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BERECHNUNG DER VERSTEIFUNGSTRAGER VON
HANGEBRUCKEN.

CALCUL DE LA POUTRE RAIDISSEUSE DES PONTS SUSPENDUS.

CALCULATING THE STIFFENING GIRDERS OF
SUSPENSION BRIDGES.

S. KASARNOWSKY,
Diplomingenieur, Erster Konstrukteur der Briickenabteilung der Hafenverwaltung,
Stockholm.

Im folgenden wird gezeigt, daB die genaue Theorie des Versteifungs-
balkens fiir die wichtigsten Belastungsfille sehr einfache Resultate liefert, -
wenn die Durchbiegungen als Produkte der Durchbiegung des unversteiften
Kabels und einer Funktion © (1) dargestellt werden. © (1) ist vom Belastungs-
fall allein abhingig. lhr Argument /1 ist eine GroBe, die vom Material, dem
Triagheitsmoment des Versteifungstriagers, seiner Spannweite und von dem
jeweils vorhandenen Kabelzug abhingig ist. Es wird ferner gezeigt, daB die
Biegungsmomente ebenfalls von der selben Funktion @ (1) abhidngig sind.

1. Beziehung zwischen Horizontal- und Vertikalverschiebungen
eines Kabels.

Xy ol

7|

Lo~ S #roE) (v
~NCF
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[p°%) (€ »h) Fig. 1
Bezeichnen » und & die Vertikal- und Horizontalverschiebungen, v die

Drehung eines Kabelelementes und ¢ seine Dehnung, so bestehen bekanntlich
folgende geometrische Beziehungen?):

d& dy

ax =T M
dy dy

= Y @)

Aus diesen Gleichungen folgt die Anderung der Stiitzweite A, B, des Kabels
(Fig. 2) : '

1) Siehe S. Kasarnowsky, Beitrag zur Theorie weitgespannter Briickenbogen. Der
Stahlbau 1931, Heft 6.
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B

E=-- (51 + gz) — _JIZ;/ dy + j?lt‘? [1 + (3%)2] dx 3)

1 1

Bezeichnen ferner X = Horizontalzug im Kabel, Fx seinen Querschnitt,
Ey seinen Elastizititsmodul, so wird

X 1
= cos#  FeFx @
Ist die Kabelkurve eine Parabel, so kann geniigend genau gesetzt werden
B,
' dy\* ; /2
, 8[1 + (&}) ]dx =/ (1 + 8[;2) & )

wobei //, f/ die Spannweite und Pfeilhohe des Kabels und ¢, die Dehnung
im Scheitel bedeuten,

2. Beredhnung des Horizontalzuges.

Der horizontale Kabelzug X berechnet sich aus der Bedingung:

Horizontalverschiebungen der Pylonen = Horizontalverschiebung des
Kabels A,;B;. Die Horizontalverschiebungen der Pylonen berechnen sich,
wie aus der Figur 2 hervorgeht, aus:
1) X

< .
S e o
” cos?f, ExFx ’

(0)

1 =

Fig. 2
Aus den Gleichungen (3), (5) und (6) erhilt man
B,
i X ( /f,'z) B W T
ia’x = Ex Fx {l T+ 81"3 t cos? 3 + cos2ﬁ’2}

Bezeichnet man mit £,/ den Elastizititsmodul und das Triagheitsmoment
des Versteifungsbalkens und setzt man zur Abkiirzung

15 E J v

Mo="8 "Fx Fxfr1 “ @
_ | [ 1 o, 1 o
e=\l+8+ cos? B, I T cosp, l’) ®)

so wird

Bi‘d
U X = = J VL ay 9)
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In folgenden Entwicklungen wird die Integration zwischen den Grenzen A
und B ausgefiihrt, da die Kabeldeformation auf den Strecken 4,4 und B, B
nach der iiblichen Forméanderungstheorie vernachldssigt werden kann.

3. Die Differentialgleichung der Vertikalverschiebung.

Bezeichnet man mit p die Belastung des Versteifungstragers und mit pg
die Belastung des Kabels, so gelten

a+n k. diy_p—rk (10)
X' dxt EJ
Ist die Ordinate y des Kabels im unbelasteten Zustand eine Parabel, so wird
d*y  8f 1
Fro (1D
Setzt man
. JE X
2 —J 7. _— .
K=" e=1% (12)
: _r_1
und | =% (13)
so folgt aus Gl. (10), (11), (12) und (13)
dty  dy
K g~ de = (14)

Fiir gleichméBige Streckenlasten wird das allgemeine Integral der Gl. (14)

’ 1,‘:ASiﬂhqv—f—BCOShm—EzQ»x?+ C,x+ C, (15)
7 = 27 == L {Acoshg + Bsinhg} -—cyx + C (16)
i dx K\ q 0 1
Das Biegungsmoment M des Versteifungsbalkens erhdlt man aus
M= d”:mxmgm¢+3mm¢mqkﬂ 17

In folgenden Entwicklungen wird stets eine frele Auflagerung an den Stiitzen
vorausgesetzt, somit »” = 0.

4. GleichmiBig verteilte Belastung p iiber die Spannweite AB.

Wihlt man den Koordinatenursprung in Balkenmitte, so verschwinden
aus Symmetriegriinden die Integrationskonstanten A und C,. Die iibrigen
Konstanten erhidlt man aus den Randbedingungen:

x:_—té; y=0; '=0

Setzt man J o= 2x

] . - ., . / cosh ¢
so wird y=ak |y (g (1= O x)} (18)
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' _ e ke x (1 cosh ?)

und M= KX (1 cosh 4 (19)
Bezeichnet

l"Z

H = Sfp =rp
den Horizontalzug im unversteiften Kabel, so kann
H
il (20)

gesetzt werden. Die Korrektionszahl u berechnet sich aus den Gleichungen
(9) und (18), indem man #’ aus GI. (18) bildet und Gl. (9) integriert:

gl 2 A,f) I

T 15 A —3(h—tgh )] "
¢ erscheint hier als der Grenzwert von u fiir limesi = 0. Eine dhnliche
Gleichung fiir p# erhidlt man auch fiir den Zweigelenkbogen, wenn man tgh i

durch tg i ersetzt?l).
Setzt man fiir tgh 4 die Reihe:

(21)

d 7.
' tghi = 4 — 3 + 2115 -1—311—}“5—
so geht Gl. (21) iiber in:
w= (1 + 0,4024%) u, (22)
Diese Gleichung gilt mit geniigender Genauigkeit fiir alle Werte von 4.

Um den Horizontalzug X bequem berechnen zu kénnen, fithren wir die
Hilfswerte

Ao? = - . und m = 0,40 4% u (23)
0 4_/E y o Ho
ein. Aus den Gl. (7) und (23) folgt

m_3 (H)l’ r
= 2 \EeF) T 7

d. h. m ist unabhingig von /.
Mit Hilfe von Gl. (23) und (24) kann die Gl. (22) aufgeldst werden:

,2~1+!l “/ +_ﬁ -"}102 (25)

m
CEOT T 4w,

Die Gleichungen (18) und (19) konnen jetzt mit Hilfe von Gl. (22)
vereinfacht werden.

(24)

oder angenahert:
(26)

2 -
Aus Gl. (13) folgt ¢, = —t—f— und ¢ K2 = 4’;{,{2 und mit Riicksicht auf
Gl. (22)
15 rX
2 — 2
ey K2 = 2 “EeFe (1 —}—0401)/14 (27)
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Fiir die Durchbiegung im Scheitel erhilt man aus Gl. (18) und (27) mit

. 2 1
h=1— 35 (1= oun)

X {15 1+ 04072 }
29 . 4

n=aoar

/ ExFx )4 FE

Der Ausdruck in der Klammer ist fast unabhingig von 1. Er wird %g fir i=20
und »12—4 fiir 1 = oo.
Wir setzen

3 (X mf -
=9 “r(EKFK)NTJ?;} (28)

Fiir das Moment im Scheitel erhdlt man aus Gl. (19), (27) und (28)

P :
— ﬁ_o,ﬁ .%{(1 + 0,4042) (1 — d,)}

Der Ausdruck in der geschweiften Klammer variiert zwischen 1 fiir 1 = 0
und 0,80 fiir 2 = oo. Fiir 2 zwischen 3 und 8 kann mit einer Genauigkeit
von 3 9% geschrieben werden

_ Mo .ﬂl"( ,__w)
M= " 0,80+3,5+}v (29)

5. Streckenlast g iiber halbe Spannweite und durchgehende
Belastung p iiber die ganze Spannweite.

%
/“\ , g - p ~
A, SN > O-]
Tl P
! { A Fig. 3

Die elastische Linie des Versteifungsbalkens besteht aus zwei Zweigen.
Fiir jeden Zweig gelten zunichst die Randbedingungen

— 0 s o gy PR — 0. e |
xl — 0, '}1 —_ '}1 ’;_:‘— 0 reSp. xg —_ O, ’/2 _ "2 ! —— O

Man erhilt aus Gl. (15) und (17)
fiir den linken Zweig:

y, = Agsinh ¢y + ¢, lK2 (cosh ¢, — 1) — x{] + Cixy (30)

fiir den rechten Zweig: 7
ns = Agsinh ¢, + ¢y [K2 (cosh ¢y — 1) — %—1 + Cyx, (31)

Aus der Gl. (13) folgt
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Setzt man X = 14 und H = r(p + 5 (32)
wobei H wieder den Horizontalzug des unversteiften Kabels bedeutet, so
werden
u g . u q
o1 ="+ 555 Co2 ==~ — a3y (33)
Die Konstanten 4; A, C,C, werden aus den Bedingungen fiir die Balken-
mitte:

m=n '+ =0 =" "+ p"=0
ermittelt.
Aus den Gl. (30) bis (33) erhdlt man folgende Werte fiir die Inte-
grationskonstanten:

gl _ul gl

G = +8X’ C:=35, 8x
R g coshi —1
=—K {r tght+ 5% einhi }
e 7 .9 coshl—l
4y =—K {r tgh 4 "2X sinhi }

Die Korrektionszahl @ berechnet sich auf gleiche Weise wie im ersten
Belastungsfall und fiithrt zu genau gleichem Resultat. Die Gl. (21) gilt auch
in diesem Belastungsfall, wenn man 2 und 2, mit Hilfe der Gl. (32) be-
stimmt.

Die nahezu grofte Durchbiegung entsteht im Abstande ! von A und

4
betrigt:
2 . /.
ST P Bk bl 7 E PR el BRE
64 X 12 cosh% l 8 cosh 1 l
Das erste Glied in dieser Gleichung kann wie folgt verwandelt werden:
Man setzt ‘
g [ cosh -r————l
o =1 S[2 (35)
. cosh

(siehe Fig. 4); aus Gl. (32) folgt

o9 _ g
14+ u 64X 42p +gq

Es 148t sich leicht zeigen, daB dieser Ausdruck die Durchbiegung des un-
versteiften Kabels darstellt.
Das zweite Glied der Gl. (34) kann mit Hilfe von Gl. (22) wie folgt
geschrieben werden:
A
wr X [15(1«}-040/4) im_coshl cosh 2 l
Ex Fx ] 2 7.2 8 cosh 2 [
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Der Ausdruck in der geschweiften Klammer ist nahezu konstant. Zwischen

5 d r e ompd . 285 288
/= 0 und 4 - oo variiert er zwischen 256 und 256 °
Die Gl. (34) kann jetzt in folgender klarer Form geschrieben werden
! p ol
1= g, (16, T rEoh (36)

Das positive Moment im Abstande //4 von A erhilt man durch dhnliche
Betrachtungen zu
+ ql) — (H 3
11— 00+ (0 @t 2pe (37)

Der EinfluB von p kann durch Einschaltung von provisorischen Gelenken
eliminiert werden.

,/0 T :
Zj _// ._———‘\—"“"-_-“—"l——‘
=" N S S e
5 R
07 /, // // frmmre"] ] B
L A | |Gl —] ] _
s %éﬁﬁz —
ar=s RN l 4
gs+— // ] b ] k _KN/{?O,'@-/_;F i
’ > -l &
Os /// - v{a 9’ & 2 S
00 : | BN Ui Xl w7 .4
/ 64 //
o - L A=45: G =137 7"3’%?'1,,
0 i ]
A=3 4% ) 6 7 I 2 0 V4 72 /3 A A5

Fig. 4

Die angendherte Theorie der Hangebriicken, d. h. die Berechnung der
Momente ohne Riicksicht auf die Durchbiegungen gibt wie bekannt fiir
gleiche Belastung:

me=98 3 (g +2p)0° (38
64 To4” 1+,0‘7 P )
72
Der Ausdruck @, nihert sich 8 fir 2 = 0 und (1 -~ )89) fur 42 10.

6. Streckenlast g von der Linge 5 im Scheitel und
durchgehende Belastung p tliber die ganze Spannweite.

8
LTAL_L
> ‘
dx o el T Fig. 5

Die elastische Linie des Versteifungstriagers besteht auch hier aus zwei
Zweigen. Ohne auf Zwischenrechnungen einzugehen, sollen hier nur die
Resultate der Berechnung angegeben werden.
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Wir setzen
_rp+79)
R (39)
und wie frither
o X
T 4K®*  4JE
Setzt man
[— b b
b = —27; By = 2K

so wird das Moment im Scheitel

_r __cosh g, y ( 1 )I T (_“ 1 )l
”’-—275{4[‘ coshz T+ u\' 7 cosha/l T 15”1 coshz )| 440

Das p-Glied hat den gleichen Bau wie im Abschnitt 4 und kann nach For-
mel (29) berechnet werden.

Der Horizontalzug berechnet sich aus Gl. (9) und (39) zu

alp+ 2]+ a8 — )= w00 + 00020 + 70

1
. __sinh g, ()ﬂ 82 >
wobel 0 = coshz T \a e
A3
o ="y — 1 tgho

bedeuten. Wihlt man y = g,/0,, so vereinfacht sich die obige Gleichung zu
w=(1 + 04022)u, (22a)

d. h. genau gleich der Gleichung (22).
Fiir & = 0,30 / sind die Werte von y in Tabelle 1 angegeben.
Mit Hilfe der GI. (22a) kann Gl. (40) wie folgt umgeschrieben werden:

_
M= 1+u (1 + 1o 79) (41)

Fiir &6 = 0,30 / sind Werte von »; und », in Tabelle 1 angegeben.
Tabelle 1.

A y P Ve

0,4496 | 0,00614 | 0,0696
04476 | 0,00515 | 0,0752
04455 | 0,00420 | 0,0807
0,4438 | 000330 | 0,0854
04424 | 0,00271 | 0,0893
04414 | 000223 | 0,0022
04405 | 0,00183 | 0,0945
04399 | 0,00152 | 0,0062
04394 | 0,00128 | 0,0074
04365 | 0 0,1000

g =
COOWRIOUCTHAWN
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- Die Durchbiegung im Scheitel ohne Riicksicht auf die Reckung des
Kabels wird fiir & = 0,30 /:

0,0735.¢ - f).

p =" 6, 42

/ { P+ g }{ i 42

Der Ausdruck in der geschweiften Klammer ist, wie bekannt, die Durch-
biegung eines unversteiften Kabels, wenn fiir y = 0,4365 gesetzt wird.

1 ;
Die Funktion 6, ist in Fig. 4 dargestellt.

Aus dem Vergleich der Gleichungen (37) und (41) geht hervor, daf} die
Momente im Scheitel und in den Viertelpunkten, bei schwachen Versteifungs-
balken, d. h. bei groBen 1, einander nahezu gleich werden.

6y =

7. Eine Einzellast P im Scheitel und durchgehende Belastung
p lber die ganze Spannweite.

2

Z

2 % Fig. 6

Die Berechnung liefert hier folgende Resultate:

Der Horizontalzug kann mit geniigender Genauigkeit gleich dem Hori-
zontalzug eines unversteiften Kabels gesetzt werden:

O CRStEAR)
H__pr'/1+3(pl +3(

P .. 3 /P
oder, wenn ol klein ist, H=pr {1 + 5 (}]l)} (44)
_ . tghi 6 ( L)
Mit Os=T1—4=27"+ 51— snz (43)

(siehe Fig. 4) wird die Durchbiegung im Angriffspunkt von P ohne Riick-
sicht auf die Kabelreckung, die aus der Gleichung (28) berechnet werden
kann,

P3P
1+§"<}fz)]

Der Ausdruck in der geschweiften Klammer ist, wie bekannt, die Durch-
biegung des unversteiften Kabels.

Das Moment im Angriffspunkt fiir P ohne Riicksicht auf die Kabel-
reckung wird

o) |, s

Pl ,
M =76 (1—6) (47)

. ) . Pl
fiir groBe 4 wird M = i
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8. Eine Einzellast P im Balkenviertel und durchgehende
Belastung p iiber die ganze Spannweite.

a 0
; ,

Fig. 7

%

Die Berechnung liefert hier folgende Resultate:

Der Horizontalzug kann mit geniigender Genauigkeit gleich dem Hori-
zontalzug eines unversteiften Kabels gesetzt werden:

MU

pl p!

P . . __ 0 (P
oder,, wenn i klein ist, ~H = /Jr{l + - P Z)} (48)

s
. 6ol 1 1 9 cosh 5
L Ov=T—9 l (tgh 24 2sinhZ ) 8 12 (1 "~ coshi

(siehe Fig. 4) wird die Durchbiegung im Angriffspunkt fiir 7 ohne Riick-
sicht auf die- Kabelreckung, die aus dem zweiten Glied der Gl. (36) be-

rechnet werden kann,
21 (14
l 32 pl)f I

VY

Der Ausdruck in der geschweiften Klammer ist, wie leicht einzusehen
ist, die Durchbiegung des unversteiften Kabels.

Das Moment im Angriffspunkt fiir P ohne Riicksicht auf die Kabel-
reckung wird

(49)

21
M = §§6Pl(1 -— 6) (50)
22516 Pl ist das ohne Riicksicht auf die Deformation des Versteifungstragers

und bei Annahme eines Kabelzuges nach Gl. (48) berechnete Moment.

Fiir groBe 4 ndhert sich M dem Wert ZP—?Z

9. Beziehungen zwischen der Theorie des Versteifungsbalkens
und der Theorie des Zweigelenkbogens.

Die Versteifungsbalken von verankerten Hangebrucken und die Bogen-
trager haben die Eigenschaft gemeinsam, daB sie beide statisch verdnder-
liche Systeme darstellen, d.h. Systeme, bei denen die Beanspruchungen,
Durchbiegungen usw. den Belastungen nicht proportional sind.

Wihrend beim verdnderlichen System die Durchbiegungen und Bean-
spruchungen linear mit der Belastung wachsen, nehmen sie beim Versteifungs-
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balken von Héngebriicken weniger zu, bei Bogentrigern vergroBern sie sich
rasch, besonders wenn die kritische Last bald erreicht ist.

Aus der Theorie der Bogentrager mit Kimpfergelenken ist bekannt, daB
das Moment durch die Gleichung

M= My + naXT (51)

dargestellt werden kann. Es bedeuten hier M, und 5, das Moment und die
Durchbiegung, berechnet nach der klassischen Methode ohne Riicksicht auf
die Formanderungen und I" eine Zahl > 1, die den angenidherten Wert

[ — Ok
O —- 0y
hat, wobei oy die kritische Beanspruchung des Bogens und o, seine Normal-
spannung bedeuten.

Man kann daraus den SchluB ziehen, dafi das Moment des Versteifungs-
tragers dhnlich durch

M= My — 1, XT"
dargestellt werden kann, wobei
o= 2K st
og 4 0,
o, bedeutet hier eine fingierte Normalspannung gleich Kabelzug durch
Querschnitt F des Versteifungsbalkens und

d. h. dic kritische Spannung eines flachen Zweigelenkbogens.
Aus den Bezeichnungen der vorigen Abschnitte geht hervor:
X wr X 5 On

= -

T 4JE ok F T ox

L2

somit
o w2

= —3 1}-7,127

Dieser Ausdruck stimmt gut Giberein mit (1—®,). Es gilt somit ange-
nahert
)\2
o= E e
10. Die Bedeutung des Versteifungstragers der verankerten
Héngebriicken.

Der Versteifungstriger hat zwei Funktionen zu erfiillen:
1. Die Durchbiegung der Briicke fiir Verkehrslast in zuldssigen Grenzen
zu halten. ’
2. Als Gurt fiir den horizontalen Windverband zu dienen.
Die modernen Hingebriicken haben verhiltnismaBig schwere Fahrbahn,
so daB die Durchbiegungen des unversteiften Kabels bedeutend geringer
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sind als bei adlteren Briicken mit leichter Fahrbahn. Bei gegebenem Verhilt-
nis zwischen Verkehrslast und Eigengewicht gibt es zwei Wege, die Durch-
biegungen zu reduzieren, entweder die Pfeilhohe niedrig zu halten oder den
Versteifungstriager stirker auszubilden. Der erste Weg ist gewohnlich vor-
zuziehen. QGute Beispiele moderner Héngebriicken fiir Landwege sind die
von Herrn Oberingenieur STANG konstruierten Briicken in Norwegen.

Die groBte dieser Briicken, die Ronosfossbriicke, hat eine Spannweite
von 183 m, ein Pfeilverhiltnis von 1/10 und einen Abstand zwischen den
Kabeln von 6 m. Die Versteifungstriger bestehen, je Tragwand, aus einem
breitflanschigen I-Profil von 40 cm Hohe und einem Metergewicht von
151 kg. Die Fahrbahn besteht aus einer Eisenbetonplatte und gewalzten
Quertragern. Das Eigengewicht, je Tragwand, ist 1,13 t/m. Die Briicke ist
berechnet fiir zwei 9-Tonnen Lastwagen oder eine gleichmidBig verteilte
Belastung von 0,20 t/m2.

Fithrt man eine Kontrollberechnung durch, so findet man folgende
Durchbiegungen im Abstande //4 vom Auflager:

Fiir einseitige Verkehrslast 0,20 t'm? 0,90 m
Fiir zwei 9-Tonnen Lastwagen 0,35 m

Die Durchbiegung fiir halbseitige Belastung ist somit ungefihr 1/200
der Spannweite.

Trotzdem die Versteifungstriager sehr weich sind (4 ~ 15), hat sich die
Briicke im Verkehr bewihrt.

Man kann daraus den SchluBl ziehen, daB bei Berechnung von Verstei-
fungstriagern von Landwegbriicken es unnétig ist, einseitige gleichmaBig ver-
teilte Belastung zu beriicksichtigen.

Es diirfte geniigen, wirklich vorkommende Einzellasten (Fahrzeuge) zu
beriicksichtigen und nur fiir diese die zuldssigen Durchbiegungen auf etwa
1/400—1/600 der Spannweite zu beschrinken.

Zusammenfassung.

Ausgehend von der genauen Differentialgleichung der Biegelinie des
Versteifungsbalkens wird gezeigt, daB die maximalen Durchbiegungen aus
der Durchbiegung des unversteiften Kabels durch Multiplikation mit einer
Funktion hervorgehen, deren Argument von der Biegesteifigkeit des Ver-
steifungstragers, seiner Spannweite und dem jeweils vorhandenen Kabelzug
abhingig ist. Weiter wird gezeigt, daB die maximalen Biegungsmomente
ebenfalls von der selben Funktion abhidngig sind.

Fiir den frei aufliegenden Versteifungstrager werden fiir einige einfache
Belastungsfille geschlossene Formeln fiir Momente und Durchbiegungen an-
gegeben.

Résumé.

Partant de 1’équation différentielle exacte de la ligne élastique de la
poutre raidisseuse, ’auteur montre que les fleches maxima peuvent étre
calculées a partir de la fleche du céble non raidi, en multipliant cette fleche
par une fonction dont 'argument dépend de la rigidité de la poutre rai-
disseuse, de sa portée et de la tension dans le céble. Il démontre ensuite
que les moments de flexion maxima dépendent également de la méme
fonction.
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L’auteur donne pour terminer des formules pour le calcul des moments
et des fleches pour quelques cas de charge simples de la poutre raidisseuse
sur appuis simples.

Summary.

Starting with the exact differential equation of the bending line of the
stiffening girder, it is shown that the maximum deflections are obtained from
the deflection of the unstiffened cable through multiplication by a function
whose argument depends on the resistance to bending of the stiffening
girder, its span and the momentary pull in the cable. Further it is shown
that the maximum bending moments also depend on the same functions.

For the stiffening girder supported at both ends, working formula are
given for moments and deflections in some cases of simple loading.

Abhandlungen VI 10



Leere Seite
Blank page
Page vide



	Berechnung der Versteifungsträger von Hängebrücken

