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BERECHNUNG DER VERSTEIFUNGSTRÄGER VON
HANGEBRUCKEN.

CALCUL DE LA POUTRE RAIDISSEUSE DES PONTS SUSPENDUS.

CALCULATING THE STIFFENING GIRDERS OF
SUSPENSION BRIDGES.

S. KASARNOWSKY,
Diplomingenieur, Erster Konstrukteur der Brückenabteilung der Hafenverwaltung,

Stockholm.

Im folgenden wird gezeigt, daß die genaue Theorie des Versteifungsbalkens

für die wichtigsten Belastungsfälle sehr einfache Resultate liefert,
wenn die Durchbiegungen als Produkte der Durchbiegung des unversteiften
Kabels und einer Funktion @(X) dargestellt werden. 0(1) ist vom Belastungsfall

allein abhängig. Ihr Argument / ist eine Größe, die vom Material, dem
Trägheitsmoment des Versteifungsträgers, seiner Spannweite und von dem
jeweils vorhandenen Kabelzug abhängig ist. Es wird ferner gezeigt, daß die
Biegungsmomente ebenfalls von der selben Funktion &(X) abhängig sind.

1. Beziehung zwischen Horizontal- und Vertikalverschiebungen
eines Kabels.

K</

fr+okjfetofyj
°5>

<Z>

ry+**?)ft>-<st) Fig. 1

Bezeichnen rj und | die Vertikal- und Horizontalverschiebungen, xp die
Drehung eines Kabelelementes und e seine Dehnung, so bestehen bekanntlich
folgende geometrische Beziehungen *):

£=-*•§ <»

Aus diesen Gleichungen folgt die Änderung der Stützweite A1B1 des Kabels
(Fig- 2)

1) Siehe S. Kasarnowsky, Beitrag zur Theorie weitgespannter Brückenbogen. Der
Stahlbau 1931, Heft 6.
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ßi B\

Ai Ax

Bezeichnen ferner X =¦ Horizontalzug im Kabel, FK seinen Querschnitt,
EK seinen Elastizitätsmodul, so wird

~~
cos/!/ EKFK

^ '
Ist die Kabelkurve eine Parabel, so kann genügend genau gesetzt werden

%

H>+(!)>-'(1+8^)^0 (5)

wobei /', /' die Spannweite und Pfeilhöhe des Kabels und e0 die Dehnung
im Scheitel bedeuten.

2. Berechnung des Horizontalzuges.
Der horizontale Kabelzug X berechnet sich aus der Bedingung:
Horizontalverschiebungen der Pylonen Horizontalverschiebung des

Kabels A1B1. Die Horizontalverschiebungen der Pylonen berechnen sich,
wie aus der Figur 2 hervorgeht, aus:

j. C\ X c% X
bl cos"*A'£-*/V ~2 cos* ß2'EKFK (6)

h<*, *,
\^y^ f <^C.f \yC//

V >///£////////////////;//. JSS
'A

Fig. 2

Aus den Gleichungen (3), (5) und (6) erhält man

COS2ß2

Bezeichnet man mit E,J den Elastizitätsmodul und das Trägheitsmoment
des Versteifungsbalkens und setzt man zur Abkürzung

_15 E J V
<"°- 8

' EK' FKpi'a

so wird

/"2 1 Cj 1 c2
« — l + 8

^2
4- -^-ß- ¦

v + coss ^ ¦
-J,

v \5Ejfdt,
^x==YijAdx-dy

(8)

(9)
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In folgenden Entwicklungen wird die Integration zwischen den Grenzen A
und B ausgeführt, da die Kabeldeformation auf den Strecken A±A und BXB
nach der üblichen Formänderungstheorie vernachlässigt werden kann.

3. Die Differentialgleichung der Vertikalverschiebung.
Bezeichnet man mit p die Belastung des Versteifungsträgers und mit pK

die Belastung des Kabels, so gelten
d2 (y + rj) _ pK% d±t] _p — pK

dx2 X' dx" EJ
y }

Ist die Ordinate y des Kabels im unbelasteten Zustand eine Parabel, so wird

dx2 /2 r y '
Setzt man

K*=J-§; <p ~ (12)

und ' Co=JL-1- (13)

so folgt aus Gl. (10), (11), (12) und (13)

d±rj d^_K dx" dx2 -Co {l4)

Für gleichmäßige Streckenlasten wird das allgemeine Integral der Gl. (14)

/, ,4sinh <p + Bcoshcp —
C*

x2 + Q x + C2 (15)

di 1

'/= V ^{Acoshqj + Bsinh cp) - c0x + Q (16)
dx i\

Das Biegungsmoment M des Versteifungsbalkens erhält man aus

M —JE^ - X{A sinh <p + B cosh q> — c0K*} (17)

In folgenden Entwicklungen wird stets eine freie Auflagerung an den Stützen
vorausgesetzt, somit rj" 0.

4. Gleichmäßig verteilte Belastung p über die Spannweite AB.
Wählt man den Koordinatenursprung in Balkenmitte, so verschwinden

aus Symmetriegründen die Integrationskonstanten A und Cv. Die übrigen
Konstanten erhält man aus den Randbedingungen:

x ± ^ ; >, 0; //' 0

Setzt man l — • //
z t\ i

cosh n,so wird '< c0K*j~(^-<p2) ^-cSh 2
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und
' * <w*.*(,_^) (I4)

Bezeichnet
P

H a-fp rp

den Horizontalzug im unversteiften Kabel, so kann

x TTTt (2°)

gesetzt werden. Die Korrektionszahl ii berechnet sich aus den Gleichungen
(9) und (18), indem man r\' aus Gl. (18) bildet und Gl. (9) integriert:

_ 2 kb
'" T5 W11 W7- tgh l) ]

iU° (21}

Pq erscheint hier als der Grenzwert von ju für limes^ 0. Eine ähnliche
Gleichung für ju erhält man auch für den Zweigelenkbogen, wenn man tgh/
durch tgA ersetzt1).

Setzt man für tgh! die Reihe:

so geht Gl. (21) über in:

l.i= (1 +0,4(U2)^0 (22)

Diese Gleichung gilt mit genügender Genauigkeit für alle Werte von l.
Um den Horizontalzug X bequem berechnen zu können, führen wir die

Hilfswerte
HPV jj-F und m 0,40 V Ho (23)

ein. Aus den Gl. (7) und (23) folgt
3*_ 2

l H \l' r

d. h. m ist unabhängig von /.
Mit Hilfe von Gl. (23) und (24) kann die Gl. (22) aufgelöst werden:

** L2"nf°
2 m

oder angenähert:
(Kr&Hv

" "<>+t+^+-„0 (2ö)

Die Gleichungen (18) und (19) können jetzt mit Hilfe von Gl. (22)
vereinfacht werden.

U LI P
Aus Gl. (13) folgt £0 — und c()K2 .„ und mit Rücksicht auf

Gl. (22)

^'^i^O + ^^F (2?)
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Für die Durchbiegung im Scheitel erhält man aus Gl. (18) und (27) mit

dir==1"~Xn1- cosh*

X
ri ar-EkFk

115 1 + 0,4(H2
J_ _ ^J

25
Der Ausdruck in der Klammer ist fast unabhängig von l. Er wird ^ für 1 0

24 1D
und irz für l oo.16

Wir setzen
3

'=2 «r(^)~^- (28)
\EKFKf \ + u

Für das Moment im Scheitel erhält man aus Gl. (19), (27) und (28)

Der Ausdruck in der geschweiften Klammer variiert zwischen 1 für ,1 0
und 0,80 für l oo. Für l zwischen 3 und 8 kann mit einer Genauigkeit
von 3 o/o geschrieben werden

5. Streckenlast 9 über halbe Spannweite und durchgehende
Belastung p über die ganze Spannweite.

/9gJL^^U '^^ Fig. 3

Die elastische Linie des Versteifungsbalkens besteht aus zwei Zweigen.
Für jeden Zweig gelten zunächst die Randbedingungen

xx 0; rn ?//V= 0 resp. Jt3 0; >/2 — >;2" 0

Man erhält aus Gl. (15) und (17)
für den linken Zweig:

/yi — Ax sinh <px + c0l ^/C*(cosh <p, — 1) — -^ | + Q jct (30)

für den rechten Zweig:

>y2 — ,42sinh <p2 + £0? /C2 (cosh q?„ — 1) —^- + C2x2 (31)

Aus der Gl. (13) folgt

- <?+P X

r - L.^ ]
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Setzt man X= H
^

und H r[p + |) (32)

wobei H wieder den Horizontalzug des unversteiften Kabels bedeutet, so
werden

°01- r +2X' Co2~ r 2X (JJ)

Die Konstanten A1A2C1C2 werden aus den Bedingungen für die Balkenmitte

:

?i ^t; ii + W 0; >/i" 1*"; W" + W" °
ermittelt.

Aus den Gl. (30) bis (33) erhält man folgende Werte für die
Integrationskonstanten :

_ liI qj^% _ LtJ ql
^~2r^8X> ^~~2r 8X

^--^ ytghZ + 2x'^sinirr^

¦^«"-Ä'trl
Die Korrektionszahl /* berechnet sich auf gleiche Weise wie im ersten

Belastungsfall und führt zu genau gleichem Resultat. Die Gl. (21) gilt auch
in diesem Belastungsfall, wenn man und 20 mit Hilfe der Gl. (32)
bestimmt.

Die nahezu größte Durchbiegung entsteht im Abstände von A und

beträgt:

-lll !i_! COSh2-1l ,«*»[3
r>

cosh^-cosh 2I
(34)

r<-64x\ A«- coshyj +
"i--|8

• " coshÄ

Das erste Glied in dieser Gleichung kann wie folgt verwandelt werden:
Man setzt

o /cosh
*' -l\* ' - ' cost« j

(siehe Fig. 4); aus Gl. (32) folgt
_1_ qP f q

1 + \i
'
64X 4 2p + q

Es läßt sich leicht zeigen, daß dieser Ausdruck die Durchbiegung des
unversteiften Kabels darstellt.

Das zweite Glied der Gl. (34) kann mit Hilfe von Gl. (22) wie folgt
geschrieben werden:

X 15(1 + 0,40/,*)
a r

EKFK 2 l
3 coshA — cosh 2

8 cosh l
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Der Ausdruck in der geschweiften Klammer ist nahezu konstant. Zwischen

/ 0 und / oo variiert er zwischen ^^r und ^=^256 256
Die Gl. (34) kann jetzt in folgender klarer Form geschrieben werden

/ q
*"= 4-2p'+^+"^+lar^FK (36)

Das positive Moment im Abstände 1/4 von A erhält man durch ähnliche
Betrachtungen zu

M+=mV- *'> + £i+> + 2»/* (37)

Der Einfluß von p kann durch Einschaltung von provisorischen Gelenken
eliminiert werden.

/o

Ob

Of

07

Oe

Os

Q*

Os

O2

O/

A~J A* S 6 7 6 3 AO // /2 /3 /Aß /S

Fig. 4

Die angenäherte Theorie der Hängebrücken, d. h. die Berechnung der
Momente ohne Rücksicht auf die Durchbiegungen gibt wie bekannt für
gleiche Belastung:

^0

%
&

¦ ¦

1*/ (ä sj

__.

-

!L+ %.

'5,

9,-
r i

1

9*- /-4
2

— —
1

—
8- '-\

1l~> '-%
1"

I

*f £ + M-i?7.(' + 2')/1 (38)

j % I H
Der Ausdruck @1 nähert sich für / - 0 und (l - )2\ für 2^>10

6. Streckenlast q von der Länge b im Scheitel und
durchgehende Belastung p über die ganze Spannweite.

^^^
*/

wf-//>l

Fig. 5

Die elastische Linie des Versteifungsträgers besteht auch hier aus zwei
Zweigen. Ohne auf Zwischenrechnungen einzugehen, sollen hier nur die
Resultate der Berechnung angegeben werden.
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Wir setzen

und wie früher

Setzt man

S. Kasarnowsky

X -.=
1 + ft

(39)

4K2 4JE

ßi
l—b
2K ' 1K

so wird das Moment im Scheitel

cosh jit yM 4?J <[ cosh l 1 + f* ('-JtOI + tt^1- cos¥r)h40>

Das /?-Glied hat den gleichen Bau wie im Abschnitt 4 und kann nach Formel

(29) berechnet werden.
Der Horizontalzug berechnet sich aus Gl. (9) und (39) zu

/' \p + TT A + ^It— y] V* 0 + 0,4OX*)(p + yq)

wobei Qo
sinh ß2

Qi

cosh/l

l

c-

A3

"3

+ A,2

tglU

/J2 0

bedeuten. Wählt man y p0/£i> so vereinfacht sich die obige Gleichung zu

« (1 + 0,40/L2)t/0 (22 a)

d.h. genau gleich der Gleichung (22).
Für b 0,30 / sind die Werte von y in Tabelle 1 angegeben.
Mit Hilfe der Gl. (22a) kann Gl. (40) wie folgt umgeschrieben werden:

M qP
("l + i"o v*)

1 + fl
Für 6 0,30 / sind Werte von vt und v2 in Tabelle 1 angegeben.

Tabelle 1.

(41)

l 7 "i ^2

2 0,4496 0,00614 0,0696
3 0,4476 0,00515 0,0752
4 0,4455 0,00420 0,0807
5 0,4438 0,00339 0,0854
6 0,4424 0,00271 0,0893
7 0,4414 0,00223 0,0922
8 0,4405 0,00183 0,0945
9 0,4399 0,00152 0,0962

10 0,4394 0,00128 0,0974
oo 0,4365 0 0,1000
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Die Durchbiegung im Scheitel ohne Rücksicht auf die Reckung des
Kabels wird für b ¦= 0,30 /:

00735.^1
p + yq I ' (42)

Der Ausdruck in der geschweiften Klammer ist, wie bekannt, die
Durchbiegung eines unversteiften Kabels, wenn für y 0,4365 gesetzt wird.

Die Funktion @2 ist in Fig. 4 dargestellt.
Aus dem Vergleich der Gleichungen (37) und (41) geht hervor, daß die

Momente im Scheitel und in den Viertelpunkten, bei schwachen Versteifungsbalken,
d. h. bei großen 1, einander nahezu gleich werden.

7. Eine Einzellast P im Scheitel und durchgehende Belastung
p über die ganze Spannweite.

k°

i JlL
¦'/////V///////v>/////////////,

_&. Fig. 6

Die Berechnung liefert hier folgende Resultate:
Der Horizontalzug kann mit genügender Genauigkeit gleich dem

Horizontalzug eines unversteiften Kabels gesetzt werden:

oder, wenn - klein ist, H pr\\ + «-(-,)}

Mit »¦='-*'*-/+;> 1

cosh l

(44)

(45)

(siehe Fig. 4) wird die Durchbiegung im Angriffspunkt von P ohne Rücksicht

auf die Kabelreckung, die aus der Gleichung (28) berechnet werden
kann,

1 iP\
2 \pl,

f

1 +
3 IP
2 \pll)

©a (46)

Der Ausdruck in der geschweiften Klammer ist, wie bekannt, die
Durchbiegung des unversteiften Kabels.

Das Moment im Angriffspunkt für P ohne Rücksicht auf die
Kabelreckung wird

Af=^(l-Öa) (47)16

für große l wird M ¦= El
41'
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8. Eine Einzellast P im Balkenviertel und durchgehende
Belastung p über die ganze Spannweite.

P
VV777aV7Zu.

J*_

r/> \ Fig. 7

Die Berechnung liefert hier folgende Resultate:
Der Horizontalzug kann mit genügender Genauigkeit gleich dem

Horizontalzug eines unversteiften Kabels gesetzt werden:

H pr +

oder, wenn -, klein ist,
pl

9 IP

(48)

Mit (-). 1
64 1^ * l—±—
21 \l \tgh2A inh K2 sinh 8//2

cosh -

cosh l
(siehe Fig. 4) wird die Durchbiegung im Angriffspunkt für P ohne Rücksicht

auf die Kabelreckung, die aus dem zweiten Glied der Gl. (36)
berechnet werden kann,

2M-)f32\pl]t
9

1 + o8 \p

a (49)

Der Ausdruck in der geschweiften Klammer ist, wie leicht einzusehen
ist, die Durchbiegung des unversteiften Kabels.

Das Moment im Angriffspunkt für P ohne Rücksicht auf die
Kabelreckung wird

*f ^/>/(i-e,) (50)

21

256
PI ist das ohne Rücksicht auf die Deformation des Versteifungsträgers

und bei Annahme eines Kabelzuges nach Gl. (48) berechnete Moment.
PI

Für große l nähert sich M dem Wert jy

9. Beziehungen zwischen der Theorie des Versteifungsbalkens
und der Theorie des Zweigelenkbogens.

Die Versteifungsbalken von verankerten Hängebrücken und die Bogen-
träger haben die Eigenschaft gemeinsam, daß sie beide statisch veränderliche

Systeme darstellen, d. h. Systeme, bei denen die Beanspruchungen,
Durchbiegungen usw. den Belastungen nicht proportional sind.

Während beim veränderlichen System die Durchbiegungen und
Beanspruchungen linear mit der Belastung wachsen, nehmen sie beim Versteifungs-
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balken von Hängebrücken weniger zu, bei Bogenträgern vergrößern sie sich
rasch, besonders wenn die kritische Last bald erreicht ist.

Aus der Theorie der Bogenträger mit Kämpfergelenken ist bekannt, daß
das Moment durch die Gleichung

M Ma + >iaXr (51)

dargestellt werden kann. Es bedeuten hier Ma und rja das Moment und die
Durchbiegung, berechnet nach der klassischen Methode ohne Rücksicht auf
die Formänderungen und r eine Zahl > 1, die den angenäherten Wert

r= GK

hat, wobei oK die kritische Beanspruchung des Bogens und o„ seine
Normalspannung bedeuten.

Man kann daraus den Schluß ziehen, daß das Moment des Versteifungsträgers

ähnlich durch
m Ma — >iaxr

dargestellt werden kann, wobei

r °f ist.

on bedeutet hier eine fingierte Normalspannung gleich Kabelzug durch
Querschnitt F des Versteifungsbalkens und

4 7T2EJ
** --pjr

d. h. die kritische Spannung eines flachen Zweigelenkbogens.
Aus den Bezeichnungen der vorigen Abschnitte geht hervor:

Q2 PX ^ X 9an
4 JE aK F oK

somit
7C2

r 7C* + k*

Dieser Ausdruck stimmt gut überein mit (1—0X). Es gilt somit
angenähert

i 2

«1
l2 + TT2

10. Die Bedeutung des Versteifungsträgers der verankerten
Hängebrücken.

Der Versteifungsträger hat zwei Funktionen zu erfüllen:
1. Die Durchbiegung der Brücke für Verkehrslast in zulässigen Grenzen

zu halten.
2. Als Gurt für den horizontalen Windverband zu dienen.

Die modernen Hängebrücken haben verhältnismäßig schwere Fahrbahn,
so daß die Durchbiegungen des unversteiften Kabels bedeutend geringer
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sind als bei älteren Brücken mit leichter Fahrbahn. Bei gegebenem Verhältnis
zwischen Verkehrslast und Eigengewicht gibt es zwei Wege, die

Durchbiegungen zu reduzieren, entweder die Pfeilhöhe niedrig zu halten oder den
Versteifungsträger stärker auszubilden. Der erste Weg ist gewöhnlich
vorzuziehen. Gute Beispiele moderner Hängebrücken für Landwege sind die
von Herrn Oberingenieur Stano konstruierten Brücken in Norwegen.

Die größte dieser Brücken, die Ronosfossbrücke, hat eine Spannweite
von 183 m, ein Pfeilverhältnis von 1/10 und einen Abstand zwischen den
Kabeln von 6 m. Die Versteifungsträger bestehen, je Tragwand, aus einem
breitflauschigen I - Profil von 40 cm Höhe und einem Metergewicht von
151 kg. Die Fahrbahn besteht aus einer Eisenbetonplatte und gewalzten
Querträgern. Das Eigengewicht, je Tragwand, ist 1,13 t/m. Die Brücke ist
berechnet für zwei 9 - Tonnen Lastwagen oder eine gleichmäßig verteilte
Belastung von 0,20 t/m2.

Führt man eine Kontrollberechnung durch, so findet man folgende
Durchbiegungen im Abstände 1/4 vom Auflager:

Für einseitige Verkehrslast 0,20 t m2 0,90 m
Für zwei 9-Tonnen Lastwagen 0,35 m

Die Durchbiegung für halbseitige Belastung ist somit ungefähr 1 200
der Spannweite.

Trotzdem die Versteifungsträger sehr weich sind (l ^ 15), hat sich die
Brücke im Verkehr bewährt.

Man kann daraus den Schluß ziehen, daß bei Berechnung von
Versteifungsträgern von Landwegbrücken es unnötig ist, einseitige gleichmäßig
verteilte Belastung zu berücksichtigen.

Es dürfte genügen, wirklich vorkommende Einzellasten (Fahrzeuge) zu
berücksichtigen und nur für diese die zulässigen Durchbiegungen auf etwa
1/400—1/600 der Spannweite zu beschränken.

Zusammenfassung.
Ausgehend von der genauen Differentialgleichung der Biegelinie des

Versteifungsbalkens wird gezeigt, daß die maximalen Durchbiegungen aus
der Durchbiegung des unversteiften Kabels durch Multiplikation mit einer
Funktion hervorgehen, deren Argument von der Biegesteifigkeit des
Versteifungsträgers, seiner Spannweite und dem jeweils vorhandenen Kabelzug
abhängig ist. Weiter wird gezeigt, daß die maximalen Biegungsmomente
ebenfalls von der selben Funktion abhängig sind.

Für den frei aufliegenden Versteifungsträger werden für einige einfache
Belastungsfälle geschlossene Formeln für Momente und Durchbiegungen
angegeben.

Resume.

Partant de Pequation differentielle exacte de la ligne elastique de la
poutre raidisseuse, Pauteur montre que les fleches maxima peuvent etre
calculees ä partir de la fleche du cäble non raidi, en multipliant cette fleche
par une fonetion dont Pargument depend de la rigidite de la poutre
raidisseuse, de sa portee et de la tension dans le cäble. II demontre ensuite
que les moments de flexion maxima dependent egalement de la meme
fonetion.
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L'auteur donne pour terminer des formules pour le calcul des moments
et des fleches pour quelques cas de charge simples de la poutre raidisseuse
sur appuis simples.

Summary.
Starting with the exact differential equation of the bending line of the

stiffening girder, it is shown that the maximum deflections are obtained from
the deflection of the unstiffened cable through multiplication by a funetion
whose argument depends on the resistance to bending of the stiffening
girder, its span and the momentary pull in the cable. Further it is shown
that the maximum bending moments also depend on the same funetions.

For the stiffening girder supported at both ends, working formula are
given for moments and deflections in some cases of simple loading.

Abhandlungen VI 10
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