Kolonne im wesentlichen aus den Ä- bezw. B'-, C'- Momenten aufgebaut

sind. Die erste Kolonne der Knickdeterminante soll daher im weiteren
als „^-Kolonne", die zweite als „B-Kolonne" usw. bezeichnet werden.

Diese A'-Glieder sind doppelt bezeigert, der erste Zeiger bezeichnet die
Reihe, der zweite durch den „Kolonnenbuchstaben" gekennzeichnete Zeiger
bestimmt die Kolonne. Die allgemeine Bezeichnung eines A'-Gliedes ist dann
durch h'rK gegeben.

Jedes A'^'-Glied ist aber überdies auch einem Feldstab zugeordnet und
zwar jenem Stab, der durch den Zeiger r angedeutet wird. Alle A'-Glieder
der ersten Reihe sind daher dem Feldstab /, jene der zweiten Reihe dem
Feldstab // usw. zugeordnet. Ein A'-Glied besteht aus einer dreigliedrigen
Summe, die durch die allgemein gültige Formel

h'rK' 4- KZKr-\ + m'r2K'r + Vr2Kr-\\'-=/,">m... (73)
Cr K'=A'B'C...

gegeben ist. Hieraus erhält man z. B. für alle Glieder in der zweiten Reihe
(r II) der Knickdeterminante (72) die Formel

hh K' — [ahZKi + m'n2Kh + b'n2Khi] k' a\ b\c'.-,cn

für das Glied in der vierten Reihe der zweiten Kolonne mit b'/v 0
die Formel •

hwB' ~r [a'wZBhi + mw2Bw + 0],
cw

für das Glied in der ersten Reihe der dritten Kolonne mit a'/ 0 die
Formel

hie \ [0 + mi2Ci + bi2C'„]
w

In der ersten und letzten Zeile der Determinante reduziert sich
die dreigliedrige Summe (73) stets auf zwei Glieder, da in diesen Fällen,
wegen a'f 0, b'IV 0, das erste bezw. letzte Glied der Summe nicht
existiert.

Die (+) und (—) Vorzeichen der A'-Glieder sind schachbrettartig
so zu verteilen, daß die A'-GIieder in der von links nach rechts

fallenden Hauptdiagonale stets positive Vorzeichen erhalten.
Eine Abweichung von dieser durch (72) gegebenen Normalform

der Knickdeterminante wird durch folgende Ursachen bewirkt: 1. wenn einer
der Feldstäbe nicht durch eine Druckkraft, sondern durch eine Zugkraft
belastet wird, 2. wenn einer der Feldstäbe überhaupt keine Belastung durch
Axialkräfte erfährt und 3. wenn im Stabzug unverschiebliche Stützen
auftreten.

Abhandlungen VI 12
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Im ersten Falle sind in (72) die dem Zugstab zugeordneten S'-
Produkte mit entgegengesetzten Vorzeichen zu versehen, das Produkt m'S'
erhält daher ein positives, die Produkte a'S' und b'S' ein negatives
Vorzeichen.

Im zweiten Falle entfallen wegen S' 0 die dem Feldstab
zugeordneten S'-Produkte.

Im dritten Falle werden, wegen 6' 0, auch die nach (13) zu
bildenden, links und rechts von der Stütze liegenden a'- und b'-Werte gleich
Null. In (72) (73) entfallen daher jene Summenglieder, deren a'- und 6'-Werte
infolge der unverschieblichen Stütze verschwinden. So z. B. geht die
Knickdeterminante (69) formal aus (72) hervor, indem man hierin b'IU 0 und
a'/v 0 setzt. Ruht ein Feldstab auf zwei unverschieblichen Stützen, so
sind seine a'-, b'- und tn'-Werte gleich Null, ihm ist daher keine
Lagergleichung zugeordnet, er gibt auch keinen Beitrag zur Knickdeterminante,
bewirkt aber, wie schon zu (67) bemerkt, eine Störung in der schachbrettartigen

Verteilung der den A'-Gliedern zukommenden (+) und (—) Vor¬
zeichen. In derartigen Fällen fertige man ein quadratisches

Schema nach Fig. 20 an, die Zahl der Zeilen und
Kolonnen entspricht der Zahl der vorhandenen
Feldstäbe, gleichgültig, wie dieselben gelagert
sind. Ist z. B. der r-te Stab beiderseits auf
unverschieblichen Stützen gelagert, so streiche man die
r-te Zeile und Kolonne, die übrigbleibende Restfigur
gibt die Vorzeichenverteilung der h'- Glieder. Fig. 20
zeigt das Vorzeichenschema für den in Fig. 3
dargestellten Stab, bei welchem der vierte Feldstab auf
beiderseits starren Stützen ruht.

Zwei aufeinander folgende, beiderseits starr gelagerte Feldstäbe
bewirken im Vorzeichenschema die Streichung von zwei nebeneinander liegenden

Zeilen bezw. Kolonnen, die Restfigur zeigt wieder vollkommene
schachbrettartige Anordnung in der Vorzeichenverteilung.

+ 1
%

i +

Fig. 20

Sonderfälle.
1. Der durchlaufende Gelenkstab. Für einen solchen Stab

existieren keine Kontinuitätsgleichungen, daher auch keine Ä-, B'-, O-
Momente und keine hieraus aufgebauten A'-Glieder. Die ihm zugeordnete
Knickdeterminante geht aus (72) durch Streichung der A'-Glieder hervor.

2. Der durchlaufende Stab auf durchwegs
unverschieblichen Stützen besitzt keine Lagergleichungen. Die
Kontinuitätsgleichungen bilden in diesem Falle eine Gruppe von linearen homogenen

Gleichungen, die nur dann endliche Werte für die Knickmomente
liefern, wenn die aus ihren Beiwerten gebildete Nennerdeterminante
verschwindet. Diese Determinante ist die Knickdeterminante des Problems, die
beispielsweise für einen vierfeldrigen Durchlaufstab die aus den Fortleitungszahlen

ab aufgebaute Form

A

besitzt.

1 a2 0 0

h 1 a8 0
0 b3 1 a4
0 0 b. 1

0 (74)
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IX. Zahlenbeispiel.")
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Von dem aus zwei Stützenstäben und fünf Feldstäben bestehenden
Durchlaufstab der Fig. 3 a sind die in der Tabelle 1 eingetragenen Abmessungen,
die Gebrauchsbelastung <3n die Knicksicherheit v 2, die Knickkräfte und
die spezifischen Verdrehungswinkel der Stützenstäbe [1] und [3] mit et
0,19167- 10~4 und es 0,15556- 10~4 gegeben. Man ermittle den erforderlichen,

für alle elastischen Stützen als gleich groß vorausgesetzten spezifischen

Stützenwiderstand A Aerf, der das Ausknicken des Durchlaufstabes
gerade noch zu verhindern vermag.

1. Verdrehungswinkel o'r und %'r.

Feldstab [r] [2] [4] [5] M [7]

er in cm 400 300 450 500 400

/>„ cm2 79,2 106,9 154 160,4 69,7

Jr » cm4 5860 7670 11520 12000 4460

Sr „ ton 180 240 300 360 150

ö,^t/cm2 2,273 2,245 1,948 2,244 2,152

+)Tr in t/cm2 1212,2 1279,2 2015,4 1281 1507,6

mr nach (70) 1,56 2,12 1,94 1,30 1,67

<Pr » (21) 2,01384 1,48188 1,61938 2,41661 1,88119
<Pr° 115° 23'5" 84° 54'24" 92°47'1" 138° 27'28" 107°47'04"
sr „ (26) 1,22906 0,48776 0,62129 2,64403 0,97561

tr „ (26) 1,95558 0,86792 1,07874 3,72743 1,60342

Nach (11) frei gewä tilte Vergleichswerte: 5* 3(30 ton, £*=50<3 cm

Sr' nach (11) 0,5 0,66667 0,83333 1,00 0,41667

cr' „ (11) 0,8 0,6 0,9 1,00 0,8

s; c; 0,4 0,4 0,75 1,00 0,33333

°r' » (28> 3,07265 1,21940 0,82839 2,64403 2,92687

v » (28> 4,88895 2,16980 1,43832 3,72743 4,81031

+) Weil or > (o 1,905 t/cm2) findet das Knicken im unelastischen Gebiet statt. Nach

Enoesser-Tetmajer errechnet sich daher der den or t/cm2 zugeordnete Knickmodul Tr aus

r^lOB^Z^^lt/cm2.r 1,28265
'

5) Dieses und viele andere Zahlenbeispiele hat mein Assistent Dr. Ing. E. Strelsky
gerechnet, wofür ich ihm an dieser Stelle besten Dank sage.
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2. Momente k't. Fortleitungszahlen ar und br.

Gelenk / 12 3 4 5 6

Stab [r] [1] [2] [3] [4] [5] [6] [7]

(*/); V (3,45000) 4,88895 (2,80000) 2,16980 1,43832 3,72743 4,81031

*/ nach (39)

k/ „ (40)

8,33895 7,68895

0,11992 0,13006

4,96980

0,20122

3,60812

0,27715

5,16575

0,19358

8,53774

0,11713

(*/)> < (3,45000) 3,07265 (2,80000) 1,21940 0,82839 2,64403 2,92687

a,. nach (42)

*r „ (42)

0

0,41372

0,36847

0,39962

0,36416

0,56340

0,24536

0,33796

0,22959

0,16036

0,51184

0,30969

0,34282

0

3. Fortleitungszahlen pr und qr. Multiplikatoren^. [Gl. (51), (52)].

w

Pr
ar 1

Qr

^=Pr

(>-=2,3"5,6)

Qr
br

1 - Vi Pr-i
I

r= l, 2 • "6, 7
1 — ar+l Qr+i r= T,6»*' 2, 1

^ br-\P,-\ fr
1-K-iPr-i

ar
ar

Pr=Tr ar+x ar+\ ar+x
]~°r+i Qr+x

K
br^ Tr

[1]
[2
[3
[4
[5
[6
[7

0,41372
0,39962
0,56340
0,33796
0,16036
0,30969

0
0,14725
0,24060
0,10919
0,04133
0,16535

1

1

0,85275
0,75940
0,89081
0,95867
0,83465

0
0,36847
0,36416
0,24536
0,22959
0,51184
0,34282

0
0,36847
0,42705
0,32310
0,25773
0,53391
0,41074

1,39879
1,44457
1,09385
0,73943
0,58005

0,36847
0,36416
0,24536
0,22959
0,51184
0,34282

0,18991
0,22465
0,08672
0,04375
0,15851
0

0,81009
0,77535
0,91328
0,95625
0,84149
1

1

0,41372
0,39962
0,56340
0,33796
0,16036
0,30969
0

0,51071
0,51541
0,61690
0,35342
0,19057
0,30969
0

4. Einflußzahlen X'it.

Die Einflußzahl X'±1 wird mit (57), alle übrigen Einflußzahlen mit (59)
berechnet.

X'tl ^k\ 0,14804, r44 ^ Ä's, 0,32721,
bx

X'22 ^2Xfxl 0,20708, X'bb M6 X\± 0,24195,
^33 M'22 0,29914, X\Q H6 X'bb 0,14034,

Kontrollen:
nach (55) X'

33 1 —PsQs b3

<7s
0,29914,

nach (58) ^ 66
Pi k\ =.0,14034.



0,61690

0,35342

0,19057

0,30969
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5. Momente A', B', C und D'. [Gl. (63), (64)].
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Infolge

v, + 1 vn + * "/// + 1 vIV + 1

A\ 0,22434

A\ =-- 0,28338

£', 0,06371

£'2 0,17290

d 0,01981

C'2 0,05375

C3 0,12587

£>\ 0,00098

D'2 0,00266

D\ 0,00624

D'4 0,01931

D'6 0,07493

A\ 0,17482

A\ 0;06178

/4'5 0,01177

i4'e 0,00365

B\ 0,40486

ß'4 0,43293 C4 0,38957

C'5 0,30431£ 6 0,08250

B\ 0,02555 C'6 0,09424 D'e 0,14034

0,36847

0,42705

0,32310

0,25773

0,53391

6. Momentensummen 2A'r, 2B'ry 2C'r, 2D'r.\ r i,n,m,iv. [Ol. (68)].

^^^\Infolge
Vj= + 1 rn= + \ "ff/ + * ^ + I

^ /C/ Ki + AV

-^/C// K%+ K4!

^ Khi— K±-\- Kh

ZK'w^Kt+O

2A\ =0,50772 2B'r =0,23661 2C\ =0,07356

2Ch= 0,51544

2Di 0,00364

^D/7 0,02555

2D'm= 0,09424

2A'tt 0,23660

X4/7/= 0,07355

^,4^=0,00365

2B'U 0,83779

^B'm 0,51543

^ZJ^= 0,02555

^C//7= 0,69388

J?C^= 0,09424 ^D/V= 0,14034

Die in dieser Tabelle aufscheinende Symmetrie zur Hauptdiagonale ist ein Beweis für die
Richtigkeit der Zahlenrechnung.

7. Werte a\, m'n b'r der Feldstäbe \r\. [Gl. (13)].
Vergleichswert b* ö, c* 500 cm.

Stutze /
Stab [r]

1

y
3
y

4 5

y y
6 7

y y
* [i] * [II] A [III] A A [IV] A

1

d

1

d 0

1 0

0 d

0 1

t/nach (11)

b/ » (13)
0,8
0

2,50000
1,66667

0,6 0,9 1,0 0,8
1,25000 1,66667 0 0

3,33333 1,11111 0 1,25000
1,11111 0 0 0

8. Die /z'^'-Glieder der Knickdeterminante. [Ol. (72), (73)].
1. Reihe • • • h\K 0,00000 +3,12500 ZKj + 2,08333 ZKii
2. „ • ¦ ¦ h'„K' 2,08333 ZKi + 5,55556 SKn + 1,85185 ZKm
3. „ ••• hinK= 1,85185 2Kh+ 1,23457 ZKm+ 0,00000
4. „ ••• hivK— 0,00000 + 1,56250 27(^ + 0,00000 *= * * c, zy.
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Hieraus ergeben sich die in der folgenden Tabelle stehenden Zahlenwerte.

Die beigefügten Vorzeichen und auch jene der S'-Produkte in der
letzten Tabelle entsprechen den im Abschnitt VIII angegebenen Regeln.

+ 2,07954 - 2,48480 + 1,30371 + 0,06460
— 2,50840 + 6,10181 — 4,30177 — 0,32405
+ 0,52894 - 2,18780 + 1,81116 + 0,16365
+ 0,00570 -- 0,03993 + 0,14725 + 0,21929

9. Die S'-Produkte der Knickdeterminante. [Gl. (72)].
-1,25000
+ 0,83333

+ 0,83333
— 2,22222
+ 0,74074

+ 1,38888
— 0,92592
+ 0,00000

+ 0,00000
— 0,52084

y] +0,82954 -1,65147 + 1,30371 + 0,06460
— 1,67507 V + 3,87959 — 2,91289 — 0,32405
+ 0,52894 -1,44706 n + 0,88524 + 0,16365
+ 0,00570 — 0,03993 + 0,14725 n —0,30155

10. Knickdeterminante und Lösung.
Die Addition der vertikalen Kolonnen der zwei vorhergehenden Tabellen

führt nach Hinzufügung der ^-Glieder zum Zahlenwert der aus (72)
hervorgehenden Knickdeterminante (69)

0

deren Ausrechnung die Gleichung

^ + 5,29282 rj3 - 2,00848 rj2 — 0,01729 y + 0,02197 0

liefert. Aus ihr gewinnt man die vier Wurzeln

?;i + 0,33702, rh + 0,12121,
yj2 — 5,64775, ^4 — 0,09699.

Von diesen vier Wurzeln hat nur die größte positive Wurzel
Vmax -f 0,33702 praktische Bedeutung. Sie liefert die untereinander gleich
großen spezifischen Stützenwiderstände Aerh die erforderlich sind, um ein
Ausknicken des Durchlaufstabes bei zweifach erhöhter Gebrauchslast gerade
noch zu verhindern. Nach (14) ist

C* C*
rj ~ (j*^* — #s.

und hieraus mit rj ^]max folgt

A =AeKf Ijmax ^ 0,33702
c*

und

di <w —
1

4,202 cm/1.

Aerff

360 ton
500 cm

0,238 t/cm

Urf

Weitere Zahlenbeispiele finden sich in meiner Abhandlung „Ein Rechenschema

zur Knickberechnung mehrfeldriger beliebig gestützter Stäbe und
seine Anwendung auf Zahlenbeispiele" (Stahlbau 1941).
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Zusammenfassung.
In der vorliegenden Abhandlung wird ein strenges Verfahren zur

Knickberechnung eines mehrfeldrigen Durchlaufstabes entwickelt, dessen
Querschnitte und Trägheitsmomente innerhalb eines Feldes konstant sind und
der in den Feldgrenzen von axial wirkenden Einzelkräften ergriffen wird.
Neben Druckkräften können auch Zugkräfte auftreten, wie z. B. beim
Ausknicken des Obergurtes im durchlaufenden Träger einer offenen Brücke (Sm
in Fig. 1), auch Feldstäbe, die durch keinerlei Axialkraft beansprucht sind
(S0' in Fig. 1) dürfen im Durchlaufstab enthalten sein. Die Stützung in den
Feldgrenzen kann nach irgend einer der in Fig. 2 schematisch dargestellten
Art erfolgen, und diese Stützungsarten können in beliebiger Kombination
verwendet werden.

Für derartige Durchlaufstäbe, die jede beliebige Unsymmetrie hinsichtlich

Konstruktion, Belastung und Stützung aufweisen dürfen, wird ein
Rechenschema entwickelt, nach welchem die Berechnung der Knickdeterminante

in immer gleicher und gleich einfacher Weise erfolgen kann.
Das Zahlenbeispiel im Abschnitt IX und weitere Zahlenbeispiele in der

Abhandlung des Verfassers „Ein Rechenschema zur Knickberechnung
mehrfeldriger Stäbe" (Stahlbau 1941/42) zeigen die praktische Anwendung des
Verfahrens.

Resume.
Dans le present memoire Pauteur developpe une methode exacte de

calcul du flambage de la poutre continue sur plusieurs appuis dont les
sections et les moments d'inertie sont invariables ä Pinterieur d'une ouverture
et qui est soumise, dans les limites des ouvertures, ä des forces concentrees
axiales. On peut avoir simultanement des forces de traction ä cöte des forces
de compression, comme c^est par exemple le cas lors du flambage de la
membrure superieure d'une poutre continue d'un pont ä section ouverte (Sm
de la fig. 1); on peut egalement avoir dans une poutre continue des barres
qui ne sont soumises ä aucune force axiale (S'0 de la fig. 1). Les appuis
peuvent etre d'un quelconque des types representes schematiquement ä la
fig. 2 et ils peuvent etre combines ä volonte.

L'auteur developpe, pour des poutres continues de ce genre, c?est-ä-dire
pour des poutres qui peuvent presenter une disymetrie quelconque quant
p sa construction, ses surcharges et ses appuis, un Schema de calcul d'apres
lequel le calcul des determinants de flambage peut toujours se faire de la
meme fagon et avec la meme simplicite.

L'exemple numerique traite au chapitre IX ainsi que d'autres exemples
numeriques publies par Pauteur sous le titre « Ein Rechenschema zur
Knickberechnung mehrfeldriger Stäbe» (Stahlbau 1941/42) montrent Papplication
pratique de la methode.

Summary.
In this article a strict method of calculating the buckling of a continuous

multi-bay member is developed, whose cross-sections and moments of inertia
within any bay are constant, and which is supported within the limits of
the bays by separate forces acting axially. Besides pressure forces, tensile
forces may also occur, as for instance in the buckling of the top boom in
the continuous girder of an opea bridge (Sm in fig. 1); also bay members
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which are not stressed by any axial force (S0f in fig. 1) may be present in
the continuous member. The supporting within the limits of the bays may
be effected by any of the methods illustrated diagrammatically in fig. 2,
and these methods of supporting may be adopted in any desired combination.

For such continuous members, which may display any desired lack of
symmetry with respect to design, load and supporting, a method of calcu-
lation is developed, according to which the buckling determinants can always
be calculated in the same manner and in an equally simple manner.

The numerical example in section IX and further nurnerical examples
in the author's article "Ein Rechenschema zur Knickberechnung mehrfeldriger
Stäbe" (in Stahlbau 1941/42) show how the method can be applied in
practice.
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