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DIE BIEGUNG EINES BALKENS AUS BAUSTAHL IM
PLASTISCHEN BEREICH.

LA FLEXION DANS LE DOMAINE PLASTIQUE D'UNE POUTRE
EN ACIER DE CONSTRUCTION.

THE BENDING OF A STRUCTURAL-STEEL BEAM WITHIN
THE PLASTIC REGION.

Prof. Dr. J. FRITSCHE, Deutsche Technische Hochschule in Prag.

Für die Beurteilung der Sicherheit von Stahlbauwerken ist ihr Verhalten
bei Überschreiten des elastischen Bereiches von großer Wichtigkeit. Die
frühere Annahme, daß dafür die untere Fließgrenze oF des Zugversuches allein
entscheidend sei, konnte nach einer genaueren Beobachtung und gedanklichen
Durchdringung der tatsächlichen Erscheinungen nicht aufrecht erhalten
werden. Einmal kommt auch das Übergangsgebiet zwischen P- und /^Grenze
durch Fließvorgänge zustande, andererseits ist die Fließgrenze des Zugversuches

kein Spannungsmaßstab für das Fließen bei der Biegung, da infolge
der Wirkung des elastischen Spannungsfeldes längs der Hauptschub-
spannungsflächen eine Hebung der P- und der /^-Grenze verursacht wird,
wobei allerdings noch eine vom Feingefüge abhängige Größe c den Einfluß
der Stahlart zum Ausdruck bringt. Da durch Gefügestörungen verschiedener
Art Schichten verschiedener Festigkeitx) zustande kommen, ist c für den
Baustahl keine unveränderliche Größe, sondern schwankt in einem bestimmten
Bereiche, so daß sich den Schichten geringster Festigkeit, die für die P-
Grenze verantwortlich sind, ein Kleinstwert cP und den Schichten höchster
Festigkeit und völlig störungsfreiem Gefüge ein Größtwert cF zuordnet.

cP und cp bestimmen auf bekannte Weise 2) für jede Querschnittsform
die gehobene P- bzw. F-Grenze o'P bzw. a'F, die durch die Feldwirkung an
den Gebietsgrenzen

o'p — 0/> ö'p Op
xP=: bzw. /«/=¦= (-[\

Op Gp V '
zum Ausdruck gebracht werden soll. Für o'P < o' < g'f ist die Feldwirkung

h= und dafür soll, solange noch keine näheren Untersuchungen

vorliegen, der geradlinige Ansatz

x xp + (xF — */>) -^ (2)

x) Unter Festigkeit wird in diesem Zusammenhange jene Grenzspannung verstanden,
die Gefugeveränderungen auslöst, wie z. B. die P- oder die /^-Grenze.

2) J. Fritsche, Zur Mechanik des Fließvorganges. Stahlbau 1938, Heft 16 und 17.
— Derselbe, Die neuere Fließbedingung und die Ergebnisse der Werkstoffprüfung.
Stahlbau 1939, Heft 3.
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angenommen werden, worin rj die dimensionslose Zahl

7]
OP

O p G p G pund tip
g P

(3)

bedeutet, die den Gütegrad oder die Festigkeit einer Einzelschicht
kennzeichnet*). Das Fließen einer solchen Einzelschicht von der Dicke s soll in
einer ruckartigen Winkeländerung 5 yF bestehen, genau so wie es beim Zug
in einer ruckartigen Verlängerung von der Größe slF vor sich geht.
Danach setzt dann wieder eine Verfestigung ein und es soll angenommen werden,
daß nun innerhalb eines begrenzten Verformungsbereiches die betrachtete
Schicht keinen Beitrag zur plastischen Verformung mehr leistet. Die Span-
nungsdehnungslinie einer Einzelschicht von der Festigkeit o' wird daher eine
Stufe, deren Trittfläche entsprechend dem Elastizitätsgesetz geneigt ist. Es

-\Äp -esp yF

6 resp. y
Fig. 1

Das Formänderungsgesetz einer
Einzelschicht von der Festigkeit a' — La loi
de deformation d'une couche unique de
resistance o' — Law of change of shape
of a Single layer of the strength o'.

(6F) 7?-/

(«)

L 1? resp <3

-¦s^^5""^
^~/'

i /i /i /ll
z Zf z—*¦fr) v*°

Fig. 2

Verteilungsgesetz der Festigkeiten z(o')
in der Länge 1 — Loi de repartition des
resistances z(o') sur la longueur 1 —
Law of distribution of the strengths

z(o') in the length 1.

ist natürlich klar, daß im Verfestigungsbereiche weitere Sprünge mit
abnehmender Stufenhöhe erfolgen, die neuerdings eintretenden, plötzlichen
Änderungen im Feingefüge ihre Entstehung verdanken, doch tritt dies erst
bei starken Verformungen auf, die für die hier berücksichtigten Erscheinungen
nicht mehr in Betracht kommen. In Fig. 1 ist dieses Verformungsgesetz der
Einzelschicht dargestellt; die vollgezogene Linie ist der Rechnung zu Grunde
gelegt, die gestrichelte wird den tatsächlich vorliegenden Verhältnissen
entsprechen. Von der Festigkeit of o (1 -j- x) oder vom Gütegrad rj sind im
Stab von der Längeneinheit z Schichten vorhanden; nimmt man mit Rücksicht

auf die Randbedingungen für z den Ansatz3) (Fig. 2)

*l'-H£)"] (4)

*) o' ist demnach jene Spannung, die die Festigkeitszahlen o'P und o'F der Spannung

o des Zugversuches zuordnen.
3) J. Fritsche, Das Formänderungsgesetz des Baustahles im bildsamen Bereiche.

Stahlbau 1939, Heft 14/15.
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an4), so erhält man die plastische Winkeländerung der Längeneinheit dypi
beim Übergang von den Schichten mit der Festigkeit of zu den Schichten mit
der Festigkeit a' -\-do' mit

dyvi — ksyFz(\ + vC)drh (5)

denn es liegt nahe, daß das Maß des ruckartigen Fließens einer Einzelschicht
umso größer ist, je höher die Feldwirkung die Festigkeit dieser Schicht
hinaufgetrieben hat. k ist darin eine versuchsmäßig zu bestimmende Ver-

1

ypi— ks ypzprjp [(1 + //>) fx (v) + (%F — kp) f2 (v)], (6)

hältniszahl. Damit bekommt man mit der Abkürzung v

worin

und

/j (v) v — ~n~v\h- — v2
ö~ arc sin v C)2

h W=Y^2-y [j-l/0-^)8]
bedeutet.

Es ist nun eine nur durch genaue Beobachtung von Versuchsreihen zu
klärende Frage, ob bei der Biegung der Fließstoß durch eine bezogene
Winkeländerung yF oder durch eine bezogene Randfaserdehnung lF gekennzeichnet

ist, die dann jedenfalls der Fließlänge des Zugversuches entsprechen
müßte. Die derzeit aus dem Fachschrifttum bekannten Versuche lassen eine
eindeutige Beurteilung dieser Frage noch nicht zu, und es müssen daher beide
Möglichkeiten rechnerisch verfolgt werden, um vielleicht dann aus den
Rechenergebnissen entsprechende Schlüsse ziehen zu können. Für den Fall a)
erhält man aus (6) die plastische Randfaserdehnung unter Annahme des
Ebenbleibens der Querschnitte mit

5 pi -Tj-ksyFzFriFy\ + //>)/! (v) 4- (xF—*/>)/, (")L (8a)

für den Fall b) ist -=- yF zu dem Festwerte lF zusammenzuziehen und es

berechnet sich

e'pi kslFZpr]p[(\ + xP)/j (v) + (zip — z/>)/2 (v)]. (8b)

Die Größen k, s, yF, lF und zF sind im Einzelnen nicht bekannt und können
nur durch genormte Biegeversuche ermittelt werden. Wenn es sich nur um
die Berechnung von e'pi handelt, erscheint es am zweckmäßigsten, die
plastische Winkeländerung ypt> F oder die plastische Randfaserdehnung e!ptt F

-y ypttF in dem Augenblicke zu messen, in dem die Spitzenspannung des

4) Es ist dort bereits ausgeführt worden, daß es mit Rücksicht auf Versuchsergebnisse
notwendig werden kann, das Verteilungsgesetz z (of) einer Verbesserung zu

unterziehen. Versuche mit I-Stählen lassen den Schluß zu, für das Auftreten von Schichten
geringerer Festigkeit noch kleinere Wahrscheinlichkeiten anzunehmen, als der elliptische
Zusammenhang zum Ausdrucke bringt, und die Linie noch besser in den von der o*'-
Achse und der Geraden o' o''F gebildeten Winkel hineinzuschmiegen. Allerdings sind
darin dann auch andere Abweichungen enthalten, wie z. B. die vom Ebenbleiben der
Querschnitte, was mit wachsender Plastizierung immer weniger zutrifft.
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elastischen Feldes den Größtwert o'F erreicht hat (Fig. 3); dafür ist rj rjP
und es ist nach (8 a)

' Plyf7 y ksypzp rip ||l — -^-j (1 + xP) + — (xF — xP) j (9 a)

Bezeichnet man die für einen Versuchsbalken rechteckiger Querschnittsform
und geringer Balkenhöhe \ gemessenen Größen mit %P, vlf und I4pl> F, dann
ist im Falle a)

2 1

K, ksyFzp 4,660 e'phF =— •

n n777/- T^; (10a)
h rjF (1 + xP) + 0,777 (xF— xp)

wenn der betrachtete Balken aus dem gleichen Werkstoff besteht und die
Höhe h hat, dann ist schließlich

e'pi — 4,660 e^i, F
h(\ + xp)/t (v) + (kf — Xp)/2 (p)

h (1 + xp) + 0,777 (xF — xp) (IIa)

€Pl,F

t'el /l^"L
Fig. 3

Das Formänderungsgesetz des Baustahles
bei der Biegung — La loi de

deformation de l'acier de construction pour
la flexion — Law of change of shape
of the structural steel when bending.

Für den Fall b) lauten nach (8 b) die diesbezüglichen Gleichungen

e'pi,F kslpzp j(l — ^j 0 + *p) + -g- (*f — *p)J, (9b)

1 1

/C2 kslpzp Affi0e'pi,F

e'pi 4,660 VphF

rjp (1 + xp) + 0,777 (xF — xp)

1 +*/jMy)+ (^— xP)/,(y)
(1 + xp) + 0,777 (x> — xp)

und (10b)

(IIb)

Die in den Gleichungen (10b) und (Hb) auftretenden, durch Messung zu
bestimmenden Größen wurden zweimal überstrichen, um zum Ausdruck zu
bringen, daß sie sich auf einen anderen als den im Falle a) gekennzeichneten
Versuchsbalken beziehen können.

Die Gleichungen (IIa) und (Hb) sind auf der Voraussetzung aufgebaut,

daß das Fließen plötzlich und ruckartig die ganze Balkenhöhe durchsetzt

und der Querschnitt dabei eben bleibt. Zunächst trifft dies aber nur
für niedrige und massige Querschnittsformen zu, nicht aber für hohe,
dünnwandige Querschnitte, wie sie im Stahlbau üblich sind. Aus den Versuchen
erkennt man, daß ein schmaler Steg nicht mehr durch die ganze Höhe des
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Balkens durchschießende Fließschichten erzwingen kann, sondern daß es vielfach

vorher zu einem selbständigen Fließen der Flanschen kommt. Da die
Ungleichmäßigkeit des zum Flansch gehörigen Spannungszustandes nur sehr
gering ist, wird dies kein Biegefließen mehr sein, sondern lediglich ein
Abrutschen von Stabteilen aneinander durch Gleitvorgänge in dünnen Schichten.
Dabei muß dann angenommen werden, daß dies um den Betrag lF erfolgt,
der als Fließlänge der Spannungsdehnungslinie des Zugversuches zu
entnehmen ist; in solchen Fällen werden daher die Voraussetzungen des Falles b)
gegeben sein. Der Querschnitt bleibt dabei allerdings nicht mehr eben; die
plastizierten Teile eilen den nur elastisch verformten voraus. Das selbständige
Fließen der Flanschen wird aber sofort verwickelte Spannungsänderungen
im Steg bedingen, und die dabei auftretenden recht scharfen Spannungsspitzen
werden sehr rasch ein Eindringen von Fließschichten in den Steg bewirken.
Wenn daher auch der zeitliche Ablauf der Ereignisse mit den getroffenen
Annahmen nicht ganz übereinstimmt, so wird sich doch im Endergebnis ein
Zustand einstellen, der durch die Rechnung recht gut wiedergegeben wird.

Wie die Überprüfung von gemessenen Linien e'pl zeigt, ist das Fließen
des Flansches in der Regel darin nicht deutlich ausgeprägt; die Linien zeigen
einen stetig gekrümmten Verlauf bis zum Erschöpfen der Tragfähigkeit
bei o'F.

Die Erfahrung zeigt5), daß die Abhängigkeit x (rj) nur sehr geringfügig

sein kann und es muß daher in Hinblick auf sonstige Näherungen
zulässig sein, diese Abhängigkeit zu vernachlässigen; dann entfällt das Glied
mit xF — xP und man erhält die für die weiteren Untersuchungen ausreichende
„gekürzte" Lösung mit

e'pi - 4,660 l'ph F A i±^ /, (v) bzw. (12 a)
h i + Jt

e'vl 4,660 l'ph F j-±4 A (v) (12b)

In einer früheren Arbeit3) habe ich der Berechnung von e'pi auch eine
Annahme zugrunde gelegt, die sich an die von Köster 6) angegebenen
Vorstellungen über das Fließen von Baustahl anlehnt. Damit ergab sich

e'pl 4,660 ?phF |-±-J y*/i (v). (12 c)
l -j- x

Die Untersuchung gemessener Linien e'pi bei I-Querschnitten läßt erkennen,
daß (12 c) an die Versuche besser herankommende Ergebnisse liefert. Dies
kann natürlich nicht nur in der Weise ausgedeutet werden, daß man es als
Beweis für die Richtigkeit der KösTER'schen Vorstellungen heranziehen darf;
das schärfere Anwachsen der plastischen Verformungen gegen die Tragfähigkeit

zu kann vielmehr auch mit den rechnungsmäßig nicht mehr zu
verfolgenden, stufenweisen Fließvorgängen, wie sie besonders bei I-Stählen
auftreten, und dem damit in Verbindung stehenden Nichtmehrebenbleiben
der Querschnitte zusammenhängen. Doch erscheint es zweckmäßig, auch mit
diesem Gesetze, ohne eine scharfe Begründung für seinen rechnerischen Auf-

5) F. Rinagl, Über die Fließgrenzen bei Zug- und Biegebeanspruchung. Der
Bauingenieur, 1936, Heft 41/42.

6) W. Koster, H. v. Kockritz und E. H. Schulz, Zur Kenntnis der Form der Span-
nungs-Dehnungskurven auf Grund der Messung des zeitlichen Verlaufes der Alterung
weichen Stahles. Archiv für das Eisenhuttenwesen, 1932/33.
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bau angeben zu können, die Erscheinungen durchzurechnen, um unter
Umständen zu einer besseren Übereinstimmung zwischen Rechnung und
Erfahrung zu kommen.

A. Statisch bestimmte Stützung.
1. Biegung eines einlachen Balkens durch gleiche Endmomente.

Nach Festlegung des Verformungsgesetzes bis o'F kann der Modul der

gesamten Verformung T ermittelt werden (Fig. 3), der dann die
£ gesamt

Berechnung der verformten Stabachse ermöglicht. Es ist

1 —
~'el + e'pl — _L _l *u* ni\

T ~ g' - E + g" {lJ}

und da nach den Voraussetzungen der neueren Plastizitätslehre ein plastischer

Abbau der Spannungen nicht erfolgt, und auch nach dem Fließen die
M

Randspannung gleich der Nennspannung oN —— bleibt, ist daher auch

Die gesamte Winkeländerung ygeSamt beträgt bei Ebenbleiben der Querschnitte

___
2^ Gf

__ M^ 2
7'gesamt — —^ yr — ^~, 4" -jj- epi]

die Differentialgleichung für die Durchbiegung y der Stabachse lautet nun
bei üblicher Vernachlässigung der Steigung y'

'" -(57 + 4'")' <15>

aus der durch zweimalige Integration y berechnet werden kann. Da in diesem
Falle M und e'pl nicht von x abhängig sind, ergibt sich

y=-(EJ+-he»l)Y + ClX+C*

und nach Bestimmung der Festwerte C1 und C2 aus den Randbedingungen
der Aufgabe

7=4*(/-*)(^ + l^)- de)

Eine derartig parabolisch verformte Stabachse setzt natürlich
gleichmäßigen Werkstoff in der ganzen Stablänge voraus; d. h. das angenommene
Verteilungsgesetz (4) der verschiedenen Festigkeiten muß in jedem beliebig
klein gewählten Stück des Balkens erfüllt sein. Streng genommen ist dies
natürlich nicht möglich, da sich das Gesetz von selbst ausschließt, wenn
man mit der Größenordnung des betrachteten Stückes an die Schichtdicke
herankommt. Da diese Schichtdicke aber sehr gering ist und mit etwa 10"5
bis 10~4 cm geschätzt werden kann, darf wohl für die übliche makroskopische
Betrachtungsweise trotzdem mit einem gleichmäßigen (quasi - isotropen)
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Werkstoff gerechnet werden. Solche offensichtlich örtliche Häufung von
Schichten niedriger Festigkeit, wie sie Rinagl 5) unter seinen Versuchen
beobachtete, und die nach der Entlastung einen fast polygonal geformten
Balken ergaben, gehören wohl doch zu den Seltenheiten.

Um Gleichung (16) zahlenmäßig auswerten zu können, ist es nötig,
entweder M mit v oder e'Pi mit M zu verknüpfen. Bezeichnet man das Moment
der inneren Spannungen, bei dem die Randspannung die gehobene P-Grenze
o'p erreicht, mit MP W o'P und das Tragmoment, von dem ab der Balken
unter der Last wegfließt, mit MF W o'F, so kann man, da beim Fließen
das elastische Spannungsfeld aufrecht erhalten bleibt, für einen Zwischenwert

M MP + v(MF — MP) bzw. v -3- ™~M* (17)
rtp Alp — Alp

anschreiben. Damit erhält man als Durchbiegung / in der Stabmitte

' Ä \iw &» + '<*' - *'M + **} fk (£r + **)' (18)

wobei e'pi unmittelbar in Abhängigkeit von v nach (11) oder (12) einzusetzen

ist.

setz zwischen M und x, denn es ist M -^ x\ damit wird auch e'pt in der-

2. Biegung durch eine Einzellast P in der Stabmitte.

Das Neuartige dieses Belastungsfalles (Fig. 4) ist ein geradliniges Ge-
P_

T
selben Weise von x abhängig. Einer strengen Berechnung der verformten
Stabachse stehen in diesem Falle wegen des Auftretens von Querkräften
große theoretische Schwierigkeiten im Wege. Die Hauptschubspannungs-
flächen sind keine Ebenen mehr, sondern verwickelt gekrümmte Zylinderflächen;

außerdem sind die Schalen, in die schmale Schichten bei der
Verformung übergehen, nicht mehr kongruent und es würde sich dann nicht
nur darum handeln, Spannungsintegrale längs der Hauptschubspannungs-
flächen zu bilden, sondern vor allem jene herauszusuchen, bei denen diese
Integrale einen Größtwert erreichen. Das sind Aufgaben, die zu ihrer Lösung
einen großen mathematischen Aufwand erfordern würden, wenn es überhaupt
gelingt, alle dabei auftretenden Schwierigkeiten zu überwinden. Wenn man
daher an den NAviER'schen Voraussetzungen festhält, darf man nicht
übersehen, daß man damit eine Reihe von Näherungen gemacht hat, deren Einfluß
auf das errechnete Ergebnis nicht mit voller Sicherheit abgeschätzt werden
kann. Die Feinheiten der Erscheinungen, vor allem der Ort des ersten
Auftretens von Fließlinien, sind unter diesen Umständen natürlich nicht erfaßbar.

Für MP<M <MF besteht die verformte Stabachse aus einem lediglich
elastisch verformten Stück von der Länge

2 IPV 2MP
xp —ß- -y (i9)

und einem elastisch-plastisch verbogenem Stücke innerhalb der Grenzen

xP<x<^-. Die Differentialgleichung für die verformte Stabachse lautet



96 J. Fritsche

2"~1

&pl

y*t

w
^m,pl

Fig. 4

TJ
Px

2TJ' (20)

die sich in den beiden Bereichen nur
dadurch unterscheidet, daß im elastischen

an die Stelle von T die
Elastizitätsziffer E tritt. Berücksichtigt man
Gl. (14), so erhält man

„_ Px 2
y ~2EJ~Tepl' (21)

Aus der Form dieser Gleichung ist zu
erkennen, daß man die Durchbiegung
y statt in zwei Stücken, die dann durch
passende Wahl der Integrationsfreiwerte

stetig zusammenzufügen sind,
auch durch Zusammensetzen des elastischen

und des elastisch-plastischen
Anteiles der Verformung bilden kann:
y yei + yPi\ yei ist die bekannte elastische

Lösung der Aufgabe, ypi besteht
bis xp aus einer geneigten Geraden, an die sich dann erst die eigentliche
plastische Verbiegung anschließt. Es ist daher

yPi =yPi + Apixp, (22)

wobei APi nichts anderes vorstellt als den Auflagerdruck eines einfachen
2

Balkens von der Spannweite /', der mit — e'pl belastet ist. Es berechnet sich

daher

V
1'2

xp

dx.

Benützt man für diese an sich langwierigen Rechnungen die gekürzte Lösung
(12 b) für e'ph die den Einfluß einer Veränderlichkeit von x vernachlässigt,
so erhält man mit den Abkürzungen

9,320 l'php
X +ZB

h{\ + W

die Größe

2(MF — Mp)

_ MP
AiF — MP

(23)

GP

Gp — Gp

- efpi B [(ax + b) - - (ax + b) V [1 - (ax + b)2) - ^ are sin (ax + b)\.

Damit berechnet sich nun mit f ax + b

Api ^ D2 - y (2 + £*) l/l - f2 - f are sin l̂
xp
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Berücksichtigt man, daß nach (17)
Pl M

.21 Mp — Mp
und

§ (xP) axp + b 0

ist, so ergibt sich endlich

Api £- hv2 — (2 + *2)l/l — v* — 3^arcsin^ -f- 2J. (24)

Für v 0 muß man natürlich Apt (ö) 0 bekommen.
Die Differentialgleichung für ypi lautet nun

y "vi --^ [2 f - f l/l - f2 are sin g], (25)

aus der man durch Integration

y'pi - -^ (£) + c, (26)

und

ä»i - q^f v.(D + cte + c2 (27)

erhält, worin

cp, (£) 3£2 - (2 + §2) i\^¥ - 3f are sin £ (28)

<?2 (|) 16£3 - 2£ (13 + 2f2) yr? _ (4 + 24f2) are sin £- aresin (2§2-1) (29)

bedeutet.
Die beiden Integrationsfestwerte C± und C2 sind aus bekannten

Randwerten der Aufgabe zu bestimmen. Es muß zunächst y'pk -*¦)= 0 sein; daraus
l\ xz/

bekommt man mit |( —1= v

C^^cp^v). (30)

Als zweiten Randwert benützt man am zweckmäßigsten die Beziehung
JV (xp) 0 und damit berechnet sich mit | (x/>) 0

ö^ arc sin (— 1) + C2 0

7V
und daraus mit aresin (—1) —=-

* ß
(31)-1 _ 2 96a2

Nun bekommt man in dem Bereiche xP<x<-^
BL.[-J -,,,(£) + 16^(,)] (32)
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und ypi g-^
\axP [cp, (v) + 2] + £ cp, (v) — — cp2 (£) + ^\ (33)

Den plastischen Anteil der Durchbiegung in der Balkenmitte, dem die

hauptsächlichste Bedeutung zukommt, erhält man daraus mit axP
p

Gp— Gp

ä- 67? \^=TP ^{v) + 2] + v<Pl (v)-^ <"> + £} • <34>

Der Klammerausdruck ist dimensionslos, ^—^ hat die Dimension einer Länge
0 a2 &

und berechnet sich nach (23) mit

B Bl2 1

6a2 24 / GP y\ Gp Gp!

Unter Zugrundelegung der Gl. (12 a), die bei vollen Querschnitten
geringer Höhe Bedeutung gewinnt, ist die Berechnung die gleiche, nur ist B
durch

Bt 9,320 e'ph F _
* + *

(35)
h (1 + z)

zu ersetzen. Eine Berechnung von e'pt nach (12 c) ist mit Rücksicht auf große
rechnerische Schwierigkeiten schwer durchführbar; dafür wird später eine
Näherungsrechnung angegeben werden.

Die größte Durchbiegung, bei der dann bei der geringsten Laststeigerung
der Balken unter der Last wegfließt, entsteht, wenn P die sogenannte

Traglast

PT=PF=^l (36)

erreicht hat; dafür wird v 1 und man erhält

'"=£[(»-£)-+ ('-w)J- <37>

Nach Einsetzen aller bereits ermittelten Größen ist schließlich

f*'=j'5533 u P^)'1'»'fr! (°'2876 ^r=rP+ °'2329)- <38>

1 PP
Dazu kommt noch der elastische Anteil fel — - —- ; für PT ergibt sich

4o LJ
damit

/*'=£*%• <*»

Für den elastisch-idealplastischen Körper verschwindet fpifF und der Balken
fließt plötzlich bei erreichten fei>F unter der Last weg.

Will man die ein wenig umständliche genaue Berechnung des plastischen

Anteiles der Durchbiegung vermeiden, so empfiehlt es sich, den Aus-
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druck für die Krümmung der verformten Balkenaxe in eine Reihe zu
entwickeln. Es ist

arcsin^ + J-f + ^ P + ^ r + ^ I» + ^g-g» +

Damit berechnet sich

2|-iynii_arc8in|4|. + ^|«4r+Tj^? + I^3l» +

und man bekommt die nun näherungsweise gültige Differentialgleichung für
den plastischen Anteil der Durchbiegung mit

'"*. - gfi (*8 + to + 55 *7 + i^ *' + las *" + -) • <40>

Durch Integration ergibt sich nun

""•»- 6a2 U - +40- +448 b + 1152- + 5632 * + '

+ Q=-~ »/'!(?) +c, (41)

v — _ _L £f> J_ 57 1 _J_ £9 J Z_ £11 _|_ £13 1

ypi,* - 6ß2 \20 ¦ T 280 b ^ 1344 s ^ 12672 - ' 73216 g ^"
+ Q f + C2 - ^ </'2 (f) + Q £ + C2

(42)

Die plastisch verformte Stabaxe setzt sich aus einem geraden Stück innerhalb

o < x < xP mit der Gleichung yptt ± C3 x und aus einem krummen

Stück innerhalb des Bereiches xP<x< -=- zusammen, dessen Form durch

(42) wiedergegeben wird. Zur Berechnung der drei Festwerte C stehen drei

Randbedingungen zur Verfügung: es muß y'Pi>2 (-~-) 0 sein; daher ist

Aus y'pitl (xP) =y'pi,2 (xp) folgt— C3 C, oder C6 aC^\ aus ypbl (xP)

ypi,2(xp) erhält man schließlich C3xF= C2 und damit wird

yPi - g§s [(axp + §) ^ (») - t/<2 (£)]. (43)

Für | v erhält man wieder

fpl 6^ l(öXp + V) *l {V) ~ V'2 W]' (44)
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und schließlich ergibt sich für P P7 und v 1

fpi,r= 6^(0'2856^^ + °>2311)> («)
eine Gleichung, die unmittelbar mit (38) die erreichte Genauigkeit
abzuschätzen gestattet; in der Form (38) angeschrieben liefert sie bei
Berücksichtigung von vier Gliedern der entsprechenden Reihen

,„,, ,,5533 £ (ö)°L±± T«, r (0,2855^ + 0,23.,

der Fehler der Näherungsrechnung ist daher praktisch ohne Belang.
Die Berechnung von ypl auf Grund der Gleichung (12 c) ist ohne

Benützung elliptischer Funktionen nicht mehr durchführbar; man wird sich aber
in der Regel mit einer Näherungsrechnung durch Reihenentwicklung
begnügen können, wobei man es ja durch die Berücksichtigung beliebig vieler
Glieder in der Hand hat, die Genauigkeit beliebig zu steigern. Man erhält
nun aus (21) und (12 c), wenn man die gleichen Näherungen wie früher
macht:

y"*h* " Ä " [2~~ - V1^"^ — arcsin£]

und nach erfolgter Reihenentwicklung ergibt sich

woraus sich nach Integration

-g^Zitö + C,, (41a)

**' -Ä(iS7 + 4^? +^|U + 5^4|1, + i^8Ö|18+"-) + C^+C^

- ^jXttä + CiS+C, (42a)

berechnet, während y„itl C3 x unverändert bleibt. Die Freiwerte Clf C2
und C3 sind genau so wie früher zu ermitteln. Es ist aus yV, 2 (v) 0 die
Größe C1 =-^-£Xl(v). Aus y'Pifl(o) y'Pit2(o) berechnet sich wieder

C3 aCt und schließlich folgt aus der letzten Randbedingung yplt ± (o) -=
yPi, 2 (°) der Wert

Damit bekommt man

C2 Xp[Ci-JLyA(v)\
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Setzt man f v, so erhält man aus (43 a) die Durchbiegung in der Balkenmitte

'*=<M^ +')"«-*•<">] <44a>

und dessen Größtwert mit v 1

B /~in,n GF/*r ^ (o,!940 ^^- - 0,0266), (45a)

wobei zu berücksichtigen ist, daß wieder

B BP
6«' 24/ aP

y
W/7 — CT/)

ist.
Zur Vereinfachung der Ziffernrechnung sind in Zahlentafel 1 die

Funktionen /i(^, f2(v), cpx(v), cp2(v), ^(v), ip2(v), y±(v) und %2(v) für die Zehntelpunkte

ihres Bereiches angegeben worden.
Wenn bei verwickeiteren Belastungsfällen diese Rechnung zu zeitraubend

und zu unübersichtlich wird, wird man sich mit Vorteil baustatischer
Verfahren bedienen, die im wesentlichen auf die Ersetzung der Differentialgleichung

durch eine Differenzengleichung herauskommen; dies führt in
bekannter Weise auf das Stabzugverfahren.

B. Statisch unbestimmte Stützung.
Die für den elastischen Verformungsbereich durchgebildeten

Berechnungsverfahren zur Ermittlung der inneren Spannungen und Verformungen
sind auf den bildsamen Bereich nicht übertragbar, da sie in der Regel die
Gültigkeit des Superpositionsgesetzes zur Voraussetzung haben. Da nun das
Verformungsgesetz von der Größe der Längskräfte und Momente nicht mehr
unabhängig ist, erscheint es naturgemäß nicht mehr zulässig, den Spannungszustand

des statisch unbestimmten Tragwerkes durch Überlagerung der
Spannungen an einem statisch bestimmten Grundsystem und dazugehöriger Selbst-
spannungszustände so zu bestimmen, daß die Verformungen des Grundsystems
durch den Zwang der Elastizitätsbedingungen mit denen des gegebenen
statisch unbestimmten Tragwerkes zur Übereinstimmung gebracht werden
können. Bei der Berücksichtigung plastischer Verformungen steht lediglich
die Differentialgleichung der verformten Stabachse sowohl im elastischen
als auch im plastischen Bereiche zur Verfügung, aus der durch überzählige
Randbedingungen die statisch unbestimmten Größen berechnet werden
müssen. In der Elastizitätslehre wird dieser Weg nur selten benützt, da er
in der Regel zu recht zeitraubenden Berechnungen führt und die die Rechenarbeit

sparenden Überlegungen der Baustatik in ihn nicht so leicht eingebaut
werden können.

Mit den hier entwickelten Grundlagen über das Formänderungsgesetz
im plastischen Bereich soll nun ein durchlaufender Träger über vier Stützen
berechnet werden (Fig. 5), dessen Momentenverteilung bei symmetrischer
Ausbildung und Belastung in der Mitte des inneren Feldes durch eine einzige
überzählige Größe, das Stützmoment X, gekennzeichnet ist. Ein ähnliches
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Tragwerk habe ich mit den Voraussetzungen der älteren Plastizitätslehre
bereits früher durchgerechnet7); ein Vergleich der beiden Berechnungsverfahren

zeigt deutlich die grundlegenden Unterschiede in den Auffassungen
über die Ursachen des Fließvorganges und die Entwicklung, die die Theorie

ft',lEly*
*v

Fig. 5

seither durchgemacht hat. Das Trägheitsmoment / des Balkens soll
unveränderlich angenommen werden; grundsätzlich ist die Berechnung auch bei
gestuftem Trägheitsmoment möglich, wobei an die Stelle von M einfach die

verzerrte Momentenfläche M' M -J- tritt, doch wird damit die Berechnung

|5_L
=*=--*=*-*

i i

-J L*5
EIft'M>*x

*Jw
Fig

bereits außerordentlich mühsam. Im Hinblick auf den Eintritt des Fließens
sind zwei Fälle zu unterscheiden: 1. es kommt am Orte des Lastangriffes
zu völligem Fließen, ohne daß über der Stütze die gehobene P-Grenze
erreicht wird (Fig. 5); 2. bevor die Balkenmitte völlig fließt (Erreichung der
gehobenen /^-Grenze), treten auch bereits über der Stütze Fließerscheinungen
auf (Fig. 6). Die beiden Fälle 1 und 2 erfordern eine rechnungsmäßig ganz
verschiedene Behandlung.

7) J. Fritsche, Arbeitsgesetze bei elastisch-plastischer Balkenbiegung. Ztschr. für
angew. Math, und Mechanik, 1931, Heft 13.
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1. Die Balkenmitte fließt ohne gleichzeitiges Fließen über den Stützen.

a) Die elastische Lösung.
Mit dem Stützmoment X ist das Moment in der Seitenöffnung M1

— X (1 + 7- und *n der Mittelöffnung M2 -=- x —- X, worin sich die

Abszisse x auf den linken Stützenquerschnitt bezieht. Bezeichnet man die
Durchbiegung in der Seitenöffnung mit y±, in der Mittelöffnung mit y2, so ist
bekanntlich

»_ P X
y* --~2EjX+EJ

j + C, y2' - 2£j Y+EjX+Cs \(46)

x3
__

P x* X x2
Jl ~ EJ 2 ' EJll~6+ClX'¥Lt y* -"2f/I+f/^ 3" 4

Die Freiwerte C und X berechnen sich nun aus den Randbedingungen der
Formänderungsaufgabe. Es muß 1. y1 (o) 0 sein; daraus folgt C2 0.

2. muß y1 (— lt) 0 sein; daraus berechnet sich C± ~- -^. 3. ist y'<>(-*-]
l (PI \ 6 EJ \ 2

0 und damit C3 9 f 1-^ XL Schließlich berechnet sich X aus der

Übergangsbedingung y^ (o) y'2 (o), aus der C1 C3 und damit

v 3 PI 3 />/ __ PI __ PI /oa oxz=irri; ü,,nd*-=T"'Jf=8*(2*-3) (47)
3 + 2

z

folgt. Die 5. Randbedingung y2 (o) 0 braucht nur dann ausgewertet zu
werden, wenn auch die Durchbiegung bestimmt werden soll; sie liefert C4 -= 0
und damit die Durchbiegung in der Balkenmitte

PI3 l 9 \

In gleicher Weise erhält man die üblichen Lösungen der Baustatik bei
quellenmäßiger Darstellung der Differentialgleichung der elastischen Linie. Die
elastische Lösung bleibt solange in Gültigkeit, als die Nennspannung in der
Balkenmitte kleiner als o'P ist; der Grenzwert PP berechnet sich aus Mm MP
mit

der zugehörige Wert des Stützmomentes ist XP —^~k—-^ und es muß daher,

wenn die Voraussetzung 1 erfüllt sein soll, # recht groß sein; sie gilt folglich

für eine im Verhältnis zur Mittelöffnung weitgespannte Seitenöffnung.

b) Die plastische Lösung Im Bereiche PP<.P <iPF.
Bei Überschreitung von PP beginnen die schwächsten Schichten zu

fließen, ein Vorgang, der mit wachsender Last auch die Schichten höherer
Festigkeit erfaßt, bis schließlich beim Erreichen von PF die innere Wider-
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Standsmöglichkeit des Mittelquerschnittes erschöpft und dort ein Plastizitätsgelenk

entstanden ist, das bei einer Überschreitung von PF der Verformung
keinen Widerstand mehr entgegensetzen kann. Zum Unterschied gegenüber
der älteren Plastizitätslehre bleibt jedoch das elastische Spannungsfeld der
Biegung erhalten, ein allmählicher plastischer Abbau der Spannungsspitzen
findet nach der neueren Auffassung nicht statt.

Die verformte Stabachse zerfällt nun in drei voneinander getrennt zu
berechnende Stücke, in das Stück y± in der Seitenöffnung, das elastische Stück
y2 und das elastisch-plastische Stück y3 in der Mittelöffnung. y1 und y2 sind
durch die Gleichungen (46) bestimmt, ys berechnet sich aus

yi'=-TEj* + irj-\}?S- lyr^-arcsinl], (50)

worin £ a x b und die beiden Zahlen a und b durch

(51)

(52)

<Pi(|) und cp2(t) sind durch (28) und (29) bestimmt.
Die Berechnung der sieben Festwerte ist mit Hilfe von sieben

Randbedingungen ohne weiteres möglich; 1. folgt aus y1(o) 0 der Festwert

C2 0; 2. berechnet sich aus y± — /x) 0 C3
3 f/ • Mit 3* /1 (ö)

y'2 (o) ergibt sich C1 C3 und 4. erhält man aus y'3 (— 0 eine

Beziehung zur Ermittlung von C5. Mit der Bezeichnung

ergibt sich daraus
Pla- XI B

C*
\t>EJ 2EJ + 6Ä V*{V)

Die statisch unbestimmte Größe X bekommt man nun aus der Übergangs-
2

bedingung y'3(xP) y'2(xP); mit xP ~— (X^MP) und tj(xP) 0 bekommt

man sie zunächst in der Form
B_

3a '

< 4- MP
If — MPa- 2(MF-MP)

U"d *- N

festgelegt sind. Durch Integration erhält man

/> *2 X B 1

* -2EJ' 2+ ETX-6a(pi^ + Q

P x*
l X x* B* ~

2EJ 6 + EJ 2- 96a* *¦ ® + ^ + CßJ

>

cs c6 +

aus der sich nach Einsetzen von C5 und C3 die Gleichung
PP 'l-^S + ÄP + ^Ml-O (54)16f/\ 3 PI) 6 a

Abhandlungen VI
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berechnet. Daraus ergibt sich nun

* -1 + p + *«lür I" + <2 + »<•» ^F^-<*>
Es erscheint zweckmäßig, X in seinen elastischen und seinen plastischen Teil
zu trennen und X Xel -f- AX anzuschreiben. Damit berechnet sich nun

«.^-^N,H (56)

und
Mm H<2»- 3)- IX (57)

Die Ermittlung von AX ist jedoch aus dieser Gleichung nicht ohne weiteres
möglich, da auch v von X abhängig ist und man muß sich zur Auswertung
von (56) eines teilweise auch zeichnerischen Verfahrens bedienen.
Verhältnismäßig leicht gewinnt man zunächst die Grenzlast PF dieses Bereiches,

da für Mm -= MF die Zahl v 1 wird. Damit ist q>± (1) 3 1 —I,

2-f (^(1) 0,2876 und

AXF= 0,5752 BEJ(MF-MP)m
Pp \T l

Nun ist beim Erreichen der /^-Grenze in der Balkenmitte

PfI
Mm MF= -J~(2ö — 3)-AXF;

nach Einsetzen von AXF nach (58) erhält man die quadratische Gleichung

«- 8 * M*
Pp - 4,6019 BE/W*-"P)- 0, (59)

(2# ~3)l r ' (2# — 3)/2

aus der sich nun Pt und damit auch A XF ohne besondere Mühe ermitteln läßt.
Für einen Zwischenwert PP<P</V erscheint es am geeignetsten, einen'

beliebigen Wert v zwischen Null und 1 anzunehmen; man kennt dann auch
cp, (v) -j- 2 und hat den zugehörigen Wert P aus der quadratischen Gleichung

»PI
2BEJ (MF — MP) [-^ 3

PI MP (\ — v)- vMF] 2 + Vl (v) (60)

zu berechnen.
Nach Ermittlung der Momentenverteilung ist noch die Durchbiegung

in der Balkenmitte zu berechnen. Die 6. Randbedingung lautet y3 (xP)
y2 (xP), aus welcher sich die Beziehung

— j Q^fl2- + (C6 - C3)xP + (C„ — C4) 0

ergibt. Aus der 7. Randbedingung y2(o) 0 folgt C4 0 und mit den
früher bereits ermittelten Freiwerten ergibt sich nun
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Damit bekommt man nun

f m/{'--Ä) + 6v.{is[2~H+2aixp+iH} m
Der plastische Anteil von (61) ergibt sich nach Einsetzen von a nach (51)
und xP mit

fPi
B MF — Mp\\ Mf — MP\n ,1 4 lv / ,|
y —p [s^p--lY-<Pz(v)\+p(X+MP)+2<p1(>)\ (61a)

Um den Grenzwert dieses Bereiches zu bekommen, hat man v 1 zu setzen

und erhält ^ ~~cp2(\) -= \5jt — 16 31,1238 und ^ (1) 3^1 j)
— 1,7124; für /> ist der durch (59) bestimmte Wert PF einzusetzen und es
ist dann

fPi, f=~ Mf~^Mp {JL [3,8905 (MF — MP) + 4 (X + Af/>)] - 0,8562 /J (61 b)

£J Die Berechnung der Traglast *T7 des durchlaufenden Trägers.
Nach Einschaltung des Fließgelenkes in der Balkenmitte ist für jede

Laststeigerung über Pt hinaus das Tragwerk statisch bestimmt geworden
und besteht aus zwei nebeneinander liegenden, einfachen Balken mit

Kragarmen von der Länge -=- Das Stützmoment ist nun

X XF+ lA (P-Pf), (62)

während das Moment in der Balkenmitte die Größe MF unverändert
beibehält; allerdings muß dabei eine neuerliche Verfestigung des Werkstoffes
ausgeschlossen werden. Die Traglast ist erreicht, wenn auch X MF
geworden ist; dann ist

Mp= XF+ - (PT — Pf) und PT PF + *- (MF — A», (63)

während sich bei einem elastisch-idealplastischen Körper

Pt —j~~ (63 a)

ergeben hat.
Beim Ablaufe des Fließens in der Balkenmitte muß diese Stelle trotzdem

imstande sein, die Steigerung der Querkraft aufzunehmen. Wenn auch
gerade an der Lastangriffsstelle die Spannungsverteilung auf Grund der
technischen Biegungslehre nur einen ungefähren Anhaltspunkt für die
wirklichen Verhältnisse liefert, so ist doch nur schwer verständlich, wie der
Querschnitt eine weitere Steigerung der Querkraft verarbeiten kann, wenn nach
den Vorstellungen der älteren Plastizitätslehre die Spannungsverteilung
durch zwei Rechtecke beschrieben wird. Nach den Gleichgewichtsbedingungen

am Körperelement hätte dann die Querkraftsteigerung in einem
engen Bereiche um die Stabachse herum abgegeben werden müssen. Dieser
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wunde Punkt der älteren Vorstellungen entfällt nun, da die neuere Theorie
die viel wahrscheinlichere Annahme machen muß, daß das Fließen bei
Aufrechterhaltung des elastischen Spannungsfeldes erfolgt.

Was den Durchbiegungszuwachs anbetrifft, so ist dieser nun am statisch
bestimmten, einfachen Träger mit Kragarm bei Belastung des Kragarmendes
mit \ (P — PF) zu berechnen. Solange X<MP, ist die Verformung elastisch;
bei X 2^ MP ist mit Hilfe des angegebenen Verformungsgesetzes ähnlich wie
in A 2 vorzugehen.

\X(P) resp Mm(P)
/

/UxF

Fig. 7.

Der Momentenausgleich eines
Durchlaufträgers im Falle B 1 —
Legalisation des moments d'une
poutre continue dans le cas B1 —
Equilisation of moments of a con-

tinuous beam in case Bl.

In Fig. 7 ist der Verlauf von X (P) und von Mm (P) dargestellt, wie er
sich auf Grund der vorstehenden Rechnung ergibt. Man erkennt deutlich das
Bestreben zum Momentenausgleich, der allerdings, wie bereits Stüssi 8)
bemerkt hat, umso schwieriger ist und umso eher von der Verfestigung des
Werkstoffes gestört werden kann, je größer der Neigungsunterschied a der
beiden Geraden X (P) und Mm (P) im elastischen Bereiche ist, je größere
innere Kraftverlagerungen durch das Fließen vor sich gehen müssen. Wie
man aus Fig. 7 weiter erkennt, muß die bei der Berechnung des
Momentenausgleiches gewöhnlich getroffene Voraussetzung des Werkstoffes als
elastisch-idealplastischen Körper zu einer etwas zu geringen Traglast PT
führen.

2. Die Balkenmitte Hießt erst nach Überschreiten von Afp über der Stütze.

Bei kleineren Werten von $ wird der Betrag von X nur wenig kleiner
sein als der von Mm und es müssen daher Fließerscheinungen über der Stütze
auftreten, bevor Mm MF geworden ist. Der Bereich rein elastischer
Verformung ist wieder bei PP abgeschlossen, das nach (49) zu berechnen ist.
Nun beginnen plastische Vorgänge die Spannungsverteilung zu beeinflussen;
die Berechnung erfolgt zunächst genau so wie unter A, doch ist dieser Weg
nurmehr solange richtig, solange X<MP ist. Ist X7>MP und P>PV muß
die Berechnung in anderer Weise geführt werden.

a) Berechnung von P±.

Auf Grund der bereits geschilderten Bedeutung von Pt ist

8) F. Stüssi und C. F. Kollbrunner, Beitrag zum Traglastverfahren. Bautechnik
1935, Heft 21.
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2» PJ J Xx + MP
8 0 Mp—Mp ~Mp — MP

4

MF

2 Alp

~ÄTP

Damii erhält man

/y 4 [v, (Alp — Mp) + 2 MP); (64)

setzt man diesen Ausdruck in (60) ein, so erhält man zur Bestimmung von v±

_! _ / 2 MP
BEJ V'1 + MF — Mp

[ 2A1P($ 3) 3 I»! (A1F — Alp)] =2 + cp, (vt). (65)

Die Lösung der Gleichung (65) geschieht am zweckmäßigsten auf zeichnerischem

Wege; man trägt die linke und die rechte Seite der Gleichung punktweise

auf und sucht den Schnittpunkt dieser beiden Linien. Mit v± läßt sich
dann leicht P± und AX± berechnen.

b) Die Berechnung von PF, wenn Mm MF und MP<X <M^.
In diesem Falle tritt ein bildsam verformtes Gebiet zu beiden Seiten

der Mittelstütze zu den früheren Stücken der verformten Stabachse hinzu,
wodurch sich die Rechnung wesentlich verwickelter und zeitraubender
gestaltet. Bezeichnet man die Durchbiegung dieser beiden neuen Bereiche mit
yi und y5, so hat man

y*" *j + ^-x + \ [2 i, - & V(l - |4)« - are sin |J

X X x'2 B
y* =EJX + m 2 +6«-'?9ife) + C7

und

fi

y>

y&

96a42
X^x^ J<_^ _B_

EjY +
EJlx 6 +

P_

VE

P x2

dh) + C7x + C8

2 EJ
X + Wj + T [2 "'6 ¦> V'° ~ -bV ~ HrC S'n ' 5]

2EJ 2 +EXJX+£h,<Pl{h) + C»

Darin bedeutet

£4 ~ß4x + *4 l--wP[-xii + B+Mp]bzw-

aL

j/4 gilt bis *4 —
4 —

/x (Af/> — Afp)

^(Afp-X).

und £4
Afp — X

~AfF — MP '

a4 X

(66)

(67)

(68)
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Ebenso ist

f5 abx + b6
Mp lMp (~*-X+ MP) bzw.

a* Y(m7---mp)
und *»=^^;=*- <69>

bh 2{MV — X)
yb gilt nun bis xh — ~a — — ;.

Zur Berechnung der Freiwerte C5 bis C10 und X stehen nun elf
Randbedingungen zur Verfügung: 1. folgt aus yt( — /x) - 0 die Gleichung

Die erste Übergangsbedingung lautet y\(xi) y'i(xi), woraus sich mit
^i (°) — 2 die Beziehung

B BQ C7 + -- <^ (0) oder C, -- C7 — =— ergibt.
O fl4 jfl4

3. ist y'jL (o) y'5 (o); daraus folgt

Weiter ist 4. y'3(x3) y'2 (*;>), und man bekommt daraus C9 — C3
B

3ab

Nun erhält man 5. aus y'2 (.*>) y\ (xP) die Beziehung Cs — C5=
Aus der 6. Randbedingung y'd {-=-) 0 bekommt man die bereits früher

angegebene Gleichung

Durch Zusammenfügen der Gleichungen aus den Bedingungen 6, 5, 4, 3
und 2 erhält man schließlich

Damit berechnet sich aus der Randbedingung 1

Zur Ermittlung einer Gleichung, in der nur X als Unbekannte vorkommt,
sind nun noch die zwei weiteren Randbedingungen 7 und 8 zu benützen;
sie lauten yi (x±) y1 (x{) und yA (o) 0. Man erhält aus der letzteren

Cs ~ oet? *¦ <*«>
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und aus der 7. schließlich

(70)

Um zu dem Grenzwerte PF zu kommen, hat man zunächst in dieser Gleichung
v 1 zu setzen; damit wird 2 + 9?i 0) 0,2876 und man erhält

lß$ (~8 Pl ~ Xd) + °'5752 1? (Mf ^ + [2 + Tl {Öa)] ^(2X+Pli) (M>>- Mr)

+ 21,0, (MF - Afp)2 - ^ /t (Äff - AfP)s fo>8 (o) - <p2 (*4)] 0 (71}

war, berechnet sich mit v \ daraus

r» 4 /v A4 \ t. Mp - XPf t(Xf+Mf); aus K 1^rM]>
läßt sich der zugehörige Wert Xt in der Form Xf ¦= A/p bf (MF — MP)
anschreiben. Damit wird nun

PF
4

(MF + MP) — bF(MF — Mp), (72)

worin bF jenen besonderen Wert b± vorstellt, der gerade PF bzw. XF
bestimmt; nun kann die Gleichung (71) in einer Form dargestellt werden,
in der nur br als Unbekannte vorkommt. Sie lautet:

3j^ [(Mp + Mp)-bp(MF-Mp)][Mp -bF(MF-Mp)Y ^[MP-bF(MF Afp)]»

0 „~2/ (MF -Mp)[Mp-bp(MF-Mp)Y (73)
p A[(MF+MP)-bF(MF Mp)]

[Mp-bp(Mp-Mp)](MF Mp)\mf+21i(Mf+Mp) bF (1 + 2AJ (MF- MP)\

+ 2 (M7+Mp)Jf(Mp--Mp) ~- -P + ^(M]

+ 21, bp{MF-Mpy-l^(Mp~MPy[tp2(o)~<t2(bp)] 0.

Diese Gleichung löst man am besten versuchsweise auf; man wählt
v

bF ^n wobei v jeden ganzzahligen Wert zwischen 0 und 10 annehmen

kann. Dann berechnet man Pt (v) und XF (v), entnimmt der Zahlentafel 1

cpA 1—1 und cp2 (j-ft) und ermittelt damit den Wert der Gl. (73), den man

nun in Abhängigkeit von v in einem Axenkreuz aufträgt. Im Schnitt dieser
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Linie mit der Bezugsaxe findet man den gesuchten Wert bF, mit dem sich
dann Pr und Xt leicht berechnen läßt.

Um die Tragfähigkeit PT zu erhalten, hat man genau so wie früher nach
(63) vorzugehen. In Fig. 8 ist der Momentenausgleich wieder in übersichtlicher

Form dargestellt.
Die Durchbiegung / in der Balkenmitte erhält man erst nach

Auswertung der drei noch nicht berücksichtigten Randbedingungen 9, 10 und 11,
welche folgendermaßen lauten: y5 (o) 0, y5 (xb) y2 (xb) und y2 (xP)
y3 (xP). Man erhält aus 9

Cio - q(^2 <P2 (t>t>), und aus 10

D
(G, — C3)x5 + (C10 — C4) — öq-^ (p2(o);

daraus berechnet sich nun

Aus 11 folgt schließlich (Cs — Cb)xP -|- (Q — C6) — ^r^ <P2 (°) >96 a2
und daraus ermittelt sich dann

c« l> |i ^{0) + vln {0) ~ ^ {b&)]\+ 3x" (l + l
7~C

Damit berechnet sich nun mit <p2 (o) y
PlB

WE] l1 Ä)s^[f-^^] + 9ÄrlT-^H+Äl2^+2 ^H
+ J f/5. (74)

Die zahlenmäßige Auswertung dieser Gleichung macht keine besonderen
Schwierigkeiten, da X bereits bekannt ist und daher die Zahlen v und b und
die Größen a, a5 und xb unmittelbar berechnet werden können.

3. Einige Bemerkungen zum Momentenausgleich.
Wie man aus dem Vergleich der Fig. 7 und 8 erkennt, geht der

Momentenausgleich umso leichter und störungsfreier vor sich, je kleiner der
Öffnungswinkel a zwischen den beiden elastischen Geraden X (P) und
Mm (P) ist. Beim beiderseits eingespannten Balken ist, abgesehen vom
Vorzeichen, X und M,„ gleich groß, der Öffnungswinkel a wird gleich Null, der
Ausgleich ist daher von vornherein bereits gegeben. Derartige Anordnungen
sind mit Rücksicht auf das Erreichen der Tragfähigkeit ohne eigentliches
Fließen in einem oder in mehreren Fließgelenken als die baulich am
zweckmäßigsten zu bezeichnen, da sie plastizitätstheoretisch die größte Steifigkeit

ergeben. Solche Tragwerksformen sind daher anzustreben und es ist
ohne weiteres erkennbar, daß der bei der Bemessung der Tragwerke übliche
Spannungsmaßstab diese Voraussetzungen schafft. Eine durch Anpassung
des Trägheitsmomentes an die Momentenlinie gewonnene Werkstoffvertei-
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lung verbürgt daher auch plastizitätstheoretisch höchste Tragfähigkeit und
größte Steifigkeit. Der Sicherheitsüberschuß statisch unbestimmter
Tragwerke gegenüber statisch bestimmten verschwindet dann, wenn das Tragwerk

in allen maßgebenden Querschnitten genau nach der Elastizitätstheorie
bemessen worden ist.

Fig. 8.

Der Momentenausgleich eines
Durchlaufträgers im Falle B 2 —
Legalisation des moments cTiine
poutre continue dans le cas B2 —
Equilisation of moments of a con-

tinuous beam in case B2.

\l(P)resp MJP)
/

MF

I-XP
MJPX

t^Xf

Ap

PiPfPt

4. Die Versuche von Maier-Leibniiz.9)

Zur Überprüfung und zum weiteren Verständnis der hier vorgetragenen
Zusammenhänge sollen nun die bekannten und in ihrer Art klassischen
Versuche von Maier-Leibnitz herangezogen werden, bei denen mit großer Schärfe
die hier errechneten Größen durch Messung bestimmt worden sind. Der
Querschnitt des Versuchsbalkens ist ein neigungsloser Breitflansch-Stahl
IP 10, dessen Widerstandsmoment W 90 cm3 und dessen Trägheitsmoment
/ =- 453 cm4 beträgt. Unter der Annahme, daß die Fließschichten plötzlich
die ganze Höhe des Querschnittes durchsetzen, berechnet sich nach Gl. (7)

1

der unter Fußnote 2 angeführten Arbeit mit c
30 iup -= 0,0874 und

daher x 0,212. Damit ist a't - aF (1 r x) 1,212 oF.
Bei dem einfachen Balken von der Spannweite / 120 cm ist nach

Fig. 3 des Versuchsberichtes die Tragfähigkeit etwa bei PF PT 9,75 t
völlig erschöpft; beachtet man, daß infolge einer 6 cm breiten Steife an der
Stelle des Lastangriffes die ungünstigste Beanspruchung am Steifenrande
entstehen muß, so erhält man dort

M
e (L
2 \2

und wenn dieses Moment gleich Mt a't W geworden ist, muß der oben
erwähnte Orenzzustand eingetreten sein. Daraus ergibt sich

&F Pf^/1 \_ 9,75
2W \2 180

57 3,09 t/cm *.

Mit x 0,212 berechnet sich nun

3,09
of 1,212

2,55 t/cm».

9) Maier-Leibnitz, Versuche zur weiteren Klärung der Frage der tatsächlichen
Tragfähigkeit durchlaufender Träger aus Baustahl. Stahlbau 1936, Heft 20.
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Auf Grund von Zugversuchen mit Probestäben aus den Flanschen wurde eine
mittlere Fließgrenze des Werkstoffes von oF 2,46 t cm2 bestimmt; die
Übereinstimmung ist befriedigend, da die Abweichung im unvermeidlichen
Streubereich liegt. Die P-Grenze ist leider nicht unmittelbar gemessen
worden. Schätzt man sie mit oP --= 1,90 t/cm2, dann ist unter Annahme einer
Unabhängigkeit der Feldwirkung von der Festigkeit der Einzelschicht auch

o'P 1,212 oP 2,30 t cm2.

Damit berechnet sich die Last, bei der voraussichtlich die ersten Fließlinien
und die ersten bleibenden Dehnungen auftreten müssen, mit

0 2ö'fW
Pp —

£_3
180 2,30

57

Maier-Leibnitz gibt an, daß tatsächlich bei P
biegungen aufzutreten beginnen.

7,26 t.

7,33 t bleibende Durch-

s resp. Jp

y*lO

\Equahon
b \Gleichung (12b)

\Equahon

c * - (12c)

mesure
d gemessen

measured

Bpl

12'Ae

Fig. 9.

Die plastischen Dehnungen in der Balkenmitte des von Maier-Leibnitz
geprüften einfachen Balkens — Les allongements plastiques au milieu
de la poutre simple auscultee par Maier-Leibnitz — Plastic elongations

in the middle of the simple beam tested by Maier-Leibnitz.

In dem Bereiche o'P<o' <aV ist nun, da z x ist, nach (12 b)

e'pl 4,660 rv./.- AW;
i'Pi,p ist diesen Versuchen mit 0,006 zu entnehmen; damit ist nun e'ni
0,005592 f1(v) und nach (12 c) erhält man ebenso e'pl -= 0,005592 r2/i W-
In Fig. 9 sind nun die errechneten und die gemessenen Werte e'pi einander
gegenübergestellt worden; mit Rücksicht auf die lange Meßstrecke von 20cm
können jedoch die gemessenen Dehnungen, die einem Mittelwerte in der
Meßstrecke entsprechen, nicht unmittelbar den in der Balkenmitte errechneten

gleichgesetzt werden; Fig. 9 ist daher mit einer geschätzten Größt-
dehnung gleich dem doppelten Betrage des gemessenen Wertes gezeichnet
worden, doch lassen die Umstände keinen halbwegs sicheren Schluß auf den
wirklichen Wert zu. Man erkennt, daß die tatsächlichen Dehnungen noch
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rascher wachsen, als es der Rechnung entspricht, doch können dabei auch
Einflüsse der Querschnittsform eine Rolle spielen. Es ist nun B 0,010184
und damit

B Bl2 1 6,7104
6 a2

V of - - oPJ

(v + 2,923)«
•

Der Zahlentafel 2 sind die Werte fpl nach Gl. (34) zu entnehmen. In Fig. 10
ist wieder Rechnung und Messung gegenübergestellt. Um den Einfluß des

PF '975

950

925

900

875

850

825

800

775

750 -

725

Equdhon 1

b\G/e/chunrt(J2b)
Equahon \

c ¦ * (12c)

mesure
gemessen
measured

fPi

Fig. 10.

Die plastischen Durchbiegungen in der Balkenmitte des einfachen Balkens
(Versuch von Maier-Leibnitz) — Les flechissements plastiques au milieu de
la poutre simple (Essai de Maier-Leibnitz) — Plastic deflections in the middle

of the simple beam (Test by Maier-Leibnitz).

Formänderungsgesetzes zu zeigen, sind auch die Werte fpl nach Gl. (44 a)
eingetragen worden. Man muß daher, wie aus dem Vergleiche ersichtlich ist,
wirklich mit sehr großen Werten von i'Ptt F rechnen, wenn man die gemessenen
plastischen Durchbiegungen erklären will. Dehnungsmessungen mit sehr
kleinen Meßlängen dürften auch tatsächlich viel größere Werte von e'p[
ergeben, als sie Maier-Leibnitz gefunden hat; sie scheinen demnach die obige
Schätzung noch zu übertreffen und bereits nahe an die Verfestigungsgrenze
heranzukommen.

In Fig. 18 a bis d des Versuchsberichtes von Maier-Leibnitz ist als eine
die plastische Biegung kennzeichnende Größe die gegenseitige Drehung der
nach der Entlastung gerade bleibenden Balkenstücke in Abhängigkeit von M
dargestellt worden. Diesem Zusammenhange legt Maier-Leibnitz grundsätzliche

Bedeutung bei, da sich damit naturgemäß die Berechnung der plastischen
Verformung der Stabachse aufbauen läßt. Sie hat den Vorteil leichter und
genauer Meßbarkeit und es ist in dieser Hinsicht nicht ohne Belang, daß
sie, wie Ol. (76) erkennen läßt, nur von Werkstoffgrößen abhängig ist, und
die Querschnittsform darin nicht in Erscheinung tritt. Aus der Bedeutung
von rmtPi folgt, daß xmtPi 2Api, woraus sich mit Hilfe von (24) die
Beziehung



Die Biegung eines Balkens aus Baustahl im plastischen Bereich

Bl 1

op
[<Pi(") + 2]

Gp — Op
+ r
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(75)

ergibt. Legt man der Rechnung das Formänderungsgesetz (12 c) zu Grunde,
so ist %m, pi 2 C3 und man erhält

Bl 1

1- ^
ff/? (Tp

6 (75 a)

In Fig. 11 und in Zahlentafel 2 ist diese Linie dargestellt worden; die von
Maier-Leibnitz versuchsmäßig ermittelte Abhängigkeit xm>Pi(M), die er der
verfeinerten Deutung seiner Versuche zu Grunde gelegt hat, ist hinzugefügt,
so daß ein Vergleich der beiden Berechnungsverfahren leicht möglich ist.

1

lern
,M

300

MF-278 'd
J^f^

Mp-Z07
200

100

?m}pl

0010 0015 0020 0030 0040

Fig. 11.

Die Linie rm}pl(M). b bezieht sich auf (12 b), d ist von Maier-Leibnitz
der Deutung seiner Versuche zu Grunde gelegt worden — La courbe
rm,pi(M). b se rapporte ä (12 b), Maier-Leibnitz a base sur d
Interpretation de ses essais —The line tm, pi (M). b refers to (12 b), d was

determined by Maier-Leibnitz, based on his tests.

Der Versuch mit dem Durchlaufbalken ist durchgeführt worden, um die
von Stüssi geäußerten Bedenken über die Richtigkeit des Momentenausgleiches

zu überprüfen. Es ist l± 240 cm, / 120 cm und damit treffen
dafür zweifellos die Voraussetzungen für den unter B 1 beschriebenen Fall
zu. Man erhält zunächst nach (49) mit MP 90 • 2,30 =- 207 t cm PP ¦=-

8,78 t und XP -= 56,52 t cm. Mit dem aus Dehnungsmessungen ermittelten
Werte E 2035 t/cm2 berechnet sich nach (48) fP 0,233 cm.

Zur Ermittlung der Spannungsverteilung im plastischen Bereiche ist mit
B 0,005592 die Größe BEJ 0,005592 • 2035 • 453 5155,013 und man
erhält nun damit aus (59) PF 12,65 t. Aus (58) berechnet sich AXF
19,856 tem und aus (55) XF 80,402 — 19,856 100,258 tcm. Für einen
beliebigen Zwischenwert PP<P <Pf nimmt man zweckmäßig einen Wert>>
zwischen Null und 1 an, kennt dann q)x (v) -p 2 und erhält damit eine
quadratische Gleichung für P. Für v & ist z. B. q>± (|) 2 0,0161 und Gl.
(60) lautet damit
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»l
2BEJ

op__ r
— Op L

o>

Op — Op

l
Mp ~2

of + oP

Op
] o„0161

aus der man nun den zugehörigen Wert P 10,34 t bekommt. Dazu gehört
X 66,486 -t- 1,359 67,845 t cm und Mm 243,724 — 1,359 245,083 t cm.

Die Tragfähigkeit Pj berechnet sich nach (63) mit P7 =- 12,641 r 5,928
18,569 t. Um den Einfluß des „Erweichungsgrades" im plastischen

Bereiche festzustellen, ist das Tragwerk auch mit dem geschätzten Werte t'pij r
12 v.T. durchgerechnet worden. Man erhält nun B 0,010184, BEI

10310,026 und damit PF 13,30 t, AXt 37,500 t cm und XF 86,075 4
37,500 123,575 t cm. Die Tragfähigkeit Pj ergibt sich nun mit PT 13,386
+ 5,151 18,537 t. In Fig. 12 ist mit diesen beiden Annahmen in der üb-

tcm
300

MF =278

Mp - 207
200

Xf 72358

XF* 10026
10000

Xp-5652

M

--
y

r— i _j
^1 /

7|

/ —,
T —

i

~uj 1-

i

/>

SO 09«? ^

Fig. 12.

Der Momentenausgleich des durchlaufenden Versuchsbalkens von Maier-Leibnitz.
Legalisation des moments dans la poutre continue auscultee par Maier-Leibnitz.
Equilisation of moments of the continuous experimental beam of Maier-Leibnitz.

liehen Art der Momentenausgleich dargestellt. Um zu einem Vergleiche der
Rechenergebnisse mit den von Maier-Leibnitz durch Auswertung seiner
Messungen ermittelten Linien X (P) und Mm (P) zu kommen, ist vor allem zu
berücksichtigen, daß sich infolge einer 6 cm breiten Steife am Orte des
Lastangriffes eine Verschiebung des Ortes des ersten Fließens von der Balkenmitte

weg an den Rand dieser Steife ergeben muß, da sie eine wesentliche
Vergrößerung des Trägheitsmomentes bedeutet. Versucht man, diesen
Verhältnissen wenigstens an den maßgebenden Stellen Rechnung zu tragen, so
ist zunächst das Moment am Orte des ersten Fließens

M»

l
PI 2 — 3

X
PI

X.

Der Einfluß der Steife auf das Stützenmoment darf wohl vernachlässigt
werden. Damit ist dann
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PP
8# MP

(2üq — 3)1

woraus sich mit g 0,95 der Wert PP =- 9,38 t ergibt. Dazu gehört XP =--

60,30 tcm. Bei der Berechnung von PF ist nun in Gleichung (59) der Wert
2 # — 3 durch 2 #£ — 3 zu ersetzen und man erhält nun mit B 0,005592
PF 13,45 t, wozu sich nach (56) ein AXF 18,67 tcm und ein XF =-
86,44 -f 18,67 105,11 tcm berechnet.

Um die Tragfähigkeit PT unter Berücksichtigung des Steifeneinflusses
zu bestimmen, darf man nicht vergessen, daß der statisch bestimmte Träger
nun ein durchlaufender Gelenkträger ist mit einem Schwebeträger von 6 cm
Länge in der Mittelöffnung, da sich nun gleichzeitig zwei Fließgelenke an
den Steifenrändern ausbilden. Dafür ist das zusätzliche Stützmoment

X (P-PF)lXf + 4
• Q >

und es berechnet sich mit X MF
4 (MF — XF)

Pr Pf f >/
13,45 + 9,76 19,52 t.

Jjj&bt IM>
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^—6cm

Fig. 13.

Der Einfluß der Steife an der Lastangriffsstelle auf den Momentenausgleich.
Influence du raidisseur place au point d'application de la Charge sur Pegalisation des moments.
How the stiffness at the point of application of the Ioad affects the equilisation of the moments.

Um auch die Linie Mm (P) eintragen zu können, hat man zu beachten,
daß an die Stelle von MP nun eine Größe Mm>P kommt, die das Moment in
der Balkenmitte vorstellt, wenn das Moment MR MF geworden ist; in
ähnlicher Weise bedeutet Mm, F ein Moment Mm, wenn MR MF ist. Mm> T
entsteht schließlich für MR MF und X MF. Aus Fig. 13 erkennt man
deutlich, wie diese Größen berechnet werden können; man erhält MfTliP 221,
Mm>F 298 und Mm/t 307 tcm. In Fig. 14 sind nun die errechneten und
gemessenen Linien X (P) und Mm (P) einander gegenübergestellt worden.
Abgesehen von den kleinen Abweichungen im elastischen Gebiete, deren
Ursache schwer feststellbar ist, ist die Übereinstimmung gut; völlige An-
gleichung zwischen Rechnung und Erfahrung wird niemals zu erzielen sein.
Wie man aus dem Bilde erkennt, kommt es zu Verfestigung des Werkstoffes,
bevor der Momentenausgleich vollkommen zustande gekommen ist; das liegt
an der Art der Trägeranordnung, die starke plastische Verformungen in der
Balkenmitte verlangt, die aber der Querschnitt ohne Verfestigung nicht leisten
kann.
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Die Übereinstimmung würde sich noch befriedigender ergeben, wenn
man in der Rechnung das die Versuche besser beschreibende Formänderungsgesetz

(12 c) angewendet hätte. Da dies rechnerische Schwierigkeiten
bereitet, soll es erst dann Berücksichtigung finden, wenn es durch weitere
Versuche bestätigt sein wird.

Was die Durchbiegung in dem elastisch-plastischen Bereiche anbetrifft,
so ist nach (61 a) für v \ die bleibende Durchbiegung in der Balkenmitte

tcm
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X(P) resp Mm(P)
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Fig. 14.

Gegenüberstellung von Versuchsauswertung und Rechnung.
Comparaison entre les essais et le calcul.

Comparison between test results and calculations.

fpiik) 0,01307; ihren Größtwert erreicht sie mit v 1, der sich aus Gl.
(61b) mit fpttF 0,17173 berechnet. Die gesamte Durchbiegung ist dann
fgesamt, f 0,33497 + 0,17173 0,50607 cm. Nach Erreichen von PF schalten
sich an den beiden Steifenrändern Fließgelenke ein, die verbleibenden
Kragträger verbiegen sich wieder rein elastisch, bis über der Stütze das Moment
X MP geworden ist. Der Belastungszuwachs beträgt bis dahin AP

—-—~ — 3,56 t und der zugehörige Durchbiegungszuwachs ist A f ¦=

OA f;(^~I~) "ö ^) 0,688 cm. Daran schließt sich ein Bereich, der durch

Fließen über der Stütze entsteht; die dabei auftretenden Durchbiegungen
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sind der Berechnung zugänglich, doch ist der Rechenaufwand bereits ein
recht beträchtlicher. Eine Übereinstimmung zwischen Rechnung und Erfahrung

kann bei so großen plastischen Verformungen, wie Fig. 15 zeigt, nicht
mehr in dem früheren Maße erwartet werden, da sich dabei bereits
Verfestigungserscheinungen in der Balkenmitte geltend machen müssen, die in
der Rechnung nicht berücksichtigt sind. Auch die Steife bringt Unsicherheiten
in die Rechnung, die sich im Sinne einer Verminderung der Durchbiegung
auswirken müssen. Man darf aber nicht vergessen, daß diese Trägeranordnung

als ungewöhnlich zu bezeichnen ist und daß sich bei den im Bauwesen
üblichen Verhältnissen zwischen / und l± diese das Fließen störenden
Erscheinungen nicht so deutlich zeigen würden.
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Fig 15

Die Durchbiegung der Balkenmitte des Durchlaufträgers nach Messung
und Rechnung — Le flechissement au milieu de la poutre continue sui-
vant les essais et le calcul — Deflection at the middle of the continuous

beam as determined by measurement and by calculation.

Für den Fall baulich üblicher Werte von # stehen derzeit leider keine
Versuche zur Verfügung, die eine Überprüfung der unter Ziffer B 2
aufgestellten Beziehungen gestatten würden.

Zusammenfassung.
Die Statik des Stahlbaues erfordert bei der Überprüfung der Tragfähigkeit
und der wirklichen Sicherheit der Bauwerke ein Eingehen auf die plastischen

Verformungen, besonders bei statisch unbestimmter Ausbildung. Dabei

ist die Frage der Plastizitätsbedingung von großer Wichtigkeit, die aus
den beim Fließen zu beobachtenden Erscheinungen zu entwickeln ist. In der
vorliegenden Arbeit ist entsprechend der Erfahrung angenommen worden,
daß das Fließen nur in Schichten erfolgen kann, die von Oberfläche zu
Oberfläche des Körpers reichen, im Gegensatz zu der sogenannten älteren
Plastizitätslehre, die von der Möglichkeit eines örtlichen Fließens ausgeht und

Abhandlungen VI g



122 J. Fritsche

zum plastischen Spannungsabbau geführt hat. Außerdem ist berücksichtigt,
daß der Baustahl kein homogener Körper im Sinne der Mechanik ist, sondern
daß auch Schichten von herabgesetztem Fließwiderstande vorhanden sind,
womit sich bei Annahme eines Verteilungsgesetzes dieser geschwächten
Schichten die Spannungs-Dehnungs-Linie des Baustahles errechnen läßt.
Beim Anlegen eines längs der Hauptschubspannungslinien veränderlichen
Spannungsfeldes ist auch die Feldwirkung auf den Fließvorgang zum
Ausdruck zu bringen, welche von der Form des Körpers abhängt und durch eine
neu eingeführte Werkstoffziffer c rechnerisch erfaßt werden kann.

Unter diesen Voraussetzungen ist die elastisch-plastische Biegung eines
Balkens bei statisch bestimmter und bei statisch unbestimmter Stützung
durchgerechnet worden, sowohl beim Angriff von Stabendmomenten als auch
von Einzellasten in den Balkenmitten. Zur Überprüfung der entwickelten
Zusammenhänge sind die bekannten Versuche von Maier-Leibnitz herangezogen

worden; sie lassen erkennen, daß die versuchsmäßig gemessenen
Größen durch die Rechnung überraschend gut wiedergegeben werden. Sie
liefern damit den Beweis, daß in dieser Art mit der Nachrechnung plastischer
Vorgänge sehr weitgehend an die Wirklichkeit herangekommen werden kann.

Resume.
La statique des constructions metalliques exige, lors du contröle de la

resistance et de la securite reelle des ouvrages, une etude des deformations
plastiques surtout si Pon se trouve en presence d'ouvrages hyperstatiques.
La condition de plasticite tiree des phenomenes observes au cours de Petire-
ment de Parier est de la plus haute importance. Dans le present memoire,
Pauteur admet, sur la base de Pexperience, que Petirement ne peut se faire
que par couches qui s'etendent d'une surface ä Pautre du corps; cette theorie
est en Opposition avec Pancienne theorie basee sur la possibilite d'un etire-
ment local qui conduisait ä une reduction plastique des contraintes. L'auteur
tient en outre compte du fait que Parier de construction n'est pas, au sens
mecanique, un corps homogene mais, qu'au contraire il possede des couches
de plus faible resistance ä Petirement; il en resulte qu'on peut calculer la
courbe des tensions-allongements de Parier de construction si Pon admet
une loi de repartition de ces couches de faible resistance. Dans le cas d'un
champ de tensions variable le long des lignes de cisaillement principales il
faut egalernent exprimer Paction de ce champ sur le processus d'etirement,
action qui depend de la forme du corps et qui peut etre exprimee numerique-
ment par une nouvelle caracteristique c du materiau.

Se basant sur ces hypotheses, Pauteur calcule la flexion elastico-plastique
d'une poutre sur appuis statiquement determines et hyperstatiques, soumise
soit ä des moments de flexion agissant ä ses extremites, soit ä des charges
concentrees appliquees en son milieu. Les essais connus de Maier-Leiönitz
ont permis de controler les resultats obtenus; les resultats des essais pre-
sentent une concordance etonnante avec le calcul. Ils fournissent donc la
preuve que le calcul fait de la sorte permet de calculer les phenomenes
plastiques d'une fagon se rapprochant fortement de la realite.

Summary.
The statics of steel construction, when checking the carrying capacity

and the actual safety of a strueture, requires an investigation of the plastic
deformation, particularly in the case of statically indeterminate forms.
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Thereby the question of the conditioning of plasticity is of great importance;
this is to be deduced from the phenomena observed during the straining.
In accordance with experience, it is assumed in the present article that the
straining can occur only in layers which extend from one surface of the
body to another, in contrast to the so-called older theory of plasticity, which
started with the possibility of a local strain and led to the plastic reduction
of tension. Besides that, it is to be considered that structural steel is no
homogeneous body in the sense understood in mechanics, but that also layers
of reduced strain-resistance are present, so that, assuming a law of
distribution for these weakened layers, the stress-strain line of the structural steel
may be calculated. By applying a tension-field which is variable along the
main lines of shearing stress, also the field-effect on the straining is brought
to expression; it depends on the shape of the member and can be expressed
mathematically by a newly-introduced material-coefficient c.

Under these assumptions the elastic-plastic bending of a beam is
calculated with statically determinate and statically indeterminate supporting,
at the point of application of the rod-end moments as well as of loads con-
centrated at the middle of the beam. For checking the developed connections
the known tests of Maier-Leibnitz are made use of; they show that the
results obtained by experimental measurements agree surprisingly well with
those calculated. They thus furnish the proof that in this way, the
calculations made of plastic occurrences may approximate very closely to what
actually happens.
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